VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 78640

Last change on this file since 78640 was 78220, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Hardware-assisted nested VT-x infrastructure changes and VM-entry implementation.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 71.2 KB
Line 
1/* $Id: HMR0.cpp 78220 2019-04-20 04:08:44Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <VBox/vmm/hm.h>
25#include <VBox/vmm/pgm.h>
26#include "HMInternal.h"
27#include <VBox/vmm/vm.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/hmvmxinline.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
55static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
56static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62/**
63 * This is used to manage the status code of a RTMpOnAll in HM.
64 */
65typedef struct HMR0FIRSTRC
66{
67 /** The status code. */
68 int32_t volatile rc;
69 /** The ID of the CPU reporting the first failure. */
70 RTCPUID volatile idCpu;
71} HMR0FIRSTRC;
72/** Pointer to a first return code structure. */
73typedef HMR0FIRSTRC *PHMR0FIRSTRC;
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/**
80 * Global data.
81 */
82static struct
83{
84 /** Per CPU globals. */
85 HMPHYSCPU aCpuInfo[RTCPUSET_MAX_CPUS];
86
87 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
88 * @{ */
89 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVMCPU pVCpu));
90 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
91 DECLR0CALLBACKMEMBER(int, pfnExportHostState, (PVMCPU pVCpu));
92 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVMCPU pVCpu));
93 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
94 bool fEnabledByHost, PCSUPHWVIRTMSRS pHwvirtMsrs));
95 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
96 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVM pVM));
98 DECLR0CALLBACKMEMBER(int, pfnSetupVM, (PVM pVM));
99 /** @} */
100
101 /** Hardware-virtualization data. */
102 struct
103 {
104 union
105 {
106 /** VT-x data. */
107 struct
108 {
109 /** Host CR4 value (set by ring-0 VMX init) */
110 uint64_t u64HostCr4;
111 /** Host EFER value (set by ring-0 VMX init) */
112 uint64_t u64HostMsrEfer;
113 /** Host SMM monitor control (used for logging/diagnostics) */
114 uint64_t u64HostSmmMonitorCtl;
115 /** Last instruction error. */
116 uint32_t ulLastInstrError;
117 /** The shift mask employed by the VMX-Preemption timer. */
118 uint8_t cPreemptTimerShift;
119 /** Padding. */
120 uint8_t abPadding[3];
121 /** Whether we're using the preemption timer or not. */
122 bool fUsePreemptTimer;
123 /** Whether we're using SUPR0EnableVTx or not. */
124 bool fUsingSUPR0EnableVTx;
125 /** Set if we've called SUPR0EnableVTx(true) and should disable it during
126 * module termination. */
127 bool fCalledSUPR0EnableVTx;
128 /** Set to by us to indicate VMX is supported by the CPU. */
129 bool fSupported;
130 } vmx;
131
132 /** AMD-V data. */
133 struct
134 {
135 /** SVM revision. */
136 uint32_t u32Rev;
137 /** SVM feature bits from cpuid 0x8000000a */
138 uint32_t u32Features;
139 /** Padding. */
140 bool afPadding[3];
141 /** Set by us to indicate SVM is supported by the CPU. */
142 bool fSupported;
143 } svm;
144 } u;
145 /** Maximum allowed ASID/VPID (inclusive). */
146 uint32_t uMaxAsid;
147 /** MSRs. */
148 SUPHWVIRTMSRS Msrs;
149 } hwvirt;
150
151 /** Last recorded error code during HM ring-0 init. */
152 int32_t rcInit;
153
154 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
155 * enabled and disabled each time it's used to execute guest code. */
156 bool fGlobalInit;
157 /** Indicates whether the host is suspending or not. We'll refuse a few
158 * actions when the host is being suspended to speed up the suspending and
159 * avoid trouble. */
160 bool volatile fSuspended;
161
162 /** Whether we've already initialized all CPUs.
163 * @remarks We could check the EnableAllCpusOnce state, but this is
164 * simpler and hopefully easier to understand. */
165 bool fEnabled;
166 /** Serialize initialization in HMR0EnableAllCpus. */
167 RTONCE EnableAllCpusOnce;
168} g_HmR0;
169
170
171/**
172 * Initializes a first return code structure.
173 *
174 * @param pFirstRc The structure to init.
175 */
176static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
177{
178 pFirstRc->rc = VINF_SUCCESS;
179 pFirstRc->idCpu = NIL_RTCPUID;
180}
181
182
183/**
184 * Try set the status code (success ignored).
185 *
186 * @param pFirstRc The first return code structure.
187 * @param rc The status code.
188 */
189static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
190{
191 if ( RT_FAILURE(rc)
192 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
193 pFirstRc->idCpu = RTMpCpuId();
194}
195
196
197/**
198 * Get the status code of a first return code structure.
199 *
200 * @returns The status code; VINF_SUCCESS or error status, no informational or
201 * warning errors.
202 * @param pFirstRc The first return code structure.
203 */
204static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
205{
206 return pFirstRc->rc;
207}
208
209
210#ifdef VBOX_STRICT
211# ifndef DEBUG_bird
212/**
213 * Get the CPU ID on which the failure status code was reported.
214 *
215 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
216 * @param pFirstRc The first return code structure.
217 */
218static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
219{
220 return pFirstRc->idCpu;
221}
222# endif
223#endif /* VBOX_STRICT */
224
225
226/** @name Dummy callback handlers.
227 * @{ */
228
229static DECLCALLBACK(int) hmR0DummyEnter(PVMCPU pVCpu)
230{
231 RT_NOREF1(pVCpu);
232 return VINF_SUCCESS;
233}
234
235static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
236{
237 RT_NOREF3(enmEvent, pVCpu, fGlobalInit);
238}
239
240static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
241 bool fEnabledBySystem, PCSUPHWVIRTMSRS pHwvirtMsrs)
242{
243 RT_NOREF6(pHostCpu, pVM, pvCpuPage, HCPhysCpuPage, fEnabledBySystem, pHwvirtMsrs);
244 return VINF_SUCCESS;
245}
246
247static DECLCALLBACK(int) hmR0DummyDisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
248{
249 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
250 return VINF_SUCCESS;
251}
252
253static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
254{
255 RT_NOREF1(pVM);
256 return VINF_SUCCESS;
257}
258
259static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
260{
261 RT_NOREF1(pVM);
262 return VINF_SUCCESS;
263}
264
265static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
266{
267 RT_NOREF1(pVM);
268 return VINF_SUCCESS;
269}
270
271static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVMCPU pVCpu)
272{
273 RT_NOREF(pVCpu);
274 return VINF_SUCCESS;
275}
276
277static DECLCALLBACK(int) hmR0DummyExportHostState(PVMCPU pVCpu)
278{
279 RT_NOREF1(pVCpu);
280 return VINF_SUCCESS;
281}
282
283/** @} */
284
285
286/**
287 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
288 * Down at the Rate Specified" erratum.
289 *
290 * Errata names and related steppings:
291 * - BA86 - D0.
292 * - AAX65 - C2.
293 * - AAU65 - C2, K0.
294 * - AAO95 - B1.
295 * - AAT59 - C2.
296 * - AAK139 - D0.
297 * - AAM126 - C0, C1, D0.
298 * - AAN92 - B1.
299 * - AAJ124 - C0, D0.
300 * - AAP86 - B1.
301 *
302 * Steppings: B1, C0, C1, C2, D0, K0.
303 *
304 * @returns true if subject to it, false if not.
305 */
306static bool hmR0InitIntelIsSubjectToVmxPreemptTimerErratum(void)
307{
308 uint32_t u = ASMCpuId_EAX(1);
309 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
310 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
311 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
312 /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
313 /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
314 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
315 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
316 /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
317 /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
318 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
319 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
320 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
321 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
322 /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
323 /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
324 )
325 return true;
326 return false;
327}
328
329
330/**
331 * Intel specific initialization code.
332 *
333 * @returns VBox status code (will only fail if out of memory).
334 */
335static int hmR0InitIntel(void)
336{
337 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
338 g_HmR0.hwvirt.Msrs.u.vmx.u64FeatCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
339
340 /*
341 * First try use native kernel API for controlling VT-x.
342 * (This is only supported by some Mac OS X kernels atm.)
343 */
344 int rc = g_HmR0.rcInit = SUPR0EnableVTx(true /* fEnable */);
345 g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
346 if (g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
347 {
348 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
349 if (RT_SUCCESS(rc))
350 {
351 g_HmR0.hwvirt.u.vmx.fSupported = true;
352 rc = SUPR0EnableVTx(false /* fEnable */);
353 AssertLogRelRC(rc);
354 }
355 }
356 else
357 {
358 HMR0FIRSTRC FirstRc;
359 hmR0FirstRcInit(&FirstRc);
360 g_HmR0.rcInit = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
361 if (RT_SUCCESS(g_HmR0.rcInit))
362 g_HmR0.rcInit = hmR0FirstRcGetStatus(&FirstRc);
363 }
364
365 if (RT_SUCCESS(g_HmR0.rcInit))
366 {
367 /* Read CR4 and EFER for logging/diagnostic purposes. */
368 g_HmR0.hwvirt.u.vmx.u64HostCr4 = ASMGetCR4();
369 g_HmR0.hwvirt.u.vmx.u64HostMsrEfer = ASMRdMsr(MSR_K6_EFER);
370
371 /* Get VMX MSRs for determining VMX features we can ultimately use. */
372 SUPR0GetHwvirtMsrs(&g_HmR0.hwvirt.Msrs, SUPVTCAPS_VT_X, false /* fForce */);
373
374 /*
375 * Nested KVM workaround: Intel SDM section 34.15.5 describes that
376 * MSR_IA32_SMM_MONITOR_CTL depends on bit 49 of MSR_IA32_VMX_BASIC while
377 * table 35-2 says that this MSR is available if either VMX or SMX is supported.
378 */
379 uint64_t const uVmxBasicMsr = g_HmR0.hwvirt.Msrs.u.vmx.u64Basic;
380 if (RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_DUAL_MON))
381 g_HmR0.hwvirt.u.vmx.u64HostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
382
383 /* Initialize VPID - 16 bits ASID. */
384 g_HmR0.hwvirt.uMaxAsid = 0x10000; /* exclusive */
385
386 /*
387 * If the host OS has not enabled VT-x for us, try enter VMX root mode
388 * to really verify if VT-x is usable.
389 */
390 if (!g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
391 {
392 /* Allocate a temporary VMXON region. */
393 RTR0MEMOBJ hScatchMemObj;
394 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
395 if (RT_FAILURE(rc))
396 {
397 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
398 return rc;
399 }
400 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
401 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
402 ASMMemZeroPage(pvScatchPage);
403
404 /* Set revision dword at the beginning of the VMXON structure. */
405 *(uint32_t *)pvScatchPage = RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_VMCS_ID);
406
407 /* Make sure we don't get rescheduled to another CPU during this probe. */
408 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
409
410 /* Check CR4.VMXE. */
411 g_HmR0.hwvirt.u.vmx.u64HostCr4 = ASMGetCR4();
412 if (!(g_HmR0.hwvirt.u.vmx.u64HostCr4 & X86_CR4_VMXE))
413 {
414 /* In theory this bit could be cleared behind our back. Which would cause #UD
415 faults when we try to execute the VMX instructions... */
416 ASMSetCR4(g_HmR0.hwvirt.u.vmx.u64HostCr4 | X86_CR4_VMXE);
417 }
418
419 /*
420 * The only way of checking if we're in VMX root mode or not is to try and enter it.
421 * There is no instruction or control bit that tells us if we're in VMX root mode.
422 * Therefore, try and enter VMX root mode here.
423 */
424 rc = VMXEnable(HCPhysScratchPage);
425 if (RT_SUCCESS(rc))
426 {
427 g_HmR0.hwvirt.u.vmx.fSupported = true;
428 VMXDisable();
429 }
430 else
431 {
432 /*
433 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
434 * it will crash the host when we enter raw mode, because:
435 *
436 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
437 * this bit), and
438 * (b) turning off paging causes a #GP (unavoidable when switching
439 * from long to 32 bits mode or 32 bits to PAE).
440 *
441 * They should fix their code, but until they do we simply refuse to run.
442 */
443 g_HmR0.rcInit = VERR_VMX_IN_VMX_ROOT_MODE;
444 Assert(g_HmR0.hwvirt.u.vmx.fSupported == false);
445 }
446
447 /*
448 * Restore CR4 again; don't leave the X86_CR4_VMXE flag set if it was not
449 * set before (some software could incorrectly think it is in VMX mode).
450 */
451 ASMSetCR4(g_HmR0.hwvirt.u.vmx.u64HostCr4);
452 ASMSetFlags(fEFlags);
453
454 RTR0MemObjFree(hScatchMemObj, false);
455 }
456
457 if (g_HmR0.hwvirt.u.vmx.fSupported)
458 {
459 rc = VMXR0GlobalInit();
460 if (RT_FAILURE(rc))
461 g_HmR0.rcInit = rc;
462
463 /*
464 * Install the VT-x methods.
465 */
466 g_HmR0.pfnEnterSession = VMXR0Enter;
467 g_HmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
468 g_HmR0.pfnExportHostState = VMXR0ExportHostState;
469 g_HmR0.pfnRunGuestCode = VMXR0RunGuestCode;
470 g_HmR0.pfnEnableCpu = VMXR0EnableCpu;
471 g_HmR0.pfnDisableCpu = VMXR0DisableCpu;
472 g_HmR0.pfnInitVM = VMXR0InitVM;
473 g_HmR0.pfnTermVM = VMXR0TermVM;
474 g_HmR0.pfnSetupVM = VMXR0SetupVM;
475
476 /*
477 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
478 * Timer Does Not Count Down at the Rate Specified" CPU erratum.
479 */
480 uint32_t const fPinCtls = RT_HI_U32(g_HmR0.hwvirt.Msrs.u.vmx.u64PinCtls);
481 if (fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
482 {
483 uint64_t const uVmxMiscMsr = g_HmR0.hwvirt.Msrs.u.vmx.u64Misc;
484 g_HmR0.hwvirt.u.vmx.fUsePreemptTimer = true;
485 g_HmR0.hwvirt.u.vmx.cPreemptTimerShift = RT_BF_GET(uVmxMiscMsr, VMX_BF_MISC_PREEMPT_TIMER_TSC);
486 if (hmR0InitIntelIsSubjectToVmxPreemptTimerErratum())
487 g_HmR0.hwvirt.u.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
488 }
489 }
490 }
491#ifdef LOG_ENABLED
492 else
493 SUPR0Printf("hmR0InitIntelCpu failed with rc=%Rrc\n", g_HmR0.rcInit);
494#endif
495 return VINF_SUCCESS;
496}
497
498
499/**
500 * AMD-specific initialization code.
501 *
502 * @returns VBox status code (will only fail if out of memory).
503 */
504static int hmR0InitAmd(void)
505{
506 /* Call the global AMD-V initialization routine (should only fail in out-of-memory situations). */
507 int rc = SVMR0GlobalInit();
508 if (RT_FAILURE(rc))
509 {
510 g_HmR0.rcInit = rc;
511 return rc;
512 }
513
514 /*
515 * Install the AMD-V methods.
516 */
517 g_HmR0.pfnEnterSession = SVMR0Enter;
518 g_HmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
519 g_HmR0.pfnExportHostState = SVMR0ExportHostState;
520 g_HmR0.pfnRunGuestCode = SVMR0RunGuestCode;
521 g_HmR0.pfnEnableCpu = SVMR0EnableCpu;
522 g_HmR0.pfnDisableCpu = SVMR0DisableCpu;
523 g_HmR0.pfnInitVM = SVMR0InitVM;
524 g_HmR0.pfnTermVM = SVMR0TermVM;
525 g_HmR0.pfnSetupVM = SVMR0SetupVM;
526
527 /* Query AMD features. */
528 uint32_t u32Dummy;
529 ASMCpuId(0x8000000a, &g_HmR0.hwvirt.u.svm.u32Rev, &g_HmR0.hwvirt.uMaxAsid, &u32Dummy, &g_HmR0.hwvirt.u.svm.u32Features);
530
531 /*
532 * We need to check if AMD-V has been properly initialized on all CPUs.
533 * Some BIOSes might do a poor job.
534 */
535 HMR0FIRSTRC FirstRc;
536 hmR0FirstRcInit(&FirstRc);
537 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
538 AssertRC(rc);
539 if (RT_SUCCESS(rc))
540 rc = hmR0FirstRcGetStatus(&FirstRc);
541#ifndef DEBUG_bird
542 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
543 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
544#endif
545 if (RT_SUCCESS(rc))
546 {
547 SUPR0GetHwvirtMsrs(&g_HmR0.hwvirt.Msrs, SUPVTCAPS_AMD_V, false /* fForce */);
548 g_HmR0.hwvirt.u.svm.fSupported = true;
549 }
550 else
551 {
552 g_HmR0.rcInit = rc;
553 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
554 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
555 }
556 return rc;
557}
558
559
560/**
561 * Does global Ring-0 HM initialization (at module init).
562 *
563 * @returns VBox status code.
564 */
565VMMR0_INT_DECL(int) HMR0Init(void)
566{
567 /*
568 * Initialize the globals.
569 */
570 g_HmR0.fEnabled = false;
571 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
572 g_HmR0.EnableAllCpusOnce = s_OnceInit;
573 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
574 {
575 g_HmR0.aCpuInfo[i].idCpu = NIL_RTCPUID;
576 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
577 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
578 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
579#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
580 g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
581 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
582 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
583#endif
584 }
585
586 /* Fill in all callbacks with placeholders. */
587 g_HmR0.pfnEnterSession = hmR0DummyEnter;
588 g_HmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
589 g_HmR0.pfnExportHostState = hmR0DummyExportHostState;
590 g_HmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
591 g_HmR0.pfnEnableCpu = hmR0DummyEnableCpu;
592 g_HmR0.pfnDisableCpu = hmR0DummyDisableCpu;
593 g_HmR0.pfnInitVM = hmR0DummyInitVM;
594 g_HmR0.pfnTermVM = hmR0DummyTermVM;
595 g_HmR0.pfnSetupVM = hmR0DummySetupVM;
596
597 /* Default is global VT-x/AMD-V init. */
598 g_HmR0.fGlobalInit = true;
599
600 /*
601 * Make sure aCpuInfo is big enough for all the CPUs on this system.
602 */
603 if (RTMpGetArraySize() > RT_ELEMENTS(g_HmR0.aCpuInfo))
604 {
605 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HmR0.aCpuInfo)));
606 return VERR_TOO_MANY_CPUS;
607 }
608
609 /*
610 * Check for VT-x or AMD-V support.
611 * Return failure only in out-of-memory situations.
612 */
613 uint32_t fCaps = 0;
614 int rc = SUPR0GetVTSupport(&fCaps);
615 if (RT_SUCCESS(rc))
616 {
617 if (fCaps & SUPVTCAPS_VT_X)
618 {
619 rc = hmR0InitIntel();
620 if (RT_FAILURE(rc))
621 return rc;
622 }
623 else
624 {
625 Assert(fCaps & SUPVTCAPS_AMD_V);
626 rc = hmR0InitAmd();
627 if (RT_FAILURE(rc))
628 return rc;
629 }
630 }
631 else
632 g_HmR0.rcInit = VERR_UNSUPPORTED_CPU;
633
634 /*
635 * Register notification callbacks that we can use to disable/enable CPUs
636 * when brought offline/online or suspending/resuming.
637 */
638 if (!g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
639 {
640 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
641 AssertRC(rc);
642
643 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
644 AssertRC(rc);
645 }
646
647 /* We return success here because module init shall not fail if HM fails to initialize. */
648 return VINF_SUCCESS;
649}
650
651
652/**
653 * Does global Ring-0 HM termination (at module termination).
654 *
655 * @returns VBox status code.
656 */
657VMMR0_INT_DECL(int) HMR0Term(void)
658{
659 int rc;
660 if ( g_HmR0.hwvirt.u.vmx.fSupported
661 && g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
662 {
663 /*
664 * Simple if the host OS manages VT-x.
665 */
666 Assert(g_HmR0.fGlobalInit);
667
668 if (g_HmR0.hwvirt.u.vmx.fCalledSUPR0EnableVTx)
669 {
670 rc = SUPR0EnableVTx(false /* fEnable */);
671 g_HmR0.hwvirt.u.vmx.fCalledSUPR0EnableVTx = false;
672 }
673 else
674 rc = VINF_SUCCESS;
675
676 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HmR0.aCpuInfo); iCpu++)
677 {
678 g_HmR0.aCpuInfo[iCpu].fConfigured = false;
679 Assert(g_HmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
680 }
681 }
682 else
683 {
684 Assert(!g_HmR0.hwvirt.u.vmx.fSupported || !g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx);
685
686 /* Doesn't really matter if this fails. */
687 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
688 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
689
690 /*
691 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
692 */
693 if (g_HmR0.fGlobalInit)
694 {
695 HMR0FIRSTRC FirstRc;
696 hmR0FirstRcInit(&FirstRc);
697 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
698 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
699 if (RT_SUCCESS(rc))
700 rc = hmR0FirstRcGetStatus(&FirstRc);
701 }
702
703 /*
704 * Free the per-cpu pages used for VT-x and AMD-V.
705 */
706 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
707 {
708 if (g_HmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
709 {
710 RTR0MemObjFree(g_HmR0.aCpuInfo[i].hMemObj, false);
711 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
712 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
713 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
714 }
715#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
716 if (g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm != NIL_RTR0MEMOBJ)
717 {
718 RTR0MemObjFree(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, false);
719 g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
720 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
721 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
722 }
723#endif
724 }
725 }
726
727 /** @todo This needs cleaning up. There's no matching
728 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
729 * should move into their respective modules. */
730 /* Finally, call global VT-x/AMD-V termination. */
731 if (g_HmR0.hwvirt.u.vmx.fSupported)
732 VMXR0GlobalTerm();
733 else if (g_HmR0.hwvirt.u.svm.fSupported)
734 SVMR0GlobalTerm();
735
736 return rc;
737}
738
739
740/**
741 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
742 * on a CPU.
743 *
744 * @param idCpu The identifier for the CPU the function is called on.
745 * @param pvUser1 Pointer to the first RC structure.
746 * @param pvUser2 Ignored.
747 */
748static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
749{
750 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
751 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
752 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
753 NOREF(idCpu); NOREF(pvUser2);
754
755 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
756 hmR0FirstRcSetStatus(pFirstRc, rc);
757}
758
759
760/**
761 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
762 * on a CPU.
763 *
764 * @param idCpu The identifier for the CPU the function is called on.
765 * @param pvUser1 Pointer to the first RC structure.
766 * @param pvUser2 Ignored.
767 */
768static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
769{
770 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
771 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
772 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
773 NOREF(idCpu); NOREF(pvUser2);
774
775 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
776 hmR0FirstRcSetStatus(pFirstRc, rc);
777}
778
779
780/**
781 * Enable VT-x or AMD-V on the current CPU
782 *
783 * @returns VBox status code.
784 * @param pVM The cross context VM structure. Can be NULL.
785 * @param idCpu The identifier for the CPU the function is called on.
786 *
787 * @remarks Maybe called with interrupts disabled!
788 */
789static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
790{
791 PHMPHYSCPU pHostCpu = &g_HmR0.aCpuInfo[idCpu];
792
793 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
794 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
795 Assert(!pHostCpu->fConfigured);
796 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
797
798 pHostCpu->idCpu = idCpu;
799 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
800
801 int rc;
802 if ( g_HmR0.hwvirt.u.vmx.fSupported
803 && g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
804 rc = g_HmR0.pfnEnableCpu(pHostCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmR0.hwvirt.Msrs);
805 else
806 {
807 AssertLogRelMsgReturn(pHostCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
808 rc = g_HmR0.pfnEnableCpu(pHostCpu, pVM, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj, false, &g_HmR0.hwvirt.Msrs);
809 }
810 if (RT_SUCCESS(rc))
811 pHostCpu->fConfigured = true;
812 return rc;
813}
814
815
816/**
817 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
818 *
819 * @param idCpu The identifier for the CPU the function is called on.
820 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
821 * @param pvUser2 The 2nd user argument.
822 */
823static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
824{
825 PVM pVM = (PVM)pvUser1; /* can be NULL! */
826 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
827 AssertReturnVoid(g_HmR0.fGlobalInit);
828 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
829 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
830}
831
832
833/**
834 * RTOnce callback employed by HMR0EnableAllCpus.
835 *
836 * @returns VBox status code.
837 * @param pvUser Pointer to the VM.
838 */
839static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
840{
841 PVM pVM = (PVM)pvUser;
842
843 /*
844 * Indicate that we've initialized.
845 *
846 * Note! There is a potential race between this function and the suspend
847 * notification. Kind of unlikely though, so ignored for now.
848 */
849 AssertReturn(!g_HmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
850 ASMAtomicWriteBool(&g_HmR0.fEnabled, true);
851
852 /*
853 * The global init variable is set by the first VM.
854 */
855 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
856
857#ifdef VBOX_STRICT
858 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
859 {
860 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
861 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
862 Assert(g_HmR0.aCpuInfo[i].pvMemObj == NULL);
863 Assert(!g_HmR0.aCpuInfo[i].fConfigured);
864 Assert(!g_HmR0.aCpuInfo[i].cTlbFlushes);
865 Assert(!g_HmR0.aCpuInfo[i].uCurrentAsid);
866# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
867 Assert(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
868 Assert(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm == NIL_RTHCPHYS);
869 Assert(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm == NULL);
870# endif
871 }
872#endif
873
874 int rc;
875 if ( g_HmR0.hwvirt.u.vmx.fSupported
876 && g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
877 {
878 /*
879 * Global VT-x initialization API (only darwin for now).
880 */
881 rc = SUPR0EnableVTx(true /* fEnable */);
882 if (RT_SUCCESS(rc))
883 {
884 g_HmR0.hwvirt.u.vmx.fCalledSUPR0EnableVTx = true;
885 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
886 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
887 }
888 else
889 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
890 }
891 else
892 {
893 /*
894 * We're doing the job ourselves.
895 */
896 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
897 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
898 {
899 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
900#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
901 Assert(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
902#endif
903 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
904 {
905 /** @todo NUMA */
906 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
907 AssertLogRelRCReturn(rc, rc);
908
909 g_HmR0.aCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].hMemObj, 0);
910 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
911 Assert(!(g_HmR0.aCpuInfo[i].HCPhysMemObj & PAGE_OFFSET_MASK));
912
913 g_HmR0.aCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].hMemObj);
914 AssertPtr(g_HmR0.aCpuInfo[i].pvMemObj);
915 ASMMemZeroPage(g_HmR0.aCpuInfo[i].pvMemObj);
916
917#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
918 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
919 false /* executable R0 mapping */);
920 AssertLogRelRCReturn(rc, rc);
921
922 g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm, 0);
923 Assert(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm != NIL_RTHCPHYS);
924 Assert(!(g_HmR0.aCpuInfo[i].n.svm.HCPhysNstGstMsrpm & PAGE_OFFSET_MASK));
925
926 g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].n.svm.hNstGstMsrpm);
927 AssertPtr(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm);
928 ASMMemFill32(g_HmR0.aCpuInfo[i].n.svm.pvNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
929#endif
930 }
931 }
932
933 rc = VINF_SUCCESS;
934 }
935
936 if ( RT_SUCCESS(rc)
937 && g_HmR0.fGlobalInit)
938 {
939 /* First time, so initialize each cpu/core. */
940 HMR0FIRSTRC FirstRc;
941 hmR0FirstRcInit(&FirstRc);
942 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
943 if (RT_SUCCESS(rc))
944 rc = hmR0FirstRcGetStatus(&FirstRc);
945 }
946
947 return rc;
948}
949
950
951/**
952 * Sets up HM on all cpus.
953 *
954 * @returns VBox status code.
955 * @param pVM The cross context VM structure.
956 */
957VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
958{
959 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
960 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
961 return VERR_HM_SUSPEND_PENDING;
962
963 return RTOnce(&g_HmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
964}
965
966
967/**
968 * Disable VT-x or AMD-V on the current CPU.
969 *
970 * @returns VBox status code.
971 * @param idCpu The identifier for the CPU this function is called on.
972 *
973 * @remarks Must be called with preemption disabled.
974 */
975static int hmR0DisableCpu(RTCPUID idCpu)
976{
977 PHMPHYSCPU pHostCpu = &g_HmR0.aCpuInfo[idCpu];
978
979 Assert(!g_HmR0.hwvirt.u.vmx.fSupported || !g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx);
980 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
981 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
982 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
983 Assert(!pHostCpu->fConfigured || pHostCpu->hMemObj != NIL_RTR0MEMOBJ);
984 AssertRelease(idCpu == RTMpCpuId());
985
986 if (pHostCpu->hMemObj == NIL_RTR0MEMOBJ)
987 return pHostCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
988 AssertPtr(pHostCpu->pvMemObj);
989 Assert(pHostCpu->HCPhysMemObj != NIL_RTHCPHYS);
990
991 int rc;
992 if (pHostCpu->fConfigured)
993 {
994 rc = g_HmR0.pfnDisableCpu(pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj);
995 AssertRCReturn(rc, rc);
996
997 pHostCpu->fConfigured = false;
998 pHostCpu->idCpu = NIL_RTCPUID;
999 }
1000 else
1001 rc = VINF_SUCCESS; /* nothing to do */
1002 return rc;
1003}
1004
1005
1006/**
1007 * Worker function passed to RTMpOnAll() that is to be called on the target
1008 * CPUs.
1009 *
1010 * @param idCpu The identifier for the CPU the function is called on.
1011 * @param pvUser1 The 1st user argument.
1012 * @param pvUser2 Opaque pointer to the FirstRc.
1013 */
1014static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1015{
1016 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1017 AssertReturnVoid(g_HmR0.fGlobalInit);
1018 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1019}
1020
1021
1022/**
1023 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1024 * CPU.
1025 *
1026 * @param idCpu The identifier for the CPU the function is called on.
1027 * @param pvUser1 Null, not used.
1028 * @param pvUser2 Null, not used.
1029 */
1030static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1031{
1032 NOREF(pvUser1);
1033 NOREF(pvUser2);
1034 hmR0DisableCpu(idCpu);
1035}
1036
1037
1038/**
1039 * Callback function invoked when a cpu goes online or offline.
1040 *
1041 * @param enmEvent The Mp event.
1042 * @param idCpu The identifier for the CPU the function is called on.
1043 * @param pvData Opaque data (PVM pointer).
1044 */
1045static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1046{
1047 NOREF(pvData);
1048 Assert(!g_HmR0.hwvirt.u.vmx.fSupported || !g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx);
1049
1050 /*
1051 * We only care about uninitializing a CPU that is going offline. When a
1052 * CPU comes online, the initialization is done lazily in HMR0Enter().
1053 */
1054 switch (enmEvent)
1055 {
1056 case RTMPEVENT_OFFLINE:
1057 {
1058 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1059 RTThreadPreemptDisable(&PreemptState);
1060 if (idCpu == RTMpCpuId())
1061 {
1062 int rc = hmR0DisableCpu(idCpu);
1063 AssertRC(rc);
1064 RTThreadPreemptRestore(&PreemptState);
1065 }
1066 else
1067 {
1068 RTThreadPreemptRestore(&PreemptState);
1069 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1070 }
1071 break;
1072 }
1073
1074 default:
1075 break;
1076 }
1077}
1078
1079
1080/**
1081 * Called whenever a system power state change occurs.
1082 *
1083 * @param enmEvent The Power event.
1084 * @param pvUser User argument.
1085 */
1086static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1087{
1088 NOREF(pvUser);
1089 Assert(!g_HmR0.hwvirt.u.vmx.fSupported || !g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx);
1090
1091#ifdef LOG_ENABLED
1092 if (enmEvent == RTPOWEREVENT_SUSPEND)
1093 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1094 else
1095 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1096#endif
1097
1098 if (enmEvent == RTPOWEREVENT_SUSPEND)
1099 ASMAtomicWriteBool(&g_HmR0.fSuspended, true);
1100
1101 if (g_HmR0.fEnabled)
1102 {
1103 int rc;
1104 HMR0FIRSTRC FirstRc;
1105 hmR0FirstRcInit(&FirstRc);
1106
1107 if (enmEvent == RTPOWEREVENT_SUSPEND)
1108 {
1109 if (g_HmR0.fGlobalInit)
1110 {
1111 /* Turn off VT-x or AMD-V on all CPUs. */
1112 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1113 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1114 }
1115 /* else nothing to do here for the local init case */
1116 }
1117 else
1118 {
1119 /* Reinit the CPUs from scratch as the suspend state might have
1120 messed with the MSRs. (lousy BIOSes as usual) */
1121 if (g_HmR0.hwvirt.u.vmx.fSupported)
1122 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1123 else
1124 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1125 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1126 if (RT_SUCCESS(rc))
1127 rc = hmR0FirstRcGetStatus(&FirstRc);
1128#ifdef LOG_ENABLED
1129 if (RT_FAILURE(rc))
1130 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1131#endif
1132 if (g_HmR0.fGlobalInit)
1133 {
1134 /* Turn VT-x or AMD-V back on on all CPUs. */
1135 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1136 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1137 }
1138 /* else nothing to do here for the local init case */
1139 }
1140 }
1141
1142 if (enmEvent == RTPOWEREVENT_RESUME)
1143 ASMAtomicWriteBool(&g_HmR0.fSuspended, false);
1144}
1145
1146
1147/**
1148 * Does ring-0 per-VM HM initialization.
1149 *
1150 * This will call the CPU specific init. routine which may initialize and allocate
1151 * resources for virtual CPUs.
1152 *
1153 * @returns VBox status code.
1154 * @param pVM The cross context VM structure.
1155 *
1156 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1157 * vmR3InitRing3().
1158 */
1159VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1160{
1161 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1162
1163 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1164 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1165 return VERR_HM_SUSPEND_PENDING;
1166
1167 /*
1168 * Copy globals to the VM structure.
1169 */
1170 Assert(!(pVM->hm.s.vmx.fSupported && pVM->hm.s.svm.fSupported));
1171 if (pVM->hm.s.vmx.fSupported)
1172 {
1173 pVM->hm.s.vmx.fUsePreemptTimer &= g_HmR0.hwvirt.u.vmx.fUsePreemptTimer; /* Can be overridden by CFGM see HMR3Init(). */
1174 pVM->hm.s.vmx.cPreemptTimerShift = g_HmR0.hwvirt.u.vmx.cPreemptTimerShift;
1175 pVM->hm.s.vmx.u64HostCr4 = g_HmR0.hwvirt.u.vmx.u64HostCr4;
1176 pVM->hm.s.vmx.u64HostMsrEfer = g_HmR0.hwvirt.u.vmx.u64HostMsrEfer;
1177 pVM->hm.s.vmx.u64HostSmmMonitorCtl = g_HmR0.hwvirt.u.vmx.u64HostSmmMonitorCtl;
1178 HMGetVmxMsrsFromHwvirtMsrs(&g_HmR0.hwvirt.Msrs, &pVM->hm.s.vmx.Msrs);
1179 }
1180 else if (pVM->hm.s.svm.fSupported)
1181 {
1182 pVM->hm.s.svm.u32Rev = g_HmR0.hwvirt.u.svm.u32Rev;
1183 pVM->hm.s.svm.u32Features = g_HmR0.hwvirt.u.svm.u32Features;
1184 pVM->hm.s.svm.u64MsrHwcr = g_HmR0.hwvirt.Msrs.u.svm.u64MsrHwcr;
1185 }
1186 pVM->hm.s.rcInit = g_HmR0.rcInit;
1187 pVM->hm.s.uMaxAsid = g_HmR0.hwvirt.uMaxAsid;
1188
1189 /*
1190 * Set default maximum inner loops in ring-0 before returning to ring-3.
1191 * Can be overriden using CFGM.
1192 */
1193 if (!pVM->hm.s.cMaxResumeLoops)
1194 {
1195 pVM->hm.s.cMaxResumeLoops = 1024;
1196 if (RTThreadPreemptIsPendingTrusty())
1197 pVM->hm.s.cMaxResumeLoops = 8192;
1198 }
1199
1200 /*
1201 * Initialize some per-VCPU fields.
1202 */
1203 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1204 {
1205 PVMCPU pVCpu = &pVM->aCpus[i];
1206 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1207 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1208
1209 /* We'll aways increment this the first time (host uses ASID 0). */
1210 AssertReturn(!pVCpu->hm.s.uCurrentAsid, VERR_HM_IPE_3);
1211 }
1212
1213 /*
1214 * Get host kernel features that HM might need to know in order
1215 * to co-operate and function properly with the host OS (e.g. SMAP).
1216 *
1217 * Technically, we could do this as part of the pre-init VM procedure
1218 * but it shouldn't be done later than this point so we do it here.
1219 */
1220 pVM->hm.s.fHostKernelFeatures = SUPR0GetKernelFeatures();
1221
1222 /*
1223 * Call the hardware specific initialization method.
1224 */
1225 return g_HmR0.pfnInitVM(pVM);
1226}
1227
1228
1229/**
1230 * Does ring-0 per VM HM termination.
1231 *
1232 * @returns VBox status code.
1233 * @param pVM The cross context VM structure.
1234 */
1235VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1236{
1237 Log(("HMR0TermVM: %p\n", pVM));
1238 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1239
1240 /*
1241 * Call the hardware specific method.
1242 *
1243 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1244 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1245 */
1246 return g_HmR0.pfnTermVM(pVM);
1247}
1248
1249
1250/**
1251 * Sets up a VT-x or AMD-V session.
1252 *
1253 * This is mostly about setting up the hardware VM state.
1254 *
1255 * @returns VBox status code.
1256 * @param pVM The cross context VM structure.
1257 */
1258VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1259{
1260 Log(("HMR0SetupVM: %p\n", pVM));
1261 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1262
1263 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1264 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1265
1266 /* On first entry we'll sync everything. */
1267 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1268 {
1269 PVMCPU pVCpu = &pVM->aCpus[i];
1270 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
1271 }
1272
1273 /*
1274 * Call the hardware specific setup VM method. This requires the CPU to be
1275 * enabled for AMD-V/VT-x and preemption to be prevented.
1276 */
1277 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1278 RTThreadPreemptDisable(&PreemptState);
1279 RTCPUID const idCpu = RTMpCpuId();
1280
1281 /* Enable VT-x or AMD-V if local init is required. */
1282 int rc;
1283 if (!g_HmR0.fGlobalInit)
1284 {
1285 Assert(!g_HmR0.hwvirt.u.vmx.fSupported || !g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx);
1286 rc = hmR0EnableCpu(pVM, idCpu);
1287 if (RT_FAILURE(rc))
1288 {
1289 RTThreadPreemptRestore(&PreemptState);
1290 return rc;
1291 }
1292 }
1293
1294 /* Setup VT-x or AMD-V. */
1295 rc = g_HmR0.pfnSetupVM(pVM);
1296
1297 /* Disable VT-x or AMD-V if local init was done before. */
1298 if (!g_HmR0.fGlobalInit)
1299 {
1300 Assert(!g_HmR0.hwvirt.u.vmx.fSupported || !g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx);
1301 int rc2 = hmR0DisableCpu(idCpu);
1302 AssertRC(rc2);
1303 }
1304
1305 RTThreadPreemptRestore(&PreemptState);
1306 return rc;
1307}
1308
1309
1310/**
1311 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1312 * required for entering HM context.
1313 *
1314 * @returns VBox status code.
1315 * @param pVCpu The cross context virtual CPU structure.
1316 *
1317 * @remarks No-long-jump zone!!!
1318 */
1319VMMR0_INT_DECL(int) hmR0EnterCpu(PVMCPU pVCpu)
1320{
1321 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1322
1323 int rc = VINF_SUCCESS;
1324 RTCPUID const idCpu = RTMpCpuId();
1325 PHMPHYSCPU pHostCpu = &g_HmR0.aCpuInfo[idCpu];
1326 AssertPtr(pHostCpu);
1327
1328 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1329 if (!pHostCpu->fConfigured)
1330 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1331
1332 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1333 if (g_HmR0.hwvirt.u.vmx.fSupported)
1334 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
1335 else
1336 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE;
1337
1338 Assert(pHostCpu->idCpu == idCpu && pHostCpu->idCpu != NIL_RTCPUID);
1339 pVCpu->hm.s.idEnteredCpu = idCpu;
1340 return rc;
1341}
1342
1343
1344/**
1345 * Enters the VT-x or AMD-V session.
1346 *
1347 * @returns VBox status code.
1348 * @param pVCpu The cross context virtual CPU structure.
1349 *
1350 * @remarks This is called with preemption disabled.
1351 */
1352VMMR0_INT_DECL(int) HMR0Enter(PVMCPU pVCpu)
1353{
1354 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1355 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1356 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1357
1358 /* Load the bare minimum state required for entering HM. */
1359 int rc = hmR0EnterCpu(pVCpu);
1360 if (RT_SUCCESS(rc))
1361 {
1362 if (g_HmR0.hwvirt.u.vmx.fSupported)
1363 {
1364 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
1365 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
1366 }
1367 else
1368 {
1369 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
1370 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
1371 }
1372
1373#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1374 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_5);
1375 bool const fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1376#endif
1377
1378 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1379 rc = g_HmR0.pfnEnterSession(pVCpu);
1380 AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID, rc);
1381
1382 /* Exports the host-state as we may be resuming code after a longjmp and quite
1383 possibly now be scheduled on a different CPU. */
1384 rc = g_HmR0.pfnExportHostState(pVCpu);
1385 AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID, rc);
1386
1387#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1388 if (fStartedSet)
1389 PGMRZDynMapReleaseAutoSet(pVCpu);
1390#endif
1391 }
1392 return rc;
1393}
1394
1395
1396/**
1397 * Deinitializes the bare minimum state used for HM context and if necessary
1398 * disable HM on the CPU.
1399 *
1400 * @returns VBox status code.
1401 * @param pVCpu The cross context virtual CPU structure.
1402 *
1403 * @remarks No-long-jump zone!!!
1404 */
1405VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1406{
1407 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1408 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1409
1410 RTCPUID const idCpu = RTMpCpuId();
1411 PCHMPHYSCPU pHostCpu = &g_HmR0.aCpuInfo[idCpu];
1412
1413 if ( !g_HmR0.fGlobalInit
1414 && pHostCpu->fConfigured)
1415 {
1416 int rc = hmR0DisableCpu(idCpu);
1417 AssertRCReturn(rc, rc);
1418 Assert(!pHostCpu->fConfigured);
1419 Assert(pHostCpu->idCpu == NIL_RTCPUID);
1420
1421 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1422 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1423 }
1424
1425 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1426 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1427
1428 return VINF_SUCCESS;
1429}
1430
1431
1432/**
1433 * Thread-context hook for HM.
1434 *
1435 * @param enmEvent The thread-context event.
1436 * @param pvUser Opaque pointer to the VMCPU.
1437 */
1438VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1439{
1440 PVMCPU pVCpu = (PVMCPU)pvUser;
1441 Assert(pVCpu);
1442 Assert(g_HmR0.pfnThreadCtxCallback);
1443
1444 g_HmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HmR0.fGlobalInit);
1445}
1446
1447
1448/**
1449 * Runs guest code in a hardware accelerated VM.
1450 *
1451 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1452 * called from setjmp assembly.)
1453 * @param pVM The cross context VM structure.
1454 * @param pVCpu The cross context virtual CPU structure.
1455 *
1456 * @remarks Can be called with preemption enabled if thread-context hooks are
1457 * used!!!
1458 */
1459VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1460{
1461 RT_NOREF(pVM);
1462
1463#ifdef VBOX_STRICT
1464 /* With thread-context hooks we would be running this code with preemption enabled. */
1465 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1466 {
1467 PCHMPHYSCPU pHostCpu = &g_HmR0.aCpuInfo[RTMpCpuId()];
1468 Assert(!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1469 Assert(pHostCpu->fConfigured);
1470 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1471 }
1472#endif
1473
1474#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1475 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_4);
1476 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1477 PGMRZDynMapStartAutoSet(pVCpu);
1478#endif
1479
1480 VBOXSTRICTRC rcStrict = g_HmR0.pfnRunGuestCode(pVCpu);
1481
1482#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1483 PGMRZDynMapReleaseAutoSet(pVCpu);
1484#endif
1485 return VBOXSTRICTRC_VAL(rcStrict);
1486}
1487
1488
1489/**
1490 * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from
1491 * the host CPU and that guest access to it must be intercepted.
1492 *
1493 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1494 */
1495VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPU pVCpu)
1496{
1497 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
1498}
1499
1500
1501/**
1502 * Notification from CPUM that it has modified the host CR0 (because of FPU).
1503 *
1504 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1505 */
1506VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPU pVCpu)
1507{
1508 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT);
1509}
1510
1511
1512#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1513
1514/**
1515 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1516 *
1517 * @returns VBox status code.
1518 * @param pVM The cross context VM structure.
1519 * @param pVCpu The cross context virtual CPU structure.
1520 * @param pCtx Pointer to the guest CPU context.
1521 */
1522VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1523{
1524 RT_NOREF(pCtx);
1525 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1526 if (pVM->hm.s.vmx.fSupported)
1527 return VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1528 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1529}
1530
1531
1532/**
1533 * Save guest debug state (64 bits guest mode & 32 bits host only)
1534 *
1535 * @returns VBox status code.
1536 * @param pVM The cross context VM structure.
1537 * @param pVCpu The cross context virtual CPU structure.
1538 * @param pCtx Pointer to the guest CPU context.
1539 */
1540VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1541{
1542 RT_NOREF(pCtx);
1543 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1544 if (pVM->hm.s.vmx.fSupported)
1545 return VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1546 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1547}
1548
1549
1550/**
1551 * Test the 32->64 bits switcher.
1552 *
1553 * @returns VBox status code.
1554 * @param pVM The cross context VM structure.
1555 */
1556VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1557{
1558 PVMCPU pVCpu = &pVM->aCpus[0];
1559 uint32_t aParam[5] = { 0, 1, 2, 3, 4 };
1560 int rc;
1561
1562 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1563 if (pVM->hm.s.vmx.fSupported)
1564 rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1565 else
1566 rc = SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1567 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1568
1569 return rc;
1570}
1571
1572#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
1573
1574/**
1575 * Returns suspend status of the host.
1576 *
1577 * @returns Suspend pending or not.
1578 */
1579VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1580{
1581 return ASMAtomicReadBool(&g_HmR0.fSuspended);
1582}
1583
1584
1585/**
1586 * Invalidates a guest page from the host TLB.
1587 *
1588 * @param pVCpu The cross context virtual CPU structure.
1589 * @param GCVirt Page to invalidate.
1590 */
1591VMMR0_INT_DECL(int) HMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1592{
1593 PVM pVM = pVCpu->CTX_SUFF(pVM);
1594 if (pVM->hm.s.vmx.fSupported)
1595 return VMXR0InvalidatePage(pVCpu, GCVirt);
1596 return SVMR0InvalidatePage(pVCpu, GCVirt);
1597}
1598
1599
1600/**
1601 * Returns the cpu structure for the current cpu.
1602 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1603 *
1604 * @returns The cpu structure pointer.
1605 */
1606VMMR0_INT_DECL(PHMPHYSCPU) hmR0GetCurrentCpu(void)
1607{
1608 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1609 RTCPUID const idCpu = RTMpCpuId();
1610 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1611 return &g_HmR0.aCpuInfo[idCpu];
1612}
1613
1614
1615/**
1616 * Interface for importing state on demand (used by IEM).
1617 *
1618 * @returns VBox status code.
1619 * @param pVCpu The cross context CPU structure.
1620 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1621 */
1622VMMR0_INT_DECL(int) HMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
1623{
1624 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
1625 return VMXR0ImportStateOnDemand(pVCpu, fWhat);
1626 return SVMR0ImportStateOnDemand(pVCpu, fWhat);
1627}
1628
1629
1630#ifdef VBOX_WITH_RAW_MODE
1631/**
1632 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1633 * switcher turns off paging.
1634 *
1635 * @returns VBox status code.
1636 * @param pVM The cross context VM structure.
1637 * @param enmSwitcher The switcher we're about to use.
1638 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1639 */
1640VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1641{
1642 NOREF(pVM);
1643
1644 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1645
1646 *pfVTxDisabled = false;
1647
1648 /* No such issues with AMD-V */
1649 if (!g_HmR0.hwvirt.u.vmx.fSupported)
1650 return VINF_SUCCESS;
1651
1652 /* Check if the switching we're up to is safe. */
1653 switch (enmSwitcher)
1654 {
1655 case VMMSWITCHER_32_TO_32:
1656 case VMMSWITCHER_PAE_TO_PAE:
1657 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1658
1659 case VMMSWITCHER_32_TO_PAE:
1660 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1661 case VMMSWITCHER_AMD64_TO_32:
1662 case VMMSWITCHER_AMD64_TO_PAE:
1663 break; /* unsafe switchers */
1664
1665 default:
1666 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1667 }
1668
1669 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1670 regardless of whether we're currently using VT-x or not. */
1671 if (g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
1672 {
1673 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1674 return VINF_SUCCESS;
1675 }
1676
1677 /** @todo Check if this code is presumptive wrt other VT-x users on the
1678 * system... */
1679
1680 /* Nothing to do if we haven't enabled VT-x. */
1681 if (!g_HmR0.fEnabled)
1682 return VINF_SUCCESS;
1683
1684 /* Local init implies the CPU is currently not in VMX root mode. */
1685 if (!g_HmR0.fGlobalInit)
1686 return VINF_SUCCESS;
1687
1688 /* Ok, disable VT-x. */
1689 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
1690 AssertReturn( pHostCpu
1691 && pHostCpu->hMemObj != NIL_RTR0MEMOBJ
1692 && pHostCpu->pvMemObj
1693 && pHostCpu->HCPhysMemObj != NIL_RTHCPHYS,
1694 VERR_HM_IPE_2);
1695
1696 *pfVTxDisabled = true;
1697 return VMXR0DisableCpu(pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj);
1698}
1699
1700
1701/**
1702 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1703 * switcher turned off paging.
1704 *
1705 * @param pVM The cross context VM structure.
1706 * @param fVTxDisabled Whether VT-x was disabled or not.
1707 */
1708VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1709{
1710 Assert(!ASMIntAreEnabled());
1711
1712 if (!fVTxDisabled)
1713 return; /* nothing to do */
1714
1715 Assert(g_HmR0.hwvirt.u.vmx.fSupported);
1716 if (g_HmR0.hwvirt.u.vmx.fUsingSUPR0EnableVTx)
1717 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1718 else
1719 {
1720 Assert(g_HmR0.fEnabled);
1721 Assert(g_HmR0.fGlobalInit);
1722
1723 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
1724 AssertReturnVoid( pHostCpu
1725 && pHostCpu->hMemObj != NIL_RTR0MEMOBJ
1726 && pHostCpu->pvMemObj
1727 && pHostCpu->HCPhysMemObj != NIL_RTHCPHYS);
1728
1729 VMXR0EnableCpu(pHostCpu, pVM, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj, false, &g_HmR0.hwvirt.Msrs);
1730 }
1731}
1732#endif /* VBOX_WITH_RAW_MODE */
1733
1734
1735#ifdef VBOX_STRICT
1736/**
1737 * Dumps a descriptor.
1738 *
1739 * @param pDesc Descriptor to dump.
1740 * @param Sel Selector number.
1741 * @param pszMsg Message to prepend the log entry with.
1742 */
1743VMMR0_INT_DECL(void) hmR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1744{
1745 /*
1746 * Make variable description string.
1747 */
1748 static struct
1749 {
1750 unsigned cch;
1751 const char *psz;
1752 } const s_aTypes[32] =
1753 {
1754# define STRENTRY(str) { sizeof(str) - 1, str }
1755
1756 /* system */
1757# if HC_ARCH_BITS == 64
1758 STRENTRY("Reserved0 "), /* 0x00 */
1759 STRENTRY("Reserved1 "), /* 0x01 */
1760 STRENTRY("LDT "), /* 0x02 */
1761 STRENTRY("Reserved3 "), /* 0x03 */
1762 STRENTRY("Reserved4 "), /* 0x04 */
1763 STRENTRY("Reserved5 "), /* 0x05 */
1764 STRENTRY("Reserved6 "), /* 0x06 */
1765 STRENTRY("Reserved7 "), /* 0x07 */
1766 STRENTRY("Reserved8 "), /* 0x08 */
1767 STRENTRY("TSS64Avail "), /* 0x09 */
1768 STRENTRY("ReservedA "), /* 0x0a */
1769 STRENTRY("TSS64Busy "), /* 0x0b */
1770 STRENTRY("Call64 "), /* 0x0c */
1771 STRENTRY("ReservedD "), /* 0x0d */
1772 STRENTRY("Int64 "), /* 0x0e */
1773 STRENTRY("Trap64 "), /* 0x0f */
1774# else
1775 STRENTRY("Reserved0 "), /* 0x00 */
1776 STRENTRY("TSS16Avail "), /* 0x01 */
1777 STRENTRY("LDT "), /* 0x02 */
1778 STRENTRY("TSS16Busy "), /* 0x03 */
1779 STRENTRY("Call16 "), /* 0x04 */
1780 STRENTRY("Task "), /* 0x05 */
1781 STRENTRY("Int16 "), /* 0x06 */
1782 STRENTRY("Trap16 "), /* 0x07 */
1783 STRENTRY("Reserved8 "), /* 0x08 */
1784 STRENTRY("TSS32Avail "), /* 0x09 */
1785 STRENTRY("ReservedA "), /* 0x0a */
1786 STRENTRY("TSS32Busy "), /* 0x0b */
1787 STRENTRY("Call32 "), /* 0x0c */
1788 STRENTRY("ReservedD "), /* 0x0d */
1789 STRENTRY("Int32 "), /* 0x0e */
1790 STRENTRY("Trap32 "), /* 0x0f */
1791# endif
1792 /* non system */
1793 STRENTRY("DataRO "), /* 0x10 */
1794 STRENTRY("DataRO Accessed "), /* 0x11 */
1795 STRENTRY("DataRW "), /* 0x12 */
1796 STRENTRY("DataRW Accessed "), /* 0x13 */
1797 STRENTRY("DataDownRO "), /* 0x14 */
1798 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1799 STRENTRY("DataDownRW "), /* 0x16 */
1800 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1801 STRENTRY("CodeEO "), /* 0x18 */
1802 STRENTRY("CodeEO Accessed "), /* 0x19 */
1803 STRENTRY("CodeER "), /* 0x1a */
1804 STRENTRY("CodeER Accessed "), /* 0x1b */
1805 STRENTRY("CodeConfEO "), /* 0x1c */
1806 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1807 STRENTRY("CodeConfER "), /* 0x1e */
1808 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1809# undef SYSENTRY
1810 };
1811# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1812 char szMsg[128];
1813 char *psz = &szMsg[0];
1814 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1815 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1816 psz += s_aTypes[i].cch;
1817
1818 if (pDesc->Gen.u1Present)
1819 ADD_STR(psz, "Present ");
1820 else
1821 ADD_STR(psz, "Not-Present ");
1822# if HC_ARCH_BITS == 64
1823 if (pDesc->Gen.u1Long)
1824 ADD_STR(psz, "64-bit ");
1825 else
1826 ADD_STR(psz, "Comp ");
1827# else
1828 if (pDesc->Gen.u1Granularity)
1829 ADD_STR(psz, "Page ");
1830 if (pDesc->Gen.u1DefBig)
1831 ADD_STR(psz, "32-bit ");
1832 else
1833 ADD_STR(psz, "16-bit ");
1834# endif
1835# undef ADD_STR
1836 *psz = '\0';
1837
1838 /*
1839 * Limit and Base and format the output.
1840 */
1841#ifdef LOG_ENABLED
1842 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1843
1844# if HC_ARCH_BITS == 64
1845 uint64_t u32Base = X86DESC64_BASE(pDesc);
1846 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1847 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1848# else
1849 uint32_t u32Base = X86DESC_BASE(pDesc);
1850 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1851 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1852# endif
1853#else
1854 NOREF(Sel); NOREF(pszMsg);
1855#endif
1856}
1857
1858
1859/**
1860 * Formats a full register dump.
1861 *
1862 * @param pVCpu The cross context virtual CPU structure.
1863 */
1864VMMR0_INT_DECL(void) hmR0DumpRegs(PVMCPU pVCpu)
1865{
1866 /*
1867 * Format the flags.
1868 */
1869 static struct
1870 {
1871 const char *pszSet; const char *pszClear; uint32_t fFlag;
1872 } const s_aFlags[] =
1873 {
1874 { "vip", NULL, X86_EFL_VIP },
1875 { "vif", NULL, X86_EFL_VIF },
1876 { "ac", NULL, X86_EFL_AC },
1877 { "vm", NULL, X86_EFL_VM },
1878 { "rf", NULL, X86_EFL_RF },
1879 { "nt", NULL, X86_EFL_NT },
1880 { "ov", "nv", X86_EFL_OF },
1881 { "dn", "up", X86_EFL_DF },
1882 { "ei", "di", X86_EFL_IF },
1883 { "tf", NULL, X86_EFL_TF },
1884 { "nt", "pl", X86_EFL_SF },
1885 { "nz", "zr", X86_EFL_ZF },
1886 { "ac", "na", X86_EFL_AF },
1887 { "po", "pe", X86_EFL_PF },
1888 { "cy", "nc", X86_EFL_CF },
1889 };
1890 char szEFlags[80];
1891 char *psz = szEFlags;
1892 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1893 uint32_t uEFlags = pCtx->eflags.u32;
1894 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1895 {
1896 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1897 if (pszAdd)
1898 {
1899 strcpy(psz, pszAdd);
1900 psz += strlen(pszAdd);
1901 *psz++ = ' ';
1902 }
1903 }
1904 psz[-1] = '\0';
1905
1906 /*
1907 * Format the registers.
1908 */
1909 if (CPUMIsGuestIn64BitCode(pVCpu))
1910 {
1911 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1912 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1913 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1914 "r14=%016RX64 r15=%016RX64\n"
1915 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1916 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1917 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1918 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1919 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1920 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1921 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1922 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1923 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1924 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1925 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1926 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1927 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1928 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1929 ,
1930 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1931 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1932 pCtx->r14, pCtx->r15,
1933 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1934 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1935 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1936 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1937 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1938 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1939 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1940 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1941 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1942 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1943 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1944 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1945 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1946 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1947 }
1948 else
1949 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1950 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1951 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1952 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1953 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1954 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1955 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1956 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1957 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1958 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1959 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1960 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1961 ,
1962 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1963 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1964 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1965 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1966 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1967 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1968 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1969 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1970 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1971 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1972 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1973 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1974
1975 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
1976 Log(("FPU:\n"
1977 "FCW=%04x FSW=%04x FTW=%02x\n"
1978 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
1979 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
1980 ,
1981 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
1982 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
1983 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
1984 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
1985
1986 Log(("MSR:\n"
1987 "EFER =%016RX64\n"
1988 "PAT =%016RX64\n"
1989 "STAR =%016RX64\n"
1990 "CSTAR =%016RX64\n"
1991 "LSTAR =%016RX64\n"
1992 "SFMASK =%016RX64\n"
1993 "KERNELGSBASE =%016RX64\n",
1994 pCtx->msrEFER,
1995 pCtx->msrPAT,
1996 pCtx->msrSTAR,
1997 pCtx->msrCSTAR,
1998 pCtx->msrLSTAR,
1999 pCtx->msrSFMASK,
2000 pCtx->msrKERNELGSBASE));
2001
2002 NOREF(pFpuCtx);
2003}
2004#endif /* VBOX_STRICT */
2005
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette