VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 48215

Last change on this file since 48215 was 48206, checked in by vboxsync, 11 years ago

VMM/HMSVMR0: Make the code more robust regarding longjmps in awkward places.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 183.5 KB
Line 
1/* $Id: HMSVMR0.cpp 48206 2013-08-30 17:34:16Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HMSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMSVM_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
38#endif
39
40
41/*******************************************************************************
42* Defined Constants And Macros *
43*******************************************************************************/
44#ifdef VBOX_WITH_STATISTICS
45# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
46 if ((u64ExitCode) == SVM_EXIT_NPF) \
47 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
48 else \
49 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
50 } while (0)
51#else
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
53#endif
54
55/** If we decide to use a function table approach this can be useful to
56 * switch to a "static DECLCALLBACK(int)". */
57#define HMSVM_EXIT_DECL static int
58
59
60/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
61 *
62 * The CPU format of the segment attribute is described in X86DESCATTRBITS
63 * which is 16-bits (i.e. includes 4 bits of the segment limit).
64 *
65 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
66 * only the attribute bits and nothing else). Upper 4-bits are unused.
67 *
68 * @{ */
69#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
70#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
71/** @} */
72
73
74/** @name Macros for loading, storing segment registers to/from the VMCB.
75 * @{ */
76#define HMSVM_LOAD_SEG_REG(REG, reg) \
77 do \
78 { \
79 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
80 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
81 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
82 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
83 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
84 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
85 } while (0)
86
87#define HMSVM_SAVE_SEG_REG(REG, reg) \
88 do \
89 { \
90 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
92 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
93 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
94 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
95 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
96 } while (0)
97/** @} */
98
99
100/** Macro for checking and returning from the using function for
101 * \#VMEXIT intercepts that maybe caused during delivering of another
102 * event in the guest. */
103#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
104 do \
105 { \
106 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
107 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
108 return VINF_SUCCESS; \
109 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
110 return rc; \
111 } while (0)
112
113/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
114 * instruction that exited. */
115#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
116 do { \
117 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
118 (a_rc) = VINF_EM_DBG_STEPPED; \
119 } while (0)
120
121/** Assert that preemption is disabled or covered by thread-context hooks. */
122#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
123 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
124
125/** Assert that we haven't migrated CPUs when thread-context hooks are not
126 * used. */
127#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
128 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
129 ("Illegal migration! Entered on CPU %u Current %u\n", \
130 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
131
132/** Exception bitmap mask for all contributory exceptions.
133 *
134 * Page fault is deliberately excluded here as it's conditional as to whether
135 * it's contributory or benign. Page faults are handled separately.
136 */
137#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
138 | RT_BIT(X86_XCPT_DE))
139
140
141/** @name VMCB Clean Bits.
142 *
143 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
144 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
145 * memory.
146 *
147 * @{ */
148/** All intercepts vectors, TSC offset, PAUSE filter counter. */
149#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
150/** I/O permission bitmap, MSR permission bitmap. */
151#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
152/** ASID. */
153#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
154/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
155V_INTR_VECTOR. */
156#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
157/** Nested Paging: Nested CR3 (nCR3), PAT. */
158#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
159/** Control registers (CR0, CR3, CR4, EFER). */
160#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
161/** Debug registers (DR6, DR7). */
162#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
163/** GDT, IDT limit and base. */
164#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
165/** Segment register: CS, SS, DS, ES limit and base. */
166#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
167/** CR2.*/
168#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
169/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
170#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
171/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
172PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
173#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
174/** Mask of all valid VMCB Clean bits. */
175#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
176 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
177 | HMSVM_VMCB_CLEAN_ASID \
178 | HMSVM_VMCB_CLEAN_TPR \
179 | HMSVM_VMCB_CLEAN_NP \
180 | HMSVM_VMCB_CLEAN_CRX_EFER \
181 | HMSVM_VMCB_CLEAN_DRX \
182 | HMSVM_VMCB_CLEAN_DT \
183 | HMSVM_VMCB_CLEAN_SEG \
184 | HMSVM_VMCB_CLEAN_CR2 \
185 | HMSVM_VMCB_CLEAN_LBR \
186 | HMSVM_VMCB_CLEAN_AVIC)
187/** @} */
188
189/** @name SVM transient.
190 *
191 * A state structure for holding miscellaneous information across AMD-V
192 * VMRUN/#VMEXIT operation, restored after the transition.
193 *
194 * @{ */
195typedef struct SVMTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG uEflags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202
203 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
204 uint64_t u64ExitCode;
205 /** The guest's TPR value used for TPR shadowing. */
206 uint8_t u8GuestTpr;
207 /** Alignment. */
208 uint8_t abAlignment0[7];
209
210 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
211 bool fRestoreTscAuxMsr;
212 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
213 * contributary exception or a page-fault. */
214 bool fVectoringPF;
215 /** Whether the TSC offset mode needs to be updated. */
216 bool fUpdateTscOffsetting;
217} SVMTRANSIENT, *PSVMTRANSIENT;
218AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
219AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
220/** @} */
221
222
223/**
224 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
225 */
226typedef enum SVMMSREXITREAD
227{
228 /** Reading this MSR causes a VM-exit. */
229 SVMMSREXIT_INTERCEPT_READ = 0xb,
230 /** Reading this MSR does not cause a VM-exit. */
231 SVMMSREXIT_PASSTHRU_READ
232} SVMMSREXITREAD;
233
234/**
235 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
236 */
237typedef enum SVMMSREXITWRITE
238{
239 /** Writing to this MSR causes a VM-exit. */
240 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
241 /** Writing to this MSR does not cause a VM-exit. */
242 SVMMSREXIT_PASSTHRU_WRITE
243} SVMMSREXITWRITE;
244
245
246/*******************************************************************************
247* Internal Functions *
248*******************************************************************************/
249static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
250static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
251static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
252
253HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
256HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
257HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
258HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
259HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
260HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
261HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
263HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
264HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
265HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
266HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
267HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
268HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
269HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
270HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
271HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
272HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
273HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
274HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
275HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
276HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
277HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
278HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
279HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
280
281DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
282
283
284/*******************************************************************************
285* Global Variables *
286*******************************************************************************/
287/** Ring-0 memory object for the IO bitmap. */
288RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
289/** Physical address of the IO bitmap. */
290RTHCPHYS g_HCPhysIOBitmap = 0;
291/** Virtual address of the IO bitmap. */
292R0PTRTYPE(void *) g_pvIOBitmap = NULL;
293
294
295/**
296 * Sets up and activates AMD-V on the current CPU.
297 *
298 * @returns VBox status code.
299 * @param pCpu Pointer to the CPU info struct.
300 * @param pVM Pointer to the VM (can be NULL after a resume!).
301 * @param pvCpuPage Pointer to the global CPU page.
302 * @param HCPhysCpuPage Physical address of the global CPU page.
303 */
304VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
305{
306 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
307 AssertReturn( HCPhysCpuPage
308 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
309 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
310
311 /*
312 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
313 */
314 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
315 if (u64HostEfer & MSR_K6_EFER_SVME)
316 {
317 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
318 if ( pVM
319 && pVM->hm.s.svm.fIgnoreInUseError)
320 {
321 pCpu->fIgnoreAMDVInUseError = true;
322 }
323
324 if (!pCpu->fIgnoreAMDVInUseError)
325 return VERR_SVM_IN_USE;
326 }
327
328 /* Turn on AMD-V in the EFER MSR. */
329 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
330
331 /* Write the physical page address where the CPU will store the host state while executing the VM. */
332 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
333
334 /*
335 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
336 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
337 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
338 * to flush the TLB with before using a new ASID.
339 */
340 pCpu->fFlushAsidBeforeUse = true;
341
342 /*
343 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
344 */
345 ++pCpu->cTlbFlushes;
346
347 return VINF_SUCCESS;
348}
349
350
351/**
352 * Deactivates AMD-V on the current CPU.
353 *
354 * @returns VBox status code.
355 * @param pCpu Pointer to the CPU info struct.
356 * @param pvCpuPage Pointer to the global CPU page.
357 * @param HCPhysCpuPage Physical address of the global CPU page.
358 */
359VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
360{
361 AssertReturn( HCPhysCpuPage
362 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
363 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
364 NOREF(pCpu);
365
366 /* Turn off AMD-V in the EFER MSR. */
367 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
368 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
369
370 /* Invalidate host state physical address. */
371 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Does global AMD-V initialization (called during module initialization).
379 *
380 * @returns VBox status code.
381 */
382VMMR0DECL(int) SVMR0GlobalInit(void)
383{
384 /*
385 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
386 * once globally here instead of per-VM.
387 */
388 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
389 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
390 if (RT_FAILURE(rc))
391 return rc;
392
393 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
394 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
395
396 /* Set all bits to intercept all IO accesses. */
397 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
398 return VINF_SUCCESS;
399}
400
401
402/**
403 * Does global AMD-V termination (called during module termination).
404 */
405VMMR0DECL(void) SVMR0GlobalTerm(void)
406{
407 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
408 {
409 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
410 g_pvIOBitmap = NULL;
411 g_HCPhysIOBitmap = 0;
412 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
413 }
414}
415
416
417/**
418 * Frees any allocated per-VCPU structures for a VM.
419 *
420 * @param pVM Pointer to the VM.
421 */
422DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
423{
424 for (uint32_t i = 0; i < pVM->cCpus; i++)
425 {
426 PVMCPU pVCpu = &pVM->aCpus[i];
427 AssertPtr(pVCpu);
428
429 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
430 {
431 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
432 pVCpu->hm.s.svm.pvVmcbHost = 0;
433 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
434 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
435 }
436
437 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
438 {
439 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
440 pVCpu->hm.s.svm.pvVmcb = 0;
441 pVCpu->hm.s.svm.HCPhysVmcb = 0;
442 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
443 }
444
445 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
446 {
447 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
448 pVCpu->hm.s.svm.pvMsrBitmap = 0;
449 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
450 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
451 }
452 }
453}
454
455
456/**
457 * Does per-VM AMD-V initialization.
458 *
459 * @returns VBox status code.
460 * @param pVM Pointer to the VM.
461 */
462VMMR0DECL(int) SVMR0InitVM(PVM pVM)
463{
464 int rc = VERR_INTERNAL_ERROR_5;
465
466 /*
467 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
468 */
469 uint32_t u32Family;
470 uint32_t u32Model;
471 uint32_t u32Stepping;
472 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
473 {
474 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
475 pVM->hm.s.svm.fAlwaysFlushTLB = true;
476 }
477
478 /*
479 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
480 */
481 for (VMCPUID i = 0; i < pVM->cCpus; i++)
482 {
483 PVMCPU pVCpu = &pVM->aCpus[i];
484 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
485 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
486 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
487 }
488
489 for (VMCPUID i = 0; i < pVM->cCpus; i++)
490 {
491 PVMCPU pVCpu = &pVM->aCpus[i];
492
493 /*
494 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
495 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
496 */
497 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
498 if (RT_FAILURE(rc))
499 goto failure_cleanup;
500
501 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
502 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
503 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
504 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
505
506 /*
507 * Allocate one page for the guest-state VMCB.
508 */
509 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
510 if (RT_FAILURE(rc))
511 goto failure_cleanup;
512
513 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
514 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
515 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
516 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
517
518 /*
519 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
520 * SVM to not require one.
521 */
522 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
523 if (RT_FAILURE(rc))
524 goto failure_cleanup;
525
526 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
527 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
528 /* Set all bits to intercept all MSR accesses (changed later on). */
529 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
530 }
531
532 return VINF_SUCCESS;
533
534failure_cleanup:
535 hmR0SvmFreeStructs(pVM);
536 return rc;
537}
538
539
540/**
541 * Does per-VM AMD-V termination.
542 *
543 * @returns VBox status code.
544 * @param pVM Pointer to the VM.
545 */
546VMMR0DECL(int) SVMR0TermVM(PVM pVM)
547{
548 hmR0SvmFreeStructs(pVM);
549 return VINF_SUCCESS;
550}
551
552
553/**
554 * Sets the permission bits for the specified MSR in the MSRPM.
555 *
556 * @param pVCpu Pointer to the VMCPU.
557 * @param uMsr The MSR for which the access permissions are being set.
558 * @param enmRead MSR read permissions.
559 * @param enmWrite MSR write permissions.
560 */
561static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
562{
563 unsigned ulBit;
564 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
565
566 /*
567 * Layout:
568 * Byte offset MSR range
569 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
570 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
571 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
572 * 0x1800 - 0x1fff Reserved
573 */
574 if (uMsr <= 0x00001FFF)
575 {
576 /* Pentium-compatible MSRs. */
577 ulBit = uMsr * 2;
578 }
579 else if ( uMsr >= 0xC0000000
580 && uMsr <= 0xC0001FFF)
581 {
582 /* AMD Sixth Generation x86 Processor MSRs. */
583 ulBit = (uMsr - 0xC0000000) * 2;
584 pbMsrBitmap += 0x800;
585 }
586 else if ( uMsr >= 0xC0010000
587 && uMsr <= 0xC0011FFF)
588 {
589 /* AMD Seventh and Eighth Generation Processor MSRs. */
590 ulBit = (uMsr - 0xC0001000) * 2;
591 pbMsrBitmap += 0x1000;
592 }
593 else
594 {
595 AssertFailed();
596 return;
597 }
598
599 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
600 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
601 ASMBitSet(pbMsrBitmap, ulBit);
602 else
603 ASMBitClear(pbMsrBitmap, ulBit);
604
605 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
606 ASMBitSet(pbMsrBitmap, ulBit + 1);
607 else
608 ASMBitClear(pbMsrBitmap, ulBit + 1);
609
610 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
611 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
612}
613
614
615/**
616 * Sets up AMD-V for the specified VM.
617 * This function is only called once per-VM during initalization.
618 *
619 * @returns VBox status code.
620 * @param pVM Pointer to the VM.
621 */
622VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
623{
624 int rc = VINF_SUCCESS;
625
626 AssertReturn(pVM, VERR_INVALID_PARAMETER);
627 Assert(pVM->hm.s.svm.fSupported);
628
629 for (VMCPUID i = 0; i < pVM->cCpus; i++)
630 {
631 PVMCPU pVCpu = &pVM->aCpus[i];
632 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
633
634 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
635
636 /* Trap exceptions unconditionally (debug purposes). */
637#ifdef HMSVM_ALWAYS_TRAP_PF
638 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
639#endif
640#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
641 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
642 pVmcb->ctrl.u32InterceptException |= 0
643 | RT_BIT(X86_XCPT_BP)
644 | RT_BIT(X86_XCPT_DB)
645 | RT_BIT(X86_XCPT_DE)
646 | RT_BIT(X86_XCPT_NM)
647 | RT_BIT(X86_XCPT_UD)
648 | RT_BIT(X86_XCPT_NP)
649 | RT_BIT(X86_XCPT_SS)
650 | RT_BIT(X86_XCPT_GP)
651 | RT_BIT(X86_XCPT_PF)
652 | RT_BIT(X86_XCPT_MF)
653 ;
654#endif
655
656 /* Set up unconditional intercepts and conditions. */
657 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
658 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
659 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
660 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
661 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
662 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
663 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
664 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
665 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
666 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
667 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
668 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
669
670 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
671 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
672 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
673 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
674 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
675 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
676 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
677 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
678 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
679 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
680
681 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
682 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
683
684 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
685 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
686
687 /* Intercept all DRx reads and writes by default. Changed later on. */
688 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
689 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
690
691 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
692 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
693
694 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
695 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
696 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
697
698 /* Set IO and MSR bitmap permission bitmap physical addresses. */
699 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
700 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
701
702 /* No LBR virtualization. */
703 pVmcb->ctrl.u64LBRVirt = 0;
704
705 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
706 pVmcb->ctrl.u64VmcbCleanBits = 0;
707
708 /* The host ASID MBZ, for the guest start with 1. */
709 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
710
711 /*
712 * Setup the PAT MSR (applicable for Nested Paging only).
713 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
714 * so choose type 6 for all PAT slots.
715 */
716 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
717
718 /* Without Nested Paging, we need additionally intercepts. */
719 if (!pVM->hm.s.fNestedPaging)
720 {
721 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
722 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
723 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
724
725 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
726 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
727 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
728
729 /* Page faults must be intercepted to implement shadow paging. */
730 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
731 }
732
733#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
734 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
735#endif
736
737 /*
738 * The following MSRs are saved/restored automatically during the world-switch.
739 * Don't intercept guest read/write accesses to these MSRs.
740 */
741 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
742 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
743 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
744 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
745 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
746 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
747 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
748 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
749 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
750 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
751 }
752
753 return rc;
754}
755
756
757/**
758 * Invalidates a guest page by guest virtual address.
759 *
760 * @returns VBox status code.
761 * @param pVM Pointer to the VM.
762 * @param pVCpu Pointer to the VMCPU.
763 * @param GCVirt Guest virtual address of the page to invalidate.
764 */
765VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
766{
767 AssertReturn(pVM, VERR_INVALID_PARAMETER);
768 Assert(pVM->hm.s.svm.fSupported);
769
770 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
771
772 /* Skip it if a TLB flush is already pending. */
773 if (!fFlushPending)
774 {
775 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
776
777 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
778 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
779
780#if HC_ARCH_BITS == 32
781 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
782 if (CPUMIsGuestInLongMode(pVCpu))
783 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
784 else
785#endif
786 {
787 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
788 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
789 }
790 }
791 return VINF_SUCCESS;
792}
793
794
795/**
796 * Flushes the appropriate tagged-TLB entries.
797 *
798 * @param pVM Pointer to the VM.
799 * @param pVCpu Pointer to the VMCPU.
800 */
801static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
802{
803 PVM pVM = pVCpu->CTX_SUFF(pVM);
804 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
805 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
806
807 /*
808 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
809 * This can happen both for start & resume due to long jumps back to ring-3.
810 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
811 * so we cannot reuse the ASIDs without flushing.
812 */
813 bool fNewAsid = false;
814 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
815 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
816 {
817 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
818 pVCpu->hm.s.fForceTLBFlush = true;
819 fNewAsid = true;
820 }
821
822 /* Set TLB flush state as checked until we return from the world switch. */
823 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
824
825 /* Check for explicit TLB shootdowns. */
826 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
827 {
828 pVCpu->hm.s.fForceTLBFlush = true;
829 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
830 }
831
832 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
833 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
834
835 if (pVM->hm.s.svm.fAlwaysFlushTLB)
836 {
837 /*
838 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
839 */
840 pCpu->uCurrentAsid = 1;
841 pVCpu->hm.s.uCurrentAsid = 1;
842 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
843 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
844 }
845 else if (pVCpu->hm.s.fForceTLBFlush)
846 {
847 if (fNewAsid)
848 {
849 ++pCpu->uCurrentAsid;
850 bool fHitASIDLimit = false;
851 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
852 {
853 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
854 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
855 fHitASIDLimit = true;
856
857 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
858 {
859 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
860 pCpu->fFlushAsidBeforeUse = true;
861 }
862 else
863 {
864 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
865 pCpu->fFlushAsidBeforeUse = false;
866 }
867 }
868
869 if ( !fHitASIDLimit
870 && pCpu->fFlushAsidBeforeUse)
871 {
872 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
873 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
874 else
875 {
876 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
877 pCpu->fFlushAsidBeforeUse = false;
878 }
879 }
880
881 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
882 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
883 }
884 else
885 {
886 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
887 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
888 else
889 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
890 }
891
892 pVCpu->hm.s.fForceTLBFlush = false;
893 }
894 else
895 {
896 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
897 * not be executed. See hmQueueInvlPage() where it is commented
898 * out. Support individual entry flushing someday. */
899 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
900 {
901 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
902 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
903 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
904 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
905 }
906 }
907
908 pVCpu->hm.s.TlbShootdown.cPages = 0;
909 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
910
911 /* Update VMCB with the ASID. */
912 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
913 {
914 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
915 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
916 }
917
918 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
919 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
920 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
921 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
922 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
923 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
924
925#ifdef VBOX_WITH_STATISTICS
926 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
927 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
928 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
929 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
930 {
931 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
932 }
933 else
934 {
935 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
936 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
937 }
938#endif
939}
940
941
942/** @name 64-bit guest on 32-bit host OS helper functions.
943 *
944 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
945 * mode (code segment, paging). These wrappers/helpers perform the necessary
946 * bits for the 32->64 switcher.
947 *
948 * @{ */
949#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
950/**
951 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
952 *
953 * @returns VBox status code.
954 * @param HCPhysVmcbHost Physical address of host VMCB.
955 * @param HCPhysVmcb Physical address of the VMCB.
956 * @param pCtx Pointer to the guest-CPU context.
957 * @param pVM Pointer to the VM.
958 * @param pVCpu Pointer to the VMCPU.
959 */
960DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
961{
962 uint32_t aParam[4];
963 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
964 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
965 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
966 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
967
968 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
969}
970
971
972/**
973 * Executes the specified VMRUN handler in 64-bit mode.
974 *
975 * @returns VBox status code.
976 * @param pVM Pointer to the VM.
977 * @param pVCpu Pointer to the VMCPU.
978 * @param pCtx Pointer to the guest-CPU context.
979 * @param enmOp The operation to perform.
980 * @param cbParam Number of parameters.
981 * @param paParam Array of 32-bit parameters.
982 */
983VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
984 uint32_t *paParam)
985{
986 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
987 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
988
989 /* Disable interrupts. */
990 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
991
992#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
993 RTCPUID idHostCpu = RTMpCpuId();
994 CPUMR0SetLApic(pVCpu, idHostCpu);
995#endif
996
997 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
998 CPUMSetHyperEIP(pVCpu, enmOp);
999 for (int i = (int)cbParam - 1; i >= 0; i--)
1000 CPUMPushHyper(pVCpu, paParam[i]);
1001
1002 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1003 /* Call the switcher. */
1004 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1005 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1006
1007 /* Restore interrupts. */
1008 ASMSetFlags(uOldEFlags);
1009 return rc;
1010}
1011
1012#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1013/** @} */
1014
1015
1016/**
1017 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1018 * the corresponding VMCB Clean Bit.
1019 *
1020 * @param pVmcb Pointer to the VMCB.
1021 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1022 */
1023DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1024{
1025 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1026 {
1027 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1028 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1029 }
1030}
1031
1032
1033/**
1034 * Removes an exception from the intercept-exception bitmap in the VMCB and
1035 * updates the corresponding VMCB Clean Bit.
1036 *
1037 * @param pVmcb Pointer to the VMCB.
1038 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1039 */
1040DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1041{
1042#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1043 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1044 {
1045 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1046 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1047 }
1048#endif
1049}
1050
1051
1052/**
1053 * Loads the guest CR0 control register into the guest-state area in the VMCB.
1054 * Although the guest CR0 is a separate field in the VMCB we have to consider
1055 * the FPU state itself which is shared between the host and the guest.
1056 *
1057 * @returns VBox status code.
1058 * @param pVM Pointer to the VMCPU.
1059 * @param pVmcb Pointer to the VMCB.
1060 * @param pCtx Pointer to the guest-CPU context.
1061 *
1062 * @remarks No-long-jump zone!!!
1063 */
1064static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1065{
1066 /*
1067 * Guest CR0.
1068 */
1069 PVM pVM = pVCpu->CTX_SUFF(pVM);
1070 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1071 {
1072 uint64_t u64GuestCR0 = pCtx->cr0;
1073
1074 /* Always enable caching. */
1075 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1076
1077 /*
1078 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1079 */
1080 if (!pVM->hm.s.fNestedPaging)
1081 {
1082 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1083 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1084 }
1085
1086 /*
1087 * Guest FPU bits.
1088 */
1089 bool fInterceptNM = false;
1090 bool fInterceptMF = false;
1091 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1092 if (CPUMIsGuestFPUStateActive(pVCpu))
1093 {
1094 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1095 if (!(u64GuestCR0 & X86_CR0_NE))
1096 {
1097 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1098 fInterceptMF = true;
1099 }
1100 }
1101 else
1102 {
1103 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1104 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1105 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1106 }
1107
1108 /*
1109 * Update the exception intercept bitmap.
1110 */
1111 if (fInterceptNM)
1112 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1113 else
1114 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1115
1116 if (fInterceptMF)
1117 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1118 else
1119 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1120
1121 pVmcb->guest.u64CR0 = u64GuestCR0;
1122 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1123 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1124 }
1125}
1126
1127
1128/**
1129 * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
1130 *
1131 * @returns VBox status code.
1132 * @param pVCpu Pointer to the VMCPU.
1133 * @param pVmcb Pointer to the VMCB.
1134 * @param pCtx Pointer to the guest-CPU context.
1135 *
1136 * @remarks No-long-jump zone!!!
1137 */
1138static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1139{
1140 PVM pVM = pVCpu->CTX_SUFF(pVM);
1141
1142 /*
1143 * Guest CR2.
1144 */
1145 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1146 {
1147 pVmcb->guest.u64CR2 = pCtx->cr2;
1148 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1149 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1150 }
1151
1152 /*
1153 * Guest CR3.
1154 */
1155 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1156 {
1157 if (pVM->hm.s.fNestedPaging)
1158 {
1159 PGMMODE enmShwPagingMode;
1160#if HC_ARCH_BITS == 32
1161 if (CPUMIsGuestInLongModeEx(pCtx))
1162 enmShwPagingMode = PGMMODE_AMD64_NX;
1163 else
1164#endif
1165 enmShwPagingMode = PGMGetHostMode(pVM);
1166
1167 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1168 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1169 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1170 pVmcb->guest.u64CR3 = pCtx->cr3;
1171 }
1172 else
1173 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1174
1175 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1176 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1177 }
1178
1179 /*
1180 * Guest CR4.
1181 */
1182 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1183 {
1184 uint64_t u64GuestCR4 = pCtx->cr4;
1185 if (!pVM->hm.s.fNestedPaging)
1186 {
1187 switch (pVCpu->hm.s.enmShadowMode)
1188 {
1189 case PGMMODE_REAL:
1190 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1191 AssertFailed();
1192 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1193
1194 case PGMMODE_32_BIT: /* 32-bit paging. */
1195 u64GuestCR4 &= ~X86_CR4_PAE;
1196 break;
1197
1198 case PGMMODE_PAE: /* PAE paging. */
1199 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1200 /** Must use PAE paging as we could use physical memory > 4 GB */
1201 u64GuestCR4 |= X86_CR4_PAE;
1202 break;
1203
1204 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1205 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1206#ifdef VBOX_ENABLE_64_BITS_GUESTS
1207 break;
1208#else
1209 AssertFailed();
1210 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1211#endif
1212
1213 default: /* shut up gcc */
1214 AssertFailed();
1215 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1216 }
1217 }
1218
1219 pVmcb->guest.u64CR4 = u64GuestCR4;
1220 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1221 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1222 }
1223
1224 return VINF_SUCCESS;
1225}
1226
1227
1228/**
1229 * Loads the guest segment registers into the VMCB.
1230 *
1231 * @returns VBox status code.
1232 * @param pVCpu Pointer to the VMCPU.
1233 * @param pVmcb Pointer to the VMCB.
1234 * @param pCtx Pointer to the guest-CPU context.
1235 *
1236 * @remarks No-long-jump zone!!!
1237 */
1238static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1239{
1240 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1241 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1242 {
1243 HMSVM_LOAD_SEG_REG(CS, cs);
1244 HMSVM_LOAD_SEG_REG(SS, ss);
1245 HMSVM_LOAD_SEG_REG(DS, ds);
1246 HMSVM_LOAD_SEG_REG(ES, es);
1247 HMSVM_LOAD_SEG_REG(FS, fs);
1248 HMSVM_LOAD_SEG_REG(GS, gs);
1249
1250 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1251 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1252 }
1253
1254 /* Guest TR. */
1255 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1256 {
1257 HMSVM_LOAD_SEG_REG(TR, tr);
1258 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1259 }
1260
1261 /* Guest LDTR. */
1262 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1263 {
1264 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1265 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1266 }
1267
1268 /* Guest GDTR. */
1269 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1270 {
1271 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1272 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1273 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1274 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1275 }
1276
1277 /* Guest IDTR. */
1278 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1279 {
1280 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1281 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1282 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1283 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1284 }
1285}
1286
1287
1288/**
1289 * Loads the guest MSRs into the VMCB.
1290 *
1291 * @param pVCpu Pointer to the VMCPU.
1292 * @param pVmcb Pointer to the VMCB.
1293 * @param pCtx Pointer to the guest-CPU context.
1294 *
1295 * @remarks No-long-jump zone!!!
1296 */
1297static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1298{
1299 /* Guest Sysenter MSRs. */
1300 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1301 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1302 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1303
1304 /*
1305 * Guest EFER MSR.
1306 * AMD-V requires guest EFER.SVME to be set. Weird. .
1307 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1308 */
1309 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1310 {
1311 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1312 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1313 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1314 }
1315
1316 /* 64-bit MSRs. */
1317 if (CPUMIsGuestInLongModeEx(pCtx))
1318 {
1319 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1320 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1321 }
1322 else
1323 {
1324 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1325 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1326 {
1327 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1328 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1329 }
1330 }
1331
1332
1333 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1334 * be writable in 32-bit mode. Clarify with AMD spec. */
1335 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1336 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1337 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1338 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1339 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1340}
1341
1342
1343/**
1344 * Loads the guest state into the VMCB and programs the necessary intercepts
1345 * accordingly.
1346 *
1347 * @param pVCpu Pointer to the VMCPU.
1348 * @param pVmcb Pointer to the VMCB.
1349 * @param pCtx Pointer to the guest-CPU context.
1350 *
1351 * @remarks No-long-jump zone!!!
1352 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1353 */
1354static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1355{
1356 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1357 return;
1358 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1359 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1360
1361 bool fInterceptDB = false;
1362 bool fInterceptMovDRx = false;
1363
1364 /*
1365 * Anyone single stepping on the host side? If so, we'll have to use the
1366 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1367 * the VMM level like VT-x implementations does.
1368 */
1369 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1370 if (fStepping)
1371 {
1372 pVCpu->hm.s.fClearTrapFlag = true;
1373 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1374 fInterceptDB = true;
1375 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1376 }
1377
1378 PVM pVM = pVCpu->CTX_SUFF(pVM);
1379 if (fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1380 {
1381 /*
1382 * Use the combined guest and host DRx values found in the hypervisor
1383 * register set because the debugger has breakpoints active or someone
1384 * is single stepping on the host side.
1385 *
1386 * Note! DBGF expects a clean DR6 state before executing guest code.
1387 */
1388 if (!CPUMIsHyperDebugStateActive(pVCpu))
1389 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1390 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1391 Assert(CPUMIsHyperDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
1392
1393 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1394 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1395 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu) )
1396 {
1397 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1398 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1399 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1400 }
1401
1402 /** @todo If we cared, we could optimize to allow the guest to read registers
1403 * with the same values. */
1404 fInterceptDB = true;
1405 fInterceptMovDRx = true;
1406 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1407 }
1408 else
1409 {
1410 /*
1411 * Update DR6, DR7 with the guest values if necessary.
1412 */
1413 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1414 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1415 {
1416 pVmcb->guest.u64DR7 = pCtx->dr[7];
1417 pVmcb->guest.u64DR6 = pCtx->dr[6];
1418 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1419 }
1420
1421 /*
1422 * If the guest has enabled debug registers, we need to load them prior to
1423 * executing guest code so they'll trigger at the right time.
1424 */
1425 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1426 {
1427 if (!CPUMIsGuestDebugStateActive(pVCpu))
1428 {
1429 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1430 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1431 }
1432 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1433 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
1434 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1435 }
1436 /*
1437 * If no debugging enabled, we'll lazy load DR0-3.
1438 */
1439 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1440 fInterceptMovDRx = true;
1441 }
1442
1443 /*
1444 * Set up the intercepts.
1445 */
1446 if (fInterceptDB)
1447 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1448 else
1449 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1450
1451 if (fInterceptMovDRx)
1452 {
1453 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1454 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1455 {
1456 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1457 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1458 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1459 }
1460 }
1461 else
1462 {
1463 if ( pVmcb->ctrl.u16InterceptRdDRx
1464 || pVmcb->ctrl.u16InterceptWrDRx)
1465 {
1466 pVmcb->ctrl.u16InterceptRdDRx = 0;
1467 pVmcb->ctrl.u16InterceptWrDRx = 0;
1468 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1469 }
1470 }
1471
1472 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1473}
1474
1475
1476/**
1477 * Loads the guest APIC state (currently just the TPR).
1478 *
1479 * @returns VBox status code.
1480 * @param pVCpu Pointer to the VMCPU.
1481 * @param pVmcb Pointer to the VMCB.
1482 * @param pCtx Pointer to the guest-CPU context.
1483 */
1484static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1485{
1486 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1487 return VINF_SUCCESS;
1488
1489 bool fPendingIntr;
1490 uint8_t u8Tpr;
1491 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1492 AssertRCReturn(rc, rc);
1493
1494 /** Assume that we need to trap all TPR accesses and thus need not check on
1495 * every #VMEXIT if we should update the TPR. */
1496 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1497 pVCpu->hm.s.svm.fSyncVTpr = false;
1498
1499 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1500 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1501 {
1502 pCtx->msrLSTAR = u8Tpr;
1503
1504 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1505 if (fPendingIntr)
1506 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1507 else
1508 {
1509 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1510 pVCpu->hm.s.svm.fSyncVTpr = true;
1511 }
1512 }
1513 else
1514 {
1515 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1516 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1517
1518 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1519 if (fPendingIntr)
1520 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1521 else
1522 {
1523 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1524 pVCpu->hm.s.svm.fSyncVTpr = true;
1525 }
1526
1527 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1528 }
1529
1530 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1531 return rc;
1532}
1533
1534
1535/**
1536 * Sets up the appropriate function to run guest code.
1537 *
1538 * @returns VBox status code.
1539 * @param pVCpu Pointer to the VMCPU.
1540 * @param pCtx Pointer to the guest-CPU context.
1541 *
1542 * @remarks No-long-jump zone!!!
1543 */
1544static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1545{
1546 if (CPUMIsGuestInLongModeEx(pCtx))
1547 {
1548#ifndef VBOX_ENABLE_64_BITS_GUESTS
1549 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1550#endif
1551 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1552#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1553 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1554 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1555#else
1556 /* 64-bit host or hybrid host. */
1557 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1558#endif
1559 }
1560 else
1561 {
1562 /* Guest is not in long mode, use the 32-bit handler. */
1563 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1564 }
1565 return VINF_SUCCESS;
1566}
1567
1568
1569/**
1570 * Enters the AMD-V session.
1571 *
1572 * @returns VBox status code.
1573 * @param pVM Pointer to the VM.
1574 * @param pVCpu Pointer to the VMCPU.
1575 * @param pCpu Pointer to the CPU info struct.
1576 */
1577VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1578{
1579 AssertPtr(pVM);
1580 AssertPtr(pVCpu);
1581 Assert(pVM->hm.s.svm.fSupported);
1582 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1583 NOREF(pCpu);
1584
1585 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1586
1587 pVCpu->hm.s.fLeaveDone = false;
1588 return VINF_SUCCESS;
1589}
1590
1591
1592/**
1593 * Thread-context callback for AMD-V.
1594 *
1595 * @param enmEvent The thread-context event.
1596 * @param pVCpu Pointer to the VMCPU.
1597 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1598 */
1599VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1600{
1601 switch (enmEvent)
1602 {
1603 case RTTHREADCTXEVENT_PREEMPTING:
1604 {
1605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1606 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1607 VMCPU_ASSERT_EMT(pVCpu);
1608
1609 PVM pVM = pVCpu->CTX_SUFF(pVM);
1610 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1611 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1612
1613 if (!pVCpu->hm.s.fLeaveDone)
1614 {
1615 hmR0SvmLeave(pVM, pVCpu, pCtx);
1616 pVCpu->hm.s.fLeaveDone = true;
1617 }
1618
1619 int rc = HMR0LeaveCpu(pVCpu); /* Leave HM context, takes care of local init (term). */
1620 AssertRC(rc); NOREF(rc);
1621
1622 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1623 break;
1624 }
1625
1626 case RTTHREADCTXEVENT_RESUMED:
1627 {
1628 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1629 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1630 VMCPU_ASSERT_EMT(pVCpu);
1631
1632 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1633
1634 /*
1635 * Initialize the bare minimum state required for HM. This takes care of
1636 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1637 */
1638 int rc = HMR0EnterCpu(pVCpu);
1639 AssertRC(rc); NOREF(rc);
1640 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1641
1642 pVCpu->hm.s.fLeaveDone = false;
1643 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1644 break;
1645 }
1646
1647 default:
1648 break;
1649 }
1650}
1651
1652
1653/**
1654 * Saves the host state.
1655 *
1656 * @returns VBox status code.
1657 * @param pVM Pointer to the VM.
1658 * @param pVCpu Pointer to the VMCPU.
1659 *
1660 * @remarks No-long-jump zone!!!
1661 */
1662VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1663{
1664 NOREF(pVM);
1665 NOREF(pVCpu);
1666 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1667 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1668 return VINF_SUCCESS;
1669}
1670
1671
1672/**
1673 * Loads the guest state into the VMCB. The CPU state will be loaded from these
1674 * fields on every successful VM-entry.
1675 *
1676 * Sets up the appropriate VMRUN function to execute guest code based
1677 * on the guest CPU mode.
1678 *
1679 * @returns VBox status code.
1680 * @param pVM Pointer to the VM.
1681 * @param pVCpu Pointer to the VMCPU.
1682 * @param pMixedCtx Pointer to the guest-CPU context.
1683 *
1684 * @remarks No-long-jump zone!!!
1685 */
1686static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1687{
1688 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1689 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1690
1691 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1692
1693 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1694 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1695
1696 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1697 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1698
1699 pVmcb->guest.u64RIP = pCtx->rip;
1700 pVmcb->guest.u64RSP = pCtx->rsp;
1701 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1702 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1703 pVmcb->guest.u64RAX = pCtx->rax;
1704
1705 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1706 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1707
1708 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1709 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1710
1711 /* Clear any unused and reserved bits. */
1712 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1713 | HM_CHANGED_GUEST_RSP
1714 | HM_CHANGED_GUEST_RFLAGS
1715 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1716 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1717 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1718 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1719 | HM_CHANGED_SVM_RESERVED2
1720 | HM_CHANGED_SVM_RESERVED3);
1721
1722 /* All the guest state bits should be loaded except maybe the host context and shared host/guest bits. */
1723 AssertMsg( !(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST)
1724 || !(pVCpu->hm.s.fContextUseFlags & ~(HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE)),
1725 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1726 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1727
1728 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss, pCtx->rsp));
1729
1730 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1731 return rc;
1732}
1733
1734
1735/**
1736 * Loads the state shared between the host and guest into the
1737 * VMCB.
1738 *
1739 * @param pVCpu Pointer to the VMCPU.
1740 * @param pVmcb Pointer to the VMCB.
1741 * @param pCtx Pointer to the guest-CPU context.
1742 *
1743 * @remarks No-long-jump zone!!!
1744 */
1745static void hmR0VmxLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1746{
1747 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1748 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1749
1750 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1751 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
1752
1753 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG)
1754 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
1755
1756 AssertMsg(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_GUEST_SHARED_STATE), ("fContextUseFlags=%#x\n",
1757 pVCpu->hm.s.fContextUseFlags));
1758}
1759
1760
1761/**
1762 * Saves the entire guest state from the VMCB into the
1763 * guest-CPU context. Currently there is no residual state left in the CPU that
1764 * is not updated in the VMCB.
1765 *
1766 * @returns VBox status code.
1767 * @param pVCpu Pointer to the VMCPU.
1768 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1769 * out-of-sync. Make sure to update the required fields
1770 * before using them.
1771 */
1772static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1773{
1774 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1775
1776 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1777
1778 pMixedCtx->rip = pVmcb->guest.u64RIP;
1779 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1780 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1781 pMixedCtx->rax = pVmcb->guest.u64RAX;
1782
1783 /*
1784 * Guest interrupt shadow.
1785 */
1786 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1787 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1788 else
1789 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1790
1791 /*
1792 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1793 */
1794 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1795
1796 /*
1797 * Guest MSRs.
1798 */
1799 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1800 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1801 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1802 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1803 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1804 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1805 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1806 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1807
1808 /*
1809 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1810 */
1811 HMSVM_SAVE_SEG_REG(CS, cs);
1812 HMSVM_SAVE_SEG_REG(SS, ss);
1813 HMSVM_SAVE_SEG_REG(DS, ds);
1814 HMSVM_SAVE_SEG_REG(ES, es);
1815 HMSVM_SAVE_SEG_REG(FS, fs);
1816 HMSVM_SAVE_SEG_REG(GS, gs);
1817
1818 /*
1819 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1820 * register (yet).
1821 */
1822 /** @todo SELM might need to be fixed as it too should not care about the
1823 * granularity bit. See @bugref{6785}. */
1824 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1825 && pMixedCtx->cs.Attr.n.u1Present
1826 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1827 {
1828 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1829 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1830 }
1831
1832#ifdef VBOX_STRICT
1833# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1834 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1835 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1836 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1837 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1838 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1839 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1840
1841 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1842 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1843 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1844 HMSVM_ASSERT_SEG_GRANULARITY(es);
1845 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1846 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1847
1848# undef HMSVM_ASSERT_SEL_GRANULARITY
1849#endif
1850
1851 /*
1852 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1853 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1854 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1855 * See AMD spec. 15.5.1 "Basic operation".
1856 */
1857 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1858 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1859
1860 /*
1861 * Guest Descriptor-Table registers.
1862 */
1863 HMSVM_SAVE_SEG_REG(TR, tr);
1864 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1865 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1866 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1867
1868 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1869 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1870
1871 /*
1872 * Guest Debug registers.
1873 */
1874 if (!CPUMIsHyperDebugStateActive(pVCpu))
1875 {
1876 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1877 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1878 }
1879 else
1880 {
1881 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
1882 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
1883 }
1884
1885 /*
1886 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1887 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1888 */
1889 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1890 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1891 {
1892 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1893 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1894 }
1895}
1896
1897
1898/**
1899 * Does the necessary state syncing before returning to ring-3 for any reason
1900 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
1901 *
1902 * @param pVM Pointer to the VM.
1903 * @param pVCpu Pointer to the VMCPU.
1904 * @param pMixedCtx Pointer to the guest-CPU context.
1905 *
1906 * @remarks No-long-jmp zone!!!
1907 */
1908static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1909{
1910 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1911 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1912 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1913
1914 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1915 if (CPUMIsGuestFPUStateActive(pVCpu))
1916 {
1917 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1918 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1919 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1920 }
1921
1922 /*
1923 * Restore host debug registers if necessary and resync on next R0 reentry.
1924 */
1925#ifdef VBOX_STRICT
1926 if (CPUMIsHyperDebugStateActive(pVCpu))
1927 {
1928 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1929 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1930 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1931 }
1932#endif
1933 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
1934 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1935
1936 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1937 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1938
1939 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
1940 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
1941 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1942 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1943 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1944
1945 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1946}
1947
1948
1949/**
1950 * Leaves the AMD-V session.
1951 *
1952 * @returns VBox status code.
1953 * @param pVM Pointer to the VM.
1954 * @param pVCpu Pointer to the VMCPU.
1955 * @param pCtx Pointer to the guest-CPU context.
1956 */
1957static void hmR0SvmLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1958{
1959 HM_DISABLE_PREEMPT_IF_NEEDED();
1960 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1961 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1962
1963 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
1964 and done this from the VMXR0ThreadCtxCallback(). */
1965 if (!pVCpu->hm.s.fLeaveDone)
1966 {
1967 hmR0SvmLeave(pVM, pVCpu, pCtx);
1968 pVCpu->hm.s.fLeaveDone = true;
1969 }
1970
1971 /* Deregister hook now that we've left HM context before re-enabling preemption. */
1972 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
1973 VMMR0ThreadCtxHooksDeregister(pVCpu);
1974
1975 /* Leave HM context. This takes care of local init (term). */
1976 int rc = HMR0LeaveCpu(pVCpu);
1977 AssertRC(rc); NOREF(rc);
1978
1979 HM_RESTORE_PREEMPT_IF_NEEDED();
1980}
1981
1982
1983/**
1984 * Does the necessary state syncing before doing a longjmp to ring-3.
1985 *
1986 * @param pVM Pointer to the VM.
1987 * @param pVCpu Pointer to the VMCPU.
1988 * @param pCtx Pointer to the guest-CPU context.
1989 *
1990 * @remarks No-long-jmp zone!!!
1991 */
1992static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1993{
1994 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
1995}
1996
1997
1998/**
1999 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2000 * any remaining host state) before we longjump to ring-3 and possibly get
2001 * preempted.
2002 *
2003 * @param pVCpu Pointer to the VMCPU.
2004 * @param enmOperation The operation causing the ring-3 longjump.
2005 * @param pvUser The user argument (pointer to the possibly
2006 * out-of-date guest-CPU context).
2007 *
2008 * @remarks Must never be called with @a enmOperation ==
2009 * VMMCALLRING3_VM_R0_ASSERTION.
2010 */
2011DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2012{
2013 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
2014 Assert(pVCpu);
2015 Assert(pvUser);
2016 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2017 HMSVM_ASSERT_PREEMPT_SAFE();
2018
2019 VMMRZCallRing3Disable(pVCpu);
2020 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2021
2022 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2023 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2024
2025 VMMRZCallRing3Enable(pVCpu);
2026}
2027
2028
2029/**
2030 * Take necessary actions before going back to ring-3.
2031 *
2032 * An action requires us to go back to ring-3. This function does the necessary
2033 * steps before we can safely return to ring-3. This is not the same as longjmps
2034 * to ring-3, this is voluntary.
2035 *
2036 * @param pVM Pointer to the VM.
2037 * @param pVCpu Pointer to the VMCPU.
2038 * @param pCtx Pointer to the guest-CPU context.
2039 * @param rcExit The reason for exiting to ring-3. Can be
2040 * VINF_VMM_UNKNOWN_RING3_CALL.
2041 */
2042static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2043{
2044 Assert(pVM);
2045 Assert(pVCpu);
2046 Assert(pCtx);
2047 HMSVM_ASSERT_PREEMPT_SAFE();
2048
2049 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
2050 {
2051 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
2052 return;
2053 }
2054
2055 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2056 VMMRZCallRing3Disable(pVCpu);
2057 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2058
2059 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2060 if (pVCpu->hm.s.Event.fPending)
2061 {
2062 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2063 Assert(!pVCpu->hm.s.Event.fPending);
2064 }
2065
2066 /* Sync. the necessary state for going back to ring-3. */
2067 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2068 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2069
2070 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2071 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2072 | CPUM_CHANGED_LDTR
2073 | CPUM_CHANGED_GDTR
2074 | CPUM_CHANGED_IDTR
2075 | CPUM_CHANGED_TR
2076 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2077 if ( pVM->hm.s.fNestedPaging
2078 && CPUMIsGuestPagingEnabledEx(pCtx))
2079 {
2080 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2081 }
2082
2083 /* Make sure we've undo the trap flag if we tried to single step something. */
2084 if (pVCpu->hm.s.fClearTrapFlag)
2085 {
2086 pCtx->eflags.Bits.u1TF = 0;
2087 pVCpu->hm.s.fClearTrapFlag = false;
2088 }
2089
2090 /* On our way back from ring-3 the following needs to be done. */
2091 /** @todo This can change with preemption hooks. */
2092 if (rcExit == VINF_EM_RAW_INTERRUPT)
2093 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
2094 else
2095 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2096
2097 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2098 VMMRZCallRing3Enable(pVCpu);
2099}
2100
2101
2102/**
2103 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2104 * intercepts.
2105 *
2106 * @param pVCpu Pointer to the VMCPU.
2107 *
2108 * @remarks No-long-jump zone!!!
2109 */
2110static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
2111{
2112 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2113 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
2114 {
2115 uint64_t u64CurTSC = ASMReadTSC();
2116 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
2117 {
2118 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
2119 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
2120 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2121 }
2122 else
2123 {
2124 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2125 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2126 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
2127 }
2128 }
2129 else
2130 {
2131 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2132 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2133 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2134 }
2135
2136 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2137}
2138
2139
2140/**
2141 * Sets an event as a pending event to be injected into the guest.
2142 *
2143 * @param pVCpu Pointer to the VMCPU.
2144 * @param pEvent Pointer to the SVM event.
2145 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2146 * page-fault.
2147 *
2148 * @remarks Statistics counter assumes this is a guest event being reflected to
2149 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2150 */
2151DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2152{
2153 Assert(!pVCpu->hm.s.Event.fPending);
2154 Assert(pEvent->n.u1Valid);
2155
2156 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
2157 pVCpu->hm.s.Event.fPending = true;
2158 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2159
2160 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2161 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2162
2163 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
2164}
2165
2166
2167/**
2168 * Injects an event into the guest upon VMRUN by updating the relevant field
2169 * in the VMCB.
2170 *
2171 * @param pVCpu Pointer to the VMCPU.
2172 * @param pVmcb Pointer to the guest VMCB.
2173 * @param pCtx Pointer to the guest-CPU context.
2174 * @param pEvent Pointer to the event.
2175 *
2176 * @remarks No-long-jump zone!!!
2177 * @remarks Requires CR0!
2178 */
2179DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2180{
2181 pVmcb->ctrl.EventInject.u = pEvent->u;
2182 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2183
2184 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2185 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2186}
2187
2188
2189
2190/**
2191 * Converts any TRPM trap into a pending HM event. This is typically used when
2192 * entering from ring-3 (not longjmp returns).
2193 *
2194 * @param pVCpu Pointer to the VMCPU.
2195 */
2196static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2197{
2198 Assert(TRPMHasTrap(pVCpu));
2199 Assert(!pVCpu->hm.s.Event.fPending);
2200
2201 uint8_t uVector;
2202 TRPMEVENT enmTrpmEvent;
2203 RTGCUINT uErrCode;
2204 RTGCUINTPTR GCPtrFaultAddress;
2205 uint8_t cbInstr;
2206
2207 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2208 AssertRC(rc);
2209
2210 SVMEVENT Event;
2211 Event.u = 0;
2212 Event.n.u1Valid = 1;
2213 Event.n.u8Vector = uVector;
2214
2215 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2216 if (enmTrpmEvent == TRPM_TRAP)
2217 {
2218 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2219 switch (uVector)
2220 {
2221 case X86_XCPT_PF:
2222 case X86_XCPT_DF:
2223 case X86_XCPT_TS:
2224 case X86_XCPT_NP:
2225 case X86_XCPT_SS:
2226 case X86_XCPT_GP:
2227 case X86_XCPT_AC:
2228 {
2229 Event.n.u1ErrorCodeValid = 1;
2230 Event.n.u32ErrorCode = uErrCode;
2231 break;
2232 }
2233 }
2234 }
2235 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2236 {
2237 if (uVector == X86_XCPT_NMI)
2238 Event.n.u3Type = SVM_EVENT_NMI;
2239 else
2240 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2241 }
2242 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2243 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2244 else
2245 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2246
2247 rc = TRPMResetTrap(pVCpu);
2248 AssertRC(rc);
2249
2250 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2251 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2252
2253 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2254 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2255}
2256
2257
2258/**
2259 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2260 * AMD-V to execute any instruction.
2261 *
2262 * @param pvCpu Pointer to the VMCPU.
2263 */
2264static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2265{
2266 Assert(pVCpu->hm.s.Event.fPending);
2267 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2268
2269 SVMEVENT Event;
2270 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2271
2272 uint8_t uVector = Event.n.u8Vector;
2273 uint8_t uVectorType = Event.n.u3Type;
2274
2275 TRPMEVENT enmTrapType;
2276 switch (uVectorType)
2277 {
2278 case SVM_EVENT_EXTERNAL_IRQ:
2279 case SVM_EVENT_NMI:
2280 enmTrapType = TRPM_HARDWARE_INT;
2281 break;
2282 case SVM_EVENT_SOFTWARE_INT:
2283 enmTrapType = TRPM_SOFTWARE_INT;
2284 break;
2285 case SVM_EVENT_EXCEPTION:
2286 enmTrapType = TRPM_TRAP;
2287 break;
2288 default:
2289 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2290 enmTrapType = TRPM_32BIT_HACK;
2291 break;
2292 }
2293
2294 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2295
2296 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2297 AssertRC(rc);
2298
2299 if (Event.n.u1ErrorCodeValid)
2300 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2301
2302 if ( uVectorType == SVM_EVENT_EXCEPTION
2303 && uVector == X86_XCPT_PF)
2304 {
2305 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2306 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2307 }
2308 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2309 {
2310 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2311 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2312 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2313 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2314 }
2315 pVCpu->hm.s.Event.fPending = false;
2316}
2317
2318
2319/**
2320 * Gets the guest's interrupt-shadow.
2321 *
2322 * @returns The guest's interrupt-shadow.
2323 * @param pVCpu Pointer to the VMCPU.
2324 * @param pCtx Pointer to the guest-CPU context.
2325 *
2326 * @remarks No-long-jump zone!!!
2327 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2328 */
2329DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2330{
2331 /*
2332 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2333 * inhibit interrupts or clear any existing interrupt-inhibition.
2334 */
2335 uint32_t uIntrState = 0;
2336 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2337 {
2338 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2339 {
2340 /*
2341 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2342 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2343 */
2344 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2345 }
2346 else
2347 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2348 }
2349 return uIntrState;
2350}
2351
2352
2353/**
2354 * Sets the virtual interrupt intercept control in the VMCB which
2355 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2356 * receive interrupts.
2357 *
2358 * @param pVmcb Pointer to the VMCB.
2359 */
2360DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2361{
2362 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2363 {
2364 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2365 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2366 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2367 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2368
2369 Log4(("Setting VINTR intercept\n"));
2370 }
2371}
2372
2373
2374/**
2375 * Evaluates the event to be delivered to the guest and sets it as the pending
2376 * event.
2377 *
2378 * @param pVCpu Pointer to the VMCPU.
2379 * @param pCtx Pointer to the guest-CPU context.
2380 */
2381static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2382{
2383 Assert(!pVCpu->hm.s.Event.fPending);
2384 Log4Func(("\n"));
2385
2386 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2387 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2388 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2389
2390 SVMEVENT Event;
2391 Event.u = 0;
2392 /** @todo SMI. SMIs take priority over NMIs. */
2393 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2394 {
2395 if (!fIntShadow)
2396 {
2397 Log4(("Pending NMI\n"));
2398
2399 Event.n.u1Valid = 1;
2400 Event.n.u8Vector = X86_XCPT_NMI;
2401 Event.n.u3Type = SVM_EVENT_NMI;
2402
2403 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2404 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2405 }
2406 else
2407 hmR0SvmSetVirtIntrIntercept(pVmcb);
2408 }
2409 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2410 {
2411 /*
2412 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
2413 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
2414 * evaluated here and not set as pending, solely based on the force-flags.
2415 */
2416 if ( !fBlockInt
2417 && !fIntShadow)
2418 {
2419 uint8_t u8Interrupt;
2420 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2421 if (RT_SUCCESS(rc))
2422 {
2423 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2424
2425 Event.n.u1Valid = 1;
2426 Event.n.u8Vector = u8Interrupt;
2427 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2428
2429 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2430 }
2431 else
2432 {
2433 /** @todo Does this actually happen? If not turn it into an assertion. */
2434 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2435 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2436 }
2437 }
2438 else
2439 hmR0SvmSetVirtIntrIntercept(pVmcb);
2440 }
2441}
2442
2443
2444/**
2445 * Injects any pending events into the guest if the guest is in a state to
2446 * receive them.
2447 *
2448 * @param pVCpu Pointer to the VMCPU.
2449 * @param pCtx Pointer to the guest-CPU context.
2450 */
2451static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2452{
2453 Assert(!TRPMHasTrap(pVCpu));
2454 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2455 Log4Func(("\n"));
2456
2457 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2458 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2459 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2460
2461 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2462 {
2463 SVMEVENT Event;
2464 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2465 Assert(Event.n.u1Valid);
2466#ifdef VBOX_STRICT
2467 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2468 {
2469 Assert(!fBlockInt);
2470 Assert(!fIntShadow);
2471 }
2472 else if (Event.n.u3Type == SVM_EVENT_NMI)
2473 Assert(!fIntShadow);
2474#endif
2475
2476 Log4(("Injecting pending HM event.\n"));
2477 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2478 pVCpu->hm.s.Event.fPending = false;
2479
2480#ifdef VBOX_WITH_STATISTICS
2481 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2482 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2483 else
2484 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2485#endif
2486 }
2487
2488 /* Update the guest interrupt shadow in the VMCB. */
2489 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2490}
2491
2492
2493/**
2494 * Reports world-switch error and dumps some useful debug info.
2495 *
2496 * @param pVM Pointer to the VM.
2497 * @param pVCpu Pointer to the VMCPU.
2498 * @param rcVMRun The return code from VMRUN (or
2499 * VERR_SVM_INVALID_GUEST_STATE for invalid
2500 * guest-state).
2501 * @param pCtx Pointer to the guest-CPU context.
2502 */
2503static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2504{
2505 HMSVM_ASSERT_PREEMPT_SAFE();
2506 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2507
2508 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2509 {
2510 HMDumpRegs(pVM, pVCpu, pCtx);
2511#ifdef VBOX_STRICT
2512 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2513 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2514 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2515 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2516 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2517 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2518 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2519 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2520 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2521 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2522 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2523
2524 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2525 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2526 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2527
2528 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2529 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2530 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2531 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2532 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2533 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2534 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2535 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2536 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2537 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2538
2539 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2540 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2541 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2542 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2543 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2544 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2545 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2546 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2547 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2548 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2549 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2550 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2551 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2552 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2553 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2554 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2555 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2556
2557 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2558 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2559
2560 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2561 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2562 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2563 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2564 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2565 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2566 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2567 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2568 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2569 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2570 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2571 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2572 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2573 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2574 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2575 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2576 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2577 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2578 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2579 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2580
2581 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2582 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2583
2584 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2585 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2586 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2587 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2588
2589 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2590 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2591
2592 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2593 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2594 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2595 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2596
2597 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2598 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2599 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2600 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2601 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2602 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2603 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2604
2605 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2606 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2607 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2608 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2609
2610 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2611 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2612 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2613
2614 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2615 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2616 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2617 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2618 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2619 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2620 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2621 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2622 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2623 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2624 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2625 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2626#endif
2627 }
2628 else
2629 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2630}
2631
2632
2633/**
2634 * Check per-VM and per-VCPU force flag actions that require us to go back to
2635 * ring-3 for one reason or another.
2636 *
2637 * @returns VBox status code (information status code included).
2638 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2639 * ring-3.
2640 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2641 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2642 * interrupts)
2643 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2644 * all EMTs to be in ring-3.
2645 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2646 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2647 * to the EM loop.
2648 *
2649 * @param pVM Pointer to the VM.
2650 * @param pVCpu Pointer to the VMCPU.
2651 * @param pCtx Pointer to the guest-CPU context.
2652 */
2653static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2654{
2655 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2656
2657 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2658 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2659 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2660
2661 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2662 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2663 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2664 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2665 {
2666 /* Pending PGM C3 sync. */
2667 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2668 {
2669 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2670 if (rc != VINF_SUCCESS)
2671 {
2672 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2673 return rc;
2674 }
2675 }
2676
2677 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2678 /* -XXX- what was that about single stepping? */
2679 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2680 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2681 {
2682 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2683 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2684 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2685 return rc;
2686 }
2687
2688 /* Pending VM request packets, such as hardware interrupts. */
2689 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2690 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2691 {
2692 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2693 return VINF_EM_PENDING_REQUEST;
2694 }
2695
2696 /* Pending PGM pool flushes. */
2697 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2698 {
2699 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2700 return VINF_PGM_POOL_FLUSH_PENDING;
2701 }
2702
2703 /* Pending DMA requests. */
2704 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2705 {
2706 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2707 return VINF_EM_RAW_TO_R3;
2708 }
2709 }
2710
2711 return VINF_SUCCESS;
2712}
2713
2714
2715/**
2716 * Does the preparations before executing guest code in AMD-V.
2717 *
2718 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2719 * recompiler. We must be cautious what we do here regarding committing
2720 * guest-state information into the the VMCB assuming we assuredly execute the
2721 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2722 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2723 * that the recompiler can (and should) use them when it resumes guest
2724 * execution. Otherwise such operations must be done when we can no longer
2725 * exit to ring-3.
2726 *
2727 * @returns VBox status code (informational status codes included).
2728 * @retval VINF_SUCCESS if we can proceed with running the guest.
2729 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2730 *
2731 * @param pVM Pointer to the VM.
2732 * @param pVCpu Pointer to the VMCPU.
2733 * @param pCtx Pointer to the guest-CPU context.
2734 * @param pSvmTransient Pointer to the SVM transient structure.
2735 */
2736static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2737{
2738 /* Check force flag actions that might require us to go back to ring-3. */
2739 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2740 if (rc != VINF_SUCCESS)
2741 return rc;
2742
2743 if (TRPMHasTrap(pVCpu))
2744 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2745 else if (!pVCpu->hm.s.Event.fPending)
2746 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
2747
2748 /*
2749 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2750 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2751 */
2752 /** @todo The above assumption could be wrong. It's not documented what
2753 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2754 * hard way. */
2755 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2756 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2757
2758#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2759 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2760#endif
2761
2762 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
2763 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2764 AssertRCReturn(rc, rc);
2765 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2766
2767 /*
2768 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2769 * so we can update it on the way back if the guest changed the TPR.
2770 */
2771 if (pVCpu->hm.s.svm.fSyncVTpr)
2772 {
2773 if (pVM->hm.s.fTPRPatchingActive)
2774 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2775 else
2776 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2777 }
2778
2779 /*
2780 * No longjmps to ring-3 from this point on!!!
2781 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
2782 * This also disables flushing of the R0-logger instance (if any).
2783 */
2784 VMMRZCallRing3Disable(pVCpu);
2785
2786 /*
2787 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
2788 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
2789 *
2790 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
2791 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
2792 *
2793 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
2794 * executing guest code.
2795 */
2796 pSvmTransient->uEflags = ASMIntDisableFlags();
2797 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2798 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2799 {
2800 ASMSetFlags(pSvmTransient->uEflags);
2801 VMMRZCallRing3Enable(pVCpu);
2802 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2803 return VINF_EM_RAW_TO_R3;
2804 }
2805 else if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2806 {
2807 ASMSetFlags(pSvmTransient->uEflags);
2808 VMMRZCallRing3Enable(pVCpu);
2809 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2810 return VINF_EM_RAW_INTERRUPT;
2811 }
2812
2813 return VINF_SUCCESS;
2814}
2815
2816
2817/**
2818 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2819 * means there is no backing out to ring-3 or anywhere else at this
2820 * point.
2821 *
2822 * @param pVM Pointer to the VM.
2823 * @param pVCpu Pointer to the VMCPU.
2824 * @param pCtx Pointer to the guest-CPU context.
2825 * @param pSvmTransient Pointer to the SVM transient structure.
2826 *
2827 * @remarks Called with preemption disabled.
2828 * @remarks No-long-jump zone!!!
2829 */
2830static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2831{
2832 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2833 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2834 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2835
2836 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2837 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
2838
2839 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2840
2841 /* Load the state shared between host and guest (FPU, debug). */
2842 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2843 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_GUEST_SHARED_STATE)
2844 hmR0VmxLoadSharedState(pVCpu, pVmcb, pCtx);
2845 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
2846 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags=%#x\n", pVCpu->hm.s.fContextUseFlags));
2847
2848 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2849 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2850 pVmcb->ctrl.u64VmcbCleanBits = 0;
2851
2852 /* Setup TSC offsetting. */
2853 if ( pSvmTransient->fUpdateTscOffsetting
2854 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
2855 {
2856 hmR0SvmUpdateTscOffsetting(pVCpu);
2857 pSvmTransient->fUpdateTscOffsetting = false;
2858 }
2859
2860 /* Flush the appropriate tagged-TLB entries. */
2861 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2862 hmR0SvmFlushTaggedTlb(pVCpu);
2863 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2864
2865 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
2866
2867 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2868 to start executing. */
2869
2870 /*
2871 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2872 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2873 *
2874 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2875 */
2876 pSvmTransient->fRestoreTscAuxMsr = false;
2877 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2878 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2879 {
2880 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2881 uint64_t u64GuestTscAux = 0;
2882 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2883 AssertRC(rc2);
2884 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
2885 {
2886 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2887 pSvmTransient->fRestoreTscAuxMsr = true;
2888 }
2889 }
2890}
2891
2892
2893/**
2894 * Wrapper for running the guest code in AMD-V.
2895 *
2896 * @returns VBox strict status code.
2897 * @param pVM Pointer to the VM.
2898 * @param pVCpu Pointer to the VMCPU.
2899 * @param pCtx Pointer to the guest-CPU context.
2900 *
2901 * @remarks No-long-jump zone!!!
2902 */
2903DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2904{
2905 /*
2906 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2907 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2908 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2909 */
2910#ifdef VBOX_WITH_KERNEL_USING_XMM
2911 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2912 pVCpu->hm.s.svm.pfnVMRun);
2913#else
2914 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2915#endif
2916}
2917
2918
2919/**
2920 * Performs some essential restoration of state after running guest code in
2921 * AMD-V.
2922 *
2923 * @param pVM Pointer to the VM.
2924 * @param pVCpu Pointer to the VMCPU.
2925 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2926 * out-of-sync. Make sure to update the required fields
2927 * before using them.
2928 * @param pSvmTransient Pointer to the SVM transient structure.
2929 * @param rcVMRun Return code of VMRUN.
2930 *
2931 * @remarks Called with interrupts disabled.
2932 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2933 * unconditionally when it is safe to do so.
2934 */
2935static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2936{
2937 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2938
2939 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2940 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2941
2942 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2943 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2944
2945 if (pSvmTransient->fRestoreTscAuxMsr)
2946 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2947
2948 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2949 {
2950 /** @todo Find a way to fix hardcoding a guestimate. */
2951 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
2952 }
2953
2954 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
2955 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2956 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2957
2958 Assert(!(ASMGetFlags() & X86_EFL_IF));
2959 ASMSetFlags(pSvmTransient->uEflags); /* Enable interrupts. */
2960 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2961
2962 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2963 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2964 {
2965 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2966 return;
2967 }
2968
2969 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2970 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2971 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2972
2973 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2974 {
2975 if (pVCpu->hm.s.svm.fSyncVTpr)
2976 {
2977 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2978 if ( pVM->hm.s.fTPRPatchingActive
2979 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2980 {
2981 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
2982 AssertRC(rc);
2983 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2984 }
2985 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2986 {
2987 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
2988 AssertRC(rc);
2989 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2990 }
2991 }
2992 }
2993}
2994
2995
2996/**
2997 * Runs the guest code using AMD-V.
2998 *
2999 * @returns VBox status code.
3000 * @param pVM Pointer to the VM.
3001 * @param pVCpu Pointer to the VMCPU.
3002 * @param pCtx Pointer to the guest-CPU context.
3003 */
3004VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3005{
3006 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3007 HMSVM_ASSERT_PREEMPT_SAFE();
3008 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
3009
3010 SVMTRANSIENT SvmTransient;
3011 SvmTransient.fUpdateTscOffsetting = true;
3012 uint32_t cLoops = 0;
3013 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3014 int rc = VERR_INTERNAL_ERROR_5;
3015
3016 for (;; cLoops++)
3017 {
3018 Assert(!HMR0SuspendPending());
3019 HMSVM_ASSERT_CPU_SAFE();
3020
3021 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
3022 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3023 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3024 if (rc != VINF_SUCCESS)
3025 break;
3026
3027 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3028 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3029
3030 /* Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state. */
3031 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3032
3033 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3034 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3035 {
3036 if (rc == VINF_SUCCESS)
3037 rc = VERR_SVM_INVALID_GUEST_STATE;
3038 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3039 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3040 break;
3041 }
3042
3043 /* Handle the #VMEXIT. */
3044 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3045 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3046 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3047 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3048 if (rc != VINF_SUCCESS)
3049 break;
3050 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
3051 {
3052 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
3053 rc = VINF_EM_RAW_INTERRUPT;
3054 break;
3055 }
3056 }
3057
3058 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3059 if (rc == VERR_EM_INTERPRETER)
3060 rc = VINF_EM_RAW_EMULATE_INSTR;
3061 else if (rc == VINF_EM_RESET)
3062 rc = VINF_EM_TRIPLE_FAULT;
3063
3064 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3065 VMMRZCallRing3RemoveNotification(pVCpu);
3066 return rc;
3067}
3068
3069
3070/**
3071 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3072 *
3073 * @returns VBox status code (informational status codes included).
3074 * @param pVCpu Pointer to the VMCPU.
3075 * @param pCtx Pointer to the guest-CPU context.
3076 * @param pSvmTransient Pointer to the SVM transient structure.
3077 */
3078DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3079{
3080 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
3081 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3082
3083 /*
3084 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
3085 * normal workloads (for some definition of "normal").
3086 */
3087 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3088 switch (pSvmTransient->u64ExitCode)
3089 {
3090 case SVM_EXIT_NPF:
3091 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3092
3093 case SVM_EXIT_IOIO:
3094 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3095
3096 case SVM_EXIT_RDTSC:
3097 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3098
3099 case SVM_EXIT_RDTSCP:
3100 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3101
3102 case SVM_EXIT_CPUID:
3103 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3104
3105 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
3106 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3107
3108 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3109 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3110
3111 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
3112 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3113
3114 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3115 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3116
3117 case SVM_EXIT_MONITOR:
3118 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3119
3120 case SVM_EXIT_MWAIT:
3121 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3122
3123 case SVM_EXIT_HLT:
3124 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3125
3126 case SVM_EXIT_READ_CR0:
3127 case SVM_EXIT_READ_CR3:
3128 case SVM_EXIT_READ_CR4:
3129 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3130
3131 case SVM_EXIT_WRITE_CR0:
3132 case SVM_EXIT_WRITE_CR3:
3133 case SVM_EXIT_WRITE_CR4:
3134 case SVM_EXIT_WRITE_CR8:
3135 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3136
3137 case SVM_EXIT_VINTR:
3138 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3139
3140 case SVM_EXIT_INTR:
3141 case SVM_EXIT_FERR_FREEZE:
3142 case SVM_EXIT_NMI:
3143 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3144
3145 case SVM_EXIT_MSR:
3146 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3147
3148 case SVM_EXIT_INVLPG:
3149 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3150
3151 case SVM_EXIT_WBINVD:
3152 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3153
3154 case SVM_EXIT_INVD:
3155 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3156
3157 case SVM_EXIT_RDPMC:
3158 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3159
3160 default:
3161 {
3162 switch (pSvmTransient->u64ExitCode)
3163 {
3164 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3165 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3166 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3167 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3168 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3169
3170 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3171 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3172 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3173 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3174 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3175
3176 case SVM_EXIT_TASK_SWITCH:
3177 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3178
3179 case SVM_EXIT_VMMCALL:
3180 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3181
3182 case SVM_EXIT_SHUTDOWN:
3183 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3184
3185 case SVM_EXIT_SMI:
3186 case SVM_EXIT_INIT:
3187 {
3188 /*
3189 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3190 * we want to know about it so log the exit code and bail.
3191 */
3192 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3193 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3194 return VERR_SVM_UNEXPECTED_EXIT;
3195 }
3196
3197 case SVM_EXIT_INVLPGA:
3198 case SVM_EXIT_RSM:
3199 case SVM_EXIT_VMRUN:
3200 case SVM_EXIT_VMLOAD:
3201 case SVM_EXIT_VMSAVE:
3202 case SVM_EXIT_STGI:
3203 case SVM_EXIT_CLGI:
3204 case SVM_EXIT_SKINIT:
3205 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3206
3207#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3208 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3209 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3210 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3211 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3212 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3213 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3214 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3215 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3216 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3217 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3218 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3219 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3220 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3221 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3222 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3223 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3224 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3225 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3226 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3227
3228 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3229 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3230 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3231 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3232 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3233 {
3234 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3235 SVMEVENT Event;
3236 Event.u = 0;
3237 Event.n.u1Valid = 1;
3238 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3239 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3240
3241 switch (Event.n.u8Vector)
3242 {
3243 case X86_XCPT_DE:
3244 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3245 break;
3246
3247 case X86_XCPT_BP:
3248 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3249 * next instruction. */
3250 /** @todo Investigate this later. */
3251 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3252 break;
3253
3254 case X86_XCPT_UD:
3255 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
3256 break;
3257
3258 case X86_XCPT_NP:
3259 Event.n.u1ErrorCodeValid = 1;
3260 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3261 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3262 break;
3263
3264 case X86_XCPT_SS:
3265 Event.n.u1ErrorCodeValid = 1;
3266 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3267 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3268 break;
3269
3270 case X86_XCPT_GP:
3271 Event.n.u1ErrorCodeValid = 1;
3272 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3274 break;
3275
3276 default:
3277 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3278 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3279 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3280 }
3281
3282 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3283 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3284 return VINF_SUCCESS;
3285 }
3286#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3287
3288 default:
3289 {
3290 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3291 pVCpu->hm.s.u32HMError = u32ExitCode;
3292 return VERR_SVM_UNKNOWN_EXIT;
3293 }
3294 }
3295 }
3296 }
3297 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3298}
3299
3300
3301#ifdef DEBUG
3302/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3303# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3304 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3305
3306# define HMSVM_ASSERT_PREEMPT_CPUID() \
3307 do \
3308 { \
3309 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3310 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3311 } while (0)
3312
3313# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3314 do { \
3315 AssertPtr(pVCpu); \
3316 AssertPtr(pCtx); \
3317 AssertPtr(pSvmTransient); \
3318 Assert(ASMIntAreEnabled()); \
3319 HMSVM_ASSERT_PREEMPT_SAFE(); \
3320 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3321 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3322 HMSVM_ASSERT_PREEMPT_SAFE(); \
3323 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3324 HMSVM_ASSERT_PREEMPT_CPUID(); \
3325 } while (0)
3326#else /* Release builds */
3327# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3328#endif
3329
3330
3331/**
3332 * Worker for hmR0SvmInterpretInvlpg().
3333 *
3334 * @return VBox status code.
3335 * @param pVCpu Pointer to the VMCPU.
3336 * @param pCpu Pointer to the disassembler state.
3337 * @param pRegFrame Pointer to the register frame.
3338 */
3339static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3340{
3341 DISQPVPARAMVAL Param1;
3342 RTGCPTR GCPtrPage;
3343
3344 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3345 if (RT_FAILURE(rc))
3346 return VERR_EM_INTERPRETER;
3347
3348 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3349 || Param1.type == DISQPV_TYPE_ADDRESS)
3350 {
3351 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3352 return VERR_EM_INTERPRETER;
3353
3354 GCPtrPage = Param1.val.val64;
3355 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3356 rc = VBOXSTRICTRC_VAL(rc2);
3357 }
3358 else
3359 {
3360 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3361 rc = VERR_EM_INTERPRETER;
3362 }
3363
3364 return rc;
3365}
3366
3367
3368/**
3369 * Interprets INVLPG.
3370 *
3371 * @returns VBox status code.
3372 * @retval VINF_* Scheduling instructions.
3373 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3374 * @retval VERR_* Fatal errors.
3375 *
3376 * @param pVM Pointer to the VM.
3377 * @param pRegFrame Pointer to the register frame.
3378 *
3379 * @remarks Updates the RIP if the instruction was executed successfully.
3380 */
3381static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3382{
3383 /* Only allow 32 & 64 bit code. */
3384 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3385 {
3386 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3387 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3388 if ( RT_SUCCESS(rc)
3389 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3390 {
3391 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3392 if (RT_SUCCESS(rc))
3393 pRegFrame->rip += pDis->cbInstr;
3394 return rc;
3395 }
3396 else
3397 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3398 }
3399 return VERR_EM_INTERPRETER;
3400}
3401
3402
3403/**
3404 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3405 *
3406 * @param pVCpu Pointer to the VMCPU.
3407 */
3408DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3409{
3410 SVMEVENT Event;
3411 Event.u = 0;
3412 Event.n.u1Valid = 1;
3413 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3414 Event.n.u8Vector = X86_XCPT_UD;
3415 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3416}
3417
3418
3419/**
3420 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3421 *
3422 * @param pVCpu Pointer to the VMCPU.
3423 */
3424DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3425{
3426 SVMEVENT Event;
3427 Event.u = 0;
3428 Event.n.u1Valid = 1;
3429 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3430 Event.n.u8Vector = X86_XCPT_DB;
3431 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3432}
3433
3434
3435/**
3436 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3437 *
3438 * @param pVCpu Pointer to the VMCPU.
3439 * @param pCtx Pointer to the guest-CPU context.
3440 * @param u32ErrCode The error-code for the page-fault.
3441 * @param uFaultAddress The page fault address (CR2).
3442 *
3443 * @remarks This updates the guest CR2 with @a uFaultAddress!
3444 */
3445DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3446{
3447 SVMEVENT Event;
3448 Event.u = 0;
3449 Event.n.u1Valid = 1;
3450 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3451 Event.n.u8Vector = X86_XCPT_PF;
3452 Event.n.u1ErrorCodeValid = 1;
3453 Event.n.u32ErrorCode = u32ErrCode;
3454
3455 /* Update CR2 of the guest. */
3456 if (pCtx->cr2 != uFaultAddress)
3457 {
3458 pCtx->cr2 = uFaultAddress;
3459 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
3460 }
3461
3462 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3463}
3464
3465
3466/**
3467 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3468 * VM.
3469 *
3470 * @param pVCpu Pointer to the VMCPU.
3471 */
3472DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3473{
3474 SVMEVENT Event;
3475 Event.u = 0;
3476 Event.n.u1Valid = 1;
3477 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3478 Event.n.u8Vector = X86_XCPT_NM;
3479 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3480}
3481
3482
3483/**
3484 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3485 *
3486 * @param pVCpu Pointer to the VMCPU.
3487 */
3488DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3489{
3490 SVMEVENT Event;
3491 Event.u = 0;
3492 Event.n.u1Valid = 1;
3493 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3494 Event.n.u8Vector = X86_XCPT_MF;
3495 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3496}
3497
3498
3499/**
3500 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3501 *
3502 * @param pVCpu Pointer to the VMCPU.
3503 */
3504DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3505{
3506 SVMEVENT Event;
3507 Event.u = 0;
3508 Event.n.u1Valid = 1;
3509 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3510 Event.n.u8Vector = X86_XCPT_DF;
3511 Event.n.u1ErrorCodeValid = 1;
3512 Event.n.u32ErrorCode = 0;
3513 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3514}
3515
3516
3517/**
3518 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3519 * guests. This simply looks up the patch record at EIP and does the required.
3520 *
3521 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3522 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3523 * TPR). See hmR3ReplaceTprInstr() for the details.
3524 *
3525 * @returns VBox status code.
3526 * @param pVM Pointer to the VM.
3527 * @param pVCpu Pointer to the VMCPU.
3528 * @param pCtx Pointer to the guest-CPU context.
3529 */
3530static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3531{
3532 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3533 for (;;)
3534 {
3535 bool fPending;
3536 uint8_t u8Tpr;
3537
3538 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3539 if (!pPatch)
3540 break;
3541
3542 switch (pPatch->enmType)
3543 {
3544 case HMTPRINSTR_READ:
3545 {
3546 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3547 AssertRC(rc);
3548
3549 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3550 AssertRC(rc);
3551 pCtx->rip += pPatch->cbOp;
3552 break;
3553 }
3554
3555 case HMTPRINSTR_WRITE_REG:
3556 case HMTPRINSTR_WRITE_IMM:
3557 {
3558 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3559 {
3560 uint32_t u32Val;
3561 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3562 AssertRC(rc);
3563 u8Tpr = u32Val;
3564 }
3565 else
3566 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3567
3568 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3569 AssertRC(rc2);
3570 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3571
3572 pCtx->rip += pPatch->cbOp;
3573 break;
3574 }
3575
3576 default:
3577 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
3578 pVCpu->hm.s.u32HMError = pPatch->enmType;
3579 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
3580 }
3581 }
3582
3583 return VINF_SUCCESS;
3584}
3585
3586/**
3587 * Determines if an exception is a contributory exception. Contributory
3588 * exceptions are ones which can cause double-faults. Page-fault is
3589 * intentionally not included here as it's a conditional contributory exception.
3590 *
3591 * @returns true if the exception is contributory, false otherwise.
3592 * @param uVector The exception vector.
3593 */
3594DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3595{
3596 switch (uVector)
3597 {
3598 case X86_XCPT_GP:
3599 case X86_XCPT_SS:
3600 case X86_XCPT_NP:
3601 case X86_XCPT_TS:
3602 case X86_XCPT_DE:
3603 return true;
3604 default:
3605 break;
3606 }
3607 return false;
3608}
3609
3610
3611/**
3612 * Handle a condition that occurred while delivering an event through the guest
3613 * IDT.
3614 *
3615 * @returns VBox status code (informational error codes included).
3616 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3617 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3618 * continue execution of the guest which will delivery the #DF.
3619 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3620 *
3621 * @param pVCpu Pointer to the VMCPU.
3622 * @param pCtx Pointer to the guest-CPU context.
3623 * @param pSvmTransient Pointer to the SVM transient structure.
3624 *
3625 * @remarks No-long-jump zone!!!
3626 */
3627static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3628{
3629 int rc = VINF_SUCCESS;
3630 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3631
3632 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3633 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3634 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3635 {
3636 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3637
3638 typedef enum
3639 {
3640 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3641 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3642 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3643 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3644 } SVMREFLECTXCPT;
3645
3646 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3647 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3648 {
3649 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3650 {
3651 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3652
3653#ifdef VBOX_STRICT
3654 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
3655 && uExitVector == X86_XCPT_PF)
3656 {
3657 Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
3658 }
3659#endif
3660 if ( uExitVector == X86_XCPT_PF
3661 && uIdtVector == X86_XCPT_PF)
3662 {
3663 pSvmTransient->fVectoringPF = true;
3664 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3665 }
3666 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3667 && hmR0SvmIsContributoryXcpt(uExitVector)
3668 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3669 || uIdtVector == X86_XCPT_PF))
3670 {
3671 enmReflect = SVMREFLECTXCPT_DF;
3672 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3673 uIdtVector, uExitVector));
3674 }
3675 else if (uIdtVector == X86_XCPT_DF)
3676 {
3677 enmReflect = SVMREFLECTXCPT_TF;
3678 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3679 uIdtVector, uExitVector));
3680 }
3681 else
3682 enmReflect = SVMREFLECTXCPT_XCPT;
3683 }
3684 else
3685 {
3686 /*
3687 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3688 * exception to the guest after handling the VM-exit.
3689 */
3690 enmReflect = SVMREFLECTXCPT_XCPT;
3691 }
3692 }
3693 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3694 {
3695 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3696 enmReflect = SVMREFLECTXCPT_XCPT;
3697 }
3698
3699 switch (enmReflect)
3700 {
3701 case SVMREFLECTXCPT_XCPT:
3702 {
3703 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3704 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
3705
3706 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3707 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3708 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3709 break;
3710 }
3711
3712 case SVMREFLECTXCPT_DF:
3713 {
3714 hmR0SvmSetPendingXcptDF(pVCpu);
3715 rc = VINF_HM_DOUBLE_FAULT;
3716 break;
3717 }
3718
3719 case SVMREFLECTXCPT_TF:
3720 {
3721 rc = VINF_EM_RESET;
3722 break;
3723 }
3724
3725 default:
3726 Assert(rc == VINF_SUCCESS);
3727 break;
3728 }
3729 }
3730 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3731 return rc;
3732}
3733
3734
3735/**
3736 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
3737 * CPU, otherwise advances the RIP by @a cb bytes.
3738 *
3739 * @param pVCpu Pointer to the VMCPU.
3740 * @param pCtx Pointer to the guest-CPU context.
3741 * @param cb RIP increment value in bytes.
3742 *
3743 * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
3744 * when NRIP_SAVE is supported by the CPU!
3745 */
3746DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
3747{
3748 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3749 {
3750 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3751 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3752 }
3753 else
3754 pCtx->rip += cb;
3755}
3756
3757
3758/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3759/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3760/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3761
3762/** @name VM-exit handlers.
3763 * @{
3764 */
3765
3766/**
3767 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3768 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3769 */
3770HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3771{
3772 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3773
3774 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
3775 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
3776 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
3777 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3778
3779 /*
3780 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
3781 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
3782 * interrupt it is until the host actually take the interrupt.
3783 *
3784 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
3785 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
3786 */
3787 return VINF_EM_RAW_INTERRUPT;
3788}
3789
3790
3791/**
3792 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3793 */
3794HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3795{
3796 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3797
3798 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3799 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3800 int rc = VINF_SUCCESS;
3801 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3802 return rc;
3803}
3804
3805
3806/**
3807 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3808 */
3809HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3810{
3811 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3812
3813 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3814 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3815 int rc = VINF_SUCCESS;
3816 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3817 return rc;
3818}
3819
3820
3821/**
3822 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3823 */
3824HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3825{
3826 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3827 PVM pVM = pVCpu->CTX_SUFF(pVM);
3828 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3829 if (RT_LIKELY(rc == VINF_SUCCESS))
3830 {
3831 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3832 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3833 }
3834 else
3835 {
3836 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3837 rc = VERR_EM_INTERPRETER;
3838 }
3839 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3840 return rc;
3841}
3842
3843
3844/**
3845 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3846 */
3847HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3848{
3849 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3850 PVM pVM = pVCpu->CTX_SUFF(pVM);
3851 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3852 if (RT_LIKELY(rc == VINF_SUCCESS))
3853 {
3854 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3855 pSvmTransient->fUpdateTscOffsetting = true;
3856
3857 /* Single step check. */
3858 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3859 }
3860 else
3861 {
3862 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3863 rc = VERR_EM_INTERPRETER;
3864 }
3865 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3866 return rc;
3867}
3868
3869
3870/**
3871 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3872 */
3873HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3874{
3875 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3876 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3877 if (RT_LIKELY(rc == VINF_SUCCESS))
3878 {
3879 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3880 pSvmTransient->fUpdateTscOffsetting = true;
3881 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3882 }
3883 else
3884 {
3885 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3886 rc = VERR_EM_INTERPRETER;
3887 }
3888 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3889 return rc;
3890}
3891
3892
3893/**
3894 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3895 */
3896HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3897{
3898 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3899 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3900 if (RT_LIKELY(rc == VINF_SUCCESS))
3901 {
3902 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3903 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3904 }
3905 else
3906 {
3907 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3908 rc = VERR_EM_INTERPRETER;
3909 }
3910 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3911 return rc;
3912}
3913
3914
3915/**
3916 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3917 */
3918HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3919{
3920 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3921 PVM pVM = pVCpu->CTX_SUFF(pVM);
3922 Assert(!pVM->hm.s.fNestedPaging);
3923
3924 /** @todo Decode Assist. */
3925 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3926 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3927 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3928 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3929 return rc;
3930}
3931
3932
3933/**
3934 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3935 */
3936HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3937{
3938 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3939 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
3940 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3941 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3942 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3943 return rc;
3944}
3945
3946
3947/**
3948 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3949 */
3950HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3951{
3952 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3953 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3954 if (RT_LIKELY(rc == VINF_SUCCESS))
3955 {
3956 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3957 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3958 }
3959 else
3960 {
3961 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3962 rc = VERR_EM_INTERPRETER;
3963 }
3964 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3965 return rc;
3966}
3967
3968
3969/**
3970 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3971 */
3972HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3973{
3974 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3975 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3976 int rc = VBOXSTRICTRC_VAL(rc2);
3977 if ( rc == VINF_EM_HALT
3978 || rc == VINF_SUCCESS)
3979 {
3980 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3981
3982 if ( rc == VINF_EM_HALT
3983 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3984 {
3985 rc = VINF_SUCCESS;
3986 }
3987 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3988 }
3989 else
3990 {
3991 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3992 rc = VERR_EM_INTERPRETER;
3993 }
3994 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3995 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3996 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3997 return rc;
3998}
3999
4000
4001/**
4002 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
4003 * Conditional #VMEXIT.
4004 */
4005HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4006{
4007 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4008 return VINF_EM_RESET;
4009}
4010
4011
4012/**
4013 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
4014 */
4015HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4016{
4017 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4018
4019 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4020
4021 /** @todo Decode Assist. */
4022 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4023 int rc = VBOXSTRICTRC_VAL(rc2);
4024 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
4025 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
4026 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
4027 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
4028 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4029 return rc;
4030}
4031
4032
4033/**
4034 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
4035 */
4036HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4037{
4038 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4039 /** @todo Decode Assist. */
4040 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4041 int rc = VBOXSTRICTRC_VAL(rc2);
4042 if (rc == VINF_SUCCESS)
4043 {
4044 /* RIP has been updated by EMInterpretInstruction(). */
4045 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
4046 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
4047 {
4048 case 0: /* CR0. */
4049 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4050 break;
4051
4052 case 3: /* CR3. */
4053 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4054 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
4055 break;
4056
4057 case 4: /* CR4. */
4058 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
4059 break;
4060
4061 case 8: /* CR8 (TPR). */
4062 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4063 break;
4064
4065 default:
4066 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
4067 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
4068 break;
4069 }
4070 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4071 }
4072 else
4073 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
4074 return rc;
4075}
4076
4077
4078/**
4079 * #VMEXIT handler for instructions that result in a #UD exception delivered to
4080 * the guest.
4081 */
4082HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4083{
4084 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4085 hmR0SvmSetPendingXcptUD(pVCpu);
4086 return VINF_SUCCESS;
4087}
4088
4089
4090/**
4091 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
4092 */
4093HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4094{
4095 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4096 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4097 PVM pVM = pVCpu->CTX_SUFF(pVM);
4098
4099 int rc;
4100 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4101 {
4102 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4103
4104 /* Handle TPR patching; intercepted LSTAR write. */
4105 if ( pVM->hm.s.fTPRPatchingActive
4106 && pCtx->ecx == MSR_K8_LSTAR)
4107 {
4108 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4109 {
4110 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4111 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4112 AssertRC(rc2);
4113 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4114 }
4115 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4116 rc = VINF_SUCCESS;
4117 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4118 return rc;
4119 }
4120
4121 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4122 {
4123 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4124 if (RT_LIKELY(rc == VINF_SUCCESS))
4125 {
4126 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4127 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4128 }
4129 else
4130 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4131 }
4132 else
4133 {
4134 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4135 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4136 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4137 /* RIP updated by EMInterpretInstruction(). */
4138 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4139 }
4140
4141 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4142 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4143 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4144 {
4145 /* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4146 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4147 EMInterpretWrmsr() changes it. */
4148 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4149 }
4150 else if (pCtx->ecx == MSR_K6_EFER)
4151 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
4152 else if (pCtx->ecx == MSR_IA32_TSC)
4153 pSvmTransient->fUpdateTscOffsetting = true;
4154 }
4155 else
4156 {
4157 /* MSR Read access. */
4158 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4159 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4160
4161 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4162 {
4163 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4164 if (RT_LIKELY(rc == VINF_SUCCESS))
4165 {
4166 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4167 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4168 }
4169 else
4170 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4171 }
4172 else
4173 {
4174 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4175 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4176 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4177 /* RIP updated by EMInterpretInstruction(). */
4178 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4179 }
4180 }
4181
4182 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4183 return rc;
4184}
4185
4186
4187/**
4188 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
4189 */
4190HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4191{
4192 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4193 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4194
4195 /* We should -not- get this VM-exit if the guest is debugging. */
4196 AssertMsgReturn(!CPUMIsGuestDebugStateActive(pVCpu),
4197 ("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx),
4198 VERR_SVM_UNEXPECTED_EXIT);
4199
4200 /*
4201 * Lazy DR0-3 loading?
4202 */
4203 if (!CPUMIsHyperDebugStateActive(pVCpu))
4204 {
4205 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4206 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4207
4208 /* Don't intercept DRx read and writes. */
4209 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4210 pVmcb->ctrl.u16InterceptRdDRx = 0;
4211 pVmcb->ctrl.u16InterceptWrDRx = 0;
4212 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4213
4214 /* We're playing with the host CPU state here, make sure we don't preempt. */
4215 HM_DISABLE_PREEMPT_IF_NEEDED();
4216
4217 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4218 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4219 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
4220
4221 HM_RESTORE_PREEMPT_IF_NEEDED();
4222
4223 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4224 return VINF_SUCCESS;
4225 }
4226
4227 /*
4228 * Interpret the read/writing of DRx.
4229 */
4230 /** @todo Decode assist. */
4231 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4232 Log5(("hmR0SvmExitReadDRx: Emulatined DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4233 if (RT_LIKELY(rc == VINF_SUCCESS))
4234 {
4235 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4236 /** @todo CPUM should set this flag! */
4237 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4238 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4239 }
4240 else
4241 Assert(rc == VERR_EM_INTERPRETER);
4242 return VBOXSTRICTRC_TODO(rc);
4243}
4244
4245
4246/**
4247 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
4248 */
4249HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4250{
4251 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4252 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4253 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4254 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4255 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4256 return rc;
4257}
4258
4259
4260/**
4261 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
4262 */
4263HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4264{
4265 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4266
4267 /* I/O operation lookup arrays. */
4268 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4269 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4270 the result (in AL/AX/EAX). */
4271 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4272
4273 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4274 PVM pVM = pVCpu->CTX_SUFF(pVM);
4275
4276 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4277 SVMIOIOEXIT IoExitInfo;
4278 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4279 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4280 uint32_t cbValue = s_aIOSize[uIOWidth];
4281 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4282
4283 if (RT_UNLIKELY(!cbValue))
4284 {
4285 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4286 return VERR_EM_INTERPRETER;
4287 }
4288
4289 VBOXSTRICTRC rcStrict;
4290 if (IoExitInfo.n.u1STR)
4291 {
4292 /* INS/OUTS - I/O String instruction. */
4293 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4294
4295 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4296 * in EXITINFO1? Investigate once this thing is up and running. */
4297
4298 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4299 if (rcStrict == VINF_SUCCESS)
4300 {
4301 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4302 {
4303 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4304 (DISCPUMODE)pDis->uAddrMode, cbValue);
4305 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4306 }
4307 else
4308 {
4309 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4310 (DISCPUMODE)pDis->uAddrMode, cbValue);
4311 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4312 }
4313 }
4314 else
4315 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
4316 }
4317 else
4318 {
4319 /* IN/OUT - I/O instruction. */
4320 Assert(!IoExitInfo.n.u1REP);
4321
4322 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4323 {
4324 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
4325 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4326 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4327
4328 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4329 }
4330 else
4331 {
4332 uint32_t u32Val = 0;
4333
4334 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
4335 if (IOM_SUCCESS(rcStrict))
4336 {
4337 /* Save result of I/O IN instr. in AL/AX/EAX. */
4338 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4339 }
4340 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4341 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4342
4343 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4344 }
4345 }
4346
4347 if (IOM_SUCCESS(rcStrict))
4348 {
4349 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4350 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4351
4352 /*
4353 * If any I/O breakpoints are armed, we need to check if one triggered
4354 * and take appropriate action.
4355 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
4356 */
4357 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
4358 * execution engines about whether hyper BPs and such are pending. */
4359 uint32_t const uDr7 = pCtx->dr[7];
4360 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
4361 && X86_DR7_ANY_RW_IO(uDr7)
4362 && (pCtx->cr4 & X86_CR4_DE))
4363 || DBGFBpIsHwIoArmed(pVM)))
4364 {
4365 /* We're playing with the host CPU state here, make sure we don't preempt. */
4366 HM_DISABLE_PREEMPT_IF_NEEDED();
4367
4368 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4369 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
4370
4371 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
4372 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
4373 {
4374 /* Raise #DB. */
4375 pVmcb->guest.u64DR6 = pCtx->dr[6];
4376 pVmcb->guest.u64DR7 = pCtx->dr[7];
4377 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4378 hmR0SvmSetPendingXcptDB(pVCpu);
4379 }
4380 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
4381 else if ( rcStrict2 != VINF_SUCCESS
4382 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
4383 rcStrict = rcStrict2;
4384
4385 HM_RESTORE_PREEMPT_IF_NEEDED();
4386 }
4387
4388 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4389 }
4390
4391#ifdef VBOX_STRICT
4392 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4393 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4394 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4395 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4396 else
4397 {
4398 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
4399 * statuses, that the VMM device and some others may return. See
4400 * IOM_SUCCESS() for guidance. */
4401 AssertMsg( RT_FAILURE(rcStrict)
4402 || rcStrict == VINF_SUCCESS
4403 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
4404 || rcStrict == VINF_EM_DBG_BREAKPOINT
4405 || rcStrict == VINF_EM_RAW_GUEST_TRAP
4406 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
4407 }
4408#endif
4409 return VBOXSTRICTRC_TODO(rcStrict);
4410}
4411
4412
4413/**
4414 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4415 * #VMEXIT.
4416 */
4417HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4418{
4419 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4420 PVM pVM = pVCpu->CTX_SUFF(pVM);
4421 Assert(pVM->hm.s.fNestedPaging);
4422
4423 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4424
4425 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4426 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4427 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4428 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4429
4430 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4431
4432#ifdef VBOX_HM_WITH_GUEST_PATCHING
4433 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4434 if ( pVM->hm.s.fTRPPatchingAllowed
4435 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
4436 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4437 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
4438 && !CPUMGetGuestCPL(pVCpu)
4439 && !CPUMIsGuestInLongModeEx(pCtx)
4440 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4441 {
4442 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4443 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4444
4445 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4446 {
4447 /* Only attempt to patch the instruction once. */
4448 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4449 if (!pPatch)
4450 return VINF_EM_HM_PATCH_TPR_INSTR;
4451 }
4452 }
4453#endif
4454
4455 /*
4456 * Determine the nested paging mode.
4457 */
4458 PGMMODE enmNestedPagingMode;
4459#if HC_ARCH_BITS == 32
4460 if (CPUMIsGuestInLongModeEx(pCtx))
4461 enmNestedPagingMode = PGMMODE_AMD64_NX;
4462 else
4463#endif
4464 enmNestedPagingMode = PGMGetHostMode(pVM);
4465
4466 /*
4467 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4468 */
4469 int rc;
4470 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4471 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4472 {
4473 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4474 u32ErrCode);
4475 rc = VBOXSTRICTRC_VAL(rc2);
4476
4477 /*
4478 * If we succeed, resume guest execution.
4479 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4480 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4481 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4482 * weird case. See @bugref{6043}.
4483 */
4484 if ( rc == VINF_SUCCESS
4485 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4486 || rc == VERR_PAGE_NOT_PRESENT)
4487 {
4488 /* Successfully handled MMIO operation. */
4489 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4490 rc = VINF_SUCCESS;
4491 }
4492 return rc;
4493 }
4494
4495 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4496 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4497 TRPMResetTrap(pVCpu);
4498
4499 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4500
4501 /*
4502 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4503 */
4504 if ( rc == VINF_SUCCESS
4505 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4506 || rc == VERR_PAGE_NOT_PRESENT)
4507 {
4508 /* We've successfully synced our shadow page tables. */
4509 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4510 rc = VINF_SUCCESS;
4511 }
4512
4513 return rc;
4514}
4515
4516
4517/**
4518 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4519 */
4520HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4521{
4522 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4523
4524 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4525 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4526 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4527
4528 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4529 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4530 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4531
4532 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4533 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4534 return VINF_SUCCESS;
4535}
4536
4537
4538/**
4539 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4540 */
4541HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4542{
4543 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4544
4545#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
4546 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4547#endif
4548
4549 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4550 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4551 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4552 && pVCpu->hm.s.Event.fPending)
4553 {
4554 /*
4555 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4556 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4557 * when the recompiler restarts the instruction.
4558 */
4559 SVMEVENT Event;
4560 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4561 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4562 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4563 {
4564 pVCpu->hm.s.Event.fPending = false;
4565 }
4566 else
4567 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4568 }
4569
4570 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4571 * emulation. */
4572 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4573 return VERR_EM_INTERPRETER;
4574}
4575
4576
4577/**
4578 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4579 */
4580HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4581{
4582 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4583
4584 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4585 if (RT_LIKELY(rc == VINF_SUCCESS))
4586 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4587 else
4588 hmR0SvmSetPendingXcptUD(pVCpu);
4589 return VINF_SUCCESS;
4590}
4591
4592
4593/**
4594 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
4595 * #VMEXIT.
4596 */
4597HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4598{
4599 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4600
4601 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4602
4603 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4604 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4605 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4606 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4607 PVM pVM = pVCpu->CTX_SUFF(pVM);
4608
4609#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4610 if (pVM->hm.s.fNestedPaging)
4611 {
4612 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4613 if (!pSvmTransient->fVectoringPF)
4614 {
4615 /* A genuine guest #PF, reflect it to the guest. */
4616 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4617 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4618 uFaultAddress, u32ErrCode));
4619 }
4620 else
4621 {
4622 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4623 hmR0SvmSetPendingXcptDF(pVCpu);
4624 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4625 }
4626 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4627 return VINF_SUCCESS;
4628 }
4629#endif
4630
4631 Assert(!pVM->hm.s.fNestedPaging);
4632
4633#ifdef VBOX_HM_WITH_GUEST_PATCHING
4634 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4635 if ( pVM->hm.s.fTRPPatchingAllowed
4636 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4637 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
4638 && !CPUMGetGuestCPL(pVCpu)
4639 && !CPUMIsGuestInLongModeEx(pCtx)
4640 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4641 {
4642 RTGCPHYS GCPhysApicBase;
4643 GCPhysApicBase = pCtx->msrApicBase;
4644 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4645
4646 /* Check if the page at the fault-address is the APIC base. */
4647 RTGCPHYS GCPhysPage;
4648 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4649 if ( rc2 == VINF_SUCCESS
4650 && GCPhysPage == GCPhysApicBase)
4651 {
4652 /* Only attempt to patch the instruction once. */
4653 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4654 if (!pPatch)
4655 return VINF_EM_HM_PATCH_TPR_INSTR;
4656 }
4657 }
4658#endif
4659
4660 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4661 pCtx->rip, u32ErrCode, pCtx->cr3));
4662
4663 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4664 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4665
4666 Log4(("#PF rc=%Rrc\n", rc));
4667
4668 if (rc == VINF_SUCCESS)
4669 {
4670 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4671 TRPMResetTrap(pVCpu);
4672 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4673 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4674 return rc;
4675 }
4676 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4677 {
4678 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4679
4680 if (!pSvmTransient->fVectoringPF)
4681 {
4682 /* It's a guest page fault and needs to be reflected to the guest. */
4683 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4684 TRPMResetTrap(pVCpu);
4685 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4686 }
4687 else
4688 {
4689 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4690 TRPMResetTrap(pVCpu);
4691 hmR0SvmSetPendingXcptDF(pVCpu);
4692 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4693 }
4694
4695 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4696 return VINF_SUCCESS;
4697 }
4698
4699 TRPMResetTrap(pVCpu);
4700 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4701 return rc;
4702}
4703
4704
4705/**
4706 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
4707 * Conditional #VMEXIT.
4708 */
4709HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4710{
4711 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4712
4713 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4714
4715#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4716 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4717#endif
4718
4719 /* We're playing with the host CPU state here, make sure we don't preempt. */
4720 HM_DISABLE_PREEMPT_IF_NEEDED();
4721
4722 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4723 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4724 if (rc == VINF_SUCCESS)
4725 {
4726 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4727 HM_RESTORE_PREEMPT_IF_NEEDED();
4728
4729 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4730 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4731 return VINF_SUCCESS;
4732 }
4733
4734 HM_RESTORE_PREEMPT_IF_NEEDED();
4735
4736 /* Forward #NM to the guest. */
4737 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4738 hmR0SvmSetPendingXcptNM(pVCpu);
4739 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4740 return VINF_SUCCESS;
4741}
4742
4743
4744/**
4745 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
4746 * Conditional #VMEXIT.
4747 */
4748HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4749{
4750 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4751
4752 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4753
4754 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4755
4756 if (!(pCtx->cr0 & X86_CR0_NE))
4757 {
4758 /* Old-style FPU error reporting needs some extra work. */
4759 /** @todo don't fall back to the recompiler, but do it manually. */
4760 return VERR_EM_INTERPRETER;
4761 }
4762
4763 hmR0SvmSetPendingXcptMF(pVCpu);
4764 return VINF_SUCCESS;
4765}
4766
4767
4768/**
4769 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
4770 * #VMEXIT.
4771 */
4772HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4773{
4774 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4775
4776 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4777
4778 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4779
4780 /* If we set the trap flag above, we have to clear it. */
4781 if (pVCpu->hm.s.fClearTrapFlag)
4782 {
4783 pVCpu->hm.s.fClearTrapFlag = false;
4784 pCtx->eflags.Bits.u1TF = 0;
4785 }
4786
4787 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4788 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4789 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4790 PVM pVM = pVCpu->CTX_SUFF(pVM);
4791 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
4792 if (rc == VINF_EM_RAW_GUEST_TRAP)
4793 {
4794 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
4795 if (CPUMIsHyperDebugStateActive(pVCpu))
4796 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
4797
4798 /* Reflect the exception back to the guest. */
4799 hmR0SvmSetPendingXcptDB(pVCpu);
4800 rc = VINF_SUCCESS;
4801 }
4802
4803 /*
4804 * Update DR6.
4805 */
4806 if (CPUMIsHyperDebugStateActive(pVCpu))
4807 {
4808 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
4809 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
4810 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4811 }
4812 else
4813 {
4814 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
4815 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
4816 }
4817
4818 return rc;
4819}
4820
4821/** @} */
4822
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette