VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 60999

Last change on this file since 60999 was 60850, checked in by vboxsync, 9 years ago

HM: Dropped HMR0SavePendingIOPortWrite and associated code (leaving HMR0SavePendingIOPortRead), since IOMIOPortWrite won't be returning VINF_IOM_R3_IOPORT_WRITE any more but rather VINF_IOM_R3_IOPORT_COMMIT_WRITE.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 71.6 KB
Line 
1/* $Id: HMR0.cpp 60850 2016-05-05 15:43:19Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/gim.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
55static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
56static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62/**
63 * This is used to manage the status code of a RTMpOnAll in HM.
64 */
65typedef struct HMR0FIRSTRC
66{
67 /** The status code. */
68 int32_t volatile rc;
69 /** The ID of the CPU reporting the first failure. */
70 RTCPUID volatile idCpu;
71} HMR0FIRSTRC;
72/** Pointer to a first return code structure. */
73typedef HMR0FIRSTRC *PHMR0FIRSTRC;
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/**
80 * Global data.
81 */
82static struct
83{
84 /** Per CPU globals. */
85 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
86
87 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
88 * @{ */
89 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
90 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
91 DECLR0CALLBACKMEMBER(int, pfnSaveHostState, (PVM pVM, PVMCPU pVCpu));
92 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
93 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
94 bool fEnabledByHost, void *pvArg));
95 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
96 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVM pVM));
98 DECLR0CALLBACKMEMBER(int, pfnSetupVM ,(PVM pVM));
99 /** @} */
100
101 /** Maximum ASID allowed. */
102 uint32_t uMaxAsid;
103
104 /** VT-x data. */
105 struct
106 {
107 /** Set to by us to indicate VMX is supported by the CPU. */
108 bool fSupported;
109 /** Whether we're using SUPR0EnableVTx or not. */
110 bool fUsingSUPR0EnableVTx;
111 /** Whether we're using the preemption timer or not. */
112 bool fUsePreemptTimer;
113 /** The shift mask employed by the VMX-Preemption timer. */
114 uint8_t cPreemptTimerShift;
115
116 /** Host CR4 value (set by ring-0 VMX init) */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** Host SMM monitor control (used for logging/diagnostics) */
123 uint64_t u64HostSmmMonitorCtl;
124
125 /** VMX MSR values */
126 VMXMSRS Msrs;
127
128 /** Last instruction error. */
129 uint32_t ulLastInstrError;
130
131 /** Set if we've called SUPR0EnableVTx(true) and should disable it during
132 * module termination. */
133 bool fCalledSUPR0EnableVTx;
134 } vmx;
135
136 /** AMD-V information. */
137 struct
138 {
139 /* HWCR MSR (for diagnostics) */
140 uint64_t u64MsrHwcr;
141
142 /** SVM revision. */
143 uint32_t u32Rev;
144
145 /** SVM feature bits from cpuid 0x8000000a */
146 uint32_t u32Features;
147
148 /** Set by us to indicate SVM is supported by the CPU. */
149 bool fSupported;
150 } svm;
151 /** Saved error from detection */
152 int32_t lLastError;
153
154 /** CPUID 0x80000001 ecx:edx features */
155 struct
156 {
157 uint32_t u32AMDFeatureECX;
158 uint32_t u32AMDFeatureEDX;
159 } cpuid;
160
161 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
162 * enabled and disabled each time it's used to execute guest code. */
163 bool fGlobalInit;
164 /** Indicates whether the host is suspending or not. We'll refuse a few
165 * actions when the host is being suspended to speed up the suspending and
166 * avoid trouble. */
167 volatile bool fSuspended;
168
169 /** Whether we've already initialized all CPUs.
170 * @remarks We could check the EnableAllCpusOnce state, but this is
171 * simpler and hopefully easier to understand. */
172 bool fEnabled;
173 /** Serialize initialization in HMR0EnableAllCpus. */
174 RTONCE EnableAllCpusOnce;
175} g_HmR0;
176
177
178
179/**
180 * Initializes a first return code structure.
181 *
182 * @param pFirstRc The structure to init.
183 */
184static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
185{
186 pFirstRc->rc = VINF_SUCCESS;
187 pFirstRc->idCpu = NIL_RTCPUID;
188}
189
190
191/**
192 * Try set the status code (success ignored).
193 *
194 * @param pFirstRc The first return code structure.
195 * @param rc The status code.
196 */
197static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
198{
199 if ( RT_FAILURE(rc)
200 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
201 pFirstRc->idCpu = RTMpCpuId();
202}
203
204
205/**
206 * Get the status code of a first return code structure.
207 *
208 * @returns The status code; VINF_SUCCESS or error status, no informational or
209 * warning errors.
210 * @param pFirstRc The first return code structure.
211 */
212static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
213{
214 return pFirstRc->rc;
215}
216
217
218#ifdef VBOX_STRICT
219/**
220 * Get the CPU ID on which the failure status code was reported.
221 *
222 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
223 * @param pFirstRc The first return code structure.
224 */
225static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
226{
227 return pFirstRc->idCpu;
228}
229#endif /* VBOX_STRICT */
230
231
232/** @name Dummy callback handlers.
233 * @{ */
234
235static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
236{
237 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
238 return VINF_SUCCESS;
239}
240
241static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
242{
243 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
244}
245
246static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
247 bool fEnabledBySystem, void *pvArg)
248{
249 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem); NOREF(pvArg);
250 return VINF_SUCCESS;
251}
252
253static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
254{
255 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
256 return VINF_SUCCESS;
257}
258
259static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
260{
261 NOREF(pVM);
262 return VINF_SUCCESS;
263}
264
265static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
266{
267 NOREF(pVM);
268 return VINF_SUCCESS;
269}
270
271static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
272{
273 NOREF(pVM);
274 return VINF_SUCCESS;
275}
276
277static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
278{
279 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
280 return VINF_SUCCESS;
281}
282
283static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
284{
285 NOREF(pVM); NOREF(pVCpu);
286 return VINF_SUCCESS;
287}
288
289/** @} */
290
291
292/**
293 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
294 * Down at the Rate Specified" erratum.
295 *
296 * Errata names and related steppings:
297 * - BA86 - D0.
298 * - AAX65 - C2.
299 * - AAU65 - C2, K0.
300 * - AAO95 - B1.
301 * - AAT59 - C2.
302 * - AAK139 - D0.
303 * - AAM126 - C0, C1, D0.
304 * - AAN92 - B1.
305 * - AAJ124 - C0, D0.
306 *
307 * - AAP86 - B1.
308 *
309 * Steppings: B1, C0, C1, C2, D0, K0.
310 *
311 * @returns true if subject to it, false if not.
312 */
313static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
314{
315 uint32_t u = ASMCpuId_EAX(1);
316 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
317 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
318 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
319 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
320 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
321 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
322 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
323 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
324 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
325 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
326 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
327 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
328 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
329 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
330 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
331 )
332 return true;
333 return false;
334}
335
336
337/**
338 * Intel specific initialization code.
339 *
340 * @returns VBox status code (will only fail if out of memory).
341 */
342static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
343{
344 /*
345 * Check that all the required VT-x features are present.
346 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
347 */
348 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
349 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
350 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
351 )
352 {
353 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
354 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
355
356 /*
357 * First try use native kernel API for controlling VT-x.
358 * (This is only supported by some Mac OS X kernels atm.)
359 */
360 int rc = g_HmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
361 g_HmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
362 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
363 {
364 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
365 if (RT_SUCCESS(rc))
366 {
367 g_HmR0.vmx.fSupported = true;
368 rc = SUPR0EnableVTx(false /* fEnable */);
369 AssertLogRelRC(rc);
370 }
371 }
372 else
373 {
374 HMR0FIRSTRC FirstRc;
375 hmR0FirstRcInit(&FirstRc);
376 g_HmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
377 if (RT_SUCCESS(g_HmR0.lLastError))
378 g_HmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
379 }
380 if (RT_SUCCESS(g_HmR0.lLastError))
381 {
382 /* Reread in case it was changed by SUPR0GetVmxUsability(). */
383 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
384
385 /*
386 * Read all relevant registers and MSRs.
387 */
388 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
389 g_HmR0.vmx.u64HostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
390 g_HmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
391 g_HmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
392 g_HmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
393 g_HmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
394 g_HmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
395 g_HmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
396 g_HmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
397 g_HmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
398 g_HmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
399 g_HmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
400 g_HmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
401 g_HmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
402 /* VPID 16 bits ASID. */
403 g_HmR0.uMaxAsid = 0x10000; /* exclusive */
404
405 if (g_HmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
406 {
407 g_HmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
408 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
409 g_HmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
410
411 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
412 g_HmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
413 }
414
415 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
416 {
417 /*
418 * Enter root mode
419 */
420 RTR0MEMOBJ hScatchMemObj;
421 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
422 if (RT_FAILURE(rc))
423 {
424 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
425 return rc;
426 }
427
428 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
429 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
430 ASMMemZeroPage(pvScatchPage);
431
432 /* Set revision dword at the beginning of the structure. */
433 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HmR0.vmx.Msrs.u64BasicInfo);
434
435 /* Make sure we don't get rescheduled to another cpu during this probe. */
436 RTCCUINTREG fFlags = ASMIntDisableFlags();
437
438 /*
439 * Check CR4.VMXE
440 */
441 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
442 if (!(g_HmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
443 {
444 /* In theory this bit could be cleared behind our back. Which would cause
445 #UD faults when we try to execute the VMX instructions... */
446 ASMSetCR4(g_HmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
447 }
448
449 /*
450 * The only way of checking if we're in VMX root mode or not is to try and enter it.
451 * There is no instruction or control bit that tells us if we're in VMX root mode.
452 * Therefore, try and enter VMX root mode here.
453 */
454 rc = VMXEnable(HCPhysScratchPage);
455 if (RT_SUCCESS(rc))
456 {
457 g_HmR0.vmx.fSupported = true;
458 VMXDisable();
459 }
460 else
461 {
462 /*
463 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
464 * it will crash the host when we enter raw mode, because:
465 *
466 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
467 * this bit), and
468 * (b) turning off paging causes a #GP (unavoidable when switching
469 * from long to 32 bits mode or 32 bits to PAE).
470 *
471 * They should fix their code, but until they do we simply refuse to run.
472 */
473 g_HmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
474 Assert(g_HmR0.vmx.fSupported == false);
475 }
476
477 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
478 if it wasn't so before (some software could incorrectly
479 think it's in VMX mode). */
480 ASMSetCR4(g_HmR0.vmx.u64HostCr4);
481 ASMSetFlags(fFlags);
482
483 RTR0MemObjFree(hScatchMemObj, false);
484 }
485
486 if (g_HmR0.vmx.fSupported)
487 {
488 rc = VMXR0GlobalInit();
489 if (RT_FAILURE(rc))
490 g_HmR0.lLastError = rc;
491
492 /*
493 * Install the VT-x methods.
494 */
495 g_HmR0.pfnEnterSession = VMXR0Enter;
496 g_HmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
497 g_HmR0.pfnSaveHostState = VMXR0SaveHostState;
498 g_HmR0.pfnRunGuestCode = VMXR0RunGuestCode;
499 g_HmR0.pfnEnableCpu = VMXR0EnableCpu;
500 g_HmR0.pfnDisableCpu = VMXR0DisableCpu;
501 g_HmR0.pfnInitVM = VMXR0InitVM;
502 g_HmR0.pfnTermVM = VMXR0TermVM;
503 g_HmR0.pfnSetupVM = VMXR0SetupVM;
504
505 /*
506 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
507 * Timer Does Not Count Down at the Rate Specified" erratum.
508 */
509 if (g_HmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
510 {
511 g_HmR0.vmx.fUsePreemptTimer = true;
512 g_HmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HmR0.vmx.Msrs.u64Misc);
513 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
514 g_HmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
515 }
516 }
517 }
518#ifdef LOG_ENABLED
519 else
520 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HmR0.lLastError);
521#endif
522 }
523 else
524 g_HmR0.lLastError = VERR_VMX_NO_VMX;
525 return VINF_SUCCESS;
526}
527
528
529/**
530 * AMD-specific initialization code.
531 *
532 * @returns VBox status code.
533 */
534static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
535{
536 /*
537 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
538 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
539 */
540 int rc;
541 if ( (g_HmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
542 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
543 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
544 && ASMIsValidExtRange(uMaxExtLeaf)
545 && uMaxExtLeaf >= 0x8000000a
546 )
547 {
548 /* Call the global AMD-V initialization routine. */
549 rc = SVMR0GlobalInit();
550 if (RT_FAILURE(rc))
551 {
552 g_HmR0.lLastError = rc;
553 return rc;
554 }
555
556 /*
557 * Install the AMD-V methods.
558 */
559 g_HmR0.pfnEnterSession = SVMR0Enter;
560 g_HmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
561 g_HmR0.pfnSaveHostState = SVMR0SaveHostState;
562 g_HmR0.pfnRunGuestCode = SVMR0RunGuestCode;
563 g_HmR0.pfnEnableCpu = SVMR0EnableCpu;
564 g_HmR0.pfnDisableCpu = SVMR0DisableCpu;
565 g_HmR0.pfnInitVM = SVMR0InitVM;
566 g_HmR0.pfnTermVM = SVMR0TermVM;
567 g_HmR0.pfnSetupVM = SVMR0SetupVM;
568
569 /* Query AMD features. */
570 uint32_t u32Dummy;
571 ASMCpuId(0x8000000a, &g_HmR0.svm.u32Rev, &g_HmR0.uMaxAsid, &u32Dummy, &g_HmR0.svm.u32Features);
572
573 /*
574 * We need to check if AMD-V has been properly initialized on all CPUs.
575 * Some BIOSes might do a poor job.
576 */
577 HMR0FIRSTRC FirstRc;
578 hmR0FirstRcInit(&FirstRc);
579 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
580 AssertRC(rc);
581 if (RT_SUCCESS(rc))
582 rc = hmR0FirstRcGetStatus(&FirstRc);
583#ifndef DEBUG_bird
584 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
585 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
586#endif
587 if (RT_SUCCESS(rc))
588 {
589 /* Read the HWCR MSR for diagnostics. */
590 g_HmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
591 g_HmR0.svm.fSupported = true;
592 }
593 else
594 {
595 g_HmR0.lLastError = rc;
596 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
597 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
598 }
599 }
600 else
601 {
602 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
603 g_HmR0.lLastError = VERR_SVM_NO_SVM;
604 }
605 return rc;
606}
607
608
609/**
610 * Does global Ring-0 HM initialization (at module init).
611 *
612 * @returns VBox status code.
613 */
614VMMR0_INT_DECL(int) HMR0Init(void)
615{
616 /*
617 * Initialize the globals.
618 */
619 g_HmR0.fEnabled = false;
620 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
621 g_HmR0.EnableAllCpusOnce = s_OnceInit;
622 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
623 {
624 g_HmR0.aCpuInfo[i].idCpu = NIL_RTCPUID;
625 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
626 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
627 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
628 }
629
630 /* Fill in all callbacks with placeholders. */
631 g_HmR0.pfnEnterSession = hmR0DummyEnter;
632 g_HmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
633 g_HmR0.pfnSaveHostState = hmR0DummySaveHostState;
634 g_HmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
635 g_HmR0.pfnEnableCpu = hmR0DummyEnableCpu;
636 g_HmR0.pfnDisableCpu = hmR0DummyDisableCpu;
637 g_HmR0.pfnInitVM = hmR0DummyInitVM;
638 g_HmR0.pfnTermVM = hmR0DummyTermVM;
639 g_HmR0.pfnSetupVM = hmR0DummySetupVM;
640
641 /* Default is global VT-x/AMD-V init. */
642 g_HmR0.fGlobalInit = true;
643
644 /*
645 * Make sure aCpuInfo is big enough for all the CPUs on this system.
646 */
647 if (RTMpGetArraySize() > RT_ELEMENTS(g_HmR0.aCpuInfo))
648 {
649 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HmR0.aCpuInfo)));
650 return VERR_TOO_MANY_CPUS;
651 }
652
653 /*
654 * Check for VT-x and AMD-V capabilities.
655 */
656 int rc;
657 if (ASMHasCpuId())
658 {
659 /* Standard features. */
660 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
661 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
662 if (ASMIsValidStdRange(uMaxLeaf))
663 {
664 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
665 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
666
667 /* Query AMD features. */
668 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
669 if (ASMIsValidExtRange(uMaxExtLeaf))
670 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
671 &g_HmR0.cpuid.u32AMDFeatureECX,
672 &g_HmR0.cpuid.u32AMDFeatureEDX);
673 else
674 g_HmR0.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureEDX = 0;
675
676 /* Go to CPU specific initialization code. */
677 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
678 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
679 {
680 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
681 if (RT_FAILURE(rc))
682 return rc;
683 }
684 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
685 {
686 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
687 if (RT_FAILURE(rc))
688 return rc;
689 }
690 else
691 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
692 }
693 else
694 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
695 }
696 else
697 g_HmR0.lLastError = VERR_HM_NO_CPUID;
698
699 /*
700 * Register notification callbacks that we can use to disable/enable CPUs
701 * when brought offline/online or suspending/resuming.
702 */
703 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
704 {
705 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
706 AssertRC(rc);
707
708 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
709 AssertRC(rc);
710 }
711
712 /* We return success here because module init shall not fail if HM
713 fails to initialize. */
714 return VINF_SUCCESS;
715}
716
717
718/**
719 * Does global Ring-0 HM termination (at module termination).
720 *
721 * @returns VBox status code.
722 */
723VMMR0_INT_DECL(int) HMR0Term(void)
724{
725 int rc;
726 if ( g_HmR0.vmx.fSupported
727 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
728 {
729 /*
730 * Simple if the host OS manages VT-x.
731 */
732 Assert(g_HmR0.fGlobalInit);
733
734 if (g_HmR0.vmx.fCalledSUPR0EnableVTx)
735 {
736 rc = SUPR0EnableVTx(false /* fEnable */);
737 g_HmR0.vmx.fCalledSUPR0EnableVTx = false;
738 }
739 else
740 rc = VINF_SUCCESS;
741
742 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HmR0.aCpuInfo); iCpu++)
743 {
744 g_HmR0.aCpuInfo[iCpu].fConfigured = false;
745 Assert(g_HmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
746 }
747 }
748 else
749 {
750 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
751
752 /* Doesn't really matter if this fails. */
753 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
754 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
755
756 /*
757 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
758 */
759 if (g_HmR0.fGlobalInit)
760 {
761 HMR0FIRSTRC FirstRc;
762 hmR0FirstRcInit(&FirstRc);
763 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
764 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
765 if (RT_SUCCESS(rc))
766 rc = hmR0FirstRcGetStatus(&FirstRc);
767 }
768
769 /*
770 * Free the per-cpu pages used for VT-x and AMD-V.
771 */
772 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
773 {
774 if (g_HmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
775 {
776 RTR0MemObjFree(g_HmR0.aCpuInfo[i].hMemObj, false);
777 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
778 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
779 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
780 }
781 }
782 }
783
784 /** @todo This needs cleaning up. There's no matching
785 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
786 * should move into their respective modules. */
787 /* Finally, call global VT-x/AMD-V termination. */
788 if (g_HmR0.vmx.fSupported)
789 VMXR0GlobalTerm();
790 else if (g_HmR0.svm.fSupported)
791 SVMR0GlobalTerm();
792
793 return rc;
794}
795
796
797/**
798 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
799 * on a CPU.
800 *
801 * @param idCpu The identifier for the CPU the function is called on.
802 * @param pvUser1 Pointer to the first RC structure.
803 * @param pvUser2 Ignored.
804 */
805static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
806{
807 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
808 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
809 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
810 NOREF(idCpu); NOREF(pvUser2);
811
812 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
813 hmR0FirstRcSetStatus(pFirstRc, rc);
814}
815
816
817/**
818 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
819 * on a CPU.
820 *
821 * @param idCpu The identifier for the CPU the function is called on.
822 * @param pvUser1 Pointer to the first RC structure.
823 * @param pvUser2 Ignored.
824 */
825static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
826{
827 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
828 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
829 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
830 NOREF(idCpu); NOREF(pvUser2);
831
832 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
833 hmR0FirstRcSetStatus(pFirstRc, rc);
834}
835
836
837/**
838 * Enable VT-x or AMD-V on the current CPU
839 *
840 * @returns VBox status code.
841 * @param pVM The cross context VM structure. Can be NULL.
842 * @param idCpu The identifier for the CPU the function is called on.
843 *
844 * @remarks Maybe called with interrupts disabled!
845 */
846static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
847{
848 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
849
850 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
851 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
852 Assert(!pCpu->fConfigured);
853 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
854
855 pCpu->idCpu = idCpu;
856 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
857
858 int rc;
859 if (g_HmR0.vmx.fSupported && g_HmR0.vmx.fUsingSUPR0EnableVTx)
860 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmR0.vmx.Msrs);
861 else
862 {
863 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
864 if (g_HmR0.vmx.fSupported)
865 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
866 else
867 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, NULL /* pvArg */);
868 }
869 if (RT_SUCCESS(rc))
870 pCpu->fConfigured = true;
871
872 return rc;
873}
874
875
876/**
877 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
878 *
879 * @param idCpu The identifier for the CPU the function is called on.
880 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
881 * @param pvUser2 The 2nd user argument.
882 */
883static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
884{
885 PVM pVM = (PVM)pvUser1; /* can be NULL! */
886 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
887 AssertReturnVoid(g_HmR0.fGlobalInit);
888 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
889 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
890}
891
892
893/**
894 * RTOnce callback employed by HMR0EnableAllCpus.
895 *
896 * @returns VBox status code.
897 * @param pvUser Pointer to the VM.
898 */
899static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
900{
901 PVM pVM = (PVM)pvUser;
902
903 /*
904 * Indicate that we've initialized.
905 *
906 * Note! There is a potential race between this function and the suspend
907 * notification. Kind of unlikely though, so ignored for now.
908 */
909 AssertReturn(!g_HmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
910 ASMAtomicWriteBool(&g_HmR0.fEnabled, true);
911
912 /*
913 * The global init variable is set by the first VM.
914 */
915 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
916
917#ifdef VBOX_STRICT
918 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
919 {
920 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
921 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
922 Assert(g_HmR0.aCpuInfo[i].pvMemObj == NULL);
923 Assert(!g_HmR0.aCpuInfo[i].fConfigured);
924 Assert(!g_HmR0.aCpuInfo[i].cTlbFlushes);
925 Assert(!g_HmR0.aCpuInfo[i].uCurrentAsid);
926 }
927#endif
928
929 int rc;
930 if ( g_HmR0.vmx.fSupported
931 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
932 {
933 /*
934 * Global VT-x initialization API (only darwin for now).
935 */
936 rc = SUPR0EnableVTx(true /* fEnable */);
937 if (RT_SUCCESS(rc))
938 {
939 g_HmR0.vmx.fCalledSUPR0EnableVTx = true;
940 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
941 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
942 }
943 else
944 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
945 }
946 else
947 {
948 /*
949 * We're doing the job ourselves.
950 */
951 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
952 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
953 {
954 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
955
956 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
957 {
958 /** @todo NUMA */
959 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
960 AssertLogRelRCReturn(rc, rc);
961
962 g_HmR0.aCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].hMemObj, 0);
963 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
964 Assert(!(g_HmR0.aCpuInfo[i].HCPhysMemObj & PAGE_OFFSET_MASK));
965
966 g_HmR0.aCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].hMemObj);
967 AssertPtr(g_HmR0.aCpuInfo[i].pvMemObj);
968 ASMMemZeroPage(g_HmR0.aCpuInfo[i].pvMemObj);
969 }
970 }
971
972 rc = VINF_SUCCESS;
973 }
974
975 if ( RT_SUCCESS(rc)
976 && g_HmR0.fGlobalInit)
977 {
978 /* First time, so initialize each cpu/core. */
979 HMR0FIRSTRC FirstRc;
980 hmR0FirstRcInit(&FirstRc);
981 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
982 if (RT_SUCCESS(rc))
983 rc = hmR0FirstRcGetStatus(&FirstRc);
984 }
985
986 return rc;
987}
988
989
990/**
991 * Sets up HM on all cpus.
992 *
993 * @returns VBox status code.
994 * @param pVM The cross context VM structure.
995 */
996VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
997{
998 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
999 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1000 return VERR_HM_SUSPEND_PENDING;
1001
1002 return RTOnce(&g_HmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1003}
1004
1005
1006/**
1007 * Disable VT-x or AMD-V on the current CPU.
1008 *
1009 * @returns VBox status code.
1010 * @param idCpu The identifier for the CPU this function is called on.
1011 *
1012 * @remarks Must be called with preemption disabled.
1013 */
1014static int hmR0DisableCpu(RTCPUID idCpu)
1015{
1016 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1017
1018 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1019 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1020 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
1021 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1022 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1023 AssertRelease(idCpu == RTMpCpuId());
1024
1025 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1026 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1027 AssertPtr(pCpu->pvMemObj);
1028 Assert(pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1029
1030 int rc;
1031 if (pCpu->fConfigured)
1032 {
1033 rc = g_HmR0.pfnDisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1034 AssertRCReturn(rc, rc);
1035
1036 pCpu->fConfigured = false;
1037 pCpu->idCpu = NIL_RTCPUID;
1038 }
1039 else
1040 rc = VINF_SUCCESS; /* nothing to do */
1041 return rc;
1042}
1043
1044
1045/**
1046 * Worker function passed to RTMpOnAll() that is to be called on the target
1047 * CPUs.
1048 *
1049 * @param idCpu The identifier for the CPU the function is called on.
1050 * @param pvUser1 The 1st user argument.
1051 * @param pvUser2 Opaque pointer to the FirstRc.
1052 */
1053static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1054{
1055 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1056 AssertReturnVoid(g_HmR0.fGlobalInit);
1057 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1058}
1059
1060
1061/**
1062 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1063 * CPU.
1064 *
1065 * @param idCpu The identifier for the CPU the function is called on.
1066 * @param pvUser1 Null, not used.
1067 * @param pvUser2 Null, not used.
1068 */
1069static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1070{
1071 NOREF(pvUser1);
1072 NOREF(pvUser2);
1073 hmR0DisableCpu(idCpu);
1074}
1075
1076
1077/**
1078 * Callback function invoked when a cpu goes online or offline.
1079 *
1080 * @param enmEvent The Mp event.
1081 * @param idCpu The identifier for the CPU the function is called on.
1082 * @param pvData Opaque data (PVM pointer).
1083 */
1084static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1085{
1086 NOREF(pvData);
1087 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1088
1089 /*
1090 * We only care about uninitializing a CPU that is going offline. When a
1091 * CPU comes online, the initialization is done lazily in HMR0Enter().
1092 */
1093 switch (enmEvent)
1094 {
1095 case RTMPEVENT_OFFLINE:
1096 {
1097 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1098 RTThreadPreemptDisable(&PreemptState);
1099 if (idCpu == RTMpCpuId())
1100 {
1101 int rc = hmR0DisableCpu(idCpu);
1102 AssertRC(rc);
1103 RTThreadPreemptRestore(&PreemptState);
1104 }
1105 else
1106 {
1107 RTThreadPreemptRestore(&PreemptState);
1108 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1109 }
1110 break;
1111 }
1112
1113 default:
1114 break;
1115 }
1116}
1117
1118
1119/**
1120 * Called whenever a system power state change occurs.
1121 *
1122 * @param enmEvent The Power event.
1123 * @param pvUser User argument.
1124 */
1125static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1126{
1127 NOREF(pvUser);
1128 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1129
1130#ifdef LOG_ENABLED
1131 if (enmEvent == RTPOWEREVENT_SUSPEND)
1132 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1133 else
1134 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1135#endif
1136
1137 if (enmEvent == RTPOWEREVENT_SUSPEND)
1138 ASMAtomicWriteBool(&g_HmR0.fSuspended, true);
1139
1140 if (g_HmR0.fEnabled)
1141 {
1142 int rc;
1143 HMR0FIRSTRC FirstRc;
1144 hmR0FirstRcInit(&FirstRc);
1145
1146 if (enmEvent == RTPOWEREVENT_SUSPEND)
1147 {
1148 if (g_HmR0.fGlobalInit)
1149 {
1150 /* Turn off VT-x or AMD-V on all CPUs. */
1151 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1152 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1153 }
1154 /* else nothing to do here for the local init case */
1155 }
1156 else
1157 {
1158 /* Reinit the CPUs from scratch as the suspend state might have
1159 messed with the MSRs. (lousy BIOSes as usual) */
1160 if (g_HmR0.vmx.fSupported)
1161 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1162 else
1163 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1164 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1165 if (RT_SUCCESS(rc))
1166 rc = hmR0FirstRcGetStatus(&FirstRc);
1167#ifdef LOG_ENABLED
1168 if (RT_FAILURE(rc))
1169 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1170#endif
1171 if (g_HmR0.fGlobalInit)
1172 {
1173 /* Turn VT-x or AMD-V back on on all CPUs. */
1174 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1175 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1176 }
1177 /* else nothing to do here for the local init case */
1178 }
1179 }
1180
1181 if (enmEvent == RTPOWEREVENT_RESUME)
1182 ASMAtomicWriteBool(&g_HmR0.fSuspended, false);
1183}
1184
1185
1186/**
1187 * Does ring-0 per-VM HM initialization.
1188 *
1189 * This will copy HM global into the VM structure and call the CPU specific
1190 * init routine which will allocate resources for each virtual CPU and such.
1191 *
1192 * @returns VBox status code.
1193 * @param pVM The cross context VM structure.
1194 *
1195 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1196 * vmR3InitRing3().
1197 */
1198VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1199{
1200 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1201
1202#ifdef LOG_ENABLED
1203 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1204#endif
1205
1206 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1207 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1208 return VERR_HM_SUSPEND_PENDING;
1209
1210 /*
1211 * Copy globals to the VM structure.
1212 */
1213 pVM->hm.s.vmx.fSupported = g_HmR0.vmx.fSupported;
1214 pVM->hm.s.svm.fSupported = g_HmR0.svm.fSupported;
1215
1216 pVM->hm.s.vmx.fUsePreemptTimer &= g_HmR0.vmx.fUsePreemptTimer; /* Can be overridden by CFGM. See HMR3Init(). */
1217 pVM->hm.s.vmx.cPreemptTimerShift = g_HmR0.vmx.cPreemptTimerShift;
1218 pVM->hm.s.vmx.u64HostCr4 = g_HmR0.vmx.u64HostCr4;
1219 pVM->hm.s.vmx.u64HostEfer = g_HmR0.vmx.u64HostEfer;
1220 pVM->hm.s.vmx.u64HostSmmMonitorCtl = g_HmR0.vmx.u64HostSmmMonitorCtl;
1221 pVM->hm.s.vmx.Msrs = g_HmR0.vmx.Msrs;
1222 pVM->hm.s.svm.u64MsrHwcr = g_HmR0.svm.u64MsrHwcr;
1223 pVM->hm.s.svm.u32Rev = g_HmR0.svm.u32Rev;
1224 pVM->hm.s.svm.u32Features = g_HmR0.svm.u32Features;
1225 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureECX;
1226 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HmR0.cpuid.u32AMDFeatureEDX;
1227 pVM->hm.s.lLastError = g_HmR0.lLastError;
1228 pVM->hm.s.uMaxAsid = g_HmR0.uMaxAsid;
1229
1230 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1231 {
1232 pVM->hm.s.cMaxResumeLoops = 1024;
1233 if (RTThreadPreemptIsPendingTrusty())
1234 pVM->hm.s.cMaxResumeLoops = 8192;
1235 }
1236
1237 /*
1238 * Initialize some per-VCPU fields.
1239 */
1240 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1241 {
1242 PVMCPU pVCpu = &pVM->aCpus[i];
1243 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1244 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1245 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu);
1246
1247 /* We'll aways increment this the first time (host uses ASID 0). */
1248 AssertReturn(!pVCpu->hm.s.uCurrentAsid, VERR_HM_IPE_3);
1249 }
1250
1251 pVM->hm.s.fHostKernelFeatures = SUPR0GetKernelFeatures();
1252
1253 /*
1254 * Call the hardware specific initialization method.
1255 */
1256 return g_HmR0.pfnInitVM(pVM);
1257}
1258
1259
1260/**
1261 * Does ring-0 per VM HM termination.
1262 *
1263 * @returns VBox status code.
1264 * @param pVM The cross context VM structure.
1265 */
1266VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1267{
1268 Log(("HMR0TermVM: %p\n", pVM));
1269 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1270
1271 /*
1272 * Call the hardware specific method.
1273 *
1274 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1275 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1276 */
1277 return g_HmR0.pfnTermVM(pVM);
1278}
1279
1280
1281/**
1282 * Sets up a VT-x or AMD-V session.
1283 *
1284 * This is mostly about setting up the hardware VM state.
1285 *
1286 * @returns VBox status code.
1287 * @param pVM The cross context VM structure.
1288 */
1289VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1290{
1291 Log(("HMR0SetupVM: %p\n", pVM));
1292 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1293
1294 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1295 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1296
1297 /* On first entry we'll sync everything. */
1298 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1299 HMCPU_CF_RESET_TO(&pVM->aCpus[i], HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1300
1301 /*
1302 * Call the hardware specific setup VM method. This requires the CPU to be
1303 * enabled for AMD-V/VT-x and preemption to be prevented.
1304 */
1305 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1306 RTThreadPreemptDisable(&PreemptState);
1307 RTCPUID idCpu = RTMpCpuId();
1308
1309 /* Enable VT-x or AMD-V if local init is required. */
1310 int rc;
1311 if (!g_HmR0.fGlobalInit)
1312 {
1313 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1314 rc = hmR0EnableCpu(pVM, idCpu);
1315 if (RT_FAILURE(rc))
1316 {
1317 RTThreadPreemptRestore(&PreemptState);
1318 return rc;
1319 }
1320 }
1321
1322 /* Setup VT-x or AMD-V. */
1323 rc = g_HmR0.pfnSetupVM(pVM);
1324
1325 /* Disable VT-x or AMD-V if local init was done before. */
1326 if (!g_HmR0.fGlobalInit)
1327 {
1328 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1329 int rc2 = hmR0DisableCpu(idCpu);
1330 AssertRC(rc2);
1331 }
1332
1333 RTThreadPreemptRestore(&PreemptState);
1334 return rc;
1335}
1336
1337
1338/**
1339 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1340 * required for entering HM context.
1341 *
1342 * @returns VBox status code.
1343 * @param pVCpu The cross context virtual CPU structure.
1344 *
1345 * @remarks No-long-jump zone!!!
1346 */
1347VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1348{
1349 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1350
1351 int rc = VINF_SUCCESS;
1352 RTCPUID idCpu = RTMpCpuId();
1353 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1354 AssertPtr(pCpu);
1355
1356 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1357 if (!pCpu->fConfigured)
1358 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1359
1360 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1361 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE);
1362
1363 Assert(pCpu->idCpu == idCpu && pCpu->idCpu != NIL_RTCPUID);
1364 pVCpu->hm.s.idEnteredCpu = idCpu;
1365 return rc;
1366}
1367
1368
1369/**
1370 * Enters the VT-x or AMD-V session.
1371 *
1372 * @returns VBox status code.
1373 * @param pVM The cross context VM structure.
1374 * @param pVCpu The cross context virtual CPU structure.
1375 *
1376 * @remarks This is called with preemption disabled.
1377 */
1378VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1379{
1380 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1381 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1382 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1383
1384 /* Load the bare minimum state required for entering HM. */
1385 int rc = HMR0EnterCpu(pVCpu);
1386 AssertRCReturn(rc, rc);
1387
1388#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1389 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_5);
1390 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1391#endif
1392
1393 RTCPUID idCpu = RTMpCpuId();
1394 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1395 Assert(pCpu);
1396 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1397
1398 rc = g_HmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1399 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1400
1401 /* Load the host-state as we may be resuming code after a longjmp and quite
1402 possibly now be scheduled on a different CPU. */
1403 rc = g_HmR0.pfnSaveHostState(pVM, pVCpu);
1404 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1405
1406#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1407 if (fStartedSet)
1408 PGMRZDynMapReleaseAutoSet(pVCpu);
1409#endif
1410
1411 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1412 if (RT_FAILURE(rc))
1413 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1414 return rc;
1415}
1416
1417
1418/**
1419 * Deinitializes the bare minimum state used for HM context and if necessary
1420 * disable HM on the CPU.
1421 *
1422 * @returns VBox status code.
1423 * @param pVCpu The cross context virtual CPU structure.
1424 *
1425 * @remarks No-long-jump zone!!!
1426 */
1427VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1428{
1429 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1430 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1431
1432 RTCPUID idCpu = RTMpCpuId();
1433 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1434
1435 if ( !g_HmR0.fGlobalInit
1436 && pCpu->fConfigured)
1437 {
1438 int rc = hmR0DisableCpu(idCpu);
1439 AssertRCReturn(rc, rc);
1440 Assert(!pCpu->fConfigured);
1441 Assert(pCpu->idCpu == NIL_RTCPUID);
1442
1443 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1444 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1445 }
1446
1447 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1448 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1449
1450 return VINF_SUCCESS;
1451}
1452
1453
1454/**
1455 * Thread-context hook for HM.
1456 *
1457 * @param enmEvent The thread-context event.
1458 * @param pvUser Opaque pointer to the VMCPU.
1459 */
1460VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1461{
1462 PVMCPU pVCpu = (PVMCPU)pvUser;
1463 Assert(pVCpu);
1464 Assert(g_HmR0.pfnThreadCtxCallback);
1465
1466 g_HmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HmR0.fGlobalInit);
1467}
1468
1469
1470/**
1471 * Runs guest code in a hardware accelerated VM.
1472 *
1473 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1474 * called from setjmp assembly.)
1475 * @param pVM The cross context VM structure.
1476 * @param pVCpu The cross context virtual CPU structure.
1477 *
1478 * @remarks Can be called with preemption enabled if thread-context hooks are
1479 * used!!!
1480 */
1481VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1482{
1483#ifdef VBOX_STRICT
1484 /* With thread-context hooks we would be running this code with preemption enabled. */
1485 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1486 {
1487 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[RTMpCpuId()];
1488 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1489 Assert(pCpu->fConfigured);
1490 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1491 }
1492#endif
1493
1494#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1495 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_4);
1496 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1497 PGMRZDynMapStartAutoSet(pVCpu);
1498#endif
1499
1500 VBOXSTRICTRC rcStrict = g_HmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1501
1502#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1503 PGMRZDynMapReleaseAutoSet(pVCpu);
1504#endif
1505 return VBOXSTRICTRC_VAL(rcStrict);
1506}
1507
1508#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1509
1510/**
1511 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1512 *
1513 * @returns VBox status code.
1514 * @param pVM The cross context VM structure.
1515 * @param pVCpu The cross context virtual CPU structure.
1516 * @param pCtx Pointer to the guest CPU context.
1517 */
1518VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1519{
1520 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1521 if (pVM->hm.s.vmx.fSupported)
1522 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1523 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1524}
1525
1526
1527/**
1528 * Save guest debug state (64 bits guest mode & 32 bits host only)
1529 *
1530 * @returns VBox status code.
1531 * @param pVM The cross context VM structure.
1532 * @param pVCpu The cross context virtual CPU structure.
1533 * @param pCtx Pointer to the guest CPU context.
1534 */
1535VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1536{
1537 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1538 if (pVM->hm.s.vmx.fSupported)
1539 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1540 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1541}
1542
1543
1544/**
1545 * Test the 32->64 bits switcher.
1546 *
1547 * @returns VBox status code.
1548 * @param pVM The cross context VM structure.
1549 */
1550VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1551{
1552 PVMCPU pVCpu = &pVM->aCpus[0];
1553 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1554 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1555 int rc;
1556
1557 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1558 if (pVM->hm.s.vmx.fSupported)
1559 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1560 else
1561 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1562 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1563
1564 return rc;
1565}
1566
1567#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
1568
1569/**
1570 * Returns suspend status of the host.
1571 *
1572 * @returns Suspend pending or not.
1573 */
1574VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1575{
1576 return ASMAtomicReadBool(&g_HmR0.fSuspended);
1577}
1578
1579
1580/**
1581 * Returns the cpu structure for the current cpu.
1582 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1583 *
1584 * @returns The cpu structure pointer.
1585 */
1586VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpu(void)
1587{
1588 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1589 RTCPUID idCpu = RTMpCpuId();
1590 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1591 return &g_HmR0.aCpuInfo[idCpu];
1592}
1593
1594
1595/**
1596 * Returns the cpu structure for the current cpu.
1597 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1598 *
1599 * @returns The cpu structure pointer.
1600 * @param idCpu id of the VCPU.
1601 */
1602VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
1603{
1604 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1605 return &g_HmR0.aCpuInfo[idCpu];
1606}
1607
1608
1609/**
1610 * Save a pending IO read.
1611 *
1612 * @param pVCpu The cross context virtual CPU structure.
1613 * @param GCPtrRip Address of IO instruction.
1614 * @param GCPtrRipNext Address of the next instruction.
1615 * @param uPort Port address.
1616 * @param uAndVal AND mask for saving the result in eax.
1617 * @param cbSize Read size.
1618 */
1619VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1620 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1621{
1622 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1623 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1624 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1625 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1626 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1627 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1628 return;
1629}
1630
1631#ifdef VBOX_WITH_RAW_MODE
1632
1633/**
1634 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1635 * switcher turns off paging.
1636 *
1637 * @returns VBox status code.
1638 * @param pVM The cross context VM structure.
1639 * @param enmSwitcher The switcher we're about to use.
1640 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1641 */
1642VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1643{
1644 NOREF(pVM);
1645
1646 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1647
1648 *pfVTxDisabled = false;
1649
1650 /* No such issues with AMD-V */
1651 if (!g_HmR0.vmx.fSupported)
1652 return VINF_SUCCESS;
1653
1654 /* Check if the switching we're up to is safe. */
1655 switch (enmSwitcher)
1656 {
1657 case VMMSWITCHER_32_TO_32:
1658 case VMMSWITCHER_PAE_TO_PAE:
1659 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1660
1661 case VMMSWITCHER_32_TO_PAE:
1662 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1663 case VMMSWITCHER_AMD64_TO_32:
1664 case VMMSWITCHER_AMD64_TO_PAE:
1665 break; /* unsafe switchers */
1666
1667 default:
1668 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1669 }
1670
1671 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1672 regardless of whether we're currently using VT-x or not. */
1673 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1674 {
1675 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1676 return VINF_SUCCESS;
1677 }
1678
1679 /** @todo Check if this code is presumptive wrt other VT-x users on the
1680 * system... */
1681
1682 /* Nothing to do if we haven't enabled VT-x. */
1683 if (!g_HmR0.fEnabled)
1684 return VINF_SUCCESS;
1685
1686 /* Local init implies the CPU is currently not in VMX root mode. */
1687 if (!g_HmR0.fGlobalInit)
1688 return VINF_SUCCESS;
1689
1690 /* Ok, disable VT-x. */
1691 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1692 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS, VERR_HM_IPE_2);
1693
1694 *pfVTxDisabled = true;
1695 return VMXR0DisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1696}
1697
1698
1699/**
1700 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1701 * switcher turned off paging.
1702 *
1703 * @param pVM The cross context VM structure.
1704 * @param fVTxDisabled Whether VT-x was disabled or not.
1705 */
1706VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1707{
1708 Assert(!ASMIntAreEnabled());
1709
1710 if (!fVTxDisabled)
1711 return; /* nothing to do */
1712
1713 Assert(g_HmR0.vmx.fSupported);
1714 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1715 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1716 else
1717 {
1718 Assert(g_HmR0.fEnabled);
1719 Assert(g_HmR0.fGlobalInit);
1720
1721 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1722 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1723
1724 VMXR0EnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
1725 }
1726}
1727
1728#endif /* VBOX_WITH_RAW_MODE */
1729#ifdef VBOX_STRICT
1730
1731/**
1732 * Dumps a descriptor.
1733 *
1734 * @param pDesc Descriptor to dump.
1735 * @param Sel Selector number.
1736 * @param pszMsg Message to prepend the log entry with.
1737 */
1738VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1739{
1740 /*
1741 * Make variable description string.
1742 */
1743 static struct
1744 {
1745 unsigned cch;
1746 const char *psz;
1747 } const s_aTypes[32] =
1748 {
1749# define STRENTRY(str) { sizeof(str) - 1, str }
1750
1751 /* system */
1752# if HC_ARCH_BITS == 64
1753 STRENTRY("Reserved0 "), /* 0x00 */
1754 STRENTRY("Reserved1 "), /* 0x01 */
1755 STRENTRY("LDT "), /* 0x02 */
1756 STRENTRY("Reserved3 "), /* 0x03 */
1757 STRENTRY("Reserved4 "), /* 0x04 */
1758 STRENTRY("Reserved5 "), /* 0x05 */
1759 STRENTRY("Reserved6 "), /* 0x06 */
1760 STRENTRY("Reserved7 "), /* 0x07 */
1761 STRENTRY("Reserved8 "), /* 0x08 */
1762 STRENTRY("TSS64Avail "), /* 0x09 */
1763 STRENTRY("ReservedA "), /* 0x0a */
1764 STRENTRY("TSS64Busy "), /* 0x0b */
1765 STRENTRY("Call64 "), /* 0x0c */
1766 STRENTRY("ReservedD "), /* 0x0d */
1767 STRENTRY("Int64 "), /* 0x0e */
1768 STRENTRY("Trap64 "), /* 0x0f */
1769# else
1770 STRENTRY("Reserved0 "), /* 0x00 */
1771 STRENTRY("TSS16Avail "), /* 0x01 */
1772 STRENTRY("LDT "), /* 0x02 */
1773 STRENTRY("TSS16Busy "), /* 0x03 */
1774 STRENTRY("Call16 "), /* 0x04 */
1775 STRENTRY("Task "), /* 0x05 */
1776 STRENTRY("Int16 "), /* 0x06 */
1777 STRENTRY("Trap16 "), /* 0x07 */
1778 STRENTRY("Reserved8 "), /* 0x08 */
1779 STRENTRY("TSS32Avail "), /* 0x09 */
1780 STRENTRY("ReservedA "), /* 0x0a */
1781 STRENTRY("TSS32Busy "), /* 0x0b */
1782 STRENTRY("Call32 "), /* 0x0c */
1783 STRENTRY("ReservedD "), /* 0x0d */
1784 STRENTRY("Int32 "), /* 0x0e */
1785 STRENTRY("Trap32 "), /* 0x0f */
1786# endif
1787 /* non system */
1788 STRENTRY("DataRO "), /* 0x10 */
1789 STRENTRY("DataRO Accessed "), /* 0x11 */
1790 STRENTRY("DataRW "), /* 0x12 */
1791 STRENTRY("DataRW Accessed "), /* 0x13 */
1792 STRENTRY("DataDownRO "), /* 0x14 */
1793 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1794 STRENTRY("DataDownRW "), /* 0x16 */
1795 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1796 STRENTRY("CodeEO "), /* 0x18 */
1797 STRENTRY("CodeEO Accessed "), /* 0x19 */
1798 STRENTRY("CodeER "), /* 0x1a */
1799 STRENTRY("CodeER Accessed "), /* 0x1b */
1800 STRENTRY("CodeConfEO "), /* 0x1c */
1801 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1802 STRENTRY("CodeConfER "), /* 0x1e */
1803 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1804# undef SYSENTRY
1805 };
1806# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1807 char szMsg[128];
1808 char *psz = &szMsg[0];
1809 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1810 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1811 psz += s_aTypes[i].cch;
1812
1813 if (pDesc->Gen.u1Present)
1814 ADD_STR(psz, "Present ");
1815 else
1816 ADD_STR(psz, "Not-Present ");
1817# if HC_ARCH_BITS == 64
1818 if (pDesc->Gen.u1Long)
1819 ADD_STR(psz, "64-bit ");
1820 else
1821 ADD_STR(psz, "Comp ");
1822# else
1823 if (pDesc->Gen.u1Granularity)
1824 ADD_STR(psz, "Page ");
1825 if (pDesc->Gen.u1DefBig)
1826 ADD_STR(psz, "32-bit ");
1827 else
1828 ADD_STR(psz, "16-bit ");
1829# endif
1830# undef ADD_STR
1831 *psz = '\0';
1832
1833 /*
1834 * Limit and Base and format the output.
1835 */
1836#ifdef LOG_ENABLED
1837 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1838
1839# if HC_ARCH_BITS == 64
1840 uint64_t u32Base = X86DESC64_BASE(pDesc);
1841 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1842 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1843# else
1844 uint32_t u32Base = X86DESC_BASE(pDesc);
1845 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1846 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1847# endif
1848#else
1849 NOREF(Sel); NOREF(pszMsg);
1850#endif
1851}
1852
1853
1854/**
1855 * Formats a full register dump.
1856 *
1857 * @param pVM The cross context VM structure.
1858 * @param pVCpu The cross context virtual CPU structure.
1859 * @param pCtx Pointer to the CPU context.
1860 */
1861VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1862{
1863 NOREF(pVM);
1864
1865 /*
1866 * Format the flags.
1867 */
1868 static struct
1869 {
1870 const char *pszSet; const char *pszClear; uint32_t fFlag;
1871 } const s_aFlags[] =
1872 {
1873 { "vip", NULL, X86_EFL_VIP },
1874 { "vif", NULL, X86_EFL_VIF },
1875 { "ac", NULL, X86_EFL_AC },
1876 { "vm", NULL, X86_EFL_VM },
1877 { "rf", NULL, X86_EFL_RF },
1878 { "nt", NULL, X86_EFL_NT },
1879 { "ov", "nv", X86_EFL_OF },
1880 { "dn", "up", X86_EFL_DF },
1881 { "ei", "di", X86_EFL_IF },
1882 { "tf", NULL, X86_EFL_TF },
1883 { "nt", "pl", X86_EFL_SF },
1884 { "nz", "zr", X86_EFL_ZF },
1885 { "ac", "na", X86_EFL_AF },
1886 { "po", "pe", X86_EFL_PF },
1887 { "cy", "nc", X86_EFL_CF },
1888 };
1889 char szEFlags[80];
1890 char *psz = szEFlags;
1891 uint32_t uEFlags = pCtx->eflags.u32;
1892 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1893 {
1894 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1895 if (pszAdd)
1896 {
1897 strcpy(psz, pszAdd);
1898 psz += strlen(pszAdd);
1899 *psz++ = ' ';
1900 }
1901 }
1902 psz[-1] = '\0';
1903
1904
1905 /*
1906 * Format the registers.
1907 */
1908 if (CPUMIsGuestIn64BitCode(pVCpu))
1909 {
1910 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1911 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1912 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1913 "r14=%016RX64 r15=%016RX64\n"
1914 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1915 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1916 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1917 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1918 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1919 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1920 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1921 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1922 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1923 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1924 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1925 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1926 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1927 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1928 ,
1929 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1930 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1931 pCtx->r14, pCtx->r15,
1932 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1933 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1934 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1935 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1936 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1937 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1938 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1939 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1940 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1941 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1942 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1943 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1944 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1945 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1946 }
1947 else
1948 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1949 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1950 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1951 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1952 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1953 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1954 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1955 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1956 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1957 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1958 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1959 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1960 ,
1961 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1962 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1963 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1964 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1965 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1966 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1967 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1968 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1969 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1970 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1971 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1972 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1973
1974 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
1975 Log(("FPU:\n"
1976 "FCW=%04x FSW=%04x FTW=%02x\n"
1977 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
1978 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
1979 ,
1980 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
1981 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
1982 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
1983 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
1984
1985 Log(("MSR:\n"
1986 "EFER =%016RX64\n"
1987 "PAT =%016RX64\n"
1988 "STAR =%016RX64\n"
1989 "CSTAR =%016RX64\n"
1990 "LSTAR =%016RX64\n"
1991 "SFMASK =%016RX64\n"
1992 "KERNELGSBASE =%016RX64\n",
1993 pCtx->msrEFER,
1994 pCtx->msrPAT,
1995 pCtx->msrSTAR,
1996 pCtx->msrCSTAR,
1997 pCtx->msrLSTAR,
1998 pCtx->msrSFMASK,
1999 pCtx->msrKERNELGSBASE));
2000
2001 NOREF(pFpuCtx);
2002}
2003
2004#endif /* VBOX_STRICT */
2005
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette