VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 55118

Last change on this file since 55118 was 55118, checked in by vboxsync, 10 years ago

VMM: GIM raw-mode support.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 70.8 KB
Line 
1/* $Id: HMR0.cpp 55118 2015-04-07 15:21:45Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <VBox/vmm/hm.h>
23#include <VBox/vmm/pgm.h>
24#include "HMInternal.h"
25#include <VBox/vmm/vm.h>
26#include <VBox/vmm/hm_vmx.h>
27#include <VBox/vmm/hm_svm.h>
28#include <VBox/vmm/gim.h>
29#include <VBox/err.h>
30#include <VBox/log.h>
31#include <iprt/assert.h>
32#include <iprt/asm.h>
33#include <iprt/asm-amd64-x86.h>
34#include <iprt/cpuset.h>
35#include <iprt/mem.h>
36#include <iprt/memobj.h>
37#include <iprt/once.h>
38#include <iprt/param.h>
39#include <iprt/power.h>
40#include <iprt/string.h>
41#include <iprt/thread.h>
42#include <iprt/x86.h>
43#include "HMVMXR0.h"
44#include "HMSVMR0.h"
45
46
47/*******************************************************************************
48* Internal Functions *
49*******************************************************************************/
50static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
51static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
55static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
56
57
58/*******************************************************************************
59* Structures and Typedefs *
60*******************************************************************************/
61/**
62 * This is used to manage the status code of a RTMpOnAll in HM.
63 */
64typedef struct HMR0FIRSTRC
65{
66 /** The status code. */
67 int32_t volatile rc;
68 /** The ID of the CPU reporting the first failure. */
69 RTCPUID volatile idCpu;
70} HMR0FIRSTRC;
71/** Pointer to a first return code structure. */
72typedef HMR0FIRSTRC *PHMR0FIRSTRC;
73
74
75/*******************************************************************************
76* Global Variables *
77*******************************************************************************/
78/**
79 * Global data.
80 */
81static struct
82{
83 /** Per CPU globals. */
84 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
85
86 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
87 * @{ */
88 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
89 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
90 DECLR0CALLBACKMEMBER(int, pfnSaveHostState, (PVM pVM, PVMCPU pVCpu));
91 DECLR0CALLBACKMEMBER(int, pfnRunGuestCode, (PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
92 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
93 bool fEnabledByHost, void *pvArg));
94 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
95 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVM pVM));
96 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnSetupVM ,(PVM pVM));
98 /** @} */
99
100 /** Maximum ASID allowed. */
101 uint32_t uMaxAsid;
102
103 /** VT-x data. */
104 struct
105 {
106 /** Set to by us to indicate VMX is supported by the CPU. */
107 bool fSupported;
108 /** Whether we're using SUPR0EnableVTx or not. */
109 bool fUsingSUPR0EnableVTx;
110 /** Whether we're using the preemption timer or not. */
111 bool fUsePreemptTimer;
112 /** The shift mask employed by the VMX-Preemption timer. */
113 uint8_t cPreemptTimerShift;
114
115 /** Host CR4 value (set by ring-0 VMX init) */
116 /** @todo This isn't used for anything relevant. Remove later? */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** VMX MSR values */
123 VMXMSRS Msrs;
124
125 /* Last instruction error */
126 uint32_t ulLastInstrError;
127 } vmx;
128
129 /** AMD-V information. */
130 struct
131 {
132 /* HWCR MSR (for diagnostics) */
133 uint64_t u64MsrHwcr;
134
135 /** SVM revision. */
136 uint32_t u32Rev;
137
138 /** SVM feature bits from cpuid 0x8000000a */
139 uint32_t u32Features;
140
141 /** Set by us to indicate SVM is supported by the CPU. */
142 bool fSupported;
143 } svm;
144 /** Saved error from detection */
145 int32_t lLastError;
146
147 struct
148 {
149 uint32_t u32AMDFeatureECX;
150 uint32_t u32AMDFeatureEDX;
151 } cpuid;
152
153 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
154 * enabled and disabled each time it's used to execute guest code. */
155 bool fGlobalInit;
156 /** Indicates whether the host is suspending or not. We'll refuse a few
157 * actions when the host is being suspended to speed up the suspending and
158 * avoid trouble. */
159 volatile bool fSuspended;
160
161 /** Whether we've already initialized all CPUs.
162 * @remarks We could check the EnableAllCpusOnce state, but this is
163 * simpler and hopefully easier to understand. */
164 bool fEnabled;
165 /** Serialize initialization in HMR0EnableAllCpus. */
166 RTONCE EnableAllCpusOnce;
167} g_HvmR0;
168
169
170
171/**
172 * Initializes a first return code structure.
173 *
174 * @param pFirstRc The structure to init.
175 */
176static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
177{
178 pFirstRc->rc = VINF_SUCCESS;
179 pFirstRc->idCpu = NIL_RTCPUID;
180}
181
182
183/**
184 * Try set the status code (success ignored).
185 *
186 * @param pFirstRc The first return code structure.
187 * @param rc The status code.
188 */
189static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
190{
191 if ( RT_FAILURE(rc)
192 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
193 pFirstRc->idCpu = RTMpCpuId();
194}
195
196
197/**
198 * Get the status code of a first return code structure.
199 *
200 * @returns The status code; VINF_SUCCESS or error status, no informational or
201 * warning errors.
202 * @param pFirstRc The first return code structure.
203 */
204static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
205{
206 return pFirstRc->rc;
207}
208
209
210#ifdef VBOX_STRICT
211/**
212 * Get the CPU ID on which the failure status code was reported.
213 *
214 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
215 * @param pFirstRc The first return code structure.
216 */
217static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
218{
219 return pFirstRc->idCpu;
220}
221#endif /* VBOX_STRICT */
222
223
224/** @name Dummy callback handlers.
225 * @{ */
226
227static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
228{
229 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
230 return VINF_SUCCESS;
231}
232
233static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
234{
235 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
236}
237
238static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
239 bool fEnabledBySystem, void *pvArg)
240{
241 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem); NOREF(pvArg);
242 return VINF_SUCCESS;
243}
244
245static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
246{
247 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
248 return VINF_SUCCESS;
249}
250
251static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
252{
253 NOREF(pVM);
254 return VINF_SUCCESS;
255}
256
257static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
258{
259 NOREF(pVM);
260 return VINF_SUCCESS;
261}
262
263static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
264{
265 NOREF(pVM);
266 return VINF_SUCCESS;
267}
268
269static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
270{
271 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
272 return VINF_SUCCESS;
273}
274
275static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
276{
277 NOREF(pVM); NOREF(pVCpu);
278 return VINF_SUCCESS;
279}
280
281/** @} */
282
283
284/**
285 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
286 * Down at the Rate Specified" erratum.
287 *
288 * Errata names and related steppings:
289 * - BA86 - D0.
290 * - AAX65 - C2.
291 * - AAU65 - C2, K0.
292 * - AAO95 - B1.
293 * - AAT59 - C2.
294 * - AAK139 - D0.
295 * - AAM126 - C0, C1, D0.
296 * - AAN92 - B1.
297 * - AAJ124 - C0, D0.
298 *
299 * - AAP86 - B1.
300 *
301 * Steppings: B1, C0, C1, C2, D0, K0.
302 *
303 * @returns true if subject to it, false if not.
304 */
305static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
306{
307 uint32_t u = ASMCpuId_EAX(1);
308 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
309 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
310 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
311 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
312 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
313 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
314 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
315 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
316 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
317 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
318 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
319 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
320 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
321 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
322 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
323 )
324 return true;
325 return false;
326}
327
328
329/**
330 * Intel specific initialization code.
331 *
332 * @returns VBox status code (will only fail if out of memory).
333 */
334static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
335{
336 /*
337 * Check that all the required VT-x features are present.
338 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
339 */
340 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
341 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
342 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
343 )
344 {
345 /** @todo move this into a separate function. */
346 g_HvmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
347
348 /*
349 * First try use native kernel API for controlling VT-x.
350 * (This is only supported by some Mac OS X kernels atm.)
351 */
352 int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
353 g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
354 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
355 {
356 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
357 if (RT_SUCCESS(rc))
358 {
359 g_HvmR0.vmx.fSupported = true;
360 rc = SUPR0EnableVTx(false /* fEnable */);
361 AssertLogRelRC(rc);
362 }
363 }
364 else
365 {
366 /* We need to check if VT-x has been properly initialized on all
367 CPUs. Some BIOSes do a lousy job. */
368 HMR0FIRSTRC FirstRc;
369 hmR0FirstRcInit(&FirstRc);
370 g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
371 if (RT_SUCCESS(g_HvmR0.lLastError))
372 g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
373 }
374 if (RT_SUCCESS(g_HvmR0.lLastError))
375 {
376 /* Reread in case it was changed by hmR0InitIntelCpu(). */
377 g_HvmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
378
379 /*
380 * Read all relevant registers and MSRs.
381 */
382 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
383 g_HvmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
384 g_HvmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
385 g_HvmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
386 g_HvmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
387 g_HvmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
388 g_HvmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
389 g_HvmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
390 g_HvmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
391 g_HvmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
392 g_HvmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
393 g_HvmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
394 g_HvmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
395 /* VPID 16 bits ASID. */
396 g_HvmR0.uMaxAsid = 0x10000; /* exclusive */
397
398 if (g_HvmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
399 {
400 g_HvmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
401 if (g_HvmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
402 g_HvmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
403
404 if (g_HvmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
405 g_HvmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
406 }
407
408 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
409 {
410 /*
411 * Enter root mode
412 */
413 RTR0MEMOBJ hScatchMemObj;
414 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
415 if (RT_FAILURE(rc))
416 {
417 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
418 return rc;
419 }
420
421 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
422 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
423 ASMMemZeroPage(pvScatchPage);
424
425 /* Set revision dword at the beginning of the structure. */
426 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.Msrs.u64BasicInfo);
427
428 /* Make sure we don't get rescheduled to another cpu during this probe. */
429 RTCCUINTREG fFlags = ASMIntDisableFlags();
430
431 /*
432 * Check CR4.VMXE
433 */
434 g_HvmR0.vmx.u64HostCr4 = ASMGetCR4();
435 if (!(g_HvmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
436 {
437 /* In theory this bit could be cleared behind our back. Which would cause
438 #UD faults when we try to execute the VMX instructions... */
439 ASMSetCR4(g_HvmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
440 }
441
442 /*
443 * The only way of checking if we're in VMX root mode or not is to try and enter it.
444 * There is no instruction or control bit that tells us if we're in VMX root mode.
445 * Therefore, try and enter VMX root mode here.
446 */
447 rc = VMXEnable(HCPhysScratchPage);
448 if (RT_SUCCESS(rc))
449 {
450 g_HvmR0.vmx.fSupported = true;
451 VMXDisable();
452 }
453 else
454 {
455 /*
456 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
457 * it will crash the host when we enter raw mode, because:
458 *
459 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
460 * this bit), and
461 * (b) turning off paging causes a #GP (unavoidable when switching
462 * from long to 32 bits mode or 32 bits to PAE).
463 *
464 * They should fix their code, but until they do we simply refuse to run.
465 */
466 g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
467 Assert(g_HvmR0.vmx.fSupported == false);
468 }
469
470 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
471 if it wasn't so before (some software could incorrectly
472 think it's in VMX mode). */
473 ASMSetCR4(g_HvmR0.vmx.u64HostCr4);
474 ASMSetFlags(fFlags);
475
476 RTR0MemObjFree(hScatchMemObj, false);
477 }
478
479 if (g_HvmR0.vmx.fSupported)
480 {
481 rc = VMXR0GlobalInit();
482 if (RT_FAILURE(rc))
483 g_HvmR0.lLastError = rc;
484
485 /*
486 * Install the VT-x methods.
487 */
488 g_HvmR0.pfnEnterSession = VMXR0Enter;
489 g_HvmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
490 g_HvmR0.pfnSaveHostState = VMXR0SaveHostState;
491 g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode;
492 g_HvmR0.pfnEnableCpu = VMXR0EnableCpu;
493 g_HvmR0.pfnDisableCpu = VMXR0DisableCpu;
494 g_HvmR0.pfnInitVM = VMXR0InitVM;
495 g_HvmR0.pfnTermVM = VMXR0TermVM;
496 g_HvmR0.pfnSetupVM = VMXR0SetupVM;
497
498 /*
499 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
500 * Timer Does Not Count Down at the Rate Specified" erratum.
501 */
502 if (g_HvmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
503 {
504 g_HvmR0.vmx.fUsePreemptTimer = true;
505 g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.Msrs.u64Misc);
506 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
507 g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
508 }
509 }
510 }
511#ifdef LOG_ENABLED
512 else
513 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError);
514#endif
515 }
516 else
517 g_HvmR0.lLastError = VERR_VMX_NO_VMX;
518 return VINF_SUCCESS;
519}
520
521
522/**
523 * AMD-specific initialization code.
524 *
525 * @returns VBox status code.
526 */
527static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
528{
529 /*
530 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
531 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
532 */
533 int rc;
534 if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
535 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
536 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
537 && ASMIsValidExtRange(uMaxExtLeaf)
538 && uMaxExtLeaf >= 0x8000000a
539 )
540 {
541 /* Call the global AMD-V initialization routine. */
542 rc = SVMR0GlobalInit();
543 if (RT_FAILURE(rc))
544 {
545 g_HvmR0.lLastError = rc;
546 return rc;
547 }
548
549 /*
550 * Install the AMD-V methods.
551 */
552 g_HvmR0.pfnEnterSession = SVMR0Enter;
553 g_HvmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
554 g_HvmR0.pfnSaveHostState = SVMR0SaveHostState;
555 g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode;
556 g_HvmR0.pfnEnableCpu = SVMR0EnableCpu;
557 g_HvmR0.pfnDisableCpu = SVMR0DisableCpu;
558 g_HvmR0.pfnInitVM = SVMR0InitVM;
559 g_HvmR0.pfnTermVM = SVMR0TermVM;
560 g_HvmR0.pfnSetupVM = SVMR0SetupVM;
561
562 /* Query AMD features. */
563 uint32_t u32Dummy;
564 ASMCpuId(0x8000000a, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxAsid, &u32Dummy, &g_HvmR0.svm.u32Features);
565
566 /*
567 * We need to check if AMD-V has been properly initialized on all CPUs.
568 * Some BIOSes might do a poor job.
569 */
570 HMR0FIRSTRC FirstRc;
571 hmR0FirstRcInit(&FirstRc);
572 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
573 AssertRC(rc);
574 if (RT_SUCCESS(rc))
575 rc = hmR0FirstRcGetStatus(&FirstRc);
576#ifndef DEBUG_bird
577 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
578 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
579#endif
580 if (RT_SUCCESS(rc))
581 {
582 /* Read the HWCR MSR for diagnostics. */
583 g_HvmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
584 g_HvmR0.svm.fSupported = true;
585 }
586 else
587 {
588 g_HvmR0.lLastError = rc;
589 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
590 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
591 }
592 }
593 else
594 {
595 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
596 g_HvmR0.lLastError = VERR_SVM_NO_SVM;
597 }
598 return rc;
599}
600
601
602/**
603 * Does global Ring-0 HM initialization (at module init).
604 *
605 * @returns VBox status code.
606 */
607VMMR0_INT_DECL(int) HMR0Init(void)
608{
609 /*
610 * Initialize the globals.
611 */
612 g_HvmR0.fEnabled = false;
613 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
614 g_HvmR0.EnableAllCpusOnce = s_OnceInit;
615 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
616 {
617 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
618 g_HvmR0.aCpuInfo[i].idCpu = NIL_RTCPUID;
619 }
620
621 /* Fill in all callbacks with placeholders. */
622 g_HvmR0.pfnEnterSession = hmR0DummyEnter;
623 g_HvmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
624 g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState;
625 g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
626 g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu;
627 g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu;
628 g_HvmR0.pfnInitVM = hmR0DummyInitVM;
629 g_HvmR0.pfnTermVM = hmR0DummyTermVM;
630 g_HvmR0.pfnSetupVM = hmR0DummySetupVM;
631
632 /* Default is global VT-x/AMD-V init. */
633 g_HvmR0.fGlobalInit = true;
634
635 /*
636 * Make sure aCpuInfo is big enough for all the CPUs on this system.
637 */
638 if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo))
639 {
640 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo)));
641 return VERR_TOO_MANY_CPUS;
642 }
643
644 /*
645 * Check for VT-x and AMD-V capabilities.
646 */
647 int rc;
648 if (ASMHasCpuId())
649 {
650 /* Standard features. */
651 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
652 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
653 if (ASMIsValidStdRange(uMaxLeaf))
654 {
655 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
656 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
657
658 /* Query AMD features. */
659 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
660 if (ASMIsValidExtRange(uMaxExtLeaf))
661 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
662 &g_HvmR0.cpuid.u32AMDFeatureECX,
663 &g_HvmR0.cpuid.u32AMDFeatureEDX);
664 else
665 g_HvmR0.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureEDX = 0;
666
667 /* Go to CPU specific initialization code. */
668 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
669 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
670 {
671 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
672 if (RT_FAILURE(rc))
673 return rc;
674 }
675 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
676 {
677 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
678 if (RT_FAILURE(rc))
679 return rc;
680 }
681 else
682 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
683 }
684 else
685 g_HvmR0.lLastError = VERR_HM_UNKNOWN_CPU;
686 }
687 else
688 g_HvmR0.lLastError = VERR_HM_NO_CPUID;
689
690 /*
691 * Register notification callbacks that we can use to disable/enable CPUs
692 * when brought offline/online or suspending/resuming.
693 */
694 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
695 {
696 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
697 AssertRC(rc);
698
699 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
700 AssertRC(rc);
701 }
702
703 /* We return success here because module init shall not fail if HM
704 fails to initialize. */
705 return VINF_SUCCESS;
706}
707
708
709/**
710 * Does global Ring-0 HM termination (at module termination).
711 *
712 * @returns VBox status code.
713 */
714VMMR0_INT_DECL(int) HMR0Term(void)
715{
716 int rc;
717 if ( g_HvmR0.vmx.fSupported
718 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
719 {
720 /*
721 * Simple if the host OS manages VT-x.
722 */
723 Assert(g_HvmR0.fGlobalInit);
724 rc = SUPR0EnableVTx(false /* fEnable */);
725
726 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++)
727 {
728 g_HvmR0.aCpuInfo[iCpu].fConfigured = false;
729 Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
730 }
731 }
732 else
733 {
734 Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx);
735 if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx)
736 {
737 /* Doesn't really matter if this fails. */
738 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
739 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
740 }
741 else
742 rc = VINF_SUCCESS;
743
744 /*
745 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
746 */
747 if (g_HvmR0.fGlobalInit)
748 {
749 HMR0FIRSTRC FirstRc;
750 hmR0FirstRcInit(&FirstRc);
751 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
752 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
753 if (RT_SUCCESS(rc))
754 {
755 rc = hmR0FirstRcGetStatus(&FirstRc);
756 AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
757 }
758 }
759
760 /*
761 * Free the per-cpu pages used for VT-x and AMD-V.
762 */
763 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
764 {
765 if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
766 {
767 RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false);
768 g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
769 }
770 }
771 }
772
773 /** @todo This needs cleaning up. There's no matching
774 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
775 * should move into their respective modules. */
776 /* Finally, call global VT-x/AMD-V termination. */
777 if (g_HvmR0.vmx.fSupported)
778 VMXR0GlobalTerm();
779 else if (g_HvmR0.svm.fSupported)
780 SVMR0GlobalTerm();
781
782 return rc;
783}
784
785
786/**
787 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
788 * on a CPU.
789 *
790 * @param idCpu The identifier for the CPU the function is called on.
791 * @param pvUser1 Pointer to the first RC structure.
792 * @param pvUser2 Ignored.
793 */
794static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
795{
796 /** @todo Unify code with SUPR0QueryVTCaps(). */
797 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
798 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
799 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
800 NOREF(idCpu); NOREF(pvUser2);
801
802 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
803 hmR0FirstRcSetStatus(pFirstRc, rc);
804}
805
806
807/**
808 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
809 * on a CPU.
810 *
811 * @param idCpu The identifier for the CPU the function is called on.
812 * @param pvUser1 Pointer to the first RC structure.
813 * @param pvUser2 Ignored.
814 */
815static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
816{
817 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
818 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
819 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
820 NOREF(idCpu); NOREF(pvUser2);
821
822 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
823 hmR0FirstRcSetStatus(pFirstRc, rc);
824}
825
826
827/**
828 * Enable VT-x or AMD-V on the current CPU
829 *
830 * @returns VBox status code.
831 * @param pVM Pointer to the VM (can be NULL).
832 * @param idCpu The identifier for the CPU the function is called on.
833 *
834 * @remarks Maybe called with interrupts disabled!
835 */
836static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
837{
838 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
839
840 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
841 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
842 Assert(!pCpu->fConfigured);
843 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
844
845 pCpu->idCpu = idCpu;
846 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
847
848 int rc;
849 if (g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
850 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HvmR0.vmx.Msrs);
851 else
852 {
853 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
854 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
855 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0 /* iPage */);
856
857 if (g_HvmR0.vmx.fSupported)
858 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, &g_HvmR0.vmx.Msrs);
859 else
860 rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, NULL /* pvArg */);
861 }
862 AssertRC(rc);
863 if (RT_SUCCESS(rc))
864 pCpu->fConfigured = true;
865
866 return rc;
867}
868
869
870/**
871 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
872 *
873 * @param idCpu The identifier for the CPU the function is called on.
874 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
875 * @param pvUser2 The 2nd user argument.
876 */
877static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
878{
879 PVM pVM = (PVM)pvUser1; /* can be NULL! */
880 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
881 AssertReturnVoid(g_HvmR0.fGlobalInit);
882 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
883 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
884}
885
886
887/**
888 * RTOnce callback employed by HMR0EnableAllCpus.
889 *
890 * @returns VBox status code.
891 * @param pvUser Pointer to the VM.
892 * @param pvUserIgnore NULL, ignored.
893 */
894static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
895{
896 PVM pVM = (PVM)pvUser;
897
898 /*
899 * Indicate that we've initialized.
900 *
901 * Note! There is a potential race between this function and the suspend
902 * notification. Kind of unlikely though, so ignored for now.
903 */
904 AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
905 ASMAtomicWriteBool(&g_HvmR0.fEnabled, true);
906
907 /*
908 * The global init variable is set by the first VM.
909 */
910 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
911
912#ifdef VBOX_STRICT
913 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
914 {
915 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
916 Assert(!g_HvmR0.aCpuInfo[i].fConfigured);
917 Assert(!g_HvmR0.aCpuInfo[i].cTlbFlushes);
918 Assert(!g_HvmR0.aCpuInfo[i].uCurrentAsid);
919 }
920#endif
921
922 int rc;
923 if ( g_HvmR0.vmx.fSupported
924 && g_HvmR0.vmx.fUsingSUPR0EnableVTx)
925 {
926 /*
927 * Global VT-x initialization API (only darwin for now).
928 */
929 rc = SUPR0EnableVTx(true /* fEnable */);
930 if (RT_SUCCESS(rc))
931 {
932 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
933 g_HvmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
934 }
935 else
936 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
937 }
938 else
939 {
940 /*
941 * We're doing the job ourselves.
942 */
943 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
944 for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++)
945 {
946 Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
947
948 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
949 {
950 rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
951 AssertLogRelRCReturn(rc, rc);
952
953 void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0);
954 ASMMemZeroPage(pvR0);
955 }
956 }
957
958 rc = VINF_SUCCESS;
959 }
960
961 if ( RT_SUCCESS(rc)
962 && g_HvmR0.fGlobalInit)
963 {
964 /* First time, so initialize each cpu/core. */
965 HMR0FIRSTRC FirstRc;
966 hmR0FirstRcInit(&FirstRc);
967 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
968 if (RT_SUCCESS(rc))
969 rc = hmR0FirstRcGetStatus(&FirstRc);
970 AssertMsgRC(rc, ("hmR0EnableAllCpuOnce failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
971 }
972
973 return rc;
974}
975
976
977/**
978 * Sets up HM on all cpus.
979 *
980 * @returns VBox status code.
981 * @param pVM Pointer to the VM.
982 */
983VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
984{
985 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
986 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
987 return VERR_HM_SUSPEND_PENDING;
988
989 return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
990}
991
992
993/**
994 * Disable VT-x or AMD-V on the current CPU.
995 *
996 * @returns VBox status code.
997 * @param idCpu The identifier for the CPU this function is called on.
998 *
999 * @remarks Must be called with preemption disabled.
1000 */
1001static int hmR0DisableCpu(RTCPUID idCpu)
1002{
1003 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1004
1005 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1006 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1007 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
1008 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1009 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1010 AssertRelease(idCpu == RTMpCpuId());
1011
1012 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1013 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1014
1015 int rc;
1016 if (pCpu->fConfigured)
1017 {
1018 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1019 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1020
1021 rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1022 AssertRCReturn(rc, rc);
1023
1024 pCpu->fConfigured = false;
1025 pCpu->idCpu = NIL_RTCPUID;
1026 }
1027 else
1028 rc = VINF_SUCCESS; /* nothing to do */
1029 return rc;
1030}
1031
1032
1033/**
1034 * Worker function passed to RTMpOnAll() that is to be called on the target
1035 * CPUs.
1036 *
1037 * @param idCpu The identifier for the CPU the function is called on.
1038 * @param pvUser1 The 1st user argument.
1039 * @param pvUser2 Opaque pointer to the FirstRc.
1040 */
1041static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1042{
1043 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1044 AssertReturnVoid(g_HvmR0.fGlobalInit);
1045 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1046}
1047
1048
1049/**
1050 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1051 * CPU.
1052 *
1053 * @param idCpu The identifier for the CPU the function is called on.
1054 * @param pvUser1 Null, not used.
1055 * @param pvUser2 Null, not used.
1056 */
1057static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1058{
1059 NOREF(pvUser1);
1060 NOREF(pvUser2);
1061 hmR0DisableCpu(idCpu);
1062}
1063
1064
1065/**
1066 * Callback function invoked when a cpu goes online or offline.
1067 *
1068 * @param enmEvent The Mp event.
1069 * @param idCpu The identifier for the CPU the function is called on.
1070 * @param pvData Opaque data (PVM pointer).
1071 */
1072static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1073{
1074 NOREF(pvData);
1075
1076 /*
1077 * We only care about uninitializing a CPU that is going offline. When a
1078 * CPU comes online, the initialization is done lazily in HMR0Enter().
1079 */
1080 switch (enmEvent)
1081 {
1082 case RTMPEVENT_OFFLINE:
1083 {
1084 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1085 RTThreadPreemptDisable(&PreemptState);
1086 if (idCpu == RTMpCpuId())
1087 {
1088 int rc = hmR0DisableCpu(idCpu);
1089 AssertRC(rc);
1090 RTThreadPreemptRestore(&PreemptState);
1091 }
1092 else
1093 {
1094 RTThreadPreemptRestore(&PreemptState);
1095 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1096 }
1097 break;
1098 }
1099
1100 default:
1101 break;
1102 }
1103}
1104
1105
1106/**
1107 * Called whenever a system power state change occurs.
1108 *
1109 * @param enmEvent The Power event.
1110 * @param pvUser User argument.
1111 */
1112static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1113{
1114 NOREF(pvUser);
1115 Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx);
1116
1117#ifdef LOG_ENABLED
1118 if (enmEvent == RTPOWEREVENT_SUSPEND)
1119 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1120 else
1121 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1122#endif
1123
1124 if (enmEvent == RTPOWEREVENT_SUSPEND)
1125 ASMAtomicWriteBool(&g_HvmR0.fSuspended, true);
1126
1127 if (g_HvmR0.fEnabled)
1128 {
1129 int rc;
1130 HMR0FIRSTRC FirstRc;
1131 hmR0FirstRcInit(&FirstRc);
1132
1133 if (enmEvent == RTPOWEREVENT_SUSPEND)
1134 {
1135 if (g_HvmR0.fGlobalInit)
1136 {
1137 /* Turn off VT-x or AMD-V on all CPUs. */
1138 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1139 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1140 }
1141 /* else nothing to do here for the local init case */
1142 }
1143 else
1144 {
1145 /* Reinit the CPUs from scratch as the suspend state might have
1146 messed with the MSRs. (lousy BIOSes as usual) */
1147 if (g_HvmR0.vmx.fSupported)
1148 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1149 else
1150 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1151 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1152 if (RT_SUCCESS(rc))
1153 rc = hmR0FirstRcGetStatus(&FirstRc);
1154#ifdef LOG_ENABLED
1155 if (RT_FAILURE(rc))
1156 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1157#endif
1158 if (g_HvmR0.fGlobalInit)
1159 {
1160 /* Turn VT-x or AMD-V back on on all CPUs. */
1161 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1162 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1163 }
1164 /* else nothing to do here for the local init case */
1165 }
1166 }
1167
1168 if (enmEvent == RTPOWEREVENT_RESUME)
1169 ASMAtomicWriteBool(&g_HvmR0.fSuspended, false);
1170}
1171
1172
1173/**
1174 * Does ring-0 per-VM HM initialization.
1175 *
1176 * This will copy HM global into the VM structure and call the CPU specific
1177 * init routine which will allocate resources for each virtual CPU and such.
1178 *
1179 * @returns VBox status code.
1180 * @param pVM Pointer to the VM.
1181 *
1182 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1183 * vmR3InitRing3().
1184 */
1185VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1186{
1187 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1188
1189#ifdef LOG_ENABLED
1190 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1191#endif
1192
1193 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1194 if (ASMAtomicReadBool(&g_HvmR0.fSuspended))
1195 return VERR_HM_SUSPEND_PENDING;
1196
1197 /*
1198 * Copy globals to the VM structure.
1199 */
1200 pVM->hm.s.vmx.fSupported = g_HvmR0.vmx.fSupported;
1201 pVM->hm.s.svm.fSupported = g_HvmR0.svm.fSupported;
1202
1203 pVM->hm.s.vmx.fUsePreemptTimer &= g_HvmR0.vmx.fUsePreemptTimer; /* Can be overridden by CFGM. See HMR3Init(). */
1204 pVM->hm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift;
1205 pVM->hm.s.vmx.u64HostCr4 = g_HvmR0.vmx.u64HostCr4;
1206 pVM->hm.s.vmx.u64HostEfer = g_HvmR0.vmx.u64HostEfer;
1207 pVM->hm.s.vmx.Msrs = g_HvmR0.vmx.Msrs;
1208 pVM->hm.s.svm.u64MsrHwcr = g_HvmR0.svm.u64MsrHwcr;
1209 pVM->hm.s.svm.u32Rev = g_HvmR0.svm.u32Rev;
1210 pVM->hm.s.svm.u32Features = g_HvmR0.svm.u32Features;
1211 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX;
1212 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX;
1213 pVM->hm.s.lLastError = g_HvmR0.lLastError;
1214 pVM->hm.s.uMaxAsid = g_HvmR0.uMaxAsid;
1215
1216 pVM->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVM);
1217
1218 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1219 {
1220 pVM->hm.s.cMaxResumeLoops = 1024;
1221 if (RTThreadPreemptIsPendingTrusty())
1222 pVM->hm.s.cMaxResumeLoops = 8192;
1223 }
1224
1225 /*
1226 * Initialize some per CPU fields.
1227 */
1228 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1229 {
1230 PVMCPU pVCpu = &pVM->aCpus[i];
1231 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1232 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1233
1234 /* We'll aways increment this the first time (host uses ASID 0). */
1235 AssertReturn(!pVCpu->hm.s.uCurrentAsid, VERR_HM_IPE_3);
1236 }
1237
1238 pVM->hm.s.uHostKernelFeatures = SUPR0GetKernelFeatures();
1239
1240 /*
1241 * Call the hardware specific initialization method.
1242 */
1243 return g_HvmR0.pfnInitVM(pVM);
1244}
1245
1246
1247/**
1248 * Does ring-0 per VM HM termination.
1249 *
1250 * @returns VBox status code.
1251 * @param pVM Pointer to the VM.
1252 */
1253VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1254{
1255 Log(("HMR0TermVM: %p\n", pVM));
1256 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1257
1258 /*
1259 * Call the hardware specific method.
1260 *
1261 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1262 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1263 */
1264 return g_HvmR0.pfnTermVM(pVM);
1265}
1266
1267
1268/**
1269 * Sets up a VT-x or AMD-V session.
1270 *
1271 * This is mostly about setting up the hardware VM state.
1272 *
1273 * @returns VBox status code.
1274 * @param pVM Pointer to the VM.
1275 */
1276VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1277{
1278 Log(("HMR0SetupVM: %p\n", pVM));
1279 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1280
1281 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1282 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1283
1284 /* On first entry we'll sync everything. */
1285 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1286 HMCPU_CF_RESET_TO(&pVM->aCpus[i], HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1287
1288 /*
1289 * Call the hardware specific setup VM method. This requires the CPU to be
1290 * enabled for AMD-V/VT-x and preemption to be prevented.
1291 */
1292 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1293 RTThreadPreemptDisable(&PreemptState);
1294 RTCPUID idCpu = RTMpCpuId();
1295
1296 /* Enable VT-x or AMD-V if local init is required. */
1297 int rc;
1298 if (!g_HvmR0.fGlobalInit)
1299 {
1300 rc = hmR0EnableCpu(pVM, idCpu);
1301 AssertRCReturnStmt(rc, RTThreadPreemptRestore(&PreemptState), rc);
1302 }
1303
1304 /* Setup VT-x or AMD-V. */
1305 rc = g_HvmR0.pfnSetupVM(pVM);
1306
1307 /* Disable VT-x or AMD-V if local init was done before. */
1308 if (!g_HvmR0.fGlobalInit)
1309 {
1310 int rc2 = hmR0DisableCpu(idCpu);
1311 AssertRC(rc2);
1312 }
1313
1314 RTThreadPreemptRestore(&PreemptState);
1315 return rc;
1316}
1317
1318
1319/**
1320 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1321 * required for entering HM context.
1322 *
1323 * @returns VBox status code.
1324 * @param pvCpu Pointer to the VMCPU.
1325 *
1326 * @remarks No-long-jump zone!!!
1327 */
1328VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1329{
1330 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1331
1332 int rc = VINF_SUCCESS;
1333 RTCPUID idCpu = RTMpCpuId();
1334 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1335 AssertPtr(pCpu);
1336
1337 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1338 if (!pCpu->fConfigured)
1339 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1340
1341 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1342 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE);
1343
1344 Assert(pCpu->idCpu == idCpu && pCpu->idCpu != NIL_RTCPUID);
1345 pVCpu->hm.s.idEnteredCpu = idCpu;
1346 return rc;
1347}
1348
1349
1350/**
1351 * Enters the VT-x or AMD-V session.
1352 *
1353 * @returns VBox status code.
1354 * @param pVM Pointer to the VM.
1355 * @param pVCpu Pointer to the VMCPU.
1356 *
1357 * @remarks This is called with preemption disabled.
1358 */
1359VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1360{
1361 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1362 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1363 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1364
1365 /* Load the bare minimum state required for entering HM. */
1366 int rc = HMR0EnterCpu(pVCpu);
1367 AssertRCReturn(rc, rc);
1368
1369#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1370 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_5);
1371 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1372#endif
1373
1374 RTCPUID idCpu = RTMpCpuId();
1375 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1376 Assert(pCpu);
1377 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1378
1379 rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1380 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1381
1382 /* Load the host-state as we may be resuming code after a longjmp and quite
1383 possibly now be scheduled on a different CPU. */
1384 rc = g_HvmR0.pfnSaveHostState(pVM, pVCpu);
1385 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1386
1387#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1388 if (fStartedSet)
1389 PGMRZDynMapReleaseAutoSet(pVCpu);
1390#endif
1391
1392 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1393 if (RT_FAILURE(rc))
1394 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1395 return rc;
1396}
1397
1398
1399/**
1400 * Deinitializes the bare minimum state used for HM context and if necessary
1401 * disable HM on the CPU.
1402 *
1403 * @returns VBox status code.
1404 * @param pVCpu Pointer to the VMCPU.
1405 *
1406 * @remarks No-long-jump zone!!!
1407 */
1408VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1409{
1410 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1411 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1412
1413 RTCPUID idCpu = RTMpCpuId();
1414 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu];
1415
1416 if ( !g_HvmR0.fGlobalInit
1417 && pCpu->fConfigured)
1418 {
1419 int rc = hmR0DisableCpu(idCpu);
1420 AssertRCReturn(rc, rc);
1421 Assert(!pCpu->fConfigured);
1422 Assert(pCpu->idCpu == NIL_RTCPUID);
1423
1424 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1425 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1426 }
1427
1428 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1429 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1430
1431 return VINF_SUCCESS;
1432}
1433
1434
1435/**
1436 * Thread-context hook for HM.
1437 *
1438 * @param enmEvent The thread-context event.
1439 * @param pvUser Opaque pointer to the VMCPU.
1440 */
1441VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1442{
1443 PVMCPU pVCpu = (PVMCPU)pvUser;
1444 Assert(pVCpu);
1445 Assert(g_HvmR0.pfnThreadCtxCallback);
1446
1447 g_HvmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HvmR0.fGlobalInit);
1448}
1449
1450
1451/**
1452 * Runs guest code in a hardware accelerated VM.
1453 *
1454 * @returns VBox status code.
1455 * @param pVM Pointer to the VM.
1456 * @param pVCpu Pointer to the VMCPU.
1457 *
1458 * @remarks Can be called with preemption enabled if thread-context hooks are
1459 * used!!!
1460 */
1461VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1462{
1463#ifdef VBOX_STRICT
1464 /* With thread-context hooks we would be running this code with preemption enabled. */
1465 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1466 {
1467 PHMGLOBALCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()];
1468 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1469 Assert(pCpu->fConfigured);
1470 AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1471 }
1472#endif
1473
1474#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1475 AssertReturn(!VMMR0ThreadCtxHooksAreRegistered(pVCpu), VERR_HM_IPE_4);
1476 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1477 PGMRZDynMapStartAutoSet(pVCpu);
1478#endif
1479
1480 int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1481
1482#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1483 PGMRZDynMapReleaseAutoSet(pVCpu);
1484#endif
1485 return rc;
1486}
1487
1488#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1489
1490/**
1491 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1492 *
1493 * @returns VBox status code.
1494 * @param pVM Pointer to the VM.
1495 * @param pVCpu Pointer to the VMCPU.
1496 * @param pCtx Pointer to the guest CPU context.
1497 */
1498VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1499{
1500 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1501 if (pVM->hm.s.vmx.fSupported)
1502 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1503 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1504}
1505
1506
1507/**
1508 * Save guest debug state (64 bits guest mode & 32 bits host only)
1509 *
1510 * @returns VBox status code.
1511 * @param pVM Pointer to the VM.
1512 * @param pVCpu Pointer to the VMCPU.
1513 * @param pCtx Pointer to the guest CPU context.
1514 */
1515VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1516{
1517 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1518 if (pVM->hm.s.vmx.fSupported)
1519 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1520 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1521}
1522
1523
1524/**
1525 * Test the 32->64 bits switcher.
1526 *
1527 * @returns VBox status code.
1528 * @param pVM Pointer to the VM.
1529 */
1530VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1531{
1532 PVMCPU pVCpu = &pVM->aCpus[0];
1533 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1534 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1535 int rc;
1536
1537 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1538 if (pVM->hm.s.vmx.fSupported)
1539 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1540 else
1541 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1542 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1543
1544 return rc;
1545}
1546
1547#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
1548
1549/**
1550 * Returns suspend status of the host.
1551 *
1552 * @returns Suspend pending or not.
1553 */
1554VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1555{
1556 return ASMAtomicReadBool(&g_HvmR0.fSuspended);
1557}
1558
1559
1560/**
1561 * Returns the cpu structure for the current cpu.
1562 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1563 *
1564 * @returns The cpu structure pointer.
1565 */
1566VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpu(void)
1567{
1568 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1569 RTCPUID idCpu = RTMpCpuId();
1570 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1571 return &g_HvmR0.aCpuInfo[idCpu];
1572}
1573
1574
1575/**
1576 * Returns the cpu structure for the current cpu.
1577 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1578 *
1579 * @returns The cpu structure pointer.
1580 * @param idCpu id of the VCPU.
1581 */
1582VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
1583{
1584 Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo));
1585 return &g_HvmR0.aCpuInfo[idCpu];
1586}
1587
1588
1589/**
1590 * Save a pending IO read.
1591 *
1592 * @param pVCpu Pointer to the VMCPU.
1593 * @param GCPtrRip Address of IO instruction.
1594 * @param GCPtrRipNext Address of the next instruction.
1595 * @param uPort Port address.
1596 * @param uAndVal AND mask for saving the result in eax.
1597 * @param cbSize Read size.
1598 */
1599VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1600 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1601{
1602 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1603 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1604 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1605 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1606 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1607 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1608 return;
1609}
1610
1611
1612/**
1613 * Save a pending IO write.
1614 *
1615 * @param pVCpu Pointer to the VMCPU.
1616 * @param GCPtrRIP Address of IO instruction.
1617 * @param uPort Port address.
1618 * @param uAndVal AND mask for fetching the result from eax.
1619 * @param cbSize Read size.
1620 */
1621VMMR0_INT_DECL(void) HMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1622 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1623{
1624 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_WRITE;
1625 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1626 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1627 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1628 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1629 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1630 return;
1631}
1632
1633
1634/**
1635 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1636 * switcher turns off paging.
1637 *
1638 * @returns VBox status code.
1639 * @param pVM Pointer to the VM.
1640 * @param enmSwitcher The switcher we're about to use.
1641 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1642 */
1643VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1644{
1645 NOREF(pVM);
1646
1647 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1648
1649 *pfVTxDisabled = false;
1650
1651 /* No such issues with AMD-V */
1652 if (!g_HvmR0.vmx.fSupported)
1653 return VINF_SUCCESS;
1654
1655 /* Check if the swithcing we're up to is safe. */
1656 switch (enmSwitcher)
1657 {
1658 case VMMSWITCHER_32_TO_32:
1659 case VMMSWITCHER_PAE_TO_PAE:
1660 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1661
1662 case VMMSWITCHER_32_TO_PAE:
1663 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1664 case VMMSWITCHER_AMD64_TO_32:
1665 case VMMSWITCHER_AMD64_TO_PAE:
1666 break; /* unsafe switchers */
1667
1668 default:
1669 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1670 }
1671
1672 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1673 regardless of whether we're currently using VT-x or not. */
1674 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1675 {
1676 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1677 return VINF_SUCCESS;
1678 }
1679
1680 /** @todo Check if this code is presumtive wrt other VT-x users on the
1681 * system... */
1682
1683 /* Nothing to do if we haven't enabled VT-x. */
1684 if (!g_HvmR0.fEnabled)
1685 return VINF_SUCCESS;
1686
1687 /* Local init implies the CPU is currently not in VMX root mode. */
1688 if (!g_HvmR0.fGlobalInit)
1689 return VINF_SUCCESS;
1690
1691 /* Ok, disable VT-x. */
1692 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1693 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2);
1694
1695 *pfVTxDisabled = true;
1696 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1697 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1698 return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage);
1699}
1700
1701
1702/**
1703 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1704 * switcher turned off paging.
1705 *
1706 * @param pVM Pointer to the VM.
1707 * @param fVTxDisabled Whether VT-x was disabled or not.
1708 */
1709VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1710{
1711 Assert(!ASMIntAreEnabled());
1712
1713 if (!fVTxDisabled)
1714 return; /* nothing to do */
1715
1716 Assert(g_HvmR0.vmx.fSupported);
1717 if (g_HvmR0.vmx.fUsingSUPR0EnableVTx)
1718 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1719 else
1720 {
1721 Assert(g_HvmR0.fEnabled);
1722 Assert(g_HvmR0.fGlobalInit);
1723
1724 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1725 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ);
1726
1727 void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj);
1728 RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
1729 VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage, false, &g_HvmR0.vmx.Msrs);
1730 }
1731}
1732
1733#ifdef VBOX_STRICT
1734
1735/**
1736 * Dumps a descriptor.
1737 *
1738 * @param pDesc Descriptor to dump.
1739 * @param Sel Selector number.
1740 * @param pszMsg Message to prepend the log entry with.
1741 */
1742VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1743{
1744 /*
1745 * Make variable description string.
1746 */
1747 static struct
1748 {
1749 unsigned cch;
1750 const char *psz;
1751 } const s_aTypes[32] =
1752 {
1753# define STRENTRY(str) { sizeof(str) - 1, str }
1754
1755 /* system */
1756# if HC_ARCH_BITS == 64
1757 STRENTRY("Reserved0 "), /* 0x00 */
1758 STRENTRY("Reserved1 "), /* 0x01 */
1759 STRENTRY("LDT "), /* 0x02 */
1760 STRENTRY("Reserved3 "), /* 0x03 */
1761 STRENTRY("Reserved4 "), /* 0x04 */
1762 STRENTRY("Reserved5 "), /* 0x05 */
1763 STRENTRY("Reserved6 "), /* 0x06 */
1764 STRENTRY("Reserved7 "), /* 0x07 */
1765 STRENTRY("Reserved8 "), /* 0x08 */
1766 STRENTRY("TSS64Avail "), /* 0x09 */
1767 STRENTRY("ReservedA "), /* 0x0a */
1768 STRENTRY("TSS64Busy "), /* 0x0b */
1769 STRENTRY("Call64 "), /* 0x0c */
1770 STRENTRY("ReservedD "), /* 0x0d */
1771 STRENTRY("Int64 "), /* 0x0e */
1772 STRENTRY("Trap64 "), /* 0x0f */
1773# else
1774 STRENTRY("Reserved0 "), /* 0x00 */
1775 STRENTRY("TSS16Avail "), /* 0x01 */
1776 STRENTRY("LDT "), /* 0x02 */
1777 STRENTRY("TSS16Busy "), /* 0x03 */
1778 STRENTRY("Call16 "), /* 0x04 */
1779 STRENTRY("Task "), /* 0x05 */
1780 STRENTRY("Int16 "), /* 0x06 */
1781 STRENTRY("Trap16 "), /* 0x07 */
1782 STRENTRY("Reserved8 "), /* 0x08 */
1783 STRENTRY("TSS32Avail "), /* 0x09 */
1784 STRENTRY("ReservedA "), /* 0x0a */
1785 STRENTRY("TSS32Busy "), /* 0x0b */
1786 STRENTRY("Call32 "), /* 0x0c */
1787 STRENTRY("ReservedD "), /* 0x0d */
1788 STRENTRY("Int32 "), /* 0x0e */
1789 STRENTRY("Trap32 "), /* 0x0f */
1790# endif
1791 /* non system */
1792 STRENTRY("DataRO "), /* 0x10 */
1793 STRENTRY("DataRO Accessed "), /* 0x11 */
1794 STRENTRY("DataRW "), /* 0x12 */
1795 STRENTRY("DataRW Accessed "), /* 0x13 */
1796 STRENTRY("DataDownRO "), /* 0x14 */
1797 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1798 STRENTRY("DataDownRW "), /* 0x16 */
1799 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1800 STRENTRY("CodeEO "), /* 0x18 */
1801 STRENTRY("CodeEO Accessed "), /* 0x19 */
1802 STRENTRY("CodeER "), /* 0x1a */
1803 STRENTRY("CodeER Accessed "), /* 0x1b */
1804 STRENTRY("CodeConfEO "), /* 0x1c */
1805 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1806 STRENTRY("CodeConfER "), /* 0x1e */
1807 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1808# undef SYSENTRY
1809 };
1810# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1811 char szMsg[128];
1812 char *psz = &szMsg[0];
1813 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1814 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1815 psz += s_aTypes[i].cch;
1816
1817 if (pDesc->Gen.u1Present)
1818 ADD_STR(psz, "Present ");
1819 else
1820 ADD_STR(psz, "Not-Present ");
1821# if HC_ARCH_BITS == 64
1822 if (pDesc->Gen.u1Long)
1823 ADD_STR(psz, "64-bit ");
1824 else
1825 ADD_STR(psz, "Comp ");
1826# else
1827 if (pDesc->Gen.u1Granularity)
1828 ADD_STR(psz, "Page ");
1829 if (pDesc->Gen.u1DefBig)
1830 ADD_STR(psz, "32-bit ");
1831 else
1832 ADD_STR(psz, "16-bit ");
1833# endif
1834# undef ADD_STR
1835 *psz = '\0';
1836
1837 /*
1838 * Limit and Base and format the output.
1839 */
1840 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1841
1842# if HC_ARCH_BITS == 64
1843 uint64_t u32Base = X86DESC64_BASE(pDesc);
1844 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1845 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1846# else
1847 uint32_t u32Base = X86DESC_BASE(pDesc);
1848 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1849 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1850# endif
1851}
1852
1853
1854/**
1855 * Formats a full register dump.
1856 *
1857 * @param pVM Pointer to the VM.
1858 * @param pVCpu Pointer to the VMCPU.
1859 * @param pCtx Pointer to the CPU context.
1860 */
1861VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1862{
1863 NOREF(pVM);
1864
1865 /*
1866 * Format the flags.
1867 */
1868 static struct
1869 {
1870 const char *pszSet; const char *pszClear; uint32_t fFlag;
1871 } const s_aFlags[] =
1872 {
1873 { "vip", NULL, X86_EFL_VIP },
1874 { "vif", NULL, X86_EFL_VIF },
1875 { "ac", NULL, X86_EFL_AC },
1876 { "vm", NULL, X86_EFL_VM },
1877 { "rf", NULL, X86_EFL_RF },
1878 { "nt", NULL, X86_EFL_NT },
1879 { "ov", "nv", X86_EFL_OF },
1880 { "dn", "up", X86_EFL_DF },
1881 { "ei", "di", X86_EFL_IF },
1882 { "tf", NULL, X86_EFL_TF },
1883 { "nt", "pl", X86_EFL_SF },
1884 { "nz", "zr", X86_EFL_ZF },
1885 { "ac", "na", X86_EFL_AF },
1886 { "po", "pe", X86_EFL_PF },
1887 { "cy", "nc", X86_EFL_CF },
1888 };
1889 char szEFlags[80];
1890 char *psz = szEFlags;
1891 uint32_t uEFlags = pCtx->eflags.u32;
1892 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1893 {
1894 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1895 if (pszAdd)
1896 {
1897 strcpy(psz, pszAdd);
1898 psz += strlen(pszAdd);
1899 *psz++ = ' ';
1900 }
1901 }
1902 psz[-1] = '\0';
1903
1904
1905 /*
1906 * Format the registers.
1907 */
1908 if (CPUMIsGuestIn64BitCode(pVCpu))
1909 {
1910 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1911 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1912 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1913 "r14=%016RX64 r15=%016RX64\n"
1914 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1915 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1916 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1917 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1918 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1919 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1920 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1921 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1922 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1923 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1924 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1925 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1926 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1927 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1928 ,
1929 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1930 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1931 pCtx->r14, pCtx->r15,
1932 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1933 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1934 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1935 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1936 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1937 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1938 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1939 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1940 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1941 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1942 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1943 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1944 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1945 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1946 }
1947 else
1948 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1949 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1950 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1951 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1952 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1953 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1954 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1955 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1956 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1957 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1958 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1959 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1960 ,
1961 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1962 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1963 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1964 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1965 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1966 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1967 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1968 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1969 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1970 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1971 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1972 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1973
1974 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
1975 Log(("FPU:\n"
1976 "FCW=%04x FSW=%04x FTW=%02x\n"
1977 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
1978 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
1979 ,
1980 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
1981 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
1982 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
1983 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
1984
1985 Log(("MSR:\n"
1986 "EFER =%016RX64\n"
1987 "PAT =%016RX64\n"
1988 "STAR =%016RX64\n"
1989 "CSTAR =%016RX64\n"
1990 "LSTAR =%016RX64\n"
1991 "SFMASK =%016RX64\n"
1992 "KERNELGSBASE =%016RX64\n",
1993 pCtx->msrEFER,
1994 pCtx->msrPAT,
1995 pCtx->msrSTAR,
1996 pCtx->msrCSTAR,
1997 pCtx->msrLSTAR,
1998 pCtx->msrSFMASK,
1999 pCtx->msrKERNELGSBASE));
2000}
2001
2002#endif /* VBOX_STRICT */
2003
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette