VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 73912

Last change on this file since 73912 was 73606, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Various bits:

  • IEM: Started VMXON, VMXOFF implementation, use IEM_OPCODE_GET_NEXT_RM.
  • IEM: Fixed INVPCID C impl, removed unused IEMExecDecodedInvpcid.
  • IEM: Updated iemCImpl_load_CrX to check for CR0/CR4 fixed bits in VMX.
  • IEM: Update offModRm to reset/re-initialize where needed.
  • CPUM: Added VMX root, non-root mode and other bits and updated a few places where they're used.
  • HM: Started adding fine-grained VMX instruction failure diagnostics.
  • HM: Made VM instruction error an enum.
  • HM: Added HMVMXAll.cpp for all context VMX code.
  • Ensure building with VBOX_WITH_NESTED_HWVIRT_[SVM|VMX] does the right thing based on host CPU.
  • CPUM: Added dumping of nested-VMX CPUMCTX state.
  • HMVMXR0: Added memory operand decoding.
  • HMVMXR0: VMX instr. privilege checks (CR0/CR4 read shadows are not consulted, so we need to do them)
  • HM: Added some more bit-field representaions.
  • Recompiler: Refuse to run when in nested-VMX guest code.
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 319.4 KB
Line 
1/* $Id: HMSVMR0.cpp 73606 2018-08-10 07:38:56Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vm.h>
37#include "HMSVMR0.h"
38#include "dtrace/VBoxVMM.h"
39
40#ifdef DEBUG_ramshankar
41# define HMSVM_SYNC_FULL_GUEST_STATE
42# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
43# define HMSVM_ALWAYS_TRAP_PF
44# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
45#endif
46
47
48/*********************************************************************************************************************************
49* Defined Constants And Macros *
50*********************************************************************************************************************************/
51#ifdef VBOX_WITH_STATISTICS
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
53 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
54 if ((u64ExitCode) == SVM_EXIT_NPF) \
55 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
56 else \
57 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
58 } while (0)
59
60# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
61# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
62 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
63 if ((u64ExitCode) == SVM_EXIT_NPF) \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
65 else \
66 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
67 } while (0)
68# endif
69#else
70# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
71# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
72# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# endif
74#endif /* !VBOX_WITH_STATISTICS */
75
76/** If we decide to use a function table approach this can be useful to
77 * switch to a "static DECLCALLBACK(int)". */
78#define HMSVM_EXIT_DECL static int
79
80/**
81 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
82 * guest using hardware-assisted SVM.
83 *
84 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
85 * are swapped and restored across the world-switch and also registers like
86 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
87 * \#VMEXIT.
88 */
89#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
90 | CPUMCTX_EXTRN_RFLAGS \
91 | CPUMCTX_EXTRN_RAX \
92 | CPUMCTX_EXTRN_RSP \
93 | CPUMCTX_EXTRN_SREG_MASK \
94 | CPUMCTX_EXTRN_CR0 \
95 | CPUMCTX_EXTRN_CR2 \
96 | CPUMCTX_EXTRN_CR3 \
97 | CPUMCTX_EXTRN_TABLE_MASK \
98 | CPUMCTX_EXTRN_DR6 \
99 | CPUMCTX_EXTRN_DR7 \
100 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
101 | CPUMCTX_EXTRN_SYSCALL_MSRS \
102 | CPUMCTX_EXTRN_SYSENTER_MSRS \
103 | CPUMCTX_EXTRN_HWVIRT \
104 | CPUMCTX_EXTRN_HM_SVM_MASK)
105
106/**
107 * Subset of the guest-CPU state that is shared between the guest and host.
108 */
109#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
110
111/** Macro for importing guest state from the VMCB back into CPUMCTX. */
112#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
113 do { \
114 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
115 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
116 } while (0)
117
118/** Assert that the required state bits are fetched. */
119#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
120 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
121 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
122
123/** Assert that preemption is disabled or covered by thread-context hooks. */
124#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
125 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
126
127/** Assert that we haven't migrated CPUs when thread-context hooks are not
128 * used. */
129#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
130 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
131 ("Illegal migration! Entered on CPU %u Current %u\n", \
132 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()));
133
134/** Assert that we're not executing a nested-guest. */
135#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
136# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
137#else
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
139#endif
140
141/** Assert that we're executing a nested-guest. */
142#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
143# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
144#else
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
146#endif
147
148/** Macro for checking and returning from the using function for
149 * \#VMEXIT intercepts that maybe caused during delivering of another
150 * event in the guest. */
151#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
152# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
153 do \
154 { \
155 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
156 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
157 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
158 else if ( rc == VINF_EM_RESET \
159 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
160 { \
161 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
162 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0)); \
163 } \
164 else \
165 return rc; \
166 } while (0)
167#else
168# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
169 do \
170 { \
171 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
172 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
173 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
174 else \
175 return rc; \
176 } while (0)
177#endif
178
179/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
180 * instruction that exited. */
181#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
182 do { \
183 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
184 (a_rc) = VINF_EM_DBG_STEPPED; \
185 } while (0)
186
187/** Validate segment descriptor granularity bit. */
188#ifdef VBOX_STRICT
189# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
190 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
191 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
192 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
193 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
194 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
195 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
196#else
197# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
198#endif
199
200/**
201 * Exception bitmap mask for all contributory exceptions.
202 *
203 * Page fault is deliberately excluded here as it's conditional as to whether
204 * it's contributory or benign. Page faults are handled separately.
205 */
206#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
207 | RT_BIT(X86_XCPT_DE))
208
209/**
210 * Mandatory/unconditional guest control intercepts.
211 *
212 * SMIs can and do happen in normal operation. We need not intercept them
213 * while executing the guest (or nested-guest).
214 */
215#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
216 | SVM_CTRL_INTERCEPT_NMI \
217 | SVM_CTRL_INTERCEPT_INIT \
218 | SVM_CTRL_INTERCEPT_RDPMC \
219 | SVM_CTRL_INTERCEPT_CPUID \
220 | SVM_CTRL_INTERCEPT_RSM \
221 | SVM_CTRL_INTERCEPT_HLT \
222 | SVM_CTRL_INTERCEPT_IOIO_PROT \
223 | SVM_CTRL_INTERCEPT_MSR_PROT \
224 | SVM_CTRL_INTERCEPT_INVLPGA \
225 | SVM_CTRL_INTERCEPT_SHUTDOWN \
226 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
227 | SVM_CTRL_INTERCEPT_VMRUN \
228 | SVM_CTRL_INTERCEPT_SKINIT \
229 | SVM_CTRL_INTERCEPT_WBINVD \
230 | SVM_CTRL_INTERCEPT_MONITOR \
231 | SVM_CTRL_INTERCEPT_MWAIT \
232 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
233 | SVM_CTRL_INTERCEPT_XSETBV)
234
235/** @name VMCB Clean Bits.
236 *
237 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
238 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
239 * memory.
240 *
241 * @{ */
242/** All intercepts vectors, TSC offset, PAUSE filter counter. */
243#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
244/** I/O permission bitmap, MSR permission bitmap. */
245#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
246/** ASID. */
247#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
248/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
249V_INTR_VECTOR. */
250#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
251/** Nested Paging: Nested CR3 (nCR3), PAT. */
252#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
253/** Control registers (CR0, CR3, CR4, EFER). */
254#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
255/** Debug registers (DR6, DR7). */
256#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
257/** GDT, IDT limit and base. */
258#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
259/** Segment register: CS, SS, DS, ES limit and base. */
260#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
261/** CR2.*/
262#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
263/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
264#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
265/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
266PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
267#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
268/** Mask of all valid VMCB Clean bits. */
269#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
270 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
271 | HMSVM_VMCB_CLEAN_ASID \
272 | HMSVM_VMCB_CLEAN_INT_CTRL \
273 | HMSVM_VMCB_CLEAN_NP \
274 | HMSVM_VMCB_CLEAN_CRX_EFER \
275 | HMSVM_VMCB_CLEAN_DRX \
276 | HMSVM_VMCB_CLEAN_DT \
277 | HMSVM_VMCB_CLEAN_SEG \
278 | HMSVM_VMCB_CLEAN_CR2 \
279 | HMSVM_VMCB_CLEAN_LBR \
280 | HMSVM_VMCB_CLEAN_AVIC)
281/** @} */
282
283/** @name SVM transient.
284 *
285 * A state structure for holding miscellaneous information across AMD-V
286 * VMRUN/\#VMEXIT operation, restored after the transition.
287 *
288 * @{ */
289typedef struct SVMTRANSIENT
290{
291 /** The host's rflags/eflags. */
292 RTCCUINTREG fEFlags;
293#if HC_ARCH_BITS == 32
294 uint32_t u32Alignment0;
295#endif
296
297 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
298 uint64_t u64ExitCode;
299 /** The guest's TPR value used for TPR shadowing. */
300 uint8_t u8GuestTpr;
301 /** Alignment. */
302 uint8_t abAlignment0[7];
303
304 /** Pointer to the currently executing VMCB. */
305 PSVMVMCB pVmcb;
306 /** Whether we are currently executing a nested-guest. */
307 bool fIsNestedGuest;
308
309 /** Whether the guest debug state was active at the time of \#VMEXIT. */
310 bool fWasGuestDebugStateActive;
311 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
312 bool fWasHyperDebugStateActive;
313 /** Whether the TSC offset mode needs to be updated. */
314 bool fUpdateTscOffsetting;
315 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
316 bool fRestoreTscAuxMsr;
317 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
318 * contributary exception or a page-fault. */
319 bool fVectoringDoublePF;
320 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
321 * external interrupt or NMI. */
322 bool fVectoringPF;
323} SVMTRANSIENT, *PSVMTRANSIENT;
324AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
325AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
326/** @} */
327
328/**
329 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
330 */
331typedef enum SVMMSREXITREAD
332{
333 /** Reading this MSR causes a \#VMEXIT. */
334 SVMMSREXIT_INTERCEPT_READ = 0xb,
335 /** Reading this MSR does not cause a \#VMEXIT. */
336 SVMMSREXIT_PASSTHRU_READ
337} SVMMSREXITREAD;
338
339/**
340 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
341 */
342typedef enum SVMMSREXITWRITE
343{
344 /** Writing to this MSR causes a \#VMEXIT. */
345 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
346 /** Writing to this MSR does not cause a \#VMEXIT. */
347 SVMMSREXIT_PASSTHRU_WRITE
348} SVMMSREXITWRITE;
349
350/**
351 * SVM \#VMEXIT handler.
352 *
353 * @returns VBox status code.
354 * @param pVCpu The cross context virtual CPU structure.
355 * @param pSvmTransient Pointer to the SVM-transient structure.
356 */
357typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
358
359
360/*********************************************************************************************************************************
361* Internal Functions *
362*********************************************************************************************************************************/
363static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
364static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState);
365
366
367/** @name \#VMEXIT handlers.
368 * @{
369 */
370static FNSVMEXITHANDLER hmR0SvmExitIntr;
371static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
372static FNSVMEXITHANDLER hmR0SvmExitInvd;
373static FNSVMEXITHANDLER hmR0SvmExitCpuid;
374static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
375static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
376static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
377static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
378static FNSVMEXITHANDLER hmR0SvmExitHlt;
379static FNSVMEXITHANDLER hmR0SvmExitMonitor;
380static FNSVMEXITHANDLER hmR0SvmExitMwait;
381static FNSVMEXITHANDLER hmR0SvmExitShutdown;
382static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
383static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
384static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
385static FNSVMEXITHANDLER hmR0SvmExitMsr;
386static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
387static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
388static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
389static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
390static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
391static FNSVMEXITHANDLER hmR0SvmExitVIntr;
392static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
393static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
394static FNSVMEXITHANDLER hmR0SvmExitPause;
395static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
396static FNSVMEXITHANDLER hmR0SvmExitIret;
397static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
398static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
399static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
400static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
401static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
402static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
403#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
404static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
405#endif
406#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
407static FNSVMEXITHANDLER hmR0SvmExitClgi;
408static FNSVMEXITHANDLER hmR0SvmExitStgi;
409static FNSVMEXITHANDLER hmR0SvmExitVmload;
410static FNSVMEXITHANDLER hmR0SvmExitVmsave;
411static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
412static FNSVMEXITHANDLER hmR0SvmExitVmrun;
413static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
414static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
415#endif
416/** @} */
417
418static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
419#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
420static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
421#endif
422
423
424/*********************************************************************************************************************************
425* Global Variables *
426*********************************************************************************************************************************/
427/** Ring-0 memory object for the IO bitmap. */
428static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
429/** Physical address of the IO bitmap. */
430static RTHCPHYS g_HCPhysIOBitmap;
431/** Pointer to the IO bitmap. */
432static R0PTRTYPE(void *) g_pvIOBitmap;
433
434#ifdef VBOX_STRICT
435# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
436# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
437# define HMSVM_LOG_CS RT_BIT_32(2)
438# define HMSVM_LOG_SS RT_BIT_32(3)
439# define HMSVM_LOG_FS RT_BIT_32(4)
440# define HMSVM_LOG_GS RT_BIT_32(5)
441# define HMSVM_LOG_LBR RT_BIT_32(6)
442# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
443 | HMSVM_LOG_CR_REGS \
444 | HMSVM_LOG_CS \
445 | HMSVM_LOG_SS \
446 | HMSVM_LOG_FS \
447 | HMSVM_LOG_GS \
448 | HMSVM_LOG_LBR)
449
450/**
451 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
452 *
453 * @param pVCpu The cross context virtual CPU structure.
454 * @param pVmcb Pointer to the VM control block.
455 * @param pszPrefix Log prefix.
456 * @param fFlags Log flags, see HMSVM_LOG_XXX.
457 * @param uVerbose The verbosity level, currently unused.
458 */
459static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
460{
461 RT_NOREF2(pVCpu, uVerbose);
462 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
463
464 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
465 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
466
467 if (fFlags & HMSVM_LOG_RBP_RSP)
468 {
469 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
470 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
471 }
472
473 if (fFlags & HMSVM_LOG_CR_REGS)
474 {
475 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
476 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
477 }
478
479 if (fFlags & HMSVM_LOG_CS)
480 {
481 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
482 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
483 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
484 }
485 if (fFlags & HMSVM_LOG_SS)
486 {
487 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
488 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
489 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
490 }
491 if (fFlags & HMSVM_LOG_FS)
492 {
493 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
494 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
495 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
496 }
497 if (fFlags & HMSVM_LOG_GS)
498 {
499 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
500 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
501 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
502 }
503
504 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
505 if (fFlags & HMSVM_LOG_LBR)
506 {
507 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
508 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
509 }
510 NOREF(pVmcbGuest); NOREF(pCtx);
511}
512#endif /* VBOX_STRICT */
513
514
515/**
516 * Sets up and activates AMD-V on the current CPU.
517 *
518 * @returns VBox status code.
519 * @param pHostCpu Pointer to the CPU info struct.
520 * @param pVM The cross context VM structure. Can be
521 * NULL after a resume!
522 * @param pvCpuPage Pointer to the global CPU page.
523 * @param HCPhysCpuPage Physical address of the global CPU page.
524 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
525 * @param pvArg Unused on AMD-V.
526 */
527VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
528 void *pvArg)
529{
530 Assert(!fEnabledByHost);
531 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
532 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
533 Assert(pvCpuPage); NOREF(pvCpuPage);
534 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
535
536 NOREF(pvArg);
537 NOREF(fEnabledByHost);
538
539 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
540 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
541
542 /*
543 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
544 */
545 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
546 if (u64HostEfer & MSR_K6_EFER_SVME)
547 {
548 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
549 if ( pVM
550 && pVM->hm.s.svm.fIgnoreInUseError)
551 pHostCpu->fIgnoreAMDVInUseError = true;
552
553 if (!pHostCpu->fIgnoreAMDVInUseError)
554 {
555 ASMSetFlags(fEFlags);
556 return VERR_SVM_IN_USE;
557 }
558 }
559
560 /* Turn on AMD-V in the EFER MSR. */
561 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
562
563 /* Write the physical page address where the CPU will store the host state while executing the VM. */
564 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
565
566 /* Restore interrupts. */
567 ASMSetFlags(fEFlags);
568
569 /*
570 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
571 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
572 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
573 * entirely with before executing any guest code.
574 */
575 pHostCpu->fFlushAsidBeforeUse = true;
576
577 /*
578 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
579 */
580 ++pHostCpu->cTlbFlushes;
581
582 return VINF_SUCCESS;
583}
584
585
586/**
587 * Deactivates AMD-V on the current CPU.
588 *
589 * @returns VBox status code.
590 * @param pHostCpu Pointer to the CPU info struct.
591 * @param pvCpuPage Pointer to the global CPU page.
592 * @param HCPhysCpuPage Physical address of the global CPU page.
593 */
594VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
595{
596 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
597 AssertReturn( HCPhysCpuPage
598 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
599 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
600 RT_NOREF(pHostCpu);
601
602 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
603 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
604
605 /* Turn off AMD-V in the EFER MSR. */
606 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
607 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
608
609 /* Invalidate host state physical address. */
610 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
611
612 /* Restore interrupts. */
613 ASMSetFlags(fEFlags);
614
615 return VINF_SUCCESS;
616}
617
618
619/**
620 * Does global AMD-V initialization (called during module initialization).
621 *
622 * @returns VBox status code.
623 */
624VMMR0DECL(int) SVMR0GlobalInit(void)
625{
626 /*
627 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
628 * intercept all IO accesses, it's done once globally here instead of per-VM.
629 */
630 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
631 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
632 if (RT_FAILURE(rc))
633 return rc;
634
635 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
636 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
637
638 /* Set all bits to intercept all IO accesses. */
639 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
640
641 return VINF_SUCCESS;
642}
643
644
645/**
646 * Does global AMD-V termination (called during module termination).
647 */
648VMMR0DECL(void) SVMR0GlobalTerm(void)
649{
650 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
651 {
652 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
653 g_pvIOBitmap = NULL;
654 g_HCPhysIOBitmap = 0;
655 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
656 }
657}
658
659
660/**
661 * Frees any allocated per-VCPU structures for a VM.
662 *
663 * @param pVM The cross context VM structure.
664 */
665DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
666{
667 for (uint32_t i = 0; i < pVM->cCpus; i++)
668 {
669 PVMCPU pVCpu = &pVM->aCpus[i];
670 AssertPtr(pVCpu);
671
672 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
673 {
674 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
675 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
676 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
677 }
678
679 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
680 {
681 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
682 pVCpu->hm.s.svm.pVmcb = NULL;
683 pVCpu->hm.s.svm.HCPhysVmcb = 0;
684 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
690 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
691 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
692 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
693 }
694 }
695}
696
697
698/**
699 * Does per-VM AMD-V initialization.
700 *
701 * @returns VBox status code.
702 * @param pVM The cross context VM structure.
703 */
704VMMR0DECL(int) SVMR0InitVM(PVM pVM)
705{
706 int rc = VERR_INTERNAL_ERROR_5;
707
708 /*
709 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
710 */
711 uint32_t u32Family;
712 uint32_t u32Model;
713 uint32_t u32Stepping;
714 if (HMSvmIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
715 {
716 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
717 pVM->hm.s.svm.fAlwaysFlushTLB = true;
718 }
719
720 /*
721 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
722 */
723 for (VMCPUID i = 0; i < pVM->cCpus; i++)
724 {
725 PVMCPU pVCpu = &pVM->aCpus[i];
726 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
727 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
728 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
729 }
730
731 for (VMCPUID i = 0; i < pVM->cCpus; i++)
732 {
733 PVMCPU pVCpu = &pVM->aCpus[i];
734
735 /*
736 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
737 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
738 */
739 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
740 if (RT_FAILURE(rc))
741 goto failure_cleanup;
742
743 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
744 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
745 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
746 ASMMemZeroPage(pvVmcbHost);
747
748 /*
749 * Allocate one page for the guest-state VMCB.
750 */
751 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
752 if (RT_FAILURE(rc))
753 goto failure_cleanup;
754
755 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
756 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
757 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
758 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
759
760 /*
761 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
762 * SVM to not require one.
763 */
764 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
765 false /* fExecutable */);
766 if (RT_FAILURE(rc))
767 goto failure_cleanup;
768
769 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
770 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
771 /* Set all bits to intercept all MSR accesses (changed later on). */
772 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
773 }
774
775 return VINF_SUCCESS;
776
777failure_cleanup:
778 hmR0SvmFreeStructs(pVM);
779 return rc;
780}
781
782
783/**
784 * Does per-VM AMD-V termination.
785 *
786 * @returns VBox status code.
787 * @param pVM The cross context VM structure.
788 */
789VMMR0DECL(int) SVMR0TermVM(PVM pVM)
790{
791 hmR0SvmFreeStructs(pVM);
792 return VINF_SUCCESS;
793}
794
795
796/**
797 * Returns whether the VMCB Clean Bits feature is supported.
798 *
799 * @return @c true if supported, @c false otherwise.
800 * @param pVCpu The cross context virtual CPU structure.
801 */
802DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu)
803{
804 PVM pVM = pVCpu->CTX_SUFF(pVM);
805#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
806 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
807 {
808 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
809 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
810 }
811#endif
812 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
813}
814
815
816/**
817 * Returns whether the decode assists feature is supported.
818 *
819 * @return @c true if supported, @c false otherwise.
820 * @param pVCpu The cross context virtual CPU structure.
821 */
822DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu)
823{
824 PVM pVM = pVCpu->CTX_SUFF(pVM);
825#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
826 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
827 {
828 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
829 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
830 }
831#endif
832 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
833}
834
835
836/**
837 * Returns whether the NRIP_SAVE feature is supported.
838 *
839 * @return @c true if supported, @c false otherwise.
840 * @param pVCpu The cross context virtual CPU structure.
841 */
842DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu)
843{
844 PVM pVM = pVCpu->CTX_SUFF(pVM);
845#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
846 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
847 {
848 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
849 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
850 }
851#endif
852 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
853}
854
855
856/**
857 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
858 *
859 * @param pVCpu The cross context virtual CPU structure.
860 * @param pbMsrBitmap Pointer to the MSR bitmap.
861 * @param idMsr The MSR for which the permissions are being set.
862 * @param enmRead MSR read permissions.
863 * @param enmWrite MSR write permissions.
864 *
865 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
866 * caller needs to take care of this.
867 */
868static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
869 SVMMSREXITWRITE enmWrite)
870{
871 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
872 uint16_t offMsrpm;
873 uint8_t uMsrpmBit;
874 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
875 AssertRC(rc);
876
877 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
878 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
879
880 pbMsrBitmap += offMsrpm;
881 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
882 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
883 else
884 {
885 if (!fInNestedGuestMode)
886 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
887#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
888 else
889 {
890 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
891 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
892 pbNstGstMsrBitmap += offMsrpm;
893 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
894 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
895 else
896 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
897 }
898#endif
899 }
900
901 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
902 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
903 else
904 {
905 if (!fInNestedGuestMode)
906 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
907#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
908 else
909 {
910 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
911 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
912 pbNstGstMsrBitmap += offMsrpm;
913 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
914 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
915 else
916 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
917 }
918#endif
919 }
920}
921
922
923/**
924 * Sets up AMD-V for the specified VM.
925 * This function is only called once per-VM during initalization.
926 *
927 * @returns VBox status code.
928 * @param pVM The cross context VM structure.
929 */
930VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
931{
932 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
933 AssertReturn(pVM, VERR_INVALID_PARAMETER);
934 Assert(pVM->hm.s.svm.fSupported);
935
936 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
937 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
938 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
939
940 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
941 bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
942
943#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
944 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
945 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
946
947 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
948 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
949#endif
950
951 PVMCPU pVCpu = &pVM->aCpus[0];
952 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
953 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[0]\n"), VERR_SVM_INVALID_PVMCB);
954 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
955
956 /* Always trap #AC for reasons of security. */
957 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
958
959 /* Always trap #DB for reasons of security. */
960 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
961
962 /* Trap exceptions unconditionally (debug purposes). */
963#ifdef HMSVM_ALWAYS_TRAP_PF
964 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
965#endif
966#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
967 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
968 pVmcbCtrl->u32InterceptXcpt |= 0
969 | RT_BIT(X86_XCPT_BP)
970 | RT_BIT(X86_XCPT_DE)
971 | RT_BIT(X86_XCPT_NM)
972 | RT_BIT(X86_XCPT_UD)
973 | RT_BIT(X86_XCPT_NP)
974 | RT_BIT(X86_XCPT_SS)
975 | RT_BIT(X86_XCPT_GP)
976 | RT_BIT(X86_XCPT_PF)
977 | RT_BIT(X86_XCPT_MF)
978 ;
979#endif
980
981 /* Apply the exceptions intercepts needed by the GIM provider. */
982 if (pVCpu->hm.s.fGIMTrapXcptUD)
983 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
984
985 /* Set up unconditional intercepts and conditions. */
986 pVmcbCtrl->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
987 | SVM_CTRL_INTERCEPT_VMMCALL;
988
989#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
990 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
991#endif
992
993#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
994 /* Virtualized VMSAVE/VMLOAD. */
995 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
996 if (!fUseVirtVmsaveVmload)
997 {
998 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
999 | SVM_CTRL_INTERCEPT_VMLOAD;
1000 }
1001
1002 /* Virtual GIF. */
1003 pVmcbCtrl->IntCtrl.n.u1VGifEnable = fUseVGif;
1004 if (!fUseVGif)
1005 {
1006 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
1007 | SVM_CTRL_INTERCEPT_STGI;
1008 }
1009#endif
1010
1011 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1012 pVmcbCtrl->u16InterceptWrCRx = RT_BIT(4);
1013
1014 /* Intercept all DRx reads and writes by default. Changed later on. */
1015 pVmcbCtrl->u16InterceptRdDRx = 0xffff;
1016 pVmcbCtrl->u16InterceptWrDRx = 0xffff;
1017
1018 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1019 pVmcbCtrl->IntCtrl.n.u1VIntrMasking = 1;
1020
1021 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1022 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1023 pVmcbCtrl->IntCtrl.n.u1IgnoreTPR = 1;
1024
1025 /* Set the IO permission bitmap physical addresses. */
1026 pVmcbCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1027
1028 /* LBR virtualization. */
1029 pVmcbCtrl->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1030
1031 /* The host ASID MBZ, for the guest start with 1. */
1032 pVmcbCtrl->TLBCtrl.n.u32ASID = 1;
1033
1034 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1035 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1036
1037 /* Without Nested Paging, we need additionally intercepts. */
1038 if (!pVM->hm.s.fNestedPaging)
1039 {
1040 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1041 pVmcbCtrl->u16InterceptRdCRx |= RT_BIT(3);
1042 pVmcbCtrl->u16InterceptWrCRx |= RT_BIT(3);
1043
1044 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1045 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1046 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1047
1048 /* Page faults must be intercepted to implement shadow paging. */
1049 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1050 }
1051
1052 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1053 if (fUsePauseFilter)
1054 {
1055 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1056 pVmcbCtrl->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1057 if (fPauseFilterThreshold)
1058 pVmcbCtrl->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1059 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1060 }
1061
1062 /*
1063 * Setup the MSR permission bitmap.
1064 * The following MSRs are saved/restored automatically during the world-switch.
1065 * Don't intercept guest read/write accesses to these MSRs.
1066 */
1067 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1068 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1069 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1070 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1071 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1072 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1073 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1074 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1075 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1076 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1077 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1078 pVmcbCtrl->u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
1079
1080 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1081 Assert(pVmcbCtrl->u32VmcbCleanBits == 0);
1082
1083 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1084 {
1085 PVMCPU pVCpuCur = &pVM->aCpus[i];
1086 PSVMVMCB pVmcbCur = pVM->aCpus[i].hm.s.svm.pVmcb;
1087 AssertMsgReturn(pVmcbCur, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
1088 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1089
1090 /* Copy the VMCB control area. */
1091 memcpy(pVmcbCtrlCur, pVmcbCtrl, sizeof(*pVmcbCtrlCur));
1092
1093 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1094 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
1095 memcpy(pbMsrBitmapCur, pbMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1096 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
1097
1098 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1099 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1100
1101 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1102 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu->hm.s.fGIMTrapXcptUD);
1103 }
1104
1105#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1106 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1107 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1108#else
1109 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1110#endif
1111 return VINF_SUCCESS;
1112}
1113
1114
1115/**
1116 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1117 *
1118 * @returns Pointer to the current context VMCB.
1119 * @param pVCpu The cross context virtual CPU structure.
1120 */
1121DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu)
1122{
1123#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1124 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1125 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1126#endif
1127 return pVCpu->hm.s.svm.pVmcb;
1128}
1129
1130
1131/**
1132 * Gets a pointer to the nested-guest VMCB cache.
1133 *
1134 * @returns Pointer to the nested-guest VMCB cache.
1135 * @param pVCpu The cross context virtual CPU structure.
1136 */
1137DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPU pVCpu)
1138{
1139#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1140 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1141 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1142#else
1143 RT_NOREF(pVCpu);
1144 return NULL;
1145#endif
1146}
1147
1148
1149/**
1150 * Invalidates a guest page by guest virtual address.
1151 *
1152 * @returns VBox status code.
1153 * @param pVCpu The cross context virtual CPU structure.
1154 * @param GCVirt Guest virtual address of the page to invalidate.
1155 */
1156VMMR0DECL(int) SVMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1157{
1158 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1159
1160 bool const fFlushPending = pVCpu->CTX_SUFF(pVM)->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1161
1162 /* Skip it if a TLB flush is already pending. */
1163 if (!fFlushPending)
1164 {
1165 Log4Func(("%#RGv\n", GCVirt));
1166
1167 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1168 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1169
1170#if HC_ARCH_BITS == 32
1171 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
1172 if (CPUMIsGuestInLongMode(pVCpu))
1173 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1174 else
1175#endif
1176 {
1177 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1178 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1179 }
1180 }
1181 return VINF_SUCCESS;
1182}
1183
1184
1185/**
1186 * Flushes the appropriate tagged-TLB entries.
1187 *
1188 * @param pVCpu The cross context virtual CPU structure.
1189 * @param pVmcb Pointer to the VM control block.
1190 * @param pHostCpu Pointer to the HM host-CPU info.
1191 */
1192static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PSVMVMCB pVmcb, PHMGLOBALCPUINFO pHostCpu)
1193{
1194 /*
1195 * Force a TLB flush for the first world switch if the current CPU differs from the one
1196 * we ran on last. This can happen both for start & resume due to long jumps back to
1197 * ring-3.
1198 *
1199 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1200 * correlation between it and the physical CPU.
1201 *
1202 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1203 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1204 */
1205 bool fNewAsid = false;
1206 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1207 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1208 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
1209#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1210 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1211#endif
1212 )
1213 {
1214 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1215 pVCpu->hm.s.fForceTLBFlush = true;
1216 fNewAsid = true;
1217 }
1218
1219 /* Set TLB flush state as checked until we return from the world switch. */
1220 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1221
1222 /* Check for explicit TLB flushes. */
1223 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1224 {
1225 pVCpu->hm.s.fForceTLBFlush = true;
1226 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1227 }
1228
1229 /*
1230 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1231 * This Host CPU requirement takes precedence.
1232 */
1233 PVM pVM = pVCpu->CTX_SUFF(pVM);
1234 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1235 {
1236 pHostCpu->uCurrentAsid = 1;
1237 pVCpu->hm.s.uCurrentAsid = 1;
1238 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1239 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1240 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1241
1242 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1243 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1244 }
1245 else
1246 {
1247 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1248 if (pVCpu->hm.s.fForceTLBFlush)
1249 {
1250 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1251 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1252
1253 if (fNewAsid)
1254 {
1255 ++pHostCpu->uCurrentAsid;
1256
1257 bool fHitASIDLimit = false;
1258 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1259 {
1260 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1261 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1262 fHitASIDLimit = true;
1263 }
1264
1265 if ( fHitASIDLimit
1266 || pHostCpu->fFlushAsidBeforeUse)
1267 {
1268 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1269 pHostCpu->fFlushAsidBeforeUse = false;
1270 }
1271
1272 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1273 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1274 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1275 }
1276 else
1277 {
1278 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1279 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1280 else
1281 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1282 }
1283
1284 pVCpu->hm.s.fForceTLBFlush = false;
1285 }
1286 }
1287
1288 /* Update VMCB with the ASID. */
1289 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1290 {
1291 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1292 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1293 }
1294
1295 AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
1296 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
1297 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1298 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1299 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1300 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1301 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1302 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1303
1304#ifdef VBOX_WITH_STATISTICS
1305 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1306 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1307 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1308 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1309 {
1310 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1311 }
1312 else
1313 {
1314 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1315 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1316 }
1317#endif
1318}
1319
1320
1321/** @name 64-bit guest on 32-bit host OS helper functions.
1322 *
1323 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1324 * mode (code segment, paging). These wrappers/helpers perform the necessary
1325 * bits for the 32->64 switcher.
1326 *
1327 * @{ */
1328#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1329/**
1330 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1331 *
1332 * @returns VBox status code.
1333 * @param HCPhysVmcbHost Physical address of host VMCB.
1334 * @param HCPhysVmcb Physical address of the VMCB.
1335 * @param pCtx Pointer to the guest-CPU context.
1336 * @param pVM The cross context VM structure.
1337 * @param pVCpu The cross context virtual CPU structure.
1338 */
1339DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1340{
1341 RT_NOREF2(pVM, pCtx);
1342 uint32_t aParam[8];
1343 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1344 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1345 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1346 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1347 aParam[4] = VM_RC_ADDR(pVM, pVM);
1348 aParam[5] = 0;
1349 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1350 aParam[7] = 0;
1351
1352 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1353}
1354
1355
1356/**
1357 * Executes the specified VMRUN handler in 64-bit mode.
1358 *
1359 * @returns VBox status code.
1360 * @param pVCpu The cross context virtual CPU structure.
1361 * @param enmOp The operation to perform.
1362 * @param cParams Number of parameters.
1363 * @param paParam Array of 32-bit parameters.
1364 */
1365VMMR0DECL(int) SVMR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
1366{
1367 PVM pVM = pVCpu->CTX_SUFF(pVM);
1368 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1369 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1370
1371 /* Disable interrupts. */
1372 RTHCUINTREG const fEFlags = ASMIntDisableFlags();
1373
1374#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1375 RTCPUID idHostCpu = RTMpCpuId();
1376 CPUMR0SetLApic(pVCpu, idHostCpu);
1377#endif
1378
1379 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1380 CPUMSetHyperEIP(pVCpu, enmOp);
1381 for (int i = (int)cParams - 1; i >= 0; i--)
1382 CPUMPushHyper(pVCpu, paParam[i]);
1383
1384 /* Call the switcher. */
1385 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1386 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
1387 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1388
1389 /* Restore interrupts. */
1390 ASMSetFlags(fEFlags);
1391 return rc;
1392}
1393
1394#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1395/** @} */
1396
1397
1398/**
1399 * Sets an exception intercept in the specified VMCB.
1400 *
1401 * @param pVmcb Pointer to the VM control block.
1402 * @param uXcpt The exception (X86_XCPT_*).
1403 */
1404DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1405{
1406 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1407 {
1408 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1409 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1410 }
1411}
1412
1413
1414/**
1415 * Clears an exception intercept in the specified VMCB.
1416 *
1417 * @param pVCpu The cross context virtual CPU structure.
1418 * @param pVmcb Pointer to the VM control block.
1419 * @param uXcpt The exception (X86_XCPT_*).
1420 *
1421 * @remarks This takes into account if we're executing a nested-guest and only
1422 * removes the exception intercept if both the guest -and- nested-guest
1423 * are not intercepting it.
1424 */
1425DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1426{
1427 Assert(uXcpt != X86_XCPT_DB);
1428 Assert(uXcpt != X86_XCPT_AC);
1429#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1430 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1431 {
1432 bool fRemove = true;
1433# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1434 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1435 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1436 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1437 {
1438 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1439 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1440 }
1441# else
1442 RT_NOREF(pVCpu);
1443# endif
1444 if (fRemove)
1445 {
1446 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1447 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1448 }
1449 }
1450#else
1451 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1452#endif
1453}
1454
1455
1456/**
1457 * Sets a control intercept in the specified VMCB.
1458 *
1459 * @param pVmcb Pointer to the VM control block.
1460 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1461 */
1462DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1463{
1464 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1465 {
1466 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1467 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1468 }
1469}
1470
1471
1472/**
1473 * Clears a control intercept in the specified VMCB.
1474 *
1475 * @returns @c true if the intercept is still set, @c false otherwise.
1476 * @param pVCpu The cross context virtual CPU structure.
1477 * @param pVmcb Pointer to the VM control block.
1478 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1479 *
1480 * @remarks This takes into account if we're executing a nested-guest and only
1481 * removes the control intercept if both the guest -and- nested-guest
1482 * are not intercepting it.
1483 */
1484static bool hmR0SvmClearCtrlIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1485{
1486 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1487 {
1488 bool fRemove = true;
1489#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1490 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1491 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1492 {
1493 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1494 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1495 }
1496#else
1497 RT_NOREF(pVCpu);
1498#endif
1499 if (fRemove)
1500 {
1501 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1502 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1503 }
1504 }
1505
1506 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1507}
1508
1509
1510/**
1511 * Exports the guest (or nested-guest) CR0 into the VMCB.
1512 *
1513 * @param pVCpu The cross context virtual CPU structure.
1514 * @param pVmcb Pointer to the VM control block.
1515 *
1516 * @remarks This assumes we always pre-load the guest FPU.
1517 * @remarks No-long-jump zone!!!
1518 */
1519static void hmR0SvmExportGuestCR0(PVMCPU pVCpu, PSVMVMCB pVmcb)
1520{
1521 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1522
1523 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1524 uint64_t const uGuestCr0 = pCtx->cr0;
1525 uint64_t uShadowCr0 = uGuestCr0;
1526
1527 /* Always enable caching. */
1528 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1529
1530 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1531 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1532 {
1533 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1534 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1535 }
1536
1537 /*
1538 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1539 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1540 * see @bugref{7243#c103}.
1541 */
1542 if (!(uGuestCr0 & X86_CR0_NE))
1543 {
1544 uShadowCr0 |= X86_CR0_NE;
1545 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1546 }
1547 else
1548 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1549
1550 /*
1551 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1552 *
1553 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1554 * see @bugref{6944}.
1555 *
1556 * We also don't ever want to honor weird things like cache disable from the guest.
1557 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1558 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1559 */
1560 if (uShadowCr0 == uGuestCr0)
1561 {
1562 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1563 {
1564 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1565 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1566 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1567 }
1568 else
1569 {
1570 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1571 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1572 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1573 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1574 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1575 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1576 }
1577 }
1578 else
1579 {
1580 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1581 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1582 }
1583 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1584
1585 Assert(!RT_HI_U32(uShadowCr0));
1586 if (pVmcb->guest.u64CR0 != uShadowCr0)
1587 {
1588 pVmcb->guest.u64CR0 = uShadowCr0;
1589 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1590 }
1591}
1592
1593
1594/**
1595 * Exports the guest (or nested-guest) CR3 into the VMCB.
1596 *
1597 * @param pVCpu The cross context virtual CPU structure.
1598 * @param pVmcb Pointer to the VM control block.
1599 *
1600 * @remarks No-long-jump zone!!!
1601 */
1602static void hmR0SvmExportGuestCR3(PVMCPU pVCpu, PSVMVMCB pVmcb)
1603{
1604 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1605
1606 PVM pVM = pVCpu->CTX_SUFF(pVM);
1607 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1608 if (pVM->hm.s.fNestedPaging)
1609 {
1610 PGMMODE enmShwPagingMode;
1611#if HC_ARCH_BITS == 32
1612 if (CPUMIsGuestInLongModeEx(pCtx))
1613 enmShwPagingMode = PGMMODE_AMD64_NX;
1614 else
1615#endif
1616 enmShwPagingMode = PGMGetHostMode(pVM);
1617
1618 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1619 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1620 pVmcb->guest.u64CR3 = pCtx->cr3;
1621 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1622 }
1623 else
1624 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1625
1626 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1627}
1628
1629
1630/**
1631 * Exports the guest (or nested-guest) CR4 into the VMCB.
1632 *
1633 * @param pVCpu The cross context virtual CPU structure.
1634 * @param pVmcb Pointer to the VM control block.
1635 *
1636 * @remarks No-long-jump zone!!!
1637 */
1638static int hmR0SvmExportGuestCR4(PVMCPU pVCpu, PSVMVMCB pVmcb)
1639{
1640 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1641
1642 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1643 uint64_t uShadowCr4 = pCtx->cr4;
1644 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1645 {
1646 switch (pVCpu->hm.s.enmShadowMode)
1647 {
1648 case PGMMODE_REAL:
1649 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1650 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1651
1652 case PGMMODE_32_BIT: /* 32-bit paging. */
1653 uShadowCr4 &= ~X86_CR4_PAE;
1654 break;
1655
1656 case PGMMODE_PAE: /* PAE paging. */
1657 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1658 /** Must use PAE paging as we could use physical memory > 4 GB */
1659 uShadowCr4 |= X86_CR4_PAE;
1660 break;
1661
1662 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1663 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1664#ifdef VBOX_ENABLE_64_BITS_GUESTS
1665 break;
1666#else
1667 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1668#endif
1669
1670 default: /* shut up gcc */
1671 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1672 }
1673 }
1674
1675 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1676 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1677
1678 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1679 if (uShadowCr4 == pCtx->cr4)
1680 {
1681 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1682 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1683 else
1684 {
1685 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1686 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1687 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1688 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1689 }
1690 }
1691 else
1692 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1693
1694 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1695 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1696
1697 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1698 Assert(!RT_HI_U32(uShadowCr4));
1699 pVmcb->guest.u64CR4 = uShadowCr4;
1700 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1701
1702 return VINF_SUCCESS;
1703}
1704
1705
1706/**
1707 * Exports the guest (or nested-guest) control registers into the VMCB.
1708 *
1709 * @returns VBox status code.
1710 * @param pVCpu The cross context virtual CPU structure.
1711 * @param pVmcb Pointer to the VM control block.
1712 *
1713 * @remarks No-long-jump zone!!!
1714 */
1715static int hmR0SvmExportGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1716{
1717 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1718
1719 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1720 {
1721 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1722 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1723
1724 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1725 {
1726 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1727 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1728 }
1729
1730 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1731 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1732
1733 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1734 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1735 {
1736 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1737 if (RT_FAILURE(rc))
1738 return rc;
1739 }
1740
1741 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1742 }
1743 return VINF_SUCCESS;
1744}
1745
1746
1747/**
1748 * Exports the guest (or nested-guest) segment registers into the VMCB.
1749 *
1750 * @returns VBox status code.
1751 * @param pVCpu The cross context virtual CPU structure.
1752 * @param pVmcb Pointer to the VM control block.
1753 *
1754 * @remarks No-long-jump zone!!!
1755 */
1756static void hmR0SvmExportGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1757{
1758 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1759 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1760
1761 /* Guest segment registers. */
1762 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1763 {
1764 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1765 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1766
1767 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1768 {
1769 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1770 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1771 }
1772
1773 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1774 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1775
1776 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1777 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1778
1779 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1780 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1781
1782 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1783 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1784
1785 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1786 }
1787
1788 /* Guest TR. */
1789 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1790 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1791
1792 /* Guest LDTR. */
1793 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1794 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1795
1796 /* Guest GDTR. */
1797 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1798 {
1799 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1800 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1801 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1802 }
1803
1804 /* Guest IDTR. */
1805 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1806 {
1807 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1808 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1809 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1810 }
1811
1812 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1813 | HM_CHANGED_GUEST_TABLE_MASK);
1814}
1815
1816
1817/**
1818 * Exports the guest (or nested-guest) MSRs into the VMCB.
1819 *
1820 * @param pVCpu The cross context virtual CPU structure.
1821 * @param pVmcb Pointer to the VM control block.
1822 *
1823 * @remarks No-long-jump zone!!!
1824 */
1825static void hmR0SvmExportGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1826{
1827 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1828 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1829
1830 /* Guest Sysenter MSRs. */
1831 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1832 {
1833 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1834 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1835
1836 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1837 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1838
1839 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1840 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1841 }
1842
1843 /*
1844 * Guest EFER MSR.
1845 * AMD-V requires guest EFER.SVME to be set. Weird.
1846 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1847 */
1848 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1849 {
1850 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1851 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1852 }
1853
1854 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1855 if ( !CPUMIsGuestInLongModeEx(pCtx)
1856 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1857 {
1858 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1859 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1860 }
1861
1862 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1863 {
1864 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1865 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1866 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1867 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1868 }
1869
1870 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1871 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1872
1873 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1874 | HM_CHANGED_GUEST_EFER_MSR
1875 | HM_CHANGED_GUEST_SYSCALL_MSRS
1876 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1877
1878 /*
1879 * Setup the PAT MSR (applicable for Nested Paging only).
1880 *
1881 * While guests can modify and see the modified values through the shadow values,
1882 * we shall not honor any guest modifications of this MSR to ensure caching is always
1883 * enabled similar to how we clear CR0.CD and NW bits.
1884 *
1885 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1886 */
1887 pVmcb->guest.u64PAT = MSR_IA32_CR_PAT_INIT_VAL;
1888
1889 /* Enable the last branch record bit if LBR virtualization is enabled. */
1890 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1891 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1892}
1893
1894
1895/**
1896 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1897 * the necessary intercepts accordingly.
1898 *
1899 * @param pVCpu The cross context virtual CPU structure.
1900 * @param pVmcb Pointer to the VM control block.
1901 *
1902 * @remarks No-long-jump zone!!!
1903 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1904 */
1905static void hmR0SvmExportSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb)
1906{
1907 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1908
1909 /*
1910 * Anyone single stepping on the host side? If so, we'll have to use the
1911 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1912 * the VMM level like the VT-x implementations does.
1913 */
1914 bool fInterceptMovDRx = false;
1915 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1916 if (fStepping)
1917 {
1918 pVCpu->hm.s.fClearTrapFlag = true;
1919 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1920 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1921 }
1922
1923 if ( fStepping
1924 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1925 {
1926 /*
1927 * Use the combined guest and host DRx values found in the hypervisor
1928 * register set because the debugger has breakpoints active or someone
1929 * is single stepping on the host side.
1930 *
1931 * Note! DBGF expects a clean DR6 state before executing guest code.
1932 */
1933#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1934 if ( CPUMIsGuestInLongModeEx(pCtx)
1935 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1936 {
1937 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1938 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1939 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1940 }
1941 else
1942#endif
1943 if (!CPUMIsHyperDebugStateActive(pVCpu))
1944 {
1945 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1946 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1947 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1948 }
1949
1950 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1951 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1952 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1953 {
1954 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1955 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1956 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1957 }
1958
1959 /** @todo If we cared, we could optimize to allow the guest to read registers
1960 * with the same values. */
1961 fInterceptMovDRx = true;
1962 pVCpu->hm.s.fUsingHyperDR7 = true;
1963 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1964 }
1965 else
1966 {
1967 /*
1968 * Update DR6, DR7 with the guest values if necessary.
1969 */
1970 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1971 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1972 {
1973 pVmcb->guest.u64DR7 = pCtx->dr[7];
1974 pVmcb->guest.u64DR6 = pCtx->dr[6];
1975 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1976 }
1977 pVCpu->hm.s.fUsingHyperDR7 = false;
1978
1979 /*
1980 * If the guest has enabled debug registers, we need to load them prior to
1981 * executing guest code so they'll trigger at the right time.
1982 */
1983 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1984 {
1985#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1986 if ( CPUMIsGuestInLongModeEx(pCtx)
1987 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1988 {
1989 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1990 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1991 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1992 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1993 }
1994 else
1995#endif
1996 if (!CPUMIsGuestDebugStateActive(pVCpu))
1997 {
1998 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1999 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2000 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2001 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2002 }
2003 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2004 }
2005 /*
2006 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2007 * intercept #DB as DR6 is updated in the VMCB.
2008 *
2009 * Note! If we cared and dared, we could skip intercepting \#DB here.
2010 * However, \#DB shouldn't be performance critical, so we'll play safe
2011 * and keep the code similar to the VT-x code and always intercept it.
2012 */
2013#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2014 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
2015 && !CPUMIsGuestDebugStateActive(pVCpu))
2016#else
2017 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2018#endif
2019 {
2020 fInterceptMovDRx = true;
2021 }
2022 }
2023
2024 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2025 if (fInterceptMovDRx)
2026 {
2027 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2028 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2029 {
2030 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2031 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2032 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2033 }
2034 }
2035 else
2036 {
2037 if ( pVmcb->ctrl.u16InterceptRdDRx
2038 || pVmcb->ctrl.u16InterceptWrDRx)
2039 {
2040 pVmcb->ctrl.u16InterceptRdDRx = 0;
2041 pVmcb->ctrl.u16InterceptWrDRx = 0;
2042 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2043 }
2044 }
2045 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2046}
2047
2048#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2049/**
2050 * Exports the nested-guest hardware virtualization state into the nested-guest
2051 * VMCB.
2052 *
2053 * @param pVCpu The cross context virtual CPU structure.
2054 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2055 *
2056 * @remarks No-long-jump zone!!!
2057 */
2058static void hmR0SvmExportGuestHwvirtStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
2059{
2060 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2061
2062 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2063 {
2064 /*
2065 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2066 * since SVM doesn't have a preemption timer.
2067 *
2068 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2069 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2070 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2071 */
2072 PVM pVM = pVCpu->CTX_SUFF(pVM);
2073 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2074 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2075 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2076 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
2077 {
2078 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2079 pVmcbNstGstCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2080 pVmcbNstGstCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2081 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2082 }
2083 else
2084 {
2085 pVmcbNstGstCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2086 pVmcbNstGstCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2087 }
2088
2089 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2090 }
2091}
2092#endif
2093
2094/**
2095 * Exports the guest APIC TPR state into the VMCB.
2096 *
2097 * @returns VBox status code.
2098 * @param pVCpu The cross context virtual CPU structure.
2099 * @param pVmcb Pointer to the VM control block.
2100 */
2101static int hmR0SvmExportGuestApicTpr(PVMCPU pVCpu, PSVMVMCB pVmcb)
2102{
2103 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2104 {
2105 PVM pVM = pVCpu->CTX_SUFF(pVM);
2106 if ( PDMHasApic(pVM)
2107 && APICIsEnabled(pVCpu))
2108 {
2109 bool fPendingIntr;
2110 uint8_t u8Tpr;
2111 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2112 AssertRCReturn(rc, rc);
2113
2114 /* Assume that we need to trap all TPR accesses and thus need not check on
2115 every #VMEXIT if we should update the TPR. */
2116 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2117 pVCpu->hm.s.svm.fSyncVTpr = false;
2118
2119 if (!pVM->hm.s.fTPRPatchingActive)
2120 {
2121 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2122 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2123
2124 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2125 can deliver the interrupt to the guest. */
2126 if (fPendingIntr)
2127 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2128 else
2129 {
2130 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2131 pVCpu->hm.s.svm.fSyncVTpr = true;
2132 }
2133
2134 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2135 }
2136 else
2137 {
2138 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2139 pVmcb->guest.u64LSTAR = u8Tpr;
2140 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
2141
2142 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2143 if (fPendingIntr)
2144 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2145 else
2146 {
2147 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2148 pVCpu->hm.s.svm.fSyncVTpr = true;
2149 }
2150 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2151 }
2152 }
2153 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2154 }
2155 return VINF_SUCCESS;
2156}
2157
2158
2159/**
2160 * Sets up the exception interrupts required for guest (or nested-guest)
2161 * execution in the VMCB.
2162 *
2163 * @param pVCpu The cross context virtual CPU structure.
2164 * @param pVmcb Pointer to the VM control block.
2165 *
2166 * @remarks No-long-jump zone!!!
2167 */
2168static void hmR0SvmExportGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
2169{
2170 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2171
2172 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2173 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)
2174 {
2175 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2176 if (pVCpu->hm.s.fGIMTrapXcptUD)
2177 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2178 else
2179 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2180
2181 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2182 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2183 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2184 else
2185 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2186
2187 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2188 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS;
2189 }
2190}
2191
2192
2193#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2194/**
2195 * Merges guest and nested-guest intercepts for executing the nested-guest using
2196 * hardware-assisted SVM.
2197 *
2198 * This merges the guest and nested-guest intercepts in a way that if the outer
2199 * guest intercept is set we need to intercept it in the nested-guest as
2200 * well.
2201 *
2202 * @param pVCpu The cross context virtual CPU structure.
2203 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2204 */
2205static void hmR0SvmMergeVmcbCtrlsNested(PVMCPU pVCpu)
2206{
2207 PVM pVM = pVCpu->CTX_SUFF(pVM);
2208 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2209 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2210 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2211
2212 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2213 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2214 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2215
2216 /* Always intercept CR4 writes for tracking PGM mode changes. */
2217 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2218
2219 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2220 if (!pVM->hm.s.fNestedPaging)
2221 {
2222 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2223 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2224 }
2225
2226 /** @todo Figure out debugging with nested-guests, till then just intercept
2227 * all DR[0-15] accesses. */
2228 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2229 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2230
2231 /*
2232 * Merge the guest's exception intercepts into the nested-guest VMCB.
2233 *
2234 * - \#UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2235 * while executing the nested-guest.
2236 *
2237 * - \#BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2238 * be tweaked later depending on how we wish to implement breakpoints.
2239 *
2240 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2241 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2242 */
2243#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2244 pVmcbNstGstCtrl->u32InterceptXcpt |= (pVmcb->ctrl.u32InterceptXcpt & ~( RT_BIT(X86_XCPT_UD)
2245 | RT_BIT(X86_XCPT_BP)));
2246#else
2247 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2248#endif
2249
2250 /*
2251 * Adjust intercepts while executing the nested-guest that differ from the
2252 * outer guest intercepts.
2253 *
2254 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2255 * that belong to the nested-guest to the outer guest.
2256 *
2257 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2258 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2259 */
2260 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2261 | SVM_CTRL_INTERCEPT_VMMCALL))
2262 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2263
2264 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2265 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2266
2267 /* Finally, update the VMCB clean bits. */
2268 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2269}
2270#endif
2271
2272
2273/**
2274 * Selects the appropriate function to run guest code.
2275 *
2276 * @returns VBox status code.
2277 * @param pVCpu The cross context virtual CPU structure.
2278 *
2279 * @remarks No-long-jump zone!!!
2280 */
2281static int hmR0SvmSelectVMRunHandler(PVMCPU pVCpu)
2282{
2283 if (CPUMIsGuestInLongMode(pVCpu))
2284 {
2285#ifndef VBOX_ENABLE_64_BITS_GUESTS
2286 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2287#endif
2288 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
2289#if HC_ARCH_BITS == 32
2290 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
2291 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
2292#else
2293 /* 64-bit host or hybrid host. */
2294 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
2295#endif
2296 }
2297 else
2298 {
2299 /* Guest is not in long mode, use the 32-bit handler. */
2300 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2301 }
2302 return VINF_SUCCESS;
2303}
2304
2305
2306/**
2307 * Enters the AMD-V session.
2308 *
2309 * @returns VBox status code.
2310 * @param pVCpu The cross context virtual CPU structure.
2311 * @param pHostCpu Pointer to the CPU info struct.
2312 */
2313VMMR0DECL(int) SVMR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
2314{
2315 AssertPtr(pVCpu);
2316 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2317 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2318 RT_NOREF(pHostCpu);
2319
2320 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2321 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2322 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2323
2324 pVCpu->hm.s.fLeaveDone = false;
2325 return VINF_SUCCESS;
2326}
2327
2328
2329/**
2330 * Thread-context callback for AMD-V.
2331 *
2332 * @param enmEvent The thread-context event.
2333 * @param pVCpu The cross context virtual CPU structure.
2334 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2335 * @thread EMT(pVCpu)
2336 */
2337VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
2338{
2339 NOREF(fGlobalInit);
2340
2341 switch (enmEvent)
2342 {
2343 case RTTHREADCTXEVENT_OUT:
2344 {
2345 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2346 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2347 VMCPU_ASSERT_EMT(pVCpu);
2348
2349 /* No longjmps (log-flush, locks) in this fragile context. */
2350 VMMRZCallRing3Disable(pVCpu);
2351
2352 if (!pVCpu->hm.s.fLeaveDone)
2353 {
2354 hmR0SvmLeave(pVCpu, false /* fImportState */);
2355 pVCpu->hm.s.fLeaveDone = true;
2356 }
2357
2358 /* Leave HM context, takes care of local init (term). */
2359 int rc = HMR0LeaveCpu(pVCpu);
2360 AssertRC(rc); NOREF(rc);
2361
2362 /* Restore longjmp state. */
2363 VMMRZCallRing3Enable(pVCpu);
2364 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2365 break;
2366 }
2367
2368 case RTTHREADCTXEVENT_IN:
2369 {
2370 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2371 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2372 VMCPU_ASSERT_EMT(pVCpu);
2373
2374 /* No longjmps (log-flush, locks) in this fragile context. */
2375 VMMRZCallRing3Disable(pVCpu);
2376
2377 /*
2378 * Initialize the bare minimum state required for HM. This takes care of
2379 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2380 */
2381 int rc = hmR0EnterCpu(pVCpu);
2382 AssertRC(rc); NOREF(rc);
2383 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2384 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2385
2386 pVCpu->hm.s.fLeaveDone = false;
2387
2388 /* Restore longjmp state. */
2389 VMMRZCallRing3Enable(pVCpu);
2390 break;
2391 }
2392
2393 default:
2394 break;
2395 }
2396}
2397
2398
2399/**
2400 * Saves the host state.
2401 *
2402 * @returns VBox status code.
2403 * @param pVCpu The cross context virtual CPU structure.
2404 *
2405 * @remarks No-long-jump zone!!!
2406 */
2407VMMR0DECL(int) SVMR0ExportHostState(PVMCPU pVCpu)
2408{
2409 NOREF(pVCpu);
2410
2411 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2412 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2413 return VINF_SUCCESS;
2414}
2415
2416
2417/**
2418 * Exports the guest state from the guest-CPU context into the VMCB.
2419 *
2420 * The CPU state will be loaded from these fields on every successful VM-entry.
2421 * Also sets up the appropriate VMRUN function to execute guest code based on
2422 * the guest CPU mode.
2423 *
2424 * @returns VBox status code.
2425 * @param pVCpu The cross context virtual CPU structure.
2426 *
2427 * @remarks No-long-jump zone!!!
2428 */
2429static int hmR0SvmExportGuestState(PVMCPU pVCpu)
2430{
2431 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2432
2433 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2434 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2435
2436 Assert(pVmcb);
2437 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2438
2439 pVmcb->guest.u64RIP = pCtx->rip;
2440 pVmcb->guest.u64RSP = pCtx->rsp;
2441 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2442 pVmcb->guest.u64RAX = pCtx->rax;
2443#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2444 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2445 {
2446 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
2447 pVmcb->ctrl.IntCtrl.n.u1VGif = pCtx->hwvirt.fGif;
2448 }
2449#endif
2450
2451 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2452
2453 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2454 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2455
2456 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2457 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2458 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2459
2460 ASMSetFlags(fEFlags);
2461
2462 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2463 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2464 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2465
2466 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2467 AssertRCReturn(rc, rc);
2468
2469 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2470 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2471 | HM_CHANGED_GUEST_RFLAGS
2472 | HM_CHANGED_GUEST_GPRS_MASK
2473 | HM_CHANGED_GUEST_X87
2474 | HM_CHANGED_GUEST_SSE_AVX
2475 | HM_CHANGED_GUEST_OTHER_XSAVE
2476 | HM_CHANGED_GUEST_XCRx
2477 | HM_CHANGED_GUEST_TSC_AUX
2478 | HM_CHANGED_GUEST_OTHER_MSRS
2479 | HM_CHANGED_GUEST_HWVIRT
2480 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)));
2481
2482#ifdef VBOX_STRICT
2483 /*
2484 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2485 * except for the host-context and/or shared host-guest context bits.
2486 */
2487 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2488 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2489 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2490 ("fCtxChanged=%#RX64\n", fCtxChanged));
2491
2492 /*
2493 * If we need to log state that isn't always imported, we'll need to import them here.
2494 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2495 */
2496 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2497#endif
2498
2499 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2500 return VINF_SUCCESS;
2501}
2502
2503
2504#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2505/**
2506 * Merges the guest and nested-guest MSR permission bitmap.
2507 *
2508 * If the guest is intercepting an MSR we need to intercept it regardless of
2509 * whether the nested-guest is intercepting it or not.
2510 *
2511 * @param pHostCpu Pointer to the physical CPU HM info. struct.
2512 * @param pVCpu The cross context virtual CPU structure.
2513 *
2514 * @remarks No-long-jmp zone!!!
2515 */
2516DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMGLOBALCPUINFO pHostCpu, PVMCPU pVCpu)
2517{
2518 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
2519 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2520 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2521
2522 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2523 uint32_t const offRsvdQwords = 0x1800 >> 3;
2524 for (uint32_t i = 0; i < offRsvdQwords; i++)
2525 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2526}
2527
2528
2529/**
2530 * Caches the nested-guest VMCB fields before we modify them for execution using
2531 * hardware-assisted SVM.
2532 *
2533 * @returns true if the VMCB was previously already cached, false otherwise.
2534 * @param pVCpu The cross context virtual CPU structure.
2535 *
2536 * @sa HMSvmNstGstVmExitNotify.
2537 */
2538static bool hmR0SvmCacheVmcbNested(PVMCPU pVCpu)
2539{
2540 /*
2541 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2542 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2543 *
2544 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2545 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2546 */
2547 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2548 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2549 if (!fWasCached)
2550 {
2551 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2552 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2553 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2554 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2555 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2556 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2557 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2558 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2559 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2560 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2561 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2562 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2563 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2564 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2565 pVmcbNstGstCache->fCacheValid = true;
2566 Log4Func(("Cached VMCB fields\n"));
2567 }
2568
2569 return fWasCached;
2570}
2571
2572
2573/**
2574 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2575 *
2576 * This is done the first time we enter nested-guest execution using SVM R0
2577 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2578 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2579 *
2580 * @param pVCpu The cross context virtual CPU structure.
2581 */
2582static void hmR0SvmSetupVmcbNested(PVMCPU pVCpu)
2583{
2584 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2585 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2586
2587 /*
2588 * First cache the nested-guest VMCB fields we may potentially modify.
2589 */
2590 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2591 if (!fVmcbCached)
2592 {
2593 /*
2594 * The IOPM of the nested-guest can be ignored because the the guest always
2595 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2596 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2597 */
2598 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2599
2600 /*
2601 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2602 * nested-paging suddenly while executing a VM (see assertion at the end of
2603 * Trap0eHandler() in PGMAllBth.h).
2604 */
2605 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2606
2607 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2608 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2609
2610 /*
2611 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2612 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2613 */
2614 pVCpu->hm.s.svm.fSyncVTpr = false;
2615
2616#ifdef DEBUG_ramshankar
2617 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2618 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2619#endif
2620
2621 /*
2622 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2623 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2624 */
2625 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2626 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2627 | SVM_CTRL_INTERCEPT_VMLOAD;
2628
2629 /*
2630 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2631 * CLGI/STGI instructions executed by the nested-guest.
2632 */
2633 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2634 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2635 | SVM_CTRL_INTERCEPT_STGI;
2636
2637 /* Merge the guest and nested-guest intercepts. */
2638 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2639
2640 /* Update the VMCB clean bits. */
2641 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2642 }
2643 else
2644 {
2645 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
2646 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2647 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2648 }
2649}
2650
2651
2652/**
2653 * Exports the nested-guest state into the VMCB.
2654 *
2655 * We need to export the entire state as we could be continuing nested-guest
2656 * execution at any point (not just immediately after VMRUN) and thus the VMCB
2657 * can be out-of-sync with the nested-guest state if it was executed in IEM.
2658 *
2659 * @returns VBox status code.
2660 * @param pVCpu The cross context virtual CPU structure.
2661 * @param pCtx Pointer to the guest-CPU context.
2662 *
2663 * @remarks No-long-jump zone!!!
2664 */
2665static int hmR0SvmExportGuestStateNested(PVMCPU pVCpu)
2666{
2667 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2668
2669 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2670 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2671 Assert(pVmcbNstGst);
2672
2673 hmR0SvmSetupVmcbNested(pVCpu);
2674
2675 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2676 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2677 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2678 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2679
2680 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2681
2682 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcbNstGst);
2683 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2684
2685 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcbNstGst);
2686 hmR0SvmExportGuestMsrs(pVCpu, pVmcbNstGst);
2687 hmR0SvmExportGuestHwvirtStateNested(pVCpu, pVmcbNstGst);
2688
2689 ASMSetFlags(fEFlags);
2690
2691 /* Nested VGIF not supported yet. */
2692 Assert(!pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable);
2693
2694 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2695 AssertRCReturn(rc, rc);
2696
2697 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2698 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2699 | HM_CHANGED_GUEST_RFLAGS
2700 | HM_CHANGED_GUEST_GPRS_MASK
2701 | HM_CHANGED_GUEST_APIC_TPR
2702 | HM_CHANGED_GUEST_X87
2703 | HM_CHANGED_GUEST_SSE_AVX
2704 | HM_CHANGED_GUEST_OTHER_XSAVE
2705 | HM_CHANGED_GUEST_XCRx
2706 | HM_CHANGED_GUEST_TSC_AUX
2707 | HM_CHANGED_GUEST_OTHER_MSRS
2708 | HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS
2709 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2710
2711#ifdef VBOX_STRICT
2712 /*
2713 * All of the guest-CPU state and SVM keeper bits should be exported here by now, except
2714 * for the host-context and/or shared host-guest context bits.
2715 */
2716 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2717 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2718 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2719 ("fCtxChanged=%#RX64\n", fCtxChanged));
2720
2721 /*
2722 * If we need to log state that isn't always imported, we'll need to import them here.
2723 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2724 */
2725 hmR0SvmLogState(pVCpu, pVmcbNstGst, "hmR0SvmExportGuestStateNested", 0 /* fFlags */, 0 /* uVerbose */);
2726#endif
2727
2728 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2729 return rc;
2730}
2731#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2732
2733
2734/**
2735 * Exports the state shared between the host and guest (or nested-guest) into
2736 * the VMCB.
2737 *
2738 * @param pVCpu The cross context virtual CPU structure.
2739 * @param pVmcb Pointer to the VM control block.
2740 *
2741 * @remarks No-long-jump zone!!!
2742 */
2743static void hmR0SvmExportSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb)
2744{
2745 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2746 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2747
2748 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2749 {
2750 /** @todo Figure out stepping with nested-guest. */
2751 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2752 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2753 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2754 else
2755 {
2756 pVmcb->guest.u64DR6 = pCtx->dr[6];
2757 pVmcb->guest.u64DR7 = pCtx->dr[7];
2758 }
2759 }
2760
2761 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2762 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2763 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2764}
2765
2766
2767/**
2768 * Worker for SVMR0ImportStateOnDemand.
2769 *
2770 * @param pVCpu The cross context virtual CPU structure.
2771 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2772 */
2773static void hmR0SvmImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
2774{
2775 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2776
2777 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2778 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2779 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2780 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2781
2782 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
2783
2784 /*
2785 * We disable interrupts to make the updating of the state and in particular
2786 * the fExtrn modification atomic wrt to preemption hooks.
2787 */
2788 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2789
2790 fWhat &= pCtx->fExtrn;
2791 if (fWhat)
2792 {
2793#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2794 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2795 {
2796 if ( !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
2797 && pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2798 {
2799 /* We don't yet support passing VGIF feature to the guest. */
2800 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fVGif);
2801 pCtx->hwvirt.fGif = pVmcbCtrl->IntCtrl.n.u1VGif;
2802 }
2803 }
2804
2805 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2806 {
2807 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2808 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2809 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2810 }
2811#endif
2812
2813 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2814 {
2815 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2816 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2817 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2818 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2819 }
2820
2821 if (fWhat & CPUMCTX_EXTRN_RIP)
2822 pCtx->rip = pVmcbGuest->u64RIP;
2823
2824 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2825 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2826
2827 if (fWhat & CPUMCTX_EXTRN_RSP)
2828 pCtx->rsp = pVmcbGuest->u64RSP;
2829
2830 if (fWhat & CPUMCTX_EXTRN_RAX)
2831 pCtx->rax = pVmcbGuest->u64RAX;
2832
2833 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2834 {
2835 if (fWhat & CPUMCTX_EXTRN_CS)
2836 {
2837 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2838 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2839 /** @todo SELM might need to be fixed as it too should not care about the
2840 * granularity bit. See @bugref{6785}. */
2841 if ( !pCtx->cs.Attr.n.u1Granularity
2842 && pCtx->cs.Attr.n.u1Present
2843 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2844 {
2845 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2846 pCtx->cs.Attr.n.u1Granularity = 1;
2847 }
2848 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2849 }
2850 if (fWhat & CPUMCTX_EXTRN_SS)
2851 {
2852 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2853 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2854 /*
2855 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2856 * VMCB and uses that and thus it's possible that when the CPL changes during
2857 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2858 * AMD Fusion CPUs with 64-bit guests.
2859 *
2860 * See AMD spec. 15.5.1 "Basic operation".
2861 */
2862 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2863 uint8_t const uCpl = pVmcbGuest->u8CPL;
2864 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2865 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2866 }
2867 if (fWhat & CPUMCTX_EXTRN_DS)
2868 {
2869 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2870 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2871 }
2872 if (fWhat & CPUMCTX_EXTRN_ES)
2873 {
2874 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2875 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2876 }
2877 if (fWhat & CPUMCTX_EXTRN_FS)
2878 {
2879 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2880 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2881 }
2882 if (fWhat & CPUMCTX_EXTRN_GS)
2883 {
2884 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2885 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2886 }
2887 }
2888
2889 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2890 {
2891 if (fWhat & CPUMCTX_EXTRN_TR)
2892 {
2893 /*
2894 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2895 * are used between Intel and AMD, see @bugref{6208#c39}.
2896 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2897 */
2898 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2899 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2900 {
2901 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2902 || CPUMIsGuestInLongModeEx(pCtx))
2903 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2904 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2905 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2906 }
2907 }
2908
2909 if (fWhat & CPUMCTX_EXTRN_LDTR)
2910 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2911
2912 if (fWhat & CPUMCTX_EXTRN_GDTR)
2913 {
2914 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2915 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2916 }
2917
2918 if (fWhat & CPUMCTX_EXTRN_IDTR)
2919 {
2920 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2921 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2922 }
2923 }
2924
2925 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2926 {
2927 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2928 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2929 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2930 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2931 }
2932
2933 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2934 {
2935 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2936 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2937 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2938 }
2939
2940 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2941 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2942
2943 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2944 {
2945 if (fWhat & CPUMCTX_EXTRN_DR6)
2946 {
2947 if (!pVCpu->hm.s.fUsingHyperDR7)
2948 pCtx->dr[6] = pVmcbGuest->u64DR6;
2949 else
2950 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2951 }
2952
2953 if (fWhat & CPUMCTX_EXTRN_DR7)
2954 {
2955 if (!pVCpu->hm.s.fUsingHyperDR7)
2956 pCtx->dr[7] = pVmcbGuest->u64DR7;
2957 else
2958 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2959 }
2960 }
2961
2962 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2963 {
2964 if (fWhat & CPUMCTX_EXTRN_CR0)
2965 {
2966 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2967 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2968 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2969 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2970 CPUMSetGuestCR0(pVCpu, uCr0);
2971 VMMRZCallRing3Enable(pVCpu);
2972 }
2973
2974 if (fWhat & CPUMCTX_EXTRN_CR2)
2975 pCtx->cr2 = pVmcbGuest->u64CR2;
2976
2977 if (fWhat & CPUMCTX_EXTRN_CR3)
2978 {
2979 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2980 && pCtx->cr3 != pVmcbGuest->u64CR3)
2981 {
2982 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2983 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2984 }
2985 }
2986
2987 /* Changes to CR4 are always intercepted. */
2988 }
2989
2990 /* Update fExtrn. */
2991 pCtx->fExtrn &= ~fWhat;
2992
2993 /* If everything has been imported, clear the HM keeper bit. */
2994 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2995 {
2996 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2997 Assert(!pCtx->fExtrn);
2998 }
2999 }
3000 else
3001 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3002
3003 ASMSetFlags(fEFlags);
3004
3005 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
3006
3007 /*
3008 * Honor any pending CR3 updates.
3009 *
3010 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
3011 * -> hmR0SvmCallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
3012 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
3013 * handling -> hmR0SvmImportGuestState() and here we are.
3014 *
3015 * The reason for such complicated handling is because VM-exits that call into PGM expect
3016 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
3017 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
3018 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
3019 *
3020 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
3021 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
3022 */
3023 if ( VMMRZCallRing3IsEnabled(pVCpu)
3024 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3025 {
3026 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
3027 PGMUpdateCR3(pVCpu, pCtx->cr3);
3028 }
3029}
3030
3031
3032/**
3033 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
3034 * context.
3035 *
3036 * Currently there is no residual state left in the CPU that is not updated in the
3037 * VMCB.
3038 *
3039 * @returns VBox status code.
3040 * @param pVCpu The cross context virtual CPU structure.
3041 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3042 */
3043VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
3044{
3045 hmR0SvmImportGuestState(pVCpu, fWhat);
3046 return VINF_SUCCESS;
3047}
3048
3049
3050/**
3051 * Does the necessary state syncing before returning to ring-3 for any reason
3052 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
3053 *
3054 * @param pVCpu The cross context virtual CPU structure.
3055 * @param fImportState Whether to import the guest state from the VMCB back
3056 * to the guest-CPU context.
3057 *
3058 * @remarks No-long-jmp zone!!!
3059 */
3060static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState)
3061{
3062 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3063 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3064 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3065
3066 /*
3067 * !!! IMPORTANT !!!
3068 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3069 */
3070
3071 /* Save the guest state if necessary. */
3072 if (fImportState)
3073 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3074
3075 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3076 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3077 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
3078
3079 /*
3080 * Restore host debug registers if necessary and resync on next R0 reentry.
3081 */
3082#ifdef VBOX_STRICT
3083 if (CPUMIsHyperDebugStateActive(pVCpu))
3084 {
3085 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
3086 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
3087 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
3088 }
3089#endif
3090 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3091 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3092 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3093
3094 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
3095 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
3096 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
3097 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
3098 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
3099 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3100
3101 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3102}
3103
3104
3105/**
3106 * Leaves the AMD-V session.
3107 *
3108 * Only used while returning to ring-3 either due to longjump or exits to
3109 * ring-3.
3110 *
3111 * @returns VBox status code.
3112 * @param pVCpu The cross context virtual CPU structure.
3113 */
3114static int hmR0SvmLeaveSession(PVMCPU pVCpu)
3115{
3116 HM_DISABLE_PREEMPT(pVCpu);
3117 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3118 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3119
3120 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3121 and done this from the SVMR0ThreadCtxCallback(). */
3122 if (!pVCpu->hm.s.fLeaveDone)
3123 {
3124 hmR0SvmLeave(pVCpu, true /* fImportState */);
3125 pVCpu->hm.s.fLeaveDone = true;
3126 }
3127
3128 /*
3129 * !!! IMPORTANT !!!
3130 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3131 */
3132
3133 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3134 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3135 VMMR0ThreadCtxHookDisable(pVCpu);
3136
3137 /* Leave HM context. This takes care of local init (term). */
3138 int rc = HMR0LeaveCpu(pVCpu);
3139
3140 HM_RESTORE_PREEMPT();
3141 return rc;
3142}
3143
3144
3145/**
3146 * Does the necessary state syncing before doing a longjmp to ring-3.
3147 *
3148 * @returns VBox status code.
3149 * @param pVCpu The cross context virtual CPU structure.
3150 *
3151 * @remarks No-long-jmp zone!!!
3152 */
3153static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
3154{
3155 return hmR0SvmLeaveSession(pVCpu);
3156}
3157
3158
3159/**
3160 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3161 * any remaining host state) before we longjump to ring-3 and possibly get
3162 * preempted.
3163 *
3164 * @param pVCpu The cross context virtual CPU structure.
3165 * @param enmOperation The operation causing the ring-3 longjump.
3166 * @param pvUser The user argument, NULL (currently unused).
3167 */
3168static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
3169{
3170 RT_NOREF_PV(pvUser);
3171
3172 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3173 {
3174 /*
3175 * !!! IMPORTANT !!!
3176 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3177 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3178 */
3179 VMMRZCallRing3RemoveNotification(pVCpu);
3180 VMMRZCallRing3Disable(pVCpu);
3181 HM_DISABLE_PREEMPT(pVCpu);
3182
3183 /* Import the entire guest state. */
3184 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3185
3186 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3187 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3188
3189 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3190 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3191
3192 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3193 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3194 VMMR0ThreadCtxHookDisable(pVCpu);
3195
3196 /* Leave HM context. This takes care of local init (term). */
3197 HMR0LeaveCpu(pVCpu);
3198
3199 HM_RESTORE_PREEMPT();
3200 return VINF_SUCCESS;
3201 }
3202
3203 Assert(pVCpu);
3204 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3205 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3206
3207 VMMRZCallRing3Disable(pVCpu);
3208 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3209
3210 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3211 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3212 AssertRCReturn(rc, rc);
3213
3214 VMMRZCallRing3Enable(pVCpu);
3215 return VINF_SUCCESS;
3216}
3217
3218
3219/**
3220 * Take necessary actions before going back to ring-3.
3221 *
3222 * An action requires us to go back to ring-3. This function does the necessary
3223 * steps before we can safely return to ring-3. This is not the same as longjmps
3224 * to ring-3, this is voluntary.
3225 *
3226 * @returns VBox status code.
3227 * @param pVCpu The cross context virtual CPU structure.
3228 * @param rcExit The reason for exiting to ring-3. Can be
3229 * VINF_VMM_UNKNOWN_RING3_CALL.
3230 */
3231static int hmR0SvmExitToRing3(PVMCPU pVCpu, int rcExit)
3232{
3233 Assert(pVCpu);
3234 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3235
3236 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3237 VMMRZCallRing3Disable(pVCpu);
3238 Log4Func(("rcExit=%d LocalFF=%#RX32 GlobalFF=%#RX32\n", rcExit, pVCpu->fLocalForcedActions,
3239 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3240
3241 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3242 if (pVCpu->hm.s.Event.fPending)
3243 {
3244 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3245 Assert(!pVCpu->hm.s.Event.fPending);
3246 }
3247
3248 /* Sync. the necessary state for going back to ring-3. */
3249 hmR0SvmLeaveSession(pVCpu);
3250 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3251
3252 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3253 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3254 | CPUM_CHANGED_LDTR
3255 | CPUM_CHANGED_GDTR
3256 | CPUM_CHANGED_IDTR
3257 | CPUM_CHANGED_TR
3258 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3259 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
3260 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3261 {
3262 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3263 }
3264
3265 /* Update the exit-to-ring 3 reason. */
3266 pVCpu->hm.s.rcLastExitToR3 = rcExit;
3267
3268 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3269 if ( rcExit != VINF_EM_RAW_INTERRUPT
3270 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3271 {
3272 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3273 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3274 }
3275
3276 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3277
3278 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
3279 VMMRZCallRing3RemoveNotification(pVCpu);
3280 VMMRZCallRing3Enable(pVCpu);
3281
3282 /*
3283 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3284 * and if we're injecting an event we should have a TRPM trap pending.
3285 */
3286 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3287 pVCpu->hm.s.u32HMError = rcExit,
3288 VERR_SVM_IPE_5);
3289 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3290 pVCpu->hm.s.u32HMError = rcExit,
3291 VERR_SVM_IPE_4);
3292
3293 return rcExit;
3294}
3295
3296
3297/**
3298 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3299 * intercepts.
3300 *
3301 * @param pVCpu The cross context virtual CPU structure.
3302 * @param pVmcb Pointer to the VM control block.
3303 *
3304 * @remarks No-long-jump zone!!!
3305 */
3306static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3307{
3308 /*
3309 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3310 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3311 * RDTSC/RDTSCP as well.
3312 */
3313 bool fParavirtTsc;
3314 uint64_t uTscOffset;
3315 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3316
3317 bool fIntercept;
3318 if (fCanUseRealTsc)
3319 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3320 else
3321 {
3322 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3323 fIntercept = true;
3324 }
3325
3326 if (!fIntercept)
3327 {
3328#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3329 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3330 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3331 uTscOffset = HMSvmNstGstApplyTscOffset(pVCpu, uTscOffset);
3332#endif
3333
3334 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3335 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3336 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3337
3338 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
3339 }
3340 else
3341 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
3342
3343 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3344 information before every VM-entry, hence we have nothing to do here at the moment. */
3345 if (fParavirtTsc)
3346 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3347}
3348
3349
3350/**
3351 * Sets an event as a pending event to be injected into the guest.
3352 *
3353 * @param pVCpu The cross context virtual CPU structure.
3354 * @param pEvent Pointer to the SVM event.
3355 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3356 * page-fault.
3357 *
3358 * @remarks Statistics counter assumes this is a guest event being reflected to
3359 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3360 */
3361DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3362{
3363 Assert(!pVCpu->hm.s.Event.fPending);
3364 Assert(pEvent->n.u1Valid);
3365
3366 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3367 pVCpu->hm.s.Event.fPending = true;
3368 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3369
3370 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3371 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3372}
3373
3374
3375/**
3376 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3377 *
3378 * @param pVCpu The cross context virtual CPU structure.
3379 */
3380DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3381{
3382 SVMEVENT Event;
3383 Event.u = 0;
3384 Event.n.u1Valid = 1;
3385 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3386 Event.n.u8Vector = X86_XCPT_UD;
3387 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3388}
3389
3390
3391/**
3392 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3393 *
3394 * @param pVCpu The cross context virtual CPU structure.
3395 */
3396DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3397{
3398 SVMEVENT Event;
3399 Event.u = 0;
3400 Event.n.u1Valid = 1;
3401 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3402 Event.n.u8Vector = X86_XCPT_DB;
3403 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3404}
3405
3406
3407/**
3408 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3409 *
3410 * @param pVCpu The cross context virtual CPU structure.
3411 * @param u32ErrCode The error-code for the page-fault.
3412 * @param uFaultAddress The page fault address (CR2).
3413 *
3414 * @remarks This updates the guest CR2 with @a uFaultAddress!
3415 */
3416DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3417{
3418 SVMEVENT Event;
3419 Event.u = 0;
3420 Event.n.u1Valid = 1;
3421 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3422 Event.n.u8Vector = X86_XCPT_PF;
3423 Event.n.u1ErrorCodeValid = 1;
3424 Event.n.u32ErrorCode = u32ErrCode;
3425
3426 /* Update CR2 of the guest. */
3427 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3428 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3429 {
3430 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3431 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3432 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3433 }
3434
3435 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3436}
3437
3438
3439/**
3440 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3441 *
3442 * @param pVCpu The cross context virtual CPU structure.
3443 */
3444DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3445{
3446 SVMEVENT Event;
3447 Event.u = 0;
3448 Event.n.u1Valid = 1;
3449 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3450 Event.n.u8Vector = X86_XCPT_MF;
3451 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3452}
3453
3454
3455/**
3456 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3457 *
3458 * @param pVCpu The cross context virtual CPU structure.
3459 */
3460DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3461{
3462 SVMEVENT Event;
3463 Event.u = 0;
3464 Event.n.u1Valid = 1;
3465 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3466 Event.n.u8Vector = X86_XCPT_DF;
3467 Event.n.u1ErrorCodeValid = 1;
3468 Event.n.u32ErrorCode = 0;
3469 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3470}
3471
3472
3473/**
3474 * Injects an event into the guest upon VMRUN by updating the relevant field
3475 * in the VMCB.
3476 *
3477 * @param pVCpu The cross context virtual CPU structure.
3478 * @param pVmcb Pointer to the guest VM control block.
3479 * @param pEvent Pointer to the event.
3480 *
3481 * @remarks No-long-jump zone!!!
3482 * @remarks Requires CR0!
3483 */
3484DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3485{
3486 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3487 pVmcb->ctrl.EventInject.u = pEvent->u;
3488 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3489 RT_NOREF(pVCpu);
3490
3491 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3492 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3493}
3494
3495
3496
3497/**
3498 * Converts any TRPM trap into a pending HM event. This is typically used when
3499 * entering from ring-3 (not longjmp returns).
3500 *
3501 * @param pVCpu The cross context virtual CPU structure.
3502 */
3503static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
3504{
3505 Assert(TRPMHasTrap(pVCpu));
3506 Assert(!pVCpu->hm.s.Event.fPending);
3507
3508 uint8_t uVector;
3509 TRPMEVENT enmTrpmEvent;
3510 RTGCUINT uErrCode;
3511 RTGCUINTPTR GCPtrFaultAddress;
3512 uint8_t cbInstr;
3513
3514 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
3515 AssertRC(rc);
3516
3517 SVMEVENT Event;
3518 Event.u = 0;
3519 Event.n.u1Valid = 1;
3520 Event.n.u8Vector = uVector;
3521
3522 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3523 if (enmTrpmEvent == TRPM_TRAP)
3524 {
3525 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3526 switch (uVector)
3527 {
3528 case X86_XCPT_NMI:
3529 {
3530 Event.n.u3Type = SVM_EVENT_NMI;
3531 break;
3532 }
3533
3534 case X86_XCPT_PF:
3535 case X86_XCPT_DF:
3536 case X86_XCPT_TS:
3537 case X86_XCPT_NP:
3538 case X86_XCPT_SS:
3539 case X86_XCPT_GP:
3540 case X86_XCPT_AC:
3541 {
3542 Event.n.u1ErrorCodeValid = 1;
3543 Event.n.u32ErrorCode = uErrCode;
3544 break;
3545 }
3546 }
3547 }
3548 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3549 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3550 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3551 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3552 else
3553 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3554
3555 rc = TRPMResetTrap(pVCpu);
3556 AssertRC(rc);
3557
3558 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3559 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3560
3561 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3562}
3563
3564
3565/**
3566 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3567 * AMD-V to execute any instruction.
3568 *
3569 * @param pVCpu The cross context virtual CPU structure.
3570 */
3571static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3572{
3573 Assert(pVCpu->hm.s.Event.fPending);
3574 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3575
3576 SVMEVENT Event;
3577 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3578
3579 uint8_t uVector = Event.n.u8Vector;
3580 uint8_t uVectorType = Event.n.u3Type;
3581 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
3582
3583 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
3584
3585 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3586 AssertRC(rc);
3587
3588 if (Event.n.u1ErrorCodeValid)
3589 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3590
3591 if ( uVectorType == SVM_EVENT_EXCEPTION
3592 && uVector == X86_XCPT_PF)
3593 {
3594 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3595 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3596 }
3597 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
3598 {
3599 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
3600 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
3601 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
3602 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3603 }
3604 pVCpu->hm.s.Event.fPending = false;
3605}
3606
3607
3608/**
3609 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3610 * now.
3611 *
3612 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3613 * @param pVCpu The cross context virtual CPU structure.
3614 *
3615 * @remarks No-long-jump zone!!!
3616 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3617 */
3618static bool hmR0SvmIsIntrShadowActive(PVMCPU pVCpu)
3619{
3620 /*
3621 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3622 * completes. Check if we should inhibit interrupts or clear any existing
3623 * interrupt inhibition.
3624 */
3625 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3626 {
3627 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3628 {
3629 /*
3630 * We can clear the inhibit force flag as even if we go back to the recompiler
3631 * without executing guest code in AMD-V, the flag's condition to be cleared is
3632 * met and thus the cleared state is correct.
3633 */
3634 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3635 return false;
3636 }
3637 return true;
3638 }
3639 return false;
3640}
3641
3642
3643/**
3644 * Sets the virtual interrupt intercept control in the VMCB.
3645 *
3646 * @param pVCpu The cross context virtual CPU structure.
3647 * @param pVmcb Pointer to the VM control block.
3648 */
3649static void hmR0SvmSetIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3650{
3651 /*
3652 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3653 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3654 * (updating ISR at the right time) and inject the interrupt.
3655 *
3656 * With AVIC is supported, we could make use of the asynchronously delivery without
3657 * #VMEXIT and we would be passing the AVIC page to SVM.
3658 *
3659 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3660 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3661 */
3662#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3663 /*
3664 * Currently we don't overlay interupt windows and if there's any V_IRQ pending in the
3665 * nested-guest VMCB, we avoid setting up any interrupt window on behalf of the outer
3666 * guest.
3667 */
3668 /** @todo Does this mean we end up prioritizing virtual interrupt
3669 * delivery/window over a physical interrupt (from the outer guest)
3670 * might be pending? */
3671 bool const fEnableIntWindow = !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
3672 if (!fEnableIntWindow)
3673 {
3674 Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx));
3675 Log4(("Nested-guest V_IRQ already pending\n"));
3676 }
3677#else
3678 bool const fEnableIntWindow = true;
3679 RT_NOREF(pVCpu);
3680#endif
3681 if (fEnableIntWindow)
3682 {
3683 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3684 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3685 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3686 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3687 Log4(("Set VINTR intercept\n"));
3688 }
3689}
3690
3691
3692/**
3693 * Clears the virtual interrupt intercept control in the VMCB as
3694 * we are figured the guest is unable process any interrupts
3695 * at this point of time.
3696 *
3697 * @param pVCpu The cross context virtual CPU structure.
3698 * @param pVmcb Pointer to the VM control block.
3699 */
3700static void hmR0SvmClearIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3701{
3702 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3703 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3704 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3705 {
3706 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3707 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3708 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3709 Log4(("Cleared VINTR intercept\n"));
3710 }
3711}
3712
3713#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3714/**
3715 * Evaluates the event to be delivered to the nested-guest and sets it as the
3716 * pending event.
3717 *
3718 * @returns VBox strict status code.
3719 * @param pVCpu The cross context virtual CPU structure.
3720 */
3721static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu)
3722{
3723 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3724 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
3725 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3726 | CPUMCTX_EXTRN_RFLAGS
3727 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3728 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3729
3730 Assert(!pVCpu->hm.s.Event.fPending);
3731 Assert(pCtx->hwvirt.fGif);
3732 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3733 Assert(pVmcb);
3734
3735 bool const fVirtualGif = CPUMGetSvmNstGstVGif(pCtx);
3736 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3737 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3738
3739 Log4Func(("fVirtualGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3740 fVirtualGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3741 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3742
3743 /** @todo SMI. SMIs take priority over NMIs. */
3744
3745 /*
3746 * Check if the guest can receive NMIs.
3747 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3748 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3749 */
3750 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3751 && !fBlockNmi)
3752 {
3753 if ( fVirtualGif
3754 && !fIntShadow)
3755 {
3756 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3757 {
3758 Log4(("Intercepting NMI -> #VMEXIT\n"));
3759 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3760 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3761 }
3762
3763 Log4(("Setting NMI pending for injection\n"));
3764 SVMEVENT Event;
3765 Event.u = 0;
3766 Event.n.u1Valid = 1;
3767 Event.n.u8Vector = X86_XCPT_NMI;
3768 Event.n.u3Type = SVM_EVENT_NMI;
3769 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3770 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3771 }
3772 else if (!fVirtualGif)
3773 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3774 else
3775 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3776 }
3777 /*
3778 * Check if the nested-guest can receive external interrupts (generated by the guest's
3779 * PIC/APIC).
3780 *
3781 * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
3782 * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
3783 *
3784 * External interrupts that are generated for the outer guest may be intercepted
3785 * depending on how the nested-guest VMCB was programmed by guest software.
3786 *
3787 * Physical interrupts always take priority over virtual interrupts,
3788 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3789 */
3790 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3791 && !pVCpu->hm.s.fSingleInstruction)
3792 {
3793 if ( fVirtualGif
3794 && !fIntShadow
3795 && CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx))
3796 {
3797 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3798 {
3799 Log4(("Intercepting INTR -> #VMEXIT\n"));
3800 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3801 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3802 }
3803
3804 uint8_t u8Interrupt;
3805 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3806 if (RT_SUCCESS(rc))
3807 {
3808 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3809 SVMEVENT Event;
3810 Event.u = 0;
3811 Event.n.u1Valid = 1;
3812 Event.n.u8Vector = u8Interrupt;
3813 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3814 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3815 }
3816 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3817 {
3818 /*
3819 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3820 * updated eventually when the TPR is written by the guest.
3821 */
3822 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3823 }
3824 else
3825 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3826 }
3827 else if (!fVirtualGif)
3828 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3829 else
3830 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3831 }
3832
3833 return VINF_SUCCESS;
3834}
3835#endif
3836
3837/**
3838 * Evaluates the event to be delivered to the guest and sets it as the pending
3839 * event.
3840 *
3841 * @param pVCpu The cross context virtual CPU structure.
3842 */
3843static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu)
3844{
3845 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3846 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3847 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3848 | CPUMCTX_EXTRN_RFLAGS
3849 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW);
3850
3851 Assert(!pVCpu->hm.s.Event.fPending);
3852 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3853 Assert(pVmcb);
3854
3855#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3856 bool const fGif = pCtx->hwvirt.fGif;
3857#else
3858 bool const fGif = true;
3859#endif
3860 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3861 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3862 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3863
3864 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool fIntPending=%RTbool NMI pending=%RTbool\n",
3865 fGif, fBlockNmi, fBlockInt, fIntShadow,
3866 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3867 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3868
3869 /** @todo SMI. SMIs take priority over NMIs. */
3870
3871 /*
3872 * Check if the guest can receive NMIs.
3873 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3874 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3875 */
3876 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3877 && !fBlockNmi)
3878 {
3879 if ( fGif
3880 && !fIntShadow)
3881 {
3882 Log4(("Setting NMI pending for injection\n"));
3883 SVMEVENT Event;
3884 Event.u = 0;
3885 Event.n.u1Valid = 1;
3886 Event.n.u8Vector = X86_XCPT_NMI;
3887 Event.n.u3Type = SVM_EVENT_NMI;
3888 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3889 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3890 }
3891 else if (!fGif)
3892 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3893 else
3894 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3895 }
3896 /*
3897 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3898 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3899 * it from the APIC device.
3900 */
3901 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3902 && !pVCpu->hm.s.fSingleInstruction)
3903 {
3904 if ( fGif
3905 && !fBlockInt
3906 && !fIntShadow)
3907 {
3908 uint8_t u8Interrupt;
3909 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3910 if (RT_SUCCESS(rc))
3911 {
3912 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3913 SVMEVENT Event;
3914 Event.u = 0;
3915 Event.n.u1Valid = 1;
3916 Event.n.u8Vector = u8Interrupt;
3917 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3918 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3919 }
3920 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3921 {
3922 /*
3923 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3924 * updated eventually when the TPR is written by the guest.
3925 */
3926 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3927 }
3928 else
3929 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3930 }
3931 else if (!fGif)
3932 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3933 else
3934 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3935 }
3936}
3937
3938
3939/**
3940 * Injects any pending events into the guest (or nested-guest).
3941 *
3942 * @param pVCpu The cross context virtual CPU structure.
3943 * @param pVmcb Pointer to the VM control block.
3944 *
3945 * @remarks Must only be called when we are guaranteed to enter
3946 * hardware-assisted SVM execution and not return to ring-3
3947 * prematurely.
3948 */
3949static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PSVMVMCB pVmcb)
3950{
3951 Assert(!TRPMHasTrap(pVCpu));
3952 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3953
3954 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3955#ifdef VBOX_STRICT
3956 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3957 bool const fGif = pCtx->hwvirt.fGif;
3958 bool fAllowInt = fGif;
3959 if (fGif)
3960 {
3961 /*
3962 * For nested-guests we have no way to determine if we're injecting a physical or
3963 * virtual interrupt at this point. Hence the partial verification below.
3964 */
3965 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3966 fAllowInt = CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx) || CPUMCanSvmNstGstTakeVirtIntr(pVCpu, pCtx);
3967 else
3968 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3969 }
3970#endif
3971
3972 if (pVCpu->hm.s.Event.fPending)
3973 {
3974 SVMEVENT Event;
3975 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3976 Assert(Event.n.u1Valid);
3977
3978 /*
3979 * Validate event injection pre-conditions.
3980 */
3981 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3982 {
3983 Assert(fAllowInt);
3984 Assert(!fIntShadow);
3985 }
3986 else if (Event.n.u3Type == SVM_EVENT_NMI)
3987 {
3988 Assert(fGif);
3989 Assert(!fIntShadow);
3990 }
3991
3992 /*
3993 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3994 * do this only when we are surely going to inject the NMI as otherwise if we return
3995 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3996 * SVM R0.
3997 *
3998 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3999 * which will set the VMCS field after actually delivering the NMI which we read on
4000 * VM-exit to determine the state.
4001 */
4002 if ( Event.n.u3Type == SVM_EVENT_NMI
4003 && Event.n.u8Vector == X86_XCPT_NMI
4004 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4005 {
4006 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4007 }
4008
4009 /*
4010 * Inject it (update VMCB for injection by the hardware).
4011 */
4012 Log4(("Injecting pending HM event\n"));
4013 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
4014 pVCpu->hm.s.Event.fPending = false;
4015
4016 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
4017 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
4018 else
4019 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
4020 }
4021 else
4022 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
4023
4024 /*
4025 * We could have injected an NMI through IEM and continue guest execution using
4026 * hardware-assisted SVM. In which case, we would not have any events pending (above)
4027 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
4028 */
4029 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4030 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
4031
4032 /*
4033 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
4034 *
4035 * For nested-guests: We need to update it too for the scenario where IEM executes
4036 * the nested-guest but execution later continues here with an interrupt shadow active.
4037 */
4038 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
4039}
4040
4041
4042/**
4043 * Reports world-switch error and dumps some useful debug info.
4044 *
4045 * @param pVCpu The cross context virtual CPU structure.
4046 * @param rcVMRun The return code from VMRUN (or
4047 * VERR_SVM_INVALID_GUEST_STATE for invalid
4048 * guest-state).
4049 */
4050static void hmR0SvmReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun)
4051{
4052 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4053 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4054 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4055
4056 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
4057 {
4058#ifdef VBOX_STRICT
4059 hmR0DumpRegs(pVCpu);
4060 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
4061 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
4062 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
4063 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
4064 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
4065 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
4066 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
4067 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
4068 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
4069 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
4070 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
4071
4072 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
4073 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
4074 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
4075
4076 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
4077 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
4078 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
4079 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
4080 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
4081 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
4082 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
4083 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
4084 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
4085 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
4086 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
4087 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
4088
4089 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
4090 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
4091 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
4092 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
4093 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
4094 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
4095 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
4096 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
4097 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
4098 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
4099 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4100 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
4101 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
4102 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
4103 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
4104 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
4105 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
4106 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
4107 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
4108 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
4109
4110 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
4111
4112 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
4113 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
4114
4115 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
4116 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
4117 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
4118 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
4119 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
4120 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
4121 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
4122 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
4123 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
4124 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
4125 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
4126 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
4127 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
4128 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
4129 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
4130 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
4131 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
4132 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
4133 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
4134 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
4135
4136 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
4137 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
4138
4139 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
4140 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
4141 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
4142 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
4143
4144 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
4145 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
4146
4147 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
4148 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
4149 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
4150 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
4151
4152 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
4153 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
4154 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
4155 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
4156 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
4157 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
4158 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
4159
4160 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
4161 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
4162 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
4163 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
4164
4165 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
4166 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
4167 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
4168
4169 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
4170 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
4171 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
4172 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
4173 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
4174 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
4175 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
4176 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
4177 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
4178 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
4179 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
4180 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
4181
4182 NOREF(pVmcb);
4183#endif /* VBOX_STRICT */
4184 }
4185 else
4186 Log4Func(("rcVMRun=%d\n", rcVMRun));
4187}
4188
4189
4190/**
4191 * Check per-VM and per-VCPU force flag actions that require us to go back to
4192 * ring-3 for one reason or another.
4193 *
4194 * @returns VBox status code (information status code included).
4195 * @retval VINF_SUCCESS if we don't have any actions that require going back to
4196 * ring-3.
4197 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
4198 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
4199 * interrupts)
4200 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
4201 * all EMTs to be in ring-3.
4202 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
4203 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
4204 * to the EM loop.
4205 *
4206 * @param pVCpu The cross context virtual CPU structure.
4207 */
4208static int hmR0SvmCheckForceFlags(PVMCPU pVCpu)
4209{
4210 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4211 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
4212
4213 /* Could happen as a result of longjump. */
4214 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
4215 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
4216
4217 /* Update pending interrupts into the APIC's IRR. */
4218 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
4219 APICUpdatePendingInterrupts(pVCpu);
4220
4221 PVM pVM = pVCpu->CTX_SUFF(pVM);
4222 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
4223 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4224 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
4225 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4226 {
4227 /* Pending PGM C3 sync. */
4228 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4229 {
4230 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4231 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4232 if (rc != VINF_SUCCESS)
4233 {
4234 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4235 return rc;
4236 }
4237 }
4238
4239 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4240 /* -XXX- what was that about single stepping? */
4241 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
4242 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4243 {
4244 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4245 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
4246 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4247 return rc;
4248 }
4249
4250 /* Pending VM request packets, such as hardware interrupts. */
4251 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
4252 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
4253 {
4254 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4255 return VINF_EM_PENDING_REQUEST;
4256 }
4257
4258 /* Pending PGM pool flushes. */
4259 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4260 {
4261 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4262 return VINF_PGM_POOL_FLUSH_PENDING;
4263 }
4264
4265 /* Pending DMA requests. */
4266 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
4267 {
4268 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4269 return VINF_EM_RAW_TO_R3;
4270 }
4271 }
4272
4273 return VINF_SUCCESS;
4274}
4275
4276
4277#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4278/**
4279 * Does the preparations before executing nested-guest code in AMD-V.
4280 *
4281 * @returns VBox status code (informational status codes included).
4282 * @retval VINF_SUCCESS if we can proceed with running the guest.
4283 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4284 *
4285 * @param pVCpu The cross context virtual CPU structure.
4286 * @param pSvmTransient Pointer to the SVM transient structure.
4287 *
4288 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
4289 * @sa hmR0SvmPreRunGuest.
4290 */
4291static int hmR0SvmPreRunGuestNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4292{
4293 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4294 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4295 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4296
4297#ifdef VBOX_WITH_NESTED_HWVIRT_SVM_ONLY_IN_IEM
4298 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4299 return VINF_EM_RESCHEDULE_REM;
4300#endif
4301
4302 /* Check force flag actions that might require us to go back to ring-3. */
4303 int rc = hmR0SvmCheckForceFlags(pVCpu);
4304 if (rc != VINF_SUCCESS)
4305 return rc;
4306
4307 if (TRPMHasTrap(pVCpu))
4308 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4309 else if (!pVCpu->hm.s.Event.fPending)
4310 {
4311 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu);
4312 if ( rcStrict != VINF_SUCCESS
4313 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4314 return VBOXSTRICTRC_VAL(rcStrict);
4315 }
4316
4317 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4318
4319 /*
4320 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4321 * Just do it in software, see @bugref{8411}.
4322 * NB: If we could continue a task switch exit we wouldn't need to do this.
4323 */
4324 PVM pVM = pVCpu->CTX_SUFF(pVM);
4325 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
4326 && pVCpu->hm.s.Event.fPending
4327 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4328 {
4329 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4330 }
4331
4332#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4333 Assert(!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4334 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4335#endif
4336
4337 /*
4338 * Export the nested-guest state bits that are not shared with the host in any way as we
4339 * can longjmp or get preempted in the midst of exporting some of the state.
4340 */
4341 rc = hmR0SvmExportGuestStateNested(pVCpu);
4342 AssertRCReturn(rc, rc);
4343 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4344
4345 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware-assisted SVM. */
4346 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4347
4348 /*
4349 * No longjmps to ring-3 from this point on!!!
4350 *
4351 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4352 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4353 */
4354 VMMRZCallRing3Disable(pVCpu);
4355
4356 /*
4357 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4358 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4359 * preemption disabled for a while. Since this is purly to aid the
4360 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4361 * disable interrupt on NT.
4362 *
4363 * We need to check for force-flags that could've possible been altered since we last
4364 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4365 * see @bugref{6398}).
4366 *
4367 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4368 * to ring-3 before executing guest code.
4369 */
4370 pSvmTransient->fEFlags = ASMIntDisableFlags();
4371 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4372 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4373 {
4374 ASMSetFlags(pSvmTransient->fEFlags);
4375 VMMRZCallRing3Enable(pVCpu);
4376 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4377 return VINF_EM_RAW_TO_R3;
4378 }
4379 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4380 {
4381 ASMSetFlags(pSvmTransient->fEFlags);
4382 VMMRZCallRing3Enable(pVCpu);
4383 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4384 return VINF_EM_RAW_INTERRUPT;
4385 }
4386 return VINF_SUCCESS;
4387}
4388#endif
4389
4390
4391/**
4392 * Does the preparations before executing guest code in AMD-V.
4393 *
4394 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4395 * recompiler. We must be cautious what we do here regarding committing
4396 * guest-state information into the VMCB assuming we assuredly execute the guest
4397 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4398 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4399 * that the recompiler can (and should) use them when it resumes guest
4400 * execution. Otherwise such operations must be done when we can no longer
4401 * exit to ring-3.
4402 *
4403 * @returns VBox status code (informational status codes included).
4404 * @retval VINF_SUCCESS if we can proceed with running the guest.
4405 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4406 *
4407 * @param pVCpu The cross context virtual CPU structure.
4408 * @param pSvmTransient Pointer to the SVM transient structure.
4409 */
4410static int hmR0SvmPreRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4411{
4412 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4413 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4414
4415 /* Check force flag actions that might require us to go back to ring-3. */
4416 int rc = hmR0SvmCheckForceFlags(pVCpu);
4417 if (rc != VINF_SUCCESS)
4418 return rc;
4419
4420 if (TRPMHasTrap(pVCpu))
4421 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4422 else if (!pVCpu->hm.s.Event.fPending)
4423 hmR0SvmEvaluatePendingEvent(pVCpu);
4424
4425 /*
4426 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4427 * Just do it in software, see @bugref{8411}.
4428 * NB: If we could continue a task switch exit we wouldn't need to do this.
4429 */
4430 PVM pVM = pVCpu->CTX_SUFF(pVM);
4431 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
4432 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
4433 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4434
4435#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4436 Assert(!(pVCpu->cpum.GstCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4437 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4438#endif
4439
4440 /*
4441 * Export the guest state bits that are not shared with the host in any way as we can
4442 * longjmp or get preempted in the midst of exporting some of the state.
4443 */
4444 rc = hmR0SvmExportGuestState(pVCpu);
4445 AssertRCReturn(rc, rc);
4446 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4447
4448 /*
4449 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4450 * world-switch so we can update it on the way back if the guest changed the TPR.
4451 */
4452 if (pVCpu->hm.s.svm.fSyncVTpr)
4453 {
4454 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4455 if (pVM->hm.s.fTPRPatchingActive)
4456 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4457 else
4458 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4459 }
4460
4461 /*
4462 * No longjmps to ring-3 from this point on!!!
4463 *
4464 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4465 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4466 */
4467 VMMRZCallRing3Disable(pVCpu);
4468
4469 /*
4470 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4471 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4472 * preemption disabled for a while. Since this is purly to aid the
4473 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4474 * disable interrupt on NT.
4475 *
4476 * We need to check for force-flags that could've possible been altered since we last
4477 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4478 * see @bugref{6398}).
4479 *
4480 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4481 * to ring-3 before executing guest code.
4482 */
4483 pSvmTransient->fEFlags = ASMIntDisableFlags();
4484 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4485 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4486 {
4487 ASMSetFlags(pSvmTransient->fEFlags);
4488 VMMRZCallRing3Enable(pVCpu);
4489 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4490 return VINF_EM_RAW_TO_R3;
4491 }
4492 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4493 {
4494 ASMSetFlags(pSvmTransient->fEFlags);
4495 VMMRZCallRing3Enable(pVCpu);
4496 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4497 return VINF_EM_RAW_INTERRUPT;
4498 }
4499
4500 return VINF_SUCCESS;
4501}
4502
4503
4504/**
4505 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4506 * doing so.
4507 *
4508 * This means there is no backing out to ring-3 or anywhere else at this point.
4509 *
4510 * @param pVCpu The cross context virtual CPU structure.
4511 * @param pSvmTransient Pointer to the SVM transient structure.
4512 *
4513 * @remarks Called with preemption disabled.
4514 * @remarks No-long-jump zone!!!
4515 */
4516static void hmR0SvmPreRunGuestCommitted(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4517{
4518 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4519 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4520 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4521
4522 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4523 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4524
4525 PVM pVM = pVCpu->CTX_SUFF(pVM);
4526 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4527
4528 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4529
4530 if (!CPUMIsGuestFPUStateActive(pVCpu))
4531 {
4532 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4533 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4534 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4535 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4536 }
4537
4538 /* Load the state shared between host and guest (FPU, debug). */
4539 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4540 hmR0SvmExportSharedState(pVCpu, pVmcb);
4541
4542 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4543 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4544
4545 PHMGLOBALCPUINFO pHostCpu = hmR0GetCurrentCpu();
4546 RTCPUID const idHostCpu = pHostCpu->idCpu;
4547 bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
4548
4549 /* Setup TSC offsetting. */
4550 if ( pSvmTransient->fUpdateTscOffsetting
4551 || fMigratedHostCpu)
4552 {
4553 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4554 pSvmTransient->fUpdateTscOffsetting = false;
4555 }
4556
4557 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4558 if (fMigratedHostCpu)
4559 pVmcb->ctrl.u32VmcbCleanBits = 0;
4560
4561 /* Store status of the shared guest-host state at the time of VMRUN. */
4562#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4563 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4564 {
4565 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4566 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4567 }
4568 else
4569#endif
4570 {
4571 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4572 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4573 }
4574
4575#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4576 uint8_t *pbMsrBitmap;
4577 if (!pSvmTransient->fIsNestedGuest)
4578 pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4579 else
4580 {
4581 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4582
4583 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4584 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4585 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4586 }
4587#else
4588 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4589#endif
4590
4591 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4592 /* Flush the appropriate tagged-TLB entries. */
4593 hmR0SvmFlushTaggedTlb(pVCpu, pVmcb, pHostCpu);
4594 Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
4595
4596 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4597
4598 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4599 to start executing. */
4600
4601 /*
4602 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4603 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4604 *
4605 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4606 */
4607 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4608 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4609 {
4610 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4611 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4612 if (uGuestTscAux != pVCpu->hm.s.u64HostTscAux)
4613 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4614 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4615 pSvmTransient->fRestoreTscAuxMsr = true;
4616 }
4617 else
4618 {
4619 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4620 pSvmTransient->fRestoreTscAuxMsr = false;
4621 }
4622 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4623
4624 /*
4625 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4626 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4627 * from the VMCB.
4628 */
4629 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu);
4630 if (!fSupportsVmcbCleanBits)
4631 pVmcb->ctrl.u32VmcbCleanBits = 0;
4632}
4633
4634
4635/**
4636 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4637 *
4638 * @returns VBox strict status code.
4639 * @param pVCpu The cross context virtual CPU structure.
4640 * @param HCPhysVmcb The host physical address of the VMCB.
4641 *
4642 * @remarks No-long-jump zone!!!
4643 */
4644DECLINLINE(int) hmR0SvmRunGuest(PVMCPU pVCpu, RTHCPHYS HCPhysVmcb)
4645{
4646 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4647 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4648 pCtx->fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4649
4650 /*
4651 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4652 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4653 * callee-saved and thus the need for this XMM wrapper.
4654 *
4655 * Refer MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4656 */
4657 PVM pVM = pVCpu->CTX_SUFF(pVM);
4658#ifdef VBOX_WITH_KERNEL_USING_XMM
4659 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun);
4660#else
4661 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu);
4662#endif
4663}
4664
4665
4666/**
4667 * Undoes the TSC offset applied for an SVM nested-guest and returns the TSC
4668 * value for the guest.
4669 *
4670 * @returns The TSC offset after undoing any nested-guest TSC offset.
4671 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4672 * @param uTicks The nested-guest TSC.
4673 *
4674 * @note If you make any changes to this function, please check if
4675 * hmR0SvmNstGstUndoTscOffset() needs adjusting.
4676 *
4677 * @sa HMSvmNstGstApplyTscOffset().
4678 */
4679DECLINLINE(uint64_t) hmR0SvmNstGstUndoTscOffset(PVMCPU pVCpu, uint64_t uTicks)
4680{
4681 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
4682 Assert(pVmcbNstGstCache->fCacheValid);
4683 return uTicks - pVmcbNstGstCache->u64TSCOffset;
4684}
4685
4686
4687/**
4688 * Performs some essential restoration of state after running guest (or
4689 * nested-guest) code in AMD-V.
4690 *
4691 * @param pVCpu The cross context virtual CPU structure.
4692 * @param pSvmTransient Pointer to the SVM transient structure.
4693 * @param rcVMRun Return code of VMRUN.
4694 *
4695 * @remarks Called with interrupts disabled.
4696 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4697 * unconditionally when it is safe to do so.
4698 */
4699static void hmR0SvmPostRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4700{
4701 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4702
4703 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4704 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4705 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4706
4707 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4708 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4709
4710 /* TSC read must be done early for maximum accuracy. */
4711 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4712 {
4713 if (!pSvmTransient->fIsNestedGuest)
4714 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4715#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4716 else
4717 {
4718 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMSvmNstGstVmExitNotify(). */
4719 uint64_t const uGstTsc = hmR0SvmNstGstUndoTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4720 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4721 }
4722#endif
4723 }
4724
4725 if (pSvmTransient->fRestoreTscAuxMsr)
4726 {
4727 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4728 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4729 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4730 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4731 }
4732
4733 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4734 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4735 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4736
4737 Assert(!(ASMGetFlags() & X86_EFL_IF));
4738 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4739 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4740
4741 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4742 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4743 {
4744 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4745 return;
4746 }
4747
4748 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4749 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4750 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4751 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4752
4753#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4754 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4755 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4756#else
4757 /*
4758 * Always import the following:
4759 *
4760 * - RIP for exit optimizations and evaluating event injection on re-entry.
4761 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4762 * state on preemption.
4763 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4764 * - CS for exit optimizations.
4765 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4766 * assembly switcher code.
4767 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4768 */
4769 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4770 | CPUMCTX_EXTRN_RFLAGS
4771 | CPUMCTX_EXTRN_RAX
4772 | CPUMCTX_EXTRN_RSP
4773 | CPUMCTX_EXTRN_CS
4774 | CPUMCTX_EXTRN_HWVIRT
4775 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4776 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4777 | HMSVM_CPUMCTX_SHARED_STATE);
4778#endif
4779
4780 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4781 && pVCpu->hm.s.svm.fSyncVTpr)
4782 {
4783 Assert(!pSvmTransient->fIsNestedGuest);
4784 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4785 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
4786 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4787 {
4788 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4789 AssertRC(rc);
4790 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4791 }
4792 /* Sync TPR when we aren't intercepting CR8 writes. */
4793 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4794 {
4795 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4796 AssertRC(rc);
4797 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4798 }
4799 }
4800
4801#ifdef DEBUG_ramshankar
4802 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4803 {
4804 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4805 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4806 0 /* uVerbose */);
4807 }
4808#endif
4809
4810 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4811 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4812 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4813}
4814
4815
4816/**
4817 * Runs the guest code using AMD-V.
4818 *
4819 * @returns VBox status code.
4820 * @param pVCpu The cross context virtual CPU structure.
4821 * @param pcLoops Pointer to the number of executed loops.
4822 */
4823static int hmR0SvmRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
4824{
4825 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4826 Assert(pcLoops);
4827 Assert(*pcLoops <= cMaxResumeLoops);
4828
4829 SVMTRANSIENT SvmTransient;
4830 RT_ZERO(SvmTransient);
4831 SvmTransient.fUpdateTscOffsetting = true;
4832 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4833
4834 int rc = VERR_INTERNAL_ERROR_5;
4835 for (;;)
4836 {
4837 Assert(!HMR0SuspendPending());
4838 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4839
4840 /* Preparatory work for running nested-guest code, this may force us to return to
4841 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4842 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4843 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4844 if (rc != VINF_SUCCESS)
4845 break;
4846
4847 /*
4848 * No longjmps to ring-3 from this point on!!!
4849 *
4850 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4851 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4852 */
4853 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4854 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4855
4856 /* Restore any residual host-state and save any bits shared between host and guest
4857 into the guest-CPU state. Re-enables interrupts! */
4858 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4859
4860 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4861 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4862 {
4863 if (rc == VINF_SUCCESS)
4864 rc = VERR_SVM_INVALID_GUEST_STATE;
4865 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4866 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4867 break;
4868 }
4869
4870 /* Handle the #VMEXIT. */
4871 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4872 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4873 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4874 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4875 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4876 if (rc != VINF_SUCCESS)
4877 break;
4878 if (++(*pcLoops) >= cMaxResumeLoops)
4879 {
4880 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4881 rc = VINF_EM_RAW_INTERRUPT;
4882 break;
4883 }
4884 }
4885
4886 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4887 return rc;
4888}
4889
4890
4891/**
4892 * Runs the guest code using AMD-V in single step mode.
4893 *
4894 * @returns VBox status code.
4895 * @param pVCpu The cross context virtual CPU structure.
4896 * @param pcLoops Pointer to the number of executed loops.
4897 */
4898static int hmR0SvmRunGuestCodeStep(PVMCPU pVCpu, uint32_t *pcLoops)
4899{
4900 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4901 Assert(pcLoops);
4902 Assert(*pcLoops <= cMaxResumeLoops);
4903
4904 SVMTRANSIENT SvmTransient;
4905 RT_ZERO(SvmTransient);
4906 SvmTransient.fUpdateTscOffsetting = true;
4907 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4908
4909 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4910 uint16_t uCsStart = pCtx->cs.Sel;
4911 uint64_t uRipStart = pCtx->rip;
4912
4913 int rc = VERR_INTERNAL_ERROR_5;
4914 for (;;)
4915 {
4916 Assert(!HMR0SuspendPending());
4917 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4918 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4919 (unsigned)RTMpCpuId(), *pcLoops));
4920
4921 /* Preparatory work for running nested-guest code, this may force us to return to
4922 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4923 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4924 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4925 if (rc != VINF_SUCCESS)
4926 break;
4927
4928 /*
4929 * No longjmps to ring-3 from this point on!!!
4930 *
4931 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4932 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4933 */
4934 VMMRZCallRing3Disable(pVCpu);
4935 VMMRZCallRing3RemoveNotification(pVCpu);
4936 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4937
4938 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4939
4940 /* Restore any residual host-state and save any bits shared between host and guest
4941 into the guest-CPU state. Re-enables interrupts! */
4942 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4943
4944 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4945 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4946 {
4947 if (rc == VINF_SUCCESS)
4948 rc = VERR_SVM_INVALID_GUEST_STATE;
4949 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4950 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4951 return rc;
4952 }
4953
4954 /* Handle the #VMEXIT. */
4955 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4956 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4957 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4958 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4959 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4960 if (rc != VINF_SUCCESS)
4961 break;
4962 if (++(*pcLoops) >= cMaxResumeLoops)
4963 {
4964 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4965 rc = VINF_EM_RAW_INTERRUPT;
4966 break;
4967 }
4968
4969 /*
4970 * Did the RIP change, if so, consider it a single step.
4971 * Otherwise, make sure one of the TFs gets set.
4972 */
4973 if ( pCtx->rip != uRipStart
4974 || pCtx->cs.Sel != uCsStart)
4975 {
4976 rc = VINF_EM_DBG_STEPPED;
4977 break;
4978 }
4979 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4980 }
4981
4982 /*
4983 * Clear the X86_EFL_TF if necessary.
4984 */
4985 if (pVCpu->hm.s.fClearTrapFlag)
4986 {
4987 pVCpu->hm.s.fClearTrapFlag = false;
4988 pCtx->eflags.Bits.u1TF = 0;
4989 }
4990
4991 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4992 return rc;
4993}
4994
4995#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4996/**
4997 * Runs the nested-guest code using AMD-V.
4998 *
4999 * @returns VBox status code.
5000 * @param pVCpu The cross context virtual CPU structure.
5001 * @param pcLoops Pointer to the number of executed loops. If we're switching
5002 * from the guest-code execution loop to this nested-guest
5003 * execution loop pass the remainder value, else pass 0.
5004 */
5005static int hmR0SvmRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
5006{
5007 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5008 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
5009 Assert(pcLoops);
5010 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops);
5011
5012 SVMTRANSIENT SvmTransient;
5013 RT_ZERO(SvmTransient);
5014 SvmTransient.fUpdateTscOffsetting = true;
5015 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
5016 SvmTransient.fIsNestedGuest = true;
5017
5018 int rc = VERR_INTERNAL_ERROR_4;
5019 for (;;)
5020 {
5021 Assert(!HMR0SuspendPending());
5022 HMSVM_ASSERT_CPU_SAFE(pVCpu);
5023
5024 /* Preparatory work for running nested-guest code, this may force us to return to
5025 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
5026 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
5027 rc = hmR0SvmPreRunGuestNested(pVCpu, &SvmTransient);
5028 if ( rc != VINF_SUCCESS
5029 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5030 {
5031 break;
5032 }
5033
5034 /*
5035 * No longjmps to ring-3 from this point on!!!
5036 *
5037 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
5038 * better than a kernel panic. This also disables flushing of the R0-logger instance.
5039 */
5040 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
5041
5042 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
5043
5044 /* Restore any residual host-state and save any bits shared between host and guest
5045 into the guest-CPU state. Re-enables interrupts! */
5046 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
5047
5048 if (RT_LIKELY( rc == VINF_SUCCESS
5049 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
5050 { /* extremely likely */ }
5051 else
5052 {
5053 /* VMRUN failed, shouldn't really happen, Guru. */
5054 if (rc != VINF_SUCCESS)
5055 break;
5056
5057 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
5058 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
5059 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
5060 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
5061 break;
5062 }
5063
5064 /* Handle the #VMEXIT. */
5065 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
5066 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
5067 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
5068 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
5069 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
5070 if ( rc != VINF_SUCCESS
5071 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5072 break;
5073 if (++(*pcLoops) >= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
5074 {
5075 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
5076 rc = VINF_EM_RAW_INTERRUPT;
5077 break;
5078 }
5079
5080 /** @todo handle single-stepping */
5081 }
5082
5083 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5084 return rc;
5085}
5086#endif
5087
5088
5089/**
5090 * Runs the guest code using AMD-V.
5091 *
5092 * @returns Strict VBox status code.
5093 * @param pVCpu The cross context virtual CPU structure.
5094 */
5095VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPU pVCpu)
5096{
5097 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5098 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
5099 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, NULL /* pvUser */);
5100
5101 uint32_t cLoops = 0;
5102 int rc;
5103#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5104 if (!CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
5105#endif
5106 {
5107 if (!pVCpu->hm.s.fSingleInstruction)
5108 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
5109 else
5110 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
5111 }
5112#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5113 else
5114 {
5115 rc = VINF_SVM_VMRUN;
5116 }
5117
5118 /* Re-check the nested-guest condition here as we may be transitioning from the normal
5119 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
5120 if (rc == VINF_SVM_VMRUN)
5121 {
5122 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
5123 if (rc == VINF_SVM_VMEXIT)
5124 rc = VINF_SUCCESS;
5125 }
5126#endif
5127
5128 /* Fixup error codes. */
5129 if (rc == VERR_EM_INTERPRETER)
5130 rc = VINF_EM_RAW_EMULATE_INSTR;
5131 else if (rc == VINF_EM_RESET)
5132 rc = VINF_EM_TRIPLE_FAULT;
5133
5134 /* Prepare to return to ring-3. This will remove longjmp notifications. */
5135 rc = hmR0SvmExitToRing3(pVCpu, rc);
5136 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
5137 return rc;
5138}
5139
5140
5141#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5142/**
5143 * Determines whether an IOIO intercept is active for the nested-guest or not.
5144 *
5145 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
5146 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
5147 */
5148static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
5149{
5150 const uint16_t u16Port = pIoExitInfo->n.u16Port;
5151 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
5152 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
5153 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
5154 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
5155 const bool fRep = pIoExitInfo->n.u1Rep;
5156 const bool fStrIo = pIoExitInfo->n.u1Str;
5157
5158 return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
5159 NULL /* pIoExitInfo */);
5160}
5161
5162
5163/**
5164 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
5165 * SVM_EXIT_INVALID).
5166 *
5167 * @returns VBox status code (informational status codes included).
5168 * @param pVCpu The cross context virtual CPU structure.
5169 * @param pSvmTransient Pointer to the SVM transient structure.
5170 */
5171static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5172{
5173 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
5174 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5175 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5176
5177 /*
5178 * We import the complete state here because we use separate VMCBs for the guest and the
5179 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
5180 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
5181 */
5182#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5183 do { \
5184 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5185 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2))); \
5186 } while (0)
5187
5188 /*
5189 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
5190 * nested-guest. If it isn't, it should be handled by the (outer) guest.
5191 */
5192 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
5193 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
5194 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
5195 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
5196 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
5197
5198 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
5199 switch (uExitCode)
5200 {
5201 case SVM_EXIT_CPUID:
5202 {
5203 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
5204 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5205 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
5206 }
5207
5208 case SVM_EXIT_RDTSC:
5209 {
5210 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
5211 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5212 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
5213 }
5214
5215 case SVM_EXIT_RDTSCP:
5216 {
5217 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
5218 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5219 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
5220 }
5221
5222 case SVM_EXIT_MONITOR:
5223 {
5224 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
5225 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5226 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
5227 }
5228
5229 case SVM_EXIT_MWAIT:
5230 {
5231 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
5232 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5233 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
5234 }
5235
5236 case SVM_EXIT_HLT:
5237 {
5238 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_HLT))
5239 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5240 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
5241 }
5242
5243 case SVM_EXIT_MSR:
5244 {
5245 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
5246 {
5247 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
5248 uint16_t offMsrpm;
5249 uint8_t uMsrpmBit;
5250 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
5251 if (RT_SUCCESS(rc))
5252 {
5253 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
5254 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
5255
5256 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
5257 pbMsrBitmap += offMsrpm;
5258 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
5259 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
5260
5261 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
5262 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
5263 {
5264 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5265 }
5266 }
5267 else
5268 {
5269 /*
5270 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
5271 * See AMD-V spec. "15.11 MSR Intercepts".
5272 */
5273 Assert(rc == VERR_OUT_OF_RANGE);
5274 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5275 }
5276 }
5277 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
5278 }
5279
5280 case SVM_EXIT_IOIO:
5281 {
5282 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
5283 {
5284 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
5285 SVMIOIOEXITINFO IoExitInfo;
5286 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
5287 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
5288 if (fIntercept)
5289 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5290 }
5291 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
5292 }
5293
5294 case SVM_EXIT_XCPT_PF:
5295 {
5296 PVM pVM = pVCpu->CTX_SUFF(pVM);
5297 if (pVM->hm.s.fNestedPaging)
5298 {
5299 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
5300 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
5301
5302 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
5303 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
5304 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
5305
5306 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
5307 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5308 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
5309 return VINF_SUCCESS;
5310 }
5311 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
5312 }
5313
5314 case SVM_EXIT_XCPT_UD:
5315 {
5316 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_UD))
5317 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5318 hmR0SvmSetPendingXcptUD(pVCpu);
5319 return VINF_SUCCESS;
5320 }
5321
5322 case SVM_EXIT_XCPT_MF:
5323 {
5324 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_MF))
5325 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5326 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
5327 }
5328
5329 case SVM_EXIT_XCPT_DB:
5330 {
5331 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_DB))
5332 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5333 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5334 }
5335
5336 case SVM_EXIT_XCPT_AC:
5337 {
5338 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_AC))
5339 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5340 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5341 }
5342
5343 case SVM_EXIT_XCPT_BP:
5344 {
5345 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_BP))
5346 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5347 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5348 }
5349
5350 case SVM_EXIT_READ_CR0:
5351 case SVM_EXIT_READ_CR3:
5352 case SVM_EXIT_READ_CR4:
5353 {
5354 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5355 if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, uCr))
5356 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5357 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5358 }
5359
5360 case SVM_EXIT_CR0_SEL_WRITE:
5361 {
5362 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5363 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5364 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5365 }
5366
5367 case SVM_EXIT_WRITE_CR0:
5368 case SVM_EXIT_WRITE_CR3:
5369 case SVM_EXIT_WRITE_CR4:
5370 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5371 {
5372 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5373 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5374
5375 if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, uCr))
5376 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5377 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5378 }
5379
5380 case SVM_EXIT_PAUSE:
5381 {
5382 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
5383 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5384 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5385 }
5386
5387 case SVM_EXIT_VINTR:
5388 {
5389 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VINTR))
5390 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5391 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5392 }
5393
5394 case SVM_EXIT_INTR:
5395 case SVM_EXIT_NMI:
5396 case SVM_EXIT_SMI:
5397 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5398 {
5399 /*
5400 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5401 *
5402 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5403 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5404 * nested-guest #VMEXIT.
5405 *
5406 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5407 * while trying to inject interrupts, see comment at the top of this function.
5408 */
5409 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5410 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5411 }
5412
5413 case SVM_EXIT_FERR_FREEZE:
5414 {
5415 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5416 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5417 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5418 }
5419
5420 case SVM_EXIT_INVLPG:
5421 {
5422 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
5423 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5424 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5425 }
5426
5427 case SVM_EXIT_WBINVD:
5428 {
5429 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_WBINVD))
5430 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5431 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5432 }
5433
5434 case SVM_EXIT_INVD:
5435 {
5436 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVD))
5437 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5438 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5439 }
5440
5441 case SVM_EXIT_RDPMC:
5442 {
5443 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
5444 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5445 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5446 }
5447
5448 default:
5449 {
5450 switch (uExitCode)
5451 {
5452 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5453 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5454 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5455 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5456 {
5457 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5458 if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, uDr))
5459 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5460 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5461 }
5462
5463 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5464 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5465 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5466 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5467 {
5468 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5469 if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, uDr))
5470 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5471 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5472 }
5473
5474 case SVM_EXIT_XCPT_DE:
5475 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5476 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5477 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5478 case SVM_EXIT_XCPT_OF:
5479 case SVM_EXIT_XCPT_BR:
5480 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5481 case SVM_EXIT_XCPT_NM:
5482 case SVM_EXIT_XCPT_DF:
5483 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5484 case SVM_EXIT_XCPT_TS:
5485 case SVM_EXIT_XCPT_NP:
5486 case SVM_EXIT_XCPT_SS:
5487 case SVM_EXIT_XCPT_GP:
5488 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5489 case SVM_EXIT_XCPT_15: /* Reserved. */
5490 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5491 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5492 case SVM_EXIT_XCPT_MC:
5493 case SVM_EXIT_XCPT_XF:
5494 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5495 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5496 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5497 {
5498 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5499 if (HMIsGuestSvmXcptInterceptSet(pVCpu, uVector))
5500 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5501 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5502 }
5503
5504 case SVM_EXIT_XSETBV:
5505 {
5506 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
5507 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5508 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5509 }
5510
5511 case SVM_EXIT_TASK_SWITCH:
5512 {
5513 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5514 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5515 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5516 }
5517
5518 case SVM_EXIT_IRET:
5519 {
5520 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IRET))
5521 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5522 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5523 }
5524
5525 case SVM_EXIT_SHUTDOWN:
5526 {
5527 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SHUTDOWN))
5528 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5529 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5530 }
5531
5532 case SVM_EXIT_VMMCALL:
5533 {
5534 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
5535 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5536 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5537 }
5538
5539 case SVM_EXIT_CLGI:
5540 {
5541 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
5542 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5543 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5544 }
5545
5546 case SVM_EXIT_STGI:
5547 {
5548 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_STGI))
5549 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5550 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5551 }
5552
5553 case SVM_EXIT_VMLOAD:
5554 {
5555 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
5556 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5557 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5558 }
5559
5560 case SVM_EXIT_VMSAVE:
5561 {
5562 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
5563 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5564 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5565 }
5566
5567 case SVM_EXIT_INVLPGA:
5568 {
5569 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
5570 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5571 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5572 }
5573
5574 case SVM_EXIT_VMRUN:
5575 {
5576 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
5577 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5578 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5579 }
5580
5581 case SVM_EXIT_RSM:
5582 {
5583 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RSM))
5584 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5585 hmR0SvmSetPendingXcptUD(pVCpu);
5586 return VINF_SUCCESS;
5587 }
5588
5589 case SVM_EXIT_SKINIT:
5590 {
5591 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
5592 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5593 hmR0SvmSetPendingXcptUD(pVCpu);
5594 return VINF_SUCCESS;
5595 }
5596
5597 case SVM_EXIT_NPF:
5598 {
5599 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5600 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5601 }
5602
5603 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5604 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5605
5606 default:
5607 {
5608 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5609 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5610 return VERR_SVM_UNKNOWN_EXIT;
5611 }
5612 }
5613 }
5614 }
5615 /* not reached */
5616
5617#undef NST_GST_VMEXIT_CALL_RET
5618}
5619#endif
5620
5621
5622/**
5623 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5624 *
5625 * @returns VBox status code (informational status codes included).
5626 * @param pVCpu The cross context virtual CPU structure.
5627 * @param pSvmTransient Pointer to the SVM transient structure.
5628 */
5629static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5630{
5631 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5632 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5633
5634#ifdef DEBUG_ramshankar
5635# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5636 do { \
5637 if ((a_fDbg) == 1) \
5638 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5639 int rc = a_CallExpr; \
5640 if ((a_fDbg) == 1) \
5641 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5642 return rc; \
5643 } while (0)
5644#else
5645# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5646#endif
5647
5648 /*
5649 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5650 * for most guests under normal workloads (for some definition of "normal").
5651 */
5652 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5653 switch (uExitCode)
5654 {
5655 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5656 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5657 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5658 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5659 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5660 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5661 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5662 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5663 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5664 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5665
5666 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5667 case SVM_EXIT_INTR:
5668 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5669
5670 case SVM_EXIT_READ_CR0:
5671 case SVM_EXIT_READ_CR3:
5672 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5673
5674 case SVM_EXIT_CR0_SEL_WRITE:
5675 case SVM_EXIT_WRITE_CR0:
5676 case SVM_EXIT_WRITE_CR3:
5677 case SVM_EXIT_WRITE_CR4:
5678 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5679
5680 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5681 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5682 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5683 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5684 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5685 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5686 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5687 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5688 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5689 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5690 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5691 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5692 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5693 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5694 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5695
5696 default:
5697 {
5698 switch (pSvmTransient->u64ExitCode)
5699 {
5700 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5701 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5702 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5703 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5704 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5705
5706 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5707 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5708 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5709 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5710 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5711
5712 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5713 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5714
5715 case SVM_EXIT_SMI:
5716 case SVM_EXIT_INIT:
5717 {
5718 /*
5719 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5720 * If it ever does, we want to know about it so log the exit code and bail.
5721 */
5722 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5723 }
5724
5725#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5726 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5727 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5728 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5729 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5730 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5731 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5732#else
5733 case SVM_EXIT_CLGI:
5734 case SVM_EXIT_STGI:
5735 case SVM_EXIT_VMLOAD:
5736 case SVM_EXIT_VMSAVE:
5737 case SVM_EXIT_INVLPGA:
5738 case SVM_EXIT_VMRUN:
5739#endif
5740 case SVM_EXIT_RSM:
5741 case SVM_EXIT_SKINIT:
5742 {
5743 hmR0SvmSetPendingXcptUD(pVCpu);
5744 return VINF_SUCCESS;
5745 }
5746
5747#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5748 case SVM_EXIT_XCPT_DE:
5749 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5750 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5751 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5752 case SVM_EXIT_XCPT_OF:
5753 case SVM_EXIT_XCPT_BR:
5754 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5755 case SVM_EXIT_XCPT_NM:
5756 case SVM_EXIT_XCPT_DF:
5757 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5758 case SVM_EXIT_XCPT_TS:
5759 case SVM_EXIT_XCPT_NP:
5760 case SVM_EXIT_XCPT_SS:
5761 case SVM_EXIT_XCPT_GP:
5762 /* SVM_EXIT_XCPT_PF: */
5763 case SVM_EXIT_XCPT_15: /* Reserved. */
5764 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5765 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5766 case SVM_EXIT_XCPT_MC:
5767 case SVM_EXIT_XCPT_XF:
5768 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5769 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5770 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5771 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5772#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5773
5774 default:
5775 {
5776 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5777 pVCpu->hm.s.u32HMError = uExitCode;
5778 return VERR_SVM_UNKNOWN_EXIT;
5779 }
5780 }
5781 }
5782 }
5783 /* not reached */
5784#undef VMEXIT_CALL_RET
5785}
5786
5787
5788#ifdef VBOX_STRICT
5789/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5790# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5791 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5792
5793# define HMSVM_ASSERT_PREEMPT_CPUID() \
5794 do \
5795 { \
5796 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5797 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5798 } while (0)
5799
5800# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5801 do { \
5802 AssertPtr((a_pVCpu)); \
5803 AssertPtr((a_pSvmTransient)); \
5804 Assert(ASMIntAreEnabled()); \
5805 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5806 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5807 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5808 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5809 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5810 HMSVM_ASSERT_PREEMPT_CPUID(); \
5811 } while (0)
5812#else
5813# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5814 do { \
5815 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5816 } while (0)
5817#endif
5818
5819
5820/**
5821 * Gets the IEM exception flags for the specified SVM event.
5822 *
5823 * @returns The IEM exception flags.
5824 * @param pEvent Pointer to the SVM event.
5825 *
5826 * @remarks This function currently only constructs flags required for
5827 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5828 * and CR2 aspects of an exception are not included).
5829 */
5830static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5831{
5832 uint8_t const uEventType = pEvent->n.u3Type;
5833 uint32_t fIemXcptFlags;
5834 switch (uEventType)
5835 {
5836 case SVM_EVENT_EXCEPTION:
5837 /*
5838 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5839 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5840 */
5841 if (pEvent->n.u8Vector == X86_XCPT_BP)
5842 {
5843 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5844 break;
5845 }
5846 if (pEvent->n.u8Vector == X86_XCPT_OF)
5847 {
5848 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5849 break;
5850 }
5851 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5852 RT_FALL_THRU();
5853 case SVM_EVENT_NMI:
5854 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5855 break;
5856
5857 case SVM_EVENT_EXTERNAL_IRQ:
5858 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5859 break;
5860
5861 case SVM_EVENT_SOFTWARE_INT:
5862 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5863 break;
5864
5865 default:
5866 fIemXcptFlags = 0;
5867 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5868 break;
5869 }
5870 return fIemXcptFlags;
5871}
5872
5873
5874/**
5875 * Handle a condition that occurred while delivering an event through the guest
5876 * IDT.
5877 *
5878 * @returns VBox status code (informational error codes included).
5879 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5880 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5881 * continue execution of the guest which will delivery the \#DF.
5882 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5883 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5884 *
5885 * @param pVCpu The cross context virtual CPU structure.
5886 * @param pSvmTransient Pointer to the SVM transient structure.
5887 *
5888 * @remarks No-long-jump zone!!!
5889 */
5890static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5891{
5892 int rc = VINF_SUCCESS;
5893 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5894 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5895
5896 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5897 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5898 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5899
5900 /*
5901 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5902 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5903 *
5904 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5905 */
5906 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5907 {
5908 IEMXCPTRAISE enmRaise;
5909 IEMXCPTRAISEINFO fRaiseInfo;
5910 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5911 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5912 if (fExitIsHwXcpt)
5913 {
5914 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5915 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5916 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5917 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5918 }
5919 else
5920 {
5921 /*
5922 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5923 * then we end up here.
5924 *
5925 * If the event was:
5926 * - a software interrupt, we can re-execute the instruction which will
5927 * regenerate the event.
5928 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5929 * - a hardware exception or external interrupt, we re-inject it.
5930 */
5931 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5932 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5933 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5934 else
5935 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5936 }
5937
5938 switch (enmRaise)
5939 {
5940 case IEMXCPTRAISE_CURRENT_XCPT:
5941 case IEMXCPTRAISE_PREV_EVENT:
5942 {
5943 /* For software interrupts, we shall re-execute the instruction. */
5944 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5945 {
5946 RTGCUINTPTR GCPtrFaultAddress = 0;
5947
5948 /* If we are re-injecting an NMI, clear NMI blocking. */
5949 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5950 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5951
5952 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5953 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5954 {
5955 pSvmTransient->fVectoringPF = true;
5956 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5957 pVCpu->cpum.GstCtx.cr2));
5958 }
5959 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5960 && uIdtVector == X86_XCPT_PF)
5961 {
5962 /*
5963 * If the previous exception was a #PF, we need to recover the CR2 value.
5964 * This can't happen with shadow paging.
5965 */
5966 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5967 }
5968
5969 /*
5970 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5971 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5972 */
5973 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5974 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5975 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5976
5977 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5978 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5979 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5980 }
5981 break;
5982 }
5983
5984 case IEMXCPTRAISE_REEXEC_INSTR:
5985 {
5986 Assert(rc == VINF_SUCCESS);
5987 break;
5988 }
5989
5990 case IEMXCPTRAISE_DOUBLE_FAULT:
5991 {
5992 /*
5993 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5994 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5995 * converted into a #DF.
5996 */
5997 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5998 {
5999 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
6000 pSvmTransient->fVectoringDoublePF = true;
6001 Assert(rc == VINF_SUCCESS);
6002 }
6003 else
6004 {
6005 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6006 hmR0SvmSetPendingXcptDF(pVCpu);
6007 rc = VINF_HM_DOUBLE_FAULT;
6008 }
6009 break;
6010 }
6011
6012 case IEMXCPTRAISE_TRIPLE_FAULT:
6013 {
6014 rc = VINF_EM_RESET;
6015 break;
6016 }
6017
6018 case IEMXCPTRAISE_CPU_HANG:
6019 {
6020 rc = VERR_EM_GUEST_CPU_HANG;
6021 break;
6022 }
6023
6024 default:
6025 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
6026 }
6027 }
6028 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
6029 return rc;
6030}
6031
6032
6033/**
6034 * Advances the guest RIP by the number of bytes specified in @a cb.
6035 *
6036 * @param pVCpu The cross context virtual CPU structure.
6037 * @param cb RIP increment value in bytes.
6038 */
6039DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPU pVCpu, uint32_t cb)
6040{
6041 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6042 pCtx->rip += cb;
6043
6044 /* Update interrupt shadow. */
6045 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
6046 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
6047 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6048}
6049
6050
6051/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6052/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6053/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6054
6055/** @name \#VMEXIT handlers.
6056 * @{
6057 */
6058
6059/**
6060 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
6061 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
6062 */
6063HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6064{
6065 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6066
6067 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
6068 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
6069 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
6070 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6071
6072 /*
6073 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
6074 * signal -before- the timer fires if the current interrupt is our own timer or a some
6075 * other host interrupt. We also cannot examine what interrupt it is until the host
6076 * actually take the interrupt.
6077 *
6078 * Going back to executing guest code here unconditionally causes random scheduling
6079 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
6080 */
6081 return VINF_EM_RAW_INTERRUPT;
6082}
6083
6084
6085/**
6086 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
6087 */
6088HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6089{
6090 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6091
6092 VBOXSTRICTRC rcStrict;
6093 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6094 if (fSupportsNextRipSave)
6095 {
6096 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6097 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6098 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6099 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
6100 }
6101 else
6102 {
6103 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6104 rcStrict = IEMExecOne(pVCpu);
6105 }
6106
6107 if (rcStrict == VINF_IEM_RAISED_XCPT)
6108 {
6109 rcStrict = VINF_SUCCESS;
6110 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6111 }
6112 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6113 return VBOXSTRICTRC_TODO(rcStrict);
6114}
6115
6116
6117/**
6118 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
6119 */
6120HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6121{
6122 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6123
6124 VBOXSTRICTRC rcStrict;
6125 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6126 if (fSupportsNextRipSave)
6127 {
6128 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6129 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6130 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6131 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
6132 }
6133 else
6134 {
6135 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6136 rcStrict = IEMExecOne(pVCpu);
6137 }
6138
6139 if (rcStrict == VINF_IEM_RAISED_XCPT)
6140 {
6141 rcStrict = VINF_SUCCESS;
6142 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6143 }
6144 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6145 return VBOXSTRICTRC_TODO(rcStrict);
6146}
6147
6148
6149/**
6150 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6151 */
6152HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6153{
6154 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6155
6156 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
6157 VBOXSTRICTRC rcStrict;
6158 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6159 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
6160 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6161 if (!pExitRec)
6162 {
6163 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6164 if (fSupportsNextRipSave)
6165 {
6166 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6167 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6168 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
6169 }
6170 else
6171 {
6172 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6173 rcStrict = IEMExecOne(pVCpu);
6174 }
6175
6176 if (rcStrict == VINF_IEM_RAISED_XCPT)
6177 {
6178 rcStrict = VINF_SUCCESS;
6179 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6180 }
6181 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6182 }
6183 else
6184 {
6185 /*
6186 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6187 */
6188 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6189
6190 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
6191 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
6192
6193 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6194
6195 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6196 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6197 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6198 }
6199 return VBOXSTRICTRC_TODO(rcStrict);
6200}
6201
6202
6203/**
6204 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6205 */
6206HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6207{
6208 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6209
6210 VBOXSTRICTRC rcStrict;
6211 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6212 if (fSupportsNextRipSave)
6213 {
6214 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6215 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6216 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6217 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
6218 }
6219 else
6220 {
6221 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6222 rcStrict = IEMExecOne(pVCpu);
6223 }
6224
6225 if (rcStrict == VINF_SUCCESS)
6226 pSvmTransient->fUpdateTscOffsetting = true;
6227 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6228 {
6229 rcStrict = VINF_SUCCESS;
6230 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6231 }
6232 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6233 return VBOXSTRICTRC_TODO(rcStrict);
6234}
6235
6236
6237/**
6238 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6239 */
6240HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6241{
6242 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6243
6244 VBOXSTRICTRC rcStrict;
6245 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6246 if (fSupportsNextRipSave)
6247 {
6248 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
6249 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6250 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6251 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
6252 }
6253 else
6254 {
6255 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6256 rcStrict = IEMExecOne(pVCpu);
6257 }
6258
6259 if (rcStrict == VINF_SUCCESS)
6260 pSvmTransient->fUpdateTscOffsetting = true;
6261 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6262 {
6263 rcStrict = VINF_SUCCESS;
6264 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6265 }
6266 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6267 return VBOXSTRICTRC_TODO(rcStrict);
6268}
6269
6270
6271/**
6272 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6273 */
6274HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6275{
6276 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6277
6278 VBOXSTRICTRC rcStrict;
6279 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6280 if (fSupportsNextRipSave)
6281 {
6282 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6283 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6284 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6285 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
6286 }
6287 else
6288 {
6289 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6290 rcStrict = IEMExecOne(pVCpu);
6291 }
6292
6293 if (rcStrict == VINF_IEM_RAISED_XCPT)
6294 {
6295 rcStrict = VINF_SUCCESS;
6296 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6297 }
6298 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6299 return VBOXSTRICTRC_TODO(rcStrict);
6300}
6301
6302
6303/**
6304 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6305 */
6306HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6307{
6308 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6309 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6310
6311 VBOXSTRICTRC rcStrict;
6312 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6313 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6314 if ( fSupportsDecodeAssists
6315 && fSupportsNextRipSave)
6316 {
6317 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
6318 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6319 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6320 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6321 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6322 }
6323 else
6324 {
6325 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6326 rcStrict = IEMExecOne(pVCpu);
6327 }
6328
6329 if (rcStrict == VINF_IEM_RAISED_XCPT)
6330 {
6331 rcStrict = VINF_SUCCESS;
6332 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6333 }
6334 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6335 return VBOXSTRICTRC_VAL(rcStrict);
6336}
6337
6338
6339/**
6340 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6341 */
6342HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6343{
6344 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6345
6346 VBOXSTRICTRC rcStrict;
6347 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6348 if (fSupportsNextRipSave)
6349 {
6350 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6351 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6352 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6353 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6354 }
6355 else
6356 {
6357 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6358 rcStrict = IEMExecOne(pVCpu);
6359 }
6360
6361 if ( rcStrict == VINF_EM_HALT
6362 || rcStrict == VINF_SUCCESS)
6363 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6364 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6365 {
6366 rcStrict = VINF_SUCCESS;
6367 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6368 }
6369 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6370 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6371 if (rcStrict != VINF_SUCCESS)
6372 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6373 return VBOXSTRICTRC_VAL(rcStrict);;
6374}
6375
6376
6377/**
6378 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6379 */
6380HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6381{
6382 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6383
6384 /*
6385 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6386 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6387 * segment override prefix or other prefixes might be used, in which case we fallback to
6388 * IEMExecOne() to figure out.
6389 */
6390 VBOXSTRICTRC rcStrict;
6391 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6392 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6393 if (cbInstr)
6394 {
6395 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6396 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6397 }
6398 else
6399 {
6400 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6401 rcStrict = IEMExecOne(pVCpu);
6402 }
6403
6404 if (rcStrict == VINF_IEM_RAISED_XCPT)
6405 {
6406 rcStrict = VINF_SUCCESS;
6407 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6408 }
6409 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6410 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6411 return VBOXSTRICTRC_TODO(rcStrict);
6412}
6413
6414
6415/**
6416 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6417 */
6418HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6419{
6420 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6421
6422 VBOXSTRICTRC rcStrict;
6423 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6424 if (fSupportsNextRipSave)
6425 {
6426 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6427 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6428 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6429 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6430 }
6431 else
6432 {
6433 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6434 rcStrict = IEMExecOne(pVCpu);
6435 }
6436
6437 if ( rcStrict == VINF_EM_HALT
6438 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6439 rcStrict = VINF_SUCCESS;
6440 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6441 {
6442 rcStrict = VINF_SUCCESS;
6443 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6444 }
6445 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6446 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6447 return VBOXSTRICTRC_TODO(rcStrict);
6448}
6449
6450
6451/**
6452 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6453 * \#VMEXIT.
6454 */
6455HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6456{
6457 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6458 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6459 return VINF_EM_RESET;
6460}
6461
6462
6463/**
6464 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6465 */
6466HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6467{
6468 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6469 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6470 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6471 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6472 RT_NOREF(pVmcb);
6473 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6474 return VERR_SVM_UNEXPECTED_EXIT;
6475}
6476
6477
6478/**
6479 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6480 */
6481HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6482{
6483 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6484
6485 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6486 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6487#ifdef VBOX_WITH_STATISTICS
6488 switch (pSvmTransient->u64ExitCode)
6489 {
6490 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6491 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6492 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6493 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6494 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6495 }
6496#endif
6497
6498 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6499 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6500 if ( fSupportsDecodeAssists
6501 && fSupportsNextRipSave)
6502 {
6503 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6504 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6505 if (fMovCRx)
6506 {
6507 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6508 | CPUMCTX_EXTRN_APIC_TPR);
6509 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6510 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6511 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6512 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6513 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6514 return VBOXSTRICTRC_VAL(rcStrict);
6515 }
6516 /* else: SMSW instruction, fall back below to IEM for this. */
6517 }
6518
6519 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6520 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6521 AssertMsg( rcStrict == VINF_SUCCESS
6522 || rcStrict == VINF_PGM_SYNC_CR3
6523 || rcStrict == VINF_IEM_RAISED_XCPT,
6524 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6525 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6526 if (rcStrict == VINF_IEM_RAISED_XCPT)
6527 {
6528 rcStrict = VINF_SUCCESS;
6529 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6530 }
6531 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6532 return VBOXSTRICTRC_TODO(rcStrict);
6533}
6534
6535
6536/**
6537 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6538 */
6539HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6540{
6541 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6542
6543 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6544 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6545 Assert(iCrReg <= 15);
6546
6547 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6548 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6549 bool fDecodedInstr = false;
6550 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6551 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6552 if ( fSupportsDecodeAssists
6553 && fSupportsNextRipSave)
6554 {
6555 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6556 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6557 if (fMovCRx)
6558 {
6559 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6560 | CPUMCTX_EXTRN_APIC_TPR);
6561 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6562 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6563 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6564 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6565 fDecodedInstr = true;
6566 }
6567 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6568 }
6569
6570 if (!fDecodedInstr)
6571 {
6572 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6573 Log4Func(("iCrReg=%#x\n", iCrReg));
6574 rcStrict = IEMExecOne(pVCpu);
6575 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6576 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6577 rcStrict = VERR_EM_INTERPRETER;
6578 }
6579
6580 if (rcStrict == VINF_SUCCESS)
6581 {
6582 switch (iCrReg)
6583 {
6584 case 0:
6585 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6586 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6587 break;
6588
6589 case 2:
6590 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6591 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6592 break;
6593
6594 case 3:
6595 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6596 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6597 break;
6598
6599 case 4:
6600 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6601 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6602 break;
6603
6604 case 8:
6605 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6606 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6607 break;
6608
6609 default:
6610 {
6611 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6612 pSvmTransient->u64ExitCode, iCrReg));
6613 break;
6614 }
6615 }
6616 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6617 }
6618 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6619 {
6620 rcStrict = VINF_SUCCESS;
6621 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6622 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6623 }
6624 else
6625 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6626 return VBOXSTRICTRC_TODO(rcStrict);
6627}
6628
6629
6630/**
6631 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6632 *
6633 * @returns Strict VBox status code.
6634 * @param pVCpu The cross context virtual CPU structure.
6635 * @param pVmcb Pointer to the VM control block.
6636 */
6637static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPU pVCpu, PSVMVMCB pVmcb)
6638{
6639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6640 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6641
6642 VBOXSTRICTRC rcStrict;
6643 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6644 if (fSupportsNextRipSave)
6645 {
6646 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6647 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6648 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6649 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6650 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6651 }
6652 else
6653 {
6654 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6655 rcStrict = IEMExecOne(pVCpu);
6656 }
6657
6658 AssertMsg( rcStrict == VINF_SUCCESS
6659 || rcStrict == VINF_IEM_RAISED_XCPT
6660 || rcStrict == VINF_CPUM_R3_MSR_READ,
6661 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6662
6663 if (rcStrict == VINF_IEM_RAISED_XCPT)
6664 {
6665 rcStrict = VINF_SUCCESS;
6666 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6667 }
6668 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6669 return rcStrict;
6670}
6671
6672
6673/**
6674 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6675 *
6676 * @returns Strict VBox status code.
6677 * @param pVCpu The cross context virtual CPU structure.
6678 * @param pVmcb Pointer to the VM control block.
6679 * @param pSvmTransient Pointer to the SVM-transient structure.
6680 */
6681static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6682{
6683 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6684 uint32_t const idMsr = pCtx->ecx;
6685 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6686 Log4Func(("idMsr=%#RX32\n", idMsr));
6687
6688 /*
6689 * Handle TPR patching MSR writes.
6690 * We utilitize the LSTAR MSR for patching.
6691 */
6692 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6693 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
6694 && idMsr == MSR_K8_LSTAR)
6695 {
6696 unsigned cbInstr;
6697 if (fSupportsNextRipSave)
6698 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6699 else
6700 {
6701 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6702 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6703 if ( rc == VINF_SUCCESS
6704 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6705 Assert(cbInstr > 0);
6706 else
6707 cbInstr = 0;
6708 }
6709
6710 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6711 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6712 {
6713 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6714 AssertRCReturn(rc, rc);
6715 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6716 }
6717
6718 int rc = VINF_SUCCESS;
6719 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6720 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6721 return rc;
6722 }
6723
6724 /*
6725 * Handle regular MSR writes.
6726 */
6727 VBOXSTRICTRC rcStrict;
6728 if (fSupportsNextRipSave)
6729 {
6730 /** @todo Optimize this: We don't need to get much of the MSR state here
6731 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6732 * clear the applicable extern flags. */
6733 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6734 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6735 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6736 }
6737 else
6738 {
6739 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6740 rcStrict = IEMExecOne(pVCpu);
6741 }
6742
6743 AssertMsg( rcStrict == VINF_SUCCESS
6744 || rcStrict == VINF_IEM_RAISED_XCPT
6745 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6746 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6747
6748 if (rcStrict == VINF_SUCCESS)
6749 {
6750 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6751 if ( idMsr >= MSR_IA32_X2APIC_START
6752 && idMsr <= MSR_IA32_X2APIC_END)
6753 {
6754 /*
6755 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6756 * When full APIC register virtualization is implemented we'll have to make sure
6757 * APIC state is saved from the VMCB before IEM changes it.
6758 */
6759 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6760 }
6761 else
6762 {
6763 switch (idMsr)
6764 {
6765 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6766 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6767 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6768 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6769 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6770 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6771 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6772 }
6773 }
6774 }
6775 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6776 {
6777 rcStrict = VINF_SUCCESS;
6778 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6779 }
6780 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6781 return rcStrict;
6782}
6783
6784
6785/**
6786 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6787 * \#VMEXIT.
6788 */
6789HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6790{
6791 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6792
6793 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6794 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6795 return VBOXSTRICTRC_TODO(hmR0SvmExitReadMsr(pVCpu, pVmcb));
6796
6797 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6798 return VBOXSTRICTRC_TODO(hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient));
6799}
6800
6801
6802/**
6803 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6804 */
6805HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6806{
6807 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6808 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6809
6810 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6811
6812 /** @todo Stepping with nested-guest. */
6813 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6814 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6815 {
6816 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6817 if (pSvmTransient->fWasGuestDebugStateActive)
6818 {
6819 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6820 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6821 return VERR_SVM_UNEXPECTED_EXIT;
6822 }
6823
6824 /*
6825 * Lazy DR0-3 loading.
6826 */
6827 if (!pSvmTransient->fWasHyperDebugStateActive)
6828 {
6829 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6830 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6831
6832 /* Don't intercept DRx read and writes. */
6833 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6834 pVmcb->ctrl.u16InterceptRdDRx = 0;
6835 pVmcb->ctrl.u16InterceptWrDRx = 0;
6836 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6837
6838 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6839 VMMRZCallRing3Disable(pVCpu);
6840 HM_DISABLE_PREEMPT(pVCpu);
6841
6842 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6843 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6844 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6845
6846 HM_RESTORE_PREEMPT();
6847 VMMRZCallRing3Enable(pVCpu);
6848
6849 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6850 return VINF_SUCCESS;
6851 }
6852 }
6853
6854 /*
6855 * Interpret the read/writing of DRx.
6856 */
6857 /** @todo Decode assist. */
6858 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6859 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6860 if (RT_LIKELY(rc == VINF_SUCCESS))
6861 {
6862 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6863 /** @todo CPUM should set this flag! */
6864 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6865 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6866 }
6867 else
6868 Assert(rc == VERR_EM_INTERPRETER);
6869 return VBOXSTRICTRC_TODO(rc);
6870}
6871
6872
6873/**
6874 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6875 */
6876HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6877{
6878 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6879 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6880 int rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6881 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6882 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6883 return rc;
6884}
6885
6886
6887/**
6888 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6889 */
6890HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6891{
6892 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6893 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6894
6895 /** @todo decode assists... */
6896 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6897 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6898 {
6899 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6900 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6901 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0,
6902 pCtx->cr4));
6903 }
6904 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6905 {
6906 rcStrict = VINF_SUCCESS;
6907 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6908 }
6909 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6910 return VBOXSTRICTRC_TODO(rcStrict);
6911}
6912
6913
6914/**
6915 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6916 */
6917HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6918{
6919 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6920 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6921
6922 /* I/O operation lookup arrays. */
6923 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6924 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6925 the result (in AL/AX/EAX). */
6926 PVM pVM = pVCpu->CTX_SUFF(pVM);
6927 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6928 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6929
6930 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6931
6932 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6933 SVMIOIOEXITINFO IoExitInfo;
6934 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6935 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6936 uint32_t cbValue = s_aIOSize[uIOWidth];
6937 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6938
6939 if (RT_UNLIKELY(!cbValue))
6940 {
6941 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6942 return VERR_EM_INTERPRETER;
6943 }
6944
6945 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6946 VBOXSTRICTRC rcStrict;
6947 PCEMEXITREC pExitRec = NULL;
6948 if ( !pVCpu->hm.s.fSingleInstruction
6949 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6950 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6951 !IoExitInfo.n.u1Str
6952 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6953 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6954 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6955 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6956 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6957 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6958 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6959 if (!pExitRec)
6960 {
6961 bool fUpdateRipAlready = false;
6962 if (IoExitInfo.n.u1Str)
6963 {
6964 /* INS/OUTS - I/O String instruction. */
6965 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6966 * in EXITINFO1? Investigate once this thing is up and running. */
6967 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6968 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6969 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6970 static IEMMODE const s_aenmAddrMode[8] =
6971 {
6972 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6973 };
6974 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6975 if (enmAddrMode != (IEMMODE)-1)
6976 {
6977 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6978 if (cbInstr <= 15 && cbInstr >= 1)
6979 {
6980 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6981 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6982 {
6983 /* Don't know exactly how to detect whether u3Seg is valid, currently
6984 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6985 2384 Opterons when only checking NRIP. */
6986 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6987 if ( fSupportsNextRipSave
6988 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6989 {
6990 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6991 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6992 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6993 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6994 }
6995 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6996 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6997 X86_SREG_DS, true /*fIoChecked*/);
6998 else
6999 rcStrict = IEMExecOne(pVCpu);
7000 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
7001 }
7002 else
7003 {
7004 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
7005 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7006 true /*fIoChecked*/);
7007 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
7008 }
7009 }
7010 else
7011 {
7012 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
7013 rcStrict = IEMExecOne(pVCpu);
7014 }
7015 }
7016 else
7017 {
7018 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
7019 rcStrict = IEMExecOne(pVCpu);
7020 }
7021 fUpdateRipAlready = true;
7022 }
7023 else
7024 {
7025 /* IN/OUT - I/O instruction. */
7026 Assert(!IoExitInfo.n.u1Rep);
7027
7028 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
7029 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
7030 {
7031 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
7032 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7033 && !pCtx->eflags.Bits.u1TF)
7034 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
7035 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
7036 }
7037 else
7038 {
7039 uint32_t u32Val = 0;
7040 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
7041 if (IOM_SUCCESS(rcStrict))
7042 {
7043 /* Save result of I/O IN instr. in AL/AX/EAX. */
7044 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
7045 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
7046 }
7047 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7048 && !pCtx->eflags.Bits.u1TF)
7049 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
7050
7051 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
7052 }
7053 }
7054
7055 if (IOM_SUCCESS(rcStrict))
7056 {
7057 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
7058 if (!fUpdateRipAlready)
7059 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
7060
7061 /*
7062 * If any I/O breakpoints are armed, we need to check if one triggered
7063 * and take appropriate action.
7064 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
7065 */
7066 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
7067 * execution engines about whether hyper BPs and such are pending. */
7068 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
7069 uint32_t const uDr7 = pCtx->dr[7];
7070 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7071 && X86_DR7_ANY_RW_IO(uDr7)
7072 && (pCtx->cr4 & X86_CR4_DE))
7073 || DBGFBpIsHwIoArmed(pVM)))
7074 {
7075 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7076 VMMRZCallRing3Disable(pVCpu);
7077 HM_DISABLE_PREEMPT(pVCpu);
7078
7079 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
7080 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
7081
7082 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
7083 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
7084 {
7085 /* Raise #DB. */
7086 pVmcb->guest.u64DR6 = pCtx->dr[6];
7087 pVmcb->guest.u64DR7 = pCtx->dr[7];
7088 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7089 hmR0SvmSetPendingXcptDB(pVCpu);
7090 }
7091 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
7092 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
7093 else if ( rcStrict2 != VINF_SUCCESS
7094 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
7095 rcStrict = rcStrict2;
7096 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
7097
7098 HM_RESTORE_PREEMPT();
7099 VMMRZCallRing3Enable(pVCpu);
7100 }
7101
7102 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7103 }
7104
7105#ifdef VBOX_STRICT
7106 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7107 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
7108 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
7109 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7110 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
7111 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
7112 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
7113 else
7114 {
7115 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
7116 * statuses, that the VMM device and some others may return. See
7117 * IOM_SUCCESS() for guidance. */
7118 AssertMsg( RT_FAILURE(rcStrict)
7119 || rcStrict == VINF_SUCCESS
7120 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
7121 || rcStrict == VINF_EM_DBG_BREAKPOINT
7122 || rcStrict == VINF_EM_RAW_GUEST_TRAP
7123 || rcStrict == VINF_EM_RAW_TO_R3
7124 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
7125 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7126 }
7127#endif
7128 }
7129 else
7130 {
7131 /*
7132 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7133 */
7134 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7135 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
7136 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
7137 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
7138 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
7139 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
7140 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
7141
7142 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7143 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7144
7145 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7146 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7147 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7148 }
7149 return VBOXSTRICTRC_TODO(rcStrict);
7150}
7151
7152
7153/**
7154 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
7155 */
7156HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7157{
7158 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7159 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7160 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7161
7162 PVM pVM = pVCpu->CTX_SUFF(pVM);
7163 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7164 Assert(pVM->hm.s.fNestedPaging);
7165
7166 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
7167 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7168 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
7169 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
7170 thus intentionally not copied into u32ErrCode. */
7171
7172 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
7173 u32ErrCode));
7174
7175 /*
7176 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
7177 */
7178 if ( pVM->hm.s.fTprPatchingAllowed
7179 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
7180 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
7181 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
7182 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7183 && !CPUMIsGuestInLongModeEx(pCtx)
7184 && !CPUMGetGuestCPL(pVCpu)
7185 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7186 {
7187 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7188 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7189
7190 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
7191 {
7192 /* Only attempt to patch the instruction once. */
7193 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7194 if (!pPatch)
7195 return VINF_EM_HM_PATCH_TPR_INSTR;
7196 }
7197 }
7198
7199 /*
7200 * Determine the nested paging mode.
7201 */
7202/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
7203 PGMMODE enmNestedPagingMode;
7204#if HC_ARCH_BITS == 32
7205 if (CPUMIsGuestInLongModeEx(pCtx))
7206 enmNestedPagingMode = PGMMODE_AMD64_NX;
7207 else
7208#endif
7209 enmNestedPagingMode = PGMGetHostMode(pVM);
7210
7211 /*
7212 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
7213 */
7214 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
7215 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
7216 {
7217 /*
7218 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
7219 * injecting the original pending event would most likely cause the same MMIO #NPF.
7220 */
7221 if (pVCpu->hm.s.Event.fPending)
7222 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7223
7224 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
7225 VBOXSTRICTRC rcStrict;
7226 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
7227 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
7228 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
7229 if (!pExitRec)
7230 {
7231
7232 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
7233 u32ErrCode);
7234
7235 /*
7236 * If we succeed, resume guest execution.
7237 *
7238 * If we fail in interpreting the instruction because we couldn't get the guest
7239 * physical address of the page containing the instruction via the guest's page
7240 * tables (we would invalidate the guest page in the host TLB), resume execution
7241 * which would cause a guest page fault to let the guest handle this weird case.
7242 *
7243 * See @bugref{6043}.
7244 */
7245 if ( rcStrict == VINF_SUCCESS
7246 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
7247 || rcStrict == VERR_PAGE_NOT_PRESENT)
7248 {
7249 /* Successfully handled MMIO operation. */
7250 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
7251 rcStrict = VINF_SUCCESS;
7252 }
7253 }
7254 else
7255 {
7256 /*
7257 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7258 */
7259 Assert(pCtx == &pVCpu->cpum.GstCtx);
7260 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7261 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
7262 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
7263
7264 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7265 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7266
7267 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7268 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7269 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7270 }
7271 return VBOXSTRICTRC_TODO(rcStrict);
7272 }
7273
7274 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
7275 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
7276 TRPMResetTrap(pVCpu);
7277
7278 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
7279
7280 /*
7281 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
7282 */
7283 if ( rc == VINF_SUCCESS
7284 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7285 || rc == VERR_PAGE_NOT_PRESENT)
7286 {
7287 /* We've successfully synced our shadow page tables. */
7288 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7289 rc = VINF_SUCCESS;
7290 }
7291
7292 return rc;
7293}
7294
7295
7296/**
7297 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
7298 * \#VMEXIT.
7299 */
7300HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7301{
7302 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7303 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7304
7305 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7306 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7307 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
7308
7309 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7310 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7311 return VINF_SUCCESS;
7312}
7313
7314
7315/**
7316 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7317 * \#VMEXIT.
7318 */
7319HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7320{
7321 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7322 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7323
7324#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7325 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7326#endif
7327
7328 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7329 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7330 {
7331 /*
7332 * AMD-V provides us with the exception which caused the TS; we collect
7333 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7334 */
7335 Log4Func(("TS occurred during event delivery\n"));
7336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7337 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7338 }
7339
7340 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7341 * emulation. */
7342 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7343 return VERR_EM_INTERPRETER;
7344}
7345
7346
7347/**
7348 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7349 */
7350HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7351{
7352 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7353 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7354
7355 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingAllowed)
7356 {
7357 int rc = hmSvmEmulateMovTpr(pVCpu);
7358 if (rc != VERR_NOT_FOUND)
7359 {
7360 Log4Func(("hmSvmEmulateMovTpr returns %Rrc\n", rc));
7361 return rc;
7362 }
7363 }
7364
7365 if (EMAreHypercallInstructionsEnabled(pVCpu))
7366 {
7367 unsigned cbInstr;
7368 if (hmR0SvmSupportsNextRipSave(pVCpu))
7369 {
7370 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7371 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7372 }
7373 else
7374 {
7375 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7376 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7377 if ( rc == VINF_SUCCESS
7378 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7379 Assert(cbInstr > 0);
7380 else
7381 cbInstr = 0;
7382 }
7383
7384 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7385 if (RT_SUCCESS(rcStrict))
7386 {
7387 /* Only update the RIP if we're continuing guest execution and not in the case
7388 of say VINF_GIM_R3_HYPERCALL. */
7389 if (rcStrict == VINF_SUCCESS)
7390 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7391
7392 return VBOXSTRICTRC_VAL(rcStrict);
7393 }
7394 else
7395 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7396 }
7397
7398 hmR0SvmSetPendingXcptUD(pVCpu);
7399 return VINF_SUCCESS;
7400}
7401
7402
7403/**
7404 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7405 */
7406HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7407{
7408 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7409
7410 unsigned cbInstr;
7411 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7412 if (fSupportsNextRipSave)
7413 {
7414 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7415 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7416 }
7417 else
7418 {
7419 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7420 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7421 if ( rc == VINF_SUCCESS
7422 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7423 Assert(cbInstr > 0);
7424 else
7425 cbInstr = 0;
7426 }
7427
7428 /** @todo The guest has likely hit a contended spinlock. We might want to
7429 * poke a schedule different guest VCPU. */
7430 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7431 return VINF_EM_RAW_INTERRUPT;
7432}
7433
7434
7435/**
7436 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7437 * \#VMEXIT.
7438 */
7439HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7440{
7441 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7442 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7443 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7444
7445 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7446 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7447}
7448
7449
7450/**
7451 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7452 */
7453HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7454{
7455 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7456
7457 /* Clear NMI blocking. */
7458 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
7459 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7460
7461 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7462 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7463 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7464
7465 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7466 return VINF_SUCCESS;
7467}
7468
7469
7470/**
7471 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7472 * Conditional \#VMEXIT.
7473 */
7474HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7475{
7476 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7477 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7478 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7479
7480 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7481 PVM pVM = pVCpu->CTX_SUFF(pVM);
7482 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7483 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7484 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7485 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7486
7487#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7488 if (pVM->hm.s.fNestedPaging)
7489 {
7490 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7491 if ( !pSvmTransient->fVectoringDoublePF
7492 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7493 {
7494 /* A genuine guest #PF, reflect it to the guest. */
7495 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7496 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7497 uFaultAddress, uErrCode));
7498 }
7499 else
7500 {
7501 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7502 hmR0SvmSetPendingXcptDF(pVCpu);
7503 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7504 }
7505 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7506 return VINF_SUCCESS;
7507 }
7508#endif
7509
7510 Assert(!pVM->hm.s.fNestedPaging);
7511
7512 /*
7513 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7514 */
7515 if ( pVM->hm.s.fTprPatchingAllowed
7516 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7517 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7518 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7519 && !CPUMIsGuestInLongModeEx(pCtx)
7520 && !CPUMGetGuestCPL(pVCpu)
7521 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7522 {
7523 RTGCPHYS GCPhysApicBase;
7524 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7525 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7526
7527 /* Check if the page at the fault-address is the APIC base. */
7528 RTGCPHYS GCPhysPage;
7529 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7530 if ( rc2 == VINF_SUCCESS
7531 && GCPhysPage == GCPhysApicBase)
7532 {
7533 /* Only attempt to patch the instruction once. */
7534 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7535 if (!pPatch)
7536 return VINF_EM_HM_PATCH_TPR_INSTR;
7537 }
7538 }
7539
7540 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7541 pCtx->rip, uErrCode, pCtx->cr3));
7542
7543 /*
7544 * If it's a vectoring #PF, emulate injecting the original event injection as
7545 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7546 * event injection that caused a #PF. See @bugref{6607}.
7547 */
7548 if (pSvmTransient->fVectoringPF)
7549 {
7550 Assert(pVCpu->hm.s.Event.fPending);
7551 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7552 }
7553
7554 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7555 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7556
7557 Log4Func(("#PF: rc=%Rrc\n", rc));
7558
7559 if (rc == VINF_SUCCESS)
7560 {
7561 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7562 TRPMResetTrap(pVCpu);
7563 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7564 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7565 return rc;
7566 }
7567
7568 if (rc == VINF_EM_RAW_GUEST_TRAP)
7569 {
7570 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7571
7572 /*
7573 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7574 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7575 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7576 */
7577 if ( !pSvmTransient->fVectoringDoublePF
7578 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7579 {
7580 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7581 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7582 TRPMResetTrap(pVCpu);
7583
7584#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7585 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7586 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7587 && HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
7588 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress));
7589#endif
7590
7591 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7592 }
7593 else
7594 {
7595 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7596 TRPMResetTrap(pVCpu);
7597 hmR0SvmSetPendingXcptDF(pVCpu);
7598 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7599 }
7600
7601 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7602 return VINF_SUCCESS;
7603 }
7604
7605 TRPMResetTrap(pVCpu);
7606 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7607 return rc;
7608}
7609
7610
7611/**
7612 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7613 * Conditional \#VMEXIT.
7614 */
7615HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7616{
7617 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7618 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7619
7620 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7621 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7622 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7623
7624 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7625 if (pVCpu->hm.s.fGIMTrapXcptUD)
7626 {
7627 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7628 uint8_t cbInstr = 0;
7629 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7630 if (rcStrict == VINF_SUCCESS)
7631 {
7632 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7633 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7634 rc = VINF_SUCCESS;
7635 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7636 }
7637 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7638 rc = VINF_SUCCESS;
7639 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7640 rc = VINF_GIM_R3_HYPERCALL;
7641 else
7642 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7643 }
7644
7645 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7646 if (RT_FAILURE(rc))
7647 {
7648 hmR0SvmSetPendingXcptUD(pVCpu);
7649 rc = VINF_SUCCESS;
7650 }
7651
7652 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7653 return rc;
7654}
7655
7656
7657/**
7658 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7659 * Conditional \#VMEXIT.
7660 */
7661HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7662{
7663 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7664 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7665
7666 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7667 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7668
7669 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7670 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7671
7672 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7673
7674 if (!(pCtx->cr0 & X86_CR0_NE))
7675 {
7676 PVM pVM = pVCpu->CTX_SUFF(pVM);
7677 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7678 unsigned cbInstr;
7679 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7680 if (RT_SUCCESS(rc))
7681 {
7682 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7683 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7684 if (RT_SUCCESS(rc))
7685 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7686 }
7687 else
7688 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7689 return rc;
7690 }
7691
7692 hmR0SvmSetPendingXcptMF(pVCpu);
7693 return VINF_SUCCESS;
7694}
7695
7696
7697/**
7698 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7699 * \#VMEXIT.
7700 */
7701HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7702{
7703 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7704 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7705 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7706
7707 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7708 {
7709 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7710 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7711 }
7712
7713 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7714
7715 /*
7716 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7717 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7718 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7719 */
7720 PVM pVM = pVCpu->CTX_SUFF(pVM);
7721 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7722 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7723 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7724 if (rc == VINF_EM_RAW_GUEST_TRAP)
7725 {
7726 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7727 if (CPUMIsHyperDebugStateActive(pVCpu))
7728 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7729
7730 /* Reflect the exception back to the guest. */
7731 hmR0SvmSetPendingXcptDB(pVCpu);
7732 rc = VINF_SUCCESS;
7733 }
7734
7735 /*
7736 * Update DR6.
7737 */
7738 if (CPUMIsHyperDebugStateActive(pVCpu))
7739 {
7740 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7741 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7742 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7743 }
7744 else
7745 {
7746 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7747 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7748 }
7749
7750 return rc;
7751}
7752
7753
7754/**
7755 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7756 * Conditional \#VMEXIT.
7757 */
7758HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7759{
7760 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7761 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7762
7763 SVMEVENT Event;
7764 Event.u = 0;
7765 Event.n.u1Valid = 1;
7766 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7767 Event.n.u8Vector = X86_XCPT_AC;
7768 Event.n.u1ErrorCodeValid = 1;
7769 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7770 return VINF_SUCCESS;
7771}
7772
7773
7774/**
7775 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7776 * Conditional \#VMEXIT.
7777 */
7778HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7779{
7780 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7781 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7782 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7783
7784 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7785 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7786 if (rc == VINF_EM_RAW_GUEST_TRAP)
7787 {
7788 SVMEVENT Event;
7789 Event.u = 0;
7790 Event.n.u1Valid = 1;
7791 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7792 Event.n.u8Vector = X86_XCPT_BP;
7793 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7794 }
7795
7796 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7797 return rc;
7798}
7799
7800
7801#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7802/**
7803 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7804 */
7805HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7806{
7807 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7808 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7809
7810 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7811 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7812 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7813 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7814 Assert(uVector <= X86_XCPT_LAST);
7815 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7816
7817 SVMEVENT Event;
7818 Event.u = 0;
7819 Event.n.u1Valid = 1;
7820 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7821 Event.n.u8Vector = uVector;
7822 switch (uVector)
7823 {
7824 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7825 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7826 case X86_XCPT_DF:
7827 case X86_XCPT_TS:
7828 case X86_XCPT_NP:
7829 case X86_XCPT_SS:
7830 case X86_XCPT_GP:
7831 case X86_XCPT_AC:
7832 {
7833 Event.n.u1ErrorCodeValid = 1;
7834 Event.n.u32ErrorCode = uErrCode;
7835 break;
7836 }
7837 }
7838
7839 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7840 return VINF_SUCCESS;
7841}
7842#endif
7843
7844#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7845/**
7846 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7847 */
7848HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7849{
7850 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7851
7852 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7853 Assert(pVmcb);
7854 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7855
7856 VBOXSTRICTRC rcStrict;
7857 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7858 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7859 if (fSupportsNextRipSave)
7860 {
7861 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7862 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7863 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7864 }
7865 else
7866 {
7867 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7868 rcStrict = IEMExecOne(pVCpu);
7869 }
7870
7871 if (rcStrict == VINF_SUCCESS)
7872 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7873 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7874 {
7875 rcStrict = VINF_SUCCESS;
7876 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7877 }
7878 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7879 return VBOXSTRICTRC_TODO(rcStrict);
7880}
7881
7882
7883/**
7884 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7885 */
7886HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7887{
7888 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7889
7890 /*
7891 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7892 * we only intercept STGI when events are pending for GIF to become 1.
7893 */
7894 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7895 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7896 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7897
7898 VBOXSTRICTRC rcStrict;
7899 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7900 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7901 if (fSupportsNextRipSave)
7902 {
7903 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7904 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7905 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7906 }
7907 else
7908 {
7909 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7910 rcStrict = IEMExecOne(pVCpu);
7911 }
7912
7913 if (rcStrict == VINF_SUCCESS)
7914 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7915 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7916 {
7917 rcStrict = VINF_SUCCESS;
7918 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7919 }
7920 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7921 return VBOXSTRICTRC_TODO(rcStrict);
7922}
7923
7924
7925/**
7926 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7927 */
7928HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7929{
7930 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7931
7932 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7933 Assert(pVmcb);
7934 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7935
7936 VBOXSTRICTRC rcStrict;
7937 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7938 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
7939 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
7940 | CPUMCTX_EXTRN_SYSENTER_MSRS;
7941 if (fSupportsNextRipSave)
7942 {
7943 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7944 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7945 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7946 }
7947 else
7948 {
7949 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7950 rcStrict = IEMExecOne(pVCpu);
7951 }
7952
7953 if (rcStrict == VINF_SUCCESS)
7954 {
7955 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7956 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7957 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7958 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7959 }
7960 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7961 {
7962 rcStrict = VINF_SUCCESS;
7963 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7964 }
7965 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7966 return VBOXSTRICTRC_TODO(rcStrict);
7967}
7968
7969
7970/**
7971 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7972 */
7973HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7974{
7975 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7976
7977 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7978 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7979
7980 VBOXSTRICTRC rcStrict;
7981 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7982 if (fSupportsNextRipSave)
7983 {
7984 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7985 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7986 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7987 }
7988 else
7989 {
7990 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7991 rcStrict = IEMExecOne(pVCpu);
7992 }
7993
7994 if (rcStrict == VINF_IEM_RAISED_XCPT)
7995 {
7996 rcStrict = VINF_SUCCESS;
7997 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7998 }
7999 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8000 return VBOXSTRICTRC_TODO(rcStrict);
8001}
8002
8003
8004/**
8005 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
8006 */
8007HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8008{
8009 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8010
8011 VBOXSTRICTRC rcStrict;
8012 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8013 if (fSupportsNextRipSave)
8014 {
8015 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
8016 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8017 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8018 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
8019 }
8020 else
8021 {
8022 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8023 rcStrict = IEMExecOne(pVCpu);
8024 }
8025
8026 if (rcStrict == VINF_IEM_RAISED_XCPT)
8027 {
8028 rcStrict = VINF_SUCCESS;
8029 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8030 }
8031 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8032 return VBOXSTRICTRC_TODO(rcStrict);
8033}
8034
8035
8036/**
8037 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
8038 */
8039HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8040{
8041 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8042 /* We shall import the entire state here, just in case we enter and continue execution of
8043 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
8044 could lose lose part of CPU state. */
8045 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
8046
8047 VBOXSTRICTRC rcStrict;
8048 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8049 if (fSupportsNextRipSave)
8050 {
8051 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8052 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8053 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
8054 }
8055 else
8056 {
8057 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
8058 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
8059 instruction itself, see @bugref{7243#c126} */
8060 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
8061 }
8062
8063 if (rcStrict == VINF_SUCCESS)
8064 {
8065 rcStrict = VINF_SVM_VMRUN;
8066 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
8067 }
8068 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8069 {
8070 rcStrict = VINF_SUCCESS;
8071 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8072 }
8073 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8074 return VBOXSTRICTRC_TODO(rcStrict);
8075}
8076
8077
8078/**
8079 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
8080 * Unconditional \#VMEXIT.
8081 */
8082HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8083{
8084 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8085 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8086
8087 if (pVCpu->hm.s.Event.fPending)
8088 {
8089 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
8090 return VINF_EM_RAW_INJECT_TRPM_EVENT;
8091 }
8092
8093 hmR0SvmSetPendingXcptDB(pVCpu);
8094 return VINF_SUCCESS;
8095}
8096
8097
8098/**
8099 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
8100 * Conditional \#VMEXIT.
8101 */
8102HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8103{
8104 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8105 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8106
8107 SVMEVENT Event;
8108 Event.u = 0;
8109 Event.n.u1Valid = 1;
8110 Event.n.u3Type = SVM_EVENT_EXCEPTION;
8111 Event.n.u8Vector = X86_XCPT_BP;
8112 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
8113 return VINF_SUCCESS;
8114}
8115#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
8116
8117/** @} */
8118
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette