VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 72747

Last change on this file since 72747 was 72744, checked in by vboxsync, 6 years ago

VMM: Extend HM changed flags. ​bugref:9193 [HM, CPUM]

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 75.5 KB
Line 
1/* $Id: HMR0.cpp 72744 2018-06-29 07:36:19Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/gim.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
55static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
56static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62/**
63 * This is used to manage the status code of a RTMpOnAll in HM.
64 */
65typedef struct HMR0FIRSTRC
66{
67 /** The status code. */
68 int32_t volatile rc;
69 /** The ID of the CPU reporting the first failure. */
70 RTCPUID volatile idCpu;
71} HMR0FIRSTRC;
72/** Pointer to a first return code structure. */
73typedef HMR0FIRSTRC *PHMR0FIRSTRC;
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/**
80 * Global data.
81 */
82static struct
83{
84 /** Per CPU globals. */
85 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
86
87 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
88 * @{ */
89 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
90 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
91 DECLR0CALLBACKMEMBER(int, pfnExportHostState, (PVMCPU pVCpu));
92 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
93 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
94 bool fEnabledByHost, void *pvArg));
95 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
96 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVM pVM));
98 DECLR0CALLBACKMEMBER(int, pfnSetupVM, (PVM pVM));
99 /** @} */
100
101 /** Maximum ASID allowed. */
102 uint32_t uMaxAsid;
103
104 /** VT-x data. */
105 struct
106 {
107 /** Set to by us to indicate VMX is supported by the CPU. */
108 bool fSupported;
109 /** Whether we're using SUPR0EnableVTx or not. */
110 bool fUsingSUPR0EnableVTx;
111 /** Whether we're using the preemption timer or not. */
112 bool fUsePreemptTimer;
113 /** The shift mask employed by the VMX-Preemption timer. */
114 uint8_t cPreemptTimerShift;
115
116 /** Host CR4 value (set by ring-0 VMX init) */
117 uint64_t u64HostCr4;
118 /** Host EFER value (set by ring-0 VMX init) */
119 uint64_t u64HostEfer;
120 /** Host SMM monitor control (used for logging/diagnostics) */
121 uint64_t u64HostSmmMonitorCtl;
122
123 /** VMX MSR values */
124 VMXMSRS Msrs;
125
126 /** Last instruction error. */
127 uint32_t ulLastInstrError;
128
129 /** Set if we've called SUPR0EnableVTx(true) and should disable it during
130 * module termination. */
131 bool fCalledSUPR0EnableVTx;
132 } vmx;
133
134 /** AMD-V information. */
135 struct
136 {
137 /* HWCR MSR (for diagnostics) */
138 uint64_t u64MsrHwcr;
139
140 /** SVM revision. */
141 uint32_t u32Rev;
142
143 /** SVM feature bits from cpuid 0x8000000a */
144 uint32_t u32Features;
145
146 /** Set by us to indicate SVM is supported by the CPU. */
147 bool fSupported;
148 } svm;
149
150 /** Saved error from detection */
151 int32_t lLastError;
152
153 /** CPUID 0x80000001 ecx:edx features */
154 struct
155 {
156 uint32_t u32AMDFeatureECX;
157 uint32_t u32AMDFeatureEDX;
158 } cpuid;
159
160 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
161 * enabled and disabled each time it's used to execute guest code. */
162 bool fGlobalInit;
163 /** Indicates whether the host is suspending or not. We'll refuse a few
164 * actions when the host is being suspended to speed up the suspending and
165 * avoid trouble. */
166 volatile bool fSuspended;
167
168 /** Whether we've already initialized all CPUs.
169 * @remarks We could check the EnableAllCpusOnce state, but this is
170 * simpler and hopefully easier to understand. */
171 bool fEnabled;
172 /** Serialize initialization in HMR0EnableAllCpus. */
173 RTONCE EnableAllCpusOnce;
174} g_HmR0;
175
176
177/**
178 * Initializes a first return code structure.
179 *
180 * @param pFirstRc The structure to init.
181 */
182static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
183{
184 pFirstRc->rc = VINF_SUCCESS;
185 pFirstRc->idCpu = NIL_RTCPUID;
186}
187
188
189/**
190 * Try set the status code (success ignored).
191 *
192 * @param pFirstRc The first return code structure.
193 * @param rc The status code.
194 */
195static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
196{
197 if ( RT_FAILURE(rc)
198 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
199 pFirstRc->idCpu = RTMpCpuId();
200}
201
202
203/**
204 * Get the status code of a first return code structure.
205 *
206 * @returns The status code; VINF_SUCCESS or error status, no informational or
207 * warning errors.
208 * @param pFirstRc The first return code structure.
209 */
210static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
211{
212 return pFirstRc->rc;
213}
214
215
216#ifdef VBOX_STRICT
217# ifndef DEBUG_bird
218/**
219 * Get the CPU ID on which the failure status code was reported.
220 *
221 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
222 * @param pFirstRc The first return code structure.
223 */
224static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
225{
226 return pFirstRc->idCpu;
227}
228# endif
229#endif /* VBOX_STRICT */
230
231
232/** @name Dummy callback handlers.
233 * @{ */
234
235static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
236{
237 RT_NOREF3(pVM, pVCpu, pCpu);
238 return VINF_SUCCESS;
239}
240
241static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
242{
243 RT_NOREF3(enmEvent, pVCpu, fGlobalInit);
244}
245
246static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
247 bool fEnabledBySystem, void *pvArg)
248{
249 RT_NOREF6(pCpu, pVM, pvCpuPage, HCPhysCpuPage, fEnabledBySystem, pvArg);
250 return VINF_SUCCESS;
251}
252
253static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
254{
255 RT_NOREF3(pCpu, pvCpuPage, HCPhysCpuPage);
256 return VINF_SUCCESS;
257}
258
259static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
260{
261 RT_NOREF1(pVM);
262 return VINF_SUCCESS;
263}
264
265static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
266{
267 RT_NOREF1(pVM);
268 return VINF_SUCCESS;
269}
270
271static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
272{
273 RT_NOREF1(pVM);
274 return VINF_SUCCESS;
275}
276
277static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
278{
279 RT_NOREF3(pVM, pVCpu, pCtx);
280 return VINF_SUCCESS;
281}
282
283static DECLCALLBACK(int) hmR0DummyExportHostState(PVMCPU pVCpu)
284{
285 RT_NOREF1(pVCpu);
286 return VINF_SUCCESS;
287}
288
289/** @} */
290
291
292/**
293 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
294 * Down at the Rate Specified" erratum.
295 *
296 * Errata names and related steppings:
297 * - BA86 - D0.
298 * - AAX65 - C2.
299 * - AAU65 - C2, K0.
300 * - AAO95 - B1.
301 * - AAT59 - C2.
302 * - AAK139 - D0.
303 * - AAM126 - C0, C1, D0.
304 * - AAN92 - B1.
305 * - AAJ124 - C0, D0.
306 *
307 * - AAP86 - B1.
308 *
309 * Steppings: B1, C0, C1, C2, D0, K0.
310 *
311 * @returns true if subject to it, false if not.
312 */
313static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
314{
315 uint32_t u = ASMCpuId_EAX(1);
316 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
317 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
318 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
319 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
320 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
321 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
322 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
323 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
324 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
325 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
326 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
327 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
328 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
329 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
330 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
331 )
332 return true;
333 return false;
334}
335
336
337/**
338 * Intel specific initialization code.
339 *
340 * @returns VBox status code (will only fail if out of memory).
341 */
342static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
343{
344 /*
345 * Check that all the required VT-x features are present.
346 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
347 */
348 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
349 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
350 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
351 )
352 {
353 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
354 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
355
356 /*
357 * First try use native kernel API for controlling VT-x.
358 * (This is only supported by some Mac OS X kernels atm.)
359 */
360 int rc = g_HmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
361 g_HmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
362 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
363 {
364 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
365 if (RT_SUCCESS(rc))
366 {
367 g_HmR0.vmx.fSupported = true;
368 rc = SUPR0EnableVTx(false /* fEnable */);
369 AssertLogRelRC(rc);
370 }
371 }
372 else
373 {
374 HMR0FIRSTRC FirstRc;
375 hmR0FirstRcInit(&FirstRc);
376 g_HmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
377 if (RT_SUCCESS(g_HmR0.lLastError))
378 g_HmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
379 }
380 if (RT_SUCCESS(g_HmR0.lLastError))
381 {
382 /* Reread in case it was changed by SUPR0GetVmxUsability(). */
383 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
384
385 /*
386 * Read all relevant registers and MSRs.
387 */
388 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
389 g_HmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
390 g_HmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
391 /* KVM workaround: Intel SDM section 34.15.5 describes that MSR_IA32_SMM_MONITOR_CTL
392 * depends on bit 49 of MSR_IA32_VMX_BASIC_INFO while table 35-2 says that this MSR
393 * is available if either VMX or SMX is supported. */
394 if (MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(g_HmR0.vmx.Msrs.u64BasicInfo))
395 g_HmR0.vmx.u64HostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
396 g_HmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
397 g_HmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
398 g_HmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
399 g_HmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
400 g_HmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
401 g_HmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
402 g_HmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
403 g_HmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
404 g_HmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
405 g_HmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
406 /* VPID 16 bits ASID. */
407 g_HmR0.uMaxAsid = 0x10000; /* exclusive */
408
409 if (g_HmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
410 {
411 g_HmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
412 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
413 g_HmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
414
415 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
416 g_HmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
417 }
418
419 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
420 {
421 /*
422 * Enter root mode
423 */
424 RTR0MEMOBJ hScatchMemObj;
425 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
426 if (RT_FAILURE(rc))
427 {
428 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
429 return rc;
430 }
431
432 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
433 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
434 ASMMemZeroPage(pvScatchPage);
435
436 /* Set revision dword at the beginning of the structure. */
437 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HmR0.vmx.Msrs.u64BasicInfo);
438
439 /* Make sure we don't get rescheduled to another cpu during this probe. */
440 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
441
442 /*
443 * Check CR4.VMXE.
444 */
445 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
446 if (!(g_HmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
447 {
448 /* In theory this bit could be cleared behind our back. Which would cause #UD
449 faults when we try to execute the VMX instructions... */
450 ASMSetCR4(g_HmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
451 }
452
453 /*
454 * The only way of checking if we're in VMX root mode or not is to try and enter it.
455 * There is no instruction or control bit that tells us if we're in VMX root mode.
456 * Therefore, try and enter VMX root mode here.
457 */
458 rc = VMXEnable(HCPhysScratchPage);
459 if (RT_SUCCESS(rc))
460 {
461 g_HmR0.vmx.fSupported = true;
462 VMXDisable();
463 }
464 else
465 {
466 /*
467 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
468 * it will crash the host when we enter raw mode, because:
469 *
470 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
471 * this bit), and
472 * (b) turning off paging causes a #GP (unavoidable when switching
473 * from long to 32 bits mode or 32 bits to PAE).
474 *
475 * They should fix their code, but until they do we simply refuse to run.
476 */
477 g_HmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
478 Assert(g_HmR0.vmx.fSupported == false);
479 }
480
481 /*
482 * Restore CR4 again; don't leave the X86_CR4_VMXE flag set if it was not
483 * set before (some software could incorrectly think it is in VMX mode).
484 */
485 ASMSetCR4(g_HmR0.vmx.u64HostCr4);
486 ASMSetFlags(fEFlags);
487
488 RTR0MemObjFree(hScatchMemObj, false);
489 }
490
491 if (g_HmR0.vmx.fSupported)
492 {
493 rc = VMXR0GlobalInit();
494 if (RT_FAILURE(rc))
495 g_HmR0.lLastError = rc;
496
497 /*
498 * Install the VT-x methods.
499 */
500 g_HmR0.pfnEnterSession = VMXR0Enter;
501 g_HmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
502 g_HmR0.pfnExportHostState = VMXR0ExportHostState;
503 g_HmR0.pfnRunGuestCode = VMXR0RunGuestCode;
504 g_HmR0.pfnEnableCpu = VMXR0EnableCpu;
505 g_HmR0.pfnDisableCpu = VMXR0DisableCpu;
506 g_HmR0.pfnInitVM = VMXR0InitVM;
507 g_HmR0.pfnTermVM = VMXR0TermVM;
508 g_HmR0.pfnSetupVM = VMXR0SetupVM;
509
510 /*
511 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
512 * Timer Does Not Count Down at the Rate Specified" erratum.
513 */
514 if (g_HmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
515 {
516 g_HmR0.vmx.fUsePreemptTimer = true;
517 g_HmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HmR0.vmx.Msrs.u64Misc);
518 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
519 g_HmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
520 }
521 }
522 }
523#ifdef LOG_ENABLED
524 else
525 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HmR0.lLastError);
526#endif
527 }
528 else
529 g_HmR0.lLastError = VERR_VMX_NO_VMX;
530 return VINF_SUCCESS;
531}
532
533
534/**
535 * AMD-specific initialization code.
536 *
537 * @returns VBox status code.
538 */
539static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
540{
541 /*
542 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
543 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
544 */
545 int rc;
546 if ( (g_HmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
547 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
548 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
549 && ASMIsValidExtRange(uMaxExtLeaf)
550 && uMaxExtLeaf >= 0x8000000a
551 )
552 {
553 /* Call the global AMD-V initialization routine. */
554 rc = SVMR0GlobalInit();
555 if (RT_FAILURE(rc))
556 {
557 g_HmR0.lLastError = rc;
558 return rc;
559 }
560
561 /*
562 * Install the AMD-V methods.
563 */
564 g_HmR0.pfnEnterSession = SVMR0Enter;
565 g_HmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
566 g_HmR0.pfnExportHostState = SVMR0ExportHostState;
567 g_HmR0.pfnRunGuestCode = SVMR0RunGuestCode;
568 g_HmR0.pfnEnableCpu = SVMR0EnableCpu;
569 g_HmR0.pfnDisableCpu = SVMR0DisableCpu;
570 g_HmR0.pfnInitVM = SVMR0InitVM;
571 g_HmR0.pfnTermVM = SVMR0TermVM;
572 g_HmR0.pfnSetupVM = SVMR0SetupVM;
573
574 /* Query AMD features. */
575 uint32_t u32Dummy;
576 ASMCpuId(0x8000000a, &g_HmR0.svm.u32Rev, &g_HmR0.uMaxAsid, &u32Dummy, &g_HmR0.svm.u32Features);
577
578 /*
579 * We need to check if AMD-V has been properly initialized on all CPUs.
580 * Some BIOSes might do a poor job.
581 */
582 HMR0FIRSTRC FirstRc;
583 hmR0FirstRcInit(&FirstRc);
584 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
585 AssertRC(rc);
586 if (RT_SUCCESS(rc))
587 rc = hmR0FirstRcGetStatus(&FirstRc);
588#ifndef DEBUG_bird
589 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
590 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
591#endif
592 if (RT_SUCCESS(rc))
593 {
594 /* Read the HWCR MSR for diagnostics. */
595 g_HmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
596 g_HmR0.svm.fSupported = true;
597 }
598 else
599 {
600 g_HmR0.lLastError = rc;
601 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
602 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
603 }
604 }
605 else
606 {
607 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
608 g_HmR0.lLastError = VERR_SVM_NO_SVM;
609 }
610 return rc;
611}
612
613
614/**
615 * Does global Ring-0 HM initialization (at module init).
616 *
617 * @returns VBox status code.
618 */
619VMMR0_INT_DECL(int) HMR0Init(void)
620{
621 /*
622 * Initialize the globals.
623 */
624 g_HmR0.fEnabled = false;
625 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
626 g_HmR0.EnableAllCpusOnce = s_OnceInit;
627 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
628 {
629 g_HmR0.aCpuInfo[i].idCpu = NIL_RTCPUID;
630 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
631 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
632 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
633#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
634 g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
635 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
636 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
637#endif
638 }
639
640 /* Fill in all callbacks with placeholders. */
641 g_HmR0.pfnEnterSession = hmR0DummyEnter;
642 g_HmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
643 g_HmR0.pfnExportHostState = hmR0DummyExportHostState;
644 g_HmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
645 g_HmR0.pfnEnableCpu = hmR0DummyEnableCpu;
646 g_HmR0.pfnDisableCpu = hmR0DummyDisableCpu;
647 g_HmR0.pfnInitVM = hmR0DummyInitVM;
648 g_HmR0.pfnTermVM = hmR0DummyTermVM;
649 g_HmR0.pfnSetupVM = hmR0DummySetupVM;
650
651 /* Default is global VT-x/AMD-V init. */
652 g_HmR0.fGlobalInit = true;
653
654 /*
655 * Make sure aCpuInfo is big enough for all the CPUs on this system.
656 */
657 if (RTMpGetArraySize() > RT_ELEMENTS(g_HmR0.aCpuInfo))
658 {
659 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HmR0.aCpuInfo)));
660 return VERR_TOO_MANY_CPUS;
661 }
662
663 /*
664 * Check for VT-x and AMD-V capabilities.
665 */
666 int rc;
667 if (ASMHasCpuId())
668 {
669 /* Standard features. */
670 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
671 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
672 if (ASMIsValidStdRange(uMaxLeaf))
673 {
674 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
675 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
676
677 /* Query AMD features. */
678 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
679 if (ASMIsValidExtRange(uMaxExtLeaf))
680 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
681 &g_HmR0.cpuid.u32AMDFeatureECX,
682 &g_HmR0.cpuid.u32AMDFeatureEDX);
683 else
684 g_HmR0.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureEDX = 0;
685
686 /* Go to CPU specific initialization code. */
687 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
688 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
689 {
690 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
691 if (RT_FAILURE(rc))
692 return rc;
693 }
694 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
695 {
696 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
697 if (RT_FAILURE(rc))
698 return rc;
699 }
700 else
701 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
702 }
703 else
704 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
705 }
706 else
707 g_HmR0.lLastError = VERR_HM_NO_CPUID;
708
709 /*
710 * Register notification callbacks that we can use to disable/enable CPUs
711 * when brought offline/online or suspending/resuming.
712 */
713 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
714 {
715 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
716 AssertRC(rc);
717
718 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
719 AssertRC(rc);
720 }
721
722 /* We return success here because module init shall not fail if HM
723 fails to initialize. */
724 return VINF_SUCCESS;
725}
726
727
728/**
729 * Does global Ring-0 HM termination (at module termination).
730 *
731 * @returns VBox status code.
732 */
733VMMR0_INT_DECL(int) HMR0Term(void)
734{
735 int rc;
736 if ( g_HmR0.vmx.fSupported
737 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
738 {
739 /*
740 * Simple if the host OS manages VT-x.
741 */
742 Assert(g_HmR0.fGlobalInit);
743
744 if (g_HmR0.vmx.fCalledSUPR0EnableVTx)
745 {
746 rc = SUPR0EnableVTx(false /* fEnable */);
747 g_HmR0.vmx.fCalledSUPR0EnableVTx = false;
748 }
749 else
750 rc = VINF_SUCCESS;
751
752 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HmR0.aCpuInfo); iCpu++)
753 {
754 g_HmR0.aCpuInfo[iCpu].fConfigured = false;
755 Assert(g_HmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
756 }
757 }
758 else
759 {
760 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
761
762 /* Doesn't really matter if this fails. */
763 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
764 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
765
766 /*
767 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
768 */
769 if (g_HmR0.fGlobalInit)
770 {
771 HMR0FIRSTRC FirstRc;
772 hmR0FirstRcInit(&FirstRc);
773 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
774 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
775 if (RT_SUCCESS(rc))
776 rc = hmR0FirstRcGetStatus(&FirstRc);
777 }
778
779 /*
780 * Free the per-cpu pages used for VT-x and AMD-V.
781 */
782 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
783 {
784 if (g_HmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
785 {
786 RTR0MemObjFree(g_HmR0.aCpuInfo[i].hMemObj, false);
787 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
788 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
789 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
790 }
791#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
792 if (g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm != NIL_RTR0MEMOBJ)
793 {
794 RTR0MemObjFree(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, false);
795 g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
796 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
797 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
798 }
799#endif
800 }
801 }
802
803 /** @todo This needs cleaning up. There's no matching
804 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
805 * should move into their respective modules. */
806 /* Finally, call global VT-x/AMD-V termination. */
807 if (g_HmR0.vmx.fSupported)
808 VMXR0GlobalTerm();
809 else if (g_HmR0.svm.fSupported)
810 SVMR0GlobalTerm();
811
812 return rc;
813}
814
815
816/**
817 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
818 * on a CPU.
819 *
820 * @param idCpu The identifier for the CPU the function is called on.
821 * @param pvUser1 Pointer to the first RC structure.
822 * @param pvUser2 Ignored.
823 */
824static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
825{
826 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
827 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
828 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
829 NOREF(idCpu); NOREF(pvUser2);
830
831 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
832 hmR0FirstRcSetStatus(pFirstRc, rc);
833}
834
835
836/**
837 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
838 * on a CPU.
839 *
840 * @param idCpu The identifier for the CPU the function is called on.
841 * @param pvUser1 Pointer to the first RC structure.
842 * @param pvUser2 Ignored.
843 */
844static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
845{
846 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
847 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
848 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
849 NOREF(idCpu); NOREF(pvUser2);
850
851 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
852 hmR0FirstRcSetStatus(pFirstRc, rc);
853}
854
855
856/**
857 * Enable VT-x or AMD-V on the current CPU
858 *
859 * @returns VBox status code.
860 * @param pVM The cross context VM structure. Can be NULL.
861 * @param idCpu The identifier for the CPU the function is called on.
862 *
863 * @remarks Maybe called with interrupts disabled!
864 */
865static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
866{
867 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
868
869 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
870 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
871 Assert(!pCpu->fConfigured);
872 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
873
874 pCpu->idCpu = idCpu;
875 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
876
877 int rc;
878 if (g_HmR0.vmx.fSupported && g_HmR0.vmx.fUsingSUPR0EnableVTx)
879 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmR0.vmx.Msrs);
880 else
881 {
882 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
883 if (g_HmR0.vmx.fSupported)
884 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
885 else
886 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, NULL /* pvArg */);
887 }
888 if (RT_SUCCESS(rc))
889 pCpu->fConfigured = true;
890
891 return rc;
892}
893
894
895/**
896 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
897 *
898 * @param idCpu The identifier for the CPU the function is called on.
899 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
900 * @param pvUser2 The 2nd user argument.
901 */
902static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
903{
904 PVM pVM = (PVM)pvUser1; /* can be NULL! */
905 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
906 AssertReturnVoid(g_HmR0.fGlobalInit);
907 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
908 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
909}
910
911
912/**
913 * RTOnce callback employed by HMR0EnableAllCpus.
914 *
915 * @returns VBox status code.
916 * @param pvUser Pointer to the VM.
917 */
918static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
919{
920 PVM pVM = (PVM)pvUser;
921
922 /*
923 * Indicate that we've initialized.
924 *
925 * Note! There is a potential race between this function and the suspend
926 * notification. Kind of unlikely though, so ignored for now.
927 */
928 AssertReturn(!g_HmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
929 ASMAtomicWriteBool(&g_HmR0.fEnabled, true);
930
931 /*
932 * The global init variable is set by the first VM.
933 */
934 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
935
936#ifdef VBOX_STRICT
937 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
938 {
939 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
940 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
941 Assert(g_HmR0.aCpuInfo[i].pvMemObj == NULL);
942 Assert(!g_HmR0.aCpuInfo[i].fConfigured);
943 Assert(!g_HmR0.aCpuInfo[i].cTlbFlushes);
944 Assert(!g_HmR0.aCpuInfo[i].uCurrentAsid);
945# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
946 Assert(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
947 Assert(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm == NIL_RTHCPHYS);
948 Assert(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm == NULL);
949# endif
950 }
951#endif
952
953 int rc;
954 if ( g_HmR0.vmx.fSupported
955 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
956 {
957 /*
958 * Global VT-x initialization API (only darwin for now).
959 */
960 rc = SUPR0EnableVTx(true /* fEnable */);
961 if (RT_SUCCESS(rc))
962 {
963 g_HmR0.vmx.fCalledSUPR0EnableVTx = true;
964 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
965 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
966 }
967 else
968 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
969 }
970 else
971 {
972 /*
973 * We're doing the job ourselves.
974 */
975 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
976 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
977 {
978 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
979#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
980 Assert(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
981#endif
982 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
983 {
984 /** @todo NUMA */
985 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
986 AssertLogRelRCReturn(rc, rc);
987
988 g_HmR0.aCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].hMemObj, 0);
989 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
990 Assert(!(g_HmR0.aCpuInfo[i].HCPhysMemObj & PAGE_OFFSET_MASK));
991
992 g_HmR0.aCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].hMemObj);
993 AssertPtr(g_HmR0.aCpuInfo[i].pvMemObj);
994 ASMMemZeroPage(g_HmR0.aCpuInfo[i].pvMemObj);
995
996#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
997 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
998 false /* executable R0 mapping */);
999 AssertLogRelRCReturn(rc, rc);
1000
1001 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, 0);
1002 Assert(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm != NIL_RTHCPHYS);
1003 Assert(!(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm & PAGE_OFFSET_MASK));
1004
1005 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm);
1006 AssertPtr(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm);
1007 ASMMemFill32(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
1008#endif
1009 }
1010 }
1011
1012 rc = VINF_SUCCESS;
1013 }
1014
1015 if ( RT_SUCCESS(rc)
1016 && g_HmR0.fGlobalInit)
1017 {
1018 /* First time, so initialize each cpu/core. */
1019 HMR0FIRSTRC FirstRc;
1020 hmR0FirstRcInit(&FirstRc);
1021 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
1022 if (RT_SUCCESS(rc))
1023 rc = hmR0FirstRcGetStatus(&FirstRc);
1024 }
1025
1026 return rc;
1027}
1028
1029
1030/**
1031 * Sets up HM on all cpus.
1032 *
1033 * @returns VBox status code.
1034 * @param pVM The cross context VM structure.
1035 */
1036VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
1037{
1038 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1039 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1040 return VERR_HM_SUSPEND_PENDING;
1041
1042 return RTOnce(&g_HmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1043}
1044
1045
1046/**
1047 * Disable VT-x or AMD-V on the current CPU.
1048 *
1049 * @returns VBox status code.
1050 * @param idCpu The identifier for the CPU this function is called on.
1051 *
1052 * @remarks Must be called with preemption disabled.
1053 */
1054static int hmR0DisableCpu(RTCPUID idCpu)
1055{
1056 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1057
1058 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1059 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1060 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
1061 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1062 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1063 AssertRelease(idCpu == RTMpCpuId());
1064
1065 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1066 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1067 AssertPtr(pCpu->pvMemObj);
1068 Assert(pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1069
1070 int rc;
1071 if (pCpu->fConfigured)
1072 {
1073 rc = g_HmR0.pfnDisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1074 AssertRCReturn(rc, rc);
1075
1076 pCpu->fConfigured = false;
1077 pCpu->idCpu = NIL_RTCPUID;
1078 }
1079 else
1080 rc = VINF_SUCCESS; /* nothing to do */
1081 return rc;
1082}
1083
1084
1085/**
1086 * Worker function passed to RTMpOnAll() that is to be called on the target
1087 * CPUs.
1088 *
1089 * @param idCpu The identifier for the CPU the function is called on.
1090 * @param pvUser1 The 1st user argument.
1091 * @param pvUser2 Opaque pointer to the FirstRc.
1092 */
1093static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1094{
1095 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1096 AssertReturnVoid(g_HmR0.fGlobalInit);
1097 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1098}
1099
1100
1101/**
1102 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1103 * CPU.
1104 *
1105 * @param idCpu The identifier for the CPU the function is called on.
1106 * @param pvUser1 Null, not used.
1107 * @param pvUser2 Null, not used.
1108 */
1109static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1110{
1111 NOREF(pvUser1);
1112 NOREF(pvUser2);
1113 hmR0DisableCpu(idCpu);
1114}
1115
1116
1117/**
1118 * Callback function invoked when a cpu goes online or offline.
1119 *
1120 * @param enmEvent The Mp event.
1121 * @param idCpu The identifier for the CPU the function is called on.
1122 * @param pvData Opaque data (PVM pointer).
1123 */
1124static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1125{
1126 NOREF(pvData);
1127 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1128
1129 /*
1130 * We only care about uninitializing a CPU that is going offline. When a
1131 * CPU comes online, the initialization is done lazily in HMR0Enter().
1132 */
1133 switch (enmEvent)
1134 {
1135 case RTMPEVENT_OFFLINE:
1136 {
1137 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1138 RTThreadPreemptDisable(&PreemptState);
1139 if (idCpu == RTMpCpuId())
1140 {
1141 int rc = hmR0DisableCpu(idCpu);
1142 AssertRC(rc);
1143 RTThreadPreemptRestore(&PreemptState);
1144 }
1145 else
1146 {
1147 RTThreadPreemptRestore(&PreemptState);
1148 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1149 }
1150 break;
1151 }
1152
1153 default:
1154 break;
1155 }
1156}
1157
1158
1159/**
1160 * Called whenever a system power state change occurs.
1161 *
1162 * @param enmEvent The Power event.
1163 * @param pvUser User argument.
1164 */
1165static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1166{
1167 NOREF(pvUser);
1168 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1169
1170#ifdef LOG_ENABLED
1171 if (enmEvent == RTPOWEREVENT_SUSPEND)
1172 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1173 else
1174 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1175#endif
1176
1177 if (enmEvent == RTPOWEREVENT_SUSPEND)
1178 ASMAtomicWriteBool(&g_HmR0.fSuspended, true);
1179
1180 if (g_HmR0.fEnabled)
1181 {
1182 int rc;
1183 HMR0FIRSTRC FirstRc;
1184 hmR0FirstRcInit(&FirstRc);
1185
1186 if (enmEvent == RTPOWEREVENT_SUSPEND)
1187 {
1188 if (g_HmR0.fGlobalInit)
1189 {
1190 /* Turn off VT-x or AMD-V on all CPUs. */
1191 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1192 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1193 }
1194 /* else nothing to do here for the local init case */
1195 }
1196 else
1197 {
1198 /* Reinit the CPUs from scratch as the suspend state might have
1199 messed with the MSRs. (lousy BIOSes as usual) */
1200 if (g_HmR0.vmx.fSupported)
1201 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1202 else
1203 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1204 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1205 if (RT_SUCCESS(rc))
1206 rc = hmR0FirstRcGetStatus(&FirstRc);
1207#ifdef LOG_ENABLED
1208 if (RT_FAILURE(rc))
1209 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1210#endif
1211 if (g_HmR0.fGlobalInit)
1212 {
1213 /* Turn VT-x or AMD-V back on on all CPUs. */
1214 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1215 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1216 }
1217 /* else nothing to do here for the local init case */
1218 }
1219 }
1220
1221 if (enmEvent == RTPOWEREVENT_RESUME)
1222 ASMAtomicWriteBool(&g_HmR0.fSuspended, false);
1223}
1224
1225
1226/**
1227 * Does ring-0 per-VM HM initialization.
1228 *
1229 * This will copy HM global into the VM structure and call the CPU specific
1230 * init routine which will allocate resources for each virtual CPU and such.
1231 *
1232 * @returns VBox status code.
1233 * @param pVM The cross context VM structure.
1234 *
1235 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1236 * vmR3InitRing3().
1237 */
1238VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1239{
1240 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1241
1242#ifdef LOG_ENABLED
1243 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1244#endif
1245
1246 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1247 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1248 return VERR_HM_SUSPEND_PENDING;
1249
1250 /*
1251 * Copy globals to the VM structure.
1252 */
1253 pVM->hm.s.vmx.fSupported = g_HmR0.vmx.fSupported;
1254 pVM->hm.s.svm.fSupported = g_HmR0.svm.fSupported;
1255
1256 pVM->hm.s.vmx.fUsePreemptTimer &= g_HmR0.vmx.fUsePreemptTimer; /* Can be overridden by CFGM. See HMR3Init(). */
1257 pVM->hm.s.vmx.cPreemptTimerShift = g_HmR0.vmx.cPreemptTimerShift;
1258 pVM->hm.s.vmx.u64HostCr4 = g_HmR0.vmx.u64HostCr4;
1259 pVM->hm.s.vmx.u64HostEfer = g_HmR0.vmx.u64HostEfer;
1260 pVM->hm.s.vmx.u64HostSmmMonitorCtl = g_HmR0.vmx.u64HostSmmMonitorCtl;
1261 pVM->hm.s.vmx.Msrs = g_HmR0.vmx.Msrs;
1262 pVM->hm.s.svm.u64MsrHwcr = g_HmR0.svm.u64MsrHwcr;
1263 pVM->hm.s.svm.u32Rev = g_HmR0.svm.u32Rev;
1264 pVM->hm.s.svm.u32Features = g_HmR0.svm.u32Features;
1265 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureECX;
1266 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HmR0.cpuid.u32AMDFeatureEDX;
1267 pVM->hm.s.lLastError = g_HmR0.lLastError;
1268 pVM->hm.s.uMaxAsid = g_HmR0.uMaxAsid;
1269
1270 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1271 {
1272 pVM->hm.s.cMaxResumeLoops = 1024;
1273 if (RTThreadPreemptIsPendingTrusty())
1274 pVM->hm.s.cMaxResumeLoops = 8192;
1275 }
1276
1277 /*
1278 * Initialize some per-VCPU fields.
1279 */
1280 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1281 {
1282 PVMCPU pVCpu = &pVM->aCpus[i];
1283 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1284 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1285 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu);
1286
1287 /* We'll aways increment this the first time (host uses ASID 0). */
1288 AssertReturn(!pVCpu->hm.s.uCurrentAsid, VERR_HM_IPE_3);
1289 }
1290
1291 pVM->hm.s.fHostKernelFeatures = SUPR0GetKernelFeatures();
1292
1293 /*
1294 * Call the hardware specific initialization method.
1295 */
1296 return g_HmR0.pfnInitVM(pVM);
1297}
1298
1299
1300/**
1301 * Does ring-0 per VM HM termination.
1302 *
1303 * @returns VBox status code.
1304 * @param pVM The cross context VM structure.
1305 */
1306VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1307{
1308 Log(("HMR0TermVM: %p\n", pVM));
1309 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1310
1311 /*
1312 * Call the hardware specific method.
1313 *
1314 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1315 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1316 */
1317 return g_HmR0.pfnTermVM(pVM);
1318}
1319
1320
1321/**
1322 * Sets up a VT-x or AMD-V session.
1323 *
1324 * This is mostly about setting up the hardware VM state.
1325 *
1326 * @returns VBox status code.
1327 * @param pVM The cross context VM structure.
1328 */
1329VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1330{
1331 Log(("HMR0SetupVM: %p\n", pVM));
1332 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1333
1334 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1335 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1336
1337 /* On first entry we'll sync everything. */
1338 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1339 {
1340 PVMCPU pVCpu = &pVM->aCpus[i];
1341 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
1342 }
1343
1344 /*
1345 * Call the hardware specific setup VM method. This requires the CPU to be
1346 * enabled for AMD-V/VT-x and preemption to be prevented.
1347 */
1348 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1349 RTThreadPreemptDisable(&PreemptState);
1350 RTCPUID idCpu = RTMpCpuId();
1351
1352 /* Enable VT-x or AMD-V if local init is required. */
1353 int rc;
1354 if (!g_HmR0.fGlobalInit)
1355 {
1356 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1357 rc = hmR0EnableCpu(pVM, idCpu);
1358 if (RT_FAILURE(rc))
1359 {
1360 RTThreadPreemptRestore(&PreemptState);
1361 return rc;
1362 }
1363 }
1364
1365 /* Setup VT-x or AMD-V. */
1366 rc = g_HmR0.pfnSetupVM(pVM);
1367
1368 /* Disable VT-x or AMD-V if local init was done before. */
1369 if (!g_HmR0.fGlobalInit)
1370 {
1371 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1372 int rc2 = hmR0DisableCpu(idCpu);
1373 AssertRC(rc2);
1374 }
1375
1376 RTThreadPreemptRestore(&PreemptState);
1377 return rc;
1378}
1379
1380
1381/**
1382 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1383 * required for entering HM context.
1384 *
1385 * @returns VBox status code.
1386 * @param pVCpu The cross context virtual CPU structure.
1387 *
1388 * @remarks No-long-jump zone!!!
1389 */
1390VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1391{
1392 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1393
1394 int rc = VINF_SUCCESS;
1395 RTCPUID idCpu = RTMpCpuId();
1396 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1397 AssertPtr(pCpu);
1398
1399 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1400 if (!pCpu->fConfigured)
1401 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1402
1403 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1404 if (g_HmR0.vmx.fSupported)
1405 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
1406 else
1407 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE;
1408
1409 Assert(pCpu->idCpu == idCpu && pCpu->idCpu != NIL_RTCPUID);
1410 pVCpu->hm.s.idEnteredCpu = idCpu;
1411 return rc;
1412}
1413
1414
1415/**
1416 * Enters the VT-x or AMD-V session.
1417 *
1418 * @returns VBox status code.
1419 * @param pVM The cross context VM structure.
1420 * @param pVCpu The cross context virtual CPU structure.
1421 *
1422 * @remarks This is called with preemption disabled.
1423 */
1424VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1425{
1426 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1427 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1428 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1429
1430 /* Load the bare minimum state required for entering HM. */
1431 int rc = HMR0EnterCpu(pVCpu);
1432 AssertRCReturn(rc, rc);
1433
1434#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1435 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_5);
1436 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1437#endif
1438
1439 RTCPUID idCpu = RTMpCpuId();
1440 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1441 Assert(pCpu);
1442 if (g_HmR0.vmx.fSupported)
1443 {
1444 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
1445 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
1446 }
1447 else
1448 {
1449 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
1450 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
1451 }
1452
1453 rc = g_HmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1454 AssertMsgRCReturn(rc, ("rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1455
1456 /* Exports the host-state as we may be resuming code after a longjmp and quite
1457 possibly now be scheduled on a different CPU. */
1458 rc = g_HmR0.pfnExportHostState(pVCpu);
1459 AssertMsgRCReturn(rc, ("rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1460
1461#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1462 if (fStartedSet)
1463 PGMRZDynMapReleaseAutoSet(pVCpu);
1464#endif
1465
1466 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1467 if (RT_FAILURE(rc))
1468 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1469 return rc;
1470}
1471
1472
1473/**
1474 * Deinitializes the bare minimum state used for HM context and if necessary
1475 * disable HM on the CPU.
1476 *
1477 * @returns VBox status code.
1478 * @param pVCpu The cross context virtual CPU structure.
1479 *
1480 * @remarks No-long-jump zone!!!
1481 */
1482VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1483{
1484 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1485 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1486
1487 RTCPUID idCpu = RTMpCpuId();
1488 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1489
1490 if ( !g_HmR0.fGlobalInit
1491 && pCpu->fConfigured)
1492 {
1493 int rc = hmR0DisableCpu(idCpu);
1494 AssertRCReturn(rc, rc);
1495 Assert(!pCpu->fConfigured);
1496 Assert(pCpu->idCpu == NIL_RTCPUID);
1497
1498 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1499 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1500 }
1501
1502 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1503 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1504
1505 return VINF_SUCCESS;
1506}
1507
1508
1509/**
1510 * Thread-context hook for HM.
1511 *
1512 * @param enmEvent The thread-context event.
1513 * @param pvUser Opaque pointer to the VMCPU.
1514 */
1515VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1516{
1517 PVMCPU pVCpu = (PVMCPU)pvUser;
1518 Assert(pVCpu);
1519 Assert(g_HmR0.pfnThreadCtxCallback);
1520
1521 g_HmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HmR0.fGlobalInit);
1522}
1523
1524
1525/**
1526 * Runs guest code in a hardware accelerated VM.
1527 *
1528 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1529 * called from setjmp assembly.)
1530 * @param pVM The cross context VM structure.
1531 * @param pVCpu The cross context virtual CPU structure.
1532 *
1533 * @remarks Can be called with preemption enabled if thread-context hooks are
1534 * used!!!
1535 */
1536VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1537{
1538#ifdef VBOX_STRICT
1539 /* With thread-context hooks we would be running this code with preemption enabled. */
1540 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1541 {
1542 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[RTMpCpuId()];
1543 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1544 Assert(pCpu->fConfigured);
1545 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1546 }
1547#endif
1548
1549#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1550 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_4);
1551 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1552 PGMRZDynMapStartAutoSet(pVCpu);
1553#endif
1554
1555 VBOXSTRICTRC rcStrict = g_HmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1556
1557#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1558 PGMRZDynMapReleaseAutoSet(pVCpu);
1559#endif
1560 return VBOXSTRICTRC_VAL(rcStrict);
1561}
1562
1563
1564/**
1565 * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from
1566 * the host CPU and that guest access to it must be intercepted.
1567 *
1568 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1569 */
1570VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPU pVCpu)
1571{
1572 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
1573}
1574
1575
1576/**
1577 * Notification from CPUM that it has modified the host CR0 (because of FPU).
1578 *
1579 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1580 */
1581VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPU pVCpu)
1582{
1583 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT);
1584}
1585
1586
1587#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1588
1589/**
1590 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1591 *
1592 * @returns VBox status code.
1593 * @param pVM The cross context VM structure.
1594 * @param pVCpu The cross context virtual CPU structure.
1595 * @param pCtx Pointer to the guest CPU context.
1596 */
1597VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1598{
1599 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1600 if (pVM->hm.s.vmx.fSupported)
1601 return VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1602 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1603}
1604
1605
1606/**
1607 * Save guest debug state (64 bits guest mode & 32 bits host only)
1608 *
1609 * @returns VBox status code.
1610 * @param pVM The cross context VM structure.
1611 * @param pVCpu The cross context virtual CPU structure.
1612 * @param pCtx Pointer to the guest CPU context.
1613 */
1614VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1615{
1616 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1617 if (pVM->hm.s.vmx.fSupported)
1618 return VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1619 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1620}
1621
1622
1623/**
1624 * Test the 32->64 bits switcher.
1625 *
1626 * @returns VBox status code.
1627 * @param pVM The cross context VM structure.
1628 */
1629VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1630{
1631 PVMCPU pVCpu = &pVM->aCpus[0];
1632 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1633 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1634 int rc;
1635
1636 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1637 if (pVM->hm.s.vmx.fSupported)
1638 rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1639 else
1640 rc = SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1641 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1642
1643 return rc;
1644}
1645
1646#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
1647
1648/**
1649 * Returns suspend status of the host.
1650 *
1651 * @returns Suspend pending or not.
1652 */
1653VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1654{
1655 return ASMAtomicReadBool(&g_HmR0.fSuspended);
1656}
1657
1658
1659/**
1660 * Invalidates a guest page from the host TLB.
1661 *
1662 * @param pVCpu The cross context virtual CPU structure.
1663 * @param GCVirt Page to invalidate.
1664 */
1665VMMR0_INT_DECL(int) HMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1666{
1667 PVM pVM = pVCpu->CTX_SUFF(pVM);
1668 if (pVM->hm.s.vmx.fSupported)
1669 return VMXR0InvalidatePage(pVM, pVCpu, GCVirt);
1670 return SVMR0InvalidatePage(pVM, pVCpu, GCVirt);
1671}
1672
1673
1674/**
1675 * Returns the cpu structure for the current cpu.
1676 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1677 *
1678 * @returns The cpu structure pointer.
1679 */
1680VMMR0_INT_DECL(PHMGLOBALCPUINFO) hmR0GetCurrentCpu(void)
1681{
1682 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1683 RTCPUID idCpu = RTMpCpuId();
1684 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1685 return &g_HmR0.aCpuInfo[idCpu];
1686}
1687
1688
1689/**
1690 * Save a pending IO read.
1691 *
1692 * @param pVCpu The cross context virtual CPU structure.
1693 * @param GCPtrRip Address of IO instruction.
1694 * @param GCPtrRipNext Address of the next instruction.
1695 * @param uPort Port address.
1696 * @param uAndVal AND mask for saving the result in eax.
1697 * @param cbSize Read size.
1698 */
1699VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1700 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1701{
1702 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1703 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1704 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1705 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1706 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1707 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1708 return;
1709}
1710
1711
1712/**
1713 * Interface for importing state on demand (used by IEM).
1714 *
1715 * @returns VBox status code.
1716 * @param pVCpu The cross context CPU structure.
1717 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1718 */
1719VMMR0_INT_DECL(int) HMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
1720{
1721 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
1722 return VMXR0ImportStateOnDemand(pVCpu, fWhat);
1723 return SVMR0ImportStateOnDemand(pVCpu, fWhat);
1724}
1725
1726
1727#ifdef VBOX_WITH_RAW_MODE
1728
1729/**
1730 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1731 * switcher turns off paging.
1732 *
1733 * @returns VBox status code.
1734 * @param pVM The cross context VM structure.
1735 * @param enmSwitcher The switcher we're about to use.
1736 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1737 */
1738VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1739{
1740 NOREF(pVM);
1741
1742 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1743
1744 *pfVTxDisabled = false;
1745
1746 /* No such issues with AMD-V */
1747 if (!g_HmR0.vmx.fSupported)
1748 return VINF_SUCCESS;
1749
1750 /* Check if the switching we're up to is safe. */
1751 switch (enmSwitcher)
1752 {
1753 case VMMSWITCHER_32_TO_32:
1754 case VMMSWITCHER_PAE_TO_PAE:
1755 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1756
1757 case VMMSWITCHER_32_TO_PAE:
1758 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1759 case VMMSWITCHER_AMD64_TO_32:
1760 case VMMSWITCHER_AMD64_TO_PAE:
1761 break; /* unsafe switchers */
1762
1763 default:
1764 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1765 }
1766
1767 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1768 regardless of whether we're currently using VT-x or not. */
1769 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1770 {
1771 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1772 return VINF_SUCCESS;
1773 }
1774
1775 /** @todo Check if this code is presumptive wrt other VT-x users on the
1776 * system... */
1777
1778 /* Nothing to do if we haven't enabled VT-x. */
1779 if (!g_HmR0.fEnabled)
1780 return VINF_SUCCESS;
1781
1782 /* Local init implies the CPU is currently not in VMX root mode. */
1783 if (!g_HmR0.fGlobalInit)
1784 return VINF_SUCCESS;
1785
1786 /* Ok, disable VT-x. */
1787 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1788 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS, VERR_HM_IPE_2);
1789
1790 *pfVTxDisabled = true;
1791 return VMXR0DisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1792}
1793
1794
1795/**
1796 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1797 * switcher turned off paging.
1798 *
1799 * @param pVM The cross context VM structure.
1800 * @param fVTxDisabled Whether VT-x was disabled or not.
1801 */
1802VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1803{
1804 Assert(!ASMIntAreEnabled());
1805
1806 if (!fVTxDisabled)
1807 return; /* nothing to do */
1808
1809 Assert(g_HmR0.vmx.fSupported);
1810 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1811 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1812 else
1813 {
1814 Assert(g_HmR0.fEnabled);
1815 Assert(g_HmR0.fGlobalInit);
1816
1817 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1818 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1819
1820 VMXR0EnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
1821 }
1822}
1823
1824#endif /* VBOX_WITH_RAW_MODE */
1825#ifdef VBOX_STRICT
1826
1827/**
1828 * Dumps a descriptor.
1829 *
1830 * @param pDesc Descriptor to dump.
1831 * @param Sel Selector number.
1832 * @param pszMsg Message to prepend the log entry with.
1833 */
1834VMMR0_INT_DECL(void) hmR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1835{
1836 /*
1837 * Make variable description string.
1838 */
1839 static struct
1840 {
1841 unsigned cch;
1842 const char *psz;
1843 } const s_aTypes[32] =
1844 {
1845# define STRENTRY(str) { sizeof(str) - 1, str }
1846
1847 /* system */
1848# if HC_ARCH_BITS == 64
1849 STRENTRY("Reserved0 "), /* 0x00 */
1850 STRENTRY("Reserved1 "), /* 0x01 */
1851 STRENTRY("LDT "), /* 0x02 */
1852 STRENTRY("Reserved3 "), /* 0x03 */
1853 STRENTRY("Reserved4 "), /* 0x04 */
1854 STRENTRY("Reserved5 "), /* 0x05 */
1855 STRENTRY("Reserved6 "), /* 0x06 */
1856 STRENTRY("Reserved7 "), /* 0x07 */
1857 STRENTRY("Reserved8 "), /* 0x08 */
1858 STRENTRY("TSS64Avail "), /* 0x09 */
1859 STRENTRY("ReservedA "), /* 0x0a */
1860 STRENTRY("TSS64Busy "), /* 0x0b */
1861 STRENTRY("Call64 "), /* 0x0c */
1862 STRENTRY("ReservedD "), /* 0x0d */
1863 STRENTRY("Int64 "), /* 0x0e */
1864 STRENTRY("Trap64 "), /* 0x0f */
1865# else
1866 STRENTRY("Reserved0 "), /* 0x00 */
1867 STRENTRY("TSS16Avail "), /* 0x01 */
1868 STRENTRY("LDT "), /* 0x02 */
1869 STRENTRY("TSS16Busy "), /* 0x03 */
1870 STRENTRY("Call16 "), /* 0x04 */
1871 STRENTRY("Task "), /* 0x05 */
1872 STRENTRY("Int16 "), /* 0x06 */
1873 STRENTRY("Trap16 "), /* 0x07 */
1874 STRENTRY("Reserved8 "), /* 0x08 */
1875 STRENTRY("TSS32Avail "), /* 0x09 */
1876 STRENTRY("ReservedA "), /* 0x0a */
1877 STRENTRY("TSS32Busy "), /* 0x0b */
1878 STRENTRY("Call32 "), /* 0x0c */
1879 STRENTRY("ReservedD "), /* 0x0d */
1880 STRENTRY("Int32 "), /* 0x0e */
1881 STRENTRY("Trap32 "), /* 0x0f */
1882# endif
1883 /* non system */
1884 STRENTRY("DataRO "), /* 0x10 */
1885 STRENTRY("DataRO Accessed "), /* 0x11 */
1886 STRENTRY("DataRW "), /* 0x12 */
1887 STRENTRY("DataRW Accessed "), /* 0x13 */
1888 STRENTRY("DataDownRO "), /* 0x14 */
1889 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1890 STRENTRY("DataDownRW "), /* 0x16 */
1891 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1892 STRENTRY("CodeEO "), /* 0x18 */
1893 STRENTRY("CodeEO Accessed "), /* 0x19 */
1894 STRENTRY("CodeER "), /* 0x1a */
1895 STRENTRY("CodeER Accessed "), /* 0x1b */
1896 STRENTRY("CodeConfEO "), /* 0x1c */
1897 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1898 STRENTRY("CodeConfER "), /* 0x1e */
1899 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1900# undef SYSENTRY
1901 };
1902# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1903 char szMsg[128];
1904 char *psz = &szMsg[0];
1905 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1906 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1907 psz += s_aTypes[i].cch;
1908
1909 if (pDesc->Gen.u1Present)
1910 ADD_STR(psz, "Present ");
1911 else
1912 ADD_STR(psz, "Not-Present ");
1913# if HC_ARCH_BITS == 64
1914 if (pDesc->Gen.u1Long)
1915 ADD_STR(psz, "64-bit ");
1916 else
1917 ADD_STR(psz, "Comp ");
1918# else
1919 if (pDesc->Gen.u1Granularity)
1920 ADD_STR(psz, "Page ");
1921 if (pDesc->Gen.u1DefBig)
1922 ADD_STR(psz, "32-bit ");
1923 else
1924 ADD_STR(psz, "16-bit ");
1925# endif
1926# undef ADD_STR
1927 *psz = '\0';
1928
1929 /*
1930 * Limit and Base and format the output.
1931 */
1932#ifdef LOG_ENABLED
1933 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1934
1935# if HC_ARCH_BITS == 64
1936 uint64_t u32Base = X86DESC64_BASE(pDesc);
1937 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1938 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1939# else
1940 uint32_t u32Base = X86DESC_BASE(pDesc);
1941 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1942 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1943# endif
1944#else
1945 NOREF(Sel); NOREF(pszMsg);
1946#endif
1947}
1948
1949
1950/**
1951 * Formats a full register dump.
1952 *
1953 * @param pVM The cross context VM structure.
1954 * @param pVCpu The cross context virtual CPU structure.
1955 * @param pCtx Pointer to the CPU context.
1956 */
1957VMMR0_INT_DECL(void) hmR0DumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1958{
1959 NOREF(pVM);
1960
1961 /*
1962 * Format the flags.
1963 */
1964 static struct
1965 {
1966 const char *pszSet; const char *pszClear; uint32_t fFlag;
1967 } const s_aFlags[] =
1968 {
1969 { "vip", NULL, X86_EFL_VIP },
1970 { "vif", NULL, X86_EFL_VIF },
1971 { "ac", NULL, X86_EFL_AC },
1972 { "vm", NULL, X86_EFL_VM },
1973 { "rf", NULL, X86_EFL_RF },
1974 { "nt", NULL, X86_EFL_NT },
1975 { "ov", "nv", X86_EFL_OF },
1976 { "dn", "up", X86_EFL_DF },
1977 { "ei", "di", X86_EFL_IF },
1978 { "tf", NULL, X86_EFL_TF },
1979 { "nt", "pl", X86_EFL_SF },
1980 { "nz", "zr", X86_EFL_ZF },
1981 { "ac", "na", X86_EFL_AF },
1982 { "po", "pe", X86_EFL_PF },
1983 { "cy", "nc", X86_EFL_CF },
1984 };
1985 char szEFlags[80];
1986 char *psz = szEFlags;
1987 uint32_t uEFlags = pCtx->eflags.u32;
1988 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1989 {
1990 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1991 if (pszAdd)
1992 {
1993 strcpy(psz, pszAdd);
1994 psz += strlen(pszAdd);
1995 *psz++ = ' ';
1996 }
1997 }
1998 psz[-1] = '\0';
1999
2000 /*
2001 * Format the registers.
2002 */
2003 if (CPUMIsGuestIn64BitCode(pVCpu))
2004 {
2005 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
2006 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
2007 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2008 "r14=%016RX64 r15=%016RX64\n"
2009 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
2010 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2011 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2012 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2013 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2014 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2015 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2016 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
2017 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
2018 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
2019 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
2020 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2021 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2022 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2023 ,
2024 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
2025 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
2026 pCtx->r14, pCtx->r15,
2027 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
2028 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2029 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2030 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2031 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2032 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2033 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2034 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
2035 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
2036 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
2037 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
2038 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2039 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2040 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2041 }
2042 else
2043 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
2044 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
2045 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
2046 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
2047 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
2048 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
2049 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
2050 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
2051 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
2052 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2053 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2054 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2055 ,
2056 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
2057 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
2058 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
2059 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
2060 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
2061 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
2062 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
2063 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
2064 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
2065 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2066 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2067 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
2068
2069 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2070 Log(("FPU:\n"
2071 "FCW=%04x FSW=%04x FTW=%02x\n"
2072 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2073 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2074 ,
2075 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
2076 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
2077 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
2078 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
2079
2080 Log(("MSR:\n"
2081 "EFER =%016RX64\n"
2082 "PAT =%016RX64\n"
2083 "STAR =%016RX64\n"
2084 "CSTAR =%016RX64\n"
2085 "LSTAR =%016RX64\n"
2086 "SFMASK =%016RX64\n"
2087 "KERNELGSBASE =%016RX64\n",
2088 pCtx->msrEFER,
2089 pCtx->msrPAT,
2090 pCtx->msrSTAR,
2091 pCtx->msrCSTAR,
2092 pCtx->msrLSTAR,
2093 pCtx->msrSFMASK,
2094 pCtx->msrKERNELGSBASE));
2095
2096 NOREF(pFpuCtx);
2097}
2098
2099#endif /* VBOX_STRICT */
2100
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette