VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 76267

Last change on this file since 76267 was 76011, checked in by vboxsync, 6 years ago

VMM: VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM fixes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 324.1 KB
Line 
1/* $Id: HMSVMR0.cpp 76011 2018-12-06 11:51:06Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vm.h>
37#include "HMSVMR0.h"
38#include "dtrace/VBoxVMM.h"
39
40#ifdef DEBUG_ramshankar
41# define HMSVM_SYNC_FULL_GUEST_STATE
42# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
43# define HMSVM_ALWAYS_TRAP_PF
44# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
45#endif
46
47
48/*********************************************************************************************************************************
49* Defined Constants And Macros *
50*********************************************************************************************************************************/
51#ifdef VBOX_WITH_STATISTICS
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
53 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
54 if ((u64ExitCode) == SVM_EXIT_NPF) \
55 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
56 else \
57 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
58 } while (0)
59
60# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
61# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
62 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
63 if ((u64ExitCode) == SVM_EXIT_NPF) \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
65 else \
66 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
67 } while (0)
68# endif
69#else
70# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
71# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
72# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# endif
74#endif /* !VBOX_WITH_STATISTICS */
75
76/** If we decide to use a function table approach this can be useful to
77 * switch to a "static DECLCALLBACK(int)". */
78#define HMSVM_EXIT_DECL static int
79
80/**
81 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
82 * guest using hardware-assisted SVM.
83 *
84 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
85 * are swapped and restored across the world-switch and also registers like
86 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
87 * \#VMEXIT.
88 */
89#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
90 | CPUMCTX_EXTRN_RFLAGS \
91 | CPUMCTX_EXTRN_RAX \
92 | CPUMCTX_EXTRN_RSP \
93 | CPUMCTX_EXTRN_SREG_MASK \
94 | CPUMCTX_EXTRN_CR0 \
95 | CPUMCTX_EXTRN_CR2 \
96 | CPUMCTX_EXTRN_CR3 \
97 | CPUMCTX_EXTRN_TABLE_MASK \
98 | CPUMCTX_EXTRN_DR6 \
99 | CPUMCTX_EXTRN_DR7 \
100 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
101 | CPUMCTX_EXTRN_SYSCALL_MSRS \
102 | CPUMCTX_EXTRN_SYSENTER_MSRS \
103 | CPUMCTX_EXTRN_HWVIRT \
104 | CPUMCTX_EXTRN_HM_SVM_MASK)
105
106/**
107 * Subset of the guest-CPU state that is shared between the guest and host.
108 */
109#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
110
111/** Macro for importing guest state from the VMCB back into CPUMCTX. */
112#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
113 do { \
114 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
115 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
116 } while (0)
117
118/** Assert that the required state bits are fetched. */
119#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
120 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
121 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
122
123/** Assert that preemption is disabled or covered by thread-context hooks. */
124#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
125 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
126
127/** Assert that we haven't migrated CPUs when thread-context hooks are not
128 * used. */
129#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
130 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
131 ("Illegal migration! Entered on CPU %u Current %u\n", \
132 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()));
133
134/** Assert that we're not executing a nested-guest. */
135#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
136# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
137#else
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
139#endif
140
141/** Assert that we're executing a nested-guest. */
142#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
143# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
144#else
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
146#endif
147
148/** Macro for checking and returning from the using function for
149 * \#VMEXIT intercepts that maybe caused during delivering of another
150 * event in the guest. */
151#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
152# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
153 do \
154 { \
155 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
156 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
157 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
158 else if ( rc == VINF_EM_RESET \
159 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
160 { \
161 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
162 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0)); \
163 } \
164 else \
165 return rc; \
166 } while (0)
167#else
168# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
169 do \
170 { \
171 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
172 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
173 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
174 else \
175 return rc; \
176 } while (0)
177#endif
178
179/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
180 * instruction that exited. */
181#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
182 do { \
183 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
184 (a_rc) = VINF_EM_DBG_STEPPED; \
185 } while (0)
186
187/** Validate segment descriptor granularity bit. */
188#ifdef VBOX_STRICT
189# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
190 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
191 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
192 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
193 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
194 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
195 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
196#else
197# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
198#endif
199
200/**
201 * Exception bitmap mask for all contributory exceptions.
202 *
203 * Page fault is deliberately excluded here as it's conditional as to whether
204 * it's contributory or benign. Page faults are handled separately.
205 */
206#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
207 | RT_BIT(X86_XCPT_DE))
208
209/**
210 * Mandatory/unconditional guest control intercepts.
211 *
212 * SMIs can and do happen in normal operation. We need not intercept them
213 * while executing the guest (or nested-guest).
214 */
215#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
216 | SVM_CTRL_INTERCEPT_NMI \
217 | SVM_CTRL_INTERCEPT_INIT \
218 | SVM_CTRL_INTERCEPT_RDPMC \
219 | SVM_CTRL_INTERCEPT_CPUID \
220 | SVM_CTRL_INTERCEPT_RSM \
221 | SVM_CTRL_INTERCEPT_HLT \
222 | SVM_CTRL_INTERCEPT_IOIO_PROT \
223 | SVM_CTRL_INTERCEPT_MSR_PROT \
224 | SVM_CTRL_INTERCEPT_INVLPGA \
225 | SVM_CTRL_INTERCEPT_SHUTDOWN \
226 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
227 | SVM_CTRL_INTERCEPT_VMRUN \
228 | SVM_CTRL_INTERCEPT_SKINIT \
229 | SVM_CTRL_INTERCEPT_WBINVD \
230 | SVM_CTRL_INTERCEPT_MONITOR \
231 | SVM_CTRL_INTERCEPT_MWAIT \
232 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
233 | SVM_CTRL_INTERCEPT_XSETBV)
234
235/** @name VMCB Clean Bits.
236 *
237 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
238 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
239 * memory.
240 *
241 * @{ */
242/** All intercepts vectors, TSC offset, PAUSE filter counter. */
243#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
244/** I/O permission bitmap, MSR permission bitmap. */
245#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
246/** ASID. */
247#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
248/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
249V_INTR_VECTOR. */
250#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
251/** Nested Paging: Nested CR3 (nCR3), PAT. */
252#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
253/** Control registers (CR0, CR3, CR4, EFER). */
254#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
255/** Debug registers (DR6, DR7). */
256#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
257/** GDT, IDT limit and base. */
258#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
259/** Segment register: CS, SS, DS, ES limit and base. */
260#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
261/** CR2.*/
262#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
263/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
264#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
265/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
266PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
267#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
268/** Mask of all valid VMCB Clean bits. */
269#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
270 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
271 | HMSVM_VMCB_CLEAN_ASID \
272 | HMSVM_VMCB_CLEAN_INT_CTRL \
273 | HMSVM_VMCB_CLEAN_NP \
274 | HMSVM_VMCB_CLEAN_CRX_EFER \
275 | HMSVM_VMCB_CLEAN_DRX \
276 | HMSVM_VMCB_CLEAN_DT \
277 | HMSVM_VMCB_CLEAN_SEG \
278 | HMSVM_VMCB_CLEAN_CR2 \
279 | HMSVM_VMCB_CLEAN_LBR \
280 | HMSVM_VMCB_CLEAN_AVIC)
281/** @} */
282
283/** @name SVM transient.
284 *
285 * A state structure for holding miscellaneous information across AMD-V
286 * VMRUN/\#VMEXIT operation, restored after the transition.
287 *
288 * @{ */
289typedef struct SVMTRANSIENT
290{
291 /** The host's rflags/eflags. */
292 RTCCUINTREG fEFlags;
293#if HC_ARCH_BITS == 32
294 uint32_t u32Alignment0;
295#endif
296
297 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
298 uint64_t u64ExitCode;
299 /** The guest's TPR value used for TPR shadowing. */
300 uint8_t u8GuestTpr;
301 /** Alignment. */
302 uint8_t abAlignment0[7];
303
304 /** Pointer to the currently executing VMCB. */
305 PSVMVMCB pVmcb;
306 /** Whether we are currently executing a nested-guest. */
307 bool fIsNestedGuest;
308
309 /** Whether the guest debug state was active at the time of \#VMEXIT. */
310 bool fWasGuestDebugStateActive;
311 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
312 bool fWasHyperDebugStateActive;
313 /** Whether the TSC offset mode needs to be updated. */
314 bool fUpdateTscOffsetting;
315 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
316 bool fRestoreTscAuxMsr;
317 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
318 * contributary exception or a page-fault. */
319 bool fVectoringDoublePF;
320 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
321 * external interrupt or NMI. */
322 bool fVectoringPF;
323} SVMTRANSIENT, *PSVMTRANSIENT;
324AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
325AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
326/** @} */
327
328/**
329 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
330 */
331typedef enum SVMMSREXITREAD
332{
333 /** Reading this MSR causes a \#VMEXIT. */
334 SVMMSREXIT_INTERCEPT_READ = 0xb,
335 /** Reading this MSR does not cause a \#VMEXIT. */
336 SVMMSREXIT_PASSTHRU_READ
337} SVMMSREXITREAD;
338
339/**
340 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
341 */
342typedef enum SVMMSREXITWRITE
343{
344 /** Writing to this MSR causes a \#VMEXIT. */
345 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
346 /** Writing to this MSR does not cause a \#VMEXIT. */
347 SVMMSREXIT_PASSTHRU_WRITE
348} SVMMSREXITWRITE;
349
350/**
351 * SVM \#VMEXIT handler.
352 *
353 * @returns VBox status code.
354 * @param pVCpu The cross context virtual CPU structure.
355 * @param pSvmTransient Pointer to the SVM-transient structure.
356 */
357typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
358
359
360/*********************************************************************************************************************************
361* Internal Functions *
362*********************************************************************************************************************************/
363static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
364static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState);
365
366
367/** @name \#VMEXIT handlers.
368 * @{
369 */
370static FNSVMEXITHANDLER hmR0SvmExitIntr;
371static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
372static FNSVMEXITHANDLER hmR0SvmExitInvd;
373static FNSVMEXITHANDLER hmR0SvmExitCpuid;
374static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
375static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
376static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
377static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
378static FNSVMEXITHANDLER hmR0SvmExitHlt;
379static FNSVMEXITHANDLER hmR0SvmExitMonitor;
380static FNSVMEXITHANDLER hmR0SvmExitMwait;
381static FNSVMEXITHANDLER hmR0SvmExitShutdown;
382static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
383static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
384static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
385static FNSVMEXITHANDLER hmR0SvmExitMsr;
386static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
387static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
388static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
389static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
390static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
391static FNSVMEXITHANDLER hmR0SvmExitVIntr;
392static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
393static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
394static FNSVMEXITHANDLER hmR0SvmExitPause;
395static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
396static FNSVMEXITHANDLER hmR0SvmExitIret;
397static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
398static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
399static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
400static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
401static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
402static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
403static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
404#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
405static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
406#endif
407#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
408static FNSVMEXITHANDLER hmR0SvmExitClgi;
409static FNSVMEXITHANDLER hmR0SvmExitStgi;
410static FNSVMEXITHANDLER hmR0SvmExitVmload;
411static FNSVMEXITHANDLER hmR0SvmExitVmsave;
412static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
413static FNSVMEXITHANDLER hmR0SvmExitVmrun;
414static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
415static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
416#endif
417/** @} */
418
419static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
420#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
421static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
422#endif
423
424
425/*********************************************************************************************************************************
426* Global Variables *
427*********************************************************************************************************************************/
428/** Ring-0 memory object for the IO bitmap. */
429static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
430/** Physical address of the IO bitmap. */
431static RTHCPHYS g_HCPhysIOBitmap;
432/** Pointer to the IO bitmap. */
433static R0PTRTYPE(void *) g_pvIOBitmap;
434
435#ifdef VBOX_STRICT
436# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
437# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
438# define HMSVM_LOG_CS RT_BIT_32(2)
439# define HMSVM_LOG_SS RT_BIT_32(3)
440# define HMSVM_LOG_FS RT_BIT_32(4)
441# define HMSVM_LOG_GS RT_BIT_32(5)
442# define HMSVM_LOG_LBR RT_BIT_32(6)
443# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
444 | HMSVM_LOG_CR_REGS \
445 | HMSVM_LOG_CS \
446 | HMSVM_LOG_SS \
447 | HMSVM_LOG_FS \
448 | HMSVM_LOG_GS \
449 | HMSVM_LOG_LBR)
450
451/**
452 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
453 *
454 * @param pVCpu The cross context virtual CPU structure.
455 * @param pVmcb Pointer to the VM control block.
456 * @param pszPrefix Log prefix.
457 * @param fFlags Log flags, see HMSVM_LOG_XXX.
458 * @param uVerbose The verbosity level, currently unused.
459 */
460static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
461{
462 RT_NOREF2(pVCpu, uVerbose);
463 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
464
465 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
466 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
467
468 if (fFlags & HMSVM_LOG_RBP_RSP)
469 {
470 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
471 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
472 }
473
474 if (fFlags & HMSVM_LOG_CR_REGS)
475 {
476 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
477 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
478 }
479
480 if (fFlags & HMSVM_LOG_CS)
481 {
482 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
483 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
484 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
485 }
486 if (fFlags & HMSVM_LOG_SS)
487 {
488 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
489 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
490 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
491 }
492 if (fFlags & HMSVM_LOG_FS)
493 {
494 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
495 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
496 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
497 }
498 if (fFlags & HMSVM_LOG_GS)
499 {
500 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
501 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
502 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
503 }
504
505 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
506 if (fFlags & HMSVM_LOG_LBR)
507 {
508 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
509 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
510 }
511 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
512}
513#endif /* VBOX_STRICT */
514
515
516/**
517 * Sets up and activates AMD-V on the current CPU.
518 *
519 * @returns VBox status code.
520 * @param pHostCpu Pointer to the CPU info struct.
521 * @param pVM The cross context VM structure. Can be
522 * NULL after a resume!
523 * @param pvCpuPage Pointer to the global CPU page.
524 * @param HCPhysCpuPage Physical address of the global CPU page.
525 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
526 * @param pvArg Unused on AMD-V.
527 */
528VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
529 void *pvArg)
530{
531 Assert(!fEnabledByHost);
532 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
533 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
534 Assert(pvCpuPage); NOREF(pvCpuPage);
535 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
536
537 NOREF(pvArg);
538 NOREF(fEnabledByHost);
539
540 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
541 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
542
543 /*
544 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
545 */
546 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
547 if (u64HostEfer & MSR_K6_EFER_SVME)
548 {
549 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
550 if ( pVM
551 && pVM->hm.s.svm.fIgnoreInUseError)
552 pHostCpu->fIgnoreAMDVInUseError = true;
553
554 if (!pHostCpu->fIgnoreAMDVInUseError)
555 {
556 ASMSetFlags(fEFlags);
557 return VERR_SVM_IN_USE;
558 }
559 }
560
561 /* Turn on AMD-V in the EFER MSR. */
562 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
563
564 /* Write the physical page address where the CPU will store the host state while executing the VM. */
565 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
566
567 /* Restore interrupts. */
568 ASMSetFlags(fEFlags);
569
570 /*
571 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
572 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
573 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
574 * entirely with before executing any guest code.
575 */
576 pHostCpu->fFlushAsidBeforeUse = true;
577
578 /*
579 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
580 */
581 ++pHostCpu->cTlbFlushes;
582
583 return VINF_SUCCESS;
584}
585
586
587/**
588 * Deactivates AMD-V on the current CPU.
589 *
590 * @returns VBox status code.
591 * @param pHostCpu Pointer to the CPU info struct.
592 * @param pvCpuPage Pointer to the global CPU page.
593 * @param HCPhysCpuPage Physical address of the global CPU page.
594 */
595VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
596{
597 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
598 AssertReturn( HCPhysCpuPage
599 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
600 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
601 RT_NOREF(pHostCpu);
602
603 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
604 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
605
606 /* Turn off AMD-V in the EFER MSR. */
607 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
608 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
609
610 /* Invalidate host state physical address. */
611 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
612
613 /* Restore interrupts. */
614 ASMSetFlags(fEFlags);
615
616 return VINF_SUCCESS;
617}
618
619
620/**
621 * Does global AMD-V initialization (called during module initialization).
622 *
623 * @returns VBox status code.
624 */
625VMMR0DECL(int) SVMR0GlobalInit(void)
626{
627 /*
628 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
629 * intercept all IO accesses, it's done once globally here instead of per-VM.
630 */
631 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
632 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
633 if (RT_FAILURE(rc))
634 return rc;
635
636 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
637 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
638
639 /* Set all bits to intercept all IO accesses. */
640 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
641
642 return VINF_SUCCESS;
643}
644
645
646/**
647 * Does global AMD-V termination (called during module termination).
648 */
649VMMR0DECL(void) SVMR0GlobalTerm(void)
650{
651 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
652 {
653 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
654 g_pvIOBitmap = NULL;
655 g_HCPhysIOBitmap = 0;
656 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
657 }
658}
659
660
661/**
662 * Frees any allocated per-VCPU structures for a VM.
663 *
664 * @param pVM The cross context VM structure.
665 */
666DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
667{
668 for (uint32_t i = 0; i < pVM->cCpus; i++)
669 {
670 PVMCPU pVCpu = &pVM->aCpus[i];
671 AssertPtr(pVCpu);
672
673 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
674 {
675 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
676 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
677 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
678 }
679
680 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
683 pVCpu->hm.s.svm.pVmcb = NULL;
684 pVCpu->hm.s.svm.HCPhysVmcb = 0;
685 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
686 }
687
688 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
689 {
690 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
691 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
692 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
693 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
694 }
695 }
696}
697
698
699/**
700 * Does per-VM AMD-V initialization.
701 *
702 * @returns VBox status code.
703 * @param pVM The cross context VM structure.
704 */
705VMMR0DECL(int) SVMR0InitVM(PVM pVM)
706{
707 int rc = VERR_INTERNAL_ERROR_5;
708
709 /*
710 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
711 */
712 uint32_t u32Family;
713 uint32_t u32Model;
714 uint32_t u32Stepping;
715 if (HMSvmIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
716 {
717 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
718 pVM->hm.s.svm.fAlwaysFlushTLB = true;
719 }
720
721 /*
722 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
723 */
724 for (VMCPUID i = 0; i < pVM->cCpus; i++)
725 {
726 PVMCPU pVCpu = &pVM->aCpus[i];
727 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
728 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
729 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
730 }
731
732 for (VMCPUID i = 0; i < pVM->cCpus; i++)
733 {
734 PVMCPU pVCpu = &pVM->aCpus[i];
735
736 /*
737 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
738 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
739 */
740 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
741 if (RT_FAILURE(rc))
742 goto failure_cleanup;
743
744 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
745 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
746 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
747 ASMMemZeroPage(pvVmcbHost);
748
749 /*
750 * Allocate one page for the guest-state VMCB.
751 */
752 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
753 if (RT_FAILURE(rc))
754 goto failure_cleanup;
755
756 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
757 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
758 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
759 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
760
761 /*
762 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
763 * SVM to not require one.
764 */
765 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
766 false /* fExecutable */);
767 if (RT_FAILURE(rc))
768 goto failure_cleanup;
769
770 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
771 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
772 /* Set all bits to intercept all MSR accesses (changed later on). */
773 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
774 }
775
776 return VINF_SUCCESS;
777
778failure_cleanup:
779 hmR0SvmFreeStructs(pVM);
780 return rc;
781}
782
783
784/**
785 * Does per-VM AMD-V termination.
786 *
787 * @returns VBox status code.
788 * @param pVM The cross context VM structure.
789 */
790VMMR0DECL(int) SVMR0TermVM(PVM pVM)
791{
792 hmR0SvmFreeStructs(pVM);
793 return VINF_SUCCESS;
794}
795
796
797/**
798 * Returns whether the VMCB Clean Bits feature is supported.
799 *
800 * @return @c true if supported, @c false otherwise.
801 * @param pVCpu The cross context virtual CPU structure.
802 */
803DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu)
804{
805 PVM pVM = pVCpu->CTX_SUFF(pVM);
806#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
807 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
808 {
809 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
810 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
811 }
812#endif
813 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
814}
815
816
817/**
818 * Returns whether the decode assists feature is supported.
819 *
820 * @return @c true if supported, @c false otherwise.
821 * @param pVCpu The cross context virtual CPU structure.
822 */
823DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu)
824{
825 PVM pVM = pVCpu->CTX_SUFF(pVM);
826#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
827 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
828 {
829 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
830 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
831 }
832#endif
833 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
834}
835
836
837/**
838 * Returns whether the NRIP_SAVE feature is supported.
839 *
840 * @return @c true if supported, @c false otherwise.
841 * @param pVCpu The cross context virtual CPU structure.
842 */
843DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu)
844{
845 PVM pVM = pVCpu->CTX_SUFF(pVM);
846#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
847 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
848 {
849 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
850 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
851 }
852#endif
853 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
854}
855
856
857/**
858 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
859 *
860 * @param pVCpu The cross context virtual CPU structure.
861 * @param pbMsrBitmap Pointer to the MSR bitmap.
862 * @param idMsr The MSR for which the permissions are being set.
863 * @param enmRead MSR read permissions.
864 * @param enmWrite MSR write permissions.
865 *
866 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
867 * caller needs to take care of this.
868 */
869static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
870 SVMMSREXITWRITE enmWrite)
871{
872 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
873 uint16_t offMsrpm;
874 uint8_t uMsrpmBit;
875 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
876 AssertRC(rc);
877
878 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
879 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
880
881 pbMsrBitmap += offMsrpm;
882 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
883 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
884 else
885 {
886 if (!fInNestedGuestMode)
887 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
888#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
889 else
890 {
891 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
892 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
893 pbNstGstMsrBitmap += offMsrpm;
894 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
895 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
896 else
897 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
898 }
899#endif
900 }
901
902 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
903 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
904 else
905 {
906 if (!fInNestedGuestMode)
907 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
908#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
909 else
910 {
911 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
912 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
913 pbNstGstMsrBitmap += offMsrpm;
914 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
915 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
916 else
917 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
918 }
919#endif
920 }
921}
922
923
924/**
925 * Sets up AMD-V for the specified VM.
926 * This function is only called once per-VM during initalization.
927 *
928 * @returns VBox status code.
929 * @param pVM The cross context VM structure.
930 */
931VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
932{
933 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
934 AssertReturn(pVM, VERR_INVALID_PARAMETER);
935 Assert(pVM->hm.s.svm.fSupported);
936
937 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
938 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
939 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
940
941 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
942 bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
943
944#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
945 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
946 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
947
948 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
949 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
950#endif
951
952 PVMCPU pVCpu = &pVM->aCpus[0];
953 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
954 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[0]\n"), VERR_SVM_INVALID_PVMCB);
955 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
956
957 /* Always trap #AC for reasons of security. */
958 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
959
960 /* Always trap #DB for reasons of security. */
961 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
962
963 /* Trap exceptions unconditionally (debug purposes). */
964#ifdef HMSVM_ALWAYS_TRAP_PF
965 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
966#endif
967#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
968 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
969 pVmcbCtrl->u32InterceptXcpt |= 0
970 | RT_BIT(X86_XCPT_BP)
971 | RT_BIT(X86_XCPT_DE)
972 | RT_BIT(X86_XCPT_NM)
973 | RT_BIT(X86_XCPT_UD)
974 | RT_BIT(X86_XCPT_NP)
975 | RT_BIT(X86_XCPT_SS)
976 | RT_BIT(X86_XCPT_GP)
977 | RT_BIT(X86_XCPT_PF)
978 | RT_BIT(X86_XCPT_MF)
979 ;
980#endif
981
982 /* Apply the exceptions intercepts needed by the GIM provider. */
983 if (pVCpu->hm.s.fGIMTrapXcptUD)
984 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
985
986 /* The mesa 3d driver hack needs #GP. */
987 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
988 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
989
990 /* Set up unconditional intercepts and conditions. */
991 pVmcbCtrl->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
992 | SVM_CTRL_INTERCEPT_VMMCALL;
993
994#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
995 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
996#endif
997
998#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
999 /* Virtualized VMSAVE/VMLOAD. */
1000 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
1001 if (!fUseVirtVmsaveVmload)
1002 {
1003 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
1004 | SVM_CTRL_INTERCEPT_VMLOAD;
1005 }
1006
1007 /* Virtual GIF. */
1008 pVmcbCtrl->IntCtrl.n.u1VGifEnable = fUseVGif;
1009 if (!fUseVGif)
1010 {
1011 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
1012 | SVM_CTRL_INTERCEPT_STGI;
1013 }
1014#endif
1015
1016 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1017 pVmcbCtrl->u16InterceptWrCRx = RT_BIT(4);
1018
1019 /* Intercept all DRx reads and writes by default. Changed later on. */
1020 pVmcbCtrl->u16InterceptRdDRx = 0xffff;
1021 pVmcbCtrl->u16InterceptWrDRx = 0xffff;
1022
1023 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1024 pVmcbCtrl->IntCtrl.n.u1VIntrMasking = 1;
1025
1026 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1027 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1028 pVmcbCtrl->IntCtrl.n.u1IgnoreTPR = 1;
1029
1030 /* Set the IO permission bitmap physical addresses. */
1031 pVmcbCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1032
1033 /* LBR virtualization. */
1034 pVmcbCtrl->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1035
1036 /* The host ASID MBZ, for the guest start with 1. */
1037 pVmcbCtrl->TLBCtrl.n.u32ASID = 1;
1038
1039 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1040 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1041
1042 /* Without Nested Paging, we need additionally intercepts. */
1043 if (!pVM->hm.s.fNestedPaging)
1044 {
1045 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1046 pVmcbCtrl->u16InterceptRdCRx |= RT_BIT(3);
1047 pVmcbCtrl->u16InterceptWrCRx |= RT_BIT(3);
1048
1049 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1050 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1051 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1052
1053 /* Page faults must be intercepted to implement shadow paging. */
1054 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1055 }
1056
1057 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1058 if (fUsePauseFilter)
1059 {
1060 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1061 pVmcbCtrl->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1062 if (fPauseFilterThreshold)
1063 pVmcbCtrl->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1064 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1065 }
1066
1067 /*
1068 * Setup the MSR permission bitmap.
1069 * The following MSRs are saved/restored automatically during the world-switch.
1070 * Don't intercept guest read/write accesses to these MSRs.
1071 */
1072 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1073 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1074 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1075 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1076 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1077 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1078 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1079 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1080 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1081 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1082 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1083 pVmcbCtrl->u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
1084
1085 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1086 Assert(pVmcbCtrl->u32VmcbCleanBits == 0);
1087
1088 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1089 {
1090 PVMCPU pVCpuCur = &pVM->aCpus[i];
1091 PSVMVMCB pVmcbCur = pVM->aCpus[i].hm.s.svm.pVmcb;
1092 AssertMsgReturn(pVmcbCur, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
1093 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1094
1095 /* Copy the VMCB control area. */
1096 memcpy(pVmcbCtrlCur, pVmcbCtrl, sizeof(*pVmcbCtrlCur));
1097
1098 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1099 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
1100 memcpy(pbMsrBitmapCur, pbMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1101 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
1102
1103 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1104 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1105
1106 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1107 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu->hm.s.fGIMTrapXcptUD);
1108 }
1109
1110#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1111 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1112 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1113#else
1114 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1115#endif
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1122 *
1123 * @returns Pointer to the current context VMCB.
1124 * @param pVCpu The cross context virtual CPU structure.
1125 */
1126DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu)
1127{
1128#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1129 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1130 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1131#endif
1132 return pVCpu->hm.s.svm.pVmcb;
1133}
1134
1135
1136/**
1137 * Gets a pointer to the nested-guest VMCB cache.
1138 *
1139 * @returns Pointer to the nested-guest VMCB cache.
1140 * @param pVCpu The cross context virtual CPU structure.
1141 */
1142DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPU pVCpu)
1143{
1144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1145 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1146 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1147#else
1148 RT_NOREF(pVCpu);
1149 return NULL;
1150#endif
1151}
1152
1153
1154/**
1155 * Invalidates a guest page by guest virtual address.
1156 *
1157 * @returns VBox status code.
1158 * @param pVCpu The cross context virtual CPU structure.
1159 * @param GCVirt Guest virtual address of the page to invalidate.
1160 */
1161VMMR0DECL(int) SVMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1162{
1163 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1164
1165 bool const fFlushPending = pVCpu->CTX_SUFF(pVM)->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1166
1167 /* Skip it if a TLB flush is already pending. */
1168 if (!fFlushPending)
1169 {
1170 Log4Func(("%#RGv\n", GCVirt));
1171
1172 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1173 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1174
1175#if HC_ARCH_BITS == 32
1176 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
1177 if (CPUMIsGuestInLongMode(pVCpu))
1178 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1179 else
1180#endif
1181 {
1182 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1183 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1184 }
1185 }
1186 return VINF_SUCCESS;
1187}
1188
1189
1190/**
1191 * Flushes the appropriate tagged-TLB entries.
1192 *
1193 * @param pVCpu The cross context virtual CPU structure.
1194 * @param pVmcb Pointer to the VM control block.
1195 * @param pHostCpu Pointer to the HM host-CPU info.
1196 */
1197static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PSVMVMCB pVmcb, PHMGLOBALCPUINFO pHostCpu)
1198{
1199 /*
1200 * Force a TLB flush for the first world switch if the current CPU differs from the one
1201 * we ran on last. This can happen both for start & resume due to long jumps back to
1202 * ring-3.
1203 *
1204 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1205 * correlation between it and the physical CPU.
1206 *
1207 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1208 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1209 */
1210 bool fNewAsid = false;
1211 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1212 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1213 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
1214#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1215 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1216#endif
1217 )
1218 {
1219 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1220 pVCpu->hm.s.fForceTLBFlush = true;
1221 fNewAsid = true;
1222 }
1223
1224 /* Set TLB flush state as checked until we return from the world switch. */
1225 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1226
1227 /* Check for explicit TLB flushes. */
1228 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1229 {
1230 pVCpu->hm.s.fForceTLBFlush = true;
1231 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1232 }
1233
1234 /*
1235 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1236 * This Host CPU requirement takes precedence.
1237 */
1238 PVM pVM = pVCpu->CTX_SUFF(pVM);
1239 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1240 {
1241 pHostCpu->uCurrentAsid = 1;
1242 pVCpu->hm.s.uCurrentAsid = 1;
1243 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1244 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1245 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1246
1247 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1248 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1249 }
1250 else
1251 {
1252 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1253 if (pVCpu->hm.s.fForceTLBFlush)
1254 {
1255 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1256 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1257
1258 if (fNewAsid)
1259 {
1260 ++pHostCpu->uCurrentAsid;
1261
1262 bool fHitASIDLimit = false;
1263 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1264 {
1265 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1266 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1267 fHitASIDLimit = true;
1268 }
1269
1270 if ( fHitASIDLimit
1271 || pHostCpu->fFlushAsidBeforeUse)
1272 {
1273 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1274 pHostCpu->fFlushAsidBeforeUse = false;
1275 }
1276
1277 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1278 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1279 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1280 }
1281 else
1282 {
1283 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1284 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1285 else
1286 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1287 }
1288
1289 pVCpu->hm.s.fForceTLBFlush = false;
1290 }
1291 }
1292
1293 /* Update VMCB with the ASID. */
1294 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1295 {
1296 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1297 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1298 }
1299
1300 AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
1301 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
1302 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1303 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1304 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1305 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1306 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1307 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1308
1309#ifdef VBOX_WITH_STATISTICS
1310 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1311 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1312 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1313 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1314 {
1315 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1316 }
1317 else
1318 {
1319 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1320 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1321 }
1322#endif
1323}
1324
1325
1326/** @name 64-bit guest on 32-bit host OS helper functions.
1327 *
1328 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1329 * mode (code segment, paging). These wrappers/helpers perform the necessary
1330 * bits for the 32->64 switcher.
1331 *
1332 * @{ */
1333#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1334/**
1335 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1336 *
1337 * @returns VBox status code.
1338 * @param HCPhysVmcbHost Physical address of host VMCB.
1339 * @param HCPhysVmcb Physical address of the VMCB.
1340 * @param pCtx Pointer to the guest-CPU context.
1341 * @param pVM The cross context VM structure.
1342 * @param pVCpu The cross context virtual CPU structure.
1343 */
1344DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1345{
1346 RT_NOREF2(pVM, pCtx);
1347 uint32_t aParam[8];
1348 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1349 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1350 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1351 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1352 aParam[4] = VM_RC_ADDR(pVM, pVM);
1353 aParam[5] = 0;
1354 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1355 aParam[7] = 0;
1356
1357 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1358}
1359
1360
1361/**
1362 * Executes the specified VMRUN handler in 64-bit mode.
1363 *
1364 * @returns VBox status code.
1365 * @param pVCpu The cross context virtual CPU structure.
1366 * @param enmOp The operation to perform.
1367 * @param cParams Number of parameters.
1368 * @param paParam Array of 32-bit parameters.
1369 */
1370VMMR0DECL(int) SVMR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
1371{
1372 PVM pVM = pVCpu->CTX_SUFF(pVM);
1373 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1374 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1375
1376 /* Disable interrupts. */
1377 RTHCUINTREG const fEFlags = ASMIntDisableFlags();
1378
1379#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1380 RTCPUID idHostCpu = RTMpCpuId();
1381 CPUMR0SetLApic(pVCpu, idHostCpu);
1382#endif
1383
1384 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1385 CPUMSetHyperEIP(pVCpu, enmOp);
1386 for (int i = (int)cParams - 1; i >= 0; i--)
1387 CPUMPushHyper(pVCpu, paParam[i]);
1388
1389 /* Call the switcher. */
1390 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1391 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
1392 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1393
1394 /* Restore interrupts. */
1395 ASMSetFlags(fEFlags);
1396 return rc;
1397}
1398
1399#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1400/** @} */
1401
1402
1403/**
1404 * Sets an exception intercept in the specified VMCB.
1405 *
1406 * @param pVmcb Pointer to the VM control block.
1407 * @param uXcpt The exception (X86_XCPT_*).
1408 */
1409DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1410{
1411 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1412 {
1413 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1414 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1415 }
1416}
1417
1418
1419/**
1420 * Clears an exception intercept in the specified VMCB.
1421 *
1422 * @param pVCpu The cross context virtual CPU structure.
1423 * @param pVmcb Pointer to the VM control block.
1424 * @param uXcpt The exception (X86_XCPT_*).
1425 *
1426 * @remarks This takes into account if we're executing a nested-guest and only
1427 * removes the exception intercept if both the guest -and- nested-guest
1428 * are not intercepting it.
1429 */
1430DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1431{
1432 Assert(uXcpt != X86_XCPT_DB);
1433 Assert(uXcpt != X86_XCPT_AC);
1434 Assert(uXcpt != X86_XCPT_GP);
1435#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1436 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1437 {
1438 bool fRemove = true;
1439# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1440 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1441 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1442 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1443 {
1444 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1445 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1446 }
1447# else
1448 RT_NOREF(pVCpu);
1449# endif
1450 if (fRemove)
1451 {
1452 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1453 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1454 }
1455 }
1456#else
1457 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1458#endif
1459}
1460
1461
1462/**
1463 * Sets a control intercept in the specified VMCB.
1464 *
1465 * @param pVmcb Pointer to the VM control block.
1466 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1467 */
1468DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1469{
1470 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1471 {
1472 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1473 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1474 }
1475}
1476
1477
1478/**
1479 * Clears a control intercept in the specified VMCB.
1480 *
1481 * @returns @c true if the intercept is still set, @c false otherwise.
1482 * @param pVCpu The cross context virtual CPU structure.
1483 * @param pVmcb Pointer to the VM control block.
1484 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1485 *
1486 * @remarks This takes into account if we're executing a nested-guest and only
1487 * removes the control intercept if both the guest -and- nested-guest
1488 * are not intercepting it.
1489 */
1490static bool hmR0SvmClearCtrlIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1491{
1492 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1493 {
1494 bool fRemove = true;
1495#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1496 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1497 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1498 {
1499 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1500 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1501 }
1502#else
1503 RT_NOREF(pVCpu);
1504#endif
1505 if (fRemove)
1506 {
1507 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1508 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1509 }
1510 }
1511
1512 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1513}
1514
1515
1516/**
1517 * Exports the guest (or nested-guest) CR0 into the VMCB.
1518 *
1519 * @param pVCpu The cross context virtual CPU structure.
1520 * @param pVmcb Pointer to the VM control block.
1521 *
1522 * @remarks This assumes we always pre-load the guest FPU.
1523 * @remarks No-long-jump zone!!!
1524 */
1525static void hmR0SvmExportGuestCR0(PVMCPU pVCpu, PSVMVMCB pVmcb)
1526{
1527 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1528
1529 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1530 uint64_t const uGuestCr0 = pCtx->cr0;
1531 uint64_t uShadowCr0 = uGuestCr0;
1532
1533 /* Always enable caching. */
1534 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1535
1536 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1537 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1538 {
1539 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1540 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1541 }
1542
1543 /*
1544 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1545 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1546 * see @bugref{7243#c103}.
1547 */
1548 if (!(uGuestCr0 & X86_CR0_NE))
1549 {
1550 uShadowCr0 |= X86_CR0_NE;
1551 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1552 }
1553 else
1554 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1555
1556 /*
1557 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1558 *
1559 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1560 * see @bugref{6944}.
1561 *
1562 * We also don't ever want to honor weird things like cache disable from the guest.
1563 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1564 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1565 */
1566 if (uShadowCr0 == uGuestCr0)
1567 {
1568 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1569 {
1570 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1571 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1572 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1573 }
1574 else
1575 {
1576 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1577 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1578 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1579 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1580 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1581 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1582 }
1583 }
1584 else
1585 {
1586 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1587 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1588 }
1589 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1590
1591 Assert(!RT_HI_U32(uShadowCr0));
1592 if (pVmcb->guest.u64CR0 != uShadowCr0)
1593 {
1594 pVmcb->guest.u64CR0 = uShadowCr0;
1595 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1596 }
1597}
1598
1599
1600/**
1601 * Exports the guest (or nested-guest) CR3 into the VMCB.
1602 *
1603 * @param pVCpu The cross context virtual CPU structure.
1604 * @param pVmcb Pointer to the VM control block.
1605 *
1606 * @remarks No-long-jump zone!!!
1607 */
1608static void hmR0SvmExportGuestCR3(PVMCPU pVCpu, PSVMVMCB pVmcb)
1609{
1610 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1611
1612 PVM pVM = pVCpu->CTX_SUFF(pVM);
1613 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1614 if (pVM->hm.s.fNestedPaging)
1615 {
1616 PGMMODE enmShwPagingMode;
1617#if HC_ARCH_BITS == 32
1618 if (CPUMIsGuestInLongModeEx(pCtx))
1619 enmShwPagingMode = PGMMODE_AMD64_NX;
1620 else
1621#endif
1622 enmShwPagingMode = PGMGetHostMode(pVM);
1623
1624 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1625 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1626 pVmcb->guest.u64CR3 = pCtx->cr3;
1627 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1628 }
1629 else
1630 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1631
1632 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1633}
1634
1635
1636/**
1637 * Exports the guest (or nested-guest) CR4 into the VMCB.
1638 *
1639 * @param pVCpu The cross context virtual CPU structure.
1640 * @param pVmcb Pointer to the VM control block.
1641 *
1642 * @remarks No-long-jump zone!!!
1643 */
1644static int hmR0SvmExportGuestCR4(PVMCPU pVCpu, PSVMVMCB pVmcb)
1645{
1646 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1647
1648 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1649 uint64_t uShadowCr4 = pCtx->cr4;
1650 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1651 {
1652 switch (pVCpu->hm.s.enmShadowMode)
1653 {
1654 case PGMMODE_REAL:
1655 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1656 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1657
1658 case PGMMODE_32_BIT: /* 32-bit paging. */
1659 uShadowCr4 &= ~X86_CR4_PAE;
1660 break;
1661
1662 case PGMMODE_PAE: /* PAE paging. */
1663 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1664 /** Must use PAE paging as we could use physical memory > 4 GB */
1665 uShadowCr4 |= X86_CR4_PAE;
1666 break;
1667
1668 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1669 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1670#ifdef VBOX_ENABLE_64_BITS_GUESTS
1671 break;
1672#else
1673 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1674#endif
1675
1676 default: /* shut up gcc */
1677 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1678 }
1679 }
1680
1681 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1682 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1683
1684 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1685 if (uShadowCr4 == pCtx->cr4)
1686 {
1687 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1688 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1689 else
1690 {
1691 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1692 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1693 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1694 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1695 }
1696 }
1697 else
1698 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1699
1700 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1701 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1702
1703 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1704 Assert(!RT_HI_U32(uShadowCr4));
1705 pVmcb->guest.u64CR4 = uShadowCr4;
1706 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1707
1708 return VINF_SUCCESS;
1709}
1710
1711
1712/**
1713 * Exports the guest (or nested-guest) control registers into the VMCB.
1714 *
1715 * @returns VBox status code.
1716 * @param pVCpu The cross context virtual CPU structure.
1717 * @param pVmcb Pointer to the VM control block.
1718 *
1719 * @remarks No-long-jump zone!!!
1720 */
1721static int hmR0SvmExportGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1722{
1723 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1724
1725 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1726 {
1727 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1728 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1729
1730 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1731 {
1732 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1733 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1734 }
1735
1736 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1737 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1738
1739 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1740 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1741 {
1742 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1743 if (RT_FAILURE(rc))
1744 return rc;
1745 }
1746
1747 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1748 }
1749 return VINF_SUCCESS;
1750}
1751
1752
1753/**
1754 * Exports the guest (or nested-guest) segment registers into the VMCB.
1755 *
1756 * @returns VBox status code.
1757 * @param pVCpu The cross context virtual CPU structure.
1758 * @param pVmcb Pointer to the VM control block.
1759 *
1760 * @remarks No-long-jump zone!!!
1761 */
1762static void hmR0SvmExportGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1763{
1764 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1765 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1766
1767 /* Guest segment registers. */
1768 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1769 {
1770 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1771 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1772
1773 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1774 {
1775 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1776 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1777 }
1778
1779 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1780 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1781
1782 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1783 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1784
1785 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1786 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1787
1788 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1789 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1790
1791 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1792 }
1793
1794 /* Guest TR. */
1795 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1796 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1797
1798 /* Guest LDTR. */
1799 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1800 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1801
1802 /* Guest GDTR. */
1803 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1804 {
1805 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1806 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1807 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1808 }
1809
1810 /* Guest IDTR. */
1811 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1812 {
1813 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1814 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1815 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1816 }
1817
1818 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1819 | HM_CHANGED_GUEST_TABLE_MASK);
1820}
1821
1822
1823/**
1824 * Exports the guest (or nested-guest) MSRs into the VMCB.
1825 *
1826 * @param pVCpu The cross context virtual CPU structure.
1827 * @param pVmcb Pointer to the VM control block.
1828 *
1829 * @remarks No-long-jump zone!!!
1830 */
1831static void hmR0SvmExportGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1832{
1833 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1834 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1835
1836 /* Guest Sysenter MSRs. */
1837 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1838 {
1839 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1840 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1841
1842 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1843 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1844
1845 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1846 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1847 }
1848
1849 /*
1850 * Guest EFER MSR.
1851 * AMD-V requires guest EFER.SVME to be set. Weird.
1852 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1853 */
1854 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1855 {
1856 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1857 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1858 }
1859
1860 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1861 if ( !CPUMIsGuestInLongModeEx(pCtx)
1862 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1863 {
1864 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1865 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1866 }
1867
1868 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1869 {
1870 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1871 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1872 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1873 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1874 }
1875
1876 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1877 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1878
1879 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1880 | HM_CHANGED_GUEST_EFER_MSR
1881 | HM_CHANGED_GUEST_SYSCALL_MSRS
1882 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1883
1884 /*
1885 * Setup the PAT MSR (applicable for Nested Paging only).
1886 *
1887 * While guests can modify and see the modified values through the shadow values,
1888 * we shall not honor any guest modifications of this MSR to ensure caching is always
1889 * enabled similar to how we clear CR0.CD and NW bits.
1890 *
1891 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1892 */
1893 pVmcb->guest.u64PAT = MSR_IA32_CR_PAT_INIT_VAL;
1894
1895 /* Enable the last branch record bit if LBR virtualization is enabled. */
1896 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1897 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1898}
1899
1900
1901/**
1902 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1903 * the necessary intercepts accordingly.
1904 *
1905 * @param pVCpu The cross context virtual CPU structure.
1906 * @param pVmcb Pointer to the VM control block.
1907 *
1908 * @remarks No-long-jump zone!!!
1909 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1910 */
1911static void hmR0SvmExportSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb)
1912{
1913 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1914
1915 /*
1916 * Anyone single stepping on the host side? If so, we'll have to use the
1917 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1918 * the VMM level like the VT-x implementations does.
1919 */
1920 bool fInterceptMovDRx = false;
1921 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1922 if (fStepping)
1923 {
1924 pVCpu->hm.s.fClearTrapFlag = true;
1925 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1926 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1927 }
1928
1929 if ( fStepping
1930 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1931 {
1932 /*
1933 * Use the combined guest and host DRx values found in the hypervisor
1934 * register set because the debugger has breakpoints active or someone
1935 * is single stepping on the host side.
1936 *
1937 * Note! DBGF expects a clean DR6 state before executing guest code.
1938 */
1939#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1940 if ( CPUMIsGuestInLongModeEx(pCtx)
1941 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1942 {
1943 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1944 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1945 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1946 }
1947 else
1948#endif
1949 if (!CPUMIsHyperDebugStateActive(pVCpu))
1950 {
1951 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1952 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1953 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1954 }
1955
1956 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1957 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1958 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1959 {
1960 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1961 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1962 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1963 }
1964
1965 /** @todo If we cared, we could optimize to allow the guest to read registers
1966 * with the same values. */
1967 fInterceptMovDRx = true;
1968 pVCpu->hm.s.fUsingHyperDR7 = true;
1969 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1970 }
1971 else
1972 {
1973 /*
1974 * Update DR6, DR7 with the guest values if necessary.
1975 */
1976 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1977 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1978 {
1979 pVmcb->guest.u64DR7 = pCtx->dr[7];
1980 pVmcb->guest.u64DR6 = pCtx->dr[6];
1981 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1982 }
1983 pVCpu->hm.s.fUsingHyperDR7 = false;
1984
1985 /*
1986 * If the guest has enabled debug registers, we need to load them prior to
1987 * executing guest code so they'll trigger at the right time.
1988 */
1989 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1990 {
1991#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1992 if ( CPUMIsGuestInLongModeEx(pCtx)
1993 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1994 {
1995 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1996 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1997 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1998 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1999 }
2000 else
2001#endif
2002 if (!CPUMIsGuestDebugStateActive(pVCpu))
2003 {
2004 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
2005 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2006 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2007 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2008 }
2009 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2010 }
2011 /*
2012 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2013 * intercept #DB as DR6 is updated in the VMCB.
2014 *
2015 * Note! If we cared and dared, we could skip intercepting \#DB here.
2016 * However, \#DB shouldn't be performance critical, so we'll play safe
2017 * and keep the code similar to the VT-x code and always intercept it.
2018 */
2019#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2020 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
2021 && !CPUMIsGuestDebugStateActive(pVCpu))
2022#else
2023 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2024#endif
2025 {
2026 fInterceptMovDRx = true;
2027 }
2028 }
2029
2030 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2031 if (fInterceptMovDRx)
2032 {
2033 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2034 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2035 {
2036 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2037 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2038 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2039 }
2040 }
2041 else
2042 {
2043 if ( pVmcb->ctrl.u16InterceptRdDRx
2044 || pVmcb->ctrl.u16InterceptWrDRx)
2045 {
2046 pVmcb->ctrl.u16InterceptRdDRx = 0;
2047 pVmcb->ctrl.u16InterceptWrDRx = 0;
2048 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2049 }
2050 }
2051 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2052}
2053
2054#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2055/**
2056 * Exports the nested-guest hardware virtualization state into the nested-guest
2057 * VMCB.
2058 *
2059 * @param pVCpu The cross context virtual CPU structure.
2060 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2061 *
2062 * @remarks No-long-jump zone!!!
2063 */
2064static void hmR0SvmExportGuestHwvirtStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
2065{
2066 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2067
2068 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2069 {
2070 /*
2071 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2072 * since SVM doesn't have a preemption timer.
2073 *
2074 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2075 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2076 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2077 */
2078 PVM pVM = pVCpu->CTX_SUFF(pVM);
2079 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2080 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2081 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2082 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
2083 {
2084 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2085 pVmcbNstGstCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2086 pVmcbNstGstCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2087 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2088 }
2089 else
2090 {
2091 pVmcbNstGstCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2092 pVmcbNstGstCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2093 }
2094
2095 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2096 }
2097}
2098#endif
2099
2100/**
2101 * Exports the guest APIC TPR state into the VMCB.
2102 *
2103 * @returns VBox status code.
2104 * @param pVCpu The cross context virtual CPU structure.
2105 * @param pVmcb Pointer to the VM control block.
2106 */
2107static int hmR0SvmExportGuestApicTpr(PVMCPU pVCpu, PSVMVMCB pVmcb)
2108{
2109 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2110 {
2111 PVM pVM = pVCpu->CTX_SUFF(pVM);
2112 if ( PDMHasApic(pVM)
2113 && APICIsEnabled(pVCpu))
2114 {
2115 bool fPendingIntr;
2116 uint8_t u8Tpr;
2117 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2118 AssertRCReturn(rc, rc);
2119
2120 /* Assume that we need to trap all TPR accesses and thus need not check on
2121 every #VMEXIT if we should update the TPR. */
2122 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2123 pVCpu->hm.s.svm.fSyncVTpr = false;
2124
2125 if (!pVM->hm.s.fTPRPatchingActive)
2126 {
2127 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2128 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2129
2130 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2131 can deliver the interrupt to the guest. */
2132 if (fPendingIntr)
2133 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2134 else
2135 {
2136 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2137 pVCpu->hm.s.svm.fSyncVTpr = true;
2138 }
2139
2140 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2141 }
2142 else
2143 {
2144 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2145 pVmcb->guest.u64LSTAR = u8Tpr;
2146 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
2147
2148 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2149 if (fPendingIntr)
2150 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2151 else
2152 {
2153 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2154 pVCpu->hm.s.svm.fSyncVTpr = true;
2155 }
2156 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2157 }
2158 }
2159 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2160 }
2161 return VINF_SUCCESS;
2162}
2163
2164
2165/**
2166 * Sets up the exception interrupts required for guest (or nested-guest)
2167 * execution in the VMCB.
2168 *
2169 * @param pVCpu The cross context virtual CPU structure.
2170 * @param pVmcb Pointer to the VM control block.
2171 *
2172 * @remarks No-long-jump zone!!!
2173 */
2174static void hmR0SvmExportGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
2175{
2176 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2177
2178 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2179 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)
2180 {
2181 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2182 if (pVCpu->hm.s.fGIMTrapXcptUD)
2183 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2184 else
2185 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2186
2187 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2188 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2189 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2190 else
2191 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2192
2193 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2194 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS;
2195 }
2196}
2197
2198
2199#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2200/**
2201 * Merges guest and nested-guest intercepts for executing the nested-guest using
2202 * hardware-assisted SVM.
2203 *
2204 * This merges the guest and nested-guest intercepts in a way that if the outer
2205 * guest intercept is set we need to intercept it in the nested-guest as
2206 * well.
2207 *
2208 * @param pVCpu The cross context virtual CPU structure.
2209 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2210 */
2211static void hmR0SvmMergeVmcbCtrlsNested(PVMCPU pVCpu)
2212{
2213 PVM pVM = pVCpu->CTX_SUFF(pVM);
2214 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2215 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2216 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2217
2218 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2219 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2220 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2221
2222 /* Always intercept CR4 writes for tracking PGM mode changes. */
2223 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2224
2225 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2226 if (!pVM->hm.s.fNestedPaging)
2227 {
2228 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2229 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2230 }
2231
2232 /** @todo Figure out debugging with nested-guests, till then just intercept
2233 * all DR[0-15] accesses. */
2234 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2235 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2236
2237 /*
2238 * Merge the guest's exception intercepts into the nested-guest VMCB.
2239 *
2240 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2241 * while executing the nested-guest.
2242 *
2243 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2244 * be tweaked later depending on how we wish to implement breakpoints.
2245 *
2246 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2247 * loaded into their guests, not ours.
2248 *
2249 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2250 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2251 */
2252#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2253 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2254 & ~( RT_BIT(X86_XCPT_UD)
2255 | RT_BIT(X86_XCPT_BP)
2256 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2257#else
2258 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2259#endif
2260
2261 /*
2262 * Adjust intercepts while executing the nested-guest that differ from the
2263 * outer guest intercepts.
2264 *
2265 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2266 * that belong to the nested-guest to the outer guest.
2267 *
2268 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2269 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2270 */
2271 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2272 | SVM_CTRL_INTERCEPT_VMMCALL))
2273 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2274
2275 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2276 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2277
2278 /* Finally, update the VMCB clean bits. */
2279 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2280}
2281#endif
2282
2283
2284/**
2285 * Selects the appropriate function to run guest code.
2286 *
2287 * @returns VBox status code.
2288 * @param pVCpu The cross context virtual CPU structure.
2289 *
2290 * @remarks No-long-jump zone!!!
2291 */
2292static int hmR0SvmSelectVMRunHandler(PVMCPU pVCpu)
2293{
2294 if (CPUMIsGuestInLongMode(pVCpu))
2295 {
2296#ifndef VBOX_ENABLE_64_BITS_GUESTS
2297 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2298#endif
2299 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
2300#if HC_ARCH_BITS == 32
2301 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
2302 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
2303#else
2304 /* 64-bit host or hybrid host. */
2305 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
2306#endif
2307 }
2308 else
2309 {
2310 /* Guest is not in long mode, use the 32-bit handler. */
2311 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2312 }
2313 return VINF_SUCCESS;
2314}
2315
2316
2317/**
2318 * Enters the AMD-V session.
2319 *
2320 * @returns VBox status code.
2321 * @param pVCpu The cross context virtual CPU structure.
2322 * @param pHostCpu Pointer to the CPU info struct.
2323 */
2324VMMR0DECL(int) SVMR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
2325{
2326 AssertPtr(pVCpu);
2327 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2328 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2329 RT_NOREF(pHostCpu);
2330
2331 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2332 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2333 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2334
2335 pVCpu->hm.s.fLeaveDone = false;
2336 return VINF_SUCCESS;
2337}
2338
2339
2340/**
2341 * Thread-context callback for AMD-V.
2342 *
2343 * @param enmEvent The thread-context event.
2344 * @param pVCpu The cross context virtual CPU structure.
2345 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2346 * @thread EMT(pVCpu)
2347 */
2348VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
2349{
2350 NOREF(fGlobalInit);
2351
2352 switch (enmEvent)
2353 {
2354 case RTTHREADCTXEVENT_OUT:
2355 {
2356 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2357 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2358 VMCPU_ASSERT_EMT(pVCpu);
2359
2360 /* No longjmps (log-flush, locks) in this fragile context. */
2361 VMMRZCallRing3Disable(pVCpu);
2362
2363 if (!pVCpu->hm.s.fLeaveDone)
2364 {
2365 hmR0SvmLeave(pVCpu, false /* fImportState */);
2366 pVCpu->hm.s.fLeaveDone = true;
2367 }
2368
2369 /* Leave HM context, takes care of local init (term). */
2370 int rc = HMR0LeaveCpu(pVCpu);
2371 AssertRC(rc); NOREF(rc);
2372
2373 /* Restore longjmp state. */
2374 VMMRZCallRing3Enable(pVCpu);
2375 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2376 break;
2377 }
2378
2379 case RTTHREADCTXEVENT_IN:
2380 {
2381 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2382 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2383 VMCPU_ASSERT_EMT(pVCpu);
2384
2385 /* No longjmps (log-flush, locks) in this fragile context. */
2386 VMMRZCallRing3Disable(pVCpu);
2387
2388 /*
2389 * Initialize the bare minimum state required for HM. This takes care of
2390 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2391 */
2392 int rc = hmR0EnterCpu(pVCpu);
2393 AssertRC(rc); NOREF(rc);
2394 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2395 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2396
2397 pVCpu->hm.s.fLeaveDone = false;
2398
2399 /* Restore longjmp state. */
2400 VMMRZCallRing3Enable(pVCpu);
2401 break;
2402 }
2403
2404 default:
2405 break;
2406 }
2407}
2408
2409
2410/**
2411 * Saves the host state.
2412 *
2413 * @returns VBox status code.
2414 * @param pVCpu The cross context virtual CPU structure.
2415 *
2416 * @remarks No-long-jump zone!!!
2417 */
2418VMMR0DECL(int) SVMR0ExportHostState(PVMCPU pVCpu)
2419{
2420 NOREF(pVCpu);
2421
2422 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2423 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2424 return VINF_SUCCESS;
2425}
2426
2427
2428/**
2429 * Exports the guest state from the guest-CPU context into the VMCB.
2430 *
2431 * The CPU state will be loaded from these fields on every successful VM-entry.
2432 * Also sets up the appropriate VMRUN function to execute guest code based on
2433 * the guest CPU mode.
2434 *
2435 * @returns VBox status code.
2436 * @param pVCpu The cross context virtual CPU structure.
2437 *
2438 * @remarks No-long-jump zone!!!
2439 */
2440static int hmR0SvmExportGuestState(PVMCPU pVCpu)
2441{
2442 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2443
2444 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2445 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2446
2447 Assert(pVmcb);
2448 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2449
2450 pVmcb->guest.u64RIP = pCtx->rip;
2451 pVmcb->guest.u64RSP = pCtx->rsp;
2452 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2453 pVmcb->guest.u64RAX = pCtx->rax;
2454#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2455 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2456 {
2457 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Hardware supports it. */
2458 Assert(HMSvmIsVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2459 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2460 }
2461#endif
2462
2463 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2464
2465 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2466 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2467
2468 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2469 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2470 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2471
2472 ASMSetFlags(fEFlags);
2473
2474 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2475 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2476 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2477
2478 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2479 AssertRCReturn(rc, rc);
2480
2481 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2482 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2483 | HM_CHANGED_GUEST_RFLAGS
2484 | HM_CHANGED_GUEST_GPRS_MASK
2485 | HM_CHANGED_GUEST_X87
2486 | HM_CHANGED_GUEST_SSE_AVX
2487 | HM_CHANGED_GUEST_OTHER_XSAVE
2488 | HM_CHANGED_GUEST_XCRx
2489 | HM_CHANGED_GUEST_TSC_AUX
2490 | HM_CHANGED_GUEST_OTHER_MSRS
2491 | HM_CHANGED_GUEST_HWVIRT
2492 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)));
2493
2494#ifdef VBOX_STRICT
2495 /*
2496 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2497 * except for the host-context and/or shared host-guest context bits.
2498 */
2499 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2500 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2501 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2502 ("fCtxChanged=%#RX64\n", fCtxChanged));
2503
2504 /*
2505 * If we need to log state that isn't always imported, we'll need to import them here.
2506 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2507 */
2508 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2509#endif
2510
2511 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2512 return VINF_SUCCESS;
2513}
2514
2515
2516#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2517/**
2518 * Merges the guest and nested-guest MSR permission bitmap.
2519 *
2520 * If the guest is intercepting an MSR we need to intercept it regardless of
2521 * whether the nested-guest is intercepting it or not.
2522 *
2523 * @param pHostCpu Pointer to the physical CPU HM info. struct.
2524 * @param pVCpu The cross context virtual CPU structure.
2525 *
2526 * @remarks No-long-jmp zone!!!
2527 */
2528DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMGLOBALCPUINFO pHostCpu, PVMCPU pVCpu)
2529{
2530 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
2531 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2532 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2533
2534 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2535 uint32_t const offRsvdQwords = 0x1800 >> 3;
2536 for (uint32_t i = 0; i < offRsvdQwords; i++)
2537 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2538}
2539
2540
2541/**
2542 * Caches the nested-guest VMCB fields before we modify them for execution using
2543 * hardware-assisted SVM.
2544 *
2545 * @returns true if the VMCB was previously already cached, false otherwise.
2546 * @param pVCpu The cross context virtual CPU structure.
2547 *
2548 * @sa HMSvmNstGstVmExitNotify.
2549 */
2550static bool hmR0SvmCacheVmcbNested(PVMCPU pVCpu)
2551{
2552 /*
2553 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2554 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2555 *
2556 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2557 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2558 */
2559 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2560 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2561 if (!fWasCached)
2562 {
2563 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2564 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2565 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2566 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2567 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2568 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2569 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2570 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2571 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2572 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2573 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2574 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2575 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2576 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2577 pVmcbNstGstCache->fCacheValid = true;
2578 Log4Func(("Cached VMCB fields\n"));
2579 }
2580
2581 return fWasCached;
2582}
2583
2584
2585/**
2586 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2587 *
2588 * This is done the first time we enter nested-guest execution using SVM R0
2589 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2590 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2591 *
2592 * @param pVCpu The cross context virtual CPU structure.
2593 */
2594static void hmR0SvmSetupVmcbNested(PVMCPU pVCpu)
2595{
2596 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2597 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2598
2599 /*
2600 * First cache the nested-guest VMCB fields we may potentially modify.
2601 */
2602 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2603 if (!fVmcbCached)
2604 {
2605 /*
2606 * The IOPM of the nested-guest can be ignored because the the guest always
2607 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2608 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2609 */
2610 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2611
2612 /*
2613 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2614 * nested-paging suddenly while executing a VM (see assertion at the end of
2615 * Trap0eHandler() in PGMAllBth.h).
2616 */
2617 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2618
2619 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2620 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2621
2622 /*
2623 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2624 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2625 */
2626 pVCpu->hm.s.svm.fSyncVTpr = false;
2627
2628#ifdef DEBUG_ramshankar
2629 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2630 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2631#endif
2632
2633 /*
2634 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2635 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2636 */
2637 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2638 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2639 | SVM_CTRL_INTERCEPT_VMLOAD;
2640
2641 /*
2642 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2643 * CLGI/STGI instructions executed by the nested-guest.
2644 */
2645 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2646 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2647 | SVM_CTRL_INTERCEPT_STGI;
2648
2649 /* Merge the guest and nested-guest intercepts. */
2650 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2651
2652 /* Update the VMCB clean bits. */
2653 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2654 }
2655 else
2656 {
2657 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
2658 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2659 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2660 }
2661}
2662
2663
2664/**
2665 * Exports the nested-guest state into the VMCB.
2666 *
2667 * We need to export the entire state as we could be continuing nested-guest
2668 * execution at any point (not just immediately after VMRUN) and thus the VMCB
2669 * can be out-of-sync with the nested-guest state if it was executed in IEM.
2670 *
2671 * @returns VBox status code.
2672 * @param pVCpu The cross context virtual CPU structure.
2673 * @param pCtx Pointer to the guest-CPU context.
2674 *
2675 * @remarks No-long-jump zone!!!
2676 */
2677static int hmR0SvmExportGuestStateNested(PVMCPU pVCpu)
2678{
2679 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2680
2681 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2682 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2683 Assert(pVmcbNstGst);
2684
2685 hmR0SvmSetupVmcbNested(pVCpu);
2686
2687 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2688 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2689 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2690 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2691
2692 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2693
2694 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcbNstGst);
2695 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2696
2697 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcbNstGst);
2698 hmR0SvmExportGuestMsrs(pVCpu, pVmcbNstGst);
2699 hmR0SvmExportGuestHwvirtStateNested(pVCpu, pVmcbNstGst);
2700
2701 ASMSetFlags(fEFlags);
2702
2703 /* Nested VGIF not supported yet. */
2704 Assert(!pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable);
2705
2706 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2707 AssertRCReturn(rc, rc);
2708
2709 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2710 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2711 | HM_CHANGED_GUEST_RFLAGS
2712 | HM_CHANGED_GUEST_GPRS_MASK
2713 | HM_CHANGED_GUEST_APIC_TPR
2714 | HM_CHANGED_GUEST_X87
2715 | HM_CHANGED_GUEST_SSE_AVX
2716 | HM_CHANGED_GUEST_OTHER_XSAVE
2717 | HM_CHANGED_GUEST_XCRx
2718 | HM_CHANGED_GUEST_TSC_AUX
2719 | HM_CHANGED_GUEST_OTHER_MSRS
2720 | HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS
2721 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2722
2723#ifdef VBOX_STRICT
2724 /*
2725 * All of the guest-CPU state and SVM keeper bits should be exported here by now, except
2726 * for the host-context and/or shared host-guest context bits.
2727 */
2728 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2729 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2730 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2731 ("fCtxChanged=%#RX64\n", fCtxChanged));
2732
2733 /*
2734 * If we need to log state that isn't always imported, we'll need to import them here.
2735 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2736 */
2737 hmR0SvmLogState(pVCpu, pVmcbNstGst, "hmR0SvmExportGuestStateNested", 0 /* fFlags */, 0 /* uVerbose */);
2738#endif
2739
2740 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2741 return rc;
2742}
2743#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2744
2745
2746/**
2747 * Exports the state shared between the host and guest (or nested-guest) into
2748 * the VMCB.
2749 *
2750 * @param pVCpu The cross context virtual CPU structure.
2751 * @param pVmcb Pointer to the VM control block.
2752 *
2753 * @remarks No-long-jump zone!!!
2754 */
2755static void hmR0SvmExportSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb)
2756{
2757 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2758 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2759
2760 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2761 {
2762 /** @todo Figure out stepping with nested-guest. */
2763 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2764 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2765 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2766 else
2767 {
2768 pVmcb->guest.u64DR6 = pCtx->dr[6];
2769 pVmcb->guest.u64DR7 = pCtx->dr[7];
2770 }
2771 }
2772
2773 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2774 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2775 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2776}
2777
2778
2779/**
2780 * Worker for SVMR0ImportStateOnDemand.
2781 *
2782 * @param pVCpu The cross context virtual CPU structure.
2783 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2784 */
2785static void hmR0SvmImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
2786{
2787 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2788
2789 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2790 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2791 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2792 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2793
2794 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
2795
2796 /*
2797 * We disable interrupts to make the updating of the state and in particular
2798 * the fExtrn modification atomic wrt to preemption hooks.
2799 */
2800 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2801
2802 fWhat &= pCtx->fExtrn;
2803 if (fWhat)
2804 {
2805#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2806 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2807 {
2808 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2809 {
2810 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2811 Assert(HMSvmIsVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2812 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2813 }
2814 }
2815
2816 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2817 {
2818 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2819 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2820 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2821 }
2822#endif
2823
2824 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2825 {
2826 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2827 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2828 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2829 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2830 }
2831
2832 if (fWhat & CPUMCTX_EXTRN_RIP)
2833 pCtx->rip = pVmcbGuest->u64RIP;
2834
2835 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2836 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2837
2838 if (fWhat & CPUMCTX_EXTRN_RSP)
2839 pCtx->rsp = pVmcbGuest->u64RSP;
2840
2841 if (fWhat & CPUMCTX_EXTRN_RAX)
2842 pCtx->rax = pVmcbGuest->u64RAX;
2843
2844 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2845 {
2846 if (fWhat & CPUMCTX_EXTRN_CS)
2847 {
2848 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2849 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2850 /** @todo SELM might need to be fixed as it too should not care about the
2851 * granularity bit. See @bugref{6785}. */
2852 if ( !pCtx->cs.Attr.n.u1Granularity
2853 && pCtx->cs.Attr.n.u1Present
2854 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2855 {
2856 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2857 pCtx->cs.Attr.n.u1Granularity = 1;
2858 }
2859 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2860 }
2861 if (fWhat & CPUMCTX_EXTRN_SS)
2862 {
2863 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2864 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2865 /*
2866 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2867 * VMCB and uses that and thus it's possible that when the CPL changes during
2868 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2869 * AMD Fusion CPUs with 64-bit guests.
2870 *
2871 * See AMD spec. 15.5.1 "Basic operation".
2872 */
2873 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2874 uint8_t const uCpl = pVmcbGuest->u8CPL;
2875 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2876 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2877 }
2878 if (fWhat & CPUMCTX_EXTRN_DS)
2879 {
2880 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2881 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2882 }
2883 if (fWhat & CPUMCTX_EXTRN_ES)
2884 {
2885 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2886 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2887 }
2888 if (fWhat & CPUMCTX_EXTRN_FS)
2889 {
2890 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2891 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2892 }
2893 if (fWhat & CPUMCTX_EXTRN_GS)
2894 {
2895 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2896 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2897 }
2898 }
2899
2900 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2901 {
2902 if (fWhat & CPUMCTX_EXTRN_TR)
2903 {
2904 /*
2905 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2906 * are used between Intel and AMD, see @bugref{6208#c39}.
2907 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2908 */
2909 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2910 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2911 {
2912 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2913 || CPUMIsGuestInLongModeEx(pCtx))
2914 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2915 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2916 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2917 }
2918 }
2919
2920 if (fWhat & CPUMCTX_EXTRN_LDTR)
2921 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2922
2923 if (fWhat & CPUMCTX_EXTRN_GDTR)
2924 {
2925 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2926 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2927 }
2928
2929 if (fWhat & CPUMCTX_EXTRN_IDTR)
2930 {
2931 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2932 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2933 }
2934 }
2935
2936 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2937 {
2938 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2939 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2940 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2941 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2942 }
2943
2944 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2945 {
2946 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2947 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2948 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2949 }
2950
2951 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2952 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2953
2954 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2955 {
2956 if (fWhat & CPUMCTX_EXTRN_DR6)
2957 {
2958 if (!pVCpu->hm.s.fUsingHyperDR7)
2959 pCtx->dr[6] = pVmcbGuest->u64DR6;
2960 else
2961 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2962 }
2963
2964 if (fWhat & CPUMCTX_EXTRN_DR7)
2965 {
2966 if (!pVCpu->hm.s.fUsingHyperDR7)
2967 pCtx->dr[7] = pVmcbGuest->u64DR7;
2968 else
2969 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2970 }
2971 }
2972
2973 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2974 {
2975 if (fWhat & CPUMCTX_EXTRN_CR0)
2976 {
2977 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2978 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2979 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2980 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2981 CPUMSetGuestCR0(pVCpu, uCr0);
2982 VMMRZCallRing3Enable(pVCpu);
2983 }
2984
2985 if (fWhat & CPUMCTX_EXTRN_CR2)
2986 pCtx->cr2 = pVmcbGuest->u64CR2;
2987
2988 if (fWhat & CPUMCTX_EXTRN_CR3)
2989 {
2990 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2991 && pCtx->cr3 != pVmcbGuest->u64CR3)
2992 {
2993 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2994 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2995 }
2996 }
2997
2998 /* Changes to CR4 are always intercepted. */
2999 }
3000
3001 /* Update fExtrn. */
3002 pCtx->fExtrn &= ~fWhat;
3003
3004 /* If everything has been imported, clear the HM keeper bit. */
3005 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
3006 {
3007 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
3008 Assert(!pCtx->fExtrn);
3009 }
3010 }
3011 else
3012 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3013
3014 ASMSetFlags(fEFlags);
3015
3016 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
3017
3018 /*
3019 * Honor any pending CR3 updates.
3020 *
3021 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
3022 * -> hmR0SvmCallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
3023 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
3024 * handling -> hmR0SvmImportGuestState() and here we are.
3025 *
3026 * The reason for such complicated handling is because VM-exits that call into PGM expect
3027 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
3028 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
3029 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
3030 *
3031 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
3032 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
3033 */
3034 if ( VMMRZCallRing3IsEnabled(pVCpu)
3035 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3036 {
3037 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
3038 PGMUpdateCR3(pVCpu, pCtx->cr3);
3039 }
3040}
3041
3042
3043/**
3044 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
3045 * context.
3046 *
3047 * Currently there is no residual state left in the CPU that is not updated in the
3048 * VMCB.
3049 *
3050 * @returns VBox status code.
3051 * @param pVCpu The cross context virtual CPU structure.
3052 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3053 */
3054VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
3055{
3056 hmR0SvmImportGuestState(pVCpu, fWhat);
3057 return VINF_SUCCESS;
3058}
3059
3060
3061/**
3062 * Does the necessary state syncing before returning to ring-3 for any reason
3063 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
3064 *
3065 * @param pVCpu The cross context virtual CPU structure.
3066 * @param fImportState Whether to import the guest state from the VMCB back
3067 * to the guest-CPU context.
3068 *
3069 * @remarks No-long-jmp zone!!!
3070 */
3071static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState)
3072{
3073 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3074 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3075 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3076
3077 /*
3078 * !!! IMPORTANT !!!
3079 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3080 */
3081
3082 /* Save the guest state if necessary. */
3083 if (fImportState)
3084 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3085
3086 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3087 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3088 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
3089
3090 /*
3091 * Restore host debug registers if necessary and resync on next R0 reentry.
3092 */
3093#ifdef VBOX_STRICT
3094 if (CPUMIsHyperDebugStateActive(pVCpu))
3095 {
3096 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
3097 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
3098 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
3099 }
3100#endif
3101 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3102 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3103 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3104
3105 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
3106 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
3107 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
3108 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
3109 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
3110 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3111
3112 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3113}
3114
3115
3116/**
3117 * Leaves the AMD-V session.
3118 *
3119 * Only used while returning to ring-3 either due to longjump or exits to
3120 * ring-3.
3121 *
3122 * @returns VBox status code.
3123 * @param pVCpu The cross context virtual CPU structure.
3124 */
3125static int hmR0SvmLeaveSession(PVMCPU pVCpu)
3126{
3127 HM_DISABLE_PREEMPT(pVCpu);
3128 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3129 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3130
3131 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3132 and done this from the SVMR0ThreadCtxCallback(). */
3133 if (!pVCpu->hm.s.fLeaveDone)
3134 {
3135 hmR0SvmLeave(pVCpu, true /* fImportState */);
3136 pVCpu->hm.s.fLeaveDone = true;
3137 }
3138
3139 /*
3140 * !!! IMPORTANT !!!
3141 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3142 */
3143
3144 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3145 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3146 VMMR0ThreadCtxHookDisable(pVCpu);
3147
3148 /* Leave HM context. This takes care of local init (term). */
3149 int rc = HMR0LeaveCpu(pVCpu);
3150
3151 HM_RESTORE_PREEMPT();
3152 return rc;
3153}
3154
3155
3156/**
3157 * Does the necessary state syncing before doing a longjmp to ring-3.
3158 *
3159 * @returns VBox status code.
3160 * @param pVCpu The cross context virtual CPU structure.
3161 *
3162 * @remarks No-long-jmp zone!!!
3163 */
3164static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
3165{
3166 return hmR0SvmLeaveSession(pVCpu);
3167}
3168
3169
3170/**
3171 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3172 * any remaining host state) before we longjump to ring-3 and possibly get
3173 * preempted.
3174 *
3175 * @param pVCpu The cross context virtual CPU structure.
3176 * @param enmOperation The operation causing the ring-3 longjump.
3177 * @param pvUser The user argument, NULL (currently unused).
3178 */
3179static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
3180{
3181 RT_NOREF_PV(pvUser);
3182
3183 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3184 {
3185 /*
3186 * !!! IMPORTANT !!!
3187 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3188 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3189 */
3190 VMMRZCallRing3RemoveNotification(pVCpu);
3191 VMMRZCallRing3Disable(pVCpu);
3192 HM_DISABLE_PREEMPT(pVCpu);
3193
3194 /* Import the entire guest state. */
3195 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3196
3197 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3198 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3199
3200 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3201 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3202
3203 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3204 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3205 VMMR0ThreadCtxHookDisable(pVCpu);
3206
3207 /* Leave HM context. This takes care of local init (term). */
3208 HMR0LeaveCpu(pVCpu);
3209
3210 HM_RESTORE_PREEMPT();
3211 return VINF_SUCCESS;
3212 }
3213
3214 Assert(pVCpu);
3215 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3216 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3217
3218 VMMRZCallRing3Disable(pVCpu);
3219 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3220
3221 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3222 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3223 AssertRCReturn(rc, rc);
3224
3225 VMMRZCallRing3Enable(pVCpu);
3226 return VINF_SUCCESS;
3227}
3228
3229
3230/**
3231 * Take necessary actions before going back to ring-3.
3232 *
3233 * An action requires us to go back to ring-3. This function does the necessary
3234 * steps before we can safely return to ring-3. This is not the same as longjmps
3235 * to ring-3, this is voluntary.
3236 *
3237 * @returns VBox status code.
3238 * @param pVCpu The cross context virtual CPU structure.
3239 * @param rcExit The reason for exiting to ring-3. Can be
3240 * VINF_VMM_UNKNOWN_RING3_CALL.
3241 */
3242static int hmR0SvmExitToRing3(PVMCPU pVCpu, int rcExit)
3243{
3244 Assert(pVCpu);
3245 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3246
3247 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3248 VMMRZCallRing3Disable(pVCpu);
3249 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", rcExit, (uint64_t)pVCpu->fLocalForcedActions,
3250 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3251
3252 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3253 if (pVCpu->hm.s.Event.fPending)
3254 {
3255 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3256 Assert(!pVCpu->hm.s.Event.fPending);
3257 }
3258
3259 /* Sync. the necessary state for going back to ring-3. */
3260 hmR0SvmLeaveSession(pVCpu);
3261 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3262
3263 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3264 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3265 | CPUM_CHANGED_LDTR
3266 | CPUM_CHANGED_GDTR
3267 | CPUM_CHANGED_IDTR
3268 | CPUM_CHANGED_TR
3269 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3270 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
3271 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3272 {
3273 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3274 }
3275
3276 /* Update the exit-to-ring 3 reason. */
3277 pVCpu->hm.s.rcLastExitToR3 = rcExit;
3278
3279 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3280 if ( rcExit != VINF_EM_RAW_INTERRUPT
3281 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3282 {
3283 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3284 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3285 }
3286
3287 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3288
3289 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
3290 VMMRZCallRing3RemoveNotification(pVCpu);
3291 VMMRZCallRing3Enable(pVCpu);
3292
3293 /*
3294 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3295 * and if we're injecting an event we should have a TRPM trap pending.
3296 */
3297 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3298 pVCpu->hm.s.u32HMError = rcExit,
3299 VERR_SVM_IPE_5);
3300 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3301 pVCpu->hm.s.u32HMError = rcExit,
3302 VERR_SVM_IPE_4);
3303
3304 return rcExit;
3305}
3306
3307
3308/**
3309 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3310 * intercepts.
3311 *
3312 * @param pVCpu The cross context virtual CPU structure.
3313 * @param pVmcb Pointer to the VM control block.
3314 *
3315 * @remarks No-long-jump zone!!!
3316 */
3317static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3318{
3319 /*
3320 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3321 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3322 * RDTSC/RDTSCP as well.
3323 */
3324 bool fParavirtTsc;
3325 uint64_t uTscOffset;
3326 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3327
3328 bool fIntercept;
3329 if (fCanUseRealTsc)
3330 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3331 else
3332 {
3333 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3334 fIntercept = true;
3335 }
3336
3337 if (!fIntercept)
3338 {
3339#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3340 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3341 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3342 uTscOffset = HMSvmNstGstApplyTscOffset(pVCpu, uTscOffset);
3343#endif
3344
3345 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3346 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3347 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3348
3349 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
3350 }
3351 else
3352 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
3353
3354 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3355 information before every VM-entry, hence we have nothing to do here at the moment. */
3356 if (fParavirtTsc)
3357 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3358}
3359
3360
3361/**
3362 * Sets an event as a pending event to be injected into the guest.
3363 *
3364 * @param pVCpu The cross context virtual CPU structure.
3365 * @param pEvent Pointer to the SVM event.
3366 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3367 * page-fault.
3368 *
3369 * @remarks Statistics counter assumes this is a guest event being reflected to
3370 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3371 */
3372DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3373{
3374 Assert(!pVCpu->hm.s.Event.fPending);
3375 Assert(pEvent->n.u1Valid);
3376
3377 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3378 pVCpu->hm.s.Event.fPending = true;
3379 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3380
3381 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3382 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3383}
3384
3385
3386/**
3387 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3388 *
3389 * @param pVCpu The cross context virtual CPU structure.
3390 */
3391DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3392{
3393 SVMEVENT Event;
3394 Event.u = 0;
3395 Event.n.u1Valid = 1;
3396 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3397 Event.n.u8Vector = X86_XCPT_UD;
3398 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3399}
3400
3401
3402/**
3403 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3404 *
3405 * @param pVCpu The cross context virtual CPU structure.
3406 */
3407DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3408{
3409 SVMEVENT Event;
3410 Event.u = 0;
3411 Event.n.u1Valid = 1;
3412 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3413 Event.n.u8Vector = X86_XCPT_DB;
3414 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3415}
3416
3417
3418/**
3419 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3420 *
3421 * @param pVCpu The cross context virtual CPU structure.
3422 * @param u32ErrCode The error-code for the page-fault.
3423 * @param uFaultAddress The page fault address (CR2).
3424 *
3425 * @remarks This updates the guest CR2 with @a uFaultAddress!
3426 */
3427DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3428{
3429 SVMEVENT Event;
3430 Event.u = 0;
3431 Event.n.u1Valid = 1;
3432 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3433 Event.n.u8Vector = X86_XCPT_PF;
3434 Event.n.u1ErrorCodeValid = 1;
3435 Event.n.u32ErrorCode = u32ErrCode;
3436
3437 /* Update CR2 of the guest. */
3438 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3439 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3440 {
3441 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3442 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3443 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3444 }
3445
3446 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3447}
3448
3449
3450/**
3451 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3452 *
3453 * @param pVCpu The cross context virtual CPU structure.
3454 */
3455DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3456{
3457 SVMEVENT Event;
3458 Event.u = 0;
3459 Event.n.u1Valid = 1;
3460 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3461 Event.n.u8Vector = X86_XCPT_MF;
3462 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3463}
3464
3465
3466/**
3467 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3468 *
3469 * @param pVCpu The cross context virtual CPU structure.
3470 */
3471DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3472{
3473 SVMEVENT Event;
3474 Event.u = 0;
3475 Event.n.u1Valid = 1;
3476 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3477 Event.n.u8Vector = X86_XCPT_DF;
3478 Event.n.u1ErrorCodeValid = 1;
3479 Event.n.u32ErrorCode = 0;
3480 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3481}
3482
3483
3484/**
3485 * Injects an event into the guest upon VMRUN by updating the relevant field
3486 * in the VMCB.
3487 *
3488 * @param pVCpu The cross context virtual CPU structure.
3489 * @param pVmcb Pointer to the guest VM control block.
3490 * @param pEvent Pointer to the event.
3491 *
3492 * @remarks No-long-jump zone!!!
3493 * @remarks Requires CR0!
3494 */
3495DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3496{
3497 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3498 pVmcb->ctrl.EventInject.u = pEvent->u;
3499 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3500 RT_NOREF(pVCpu);
3501
3502 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3503 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3504}
3505
3506
3507
3508/**
3509 * Converts any TRPM trap into a pending HM event. This is typically used when
3510 * entering from ring-3 (not longjmp returns).
3511 *
3512 * @param pVCpu The cross context virtual CPU structure.
3513 */
3514static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
3515{
3516 Assert(TRPMHasTrap(pVCpu));
3517 Assert(!pVCpu->hm.s.Event.fPending);
3518
3519 uint8_t uVector;
3520 TRPMEVENT enmTrpmEvent;
3521 RTGCUINT uErrCode;
3522 RTGCUINTPTR GCPtrFaultAddress;
3523 uint8_t cbInstr;
3524
3525 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
3526 AssertRC(rc);
3527
3528 SVMEVENT Event;
3529 Event.u = 0;
3530 Event.n.u1Valid = 1;
3531 Event.n.u8Vector = uVector;
3532
3533 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3534 if (enmTrpmEvent == TRPM_TRAP)
3535 {
3536 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3537 switch (uVector)
3538 {
3539 case X86_XCPT_NMI:
3540 {
3541 Event.n.u3Type = SVM_EVENT_NMI;
3542 break;
3543 }
3544
3545 case X86_XCPT_PF:
3546 case X86_XCPT_DF:
3547 case X86_XCPT_TS:
3548 case X86_XCPT_NP:
3549 case X86_XCPT_SS:
3550 case X86_XCPT_GP:
3551 case X86_XCPT_AC:
3552 {
3553 Event.n.u1ErrorCodeValid = 1;
3554 Event.n.u32ErrorCode = uErrCode;
3555 break;
3556 }
3557 }
3558 }
3559 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3560 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3561 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3562 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3563 else
3564 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3565
3566 rc = TRPMResetTrap(pVCpu);
3567 AssertRC(rc);
3568
3569 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3570 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3571
3572 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3573}
3574
3575
3576/**
3577 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3578 * AMD-V to execute any instruction.
3579 *
3580 * @param pVCpu The cross context virtual CPU structure.
3581 */
3582static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3583{
3584 Assert(pVCpu->hm.s.Event.fPending);
3585 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3586
3587 SVMEVENT Event;
3588 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3589
3590 uint8_t uVector = Event.n.u8Vector;
3591 uint8_t uVectorType = Event.n.u3Type;
3592 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
3593
3594 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
3595
3596 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3597 AssertRC(rc);
3598
3599 if (Event.n.u1ErrorCodeValid)
3600 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3601
3602 if ( uVectorType == SVM_EVENT_EXCEPTION
3603 && uVector == X86_XCPT_PF)
3604 {
3605 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3606 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3607 }
3608 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
3609 {
3610 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
3611 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
3612 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
3613 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3614 }
3615 pVCpu->hm.s.Event.fPending = false;
3616}
3617
3618
3619/**
3620 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3621 * now.
3622 *
3623 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3624 * @param pVCpu The cross context virtual CPU structure.
3625 *
3626 * @remarks No-long-jump zone!!!
3627 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3628 */
3629static bool hmR0SvmIsIntrShadowActive(PVMCPU pVCpu)
3630{
3631 /*
3632 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3633 * completes. Check if we should inhibit interrupts or clear any existing
3634 * interrupt inhibition.
3635 */
3636 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3637 {
3638 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3639 {
3640 /*
3641 * We can clear the inhibit force flag as even if we go back to the recompiler
3642 * without executing guest code in AMD-V, the flag's condition to be cleared is
3643 * met and thus the cleared state is correct.
3644 */
3645 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3646 return false;
3647 }
3648 return true;
3649 }
3650 return false;
3651}
3652
3653
3654/**
3655 * Sets the virtual interrupt intercept control in the VMCB.
3656 *
3657 * @param pVCpu The cross context virtual CPU structure.
3658 * @param pVmcb Pointer to the VM control block.
3659 */
3660static void hmR0SvmSetIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3661{
3662 /*
3663 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3664 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3665 * (updating ISR at the right time) and inject the interrupt.
3666 *
3667 * With AVIC is supported, we could make use of the asynchronously delivery without
3668 * #VMEXIT and we would be passing the AVIC page to SVM.
3669 *
3670 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3671 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3672 */
3673#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3674 /*
3675 * Currently we don't overlay interupt windows and if there's any V_IRQ pending in the
3676 * nested-guest VMCB, we avoid setting up any interrupt window on behalf of the outer
3677 * guest.
3678 */
3679 /** @todo Does this mean we end up prioritizing virtual interrupt
3680 * delivery/window over a physical interrupt (from the outer guest)
3681 * might be pending? */
3682 bool const fEnableIntWindow = !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
3683 if (!fEnableIntWindow)
3684 {
3685 Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx));
3686 Log4(("Nested-guest V_IRQ already pending\n"));
3687 }
3688#else
3689 bool const fEnableIntWindow = true;
3690 RT_NOREF(pVCpu);
3691#endif
3692 if (fEnableIntWindow)
3693 {
3694 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3695 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3696 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3697 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3698 Log4(("Set VINTR intercept\n"));
3699 }
3700}
3701
3702
3703/**
3704 * Clears the virtual interrupt intercept control in the VMCB as
3705 * we are figured the guest is unable process any interrupts
3706 * at this point of time.
3707 *
3708 * @param pVCpu The cross context virtual CPU structure.
3709 * @param pVmcb Pointer to the VM control block.
3710 */
3711static void hmR0SvmClearIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3712{
3713 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3714 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3715 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3716 {
3717 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3718 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3719 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3720 Log4(("Cleared VINTR intercept\n"));
3721 }
3722}
3723
3724#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3725/**
3726 * Evaluates the event to be delivered to the nested-guest and sets it as the
3727 * pending event.
3728 *
3729 * @returns VBox strict status code.
3730 * @param pVCpu The cross context virtual CPU structure.
3731 */
3732static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu)
3733{
3734 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3735 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
3736 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3737 | CPUMCTX_EXTRN_RFLAGS
3738 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3739 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3740
3741 Assert(!pVCpu->hm.s.Event.fPending);
3742 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3743 Assert(pVmcb);
3744
3745 bool const fGif = CPUMGetGuestGif(pCtx);
3746 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3747 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3748
3749 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3750 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3751 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3752
3753 /** @todo SMI. SMIs take priority over NMIs. */
3754
3755 /*
3756 * Check if the guest can receive NMIs.
3757 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3758 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3759 */
3760 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3761 && !fBlockNmi)
3762 {
3763 if ( fGif
3764 && !fIntShadow)
3765 {
3766 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3767 {
3768 Log4(("Intercepting NMI -> #VMEXIT\n"));
3769 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3770 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3771 }
3772
3773 Log4(("Setting NMI pending for injection\n"));
3774 SVMEVENT Event;
3775 Event.u = 0;
3776 Event.n.u1Valid = 1;
3777 Event.n.u8Vector = X86_XCPT_NMI;
3778 Event.n.u3Type = SVM_EVENT_NMI;
3779 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3780 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3781 }
3782 else if (!fGif)
3783 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3784 else
3785 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3786 }
3787 /*
3788 * Check if the nested-guest can receive external interrupts (generated by the guest's
3789 * PIC/APIC).
3790 *
3791 * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
3792 * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
3793 *
3794 * External interrupts that are generated for the outer guest may be intercepted
3795 * depending on how the nested-guest VMCB was programmed by guest software.
3796 *
3797 * Physical interrupts always take priority over virtual interrupts,
3798 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3799 *
3800 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3801 * do that work when we execute nested guest code esp. since all the required information
3802 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3803 * the virtual interrupt controller.
3804 */
3805 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3806 && !pVCpu->hm.s.fSingleInstruction)
3807 {
3808 if ( fGif
3809 && !fIntShadow
3810 && CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx))
3811 {
3812 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3813 {
3814 Log4(("Intercepting INTR -> #VMEXIT\n"));
3815 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3816 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3817 }
3818
3819 uint8_t u8Interrupt;
3820 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3821 if (RT_SUCCESS(rc))
3822 {
3823 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3824 SVMEVENT Event;
3825 Event.u = 0;
3826 Event.n.u1Valid = 1;
3827 Event.n.u8Vector = u8Interrupt;
3828 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3829 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3830 }
3831 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3832 {
3833 /*
3834 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3835 * updated eventually when the TPR is written by the guest.
3836 */
3837 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3838 }
3839 else
3840 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3841 }
3842 else if (!fGif)
3843 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3844 else
3845 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3846 }
3847
3848 return VINF_SUCCESS;
3849}
3850#endif
3851
3852/**
3853 * Evaluates the event to be delivered to the guest and sets it as the pending
3854 * event.
3855 *
3856 * @param pVCpu The cross context virtual CPU structure.
3857 */
3858static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu)
3859{
3860 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3861 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3862 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3863 | CPUMCTX_EXTRN_RFLAGS
3864 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW);
3865
3866 Assert(!pVCpu->hm.s.Event.fPending);
3867 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3868 Assert(pVmcb);
3869
3870 bool const fGif = CPUMGetGuestGif(pCtx);
3871 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3872 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3873 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3874
3875 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool fIntPending=%RTbool NMI pending=%RTbool\n",
3876 fGif, fBlockNmi, fBlockInt, fIntShadow,
3877 VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3878 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3879
3880 /** @todo SMI. SMIs take priority over NMIs. */
3881
3882 /*
3883 * Check if the guest can receive NMIs.
3884 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3885 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3886 */
3887 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3888 && !fBlockNmi)
3889 {
3890 if ( fGif
3891 && !fIntShadow)
3892 {
3893 Log4(("Setting NMI pending for injection\n"));
3894 SVMEVENT Event;
3895 Event.u = 0;
3896 Event.n.u1Valid = 1;
3897 Event.n.u8Vector = X86_XCPT_NMI;
3898 Event.n.u3Type = SVM_EVENT_NMI;
3899 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3900 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3901 }
3902 else if (!fGif)
3903 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3904 else
3905 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3906 }
3907 /*
3908 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3909 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3910 * it from the APIC device.
3911 */
3912 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3913 && !pVCpu->hm.s.fSingleInstruction)
3914 {
3915 if ( fGif
3916 && !fBlockInt
3917 && !fIntShadow)
3918 {
3919 uint8_t u8Interrupt;
3920 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3921 if (RT_SUCCESS(rc))
3922 {
3923 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3924 SVMEVENT Event;
3925 Event.u = 0;
3926 Event.n.u1Valid = 1;
3927 Event.n.u8Vector = u8Interrupt;
3928 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3929 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3930 }
3931 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3932 {
3933 /*
3934 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3935 * updated eventually when the TPR is written by the guest.
3936 */
3937 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3938 }
3939 else
3940 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3941 }
3942 else if (!fGif)
3943 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3944 else
3945 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3946 }
3947}
3948
3949
3950/**
3951 * Injects any pending events into the guest (or nested-guest).
3952 *
3953 * @param pVCpu The cross context virtual CPU structure.
3954 * @param pVmcb Pointer to the VM control block.
3955 *
3956 * @remarks Must only be called when we are guaranteed to enter
3957 * hardware-assisted SVM execution and not return to ring-3
3958 * prematurely.
3959 */
3960static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PSVMVMCB pVmcb)
3961{
3962 Assert(!TRPMHasTrap(pVCpu));
3963 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3964
3965 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3966#ifdef VBOX_STRICT
3967 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3968 bool const fGif = pCtx->hwvirt.fGif;
3969 bool fAllowInt = fGif;
3970 if (fGif)
3971 {
3972 /*
3973 * For nested-guests we have no way to determine if we're injecting a physical or
3974 * virtual interrupt at this point. Hence the partial verification below.
3975 */
3976 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3977 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3978 else
3979 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3980 }
3981#endif
3982
3983 if (pVCpu->hm.s.Event.fPending)
3984 {
3985 SVMEVENT Event;
3986 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3987 Assert(Event.n.u1Valid);
3988
3989 /*
3990 * Validate event injection pre-conditions.
3991 */
3992 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3993 {
3994 Assert(fAllowInt);
3995 Assert(!fIntShadow);
3996 }
3997 else if (Event.n.u3Type == SVM_EVENT_NMI)
3998 {
3999 Assert(fGif);
4000 Assert(!fIntShadow);
4001 }
4002
4003 /*
4004 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
4005 * do this only when we are surely going to inject the NMI as otherwise if we return
4006 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
4007 * SVM R0.
4008 *
4009 * With VT-x, this is handled by the Guest interruptibility information VMCS field
4010 * which will set the VMCS field after actually delivering the NMI which we read on
4011 * VM-exit to determine the state.
4012 */
4013 if ( Event.n.u3Type == SVM_EVENT_NMI
4014 && Event.n.u8Vector == X86_XCPT_NMI
4015 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
4016 {
4017 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4018 }
4019
4020 /*
4021 * Inject it (update VMCB for injection by the hardware).
4022 */
4023 Log4(("Injecting pending HM event\n"));
4024 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
4025 pVCpu->hm.s.Event.fPending = false;
4026
4027 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
4028 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
4029 else
4030 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
4031 }
4032 else
4033 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
4034
4035 /*
4036 * We could have injected an NMI through IEM and continue guest execution using
4037 * hardware-assisted SVM. In which case, we would not have any events pending (above)
4038 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
4039 */
4040 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
4041 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
4042
4043 /*
4044 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
4045 *
4046 * For nested-guests: We need to update it too for the scenario where IEM executes
4047 * the nested-guest but execution later continues here with an interrupt shadow active.
4048 */
4049 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
4050}
4051
4052
4053/**
4054 * Reports world-switch error and dumps some useful debug info.
4055 *
4056 * @param pVCpu The cross context virtual CPU structure.
4057 * @param rcVMRun The return code from VMRUN (or
4058 * VERR_SVM_INVALID_GUEST_STATE for invalid
4059 * guest-state).
4060 */
4061static void hmR0SvmReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun)
4062{
4063 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4064 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4065 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4066
4067 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
4068 {
4069#ifdef VBOX_STRICT
4070 hmR0DumpRegs(pVCpu);
4071 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
4072 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
4073 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
4074 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
4075 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
4076 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
4077 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
4078 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
4079 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
4080 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
4081 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
4082
4083 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
4084 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
4085 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
4086
4087 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
4088 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
4089 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
4090 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
4091 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
4092 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
4093 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
4094 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
4095 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
4096 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
4097 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
4098 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
4099
4100 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
4101 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
4102 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
4103 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
4104 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
4105 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
4106 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
4107 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
4108 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
4109 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
4110 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4111 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
4112 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
4113 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
4114 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
4115 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
4116 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
4117 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
4118 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
4119 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
4120
4121 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
4122
4123 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
4124 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
4125
4126 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
4127 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
4128 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
4129 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
4130 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
4131 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
4132 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
4133 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
4134 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
4135 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
4136 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
4137 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
4138 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
4139 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
4140 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
4141 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
4142 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
4143 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
4144 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
4145 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
4146
4147 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
4148 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
4149
4150 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
4151 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
4152 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
4153 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
4154
4155 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
4156 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
4157
4158 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
4159 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
4160 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
4161 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
4162
4163 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
4164 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
4165 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
4166 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
4167 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
4168 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
4169 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
4170
4171 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
4172 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
4173 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
4174 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
4175
4176 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
4177 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
4178 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
4179
4180 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
4181 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
4182 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
4183 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
4184 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
4185 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
4186 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
4187 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
4188 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
4189 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
4190 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
4191 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
4192
4193 NOREF(pVmcb);
4194#endif /* VBOX_STRICT */
4195 }
4196 else
4197 Log4Func(("rcVMRun=%d\n", rcVMRun));
4198}
4199
4200
4201/**
4202 * Check per-VM and per-VCPU force flag actions that require us to go back to
4203 * ring-3 for one reason or another.
4204 *
4205 * @returns VBox status code (information status code included).
4206 * @retval VINF_SUCCESS if we don't have any actions that require going back to
4207 * ring-3.
4208 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
4209 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
4210 * interrupts)
4211 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
4212 * all EMTs to be in ring-3.
4213 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
4214 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
4215 * to the EM loop.
4216 *
4217 * @param pVCpu The cross context virtual CPU structure.
4218 */
4219static int hmR0SvmCheckForceFlags(PVMCPU pVCpu)
4220{
4221 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4222 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
4223
4224 /* Could happen as a result of longjump. */
4225 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
4226 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
4227
4228 /* Update pending interrupts into the APIC's IRR. */
4229 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
4230 APICUpdatePendingInterrupts(pVCpu);
4231
4232 PVM pVM = pVCpu->CTX_SUFF(pVM);
4233 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
4234 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4235 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
4236 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4237 {
4238 /* Pending PGM C3 sync. */
4239 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4240 {
4241 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4242 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4243 if (rc != VINF_SUCCESS)
4244 {
4245 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4246 return rc;
4247 }
4248 }
4249
4250 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4251 /* -XXX- what was that about single stepping? */
4252 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
4253 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4254 {
4255 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4256 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
4257 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4258 return rc;
4259 }
4260
4261 /* Pending VM request packets, such as hardware interrupts. */
4262 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
4263 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
4264 {
4265 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4266 return VINF_EM_PENDING_REQUEST;
4267 }
4268
4269 /* Pending PGM pool flushes. */
4270 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4271 {
4272 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4273 return VINF_PGM_POOL_FLUSH_PENDING;
4274 }
4275
4276 /* Pending DMA requests. */
4277 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4278 {
4279 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4280 return VINF_EM_RAW_TO_R3;
4281 }
4282 }
4283
4284 return VINF_SUCCESS;
4285}
4286
4287
4288#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4289/**
4290 * Does the preparations before executing nested-guest code in AMD-V.
4291 *
4292 * @returns VBox status code (informational status codes included).
4293 * @retval VINF_SUCCESS if we can proceed with running the guest.
4294 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4295 *
4296 * @param pVCpu The cross context virtual CPU structure.
4297 * @param pSvmTransient Pointer to the SVM transient structure.
4298 *
4299 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
4300 * @sa hmR0SvmPreRunGuest.
4301 */
4302static int hmR0SvmPreRunGuestNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4303{
4304 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4305 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4306 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4307
4308#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4309 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) /* Redundant check to avoid unreachable code warning. */
4310 {
4311 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4312 return VINF_EM_RESCHEDULE_REM;
4313 }
4314#endif
4315
4316 /* Check force flag actions that might require us to go back to ring-3. */
4317 int rc = hmR0SvmCheckForceFlags(pVCpu);
4318 if (rc != VINF_SUCCESS)
4319 return rc;
4320
4321 if (TRPMHasTrap(pVCpu))
4322 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4323 else if (!pVCpu->hm.s.Event.fPending)
4324 {
4325 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu);
4326 if ( rcStrict != VINF_SUCCESS
4327 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4328 return VBOXSTRICTRC_VAL(rcStrict);
4329 }
4330
4331 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4332
4333 /*
4334 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4335 * Just do it in software, see @bugref{8411}.
4336 * NB: If we could continue a task switch exit we wouldn't need to do this.
4337 */
4338 PVM pVM = pVCpu->CTX_SUFF(pVM);
4339 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
4340 && pVCpu->hm.s.Event.fPending
4341 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4342 {
4343 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4344 }
4345
4346#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4347 Assert(!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4348 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4349#endif
4350
4351 /*
4352 * Export the nested-guest state bits that are not shared with the host in any way as we
4353 * can longjmp or get preempted in the midst of exporting some of the state.
4354 */
4355 rc = hmR0SvmExportGuestStateNested(pVCpu);
4356 AssertRCReturn(rc, rc);
4357 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4358
4359 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware-assisted SVM. */
4360 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4361
4362 /*
4363 * No longjmps to ring-3 from this point on!!!
4364 *
4365 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4366 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4367 */
4368 VMMRZCallRing3Disable(pVCpu);
4369
4370 /*
4371 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4372 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4373 * preemption disabled for a while. Since this is purly to aid the
4374 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4375 * disable interrupt on NT.
4376 *
4377 * We need to check for force-flags that could've possible been altered since we last
4378 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4379 * see @bugref{6398}).
4380 *
4381 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4382 * to ring-3 before executing guest code.
4383 */
4384 pSvmTransient->fEFlags = ASMIntDisableFlags();
4385 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4386 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4387 {
4388 ASMSetFlags(pSvmTransient->fEFlags);
4389 VMMRZCallRing3Enable(pVCpu);
4390 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4391 return VINF_EM_RAW_TO_R3;
4392 }
4393 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4394 {
4395 ASMSetFlags(pSvmTransient->fEFlags);
4396 VMMRZCallRing3Enable(pVCpu);
4397 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4398 return VINF_EM_RAW_INTERRUPT;
4399 }
4400 return VINF_SUCCESS;
4401}
4402#endif
4403
4404
4405/**
4406 * Does the preparations before executing guest code in AMD-V.
4407 *
4408 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4409 * recompiler. We must be cautious what we do here regarding committing
4410 * guest-state information into the VMCB assuming we assuredly execute the guest
4411 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4412 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4413 * that the recompiler can (and should) use them when it resumes guest
4414 * execution. Otherwise such operations must be done when we can no longer
4415 * exit to ring-3.
4416 *
4417 * @returns VBox status code (informational status codes included).
4418 * @retval VINF_SUCCESS if we can proceed with running the guest.
4419 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4420 *
4421 * @param pVCpu The cross context virtual CPU structure.
4422 * @param pSvmTransient Pointer to the SVM transient structure.
4423 */
4424static int hmR0SvmPreRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4425{
4426 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4427 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4428
4429 /* Check force flag actions that might require us to go back to ring-3. */
4430 int rc = hmR0SvmCheckForceFlags(pVCpu);
4431 if (rc != VINF_SUCCESS)
4432 return rc;
4433
4434 if (TRPMHasTrap(pVCpu))
4435 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4436 else if (!pVCpu->hm.s.Event.fPending)
4437 hmR0SvmEvaluatePendingEvent(pVCpu);
4438
4439 /*
4440 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4441 * Just do it in software, see @bugref{8411}.
4442 * NB: If we could continue a task switch exit we wouldn't need to do this.
4443 */
4444 PVM pVM = pVCpu->CTX_SUFF(pVM);
4445 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
4446 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
4447 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4448
4449#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4450 Assert(!(pVCpu->cpum.GstCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4451 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4452#endif
4453
4454 /*
4455 * Export the guest state bits that are not shared with the host in any way as we can
4456 * longjmp or get preempted in the midst of exporting some of the state.
4457 */
4458 rc = hmR0SvmExportGuestState(pVCpu);
4459 AssertRCReturn(rc, rc);
4460 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4461
4462 /*
4463 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4464 * world-switch so we can update it on the way back if the guest changed the TPR.
4465 */
4466 if (pVCpu->hm.s.svm.fSyncVTpr)
4467 {
4468 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4469 if (pVM->hm.s.fTPRPatchingActive)
4470 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4471 else
4472 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4473 }
4474
4475 /*
4476 * No longjmps to ring-3 from this point on!!!
4477 *
4478 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4479 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4480 */
4481 VMMRZCallRing3Disable(pVCpu);
4482
4483 /*
4484 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4485 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4486 * preemption disabled for a while. Since this is purly to aid the
4487 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4488 * disable interrupt on NT.
4489 *
4490 * We need to check for force-flags that could've possible been altered since we last
4491 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4492 * see @bugref{6398}).
4493 *
4494 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4495 * to ring-3 before executing guest code.
4496 */
4497 pSvmTransient->fEFlags = ASMIntDisableFlags();
4498 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4499 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4500 {
4501 ASMSetFlags(pSvmTransient->fEFlags);
4502 VMMRZCallRing3Enable(pVCpu);
4503 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4504 return VINF_EM_RAW_TO_R3;
4505 }
4506 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4507 {
4508 ASMSetFlags(pSvmTransient->fEFlags);
4509 VMMRZCallRing3Enable(pVCpu);
4510 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4511 return VINF_EM_RAW_INTERRUPT;
4512 }
4513
4514 return VINF_SUCCESS;
4515}
4516
4517
4518/**
4519 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4520 * doing so.
4521 *
4522 * This means there is no backing out to ring-3 or anywhere else at this point.
4523 *
4524 * @param pVCpu The cross context virtual CPU structure.
4525 * @param pSvmTransient Pointer to the SVM transient structure.
4526 *
4527 * @remarks Called with preemption disabled.
4528 * @remarks No-long-jump zone!!!
4529 */
4530static void hmR0SvmPreRunGuestCommitted(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4531{
4532 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4533 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4534 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4535
4536 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4537 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4538
4539 PVM pVM = pVCpu->CTX_SUFF(pVM);
4540 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4541
4542 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4543
4544 if (!CPUMIsGuestFPUStateActive(pVCpu))
4545 {
4546 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4547 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4548 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4549 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4550 }
4551
4552 /* Load the state shared between host and guest (FPU, debug). */
4553 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4554 hmR0SvmExportSharedState(pVCpu, pVmcb);
4555
4556 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4557 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4558
4559 PHMGLOBALCPUINFO pHostCpu = hmR0GetCurrentCpu();
4560 RTCPUID const idHostCpu = pHostCpu->idCpu;
4561 bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
4562
4563 /* Setup TSC offsetting. */
4564 if ( pSvmTransient->fUpdateTscOffsetting
4565 || fMigratedHostCpu)
4566 {
4567 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4568 pSvmTransient->fUpdateTscOffsetting = false;
4569 }
4570
4571 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4572 if (fMigratedHostCpu)
4573 pVmcb->ctrl.u32VmcbCleanBits = 0;
4574
4575 /* Store status of the shared guest-host state at the time of VMRUN. */
4576#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4577 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4578 {
4579 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4580 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4581 }
4582 else
4583#endif
4584 {
4585 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4586 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4587 }
4588
4589#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4590 uint8_t *pbMsrBitmap;
4591 if (!pSvmTransient->fIsNestedGuest)
4592 pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4593 else
4594 {
4595 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4596
4597 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4598 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4599 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4600 }
4601#else
4602 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4603#endif
4604
4605 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4606 /* Flush the appropriate tagged-TLB entries. */
4607 hmR0SvmFlushTaggedTlb(pVCpu, pVmcb, pHostCpu);
4608 Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
4609
4610 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4611
4612 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4613 to start executing. */
4614
4615 /*
4616 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4617 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4618 *
4619 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4620 */
4621 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4622 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4623 {
4624 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4625 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4626 if (uGuestTscAux != pVCpu->hm.s.u64HostTscAux)
4627 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4628 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4629 pSvmTransient->fRestoreTscAuxMsr = true;
4630 }
4631 else
4632 {
4633 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4634 pSvmTransient->fRestoreTscAuxMsr = false;
4635 }
4636 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4637
4638 /*
4639 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4640 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4641 * from the VMCB.
4642 */
4643 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu);
4644 if (!fSupportsVmcbCleanBits)
4645 pVmcb->ctrl.u32VmcbCleanBits = 0;
4646}
4647
4648
4649/**
4650 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4651 *
4652 * @returns VBox strict status code.
4653 * @param pVCpu The cross context virtual CPU structure.
4654 * @param HCPhysVmcb The host physical address of the VMCB.
4655 *
4656 * @remarks No-long-jump zone!!!
4657 */
4658DECLINLINE(int) hmR0SvmRunGuest(PVMCPU pVCpu, RTHCPHYS HCPhysVmcb)
4659{
4660 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4661 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4662 pCtx->fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4663
4664 /*
4665 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4666 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4667 * callee-saved and thus the need for this XMM wrapper.
4668 *
4669 * Refer MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4670 */
4671 PVM pVM = pVCpu->CTX_SUFF(pVM);
4672#ifdef VBOX_WITH_KERNEL_USING_XMM
4673 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun);
4674#else
4675 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu);
4676#endif
4677}
4678
4679
4680/**
4681 * Undoes the TSC offset applied for an SVM nested-guest and returns the TSC
4682 * value for the guest.
4683 *
4684 * @returns The TSC offset after undoing any nested-guest TSC offset.
4685 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4686 * @param uTicks The nested-guest TSC.
4687 *
4688 * @note If you make any changes to this function, please check if
4689 * hmR0SvmNstGstUndoTscOffset() needs adjusting.
4690 *
4691 * @sa HMSvmNstGstApplyTscOffset().
4692 */
4693DECLINLINE(uint64_t) hmR0SvmNstGstUndoTscOffset(PVMCPU pVCpu, uint64_t uTicks)
4694{
4695 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
4696 Assert(pVmcbNstGstCache->fCacheValid);
4697 return uTicks - pVmcbNstGstCache->u64TSCOffset;
4698}
4699
4700
4701/**
4702 * Performs some essential restoration of state after running guest (or
4703 * nested-guest) code in AMD-V.
4704 *
4705 * @param pVCpu The cross context virtual CPU structure.
4706 * @param pSvmTransient Pointer to the SVM transient structure.
4707 * @param rcVMRun Return code of VMRUN.
4708 *
4709 * @remarks Called with interrupts disabled.
4710 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4711 * unconditionally when it is safe to do so.
4712 */
4713static void hmR0SvmPostRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4714{
4715 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4716
4717 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4718 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4719 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4720
4721 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4722 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4723
4724 /* TSC read must be done early for maximum accuracy. */
4725 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4726 {
4727 if (!pSvmTransient->fIsNestedGuest)
4728 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4729#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4730 else
4731 {
4732 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMSvmNstGstVmExitNotify(). */
4733 uint64_t const uGstTsc = hmR0SvmNstGstUndoTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4734 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4735 }
4736#endif
4737 }
4738
4739 if (pSvmTransient->fRestoreTscAuxMsr)
4740 {
4741 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4742 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4743 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4744 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4745 }
4746
4747 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4748 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4749 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4750
4751 Assert(!(ASMGetFlags() & X86_EFL_IF));
4752 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4753 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4754
4755 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4756 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4757 {
4758 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4759 return;
4760 }
4761
4762 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4763 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4764 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4765 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4766
4767#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4768 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4769 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4770#else
4771 /*
4772 * Always import the following:
4773 *
4774 * - RIP for exit optimizations and evaluating event injection on re-entry.
4775 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4776 * state on preemption.
4777 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4778 * - CS for exit optimizations.
4779 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4780 * assembly switcher code.
4781 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4782 */
4783 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4784 | CPUMCTX_EXTRN_RFLAGS
4785 | CPUMCTX_EXTRN_RAX
4786 | CPUMCTX_EXTRN_RSP
4787 | CPUMCTX_EXTRN_CS
4788 | CPUMCTX_EXTRN_HWVIRT
4789 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4790 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4791 | HMSVM_CPUMCTX_SHARED_STATE);
4792#endif
4793
4794 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4795 && pVCpu->hm.s.svm.fSyncVTpr)
4796 {
4797 Assert(!pSvmTransient->fIsNestedGuest);
4798 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4799 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
4800 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4801 {
4802 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4803 AssertRC(rc);
4804 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4805 }
4806 /* Sync TPR when we aren't intercepting CR8 writes. */
4807 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4808 {
4809 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4810 AssertRC(rc);
4811 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4812 }
4813 }
4814
4815#ifdef DEBUG_ramshankar
4816 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4817 {
4818 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4819 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4820 0 /* uVerbose */);
4821 }
4822#endif
4823
4824 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4825 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4826 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4827}
4828
4829
4830/**
4831 * Runs the guest code using AMD-V.
4832 *
4833 * @returns VBox status code.
4834 * @param pVCpu The cross context virtual CPU structure.
4835 * @param pcLoops Pointer to the number of executed loops.
4836 */
4837static int hmR0SvmRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
4838{
4839 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4840 Assert(pcLoops);
4841 Assert(*pcLoops <= cMaxResumeLoops);
4842
4843 SVMTRANSIENT SvmTransient;
4844 RT_ZERO(SvmTransient);
4845 SvmTransient.fUpdateTscOffsetting = true;
4846 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4847
4848 int rc = VERR_INTERNAL_ERROR_5;
4849 for (;;)
4850 {
4851 Assert(!HMR0SuspendPending());
4852 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4853
4854 /* Preparatory work for running nested-guest code, this may force us to return to
4855 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4856 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4857 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4858 if (rc != VINF_SUCCESS)
4859 break;
4860
4861 /*
4862 * No longjmps to ring-3 from this point on!!!
4863 *
4864 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4865 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4866 */
4867 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4868 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4869
4870 /* Restore any residual host-state and save any bits shared between host and guest
4871 into the guest-CPU state. Re-enables interrupts! */
4872 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4873
4874 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4875 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4876 {
4877 if (rc == VINF_SUCCESS)
4878 rc = VERR_SVM_INVALID_GUEST_STATE;
4879 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4880 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4881 break;
4882 }
4883
4884 /* Handle the #VMEXIT. */
4885 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4886 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4887 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4888 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4889 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4890 if (rc != VINF_SUCCESS)
4891 break;
4892 if (++(*pcLoops) >= cMaxResumeLoops)
4893 {
4894 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4895 rc = VINF_EM_RAW_INTERRUPT;
4896 break;
4897 }
4898 }
4899
4900 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4901 return rc;
4902}
4903
4904
4905/**
4906 * Runs the guest code using AMD-V in single step mode.
4907 *
4908 * @returns VBox status code.
4909 * @param pVCpu The cross context virtual CPU structure.
4910 * @param pcLoops Pointer to the number of executed loops.
4911 */
4912static int hmR0SvmRunGuestCodeStep(PVMCPU pVCpu, uint32_t *pcLoops)
4913{
4914 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4915 Assert(pcLoops);
4916 Assert(*pcLoops <= cMaxResumeLoops);
4917
4918 SVMTRANSIENT SvmTransient;
4919 RT_ZERO(SvmTransient);
4920 SvmTransient.fUpdateTscOffsetting = true;
4921 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4922
4923 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4924 uint16_t uCsStart = pCtx->cs.Sel;
4925 uint64_t uRipStart = pCtx->rip;
4926
4927 int rc = VERR_INTERNAL_ERROR_5;
4928 for (;;)
4929 {
4930 Assert(!HMR0SuspendPending());
4931 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4932 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4933 (unsigned)RTMpCpuId(), *pcLoops));
4934
4935 /* Preparatory work for running nested-guest code, this may force us to return to
4936 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4937 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4938 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4939 if (rc != VINF_SUCCESS)
4940 break;
4941
4942 /*
4943 * No longjmps to ring-3 from this point on!!!
4944 *
4945 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4946 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4947 */
4948 VMMRZCallRing3Disable(pVCpu);
4949 VMMRZCallRing3RemoveNotification(pVCpu);
4950 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4951
4952 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4953
4954 /* Restore any residual host-state and save any bits shared between host and guest
4955 into the guest-CPU state. Re-enables interrupts! */
4956 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4957
4958 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4959 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4960 {
4961 if (rc == VINF_SUCCESS)
4962 rc = VERR_SVM_INVALID_GUEST_STATE;
4963 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4964 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4965 return rc;
4966 }
4967
4968 /* Handle the #VMEXIT. */
4969 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4970 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4971 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4972 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4973 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4974 if (rc != VINF_SUCCESS)
4975 break;
4976 if (++(*pcLoops) >= cMaxResumeLoops)
4977 {
4978 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4979 rc = VINF_EM_RAW_INTERRUPT;
4980 break;
4981 }
4982
4983 /*
4984 * Did the RIP change, if so, consider it a single step.
4985 * Otherwise, make sure one of the TFs gets set.
4986 */
4987 if ( pCtx->rip != uRipStart
4988 || pCtx->cs.Sel != uCsStart)
4989 {
4990 rc = VINF_EM_DBG_STEPPED;
4991 break;
4992 }
4993 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4994 }
4995
4996 /*
4997 * Clear the X86_EFL_TF if necessary.
4998 */
4999 if (pVCpu->hm.s.fClearTrapFlag)
5000 {
5001 pVCpu->hm.s.fClearTrapFlag = false;
5002 pCtx->eflags.Bits.u1TF = 0;
5003 }
5004
5005 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5006 return rc;
5007}
5008
5009#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5010/**
5011 * Runs the nested-guest code using AMD-V.
5012 *
5013 * @returns VBox status code.
5014 * @param pVCpu The cross context virtual CPU structure.
5015 * @param pcLoops Pointer to the number of executed loops. If we're switching
5016 * from the guest-code execution loop to this nested-guest
5017 * execution loop pass the remainder value, else pass 0.
5018 */
5019static int hmR0SvmRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
5020{
5021 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5022 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
5023 Assert(pcLoops);
5024 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops);
5025
5026 SVMTRANSIENT SvmTransient;
5027 RT_ZERO(SvmTransient);
5028 SvmTransient.fUpdateTscOffsetting = true;
5029 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
5030 SvmTransient.fIsNestedGuest = true;
5031
5032 int rc = VERR_INTERNAL_ERROR_4;
5033 for (;;)
5034 {
5035 Assert(!HMR0SuspendPending());
5036 HMSVM_ASSERT_CPU_SAFE(pVCpu);
5037
5038 /* Preparatory work for running nested-guest code, this may force us to return to
5039 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
5040 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
5041 rc = hmR0SvmPreRunGuestNested(pVCpu, &SvmTransient);
5042 if ( rc != VINF_SUCCESS
5043 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5044 {
5045 break;
5046 }
5047
5048 /*
5049 * No longjmps to ring-3 from this point on!!!
5050 *
5051 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
5052 * better than a kernel panic. This also disables flushing of the R0-logger instance.
5053 */
5054 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
5055
5056 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
5057
5058 /* Restore any residual host-state and save any bits shared between host and guest
5059 into the guest-CPU state. Re-enables interrupts! */
5060 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
5061
5062 if (RT_LIKELY( rc == VINF_SUCCESS
5063 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
5064 { /* extremely likely */ }
5065 else
5066 {
5067 /* VMRUN failed, shouldn't really happen, Guru. */
5068 if (rc != VINF_SUCCESS)
5069 break;
5070
5071 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
5072 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
5073 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
5074 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
5075 break;
5076 }
5077
5078 /* Handle the #VMEXIT. */
5079 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
5080 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
5081 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
5082 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
5083 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
5084 if ( rc != VINF_SUCCESS
5085 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5086 break;
5087 if (++(*pcLoops) >= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
5088 {
5089 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
5090 rc = VINF_EM_RAW_INTERRUPT;
5091 break;
5092 }
5093
5094 /** @todo handle single-stepping */
5095 }
5096
5097 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5098 return rc;
5099}
5100#endif
5101
5102
5103/**
5104 * Runs the guest code using AMD-V.
5105 *
5106 * @returns Strict VBox status code.
5107 * @param pVCpu The cross context virtual CPU structure.
5108 */
5109VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPU pVCpu)
5110{
5111 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5112 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
5113 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, NULL /* pvUser */);
5114
5115 uint32_t cLoops = 0;
5116 int rc;
5117#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5118 if (!CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
5119#endif
5120 {
5121 if (!pVCpu->hm.s.fSingleInstruction)
5122 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
5123 else
5124 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
5125 }
5126#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5127 else
5128 {
5129 rc = VINF_SVM_VMRUN;
5130 }
5131
5132 /* Re-check the nested-guest condition here as we may be transitioning from the normal
5133 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
5134 if (rc == VINF_SVM_VMRUN)
5135 {
5136 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
5137 if (rc == VINF_SVM_VMEXIT)
5138 rc = VINF_SUCCESS;
5139 }
5140#endif
5141
5142 /* Fixup error codes. */
5143 if (rc == VERR_EM_INTERPRETER)
5144 rc = VINF_EM_RAW_EMULATE_INSTR;
5145 else if (rc == VINF_EM_RESET)
5146 rc = VINF_EM_TRIPLE_FAULT;
5147
5148 /* Prepare to return to ring-3. This will remove longjmp notifications. */
5149 rc = hmR0SvmExitToRing3(pVCpu, rc);
5150 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
5151 return rc;
5152}
5153
5154
5155#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5156/**
5157 * Determines whether an IOIO intercept is active for the nested-guest or not.
5158 *
5159 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
5160 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
5161 */
5162static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
5163{
5164 const uint16_t u16Port = pIoExitInfo->n.u16Port;
5165 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
5166 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
5167 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
5168 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
5169 const bool fRep = pIoExitInfo->n.u1Rep;
5170 const bool fStrIo = pIoExitInfo->n.u1Str;
5171
5172 return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
5173 NULL /* pIoExitInfo */);
5174}
5175
5176
5177/**
5178 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
5179 * SVM_EXIT_INVALID).
5180 *
5181 * @returns VBox status code (informational status codes included).
5182 * @param pVCpu The cross context virtual CPU structure.
5183 * @param pSvmTransient Pointer to the SVM transient structure.
5184 */
5185static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5186{
5187 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
5188 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5189 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5190
5191 /*
5192 * We import the complete state here because we use separate VMCBs for the guest and the
5193 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
5194 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
5195 */
5196#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5197 do { \
5198 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5199 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2))); \
5200 } while (0)
5201
5202 /*
5203 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
5204 * nested-guest. If it isn't, it should be handled by the (outer) guest.
5205 */
5206 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
5207 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
5208 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
5209 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
5210 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
5211
5212 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
5213 switch (uExitCode)
5214 {
5215 case SVM_EXIT_CPUID:
5216 {
5217 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
5218 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5219 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
5220 }
5221
5222 case SVM_EXIT_RDTSC:
5223 {
5224 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
5225 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5226 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
5227 }
5228
5229 case SVM_EXIT_RDTSCP:
5230 {
5231 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
5232 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5233 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
5234 }
5235
5236 case SVM_EXIT_MONITOR:
5237 {
5238 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
5239 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5240 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
5241 }
5242
5243 case SVM_EXIT_MWAIT:
5244 {
5245 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
5246 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5247 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
5248 }
5249
5250 case SVM_EXIT_HLT:
5251 {
5252 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_HLT))
5253 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5254 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
5255 }
5256
5257 case SVM_EXIT_MSR:
5258 {
5259 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
5260 {
5261 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
5262 uint16_t offMsrpm;
5263 uint8_t uMsrpmBit;
5264 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
5265 if (RT_SUCCESS(rc))
5266 {
5267 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
5268 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
5269
5270 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
5271 pbMsrBitmap += offMsrpm;
5272 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
5273 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
5274
5275 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
5276 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
5277 {
5278 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5279 }
5280 }
5281 else
5282 {
5283 /*
5284 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
5285 * See AMD-V spec. "15.11 MSR Intercepts".
5286 */
5287 Assert(rc == VERR_OUT_OF_RANGE);
5288 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5289 }
5290 }
5291 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
5292 }
5293
5294 case SVM_EXIT_IOIO:
5295 {
5296 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
5297 {
5298 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
5299 SVMIOIOEXITINFO IoExitInfo;
5300 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
5301 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
5302 if (fIntercept)
5303 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5304 }
5305 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
5306 }
5307
5308 case SVM_EXIT_XCPT_PF:
5309 {
5310 PVM pVM = pVCpu->CTX_SUFF(pVM);
5311 if (pVM->hm.s.fNestedPaging)
5312 {
5313 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
5314 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
5315
5316 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
5317 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
5318 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
5319
5320 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
5321 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5322 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
5323 return VINF_SUCCESS;
5324 }
5325 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
5326 }
5327
5328 case SVM_EXIT_XCPT_UD:
5329 {
5330 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_UD))
5331 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5332 hmR0SvmSetPendingXcptUD(pVCpu);
5333 return VINF_SUCCESS;
5334 }
5335
5336 case SVM_EXIT_XCPT_MF:
5337 {
5338 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_MF))
5339 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5340 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
5341 }
5342
5343 case SVM_EXIT_XCPT_DB:
5344 {
5345 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_DB))
5346 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5347 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5348 }
5349
5350 case SVM_EXIT_XCPT_AC:
5351 {
5352 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_AC))
5353 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5354 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5355 }
5356
5357 case SVM_EXIT_XCPT_BP:
5358 {
5359 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_BP))
5360 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5361 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5362 }
5363
5364 case SVM_EXIT_READ_CR0:
5365 case SVM_EXIT_READ_CR3:
5366 case SVM_EXIT_READ_CR4:
5367 {
5368 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5369 if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, uCr))
5370 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5371 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5372 }
5373
5374 case SVM_EXIT_CR0_SEL_WRITE:
5375 {
5376 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5377 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5378 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5379 }
5380
5381 case SVM_EXIT_WRITE_CR0:
5382 case SVM_EXIT_WRITE_CR3:
5383 case SVM_EXIT_WRITE_CR4:
5384 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5385 {
5386 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5387 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5388
5389 if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, uCr))
5390 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5391 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5392 }
5393
5394 case SVM_EXIT_PAUSE:
5395 {
5396 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
5397 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5398 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5399 }
5400
5401 case SVM_EXIT_VINTR:
5402 {
5403 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VINTR))
5404 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5405 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5406 }
5407
5408 case SVM_EXIT_INTR:
5409 case SVM_EXIT_NMI:
5410 case SVM_EXIT_SMI:
5411 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5412 {
5413 /*
5414 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5415 *
5416 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5417 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5418 * nested-guest #VMEXIT.
5419 *
5420 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5421 * while trying to inject interrupts, see comment at the top of this function.
5422 */
5423 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5424 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5425 }
5426
5427 case SVM_EXIT_FERR_FREEZE:
5428 {
5429 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5430 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5431 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5432 }
5433
5434 case SVM_EXIT_INVLPG:
5435 {
5436 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
5437 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5438 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5439 }
5440
5441 case SVM_EXIT_WBINVD:
5442 {
5443 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_WBINVD))
5444 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5445 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5446 }
5447
5448 case SVM_EXIT_INVD:
5449 {
5450 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVD))
5451 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5452 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5453 }
5454
5455 case SVM_EXIT_RDPMC:
5456 {
5457 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
5458 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5459 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5460 }
5461
5462 default:
5463 {
5464 switch (uExitCode)
5465 {
5466 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5467 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5468 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5469 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5470 {
5471 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5472 if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, uDr))
5473 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5474 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5475 }
5476
5477 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5478 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5479 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5480 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5481 {
5482 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5483 if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, uDr))
5484 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5485 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5486 }
5487
5488 case SVM_EXIT_XCPT_DE:
5489 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5490 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5491 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5492 case SVM_EXIT_XCPT_OF:
5493 case SVM_EXIT_XCPT_BR:
5494 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5495 case SVM_EXIT_XCPT_NM:
5496 case SVM_EXIT_XCPT_DF:
5497 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5498 case SVM_EXIT_XCPT_TS:
5499 case SVM_EXIT_XCPT_NP:
5500 case SVM_EXIT_XCPT_SS:
5501 case SVM_EXIT_XCPT_GP:
5502 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5503 case SVM_EXIT_XCPT_15: /* Reserved. */
5504 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5505 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5506 case SVM_EXIT_XCPT_MC:
5507 case SVM_EXIT_XCPT_XF:
5508 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5509 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5510 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5511 {
5512 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5513 if (HMIsGuestSvmXcptInterceptSet(pVCpu, uVector))
5514 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5515 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5516 }
5517
5518 case SVM_EXIT_XSETBV:
5519 {
5520 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
5521 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5522 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5523 }
5524
5525 case SVM_EXIT_TASK_SWITCH:
5526 {
5527 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5528 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5529 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5530 }
5531
5532 case SVM_EXIT_IRET:
5533 {
5534 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IRET))
5535 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5536 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5537 }
5538
5539 case SVM_EXIT_SHUTDOWN:
5540 {
5541 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SHUTDOWN))
5542 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5543 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5544 }
5545
5546 case SVM_EXIT_VMMCALL:
5547 {
5548 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
5549 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5550 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5551 }
5552
5553 case SVM_EXIT_CLGI:
5554 {
5555 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
5556 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5557 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5558 }
5559
5560 case SVM_EXIT_STGI:
5561 {
5562 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_STGI))
5563 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5564 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5565 }
5566
5567 case SVM_EXIT_VMLOAD:
5568 {
5569 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
5570 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5571 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5572 }
5573
5574 case SVM_EXIT_VMSAVE:
5575 {
5576 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
5577 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5578 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5579 }
5580
5581 case SVM_EXIT_INVLPGA:
5582 {
5583 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
5584 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5585 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5586 }
5587
5588 case SVM_EXIT_VMRUN:
5589 {
5590 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
5591 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5592 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5593 }
5594
5595 case SVM_EXIT_RSM:
5596 {
5597 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RSM))
5598 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5599 hmR0SvmSetPendingXcptUD(pVCpu);
5600 return VINF_SUCCESS;
5601 }
5602
5603 case SVM_EXIT_SKINIT:
5604 {
5605 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
5606 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5607 hmR0SvmSetPendingXcptUD(pVCpu);
5608 return VINF_SUCCESS;
5609 }
5610
5611 case SVM_EXIT_NPF:
5612 {
5613 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5614 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5615 }
5616
5617 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5618 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5619
5620 default:
5621 {
5622 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5623 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5624 return VERR_SVM_UNKNOWN_EXIT;
5625 }
5626 }
5627 }
5628 }
5629 /* not reached */
5630
5631#undef NST_GST_VMEXIT_CALL_RET
5632}
5633#endif
5634
5635
5636/**
5637 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5638 *
5639 * @returns VBox status code (informational status codes included).
5640 * @param pVCpu The cross context virtual CPU structure.
5641 * @param pSvmTransient Pointer to the SVM transient structure.
5642 */
5643static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5644{
5645 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5646 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5647
5648#ifdef DEBUG_ramshankar
5649# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5650 do { \
5651 if ((a_fDbg) == 1) \
5652 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5653 int rc = a_CallExpr; \
5654 if ((a_fDbg) == 1) \
5655 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5656 return rc; \
5657 } while (0)
5658#else
5659# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5660#endif
5661
5662 /*
5663 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5664 * for most guests under normal workloads (for some definition of "normal").
5665 */
5666 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5667 switch (uExitCode)
5668 {
5669 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5670 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5671 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5672 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5673 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5674 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5675 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5676 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5677 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5678 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5679
5680 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5681 case SVM_EXIT_INTR:
5682 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5683
5684 case SVM_EXIT_READ_CR0:
5685 case SVM_EXIT_READ_CR3:
5686 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5687
5688 case SVM_EXIT_CR0_SEL_WRITE:
5689 case SVM_EXIT_WRITE_CR0:
5690 case SVM_EXIT_WRITE_CR3:
5691 case SVM_EXIT_WRITE_CR4:
5692 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5693
5694 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5695 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5696 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5697 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5698 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5699 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5700 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5701 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5702 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5703 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5704 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5705 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5706 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5707 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5708 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5709 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5710
5711 default:
5712 {
5713 switch (pSvmTransient->u64ExitCode)
5714 {
5715 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5716 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5717 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5718 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5719 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5720
5721 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5722 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5723 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5724 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5725 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5726
5727 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5728 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5729
5730 case SVM_EXIT_SMI:
5731 case SVM_EXIT_INIT:
5732 {
5733 /*
5734 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5735 * If it ever does, we want to know about it so log the exit code and bail.
5736 */
5737 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5738 }
5739
5740#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5741 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5742 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5743 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5744 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5745 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5746 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5747#else
5748 case SVM_EXIT_CLGI:
5749 case SVM_EXIT_STGI:
5750 case SVM_EXIT_VMLOAD:
5751 case SVM_EXIT_VMSAVE:
5752 case SVM_EXIT_INVLPGA:
5753 case SVM_EXIT_VMRUN:
5754#endif
5755 case SVM_EXIT_RSM:
5756 case SVM_EXIT_SKINIT:
5757 {
5758 hmR0SvmSetPendingXcptUD(pVCpu);
5759 return VINF_SUCCESS;
5760 }
5761
5762#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5763 case SVM_EXIT_XCPT_DE:
5764 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5765 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5766 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5767 case SVM_EXIT_XCPT_OF:
5768 case SVM_EXIT_XCPT_BR:
5769 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5770 case SVM_EXIT_XCPT_NM:
5771 case SVM_EXIT_XCPT_DF:
5772 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5773 case SVM_EXIT_XCPT_TS:
5774 case SVM_EXIT_XCPT_NP:
5775 case SVM_EXIT_XCPT_SS:
5776 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5777 /* SVM_EXIT_XCPT_PF: */
5778 case SVM_EXIT_XCPT_15: /* Reserved. */
5779 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5780 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5781 case SVM_EXIT_XCPT_MC:
5782 case SVM_EXIT_XCPT_XF:
5783 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5784 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5785 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5786 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5787#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5788
5789 default:
5790 {
5791 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5792 pVCpu->hm.s.u32HMError = uExitCode;
5793 return VERR_SVM_UNKNOWN_EXIT;
5794 }
5795 }
5796 }
5797 }
5798 /* not reached */
5799#undef VMEXIT_CALL_RET
5800}
5801
5802
5803#ifdef VBOX_STRICT
5804/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5805# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5806 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5807
5808# define HMSVM_ASSERT_PREEMPT_CPUID() \
5809 do \
5810 { \
5811 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5812 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5813 } while (0)
5814
5815# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5816 do { \
5817 AssertPtr((a_pVCpu)); \
5818 AssertPtr((a_pSvmTransient)); \
5819 Assert(ASMIntAreEnabled()); \
5820 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5821 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5822 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5823 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5824 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5825 HMSVM_ASSERT_PREEMPT_CPUID(); \
5826 } while (0)
5827#else
5828# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5829 do { \
5830 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5831 } while (0)
5832#endif
5833
5834
5835/**
5836 * Gets the IEM exception flags for the specified SVM event.
5837 *
5838 * @returns The IEM exception flags.
5839 * @param pEvent Pointer to the SVM event.
5840 *
5841 * @remarks This function currently only constructs flags required for
5842 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5843 * and CR2 aspects of an exception are not included).
5844 */
5845static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5846{
5847 uint8_t const uEventType = pEvent->n.u3Type;
5848 uint32_t fIemXcptFlags;
5849 switch (uEventType)
5850 {
5851 case SVM_EVENT_EXCEPTION:
5852 /*
5853 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5854 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5855 */
5856 if (pEvent->n.u8Vector == X86_XCPT_BP)
5857 {
5858 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5859 break;
5860 }
5861 if (pEvent->n.u8Vector == X86_XCPT_OF)
5862 {
5863 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5864 break;
5865 }
5866 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5867 RT_FALL_THRU();
5868 case SVM_EVENT_NMI:
5869 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5870 break;
5871
5872 case SVM_EVENT_EXTERNAL_IRQ:
5873 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5874 break;
5875
5876 case SVM_EVENT_SOFTWARE_INT:
5877 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5878 break;
5879
5880 default:
5881 fIemXcptFlags = 0;
5882 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5883 break;
5884 }
5885 return fIemXcptFlags;
5886}
5887
5888
5889/**
5890 * Handle a condition that occurred while delivering an event through the guest
5891 * IDT.
5892 *
5893 * @returns VBox status code (informational error codes included).
5894 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5895 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5896 * continue execution of the guest which will delivery the \#DF.
5897 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5898 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5899 *
5900 * @param pVCpu The cross context virtual CPU structure.
5901 * @param pSvmTransient Pointer to the SVM transient structure.
5902 *
5903 * @remarks No-long-jump zone!!!
5904 */
5905static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5906{
5907 int rc = VINF_SUCCESS;
5908 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5909 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5910
5911 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5912 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5913 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5914
5915 /*
5916 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5917 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5918 *
5919 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5920 */
5921 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5922 {
5923 IEMXCPTRAISE enmRaise;
5924 IEMXCPTRAISEINFO fRaiseInfo;
5925 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5926 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5927 if (fExitIsHwXcpt)
5928 {
5929 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5930 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5931 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5932 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5933 }
5934 else
5935 {
5936 /*
5937 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5938 * then we end up here.
5939 *
5940 * If the event was:
5941 * - a software interrupt, we can re-execute the instruction which will
5942 * regenerate the event.
5943 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5944 * - a hardware exception or external interrupt, we re-inject it.
5945 */
5946 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5947 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5948 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5949 else
5950 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5951 }
5952
5953 switch (enmRaise)
5954 {
5955 case IEMXCPTRAISE_CURRENT_XCPT:
5956 case IEMXCPTRAISE_PREV_EVENT:
5957 {
5958 /* For software interrupts, we shall re-execute the instruction. */
5959 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5960 {
5961 RTGCUINTPTR GCPtrFaultAddress = 0;
5962
5963 /* If we are re-injecting an NMI, clear NMI blocking. */
5964 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5965 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5966
5967 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5968 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5969 {
5970 pSvmTransient->fVectoringPF = true;
5971 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5972 pVCpu->cpum.GstCtx.cr2));
5973 }
5974 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5975 && uIdtVector == X86_XCPT_PF)
5976 {
5977 /*
5978 * If the previous exception was a #PF, we need to recover the CR2 value.
5979 * This can't happen with shadow paging.
5980 */
5981 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5982 }
5983
5984 /*
5985 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5986 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5987 */
5988 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5989 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5990 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5991
5992 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5993 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5994 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5995 }
5996 break;
5997 }
5998
5999 case IEMXCPTRAISE_REEXEC_INSTR:
6000 {
6001 Assert(rc == VINF_SUCCESS);
6002 break;
6003 }
6004
6005 case IEMXCPTRAISE_DOUBLE_FAULT:
6006 {
6007 /*
6008 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
6009 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
6010 * converted into a #DF.
6011 */
6012 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6013 {
6014 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
6015 pSvmTransient->fVectoringDoublePF = true;
6016 Assert(rc == VINF_SUCCESS);
6017 }
6018 else
6019 {
6020 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6021 hmR0SvmSetPendingXcptDF(pVCpu);
6022 rc = VINF_HM_DOUBLE_FAULT;
6023 }
6024 break;
6025 }
6026
6027 case IEMXCPTRAISE_TRIPLE_FAULT:
6028 {
6029 rc = VINF_EM_RESET;
6030 break;
6031 }
6032
6033 case IEMXCPTRAISE_CPU_HANG:
6034 {
6035 rc = VERR_EM_GUEST_CPU_HANG;
6036 break;
6037 }
6038
6039 default:
6040 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
6041 }
6042 }
6043 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
6044 return rc;
6045}
6046
6047
6048/**
6049 * Advances the guest RIP by the number of bytes specified in @a cb.
6050 *
6051 * @param pVCpu The cross context virtual CPU structure.
6052 * @param cb RIP increment value in bytes.
6053 */
6054DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPU pVCpu, uint32_t cb)
6055{
6056 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6057 pCtx->rip += cb;
6058
6059 /* Update interrupt shadow. */
6060 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
6061 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
6062 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6063}
6064
6065
6066/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6067/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6068/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6069
6070/** @name \#VMEXIT handlers.
6071 * @{
6072 */
6073
6074/**
6075 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
6076 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
6077 */
6078HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6079{
6080 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6081
6082 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
6083 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
6084 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
6085 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6086
6087 /*
6088 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
6089 * signal -before- the timer fires if the current interrupt is our own timer or a some
6090 * other host interrupt. We also cannot examine what interrupt it is until the host
6091 * actually take the interrupt.
6092 *
6093 * Going back to executing guest code here unconditionally causes random scheduling
6094 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
6095 */
6096 return VINF_EM_RAW_INTERRUPT;
6097}
6098
6099
6100/**
6101 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
6102 */
6103HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6104{
6105 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6106
6107 VBOXSTRICTRC rcStrict;
6108 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6109 if (fSupportsNextRipSave)
6110 {
6111 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6112 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6113 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6114 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
6115 }
6116 else
6117 {
6118 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6119 rcStrict = IEMExecOne(pVCpu);
6120 }
6121
6122 if (rcStrict == VINF_IEM_RAISED_XCPT)
6123 {
6124 rcStrict = VINF_SUCCESS;
6125 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6126 }
6127 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6128 return VBOXSTRICTRC_TODO(rcStrict);
6129}
6130
6131
6132/**
6133 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
6134 */
6135HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6136{
6137 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6138
6139 VBOXSTRICTRC rcStrict;
6140 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6141 if (fSupportsNextRipSave)
6142 {
6143 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6144 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6145 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6146 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
6147 }
6148 else
6149 {
6150 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6151 rcStrict = IEMExecOne(pVCpu);
6152 }
6153
6154 if (rcStrict == VINF_IEM_RAISED_XCPT)
6155 {
6156 rcStrict = VINF_SUCCESS;
6157 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6158 }
6159 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6160 return VBOXSTRICTRC_TODO(rcStrict);
6161}
6162
6163
6164/**
6165 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6166 */
6167HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6168{
6169 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6170
6171 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
6172 VBOXSTRICTRC rcStrict;
6173 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6174 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
6175 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6176 if (!pExitRec)
6177 {
6178 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6179 if (fSupportsNextRipSave)
6180 {
6181 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6182 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6183 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
6184 }
6185 else
6186 {
6187 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6188 rcStrict = IEMExecOne(pVCpu);
6189 }
6190
6191 if (rcStrict == VINF_IEM_RAISED_XCPT)
6192 {
6193 rcStrict = VINF_SUCCESS;
6194 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6195 }
6196 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6197 }
6198 else
6199 {
6200 /*
6201 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6202 */
6203 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6204
6205 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
6206 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
6207
6208 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6209
6210 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6211 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6212 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6213 }
6214 return VBOXSTRICTRC_TODO(rcStrict);
6215}
6216
6217
6218/**
6219 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6220 */
6221HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6222{
6223 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6224
6225 VBOXSTRICTRC rcStrict;
6226 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6227 if (fSupportsNextRipSave)
6228 {
6229 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6230 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6231 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6232 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
6233 }
6234 else
6235 {
6236 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6237 rcStrict = IEMExecOne(pVCpu);
6238 }
6239
6240 if (rcStrict == VINF_SUCCESS)
6241 pSvmTransient->fUpdateTscOffsetting = true;
6242 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6243 {
6244 rcStrict = VINF_SUCCESS;
6245 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6246 }
6247 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6248 return VBOXSTRICTRC_TODO(rcStrict);
6249}
6250
6251
6252/**
6253 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6254 */
6255HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6256{
6257 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6258
6259 VBOXSTRICTRC rcStrict;
6260 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6261 if (fSupportsNextRipSave)
6262 {
6263 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
6264 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6265 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6266 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
6267 }
6268 else
6269 {
6270 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6271 rcStrict = IEMExecOne(pVCpu);
6272 }
6273
6274 if (rcStrict == VINF_SUCCESS)
6275 pSvmTransient->fUpdateTscOffsetting = true;
6276 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6277 {
6278 rcStrict = VINF_SUCCESS;
6279 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6280 }
6281 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6282 return VBOXSTRICTRC_TODO(rcStrict);
6283}
6284
6285
6286/**
6287 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6288 */
6289HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6290{
6291 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6292
6293 VBOXSTRICTRC rcStrict;
6294 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6295 if (fSupportsNextRipSave)
6296 {
6297 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6298 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6299 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6300 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
6301 }
6302 else
6303 {
6304 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6305 rcStrict = IEMExecOne(pVCpu);
6306 }
6307
6308 if (rcStrict == VINF_IEM_RAISED_XCPT)
6309 {
6310 rcStrict = VINF_SUCCESS;
6311 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6312 }
6313 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6314 return VBOXSTRICTRC_TODO(rcStrict);
6315}
6316
6317
6318/**
6319 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6320 */
6321HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6322{
6323 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6324 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6325
6326 VBOXSTRICTRC rcStrict;
6327 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6328 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6329 if ( fSupportsDecodeAssists
6330 && fSupportsNextRipSave)
6331 {
6332 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
6333 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6334 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6335 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6336 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6337 }
6338 else
6339 {
6340 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6341 rcStrict = IEMExecOne(pVCpu);
6342 }
6343
6344 if (rcStrict == VINF_IEM_RAISED_XCPT)
6345 {
6346 rcStrict = VINF_SUCCESS;
6347 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6348 }
6349 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6350 return VBOXSTRICTRC_VAL(rcStrict);
6351}
6352
6353
6354/**
6355 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6356 */
6357HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6358{
6359 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6360
6361 VBOXSTRICTRC rcStrict;
6362 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6363 if (fSupportsNextRipSave)
6364 {
6365 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6366 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6367 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6368 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6369 }
6370 else
6371 {
6372 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6373 rcStrict = IEMExecOne(pVCpu);
6374 }
6375
6376 if ( rcStrict == VINF_EM_HALT
6377 || rcStrict == VINF_SUCCESS)
6378 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6379 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6380 {
6381 rcStrict = VINF_SUCCESS;
6382 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6383 }
6384 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6385 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6386 if (rcStrict != VINF_SUCCESS)
6387 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6388 return VBOXSTRICTRC_VAL(rcStrict);;
6389}
6390
6391
6392/**
6393 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6394 */
6395HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6396{
6397 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6398
6399 /*
6400 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6401 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6402 * segment override prefix or other prefixes might be used, in which case we fallback to
6403 * IEMExecOne() to figure out.
6404 */
6405 VBOXSTRICTRC rcStrict;
6406 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6407 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6408 if (cbInstr)
6409 {
6410 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6411 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6412 }
6413 else
6414 {
6415 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6416 rcStrict = IEMExecOne(pVCpu);
6417 }
6418
6419 if (rcStrict == VINF_IEM_RAISED_XCPT)
6420 {
6421 rcStrict = VINF_SUCCESS;
6422 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6423 }
6424 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6425 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6426 return VBOXSTRICTRC_TODO(rcStrict);
6427}
6428
6429
6430/**
6431 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6432 */
6433HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6434{
6435 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6436
6437 VBOXSTRICTRC rcStrict;
6438 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6439 if (fSupportsNextRipSave)
6440 {
6441 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6442 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6443 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6444 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6445 }
6446 else
6447 {
6448 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6449 rcStrict = IEMExecOne(pVCpu);
6450 }
6451
6452 if ( rcStrict == VINF_EM_HALT
6453 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6454 rcStrict = VINF_SUCCESS;
6455 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6456 {
6457 rcStrict = VINF_SUCCESS;
6458 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6459 }
6460 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6461 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6462 return VBOXSTRICTRC_TODO(rcStrict);
6463}
6464
6465
6466/**
6467 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6468 * \#VMEXIT.
6469 */
6470HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6471{
6472 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6473 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6474 return VINF_EM_RESET;
6475}
6476
6477
6478/**
6479 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6480 */
6481HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6482{
6483 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6484 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6485 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6486 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6487 RT_NOREF(pVmcb);
6488 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6489 return VERR_SVM_UNEXPECTED_EXIT;
6490}
6491
6492
6493/**
6494 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6495 */
6496HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6497{
6498 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6499
6500 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6501 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6502#ifdef VBOX_WITH_STATISTICS
6503 switch (pSvmTransient->u64ExitCode)
6504 {
6505 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6506 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6507 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6508 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6509 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6510 }
6511#endif
6512
6513 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6514 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6515 if ( fSupportsDecodeAssists
6516 && fSupportsNextRipSave)
6517 {
6518 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6519 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6520 if (fMovCRx)
6521 {
6522 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6523 | CPUMCTX_EXTRN_APIC_TPR);
6524 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6525 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6526 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6527 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6528 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6529 return VBOXSTRICTRC_VAL(rcStrict);
6530 }
6531 /* else: SMSW instruction, fall back below to IEM for this. */
6532 }
6533
6534 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6535 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6536 AssertMsg( rcStrict == VINF_SUCCESS
6537 || rcStrict == VINF_PGM_SYNC_CR3
6538 || rcStrict == VINF_IEM_RAISED_XCPT,
6539 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6540 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6541 if (rcStrict == VINF_IEM_RAISED_XCPT)
6542 {
6543 rcStrict = VINF_SUCCESS;
6544 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6545 }
6546 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6547 return VBOXSTRICTRC_TODO(rcStrict);
6548}
6549
6550
6551/**
6552 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6553 */
6554HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6555{
6556 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6557
6558 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6559 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6560 Assert(iCrReg <= 15);
6561
6562 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6563 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6564 bool fDecodedInstr = false;
6565 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6566 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6567 if ( fSupportsDecodeAssists
6568 && fSupportsNextRipSave)
6569 {
6570 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6571 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6572 if (fMovCRx)
6573 {
6574 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6575 | CPUMCTX_EXTRN_APIC_TPR);
6576 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6577 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6578 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6579 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6580 fDecodedInstr = true;
6581 }
6582 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6583 }
6584
6585 if (!fDecodedInstr)
6586 {
6587 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6588 Log4Func(("iCrReg=%#x\n", iCrReg));
6589 rcStrict = IEMExecOne(pVCpu);
6590 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6591 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6592 rcStrict = VERR_EM_INTERPRETER;
6593 }
6594
6595 if (rcStrict == VINF_SUCCESS)
6596 {
6597 switch (iCrReg)
6598 {
6599 case 0:
6600 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6601 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6602 break;
6603
6604 case 2:
6605 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6606 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6607 break;
6608
6609 case 3:
6610 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6611 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6612 break;
6613
6614 case 4:
6615 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6616 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6617 break;
6618
6619 case 8:
6620 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6621 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6622 break;
6623
6624 default:
6625 {
6626 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6627 pSvmTransient->u64ExitCode, iCrReg));
6628 break;
6629 }
6630 }
6631 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6632 }
6633 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6634 {
6635 rcStrict = VINF_SUCCESS;
6636 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6637 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6638 }
6639 else
6640 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6641 return VBOXSTRICTRC_TODO(rcStrict);
6642}
6643
6644
6645/**
6646 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6647 *
6648 * @returns Strict VBox status code.
6649 * @param pVCpu The cross context virtual CPU structure.
6650 * @param pVmcb Pointer to the VM control block.
6651 */
6652static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPU pVCpu, PSVMVMCB pVmcb)
6653{
6654 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6655 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6656
6657 VBOXSTRICTRC rcStrict;
6658 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6659 if (fSupportsNextRipSave)
6660 {
6661 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6662 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6663 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6664 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6665 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6666 }
6667 else
6668 {
6669 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6670 rcStrict = IEMExecOne(pVCpu);
6671 }
6672
6673 AssertMsg( rcStrict == VINF_SUCCESS
6674 || rcStrict == VINF_IEM_RAISED_XCPT
6675 || rcStrict == VINF_CPUM_R3_MSR_READ,
6676 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6677
6678 if (rcStrict == VINF_IEM_RAISED_XCPT)
6679 {
6680 rcStrict = VINF_SUCCESS;
6681 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6682 }
6683 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6684 return rcStrict;
6685}
6686
6687
6688/**
6689 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6690 *
6691 * @returns Strict VBox status code.
6692 * @param pVCpu The cross context virtual CPU structure.
6693 * @param pVmcb Pointer to the VM control block.
6694 * @param pSvmTransient Pointer to the SVM-transient structure.
6695 */
6696static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6697{
6698 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6699 uint32_t const idMsr = pCtx->ecx;
6700 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6701 Log4Func(("idMsr=%#RX32\n", idMsr));
6702
6703 /*
6704 * Handle TPR patching MSR writes.
6705 * We utilitize the LSTAR MSR for patching.
6706 */
6707 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6708 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
6709 && idMsr == MSR_K8_LSTAR)
6710 {
6711 unsigned cbInstr;
6712 if (fSupportsNextRipSave)
6713 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6714 else
6715 {
6716 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6717 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6718 if ( rc == VINF_SUCCESS
6719 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6720 Assert(cbInstr > 0);
6721 else
6722 cbInstr = 0;
6723 }
6724
6725 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6726 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6727 {
6728 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6729 AssertRCReturn(rc, rc);
6730 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6731 }
6732
6733 int rc = VINF_SUCCESS;
6734 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6735 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6736 return rc;
6737 }
6738
6739 /*
6740 * Handle regular MSR writes.
6741 */
6742 VBOXSTRICTRC rcStrict;
6743 if (fSupportsNextRipSave)
6744 {
6745 /** @todo Optimize this: We don't need to get much of the MSR state here
6746 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6747 * clear the applicable extern flags. */
6748 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6749 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6750 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6751 }
6752 else
6753 {
6754 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6755 rcStrict = IEMExecOne(pVCpu);
6756 }
6757
6758 AssertMsg( rcStrict == VINF_SUCCESS
6759 || rcStrict == VINF_IEM_RAISED_XCPT
6760 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6761 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6762
6763 if (rcStrict == VINF_SUCCESS)
6764 {
6765 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6766 if ( idMsr >= MSR_IA32_X2APIC_START
6767 && idMsr <= MSR_IA32_X2APIC_END)
6768 {
6769 /*
6770 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6771 * When full APIC register virtualization is implemented we'll have to make sure
6772 * APIC state is saved from the VMCB before IEM changes it.
6773 */
6774 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6775 }
6776 else
6777 {
6778 switch (idMsr)
6779 {
6780 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6781 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6782 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6783 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6784 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6785 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6786 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6787 }
6788 }
6789 }
6790 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6791 {
6792 rcStrict = VINF_SUCCESS;
6793 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6794 }
6795 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6796 return rcStrict;
6797}
6798
6799
6800/**
6801 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6802 * \#VMEXIT.
6803 */
6804HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6805{
6806 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6807
6808 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6809 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6810 return VBOXSTRICTRC_TODO(hmR0SvmExitReadMsr(pVCpu, pVmcb));
6811
6812 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6813 return VBOXSTRICTRC_TODO(hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient));
6814}
6815
6816
6817/**
6818 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6819 */
6820HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6821{
6822 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6823 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6824
6825 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6826
6827 /** @todo Stepping with nested-guest. */
6828 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6829 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6830 {
6831 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6832 if (pSvmTransient->fWasGuestDebugStateActive)
6833 {
6834 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6835 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6836 return VERR_SVM_UNEXPECTED_EXIT;
6837 }
6838
6839 /*
6840 * Lazy DR0-3 loading.
6841 */
6842 if (!pSvmTransient->fWasHyperDebugStateActive)
6843 {
6844 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6845 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6846
6847 /* Don't intercept DRx read and writes. */
6848 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6849 pVmcb->ctrl.u16InterceptRdDRx = 0;
6850 pVmcb->ctrl.u16InterceptWrDRx = 0;
6851 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6852
6853 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6854 VMMRZCallRing3Disable(pVCpu);
6855 HM_DISABLE_PREEMPT(pVCpu);
6856
6857 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6858 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6859 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6860
6861 HM_RESTORE_PREEMPT();
6862 VMMRZCallRing3Enable(pVCpu);
6863
6864 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6865 return VINF_SUCCESS;
6866 }
6867 }
6868
6869 /*
6870 * Interpret the read/writing of DRx.
6871 */
6872 /** @todo Decode assist. */
6873 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6874 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6875 if (RT_LIKELY(rc == VINF_SUCCESS))
6876 {
6877 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6878 /** @todo CPUM should set this flag! */
6879 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6880 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6881 }
6882 else
6883 Assert(rc == VERR_EM_INTERPRETER);
6884 return VBOXSTRICTRC_TODO(rc);
6885}
6886
6887
6888/**
6889 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6890 */
6891HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6892{
6893 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6894 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6895 int rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6896 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6897 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6898 return rc;
6899}
6900
6901
6902/**
6903 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6904 */
6905HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6906{
6907 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6908 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6909
6910 /** @todo decode assists... */
6911 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6912 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6913 {
6914 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6915 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6916 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0,
6917 pCtx->cr4));
6918 }
6919 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6920 {
6921 rcStrict = VINF_SUCCESS;
6922 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6923 }
6924 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6925 return VBOXSTRICTRC_TODO(rcStrict);
6926}
6927
6928
6929/**
6930 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6931 */
6932HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6933{
6934 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6935 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6936
6937 /* I/O operation lookup arrays. */
6938 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6939 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6940 the result (in AL/AX/EAX). */
6941 PVM pVM = pVCpu->CTX_SUFF(pVM);
6942 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6943 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6944
6945 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6946
6947 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6948 SVMIOIOEXITINFO IoExitInfo;
6949 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6950 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6951 uint32_t cbValue = s_aIOSize[uIOWidth];
6952 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6953
6954 if (RT_UNLIKELY(!cbValue))
6955 {
6956 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6957 return VERR_EM_INTERPRETER;
6958 }
6959
6960 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6961 VBOXSTRICTRC rcStrict;
6962 PCEMEXITREC pExitRec = NULL;
6963 if ( !pVCpu->hm.s.fSingleInstruction
6964 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6965 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6966 !IoExitInfo.n.u1Str
6967 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6968 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6969 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6970 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6971 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6972 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6973 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6974 if (!pExitRec)
6975 {
6976 bool fUpdateRipAlready = false;
6977 if (IoExitInfo.n.u1Str)
6978 {
6979 /* INS/OUTS - I/O String instruction. */
6980 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6981 * in EXITINFO1? Investigate once this thing is up and running. */
6982 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6983 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6984 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6985 static IEMMODE const s_aenmAddrMode[8] =
6986 {
6987 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6988 };
6989 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6990 if (enmAddrMode != (IEMMODE)-1)
6991 {
6992 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6993 if (cbInstr <= 15 && cbInstr >= 1)
6994 {
6995 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6996 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6997 {
6998 /* Don't know exactly how to detect whether u3Seg is valid, currently
6999 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
7000 2384 Opterons when only checking NRIP. */
7001 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7002 if ( fSupportsNextRipSave
7003 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
7004 {
7005 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
7006 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
7007 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7008 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
7009 }
7010 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
7011 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7012 X86_SREG_DS, true /*fIoChecked*/);
7013 else
7014 rcStrict = IEMExecOne(pVCpu);
7015 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
7016 }
7017 else
7018 {
7019 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
7020 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7021 true /*fIoChecked*/);
7022 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
7023 }
7024 }
7025 else
7026 {
7027 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
7028 rcStrict = IEMExecOne(pVCpu);
7029 }
7030 }
7031 else
7032 {
7033 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
7034 rcStrict = IEMExecOne(pVCpu);
7035 }
7036 fUpdateRipAlready = true;
7037 }
7038 else
7039 {
7040 /* IN/OUT - I/O instruction. */
7041 Assert(!IoExitInfo.n.u1Rep);
7042
7043 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
7044 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
7045 {
7046 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
7047 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7048 && !pCtx->eflags.Bits.u1TF)
7049 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
7050 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
7051 }
7052 else
7053 {
7054 uint32_t u32Val = 0;
7055 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
7056 if (IOM_SUCCESS(rcStrict))
7057 {
7058 /* Save result of I/O IN instr. in AL/AX/EAX. */
7059 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
7060 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
7061 }
7062 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7063 && !pCtx->eflags.Bits.u1TF)
7064 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
7065
7066 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
7067 }
7068 }
7069
7070 if (IOM_SUCCESS(rcStrict))
7071 {
7072 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
7073 if (!fUpdateRipAlready)
7074 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
7075
7076 /*
7077 * If any I/O breakpoints are armed, we need to check if one triggered
7078 * and take appropriate action.
7079 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
7080 */
7081 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
7082 * execution engines about whether hyper BPs and such are pending. */
7083 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
7084 uint32_t const uDr7 = pCtx->dr[7];
7085 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7086 && X86_DR7_ANY_RW_IO(uDr7)
7087 && (pCtx->cr4 & X86_CR4_DE))
7088 || DBGFBpIsHwIoArmed(pVM)))
7089 {
7090 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7091 VMMRZCallRing3Disable(pVCpu);
7092 HM_DISABLE_PREEMPT(pVCpu);
7093
7094 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
7095 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
7096
7097 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
7098 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
7099 {
7100 /* Raise #DB. */
7101 pVmcb->guest.u64DR6 = pCtx->dr[6];
7102 pVmcb->guest.u64DR7 = pCtx->dr[7];
7103 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7104 hmR0SvmSetPendingXcptDB(pVCpu);
7105 }
7106 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
7107 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
7108 else if ( rcStrict2 != VINF_SUCCESS
7109 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
7110 rcStrict = rcStrict2;
7111 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
7112
7113 HM_RESTORE_PREEMPT();
7114 VMMRZCallRing3Enable(pVCpu);
7115 }
7116
7117 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7118 }
7119
7120#ifdef VBOX_STRICT
7121 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7122 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
7123 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
7124 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7125 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
7126 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
7127 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
7128 else
7129 {
7130 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
7131 * statuses, that the VMM device and some others may return. See
7132 * IOM_SUCCESS() for guidance. */
7133 AssertMsg( RT_FAILURE(rcStrict)
7134 || rcStrict == VINF_SUCCESS
7135 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
7136 || rcStrict == VINF_EM_DBG_BREAKPOINT
7137 || rcStrict == VINF_EM_RAW_GUEST_TRAP
7138 || rcStrict == VINF_EM_RAW_TO_R3
7139 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
7140 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7141 }
7142#endif
7143 }
7144 else
7145 {
7146 /*
7147 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7148 */
7149 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7150 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
7151 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
7152 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
7153 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
7154 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
7155 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
7156
7157 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7158 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7159
7160 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7161 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7162 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7163 }
7164 return VBOXSTRICTRC_TODO(rcStrict);
7165}
7166
7167
7168/**
7169 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
7170 */
7171HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7172{
7173 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7174 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7175 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7176
7177 PVM pVM = pVCpu->CTX_SUFF(pVM);
7178 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7179 Assert(pVM->hm.s.fNestedPaging);
7180
7181 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
7182 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7183 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
7184 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
7185 thus intentionally not copied into u32ErrCode. */
7186
7187 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
7188 u32ErrCode));
7189
7190 /*
7191 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
7192 */
7193 if ( pVM->hm.s.fTprPatchingAllowed
7194 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
7195 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
7196 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
7197 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7198 && !CPUMIsGuestInLongModeEx(pCtx)
7199 && !CPUMGetGuestCPL(pVCpu)
7200 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7201 {
7202 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7203 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7204
7205 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
7206 {
7207 /* Only attempt to patch the instruction once. */
7208 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7209 if (!pPatch)
7210 return VINF_EM_HM_PATCH_TPR_INSTR;
7211 }
7212 }
7213
7214 /*
7215 * Determine the nested paging mode.
7216 */
7217/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
7218 PGMMODE enmNestedPagingMode;
7219#if HC_ARCH_BITS == 32
7220 if (CPUMIsGuestInLongModeEx(pCtx))
7221 enmNestedPagingMode = PGMMODE_AMD64_NX;
7222 else
7223#endif
7224 enmNestedPagingMode = PGMGetHostMode(pVM);
7225
7226 /*
7227 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
7228 */
7229 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
7230 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
7231 {
7232 /*
7233 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
7234 * injecting the original pending event would most likely cause the same MMIO #NPF.
7235 */
7236 if (pVCpu->hm.s.Event.fPending)
7237 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7238
7239 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
7240 VBOXSTRICTRC rcStrict;
7241 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
7242 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
7243 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
7244 if (!pExitRec)
7245 {
7246
7247 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
7248 u32ErrCode);
7249
7250 /*
7251 * If we succeed, resume guest execution.
7252 *
7253 * If we fail in interpreting the instruction because we couldn't get the guest
7254 * physical address of the page containing the instruction via the guest's page
7255 * tables (we would invalidate the guest page in the host TLB), resume execution
7256 * which would cause a guest page fault to let the guest handle this weird case.
7257 *
7258 * See @bugref{6043}.
7259 */
7260 if ( rcStrict == VINF_SUCCESS
7261 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
7262 || rcStrict == VERR_PAGE_NOT_PRESENT)
7263 {
7264 /* Successfully handled MMIO operation. */
7265 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
7266 rcStrict = VINF_SUCCESS;
7267 }
7268 }
7269 else
7270 {
7271 /*
7272 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7273 */
7274 Assert(pCtx == &pVCpu->cpum.GstCtx);
7275 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7276 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
7277 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
7278
7279 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7280 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7281
7282 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7283 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7284 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7285 }
7286 return VBOXSTRICTRC_TODO(rcStrict);
7287 }
7288
7289 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
7290 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
7291 TRPMResetTrap(pVCpu);
7292
7293 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
7294
7295 /*
7296 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
7297 */
7298 if ( rc == VINF_SUCCESS
7299 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7300 || rc == VERR_PAGE_NOT_PRESENT)
7301 {
7302 /* We've successfully synced our shadow page tables. */
7303 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7304 rc = VINF_SUCCESS;
7305 }
7306
7307 return rc;
7308}
7309
7310
7311/**
7312 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
7313 * \#VMEXIT.
7314 */
7315HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7316{
7317 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7318 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7319
7320 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7321 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7322 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
7323
7324 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7325 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7326 return VINF_SUCCESS;
7327}
7328
7329
7330/**
7331 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7332 * \#VMEXIT.
7333 */
7334HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7335{
7336 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7337 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7338
7339#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7340 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7341#endif
7342
7343 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7344 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7345 {
7346 /*
7347 * AMD-V provides us with the exception which caused the TS; we collect
7348 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7349 */
7350 Log4Func(("TS occurred during event delivery\n"));
7351 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7352 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7353 }
7354
7355 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7356 * emulation. */
7357 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7358 return VERR_EM_INTERPRETER;
7359}
7360
7361
7362/**
7363 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7364 */
7365HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7366{
7367 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7368 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7369
7370 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingAllowed)
7371 {
7372 int rc = hmSvmEmulateMovTpr(pVCpu);
7373 if (rc != VERR_NOT_FOUND)
7374 {
7375 Log4Func(("hmSvmEmulateMovTpr returns %Rrc\n", rc));
7376 return rc;
7377 }
7378 }
7379
7380 if (EMAreHypercallInstructionsEnabled(pVCpu))
7381 {
7382 unsigned cbInstr;
7383 if (hmR0SvmSupportsNextRipSave(pVCpu))
7384 {
7385 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7386 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7387 }
7388 else
7389 {
7390 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7391 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7392 if ( rc == VINF_SUCCESS
7393 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7394 Assert(cbInstr > 0);
7395 else
7396 cbInstr = 0;
7397 }
7398
7399 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7400 if (RT_SUCCESS(rcStrict))
7401 {
7402 /* Only update the RIP if we're continuing guest execution and not in the case
7403 of say VINF_GIM_R3_HYPERCALL. */
7404 if (rcStrict == VINF_SUCCESS)
7405 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7406
7407 return VBOXSTRICTRC_VAL(rcStrict);
7408 }
7409 else
7410 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7411 }
7412
7413 hmR0SvmSetPendingXcptUD(pVCpu);
7414 return VINF_SUCCESS;
7415}
7416
7417
7418/**
7419 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7420 */
7421HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7422{
7423 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7424
7425 unsigned cbInstr;
7426 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7427 if (fSupportsNextRipSave)
7428 {
7429 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7430 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7431 }
7432 else
7433 {
7434 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7435 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7436 if ( rc == VINF_SUCCESS
7437 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7438 Assert(cbInstr > 0);
7439 else
7440 cbInstr = 0;
7441 }
7442
7443 /** @todo The guest has likely hit a contended spinlock. We might want to
7444 * poke a schedule different guest VCPU. */
7445 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7446 return VINF_EM_RAW_INTERRUPT;
7447}
7448
7449
7450/**
7451 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7452 * \#VMEXIT.
7453 */
7454HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7455{
7456 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7457 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7458 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7459
7460 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7461 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7462}
7463
7464
7465/**
7466 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7467 */
7468HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7469{
7470 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7471
7472 /* Clear NMI blocking. */
7473 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7474 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7475
7476 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7477 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7478 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7479
7480 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7481 return VINF_SUCCESS;
7482}
7483
7484
7485/**
7486 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7487 * Conditional \#VMEXIT.
7488 */
7489HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7490{
7491 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7492 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7493 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7494
7495 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7496 PVM pVM = pVCpu->CTX_SUFF(pVM);
7497 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7498 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7499 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7500 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7501
7502#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7503 if (pVM->hm.s.fNestedPaging)
7504 {
7505 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7506 if ( !pSvmTransient->fVectoringDoublePF
7507 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7508 {
7509 /* A genuine guest #PF, reflect it to the guest. */
7510 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7511 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7512 uFaultAddress, uErrCode));
7513 }
7514 else
7515 {
7516 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7517 hmR0SvmSetPendingXcptDF(pVCpu);
7518 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7519 }
7520 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7521 return VINF_SUCCESS;
7522 }
7523#endif
7524
7525 Assert(!pVM->hm.s.fNestedPaging);
7526
7527 /*
7528 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7529 */
7530 if ( pVM->hm.s.fTprPatchingAllowed
7531 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7532 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7533 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7534 && !CPUMIsGuestInLongModeEx(pCtx)
7535 && !CPUMGetGuestCPL(pVCpu)
7536 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7537 {
7538 RTGCPHYS GCPhysApicBase;
7539 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7540 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7541
7542 /* Check if the page at the fault-address is the APIC base. */
7543 RTGCPHYS GCPhysPage;
7544 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7545 if ( rc2 == VINF_SUCCESS
7546 && GCPhysPage == GCPhysApicBase)
7547 {
7548 /* Only attempt to patch the instruction once. */
7549 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7550 if (!pPatch)
7551 return VINF_EM_HM_PATCH_TPR_INSTR;
7552 }
7553 }
7554
7555 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7556 pCtx->rip, uErrCode, pCtx->cr3));
7557
7558 /*
7559 * If it's a vectoring #PF, emulate injecting the original event injection as
7560 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7561 * event injection that caused a #PF. See @bugref{6607}.
7562 */
7563 if (pSvmTransient->fVectoringPF)
7564 {
7565 Assert(pVCpu->hm.s.Event.fPending);
7566 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7567 }
7568
7569 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7570 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7571
7572 Log4Func(("#PF: rc=%Rrc\n", rc));
7573
7574 if (rc == VINF_SUCCESS)
7575 {
7576 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7577 TRPMResetTrap(pVCpu);
7578 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7579 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7580 return rc;
7581 }
7582
7583 if (rc == VINF_EM_RAW_GUEST_TRAP)
7584 {
7585 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7586
7587 /*
7588 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7589 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7590 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7591 */
7592 if ( !pSvmTransient->fVectoringDoublePF
7593 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7594 {
7595 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7596 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7597 TRPMResetTrap(pVCpu);
7598
7599#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7600 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7601 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7602 && HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
7603 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress));
7604#endif
7605
7606 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7607 }
7608 else
7609 {
7610 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7611 TRPMResetTrap(pVCpu);
7612 hmR0SvmSetPendingXcptDF(pVCpu);
7613 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7614 }
7615
7616 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7617 return VINF_SUCCESS;
7618 }
7619
7620 TRPMResetTrap(pVCpu);
7621 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7622 return rc;
7623}
7624
7625
7626/**
7627 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7628 * Conditional \#VMEXIT.
7629 */
7630HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7631{
7632 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7633 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7634
7635 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7636 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7637 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7638
7639 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7640 if (pVCpu->hm.s.fGIMTrapXcptUD)
7641 {
7642 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7643 uint8_t cbInstr = 0;
7644 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7645 if (rcStrict == VINF_SUCCESS)
7646 {
7647 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7648 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7649 rc = VINF_SUCCESS;
7650 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7651 }
7652 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7653 rc = VINF_SUCCESS;
7654 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7655 rc = VINF_GIM_R3_HYPERCALL;
7656 else
7657 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7658 }
7659
7660 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7661 if (RT_FAILURE(rc))
7662 {
7663 hmR0SvmSetPendingXcptUD(pVCpu);
7664 rc = VINF_SUCCESS;
7665 }
7666
7667 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7668 return rc;
7669}
7670
7671
7672/**
7673 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7674 * Conditional \#VMEXIT.
7675 */
7676HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7677{
7678 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7679 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7680
7681 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7682 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7683
7684 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7685 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7686
7687 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7688
7689 if (!(pCtx->cr0 & X86_CR0_NE))
7690 {
7691 PVM pVM = pVCpu->CTX_SUFF(pVM);
7692 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7693 unsigned cbInstr;
7694 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7695 if (RT_SUCCESS(rc))
7696 {
7697 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7698 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7699 if (RT_SUCCESS(rc))
7700 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7701 }
7702 else
7703 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7704 return rc;
7705 }
7706
7707 hmR0SvmSetPendingXcptMF(pVCpu);
7708 return VINF_SUCCESS;
7709}
7710
7711
7712/**
7713 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7714 * \#VMEXIT.
7715 */
7716HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7717{
7718 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7719 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7720 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7721
7722 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7723 {
7724 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7725 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7726 }
7727
7728 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7729
7730 /*
7731 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7732 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7733 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7734 */
7735 PVM pVM = pVCpu->CTX_SUFF(pVM);
7736 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7737 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7738 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7739 if (rc == VINF_EM_RAW_GUEST_TRAP)
7740 {
7741 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7742 if (CPUMIsHyperDebugStateActive(pVCpu))
7743 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7744
7745 /* Reflect the exception back to the guest. */
7746 hmR0SvmSetPendingXcptDB(pVCpu);
7747 rc = VINF_SUCCESS;
7748 }
7749
7750 /*
7751 * Update DR6.
7752 */
7753 if (CPUMIsHyperDebugStateActive(pVCpu))
7754 {
7755 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7756 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7757 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7758 }
7759 else
7760 {
7761 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7762 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7763 }
7764
7765 return rc;
7766}
7767
7768
7769/**
7770 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7771 * Conditional \#VMEXIT.
7772 */
7773HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7774{
7775 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7776 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7777
7778 SVMEVENT Event;
7779 Event.u = 0;
7780 Event.n.u1Valid = 1;
7781 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7782 Event.n.u8Vector = X86_XCPT_AC;
7783 Event.n.u1ErrorCodeValid = 1;
7784 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7785 return VINF_SUCCESS;
7786}
7787
7788
7789/**
7790 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7791 * Conditional \#VMEXIT.
7792 */
7793HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7794{
7795 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7796 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7797 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7798
7799 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7800 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7801 if (rc == VINF_EM_RAW_GUEST_TRAP)
7802 {
7803 SVMEVENT Event;
7804 Event.u = 0;
7805 Event.n.u1Valid = 1;
7806 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7807 Event.n.u8Vector = X86_XCPT_BP;
7808 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7809 }
7810
7811 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7812 return rc;
7813}
7814
7815
7816/**
7817 * Hacks its way around the lovely mesa driver's backdoor accesses.
7818 *
7819 * @sa hmR0VmxHandleMesaDrvGp
7820 */
7821static int hmR0SvmHandleMesaDrvGp(PVMCPU pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7822{
7823 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7824 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7825 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7826 RT_NOREF(pCtx, pVmcb);
7827
7828 /* For now we'll just skip the instruction. */
7829 hmR0SvmAdvanceRip(pVCpu, 1);
7830 return VINF_SUCCESS;
7831}
7832
7833
7834/**
7835 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7836 * backdoor logging w/o checking what it is running inside.
7837 *
7838 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7839 * backdoor port and magic numbers loaded in registers.
7840 *
7841 * @returns true if it is, false if it isn't.
7842 * @sa hmR0VmxIsMesaDrvGp
7843 */
7844DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPU pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7845{
7846 /* Check magic and port. */
7847 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7848 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7849 if (pCtx->dx != UINT32_C(0x5658))
7850 return false;
7851 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7852 return false;
7853
7854 /* Check that it is #GP(0). */
7855 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7856 return false;
7857
7858 /* Flat ring-3 CS. */
7859 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7860 if (pVmcb->guest.u8CPL != 3)
7861 return false;
7862 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7863 return false;
7864
7865 /* 0xed: IN eAX,dx */
7866 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7867 {
7868 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7869 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7870 uint8_t abInstr[1];
7871 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7872 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7873 if (RT_FAILURE(rc))
7874 return false;
7875 if (abInstr[0] != 0xed)
7876 return false;
7877 }
7878 else
7879 {
7880 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7881 if (pVmcb->ctrl.abInstr[0] != 0xed)
7882 return false;
7883 }
7884 return true;
7885}
7886
7887
7888/**
7889 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7890 * Conditional \#VMEXIT.
7891 */
7892HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7893{
7894 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7895 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7896
7897 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7898 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7899
7900 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7901 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7902 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7903 {
7904 SVMEVENT Event;
7905 Event.u = 0;
7906 Event.n.u1Valid = 1;
7907 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7908 Event.n.u8Vector = X86_XCPT_GP;
7909 Event.n.u1ErrorCodeValid = 1;
7910 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7911 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7912 return VINF_SUCCESS;
7913 }
7914 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7915}
7916
7917
7918#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7919/**
7920 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7921 */
7922HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7923{
7924 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7925 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7926
7927 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7928 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7929 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7930 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7931 Assert(uVector <= X86_XCPT_LAST);
7932 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7933
7934 SVMEVENT Event;
7935 Event.u = 0;
7936 Event.n.u1Valid = 1;
7937 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7938 Event.n.u8Vector = uVector;
7939 switch (uVector)
7940 {
7941 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7942 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7943 case X86_XCPT_DF:
7944 case X86_XCPT_TS:
7945 case X86_XCPT_NP:
7946 case X86_XCPT_SS:
7947 case X86_XCPT_GP:
7948 case X86_XCPT_AC:
7949 {
7950 Event.n.u1ErrorCodeValid = 1;
7951 Event.n.u32ErrorCode = uErrCode;
7952 break;
7953 }
7954 }
7955
7956 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7957 return VINF_SUCCESS;
7958}
7959#endif
7960
7961#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7962/**
7963 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7964 */
7965HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7966{
7967 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7968
7969 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7970 Assert(pVmcb);
7971 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7972
7973 VBOXSTRICTRC rcStrict;
7974 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7975 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7976 if (fSupportsNextRipSave)
7977 {
7978 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7979 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7980 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7981 }
7982 else
7983 {
7984 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7985 rcStrict = IEMExecOne(pVCpu);
7986 }
7987
7988 if (rcStrict == VINF_SUCCESS)
7989 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7990 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7991 {
7992 rcStrict = VINF_SUCCESS;
7993 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7994 }
7995 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7996 return VBOXSTRICTRC_TODO(rcStrict);
7997}
7998
7999
8000/**
8001 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
8002 */
8003HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8004{
8005 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8006
8007 /*
8008 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
8009 * we only intercept STGI when events are pending for GIF to become 1.
8010 */
8011 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8012 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
8013 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
8014
8015 VBOXSTRICTRC rcStrict;
8016 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8017 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
8018 if (fSupportsNextRipSave)
8019 {
8020 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
8021 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8022 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
8023 }
8024 else
8025 {
8026 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
8027 rcStrict = IEMExecOne(pVCpu);
8028 }
8029
8030 if (rcStrict == VINF_SUCCESS)
8031 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
8032 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8033 {
8034 rcStrict = VINF_SUCCESS;
8035 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8036 }
8037 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8038 return VBOXSTRICTRC_TODO(rcStrict);
8039}
8040
8041
8042/**
8043 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
8044 */
8045HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8046{
8047 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8048
8049 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8050 Assert(pVmcb);
8051 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
8052
8053 VBOXSTRICTRC rcStrict;
8054 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8055 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
8056 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
8057 | CPUMCTX_EXTRN_SYSENTER_MSRS;
8058 if (fSupportsNextRipSave)
8059 {
8060 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
8061 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8062 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
8063 }
8064 else
8065 {
8066 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
8067 rcStrict = IEMExecOne(pVCpu);
8068 }
8069
8070 if (rcStrict == VINF_SUCCESS)
8071 {
8072 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
8073 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
8074 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
8075 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
8076 }
8077 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8078 {
8079 rcStrict = VINF_SUCCESS;
8080 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8081 }
8082 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8083 return VBOXSTRICTRC_TODO(rcStrict);
8084}
8085
8086
8087/**
8088 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
8089 */
8090HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8091{
8092 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8093
8094 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8095 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
8096
8097 VBOXSTRICTRC rcStrict;
8098 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8099 if (fSupportsNextRipSave)
8100 {
8101 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
8102 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8103 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
8104 }
8105 else
8106 {
8107 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8108 rcStrict = IEMExecOne(pVCpu);
8109 }
8110
8111 if (rcStrict == VINF_IEM_RAISED_XCPT)
8112 {
8113 rcStrict = VINF_SUCCESS;
8114 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8115 }
8116 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8117 return VBOXSTRICTRC_TODO(rcStrict);
8118}
8119
8120
8121/**
8122 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
8123 */
8124HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8125{
8126 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8127
8128 VBOXSTRICTRC rcStrict;
8129 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8130 if (fSupportsNextRipSave)
8131 {
8132 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
8133 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8134 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8135 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
8136 }
8137 else
8138 {
8139 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8140 rcStrict = IEMExecOne(pVCpu);
8141 }
8142
8143 if (rcStrict == VINF_IEM_RAISED_XCPT)
8144 {
8145 rcStrict = VINF_SUCCESS;
8146 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8147 }
8148 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8149 return VBOXSTRICTRC_TODO(rcStrict);
8150}
8151
8152
8153/**
8154 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
8155 */
8156HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8157{
8158 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8159 /* We shall import the entire state here, just in case we enter and continue execution of
8160 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
8161 could lose lose part of CPU state. */
8162 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
8163
8164 VBOXSTRICTRC rcStrict;
8165 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8166 if (fSupportsNextRipSave)
8167 {
8168 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8169 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8170 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
8171 }
8172 else
8173 {
8174 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
8175 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
8176 instruction itself, see @bugref{7243#c126} */
8177 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
8178 }
8179
8180 if (rcStrict == VINF_SUCCESS)
8181 {
8182 rcStrict = VINF_SVM_VMRUN;
8183 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
8184 }
8185 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8186 {
8187 rcStrict = VINF_SUCCESS;
8188 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8189 }
8190 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8191 return VBOXSTRICTRC_TODO(rcStrict);
8192}
8193
8194
8195/**
8196 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
8197 * Unconditional \#VMEXIT.
8198 */
8199HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8200{
8201 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8202 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8203
8204 if (pVCpu->hm.s.Event.fPending)
8205 {
8206 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
8207 return VINF_EM_RAW_INJECT_TRPM_EVENT;
8208 }
8209
8210 hmR0SvmSetPendingXcptDB(pVCpu);
8211 return VINF_SUCCESS;
8212}
8213
8214
8215/**
8216 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
8217 * Conditional \#VMEXIT.
8218 */
8219HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8220{
8221 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8222 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8223
8224 SVMEVENT Event;
8225 Event.u = 0;
8226 Event.n.u1Valid = 1;
8227 Event.n.u3Type = SVM_EVENT_EXCEPTION;
8228 Event.n.u8Vector = X86_XCPT_BP;
8229 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
8230 return VINF_SUCCESS;
8231}
8232#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
8233
8234/** @} */
8235
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette