/* $Id: HMSVMR0.cpp 92626 2021-11-29 12:32:58Z vboxsync $ */ /** @file * HM SVM (AMD-V) - Host Context Ring-0. */ /* * Copyright (C) 2013-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_HM #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #include #include #include #include #include #include #include #include "HMInternal.h" #include #include #include "HMSVMR0.h" #include "dtrace/VBoxVMM.h" #ifdef DEBUG_ramshankar # define HMSVM_SYNC_FULL_GUEST_STATE # define HMSVM_ALWAYS_TRAP_ALL_XCPTS # define HMSVM_ALWAYS_TRAP_PF # define HMSVM_ALWAYS_TRAP_TASK_SWITCH #endif /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #ifdef VBOX_WITH_STATISTICS # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \ if ((u64ExitCode) == SVM_EXIT_NPF) \ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \ else \ STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \ } while (0) # ifdef VBOX_WITH_NESTED_HWVIRT_SVM # define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \ STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \ if ((u64ExitCode) == SVM_EXIT_NPF) \ STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \ else \ STAM_COUNTER_INC(&pVCpu->hm.s.aStatNestedExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \ } while (0) # endif #else # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0) # ifdef VBOX_WITH_NESTED_HWVIRT_SVM # define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0) # endif #endif /* !VBOX_WITH_STATISTICS */ /** If we decide to use a function table approach this can be useful to * switch to a "static DECLCALLBACK(int)". */ #define HMSVM_EXIT_DECL static VBOXSTRICTRC /** * Subset of the guest-CPU state that is kept by SVM R0 code while executing the * guest using hardware-assisted SVM. * * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always * are swapped and restored across the world-switch and also registers like * EFER, PAT MSR etc. which cannot be modified by the guest without causing a * \#VMEXIT. */ #define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \ | CPUMCTX_EXTRN_RFLAGS \ | CPUMCTX_EXTRN_RAX \ | CPUMCTX_EXTRN_RSP \ | CPUMCTX_EXTRN_SREG_MASK \ | CPUMCTX_EXTRN_CR0 \ | CPUMCTX_EXTRN_CR2 \ | CPUMCTX_EXTRN_CR3 \ | CPUMCTX_EXTRN_TABLE_MASK \ | CPUMCTX_EXTRN_DR6 \ | CPUMCTX_EXTRN_DR7 \ | CPUMCTX_EXTRN_KERNEL_GS_BASE \ | CPUMCTX_EXTRN_SYSCALL_MSRS \ | CPUMCTX_EXTRN_SYSENTER_MSRS \ | CPUMCTX_EXTRN_HWVIRT \ | CPUMCTX_EXTRN_INHIBIT_INT \ | CPUMCTX_EXTRN_HM_SVM_MASK) /** * Subset of the guest-CPU state that is shared between the guest and host. */ #define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK /** Macro for importing guest state from the VMCB back into CPUMCTX. */ #define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \ do { \ if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \ hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \ } while (0) /** Assert that the required state bits are fetched. */ #define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \ ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \ (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz))) /** Assert that preemption is disabled or covered by thread-context hooks. */ #define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \ || !RTThreadPreemptIsEnabled(NIL_RTTHREAD)); /** Assert that we haven't migrated CPUs when thread-context hooks are not * used. */ #define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \ || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \ ("Illegal migration! Entered on CPU %u Current %u\n", \ (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId())); /** Assert that we're not executing a nested-guest. */ #ifdef VBOX_WITH_NESTED_HWVIRT_SVM # define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx))) #else # define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0) #endif /** Assert that we're executing a nested-guest. */ #ifdef VBOX_WITH_NESTED_HWVIRT_SVM # define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx))) #else # define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0) #endif /** Macro for checking and returning from the using function for * \#VMEXIT intercepts that maybe caused during delivering of another * event in the guest. */ #ifdef VBOX_WITH_NESTED_HWVIRT_SVM # define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \ do \ { \ int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \ if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \ else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \ else if ( rc == VINF_EM_RESET \ && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \ { \ HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \ return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \ } \ else \ return rc; \ } while (0) #else # define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \ do \ { \ int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \ if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \ else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \ else \ return rc; \ } while (0) #endif /** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an * instruction that exited. */ #define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \ do { \ if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \ (a_rc) = VINF_EM_DBG_STEPPED; \ } while (0) /** Validate segment descriptor granularity bit. */ #ifdef VBOX_STRICT # define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \ AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \ || ( (a_pCtx)->reg.Attr.n.u1Granularity \ ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \ : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \ ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \ (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base)) #else # define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0) #endif /** * Exception bitmap mask for all contributory exceptions. * * Page fault is deliberately excluded here as it's conditional as to whether * it's contributory or benign. Page faults are handled separately. */ #define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \ | RT_BIT(X86_XCPT_DE)) /** * Mandatory/unconditional guest control intercepts. * * SMIs can and do happen in normal operation. We need not intercept them * while executing the guest (or nested-guest). */ #define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \ | SVM_CTRL_INTERCEPT_NMI \ | SVM_CTRL_INTERCEPT_INIT \ | SVM_CTRL_INTERCEPT_RDPMC \ | SVM_CTRL_INTERCEPT_CPUID \ | SVM_CTRL_INTERCEPT_RSM \ | SVM_CTRL_INTERCEPT_HLT \ | SVM_CTRL_INTERCEPT_IOIO_PROT \ | SVM_CTRL_INTERCEPT_MSR_PROT \ | SVM_CTRL_INTERCEPT_INVLPGA \ | SVM_CTRL_INTERCEPT_SHUTDOWN \ | SVM_CTRL_INTERCEPT_FERR_FREEZE \ | SVM_CTRL_INTERCEPT_VMRUN \ | SVM_CTRL_INTERCEPT_SKINIT \ | SVM_CTRL_INTERCEPT_WBINVD \ | SVM_CTRL_INTERCEPT_MONITOR \ | SVM_CTRL_INTERCEPT_MWAIT \ | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \ | SVM_CTRL_INTERCEPT_XSETBV) /** @name VMCB Clean Bits. * * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in * memory. * * @{ */ /** All intercepts vectors, TSC offset, PAUSE filter counter. */ #define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0) /** I/O permission bitmap, MSR permission bitmap. */ #define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1) /** ASID. */ #define HMSVM_VMCB_CLEAN_ASID RT_BIT(2) /** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING, V_INTR_VECTOR. */ #define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3) /** Nested Paging: Nested CR3 (nCR3), PAT. */ #define HMSVM_VMCB_CLEAN_NP RT_BIT(4) /** Control registers (CR0, CR3, CR4, EFER). */ #define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5) /** Debug registers (DR6, DR7). */ #define HMSVM_VMCB_CLEAN_DRX RT_BIT(6) /** GDT, IDT limit and base. */ #define HMSVM_VMCB_CLEAN_DT RT_BIT(7) /** Segment register: CS, SS, DS, ES limit and base. */ #define HMSVM_VMCB_CLEAN_SEG RT_BIT(8) /** CR2.*/ #define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9) /** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */ #define HMSVM_VMCB_CLEAN_LBR RT_BIT(10) /** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */ #define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11) /** Mask of all valid VMCB Clean bits. */ #define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \ | HMSVM_VMCB_CLEAN_IOPM_MSRPM \ | HMSVM_VMCB_CLEAN_ASID \ | HMSVM_VMCB_CLEAN_INT_CTRL \ | HMSVM_VMCB_CLEAN_NP \ | HMSVM_VMCB_CLEAN_CRX_EFER \ | HMSVM_VMCB_CLEAN_DRX \ | HMSVM_VMCB_CLEAN_DT \ | HMSVM_VMCB_CLEAN_SEG \ | HMSVM_VMCB_CLEAN_CR2 \ | HMSVM_VMCB_CLEAN_LBR \ | HMSVM_VMCB_CLEAN_AVIC) /** @} */ /** @name SVM transient. * * A state structure for holding miscellaneous information across AMD-V * VMRUN/\#VMEXIT operation, restored after the transition. * * @{ */ typedef struct SVMTRANSIENT { /** The host's rflags/eflags. */ RTCCUINTREG fEFlags; /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */ uint64_t u64ExitCode; /** The guest's TPR value used for TPR shadowing. */ uint8_t u8GuestTpr; /** Alignment. */ uint8_t abAlignment0[7]; /** Pointer to the currently executing VMCB. */ PSVMVMCB pVmcb; /** Whether we are currently executing a nested-guest. */ bool fIsNestedGuest; /** Whether the guest debug state was active at the time of \#VMEXIT. */ bool fWasGuestDebugStateActive; /** Whether the hyper debug state was active at the time of \#VMEXIT. */ bool fWasHyperDebugStateActive; /** Whether the TSC offset mode needs to be updated. */ bool fUpdateTscOffsetting; /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */ bool fRestoreTscAuxMsr; /** Whether the \#VMEXIT was caused by a page-fault during delivery of a * contributary exception or a page-fault. */ bool fVectoringDoublePF; /** Whether the \#VMEXIT was caused by a page-fault during delivery of an * external interrupt or NMI. */ bool fVectoringPF; /** Padding. */ bool afPadding0; } SVMTRANSIENT; /** Pointer to SVM transient state. */ typedef SVMTRANSIENT *PSVMTRANSIENT; /** Pointer to a const SVM transient state. */ typedef const SVMTRANSIENT *PCSVMTRANSIENT; AssertCompileSizeAlignment(SVMTRANSIENT, sizeof(uint64_t)); AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t)); AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t)); /** @} */ /** * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR). */ typedef enum SVMMSREXITREAD { /** Reading this MSR causes a \#VMEXIT. */ SVMMSREXIT_INTERCEPT_READ = 0xb, /** Reading this MSR does not cause a \#VMEXIT. */ SVMMSREXIT_PASSTHRU_READ } SVMMSREXITREAD; /** * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR). */ typedef enum SVMMSREXITWRITE { /** Writing to this MSR causes a \#VMEXIT. */ SVMMSREXIT_INTERCEPT_WRITE = 0xd, /** Writing to this MSR does not cause a \#VMEXIT. */ SVMMSREXIT_PASSTHRU_WRITE } SVMMSREXITWRITE; /** * SVM \#VMEXIT handler. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM-transient structure. */ typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient); /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu); static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState); /** @name \#VMEXIT handlers. * @{ */ static FNSVMEXITHANDLER hmR0SvmExitIntr; static FNSVMEXITHANDLER hmR0SvmExitWbinvd; static FNSVMEXITHANDLER hmR0SvmExitInvd; static FNSVMEXITHANDLER hmR0SvmExitCpuid; static FNSVMEXITHANDLER hmR0SvmExitRdtsc; static FNSVMEXITHANDLER hmR0SvmExitRdtscp; static FNSVMEXITHANDLER hmR0SvmExitRdpmc; static FNSVMEXITHANDLER hmR0SvmExitInvlpg; static FNSVMEXITHANDLER hmR0SvmExitHlt; static FNSVMEXITHANDLER hmR0SvmExitMonitor; static FNSVMEXITHANDLER hmR0SvmExitMwait; static FNSVMEXITHANDLER hmR0SvmExitShutdown; static FNSVMEXITHANDLER hmR0SvmExitUnexpected; static FNSVMEXITHANDLER hmR0SvmExitReadCRx; static FNSVMEXITHANDLER hmR0SvmExitWriteCRx; static FNSVMEXITHANDLER hmR0SvmExitMsr; static FNSVMEXITHANDLER hmR0SvmExitReadDRx; static FNSVMEXITHANDLER hmR0SvmExitWriteDRx; static FNSVMEXITHANDLER hmR0SvmExitXsetbv; static FNSVMEXITHANDLER hmR0SvmExitIOInstr; static FNSVMEXITHANDLER hmR0SvmExitNestedPF; static FNSVMEXITHANDLER hmR0SvmExitVIntr; static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch; static FNSVMEXITHANDLER hmR0SvmExitVmmCall; static FNSVMEXITHANDLER hmR0SvmExitPause; static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze; static FNSVMEXITHANDLER hmR0SvmExitIret; static FNSVMEXITHANDLER hmR0SvmExitXcptPF; static FNSVMEXITHANDLER hmR0SvmExitXcptUD; static FNSVMEXITHANDLER hmR0SvmExitXcptMF; static FNSVMEXITHANDLER hmR0SvmExitXcptDB; static FNSVMEXITHANDLER hmR0SvmExitXcptAC; static FNSVMEXITHANDLER hmR0SvmExitXcptBP; static FNSVMEXITHANDLER hmR0SvmExitXcptGP; #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM) static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric; #endif #ifdef VBOX_WITH_NESTED_HWVIRT_SVM static FNSVMEXITHANDLER hmR0SvmExitClgi; static FNSVMEXITHANDLER hmR0SvmExitStgi; static FNSVMEXITHANDLER hmR0SvmExitVmload; static FNSVMEXITHANDLER hmR0SvmExitVmsave; static FNSVMEXITHANDLER hmR0SvmExitInvlpga; static FNSVMEXITHANDLER hmR0SvmExitVmrun; static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB; static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP; #endif /** @} */ static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient); #endif /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Ring-0 memory object for the IO bitmap. */ static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ; /** Physical address of the IO bitmap. */ static RTHCPHYS g_HCPhysIOBitmap; /** Pointer to the IO bitmap. */ static R0PTRTYPE(void *) g_pvIOBitmap; #ifdef VBOX_STRICT # define HMSVM_LOG_RBP_RSP RT_BIT_32(0) # define HMSVM_LOG_CR_REGS RT_BIT_32(1) # define HMSVM_LOG_CS RT_BIT_32(2) # define HMSVM_LOG_SS RT_BIT_32(3) # define HMSVM_LOG_FS RT_BIT_32(4) # define HMSVM_LOG_GS RT_BIT_32(5) # define HMSVM_LOG_LBR RT_BIT_32(6) # define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \ | HMSVM_LOG_CR_REGS \ | HMSVM_LOG_CS \ | HMSVM_LOG_SS \ | HMSVM_LOG_FS \ | HMSVM_LOG_GS \ | HMSVM_LOG_LBR) /** * Dumps virtual CPU state and additional info. to the logger for diagnostics. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * @param pszPrefix Log prefix. * @param fFlags Log flags, see HMSVM_LOG_XXX. * @param uVerbose The verbosity level, currently unused. */ static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose) { RT_NOREF2(pVCpu, uVerbose); PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS); Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u)); if (fFlags & HMSVM_LOG_RBP_RSP) { HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP); Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp)); } if (fFlags & HMSVM_LOG_CR_REGS) { HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4); Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4)); } if (fFlags & HMSVM_LOG_CS) { HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS); Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u)); } if (fFlags & HMSVM_LOG_SS) { HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS); Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u)); } if (fFlags & HMSVM_LOG_FS) { HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS); Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u)); } if (fFlags & HMSVM_LOG_GS) { HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS); Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u)); } PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest; if (fFlags & HMSVM_LOG_LBR) { Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM, pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO)); } NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx); } #endif /* VBOX_STRICT */ /** * Sets up and activates AMD-V on the current CPU. * * @returns VBox status code. * @param pHostCpu The HM physical-CPU structure. * @param pVM The cross context VM structure. Can be * NULL after a resume! * @param pvCpuPage Pointer to the global CPU page. * @param HCPhysCpuPage Physical address of the global CPU page. * @param fEnabledByHost Whether the host OS has already initialized AMD-V. * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently * unused). */ VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost, PCSUPHWVIRTMSRS pHwvirtMsrs) { Assert(!fEnabledByHost); Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS); Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage); Assert(pvCpuPage); NOREF(pvCpuPage); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); RT_NOREF2(fEnabledByHost, pHwvirtMsrs); /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */ RTCCUINTREG const fEFlags = ASMIntDisableFlags(); /* * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU. */ uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER); if (u64HostEfer & MSR_K6_EFER_SVME) { /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */ if ( pVM && pVM->hm.s.svm.fIgnoreInUseError) pHostCpu->fIgnoreAMDVInUseError = true; if (!pHostCpu->fIgnoreAMDVInUseError) { ASMSetFlags(fEFlags); return VERR_SVM_IN_USE; } } /* Turn on AMD-V in the EFER MSR. */ ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME); /* Write the physical page address where the CPU will store the host state while executing the VM. */ ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage); /* Restore interrupts. */ ASMSetFlags(fEFlags); /* * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB * entirely with before executing any guest code. */ pHostCpu->fFlushAsidBeforeUse = true; /* * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}. */ ++pHostCpu->cTlbFlushes; return VINF_SUCCESS; } /** * Deactivates AMD-V on the current CPU. * * @returns VBox status code. * @param pHostCpu The HM physical-CPU structure. * @param pvCpuPage Pointer to the global CPU page. * @param HCPhysCpuPage Physical address of the global CPU page. */ VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage) { RT_NOREF1(pHostCpu); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); AssertReturn( HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER); AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER); /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */ RTCCUINTREG const fEFlags = ASMIntDisableFlags(); /* Turn off AMD-V in the EFER MSR. */ uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER); ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME); /* Invalidate host state physical address. */ ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0); /* Restore interrupts. */ ASMSetFlags(fEFlags); return VINF_SUCCESS; } /** * Does global AMD-V initialization (called during module initialization). * * @returns VBox status code. */ VMMR0DECL(int) SVMR0GlobalInit(void) { /* * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always * intercept all IO accesses, it's done once globally here instead of per-VM. */ Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ); int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) return rc; g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap); g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */); /* Set all bits to intercept all IO accesses. */ ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff)); return VINF_SUCCESS; } /** * Does global AMD-V termination (called during module termination). */ VMMR0DECL(void) SVMR0GlobalTerm(void) { if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ) { RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */); g_pvIOBitmap = NULL; g_HCPhysIOBitmap = 0; g_hMemObjIOBitmap = NIL_RTR0MEMOBJ; } } /** * Frees any allocated per-VCPU structures for a VM. * * @param pVM The cross context VM structure. */ DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu); AssertPtr(pVCpu); if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false); pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0; pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ; } if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false); pVCpu->hmr0.s.svm.pVmcb = NULL; pVCpu->hmr0.s.svm.HCPhysVmcb = 0; pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ; } if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false); pVCpu->hmr0.s.svm.pvMsrBitmap = NULL; pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0; pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ; } } } /** * Sets pfnVMRun to the best suited variant. * * This must be called whenever anything changes relative to the SVMR0VMRun * variant selection: * - pVCpu->hm.s.fLoadSaveGuestXcr0 * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher * - Perhaps: CPUMIsGuestFPUStateActive() (windows only) * - Perhaps: CPUMCTX.fXStateMask (windows only) * * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime. */ static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu) { static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] = { { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit }, { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit }, { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit }, { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit }, { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit }, { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit }, { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit }, { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit }, }; uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0) | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0) | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0); PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn; if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun) pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun; } /** * Selector FNHMSVMVMRUN implementation. */ static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB) { hmR0SvmUpdateVmRunFunction(pVCpu); return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB); } /** * Does per-VM AMD-V initialization. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR0DECL(int) SVMR0InitVM(PVMCC pVM) { int rc = VERR_INTERNAL_ERROR_5; /* * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch. */ uint32_t u32Family; uint32_t u32Model; uint32_t u32Stepping; if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping)) { Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping)); pVM->hmr0.s.svm.fAlwaysFlushTLB = true; } /* * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu); pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ; pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ; pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ; } for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu); /* * Initialize the hardware-assisted SVM guest-execution handler. * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}. */ pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector; /* * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA. */ /** @todo Does this need to be below 4G? */ rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) goto failure_cleanup; void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost); pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */); Assert(pVCpu->hmr0.s.svm.HCPhysVmcbHost < _4G); ASMMemZeroPage(pvVmcbHost); /* * Allocate one page for the guest-state VMCB. */ /** @todo Does this need to be below 4G? */ rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) goto failure_cleanup; pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb); pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */); Assert(pVCpu->hmr0.s.svm.HCPhysVmcb < _4G); ASMMemZeroPage(pVCpu->hmr0.s.svm.pVmcb); /* * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince * SVM to not require one. */ /** @todo Does this need to be below 4G? */ rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) goto failure_cleanup; pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap); pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */); /* Set all bits to intercept all MSR accesses (changed later on). */ ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff)); } return VINF_SUCCESS; failure_cleanup: hmR0SvmFreeStructs(pVM); return rc; } /** * Does per-VM AMD-V termination. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR0DECL(int) SVMR0TermVM(PVMCC pVM) { hmR0SvmFreeStructs(pVM); return VINF_SUCCESS; } /** * Returns whether the VMCB Clean Bits feature is supported. * * @returns @c true if supported, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param fIsNestedGuest Whether we are currently executing the nested-guest. */ DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest) { PCVMCC pVM = pVCpu->CTX_SUFF(pVM); bool const fHostVmcbCleanBits = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN); if (!fIsNestedGuest) return fHostVmcbCleanBits; return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean; } /** * Returns whether the decode assists feature is supported. * * @returns @c true if supported, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS) && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists; #endif return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS); } /** * Returns whether the NRIP_SAVE feature is supported. * * @returns @c true if supported, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE) && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave; #endif return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE); } /** * Sets the permission bits for the specified MSR in the MSRPM bitmap. * * @param pVCpu The cross context virtual CPU structure. * @param pbMsrBitmap Pointer to the MSR bitmap. * @param idMsr The MSR for which the permissions are being set. * @param enmRead MSR read permissions. * @param enmWrite MSR write permissions. * * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The * caller needs to take care of this. */ static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite) { bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx); uint16_t offMsrpm; uint8_t uMsrpmBit; int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit); AssertRC(rc); Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6); Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT); pbMsrBitmap += offMsrpm; if (enmRead == SVMMSREXIT_INTERCEPT_READ) *pbMsrBitmap |= RT_BIT(uMsrpmBit); else { if (!fInNestedGuestMode) *pbMsrBitmap &= ~RT_BIT(uMsrpmBit); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM else { /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/ if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit))) *pbMsrBitmap &= ~RT_BIT(uMsrpmBit); else Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit)); } #endif } if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE) *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1); else { if (!fInNestedGuestMode) *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM else { /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/ if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit + 1))) *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1); else Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1)); } #endif } } /** * Sets up AMD-V for the specified VM. * This function is only called once per-VM during initalization. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); AssertReturn(pVM, VERR_INVALID_PARAMETER); /* * Validate and copy over some parameters. */ AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG); bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg; AssertReturn(!fNestedPaging || (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_INCOMPATIBLE_CONFIG); pVM->hmr0.s.fNestedPaging = fNestedPaging; pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg; /* * Determin some configuration parameters. */ bool const fPauseFilter = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER); bool const fPauseFilterThreshold = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD); bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter; bool const fLbrVirt = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT); bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */ #ifdef VBOX_WITH_NESTED_HWVIRT_SVM bool const fVirtVmsaveVmload = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD); bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging; bool const fVGif = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif; #endif PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM); PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb; AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB); PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl; /* Always trap #AC for reasons of security. */ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC); /* Always trap #DB for reasons of security. */ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB); /* Trap exceptions unconditionally (debug purposes). */ #ifdef HMSVM_ALWAYS_TRAP_PF pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF); #endif #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP) | RT_BIT_32(X86_XCPT_DE) | RT_BIT_32(X86_XCPT_NM) | RT_BIT_32(X86_XCPT_UD) | RT_BIT_32(X86_XCPT_NP) | RT_BIT_32(X86_XCPT_SS) | RT_BIT_32(X86_XCPT_GP) | RT_BIT_32(X86_XCPT_PF) | RT_BIT_32(X86_XCPT_MF) ; #endif /* Apply the exceptions intercepts needed by the GIM provider. */ if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit) pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD); /* The mesa 3d driver hack needs #GP. */ if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv) pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP); /* Set up unconditional intercepts and conditions. */ pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS | SVM_CTRL_INTERCEPT_VMMCALL | SVM_CTRL_INTERCEPT_VMSAVE | SVM_CTRL_INTERCEPT_VMLOAD | SVM_CTRL_INTERCEPT_CLGI | SVM_CTRL_INTERCEPT_STGI; #ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH; #endif #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm) { /* Virtualized VMSAVE/VMLOAD. */ if (fUseVirtVmsaveVmload) { pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1; pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE | SVM_CTRL_INTERCEPT_VMLOAD); } else Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload); /* Virtual GIF. */ if (fUseVGif) { pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1; pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI | SVM_CTRL_INTERCEPT_STGI); } else Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable); } else #endif { Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm); Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload); Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable); } /* CR4 writes must always be intercepted for tracking PGM mode changes. */ pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4); /* Intercept all DRx reads and writes by default. Changed later on. */ pVmcbCtrl0->u16InterceptRdDRx = 0xffff; pVmcbCtrl0->u16InterceptWrDRx = 0xffff; /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */ pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1; /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */ pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1; /* Set the IO permission bitmap physical addresses. */ pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap; /* LBR virtualization. */ pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt; /* The host ASID MBZ, for the guest start with 1. */ pVmcbCtrl0->TLBCtrl.n.u32ASID = 1; /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */ pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging; /* Without Nested Paging, we need additionally intercepts. */ if (!fNestedPaging) { /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */ pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3); pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3); /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */ pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG | SVM_CTRL_INTERCEPT_TASK_SWITCH; /* Page faults must be intercepted to implement shadow paging. */ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF); } /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */ if (fUsePauseFilter) { Assert(pVM->hm.s.svm.cPauseFilter > 0); pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter; if (fPauseFilterThreshold) pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks; pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE; } /* * Setup the MSR permission bitmap. * The following MSRs are saved/restored automatically during the world-switch. * Don't intercept guest read/write accesses to these MSRs. */ uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap; hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit) { hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); } else { hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE); hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE); } pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap; /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */ Assert(pVmcbCtrl0->u32VmcbCleanBits == 0); for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++) { PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu); PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb; AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB); PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl; /* Copy the VMCB control area. */ memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur)); /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */ uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap; memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT); pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap; /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */ Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0); /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */ Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD); } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter, fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload)); #else LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt)); #endif return VINF_SUCCESS; } /** * Gets a pointer to the currently active guest (or nested-guest) VMCB. * * @returns Pointer to the current context VMCB. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu) { #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) return &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb; #endif return pVCpu->hmr0.s.svm.pVmcb; } /** * Gets a pointer to the nested-guest VMCB cache. * * @returns Pointer to the nested-guest VMCB cache. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu) { #ifdef VBOX_WITH_NESTED_HWVIRT_SVM Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid); return &pVCpu->hm.s.svm.NstGstVmcbCache; #else RT_NOREF(pVCpu); return NULL; #endif } /** * Invalidates a guest page by guest virtual address. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCVirt Guest virtual address of the page to invalidate. */ VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt) { Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported); bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB; /* Skip it if a TLB flush is already pending. */ if (!fFlushPending) { Log4Func(("%#RGv\n", GCVirt)); PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB); SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID); STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt); } return VINF_SUCCESS; } /** * Flushes the appropriate tagged-TLB entries. * * @param pHostCpu The HM physical-CPU structure. * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. */ static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb) { /* * Force a TLB flush for the first world switch if the current CPU differs from the one * we ran on last. This can happen both for start & resume due to long jumps back to * ring-3. * * We also force a TLB flush every time when executing a nested-guest VCPU as there is no * correlation between it and the physical CPU. * * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while * flushing the TLB, so we cannot reuse the ASIDs without flushing. */ bool fNewAsid = false; Assert(pHostCpu->idCpu != NIL_RTCPUID); if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes #ifdef VBOX_WITH_NESTED_HWVIRT_SVM || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx) #endif ) { STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch); pVCpu->hmr0.s.fForceTLBFlush = true; fNewAsid = true; } /* Set TLB flush state as checked until we return from the world switch. */ ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Check for explicit TLB flushes. */ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) { pVCpu->hmr0.s.fForceTLBFlush = true; STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb); } /* * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad. * This Host CPU requirement takes precedence. */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); if (pVM->hmr0.s.svm.fAlwaysFlushTLB) { pHostCpu->uCurrentAsid = 1; pVCpu->hmr0.s.uCurrentAsid = 1; pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes; pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu; pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE; /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP; } else { pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING; if (pVCpu->hmr0.s.fForceTLBFlush) { /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP; if (fNewAsid) { ++pHostCpu->uCurrentAsid; bool fHitASIDLimit = false; if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid) { pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */ pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */ fHitASIDLimit = true; } if ( fHitASIDLimit || pHostCpu->fFlushAsidBeforeUse) { pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE; pHostCpu->fFlushAsidBeforeUse = false; } pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid; pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu; pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes; } else { if (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID) pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT; else pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE; } pVCpu->hmr0.s.fForceTLBFlush = false; } } /* Update VMCB with the ASID. */ if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid) { pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID; } AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu, ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu)); AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes, ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes)); AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid, ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid)); AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid, ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid)); #ifdef VBOX_WITH_STATISTICS if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING) STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS) { STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid); } else { Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE); STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire); } #endif } /** * Sets an exception intercept in the specified VMCB. * * @param pVmcb Pointer to the VM control block. * @param uXcpt The exception (X86_XCPT_*). */ DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt) { if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))) { pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt); pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } } /** * Clears an exception intercept in the specified VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * @param uXcpt The exception (X86_XCPT_*). * * @remarks This takes into account if we're executing a nested-guest and only * removes the exception intercept if both the guest -and- nested-guest * are not intercepting it. */ DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt) { Assert(uXcpt != X86_XCPT_DB); Assert(uXcpt != X86_XCPT_AC); Assert(uXcpt != X86_XCPT_GP); #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)) { bool fRemove = true; # ifdef VBOX_WITH_NESTED_HWVIRT_SVM /* Only remove the intercept if the nested-guest is also not intercepting it! */ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu); fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt)); } # else RT_NOREF(pVCpu); # endif if (fRemove) { pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt); pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } } #else RT_NOREF3(pVCpu, pVmcb, uXcpt); #endif } /** * Sets a control intercept in the specified VMCB. * * @param pVmcb Pointer to the VM control block. * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*). */ DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept) { if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)) { pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } } /** * Clears a control intercept in the specified VMCB. * * @returns @c true if the intercept is still set, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*). * * @remarks This takes into account if we're executing a nested-guest and only * removes the control intercept if both the guest -and- nested-guest * are not intercepting it. */ static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept) { if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept) { bool fRemove = true; #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /* Only remove the control intercept if the nested-guest is also not intercepting it! */ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) { PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu); fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept); } #else RT_NOREF(pVCpu); #endif if (fRemove) { pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } } return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept); } /** * Exports the guest (or nested-guest) CR0 into the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks This assumes we always pre-load the guest FPU. * @remarks No-long-jump zone!!! */ static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; uint64_t const uGuestCr0 = pCtx->cr0; uint64_t uShadowCr0 = uGuestCr0; /* Always enable caching. */ uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */ if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging) { uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */ | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */ } /* * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that * lets us isolate the host from it, IEM/REM still needs work to emulate it properly, * see @bugref{7243#c103}. */ if (!(uGuestCr0 & X86_CR0_NE)) { uShadowCr0 |= X86_CR0_NE; hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF); } else hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF); /* * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads. * * CR0 writes still needs interception as PGM requires tracking paging mode changes, * see @bugref{6944}. * * We also don't ever want to honor weird things like cache disable from the guest. * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead. */ if (uShadowCr0 == uGuestCr0) { if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0); pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0); Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE); } else { /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */ PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu); pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0)) | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0)); pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0)) | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0)); } } else { pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0); pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0); } pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; Assert(!RT_HI_U32(uShadowCr0)); if (pVmcb->guest.u64CR0 != uShadowCr0) { pVmcb->guest.u64CR0 = uShadowCr0; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER; } } /** * Exports the guest (or nested-guest) CR3 into the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); PVMCC pVM = pVCpu->CTX_SUFF(pVM); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; if (pVM->hmr0.s.fNestedPaging) { pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu); pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP; pVmcb->guest.u64CR3 = pCtx->cr3; Assert(pVmcb->ctrl.u64NestedPagingCR3); } else pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu); pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER; } /** * Exports the guest (or nested-guest) CR4 into the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; uint64_t uShadowCr4 = pCtx->cr4; if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging) { switch (pVCpu->hm.s.enmShadowMode) { case PGMMODE_REAL: case PGMMODE_PROTECTED: /* Protected mode, no paging. */ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; case PGMMODE_32_BIT: /* 32-bit paging. */ uShadowCr4 &= ~X86_CR4_PAE; break; case PGMMODE_PAE: /* PAE paging. */ case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */ /** Must use PAE paging as we could use physical memory > 4 GB */ uShadowCr4 |= X86_CR4_PAE; break; case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */ case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */ #ifdef VBOX_WITH_64_BITS_GUESTS break; #else return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; #endif default: /* shut up gcc */ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; } } /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */ bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0(); if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0) { pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0; hmR0SvmUpdateVmRunFunction(pVCpu); } /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */ if (uShadowCr4 == pCtx->cr4) { if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4); else { /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */ PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu); pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4)) | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4)); } } else pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4); /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */ Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4)); /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */ Assert(!RT_HI_U32(uShadowCr4)); pVmcb->guest.u64CR4 = uShadowCr4; pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS); return VINF_SUCCESS; } /** * Exports the guest (or nested-guest) control registers into the VMCB. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK) { if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0) hmR0SvmExportGuestCR0(pVCpu, pVmcb); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2) { pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2; } if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3) hmR0SvmExportGuestCR3(pVCpu, pVmcb); /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4) { int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb); if (RT_FAILURE(rc)) return rc; } pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK; } return VINF_SUCCESS; } /** * Exports the guest (or nested-guest) segment registers into the VMCB. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; /* Guest segment registers. */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK) { if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS) HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS) { HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss); pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl; } if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS) HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES) HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS) HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS) HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs); pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG; } /* Guest TR. */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR) HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr); /* Guest LDTR. */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR) HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr); /* Guest GDTR. */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR) { pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt; pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT; } /* Guest IDTR. */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR) { pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt; pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT; } pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK | HM_CHANGED_GUEST_TABLE_MASK); } /** * Exports the guest (or nested-guest) MSRs into the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; /* Guest Sysenter MSRs. */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK) { if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR) pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs; if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR) pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip; if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR) pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp; } /* * Guest EFER MSR. * AMD-V requires guest EFER.SVME to be set. Weird. * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks". */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR) { pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER; } /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */ if ( !CPUMIsGuestInLongModeEx(pCtx) && (pCtx->msrEFER & MSR_K6_EFER_LME)) { pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER; } if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS) { pVmcb->guest.u64STAR = pCtx->msrSTAR; pVmcb->guest.u64LSTAR = pCtx->msrLSTAR; pVmcb->guest.u64CSTAR = pCtx->msrCSTAR; pVmcb->guest.u64SFMASK = pCtx->msrSFMASK; } if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE) pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_GUEST_SYSCALL_MSRS | HM_CHANGED_GUEST_KERNEL_GS_BASE); /* * Setup the PAT MSR (applicable for Nested Paging only). * * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory * as WB, so choose type 6 for all PAT slots, see @bugref{9634}. * * While guests can modify and see the modified values through the shadow values, * we shall not honor any guest modifications of this MSR to ensure caching is always * enabled similar to how we clear CR0.CD and NW bits. * * For nested-guests this needs to always be set as well, see @bugref{7243#c109}. */ pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606); /* Enable the last branch record bit if LBR virtualization is enabled. */ if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt) pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR; } /** * Exports the guest (or nested-guest) debug state into the VMCB and programs * the necessary intercepts accordingly. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! * @remarks Requires EFLAGS to be up-to-date in the VMCB! */ static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; /** @todo Figure out stepping with nested-guest. */ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { /* * We don't want to always intercept DRx read/writes for nested-guests as it causes * problems when the nested hypervisor isn't intercepting them, see @bugref{10080}. * Instead, they are strictly only requested when the nested hypervisor intercepts * them -- handled while merging VMCB controls. * * If neither the outer nor the nested-hypervisor is intercepting DRx read/writes, * then the nested-guest debug state should be actively loaded on the host so that * nested-guest reads/writes its own debug registers without causing VM-exits. */ if ( ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff || pVmcb->ctrl.u16InterceptWrDRx != 0xffff) && !CPUMIsGuestDebugStateActive(pVCpu)) { CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */); STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed); Assert(!CPUMIsHyperDebugStateActive(pVCpu)); Assert(CPUMIsGuestDebugStateActive(pVCpu)); } pVmcb->guest.u64DR6 = pCtx->dr[6]; pVmcb->guest.u64DR7 = pCtx->dr[7]; return; } /* * Anyone single stepping on the host side? If so, we'll have to use the * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on * the VMM level like the VT-x implementations does. */ bool fInterceptMovDRx = false; bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu); if (fStepping) { pVCpu->hmr0.s.fClearTrapFlag = true; pVmcb->guest.u64RFlags |= X86_EFL_TF; fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */ } if ( fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK)) { /* * Use the combined guest and host DRx values found in the hypervisor * register set because the debugger has breakpoints active or someone * is single stepping on the host side. * * Note! DBGF expects a clean DR6 state before executing guest code. */ if (!CPUMIsHyperDebugStateActive(pVCpu)) { CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */); Assert(!CPUMIsGuestDebugStateActive(pVCpu)); Assert(CPUMIsHyperDebugStateActive(pVCpu)); } /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */ if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu)) { pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu); pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX; } /** @todo If we cared, we could optimize to allow the guest to read registers * with the same values. */ fInterceptMovDRx = true; pVCpu->hmr0.s.fUsingHyperDR7 = true; Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n")); } else { /* * Update DR6, DR7 with the guest values if necessary. */ if ( pVmcb->guest.u64DR7 != pCtx->dr[7] || pVmcb->guest.u64DR6 != pCtx->dr[6]) { pVmcb->guest.u64DR7 = pCtx->dr[7]; pVmcb->guest.u64DR6 = pCtx->dr[6]; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX; } pVCpu->hmr0.s.fUsingHyperDR7 = false; /* * If the guest has enabled debug registers, we need to load them prior to * executing guest code so they'll trigger at the right time. */ if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */ { if (!CPUMIsGuestDebugStateActive(pVCpu)) { CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */); STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed); Assert(!CPUMIsHyperDebugStateActive(pVCpu)); Assert(CPUMIsGuestDebugStateActive(pVCpu)); } Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n")); } /* * If no debugging enabled, we'll lazy load DR0-3. We don't need to * intercept #DB as DR6 is updated in the VMCB. * * Note! If we cared and dared, we could skip intercepting \#DB here. * However, \#DB shouldn't be performance critical, so we'll play safe * and keep the code similar to the VT-x code and always intercept it. */ else if (!CPUMIsGuestDebugStateActive(pVCpu)) fInterceptMovDRx = true; } Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB)); if (fInterceptMovDRx) { if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff || pVmcb->ctrl.u16InterceptWrDRx != 0xffff) { pVmcb->ctrl.u16InterceptRdDRx = 0xffff; pVmcb->ctrl.u16InterceptWrDRx = 0xffff; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } } else { if ( pVmcb->ctrl.u16InterceptRdDRx || pVmcb->ctrl.u16InterceptWrDRx) { pVmcb->ctrl.u16InterceptRdDRx = 0; pVmcb->ctrl.u16InterceptWrDRx = 0; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } } Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7])); } /** * Exports the hardware virtualization state into the nested-guest * VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT) { if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable) { PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PCVMCC pVM = pVCpu->CTX_SUFF(pVM); HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */ Assert(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */ Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */ NOREF(pVM); pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx); } /* * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp. * since SVM doesn't have a preemption timer. * * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between. */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl; uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter; uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks; if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE)) { PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount); pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold); } else { /** @todo r=ramshankar: We can turn these assignments into assertions. */ pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount; pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold; } pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT; } } /** * Exports the guest APIC TPR state into the VMCB. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. */ static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); if ( PDMHasApic(pVM) && APICIsEnabled(pVCpu)) { bool fPendingIntr; uint8_t u8Tpr; int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */); AssertRCReturn(rc, rc); /* Assume that we need to trap all TPR accesses and thus need not check on every #VMEXIT if we should update the TPR. */ Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking); pVCpu->hmr0.s.svm.fSyncVTpr = false; if (!pVM->hm.s.fTprPatchingActive) { /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */ pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4); /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */ if (fPendingIntr) pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8); else { pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8); pVCpu->hmr0.s.svm.fSyncVTpr = true; } pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL); } else { /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */ pVmcb->guest.u64LSTAR = u8Tpr; uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap; /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */ if (fPendingIntr) hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE); else { hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); pVCpu->hmr0.s.svm.fSyncVTpr = true; } pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM; } } ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR); } return VINF_SUCCESS; } /** * Sets up the exception interrupts required for guest execution in the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS) { /* Trap #UD for GIM provider (e.g. for hypercalls). */ if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit) hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD); else hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD); /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */ if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints) hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP); else hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP); /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS); } } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /** * Merges guest and nested-guest intercepts for executing the nested-guest using * hardware-assisted SVM. * * This merges the guest and nested-guest intercepts in a way that if the outer * guest intercept is set we need to intercept it in the nested-guest as * well. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcbNstGst Pointer to the nested-guest VM control block. */ static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb; PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl; /* Merge the guest's CR intercepts into the nested-guest VMCB. */ pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx; pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx; /* Always intercept CR4 writes for tracking PGM mode changes. */ pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4); /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */ if (!pVM->hmr0.s.fNestedPaging) { pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3); pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3); } /* Merge the guest's DR intercepts into the nested-guest VMCB. */ pVmcbNstGstCtrl->u16InterceptRdDRx |= pVmcb->ctrl.u16InterceptRdDRx; pVmcbNstGstCtrl->u16InterceptWrDRx |= pVmcb->ctrl.u16InterceptWrDRx; /* * Merge the guest's exception intercepts into the nested-guest VMCB. * * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable * while executing the nested-guest. * * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can * be tweaked later depending on how we wish to implement breakpoints. * * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers * loaded into their guests, not ours. * * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts(). */ #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt & ~( RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_BP) | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0)); #else pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt; #endif /* * Adjust intercepts while executing the nested-guest that differ from the * outer guest intercepts. * * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs * that belong to the nested-guest to the outer guest. * * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by * the nested-guest, the physical CPU raises a \#UD exception as expected. */ pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR | SVM_CTRL_INTERCEPT_VMMCALL)) | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS; Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS) == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS); /* Finally, update the VMCB clean bits. */ pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } #endif /** * Enters the AMD-V session. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu) { AssertPtr(pVCpu); Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); LogFlowFunc(("pVCpu=%p\n", pVCpu)); Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)) == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)); pVCpu->hmr0.s.fLeaveDone = false; return VINF_SUCCESS; } /** * Thread-context callback for AMD-V. * * This is used together with RTThreadCtxHookCreate() on platforms which * supports it, and directly from VMMR0EmtPrepareForBlocking() and * VMMR0EmtResumeAfterBlocking() on platforms which don't. * * @param enmEvent The thread-context event. * @param pVCpu The cross context virtual CPU structure. * @param fGlobalInit Whether global VT-x/AMD-V init. is used. * @thread EMT(pVCpu) */ VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit) { NOREF(fGlobalInit); switch (enmEvent) { case RTTHREADCTXEVENT_OUT: { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); VMCPU_ASSERT_EMT(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */ VMMRZCallRing3Disable(pVCpu); if (!pVCpu->hmr0.s.fLeaveDone) { hmR0SvmLeave(pVCpu, false /* fImportState */); pVCpu->hmr0.s.fLeaveDone = true; } /* Leave HM context, takes care of local init (term). */ int rc = HMR0LeaveCpu(pVCpu); AssertRC(rc); NOREF(rc); /* Restore longjmp state. */ VMMRZCallRing3Enable(pVCpu); STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt); break; } case RTTHREADCTXEVENT_IN: { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); VMCPU_ASSERT_EMT(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */ VMMRZCallRing3Disable(pVCpu); /* * Initialize the bare minimum state required for HM. This takes care of * initializing AMD-V if necessary (onlined CPUs, local init etc.) */ int rc = hmR0EnterCpu(pVCpu); AssertRC(rc); NOREF(rc); Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)) == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)); pVCpu->hmr0.s.fLeaveDone = false; /* Restore longjmp state. */ VMMRZCallRing3Enable(pVCpu); break; } default: break; } } /** * Saves the host state. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * * @remarks No-long-jump zone!!! */ VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu) { NOREF(pVCpu); /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT); return VINF_SUCCESS; } /** * Exports the guest or nested-guest state from the virtual-CPU context into the * VMCB. * * Also sets up the appropriate VMRUN function to execute guest or nested-guest * code based on the virtual-CPU mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM-transient structure. * * @remarks No-long-jump zone!!! */ static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient) { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x); PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; Assert(pVmcb); pVmcb->guest.u64RIP = pCtx->rip; pVmcb->guest.u64RSP = pCtx->rsp; pVmcb->guest.u64RFlags = pCtx->eflags.u32; pVmcb->guest.u64RAX = pCtx->rax; bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest; RTCCUINTREG const fEFlags = ASMIntDisableFlags(); int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb); AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc); hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb); hmR0SvmExportGuestMsrs(pVCpu, pVmcb); hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb); ASMSetFlags(fEFlags); if (!fIsNestedGuest) { /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */ hmR0SvmExportGuestApicTpr(pVCpu, pVmcb); hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb); } /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */ uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_GPRS_MASK | HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | HM_CHANGED_GUEST_OTHER_XSAVE | HM_CHANGED_GUEST_XCRx | HM_CHANGED_GUEST_TSC_AUX | HM_CHANGED_GUEST_OTHER_MSRS; if (fIsNestedGuest) fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS | HM_CHANGED_GUEST_APIC_TPR; ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK))); #ifdef VBOX_STRICT /* * All of the guest-CPU state and SVM keeper bits should be exported here by now, * except for the host-context and/or shared host-guest context bits. */ uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged); AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)), ("fCtxChanged=%#RX64\n", fCtxChanged)); /* * If we need to log state that isn't always imported, we'll need to import them here. * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally. */ hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */); #endif STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x); return VINF_SUCCESS; } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /** * Merges the guest and nested-guest MSR permission bitmap. * * If the guest is intercepting an MSR we need to intercept it regardless of * whether the nested-guest is intercepting it or not. * * @param pHostCpu The HM physical-CPU structure. * @param pVCpu The cross context virtual CPU structure. * * @remarks No-long-jmp zone!!! */ DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu) { uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap; uint64_t const *pu64NstGstMsrpm = (uint64_t const *)&pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[0]; uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm; /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */ uint32_t const offRsvdQwords = 0x1800 >> 3; for (uint32_t i = 0; i < offRsvdQwords; i++) pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i]; } /** * Caches the nested-guest VMCB fields before we modify them for execution using * hardware-assisted SVM. * * @returns true if the VMCB was previously already cached, false otherwise. * @param pVCpu The cross context virtual CPU structure. * * @sa HMNotifySvmNstGstVmexit. */ static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu) { /* * Cache the nested-guest programmed VMCB fields if we have not cached it yet. * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}. * * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT". */ PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; bool const fWasCached = pVmcbNstGstCache->fCacheValid; if (!fWasCached) { PCSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb; PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl; pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx; pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx; pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx; pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx; pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold; pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount; pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt; pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl; pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset; pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking; pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging; pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt; pVmcbNstGstCache->fCacheValid = true; Log4Func(("Cached VMCB fields\n")); } return fWasCached; } /** * Sets up the nested-guest VMCB for execution using hardware-assisted SVM. * * This is done the first time we enter nested-guest execution using SVM R0 * until the nested-guest \#VMEXIT (not to be confused with physical CPU * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT). * * @param pVCpu The cross context virtual CPU structure. */ static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu) { PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb; PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl; HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); /* * First cache the nested-guest VMCB fields we may potentially modify. */ bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu); if (!fVmcbCached) { /* * The IOPM of the nested-guest can be ignored because the the guest always * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather * than the nested-guest IOPM and swap the field back on the #VMEXIT. */ pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap; /* * Use the same nested-paging as the outer guest. We can't dynamically switch off * nested-paging suddenly while executing a VM (see assertion at the end of * Trap0eHandler() in PGMAllBth.h). */ pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging; /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */ pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1; /* * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject * to the nested-guest intercepts and we always run with V_INTR_MASKING. */ pVCpu->hmr0.s.svm.fSyncVTpr = false; # ifdef DEBUG_ramshankar /* For debugging purposes - copy the LBR info. from outer guest VMCB. */ pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt; # endif /* * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest. */ if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload) pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE | SVM_CTRL_INTERCEPT_VMLOAD; /* * If we don't expose Virtual GIF feature to the outer guest, we need to intercept * CLGI/STGI instructions executed by the nested-guest. */ if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif) pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI | SVM_CTRL_INTERCEPT_STGI; /* Merge the guest and nested-guest intercepts. */ hmR0SvmMergeVmcbCtrlsNested(pVCpu); /* Update the VMCB clean bits. */ pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } else { Assert(!pVCpu->hmr0.s.svm.fSyncVTpr); Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap); Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); } } #endif /* VBOX_WITH_NESTED_HWVIRT_SVM */ /** * Exports the state shared between the host and guest (or nested-guest) into * the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); Assert(!VMMRZCallRing3IsEnabled(pVCpu)); if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK) hmR0SvmExportSharedDebugState(pVCpu, pVmcb); pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK; AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE), ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged)); } /** * Worker for SVMR0ImportStateOnDemand. * * @param pVCpu The cross context virtual CPU structure. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. */ static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat) { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest; PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl; /* * We disable interrupts to make the updating of the state and in particular * the fExtrn modification atomic wrt to preemption hooks. */ RTCCUINTREG const fEFlags = ASMIntDisableFlags(); fWhat &= pCtx->fExtrn; if (fWhat) { #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (fWhat & CPUMCTX_EXTRN_HWVIRT) { if (pVmcbCtrl->IntCtrl.n.u1VGifEnable) { Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */ Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */ CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif); } } if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ) { if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST); } #endif if (fWhat & CPUMCTX_EXTRN_INHIBIT_INT) { if (pVmcbCtrl->IntShadow.n.u1IntShadow) EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP); else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); } if (fWhat & CPUMCTX_EXTRN_RIP) pCtx->rip = pVmcbGuest->u64RIP; if (fWhat & CPUMCTX_EXTRN_RFLAGS) pCtx->eflags.u32 = pVmcbGuest->u64RFlags; if (fWhat & CPUMCTX_EXTRN_RSP) pCtx->rsp = pVmcbGuest->u64RSP; if (fWhat & CPUMCTX_EXTRN_RAX) pCtx->rax = pVmcbGuest->u64RAX; if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_CS) { HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs); /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */ /** @todo SELM might need to be fixed as it too should not care about the * granularity bit. See @bugref{6785}. */ if ( !pCtx->cs.Attr.n.u1Granularity && pCtx->cs.Attr.n.u1Present && pCtx->cs.u32Limit > UINT32_C(0xfffff)) { Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff); pCtx->cs.Attr.n.u1Granularity = 1; } HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs); } if (fWhat & CPUMCTX_EXTRN_SS) { HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss); HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss); /* * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the * VMCB and uses that and thus it's possible that when the CPL changes during * guest execution that the SS DPL isn't updated by AMD-V. Observed on some * AMD Fusion CPUs with 64-bit guests. * * See AMD spec. 15.5.1 "Basic operation". */ Assert(!(pVmcbGuest->u8CPL & ~0x3)); uint8_t const uCpl = pVmcbGuest->u8CPL; if (pCtx->ss.Attr.n.u2Dpl != uCpl) pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3; } if (fWhat & CPUMCTX_EXTRN_DS) { HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds); HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds); } if (fWhat & CPUMCTX_EXTRN_ES) { HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es); HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es); } if (fWhat & CPUMCTX_EXTRN_FS) { HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs); HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs); } if (fWhat & CPUMCTX_EXTRN_GS) { HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs); HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs); } } if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_TR) { /* * Fixup TR attributes so it's compatible with Intel. Important when saved-states * are used between Intel and AMD, see @bugref{6208#c39}. * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode. */ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr); if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY) { if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL || CPUMIsGuestInLongModeEx(pCtx)) pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL) pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY; } } if (fWhat & CPUMCTX_EXTRN_LDTR) HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr); if (fWhat & CPUMCTX_EXTRN_GDTR) { pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit; pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base; } if (fWhat & CPUMCTX_EXTRN_IDTR) { pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit; pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base; } } if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { pCtx->msrSTAR = pVmcbGuest->u64STAR; pCtx->msrLSTAR = pVmcbGuest->u64LSTAR; pCtx->msrCSTAR = pVmcbGuest->u64CSTAR; pCtx->msrSFMASK = pVmcbGuest->u64SFMASK; } if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */) { pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS; pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP; pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP; } if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase; if (fWhat & CPUMCTX_EXTRN_DR_MASK) { if (fWhat & CPUMCTX_EXTRN_DR6) { if (!pVCpu->hmr0.s.fUsingHyperDR7) pCtx->dr[6] = pVmcbGuest->u64DR6; else CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6); } if (fWhat & CPUMCTX_EXTRN_DR7) { if (!pVCpu->hmr0.s.fUsingHyperDR7) pCtx->dr[7] = pVmcbGuest->u64DR7; else Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu)); } } if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) { /* We intercept changes to all CR0 bits except maybe TS & MP bits. */ uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP)) | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP)); VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */ CPUMSetGuestCR0(pVCpu, uCr0); VMMRZCallRing3Enable(pVCpu); } if (fWhat & CPUMCTX_EXTRN_CR2) pCtx->cr2 = pVmcbGuest->u64CR2; if (fWhat & CPUMCTX_EXTRN_CR3) { if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging && pCtx->cr3 != pVmcbGuest->u64CR3) { CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3); VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3); } } /* Changes to CR4 are always intercepted. */ } /* Update fExtrn. */ pCtx->fExtrn &= ~fWhat; /* If everything has been imported, clear the HM keeper bit. */ if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL)) { pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM; Assert(!pCtx->fExtrn); } } else Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL)); ASMSetFlags(fEFlags); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x); /* * Honor any pending CR3 updates. * * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState() * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT * handling -> hmR0SvmImportGuestState() and here we are. * * The reason for such complicated handling is because VM-exits that call into PGM expect * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3(). * * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again, * and does not process force-flag like regular exits to ring-3 either, we cover for it here. */ if ( VMMRZCallRing3IsEnabled(pVCpu) && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)) { AssertMsg(pCtx->cr3 == pVmcbGuest->u64CR3, ("cr3=%#RX64 vmcb_cr3=%#RX64\n", pCtx->cr3, pVmcbGuest->u64CR3)); PGMUpdateCR3(pVCpu, pCtx->cr3); } } /** * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU * context. * * Currently there is no residual state left in the CPU that is not updated in the * VMCB. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. */ VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat) { hmR0SvmImportGuestState(pVCpu, fWhat); return VINF_SUCCESS; } /** * Does the necessary state syncing before returning to ring-3 for any reason * (longjmp, preemption, voluntary exits to ring-3) from AMD-V. * * @param pVCpu The cross context virtual CPU structure. * @param fImportState Whether to import the guest state from the VMCB back * to the guest-CPU context. * * @remarks No-long-jmp zone!!! */ static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); Assert(!VMMRZCallRing3IsEnabled(pVCpu)); /* * !!! IMPORTANT !!! * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too. */ /* Save the guest state if necessary. */ if (fImportState) hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); /* Restore host FPU state if necessary and resync on next R0 reentry. */ CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu); Assert(!CPUMIsGuestFPUStateActive(pVCpu)); /* * Restore host debug registers if necessary and resync on next R0 reentry. */ #ifdef VBOX_STRICT if (CPUMIsHyperDebugStateActive(pVCpu)) { PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */ Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff); Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff); } #endif CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */); Assert(!CPUMIsHyperDebugStateActive(pVCpu)); Assert(!CPUMIsGuestDebugStateActive(pVCpu)); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry); STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3); VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC); } /** * Leaves the AMD-V session. * * Only used while returning to ring-3 either due to longjump or exits to * ring-3. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ static int hmR0SvmLeaveSession(PVMCPUCC pVCpu) { HM_DISABLE_PREEMPT(pVCpu); Assert(!VMMRZCallRing3IsEnabled(pVCpu)); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before and done this from the SVMR0ThreadCtxCallback(). */ if (!pVCpu->hmr0.s.fLeaveDone) { hmR0SvmLeave(pVCpu, true /* fImportState */); pVCpu->hmr0.s.fLeaveDone = true; } /* * !!! IMPORTANT !!! * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too. */ /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */ /* Deregister hook now that we've left HM context before re-enabling preemption. */ VMMR0ThreadCtxHookDisable(pVCpu); /* Leave HM context. This takes care of local init (term). */ int rc = HMR0LeaveCpu(pVCpu); HM_RESTORE_PREEMPT(); return rc; } /** * VMMRZCallRing3() callback wrapper which saves the guest state (or restores * any remaining host state) before we go back to ring-3 due to an assertion. * * @param pVCpu The cross context virtual CPU structure. */ VMMR0DECL(int) SVMR0AssertionCallback(PVMCPUCC pVCpu) { /* * !!! IMPORTANT !!! * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion. */ VMMR0AssertionRemoveNotification(pVCpu); VMMRZCallRing3Disable(pVCpu); HM_DISABLE_PREEMPT(pVCpu); /* Import the entire guest state. */ hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); /* Restore host FPU state if necessary and resync on next R0 reentry. */ CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu); /* Restore host debug registers if necessary and resync on next R0 reentry. */ CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */); /* Deregister the hook now that we've left HM context before re-enabling preemption. */ /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */ VMMR0ThreadCtxHookDisable(pVCpu); /* Leave HM context. This takes care of local init (term). */ HMR0LeaveCpu(pVCpu); HM_RESTORE_PREEMPT(); return VINF_SUCCESS; } /** * Take necessary actions before going back to ring-3. * * An action requires us to go back to ring-3. This function does the necessary * steps before we can safely return to ring-3. This is not the same as longjmps * to ring-3, this is voluntary. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param rcExit The reason for exiting to ring-3. Can be * VINF_VMM_UNKNOWN_RING3_CALL. */ static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit) { Assert(pVCpu); HMSVM_ASSERT_PREEMPT_SAFE(pVCpu); /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */ VMMRZCallRing3Disable(pVCpu); Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions, pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions)); /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */ if (pVCpu->hm.s.Event.fPending) { hmR0SvmPendingEventToTrpmTrap(pVCpu); Assert(!pVCpu->hm.s.Event.fPending); } /* Sync. the necessary state for going back to ring-3. */ hmR0SvmLeaveSession(pVCpu); STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3); /* Thread-context hooks are unregistered at this point!!! */ /* Ring-3 callback notifications are unregistered at this point!!! */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3); CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS); if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)) { CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH); } /* Update the exit-to-ring 3 reason. */ pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit); /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */ if ( rcExit != VINF_EM_RAW_INTERRUPT || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) { Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL)); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); } STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3); VMMRZCallRing3Enable(pVCpu); /* * If we're emulating an instruction, we shouldn't have any TRPM traps pending * and if we're injecting an event we should have a TRPM trap pending. */ AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit), VERR_SVM_IPE_5); AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit), VERR_SVM_IPE_4); return rcExit; } /** * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary * intercepts. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks No-long-jump zone!!! */ static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { /* * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting * RDTSC/RDTSCP as well. */ bool fParavirtTsc; uint64_t uTscOffset; bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc); bool fIntercept; if (fCanUseRealTsc) fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP); else { hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP); fIntercept = true; } if (!fIntercept) { #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset); #endif /* Update the TSC offset in the VMCB and the relevant clean bits. */ pVmcb->ctrl.u64TSCOffset = uTscOffset; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; } /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC information before every VM-entry, hence we have nothing to do here at the moment. */ if (fParavirtTsc) STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt); } /** * Sets an event as a pending event to be injected into the guest. * * @param pVCpu The cross context virtual CPU structure. * @param pEvent Pointer to the SVM event. * @param GCPtrFaultAddress The fault-address (CR2) in case it's a * page-fault. * * @remarks Statistics counter assumes this is a guest event being reflected to * the guest i.e. 'StatInjectPendingReflect' is incremented always. */ DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress) { Assert(!pVCpu->hm.s.Event.fPending); Assert(pEvent->n.u1Valid); pVCpu->hm.s.Event.u64IntInfo = pEvent->u; pVCpu->hm.s.Event.fPending = true; pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress; Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode)); } /** * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM. * * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu) { SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_UD; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); } /** * Sets a debug (\#DB) exception as pending-for-injection into the VM. * * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu) { SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_DB; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); } /** * Sets a page fault (\#PF) exception as pending-for-injection into the VM. * * @param pVCpu The cross context virtual CPU structure. * @param u32ErrCode The error-code for the page-fault. * @param uFaultAddress The page fault address (CR2). * * @remarks This updates the guest CR2 with @a uFaultAddress! */ DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress) { SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_PF; Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = u32ErrCode; /* Update CR2 of the guest. */ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2); if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress) { pVCpu->cpum.GstCtx.cr2 = uFaultAddress; /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2); } hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress); } /** * Sets a math-fault (\#MF) exception as pending-for-injection into the VM. * * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu) { SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_MF; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); } /** * Sets a double fault (\#DF) exception as pending-for-injection into the VM. * * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu) { SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_DF; Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = 0; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); } /** * Injects an event into the guest upon VMRUN by updating the relevant field * in the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the guest VM control block. * @param pEvent Pointer to the event. * * @remarks No-long-jump zone!!! * @remarks Requires CR0! */ DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent) { Assert(!pVmcb->ctrl.EventInject.n.u1Valid); pVmcb->ctrl.EventInject.u = pEvent->u; if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI) { Assert(pEvent->n.u8Vector <= X86_XCPT_LAST); STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedXcpts[pEvent->n.u8Vector]); } else STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedIrqs[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]); RT_NOREF(pVCpu); Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode)); } /** * Converts any TRPM trap into a pending HM event. This is typically used when * entering from ring-3 (not longjmp returns). * * @param pVCpu The cross context virtual CPU structure. */ static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu) { Assert(TRPMHasTrap(pVCpu)); Assert(!pVCpu->hm.s.Event.fPending); uint8_t uVector; TRPMEVENT enmTrpmEvent; uint32_t uErrCode; RTGCUINTPTR GCPtrFaultAddress; uint8_t cbInstr; int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */); AssertRC(rc); SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u8Vector = uVector; /* Refer AMD spec. 15.20 "Event Injection" for the format. */ if (enmTrpmEvent == TRPM_TRAP) { Event.n.u3Type = SVM_EVENT_EXCEPTION; switch (uVector) { case X86_XCPT_NMI: { Event.n.u3Type = SVM_EVENT_NMI; break; } case X86_XCPT_BP: case X86_XCPT_OF: AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent)); RT_FALL_THRU(); case X86_XCPT_PF: case X86_XCPT_DF: case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP: case X86_XCPT_AC: { Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = uErrCode; break; } } } else if (enmTrpmEvent == TRPM_HARDWARE_INT) Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ; else if (enmTrpmEvent == TRPM_SOFTWARE_INT) Event.n.u3Type = SVM_EVENT_SOFTWARE_INT; else AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent)); rc = TRPMResetTrap(pVCpu); AssertRC(rc); Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector, !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode)); hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress); } /** * Converts any pending SVM event into a TRPM trap. Typically used when leaving * AMD-V to execute any instruction. * * @param pVCpu The cross context virtual CPU structure. */ static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu) { Assert(pVCpu->hm.s.Event.fPending); Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP); SVMEVENT Event; Event.u = pVCpu->hm.s.Event.u64IntInfo; uint8_t uVector = Event.n.u8Vector; TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector); Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type)); int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType); AssertRC(rc); if (Event.n.u1ErrorCodeValid) TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode); if ( enmTrapType == TRPM_TRAP && uVector == X86_XCPT_PF) { TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress); Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu)); } else if (enmTrapType == TRPM_SOFTWARE_INT) TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr); pVCpu->hm.s.Event.fPending = false; } /** * Checks if the guest (or nested-guest) has an interrupt shadow active right * now. * * @returns @c true if the interrupt shadow is active, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. * * @remarks No-long-jump zone!!! * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag. */ static bool hmR0SvmIsIntrShadowActive(PVMCPUCC pVCpu) { /* * Instructions like STI and MOV SS inhibit interrupts till the next instruction * completes. Check if we should inhibit interrupts or clear any existing * interrupt inhibition. */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) { if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu)) { /* * We can clear the inhibit force flag as even if we go back to the recompiler * without executing guest code in AMD-V, the flag's condition to be cleared is * met and thus the cleared state is correct. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); return false; } return true; } return false; } /** * Sets the virtual interrupt intercept control in the VMCB. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. */ static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu); /* * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC * (updating ISR at the right time) and inject the interrupt. * * With AVIC is supported, we could make use of the asynchronously delivery without * #VMEXIT and we would be passing the AVIC page to SVM. * * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set. */ Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR); pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL; hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR); Log4(("Set VINTR intercept\n")); } /** * Clears the virtual interrupt intercept control in the VMCB as * we are figured the guest is unable process any interrupts * at this point of time. * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. */ static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu); PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl; if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)) { pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0; pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL; hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR); Log4(("Cleared VINTR intercept\n")); } } /** * Evaluates the event to be delivered to the guest and sets it as the pending * event. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM transient structure. */ static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient) { PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ); Assert(!pVCpu->hm.s.Event.fPending); PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); Assert(pVmcb); bool const fGif = CPUMGetGuestGif(pCtx); bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu); bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n", fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC), VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))); /** @todo SMI. SMIs take priority over NMIs. */ /* * Check if the guest or nested-guest can receive NMIs. * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts". * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities". */ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI) && !fBlockNmi) { if ( fGif && !fIntShadow) { #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI)) { Log4(("Intercepting NMI -> #VMEXIT\n")); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0); } #endif Log4(("Setting NMI pending for injection\n")); SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_NMI; Event.n.u3Type = SVM_EVENT_NMI; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI); } else if (!fGif) hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI); else if (!pSvmTransient->fIsNestedGuest) hmR0SvmSetIntWindowExiting(pVCpu, pVmcb); /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */ } /* * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request * it from the APIC device. * * For nested-guests, physical interrupts always take priority over virtual interrupts. * We don't need to inject nested-guest virtual interrupts here, we can let the hardware * do that work when we execute nested-guest code esp. since all the required information * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from * the virtual interrupt controller. * * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts". */ else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC) && !pVCpu->hm.s.fSingleInstruction) { bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u32 & X86_EFL_IF) : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx); if ( fGif && !fBlockInt && !fIntShadow) { #ifdef VBOX_WITH_NESTED_HWVIRT_SVM if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR)) { Log4(("Intercepting INTR -> #VMEXIT\n")); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0); } #endif uint8_t u8Interrupt; int rc = PDMGetInterrupt(pVCpu, &u8Interrupt); if (RT_SUCCESS(rc)) { Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt)); SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u8Vector = u8Interrupt; Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); } else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) { /* * AMD-V has no TPR thresholding feature. TPR and the force-flag will be * updated eventually when the TPR is written by the guest. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq); } else STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq); } else if (!fGif) hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI); else if (!pSvmTransient->fIsNestedGuest) hmR0SvmSetIntWindowExiting(pVCpu, pVmcb); /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */ } return VINF_SUCCESS; } /** * Injects any pending events into the guest (or nested-guest). * * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * * @remarks Must only be called when we are guaranteed to enter * hardware-assisted SVM execution and not return to ring-3 * prematurely. */ static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { Assert(!TRPMHasTrap(pVCpu)); Assert(!VMMRZCallRing3IsEnabled(pVCpu)); bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu); #ifdef VBOX_STRICT PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; bool const fGif = CPUMGetGuestGif(pCtx); bool fAllowInt = fGif; if (fGif) { /* * For nested-guests we have no way to determine if we're injecting a physical or * virtual interrupt at this point. Hence the partial verification below. */ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx); else fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF); } #endif if (pVCpu->hm.s.Event.fPending) { SVMEVENT Event; Event.u = pVCpu->hm.s.Event.u64IntInfo; Assert(Event.n.u1Valid); /* * Validate event injection pre-conditions. */ if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ) { Assert(fAllowInt); Assert(!fIntShadow); } else if (Event.n.u3Type == SVM_EVENT_NMI) { Assert(fGif); Assert(!fIntShadow); } /* * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We * do this only when we are surely going to inject the NMI as otherwise if we return * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into * SVM R0. * * With VT-x, this is handled by the Guest interruptibility information VMCS field * which will set the VMCS field after actually delivering the NMI which we read on * VM-exit to determine the state. */ if ( Event.n.u3Type == SVM_EVENT_NMI && Event.n.u8Vector == X86_XCPT_NMI && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) { VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); } /* * Inject it (update VMCB for injection by the hardware). */ Log4(("Injecting pending HM event\n")); hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event); pVCpu->hm.s.Event.fPending = false; if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ) STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt); else STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt); } else Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0); /* * We could have injected an NMI through IEM and continue guest execution using * hardware-assisted SVM. In which case, we would not have any events pending (above) * but we still need to intercept IRET in order to eventually clear NMI inhibition. */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET); /* * Update the guest interrupt shadow in the guest (or nested-guest) VMCB. * * For nested-guests: We need to update it too for the scenario where IEM executes * the nested-guest but execution later continues here with an interrupt shadow active. */ pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow; } /** * Reports world-switch error and dumps some useful debug info. * * @param pVCpu The cross context virtual CPU structure. * @param rcVMRun The return code from VMRUN (or * VERR_SVM_INVALID_GUEST_STATE for invalid * guest-state). */ static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun) { HMSVM_ASSERT_PREEMPT_SAFE(pVCpu); HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE) { #ifdef VBOX_STRICT hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits)); Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx)); Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx)); Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx)); Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx)); Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt)); Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl)); Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr)); Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr)); Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset)); Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID)); Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush)); Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved)); Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR)); Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending)); Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif)); Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved)); Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio)); Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR)); Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved)); Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking)); Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable)); Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved)); Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector)); Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved)); Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow)); Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask)); Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode)); Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1)); Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2)); Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector)); Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type)); Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid)); Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved)); Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid)); Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode)); Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging)); Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev)); Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs)); Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector)); Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type)); Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid)); Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved)); Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid)); Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode)); Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3)); Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt)); Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload)); Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel)); Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr)); Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit)); Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base)); Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel)); Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr)); Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit)); Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base)); Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel)); Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr)); Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit)); Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base)); Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel)); Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr)); Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit)); Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base)); Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel)); Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr)); Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit)); Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base)); Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit)); Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base)); Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel)); Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr)); Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit)); Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base)); Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit)); Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base)); Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel)); Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr)); Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit)); Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base)); Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL)); Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0)); Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2)); Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3)); Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4)); Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6)); Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7)); Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP)); Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP)); Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX)); Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags)); Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS)); Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP)); Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP)); Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER)); Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR)); Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR)); Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR)); Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK)); Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase)); Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT)); Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL)); Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM)); Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO)); Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM)); Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO)); NOREF(pVmcb); #endif /* VBOX_STRICT */ } else Log4Func(("rcVMRun=%d\n", rcVMRun)); } /** * Check per-VM and per-VCPU force flag actions that require us to go back to * ring-3 for one reason or another. * * @returns Strict VBox status code (information status code included). * @retval VINF_SUCCESS if we don't have any actions that require going back to * ring-3. * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync. * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware * interrupts) * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires * all EMTs to be in ring-3. * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests. * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return * to the EM loop. * * @param pVCpu The cross context virtual CPU structure. */ static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu) { Assert(VMMRZCallRing3IsEnabled(pVCpu)); /* Could happen as a result of longjump. */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)) PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu)); /* Update pending interrupts into the APIC's IRR. */ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC)) APICUpdatePendingInterrupts(pVCpu); PVMCC pVM = pVCpu->CTX_SUFF(pVM); if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) ) { /* Pending PGM C3 sync. */ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)) { int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); if (rc != VINF_SUCCESS) { Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc)); return rc; } } /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */ /* -XXX- what was that about single stepping? */ if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF); int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY; Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc)); return rc; } /* Pending VM request packets, such as hardware interrupts. */ if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq); Log4Func(("Pending VM request forcing us back to ring-3\n")); return VINF_EM_PENDING_REQUEST; } /* Pending PGM pool flushes. */ if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush); Log4Func(("PGM pool flush pending forcing us back to ring-3\n")); return VINF_PGM_POOL_FLUSH_PENDING; } /* Pending DMA requests. */ if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma); Log4Func(("Pending DMA request forcing us back to ring-3\n")); return VINF_EM_RAW_TO_R3; } } return VINF_SUCCESS; } /** * Does the preparations before executing guest code in AMD-V. * * This may cause longjmps to ring-3 and may even result in rescheduling to the * recompiler. We must be cautious what we do here regarding committing * guest-state information into the VMCB assuming we assuredly execute the guest * in AMD-V. If we fall back to the recompiler after updating the VMCB and * clearing the common-state (TRPM/forceflags), we must undo those changes so * that the recompiler can (and should) use them when it resumes guest * execution. Otherwise such operations must be done when we can no longer * exit to ring-3. * * @returns Strict VBox status code (informational status codes included). * @retval VINF_SUCCESS if we can proceed with running the guest. * @retval VINF_* scheduling changes, we have to go back to ring-3. * * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM transient structure. */ static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_ASSERT_PREEMPT_SAFE(pVCpu); #ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM if (pSvmTransient->fIsNestedGuest) { Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n")); return VINF_EM_RESCHEDULE_REM; } #endif /* Check force flag actions that might require us to go back to ring-3. */ VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu); if (rc != VINF_SUCCESS) return rc; if (TRPMHasTrap(pVCpu)) hmR0SvmTrpmTrapToPendingEvent(pVCpu); else if (!pVCpu->hm.s.Event.fPending) { rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient); if ( rc != VINF_SUCCESS || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) { /* If a nested-guest VM-exit occurred, bail. */ if (pSvmTransient->fIsNestedGuest) STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit); return rc; } } /* * On the oldest AMD-V systems, we may not get enough information to reinject an NMI. * Just do it in software, see @bugref{8411}. * NB: If we could continue a task switch exit we wouldn't need to do this. */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); if (RT_UNLIKELY( !g_fHmSvmFeatures && pVCpu->hm.s.Event.fPending && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI)) return VINF_EM_RAW_INJECT_TRPM_EVENT; #ifdef HMSVM_SYNC_FULL_GUEST_STATE Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL)); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); #endif #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /* * Set up the nested-guest VMCB for execution using hardware-assisted SVM. */ if (pSvmTransient->fIsNestedGuest) hmR0SvmSetupVmcbNested(pVCpu); #endif /* * Export the guest state bits that are not shared with the host in any way as we can * longjmp or get preempted in the midst of exporting some of the state. */ rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient); AssertRCReturn(rc, rc); STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull); /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */ Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid); /* * If we're not intercepting TPR changes in the guest, save the guest TPR before the * world-switch so we can update it on the way back if the guest changed the TPR. */ if (pVCpu->hmr0.s.svm.fSyncVTpr) { Assert(!pSvmTransient->fIsNestedGuest); PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; if (pVM->hm.s.fTprPatchingActive) pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR; else pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR; } /* * No longjmps to ring-3 from this point on!!! * * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, * better than a kernel panic. This also disables flushing of the R0-logger instance. */ VMMRZCallRing3Disable(pVCpu); /* * We disable interrupts so that we don't miss any interrupts that would flag preemption * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with * preemption disabled for a while. Since this is purly to aid the * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and * disable interrupt on NT. * * We need to check for force-flags that could've possible been altered since we last * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section, * see @bugref{6398}). * * We also check a couple of other force-flags as a last opportunity to get the EMT back * to ring-3 before executing guest code. */ pSvmTransient->fEFlags = ASMIntDisableFlags(); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC) || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) { ASMSetFlags(pSvmTransient->fEFlags); VMMRZCallRing3Enable(pVCpu); STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF); return VINF_EM_RAW_TO_R3; } if (RTThreadPreemptIsPending(NIL_RTTHREAD)) { ASMSetFlags(pSvmTransient->fEFlags); VMMRZCallRing3Enable(pVCpu); STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq); return VINF_EM_RAW_INTERRUPT; } return VINF_SUCCESS; } /** * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to * doing so. * * This means there is no backing out to ring-3 or anywhere else at this point. * * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM transient structure. * * @remarks Called with preemption disabled. * @remarks No-long-jump zone!!! */ static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { Assert(!VMMRZCallRing3IsEnabled(pVCpu)); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); PSVMVMCB pVmcb = pSvmTransient->pVmcb; hmR0SvmInjectPendingEvent(pVCpu, pVmcb); if (!CPUMIsGuestFPUStateActive(pVCpu)) { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x); CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x); STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu); } /* Load the state shared between host and guest (FPU, debug). */ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE) hmR0SvmExportSharedState(pVCpu, pVmcb); pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */ AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged)); PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu(); RTCPUID const idHostCpu = pHostCpu->idCpu; bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu; /* Setup TSC offsetting. */ if ( pSvmTransient->fUpdateTscOffsetting || fMigratedHostCpu) { hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb); pSvmTransient->fUpdateTscOffsetting = false; } /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */ if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP))) STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset); else STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept); /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */ if (fMigratedHostCpu) pVmcb->ctrl.u32VmcbCleanBits = 0; /* Store status of the shared guest-host state at the time of VMRUN. */ pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu); pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM uint8_t *pbMsrBitmap; if (!pSvmTransient->fIsNestedGuest) pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap; else { /** @todo We could perhaps optimize this by monitoring if the guest modifies its * MSRPM and only perform this if it changed also use EVEX.POR when it * does. */ hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu); /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */ pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm; pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm; } #else uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap; #endif ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */ /* Flush the appropriate tagged-TLB entries. */ hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb); Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu); STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x); TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about to start executing. */ /* * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs * (that don't cause exits) reads the guest MSR, see @bugref{3324}. * * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc). */ if ( pVM->cpum.ro.HostFeatures.fRdTscP && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP)) { uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu); pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX); if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux) ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux); hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE); pSvmTransient->fRestoreTscAuxMsr = true; } else { hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE); pSvmTransient->fRestoreTscAuxMsr = false; } pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM; /* * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load * from the VMCB. */ bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest); if (!fSupportsVmcbCleanBits) pVmcb->ctrl.u32VmcbCleanBits = 0; } /** * Wrapper for running the guest (or nested-guest) code in AMD-V. * * @returns VBox strict status code. * @param pVCpu The cross context virtual CPU structure. * @param HCPhysVmcb The host physical address of the VMCB. * * @remarks No-long-jump zone!!! */ DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb) { /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */ pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM; return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb); } /** * Performs some essential restoration of state after running guest (or * nested-guest) code in AMD-V. * * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM transient structure. * @param rcVMRun Return code of VMRUN. * * @remarks Called with interrupts disabled. * @remarks No-long-jump zone!!! This function will however re-enable longjmps * unconditionally when it is safe to do so. */ static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun) { Assert(!VMMRZCallRing3IsEnabled(pVCpu)); ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */ ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */ PSVMVMCB pVmcb = pSvmTransient->pVmcb; PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl; /* TSC read must be done early for maximum accuracy. */ if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC)) { if (!pSvmTransient->fIsNestedGuest) TMCpuTickSetLastSeen(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM else { /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */ uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset); TMCpuTickSetLastSeen(pVCpu, uGstTsc); } #endif } if (pSvmTransient->fRestoreTscAuxMsr) { uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX); CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr); if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux) ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux); } STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x); PVMCC pVM = pVCpu->CTX_SUFF(pVM); TMNotifyEndOfExecution(pVM, pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */ VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM); Assert(!(ASMGetFlags() & X86_EFL_IF)); ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */ VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */ /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */ if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS)) { Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun))); return; } pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */ pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */ pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */ pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */ #ifdef HMSVM_SYNC_FULL_GUEST_STATE hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL)); #else /* * Always import the following: * * - RIP for exit optimizations and evaluating event injection on re-entry. * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug * state on preemption. * - Interrupt shadow, GIF for evaluating event injection on VM re-entry. * - CS for exit optimizations. * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the * assembly switcher code. * - Shared state (only DR7 currently) for exporting shared debug state on preemption. */ hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_HWVIRT | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ | HMSVM_CPUMCTX_SHARED_STATE); #endif if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID && pVCpu->hmr0.s.svm.fSyncVTpr) { Assert(!pSvmTransient->fIsNestedGuest); /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */ if ( pVM->hm.s.fTprPatchingActive && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr) { int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff); AssertRC(rc); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR); } /* Sync TPR when we aren't intercepting CR8 writes. */ else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR) { int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4); AssertRC(rc); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR); } } #ifdef DEBUG_ramshankar if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)) { hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR, 0 /* uVerbose */); } #endif HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK), pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, pVCpu->hmr0.s.uTscExit); } /** * Runs the guest code using AMD-V. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pcLoops Pointer to the number of executed loops. */ static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops) { uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops; Assert(pcLoops); Assert(*pcLoops <= cMaxResumeLoops); SVMTRANSIENT SvmTransient; RT_ZERO(SvmTransient); SvmTransient.fUpdateTscOffsetting = true; SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb; VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5; for (;;) { Assert(!HMR0SuspendPending()); HMSVM_ASSERT_CPU_SAFE(pVCpu); /* Preparatory work for running nested-guest code, this may force us to return to ring-3. This bugger disables interrupts on VINF_SUCCESS! */ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x); rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient); if (rc != VINF_SUCCESS) break; /* * No longjmps to ring-3 from this point on!!! * * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, * better than a kernel panic. This also disables flushing of the R0-logger instance. */ hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient); rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb); /* Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state. Re-enables interrupts! */ hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc); if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */ || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */ { if (rc == VINF_SUCCESS) rc = VERR_SVM_INVALID_GUEST_STATE; STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x); hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc)); break; } /* Handle the #VMEXIT. */ HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode); STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x); VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb); rc = hmR0SvmHandleExit(pVCpu, &SvmTransient); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x); if (rc != VINF_SUCCESS) break; if (++(*pcLoops) >= cMaxResumeLoops) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops); rc = VINF_EM_RAW_INTERRUPT; break; } } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x); return rc; } /** * Runs the guest code using AMD-V in single step mode. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pcLoops Pointer to the number of executed loops. */ static VBOXSTRICTRC hmR0SvmRunGuestCodeStep(PVMCPUCC pVCpu, uint32_t *pcLoops) { uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops; Assert(pcLoops); Assert(*pcLoops <= cMaxResumeLoops); SVMTRANSIENT SvmTransient; RT_ZERO(SvmTransient); SvmTransient.fUpdateTscOffsetting = true; SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb; PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; uint16_t const uCsStart = pCtx->cs.Sel; uint64_t const uRipStart = pCtx->rip; VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5; for (;;) { Assert(!HMR0SuspendPending()); AssertMsg(pVCpu->hmr0.s.idEnteredCpu == RTMpCpuId(), ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hmr0.s.idEnteredCpu, (unsigned)RTMpCpuId(), *pcLoops)); /* Preparatory work for running nested-guest code, this may force us to return to ring-3. This bugger disables interrupts on VINF_SUCCESS! */ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x); rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient); if (rc != VINF_SUCCESS) break; /* * No longjmps to ring-3 from this point on!!! * * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, * better than a kernel panic. This also disables flushing of the R0-logger instance. */ hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient); rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb); /* Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state. Re-enables interrupts! */ hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc); if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */ || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */ { if (rc == VINF_SUCCESS) rc = VERR_SVM_INVALID_GUEST_STATE; STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x); hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc)); return rc; } /* Handle the #VMEXIT. */ HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode); STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x); VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb); rc = hmR0SvmHandleExit(pVCpu, &SvmTransient); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x); if (rc != VINF_SUCCESS) break; if (++(*pcLoops) >= cMaxResumeLoops) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops); rc = VINF_EM_RAW_INTERRUPT; break; } /* * Did the RIP change, if so, consider it a single step. * Otherwise, make sure one of the TFs gets set. */ if ( pCtx->rip != uRipStart || pCtx->cs.Sel != uCsStart) { rc = VINF_EM_DBG_STEPPED; break; } pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK; } /* * Clear the X86_EFL_TF if necessary. */ if (pVCpu->hmr0.s.fClearTrapFlag) { pVCpu->hmr0.s.fClearTrapFlag = false; pCtx->eflags.Bits.u1TF = 0; } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x); return rc; } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /** * Runs the nested-guest code using AMD-V. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pcLoops Pointer to the number of executed loops. If we're switching * from the guest-code execution loop to this nested-guest * execution loop pass the remainder value, else pass 0. */ static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops) { PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; HMSVM_ASSERT_IN_NESTED_GUEST(pCtx); Assert(pcLoops); Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops); /** @todo r=bird: Sharing this with ring-3 isn't safe in the long run, I fear... */ RTHCPHYS const HCPhysVmcb = GVMMR0ConvertGVMPtr2HCPhys(pVCpu->pGVM, &pCtx->hwvirt.svm.Vmcb); SVMTRANSIENT SvmTransient; RT_ZERO(SvmTransient); SvmTransient.fUpdateTscOffsetting = true; SvmTransient.pVmcb = &pCtx->hwvirt.svm.Vmcb; SvmTransient.fIsNestedGuest = true; VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4; for (;;) { Assert(!HMR0SuspendPending()); HMSVM_ASSERT_CPU_SAFE(pVCpu); /* Preparatory work for running nested-guest code, this may force us to return to ring-3. This bugger disables interrupts on VINF_SUCCESS! */ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x); rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient); if ( rc != VINF_SUCCESS || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) break; /* * No longjmps to ring-3 from this point on!!! * * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, * better than a kernel panic. This also disables flushing of the R0-logger instance. */ hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient); rc = hmR0SvmRunGuest(pVCpu, HCPhysVmcb); /* Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state. Re-enables interrupts! */ hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc); if (RT_LIKELY( rc == VINF_SUCCESS && SvmTransient.u64ExitCode != SVM_EXIT_INVALID)) { /* extremely likely */ } else { /* VMRUN failed, shouldn't really happen, Guru. */ if (rc != VINF_SUCCESS) break; /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode)); rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0); break; } /* Handle the #VMEXIT. */ HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode); STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x); VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, &pCtx->hwvirt.svm.Vmcb); rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x); if (rc == VINF_SUCCESS) { if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit); rc = VINF_SVM_VMEXIT; } else { if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops) continue; STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops); rc = VINF_EM_RAW_INTERRUPT; } } else Assert(rc != VINF_SVM_VMEXIT); break; /** @todo NSTSVM: handle single-stepping. */ } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x); return rc; } #endif /* VBOX_WITH_NESTED_HWVIRT_SVM */ /** * Runs the guest code using AMD-V. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. */ VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu) { AssertPtr(pVCpu); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; Assert(VMMRZCallRing3IsEnabled(pVCpu)); Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn)); HMSVM_ASSERT_PREEMPT_SAFE(pVCpu); uint32_t cLoops = 0; VBOXSTRICTRC rc; for (;;) { #ifdef VBOX_WITH_NESTED_HWVIRT_SVM bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx); #else NOREF(pCtx); bool const fInNestedGuestMode = false; #endif if (!fInNestedGuestMode) { if (!pVCpu->hm.s.fSingleInstruction) rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops); else rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops); } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM else rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops); if (rc == VINF_SVM_VMRUN) { Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); continue; } if (rc == VINF_SVM_VMEXIT) { Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); continue; } #endif break; } /* Fixup error codes. */ if (rc == VERR_EM_INTERPRETER) rc = VINF_EM_RAW_EMULATE_INSTR; else if (rc == VINF_EM_RESET) rc = VINF_EM_TRIPLE_FAULT; /* Prepare to return to ring-3. This will remove longjmp notifications. */ rc = hmR0SvmExitToRing3(pVCpu, rc); Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn)); Assert(!VMMR0AssertionIsNotificationSet(pVCpu)); return rc; } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /** * Determines whether the given I/O access should cause a nested-guest \#VMEXIT. * * @param pvIoBitmap Pointer to the nested-guest IO bitmap. * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO. */ static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo) { const uint16_t u16Port = pIoExitInfo->n.u16Port; const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type; const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7; const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4; const uint8_t iEffSeg = pIoExitInfo->n.u3Seg; const bool fRep = pIoExitInfo->n.u1Rep; const bool fStrIo = pIoExitInfo->n.u1Str; return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo, NULL /* pIoExitInfo */); } /** * Handles a nested-guest \#VMEXIT (for all EXITCODE values except * SVM_EXIT_INVALID). * * @returns VBox status code (informational status codes included). * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM transient structure. */ static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID); Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX); /* * We import the complete state here because we use separate VMCBs for the guest and the * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest. */ #define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \ do { \ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \ return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \ } while (0) /* * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the * nested-guest. If it isn't, it should be handled by the (outer) guest. */ PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb; PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl; uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode; uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1; uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2; Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode); switch (uExitCode) { case SVM_EXIT_CPUID: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitCpuid(pVCpu, pSvmTransient); } case SVM_EXIT_RDTSC: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitRdtsc(pVCpu, pSvmTransient); } case SVM_EXIT_RDTSCP: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitRdtscp(pVCpu, pSvmTransient); } case SVM_EXIT_MONITOR: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitMonitor(pVCpu, pSvmTransient); } case SVM_EXIT_MWAIT: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitMwait(pVCpu, pSvmTransient); } case SVM_EXIT_HLT: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitHlt(pVCpu, pSvmTransient); } case SVM_EXIT_MSR: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT)) { uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; uint16_t offMsrpm; uint8_t uMsrpmBit; int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit); if (RT_SUCCESS(rc)) { Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6); Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT); uint8_t const * const pbMsrBitmap = &pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm]; bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit)); bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1)); if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE) || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ)) { NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); } } else { /* * MSRs not covered by the MSRPM automatically cause an #VMEXIT. * See AMD-V spec. "15.11 MSR Intercepts". */ Assert(rc == VERR_OUT_OF_RANGE); NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); } } return hmR0SvmExitMsr(pVCpu, pSvmTransient); } case SVM_EXIT_IOIO: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT)) { SVMIOIOEXITINFO IoExitInfo; IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1; bool const fIntercept = hmR0SvmIsIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, &IoExitInfo); if (fIntercept) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); } return hmR0SvmExitIOInstr(pVCpu, pSvmTransient); } case SVM_EXIT_XCPT_PF: { PVMCC pVM = pVCpu->CTX_SUFF(pVM); if (pVM->hmr0.s.fNestedPaging) { uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1; uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2; /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress); /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2); hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress); return VINF_SUCCESS; } return hmR0SvmExitXcptPF(pVCpu, pSvmTransient); } case SVM_EXIT_XCPT_UD: { if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); hmR0SvmSetPendingXcptUD(pVCpu); return VINF_SUCCESS; } case SVM_EXIT_XCPT_MF: { if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitXcptMF(pVCpu, pSvmTransient); } case SVM_EXIT_XCPT_DB: { if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient); } case SVM_EXIT_XCPT_AC: { if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitXcptAC(pVCpu, pSvmTransient); } case SVM_EXIT_XCPT_BP: { if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient); } case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR3: case SVM_EXIT_READ_CR4: { uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0; if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitReadCRx(pVCpu, pSvmTransient); } case SVM_EXIT_CR0_SEL_WRITE: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient); } case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR3: case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */ { uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0; Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2)); if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient); } case SVM_EXIT_PAUSE: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitPause(pVCpu, pSvmTransient); } case SVM_EXIT_VINTR: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitUnexpected(pVCpu, pSvmTransient); } case SVM_EXIT_INTR: case SVM_EXIT_NMI: case SVM_EXIT_SMI: case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */ { /* * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest. * * Although we don't intercept SMIs, the nested-guest might. Therefore, we might * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding * nested-guest #VMEXIT. * * We shall import the complete state here as we may cause #VMEXITs from ring-3 * while trying to inject interrupts, see comment at the top of this function. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL); return hmR0SvmExitIntr(pVCpu, pSvmTransient); } case SVM_EXIT_FERR_FREEZE: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient); } case SVM_EXIT_INVLPG: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitInvlpg(pVCpu, pSvmTransient); } case SVM_EXIT_WBINVD: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitWbinvd(pVCpu, pSvmTransient); } case SVM_EXIT_INVD: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitInvd(pVCpu, pSvmTransient); } case SVM_EXIT_RDPMC: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitRdpmc(pVCpu, pSvmTransient); } default: { switch (uExitCode) { case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15: { uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0; if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitReadDRx(pVCpu, pSvmTransient); } case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15: { uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0; if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient); } case SVM_EXIT_XCPT_DE: /* SVM_EXIT_XCPT_DB: */ /* Handled above. */ /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */ /* SVM_EXIT_XCPT_BP: */ /* Handled above. */ case SVM_EXIT_XCPT_OF: case SVM_EXIT_XCPT_BR: /* SVM_EXIT_XCPT_UD: */ /* Handled above. */ case SVM_EXIT_XCPT_NM: case SVM_EXIT_XCPT_DF: case SVM_EXIT_XCPT_CO_SEG_OVERRUN: case SVM_EXIT_XCPT_TS: case SVM_EXIT_XCPT_NP: case SVM_EXIT_XCPT_SS: case SVM_EXIT_XCPT_GP: /* SVM_EXIT_XCPT_PF: */ /* Handled above. */ case SVM_EXIT_XCPT_15: /* Reserved. */ /* SVM_EXIT_XCPT_MF: */ /* Handled above. */ /* SVM_EXIT_XCPT_AC: */ /* Handled above. */ case SVM_EXIT_XCPT_MC: case SVM_EXIT_XCPT_XF: case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23: case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27: case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31: { uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0; if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient); } case SVM_EXIT_XSETBV: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitXsetbv(pVCpu, pSvmTransient); } case SVM_EXIT_TASK_SWITCH: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient); } case SVM_EXIT_IRET: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitIret(pVCpu, pSvmTransient); } case SVM_EXIT_SHUTDOWN: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitShutdown(pVCpu, pSvmTransient); } case SVM_EXIT_VMMCALL: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitVmmCall(pVCpu, pSvmTransient); } case SVM_EXIT_CLGI: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitClgi(pVCpu, pSvmTransient); } case SVM_EXIT_STGI: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitStgi(pVCpu, pSvmTransient); } case SVM_EXIT_VMLOAD: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitVmload(pVCpu, pSvmTransient); } case SVM_EXIT_VMSAVE: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitVmsave(pVCpu, pSvmTransient); } case SVM_EXIT_INVLPGA: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitInvlpga(pVCpu, pSvmTransient); } case SVM_EXIT_VMRUN: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); return hmR0SvmExitVmrun(pVCpu, pSvmTransient); } case SVM_EXIT_RSM: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); hmR0SvmSetPendingXcptUD(pVCpu); return VINF_SUCCESS; } case SVM_EXIT_SKINIT: { if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT)) NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2); hmR0SvmSetPendingXcptUD(pVCpu); return VINF_SUCCESS; } case SVM_EXIT_NPF: { Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); return hmR0SvmExitNestedPF(pVCpu, pSvmTransient); } case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */ return hmR0SvmExitUnexpected(pVCpu, pSvmTransient); default: { AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode)); pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode; return VERR_SVM_UNKNOWN_EXIT; } } } } /* not reached */ #undef NST_GST_VMEXIT_CALL_RET } #endif /** * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID). * * @returns Strict VBox status code (informational status codes included). * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM transient structure. */ static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID); Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX); #ifdef DEBUG_ramshankar # define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \ do { \ if ((a_fDbg) == 1) \ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \ int rc = a_CallExpr; \ if ((a_fDbg) == 1) \ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \ return rc; \ } while (0) #else # define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr #endif /* * The ordering of the case labels is based on most-frequently-occurring #VMEXITs * for most guests under normal workloads (for some definition of "normal"). */ uint64_t const uExitCode = pSvmTransient->u64ExitCode; switch (uExitCode) { case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient)); case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient)); case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient)); case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient)); case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient)); case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient)); case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient)); case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient)); case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */ case SVM_EXIT_INTR: case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient)); case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR3: case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient)); case SVM_EXIT_CR0_SEL_WRITE: case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR3: case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient)); case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient)); case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient)); case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient)); case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient)); case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient)); case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient)); case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient)); case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient)); case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient)); case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient)); case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient)); default: { switch (pSvmTransient->u64ExitCode) { case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15: VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient)); case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15: VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient)); case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient)); case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient)); case SVM_EXIT_SMI: case SVM_EXIT_INIT: { /* * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here. * If it ever does, we want to know about it so log the exit code and bail. */ VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient)); } #ifdef VBOX_WITH_NESTED_HWVIRT_SVM case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient)); case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient)); case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient)); case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient)); case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient)); case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient)); #else case SVM_EXIT_CLGI: case SVM_EXIT_STGI: case SVM_EXIT_VMLOAD: case SVM_EXIT_VMSAVE: case SVM_EXIT_INVLPGA: case SVM_EXIT_VMRUN: #endif case SVM_EXIT_RSM: case SVM_EXIT_SKINIT: { hmR0SvmSetPendingXcptUD(pVCpu); return VINF_SUCCESS; } #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS case SVM_EXIT_XCPT_DE: /* SVM_EXIT_XCPT_DB: */ /* Handled above. */ /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */ /* SVM_EXIT_XCPT_BP: */ /* Handled above. */ case SVM_EXIT_XCPT_OF: case SVM_EXIT_XCPT_BR: /* SVM_EXIT_XCPT_UD: */ /* Handled above. */ case SVM_EXIT_XCPT_NM: case SVM_EXIT_XCPT_DF: case SVM_EXIT_XCPT_CO_SEG_OVERRUN: case SVM_EXIT_XCPT_TS: case SVM_EXIT_XCPT_NP: case SVM_EXIT_XCPT_SS: /* SVM_EXIT_XCPT_GP: */ /* Handled above. */ /* SVM_EXIT_XCPT_PF: */ case SVM_EXIT_XCPT_15: /* Reserved. */ /* SVM_EXIT_XCPT_MF: */ /* Handled above. */ /* SVM_EXIT_XCPT_AC: */ /* Handled above. */ case SVM_EXIT_XCPT_MC: case SVM_EXIT_XCPT_XF: case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23: case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27: case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient)); #endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */ default: { AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode)); pVCpu->hm.s.u32HMError = uExitCode; return VERR_SVM_UNKNOWN_EXIT; } } } } /* not reached */ #undef VMEXIT_CALL_RET } #ifdef VBOX_STRICT /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */ # define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \ RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId() # define HMSVM_ASSERT_PREEMPT_CPUID() \ do \ { \ RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \ AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \ } while (0) # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \ do { \ AssertPtr((a_pVCpu)); \ AssertPtr((a_pSvmTransient)); \ Assert(ASMIntAreEnabled()); \ HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \ HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \ Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \ HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \ if (!VMMRZCallRing3IsEnabled((a_pVCpu))) \ HMSVM_ASSERT_PREEMPT_CPUID(); \ } while (0) #else # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \ do { \ RT_NOREF2(a_pVCpu, a_pSvmTransient); \ } while (0) #endif /** * Gets the IEM exception flags for the specified SVM event. * * @returns The IEM exception flags. * @param pEvent Pointer to the SVM event. * * @remarks This function currently only constructs flags required for * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code * and CR2 aspects of an exception are not included). */ static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent) { uint8_t const uEventType = pEvent->n.u3Type; uint32_t fIemXcptFlags; switch (uEventType) { case SVM_EVENT_EXCEPTION: /* * Only INT3 and INTO instructions can raise #BP and #OF exceptions. * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause". */ if (pEvent->n.u8Vector == X86_XCPT_BP) { fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR; break; } if (pEvent->n.u8Vector == X86_XCPT_OF) { fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR; break; } /** @todo How do we distinguish ICEBP \#DB from the regular one? */ RT_FALL_THRU(); case SVM_EVENT_NMI: fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT; break; case SVM_EVENT_EXTERNAL_IRQ: fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT; break; case SVM_EVENT_SOFTWARE_INT: fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT; break; default: fIemXcptFlags = 0; AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector)); break; } return fIemXcptFlags; } /** * Handle a condition that occurred while delivering an event through the guest * IDT. * * @returns VBox status code (informational error codes included). * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT. * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to * continue execution of the guest which will delivery the \#DF. * @retval VINF_EM_RESET if we detected a triple-fault condition. * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang. * * @param pVCpu The cross context virtual CPU structure. * @param pSvmTransient Pointer to the SVM transient structure. * * @remarks No-long-jump zone!!! */ static int hmR0SvmCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { int rc = VINF_SUCCESS; PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2); Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n", pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector)); /* * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). * * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". */ if (pVmcb->ctrl.ExitIntInfo.n.u1Valid) { IEMXCPTRAISE enmRaise; IEMXCPTRAISEINFO fRaiseInfo; bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31; uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector; if (fExitIsHwXcpt) { uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0; uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo); uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT; enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo); } else { /* * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF) * then we end up here. * * If the event was: * - a software interrupt, we can re-execute the instruction which will * regenerate the event. * - an NMI, we need to clear NMI blocking and re-inject the NMI. * - a hardware exception or external interrupt, we re-inject it. */ fRaiseInfo = IEMXCPTRAISEINFO_NONE; if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT) enmRaise = IEMXCPTRAISE_REEXEC_INSTR; else enmRaise = IEMXCPTRAISE_PREV_EVENT; } switch (enmRaise) { case IEMXCPTRAISE_CURRENT_XCPT: case IEMXCPTRAISE_PREV_EVENT: { /* For software interrupts, we shall re-execute the instruction. */ if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT)) { RTGCUINTPTR GCPtrFaultAddress = 0; /* If we are re-injecting an NMI, clear NMI blocking. */ if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS); /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */ if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF)) { pSvmTransient->fVectoringPF = true; Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2)); } else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION && uIdtVector == X86_XCPT_PF) { /* * If the previous exception was a #PF, we need to recover the CR2 value. * This can't happen with shadow paging. */ GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2; } /* * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF(). */ Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT); STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect); hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress); Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n", pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid), pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress)); } break; } case IEMXCPTRAISE_REEXEC_INSTR: { Assert(rc == VINF_SUCCESS); break; } case IEMXCPTRAISE_DOUBLE_FAULT: { /* * Determing a vectoring double #PF condition. Used later, when PGM evaluates * the second #PF as a guest #PF (and not a shadow #PF) and needs to be * converted into a #DF. */ if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF) { Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2)); pSvmTransient->fVectoringDoublePF = true; Assert(rc == VINF_SUCCESS); } else { STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF); hmR0SvmSetPendingXcptDF(pVCpu); rc = VINF_HM_DOUBLE_FAULT; } break; } case IEMXCPTRAISE_TRIPLE_FAULT: { rc = VINF_EM_RESET; break; } case IEMXCPTRAISE_CPU_HANG: { rc = VERR_EM_GUEST_CPU_HANG; break; } default: AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2); } } Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG); return rc; } /** * Advances the guest RIP by the number of bytes specified in @a cb. * * @param pVCpu The cross context virtual CPU structure. * @param cb RIP increment value in bytes. */ DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPUCC pVCpu, uint32_t cb) { PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; pCtx->rip += cb; /* Update interrupt shadow. */ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); } /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ /** @name \#VMEXIT handlers. * @{ */ /** * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT). */ HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI) STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC); else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR) STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt); /* * AMD-V has no preemption timer and the generic periodic preemption timer has no way to * signal -before- the timer fires if the current interrupt is our own timer or a some * other host interrupt. We also cannot examine what interrupt it is until the host * actually take the interrupt. * * Going back to executing guest code here unconditionally causes random scheduling * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host). */ return VINF_EM_RAW_INTERRUPT; } /** * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX); VBOXSTRICTRC rcStrict; PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID), pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base); if (!pExitRec) { bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); } else { /* * Frequent exit or something needing probing. Get state and call EMHistoryExec. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx)); rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); } return rcStrict; } /** * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_SUCCESS) pSvmTransient->fUpdateTscOffsetting = true; else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_SUCCESS) pSvmTransient->fUpdateTscOffsetting = true; else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); VBOXSTRICTRC rcStrict; bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu); bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if ( fSupportsDecodeAssists && fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1; rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return VBOXSTRICTRC_VAL(rcStrict); } /** * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if ( rcStrict == VINF_EM_HALT || rcStrict == VINF_SUCCESS) rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT; else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); if (rcStrict != VINF_SUCCESS) STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3); return VBOXSTRICTRC_VAL(rcStrict);; } /** * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); /* * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no * segment override prefix is present (and thus use the default segment DS). Otherwise, a * segment override prefix or other prefixes might be used, in which case we fallback to * IEMExecOne() to figure out. */ VBOXSTRICTRC rcStrict; PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0; if (cbInstr) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS); rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if ( rcStrict == VINF_EM_HALT && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx)) rcStrict = VINF_SUCCESS; else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional * \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); return VINF_EM_RESET; } /** * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode, pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2)); RT_NOREF(pVmcb); pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode; return VERR_SVM_UNEXPECTED_EXIT; } /** * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip)); #ifdef VBOX_WITH_STATISTICS switch (pSvmTransient->u64ExitCode) { case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break; case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break; case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break; case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break; case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break; } #endif bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu); bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if ( fSupportsDecodeAssists && fSupportsNextRipSave) { PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK); if (fMovCRx) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK | CPUMCTX_EXTRN_APIC_TPR); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip; uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0; uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER; VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg); HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return VBOXSTRICTRC_VAL(rcStrict); } /* else: SMSW instruction, fall back below to IEM for this. */ } HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu); AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3 || rcStrict == VINF_IEM_RAISED_XCPT, ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15); if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); uint64_t const uExitCode = pSvmTransient->u64ExitCode; uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0); Assert(iCrReg <= 15); VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5; PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; bool fDecodedInstr = false; bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu); bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if ( fSupportsDecodeAssists && fSupportsNextRipSave) { PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK); if (fMovCRx) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip; uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER; Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg)); rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg); fDecodedInstr = true; } /* else: LMSW or CLTS instruction, fall back below to IEM for this. */ } if (!fDecodedInstr) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); Log4Func(("iCrReg=%#x\n", iCrReg)); rcStrict = IEMExecOne(pVCpu); if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED)) rcStrict = VERR_EM_INTERPRETER; } if (rcStrict == VINF_SUCCESS) { switch (iCrReg) { case 0: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write); break; case 2: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write); break; case 3: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write); break; case 4: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write); break; case 8: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write); break; default: { AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n", pSvmTransient->u64ExitCode, iCrReg)); break; } } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); } else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); } else Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3); return rcStrict; } /** * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. */ static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb) { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr); Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx)); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS); rcStrict = IEMExecOne(pVCpu); } AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pVmcb Pointer to the VM control block. * @param pSvmTransient Pointer to the SVM-transient structure. */ static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient) { PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; uint32_t const idMsr = pCtx->ecx; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr); Log4Func(("idMsr=%#RX32\n", idMsr)); /* * Handle TPR patching MSR writes. * We utilitize the LSTAR MSR for patching. */ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if ( idMsr == MSR_K8_LSTAR && pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingActive) { unsigned cbInstr; if (fSupportsNextRipSave) cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; else { PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState; int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr); if ( rc == VINF_SUCCESS && pDis->pCurInstr->uOpcode == OP_WRMSR) Assert(cbInstr > 0); else cbInstr = 0; } /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */ if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr) { int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff); AssertRCReturn(rc, rc); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR); } int rc = VINF_SUCCESS; hmR0SvmAdvanceRip(pVCpu, cbInstr); HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); return rc; } /* * Handle regular MSR writes. */ VBOXSTRICTRC rcStrict; if (fSupportsNextRipSave) { /** @todo Optimize this: We don't need to get much of the MSR state here * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and * clear the applicable extern flags. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS); rcStrict = IEMExecOne(pVCpu); } AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); if (rcStrict == VINF_SUCCESS) { /* If this is an X2APIC WRMSR access, update the APIC TPR state. */ if ( idMsr >= MSR_IA32_X2APIC_START && idMsr <= MSR_IA32_X2APIC_END) { /* * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). * When full APIC register virtualization is implemented we'll have to make sure * APIC state is saved from the VMCB before IEM changes it. */ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR); } else { switch (idMsr) { case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break; case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break; case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break; case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break; case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break; case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break; case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break; } } } else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional * \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ) return hmR0SvmExitReadMsr(pVCpu, pVmcb); Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE); return hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient); } /** * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead); /** @todo Stepping with nested-guest. */ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { /* We should -not- get this #VMEXIT if the guest's debug registers were active. */ if (pSvmTransient->fWasGuestDebugStateActive) { AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode)); pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode; return VERR_SVM_UNEXPECTED_EXIT; } /* * Lazy DR0-3 loading. */ if (!pSvmTransient->fWasHyperDebugStateActive) { Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction); Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n")); /* Don't intercept DRx read and writes. */ PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; pVmcb->ctrl.u16InterceptRdDRx = 0; pVmcb->ctrl.u16InterceptWrDRx = 0; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */ VMMRZCallRing3Disable(pVCpu); HM_DISABLE_PREEMPT(pVCpu); /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */ CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */); Assert(CPUMIsGuestDebugStateActive(pVCpu)); HM_RESTORE_PREEMPT(); VMMRZCallRing3Enable(pVCpu); STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch); return VINF_SUCCESS; } } /* * Interpret the read/writing of DRx. */ /** @todo Decode assist. */ VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */); Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc))); if (RT_LIKELY(rc == VINF_SUCCESS)) { /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */ /** @todo CPUM should set this flag! */ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK); HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); } else Assert(rc == VERR_EM_INTERPRETER); return rc; } /** * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */ VBOXSTRICTRC rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite); STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead); return rc; } /** * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); /** @todo decode assists... */ VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu); if (RT_LIKELY(rcStrict == VINF_SUCCESS)) { PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0(); Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], fLoadSaveGuestXcr0, pCtx->cr4)); if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0) { pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0; hmR0SvmUpdateVmRunFunction(pVCpu); } } else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK); /* I/O operation lookup arrays. */ static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */ static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving the result (in AL/AX/EAX). */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip)); /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */ SVMIOIOEXITINFO IoExitInfo; IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1; uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7; uint32_t cbValue = s_aIOSize[uIOWidth]; uint32_t uAndVal = s_aIOOpAnd[uIOWidth]; if (RT_UNLIKELY(!cbValue)) { AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth)); return VERR_EM_INTERPRETER; } HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS); VBOXSTRICTRC rcStrict; PCEMEXITREC pExitRec = NULL; if ( !pVCpu->hm.s.fSingleInstruction && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF) pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu, !IoExitInfo.n.u1Str ? IoExitInfo.n.u1Type == SVM_IOIO_READ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE) : IoExitInfo.n.u1Type == SVM_IOIO_READ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE), pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base); if (!pExitRec) { bool fUpdateRipAlready = false; if (IoExitInfo.n.u1Str) { /* INS/OUTS - I/O String instruction. */ /** @todo Huh? why can't we use the segment prefix information given by AMD-V * in EXITINFO1? Investigate once this thing is up and running. */ Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue, IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r')); AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2); static IEMMODE const s_aenmAddrMode[8] = { (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1 }; IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7]; if (enmAddrMode != (IEMMODE)-1) { uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip; if (cbInstr <= 15 && cbInstr >= 1) { Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep); if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE) { /* Don't know exactly how to detect whether u3Seg is valid, currently only enabling it for Bulldozer and later with NRIP. OS/2 broke on 2384 Opterons when only checking NRIP. */ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if ( fSupportsNextRipSave && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First) { AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep, ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep)); rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr, IoExitInfo.n.u3Seg, true /*fIoChecked*/); } else if (cbInstr == 1U + IoExitInfo.n.u1Rep) rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr, X86_SREG_DS, true /*fIoChecked*/); else rcStrict = IEMExecOne(pVCpu); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite); } else { AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg)); rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr, true /*fIoChecked*/); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead); } } else { AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr)); rcStrict = IEMExecOne(pVCpu); } } else { AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u)); rcStrict = IEMExecOne(pVCpu); } fUpdateRipAlready = true; } else { /* IN/OUT - I/O instruction. */ Assert(!IoExitInfo.n.u1Rep); uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip; if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE) { rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue); if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE && !pCtx->eflags.Bits.u1TF) rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite); } else { uint32_t u32Val = 0; rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue); if (IOM_SUCCESS(rcStrict)) { /* Save result of I/O IN instr. in AL/AX/EAX. */ /** @todo r=bird: 32-bit op size should clear high bits of rax! */ pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal); } else if ( rcStrict == VINF_IOM_R3_IOPORT_READ && !pCtx->eflags.Bits.u1TF) rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead); } } if (IOM_SUCCESS(rcStrict)) { /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */ if (!fUpdateRipAlready) pCtx->rip = pVmcb->ctrl.u64ExitInfo2; /* * If any I/O breakpoints are armed, we need to check if one triggered * and take appropriate action. * Note that the I/O breakpoint type is undefined if CR4.DE is 0. */ /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the * execution engines about whether hyper BPs and such are pending. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7); uint32_t const uDr7 = pCtx->dr[7]; if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK) && X86_DR7_ANY_RW_IO(uDr7) && (pCtx->cr4 & X86_CR4_DE)) || DBGFBpIsHwIoArmed(pVM))) { /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */ VMMRZCallRing3Disable(pVCpu); HM_DISABLE_PREEMPT(pVCpu); STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck); CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/); VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue); if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP) { /* Raise #DB. */ pVmcb->guest.u64DR6 = pCtx->dr[6]; pVmcb->guest.u64DR7 = pCtx->dr[7]; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX; hmR0SvmSetPendingXcptDB(pVCpu); } /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST], however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */ else if ( rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict)) rcStrict = rcStrict2; AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE); HM_RESTORE_PREEMPT(); VMMRZCallRing3Enable(pVCpu); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); } #ifdef VBOX_STRICT if ( rcStrict == VINF_IOM_R3_IOPORT_READ || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ) Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ); else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE) Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE); else { /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST * statuses, that the VMM device and some others may return. See * IOM_SUCCESS() for guidance. */ AssertMsg( RT_FAILURE(rcStrict) || rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RAW_EMULATE_INSTR || rcStrict == VINF_EM_DBG_BREAKPOINT || rcStrict == VINF_EM_RAW_GUEST_TRAP || rcStrict == VINF_EM_DBG_STEPPED || rcStrict == VINF_EM_RAW_TO_R3 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); } #endif } else { /* * Frequent exit or something needing probing. Get state and call EMHistoryExec. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); STAM_COUNTER_INC(!IoExitInfo.n.u1Str ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead); Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "", IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth)); rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); } return rcStrict; } /** * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); PVMCC pVM = pVCpu->CTX_SUFF(pVM); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; Assert(pVM->hmr0.s.fNestedPaging); /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2; uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are thus intentionally not copied into u32ErrCode. */ Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x cbInstrFetched=%u %.15Rhxs\n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode, pVmcb->ctrl.cbInstrFetched, pVmcb->ctrl.abInstr)); /* * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */ if ( pVM->hm.s.fTprPatchingAllowed && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */ || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */ && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx) && !CPUMIsGuestInLongModeEx(pCtx) && !CPUMGetGuestCPL(pVCpu) && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches)) { RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu); GCPhysApicBase &= PAGE_BASE_GC_MASK; if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR) { /* Only attempt to patch the instruction once. */ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (!pPatch) return VINF_EM_HM_PATCH_TPR_INSTR; } } /* * Determine the nested paging mode. */ /** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */ PGMMODE const enmNestedPagingMode = PGMGetHostMode(pVM); /* * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages. */ Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD); if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) { /* * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise * injecting the original pending event would most likely cause the same MMIO #NPF. */ if (pVCpu->hm.s.Event.fPending) { STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret); return VINF_EM_RAW_INJECT_TRPM_EVENT; } HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP); VBOXSTRICTRC rcStrict; PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO), pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base); if (!pExitRec) { rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr, u32ErrCode); /* * If we succeed, resume guest execution. * * If we fail in interpreting the instruction because we couldn't get the guest * physical address of the page containing the instruction via the guest's page * tables (we would invalidate the guest page in the host TLB), resume execution * which would cause a guest page fault to let the guest handle this weird case. * * See @bugref{6043}. */ if ( rcStrict == VINF_SUCCESS || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT || rcStrict == VERR_PAGE_NOT_PRESENT) { /* Successfully handled MMIO operation. */ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR); rcStrict = VINF_SUCCESS; } } else { /* * Frequent exit or something needing probing. Get state and call EMHistoryExec. */ Assert(pCtx == &pVCpu->cpum.GstCtx); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr)); rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); } return rcStrict; } /* * Nested page-fault. */ TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode); int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr); TRPMResetTrap(pVCpu); Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip)); /* * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */ if ( rc == VINF_SUCCESS || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT) { /* We've successfully synced our shadow page tables. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF); rc = VINF_SUCCESS; } /* * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and * re-inject the original event. */ if (pVCpu->hm.s.Event.fPending) { STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF); /* * If the #NPF handler requested emulation of the instruction, ignore it. * We need to re-inject the original event so as to not lose it. * Reproducible when booting ReactOS 0.4.12 with BTRFS (installed using BootCD, * LiveCD is broken for other reasons). */ if (rc == VINF_EM_RAW_EMULATE_INSTR) rc = VINF_EM_RAW_INJECT_TRPM_EVENT; } return rc; } /** * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional * \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); hmR0SvmClearIntWindowExiting(pVCpu, pVmcb); /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow); return VINF_SUCCESS; } /** * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional * \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); #ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); #endif /* Check if this task-switch occurred while delivering an event through the guest IDT. */ if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */ { /* * AMD-V provides us with the exception which caused the TS; we collect * the information in the call to hmR0SvmCheckExitDueToEventDelivery(). */ Log4Func(("TS occurred during event delivery\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch); return VINF_EM_RAW_INJECT_TRPM_EVENT; } /** @todo Emulate task switch someday, currently just going back to ring-3 for * emulation. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch); return VERR_EM_INTERPRETER; } /** * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); PVMCC pVM = pVCpu->CTX_SUFF(pVM); if (pVM->hm.s.fTprPatchingAllowed) { int rc = hmEmulateSvmMovTpr(pVM, pVCpu); if (rc != VERR_NOT_FOUND) { Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc)); return rc; } } if (EMAreHypercallInstructionsEnabled(pVCpu)) { unsigned cbInstr; if (hmR0SvmSupportsNextRipSave(pVCpu)) { PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; } else { PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState; int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr); if ( rc == VINF_SUCCESS && pDis->pCurInstr->uOpcode == OP_VMMCALL) Assert(cbInstr > 0); else cbInstr = 0; } VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx); if (RT_SUCCESS(rcStrict)) { /* Only update the RIP if we're continuing guest execution and not in the case of say VINF_GIM_R3_HYPERCALL. */ if (rcStrict == VINF_SUCCESS) hmR0SvmAdvanceRip(pVCpu, cbInstr); return VBOXSTRICTRC_VAL(rcStrict); } else Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict))); } hmR0SvmSetPendingXcptUD(pVCpu); return VINF_SUCCESS; } /** * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); unsigned cbInstr; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; } else { PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState; int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr); if ( rc == VINF_SUCCESS && pDis->pCurInstr->uOpcode == OP_PAUSE) Assert(cbInstr > 0); else cbInstr = 0; } /** @todo The guest has likely hit a contended spinlock. We might want to * poke a schedule different guest VCPU. */ hmR0SvmAdvanceRip(pVCpu, cbInstr); return VINF_EM_RAW_INTERRUPT; } /** * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional * \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0); Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE)); Log4Func(("Raising IRQ 13 in response to #FERR\n")); return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */); } /** * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now (almost) ready. */ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET); /* Emulate the IRET. We have to execute the IRET before an NMI, but must potentially * deliver a pending NMI right after. If the IRET faults, an NMI can come before the * handler executes. Yes, x86 is ugly. */ return VINF_EM_RAW_EMULATE_INSTR; } /** * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14). * Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); /* See AMD spec. 15.12.15 "#PF (Page Fault)". */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1; uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2; #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF) if (pVM->hmr0.s.fNestedPaging) { pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */ if ( !pSvmTransient->fVectoringDoublePF || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { /* A genuine guest #PF, reflect it to the guest. */ hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress); Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip, uFaultAddress, uErrCode)); } else { /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */ hmR0SvmSetPendingXcptDF(pVCpu); Log4Func(("Pending #DF due to vectoring #PF. NP\n")); } STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); return VINF_SUCCESS; } #endif Assert(!pVM->hmr0.s.fNestedPaging); /* * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */ if ( pVM->hm.s.fTprPatchingAllowed && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR && !(uErrCode & X86_TRAP_PF_P) /* Not present. */ && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx) && !CPUMIsGuestInLongModeEx(pCtx) && !CPUMGetGuestCPL(pVCpu) && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches)) { RTGCPHYS GCPhysApicBase; GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu); GCPhysApicBase &= PAGE_BASE_GC_MASK; /* Check if the page at the fault-address is the APIC base. */ PGMPTWALK Walk; int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, &Walk); if ( rc2 == VINF_SUCCESS && Walk.GCPhys == GCPhysApicBase) { /* Only attempt to patch the instruction once. */ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (!pPatch) return VINF_EM_HM_PATCH_TPR_INSTR; } } Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel, pCtx->rip, uErrCode, pCtx->cr3)); /* * If it's a vectoring #PF, emulate injecting the original event injection as * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and * event injection that caused a #PF. See @bugref{6607}. */ if (pSvmTransient->fVectoringPF) { Assert(pVCpu->hm.s.Event.fPending); return VINF_EM_RAW_INJECT_TRPM_EVENT; } TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode); int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress); Log4Func(("#PF: rc=%Rrc\n", rc)); if (rc == VINF_SUCCESS) { /* Successfully synced shadow pages tables or emulated an MMIO instruction. */ TRPMResetTrap(pVCpu); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); return rc; } if (rc == VINF_EM_RAW_GUEST_TRAP) { pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */ /* * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF, * we should simply forward the #PF to the guest and is up to the nested-hypervisor to * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}. */ if ( !pSvmTransient->fVectoringDoublePF || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { /* It's a guest (or nested-guest) page fault and needs to be reflected. */ uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */ TRPMResetTrap(pVCpu); #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */ if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx) && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF)) return IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress); #endif hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress); } else { /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */ TRPMResetTrap(pVCpu); hmR0SvmSetPendingXcptDF(pVCpu); Log4Func(("#PF: Pending #DF due to vectoring #PF\n")); } STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); return VINF_SUCCESS; } TRPMResetTrap(pVCpu); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM); return rc; } /** * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6). * Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); /* Paranoia; Ensure we cannot be called as a result of event delivery. */ PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb); /** @todo if we accumulate more optional stuff here, we ought to combine the * reading of opcode bytes to avoid doing more than once. */ VBOXSTRICTRC rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT; if (pVCpu->hm.s.fGIMTrapXcptUD) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); uint8_t cbInstr = 0; rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr); if (rcStrict == VINF_SUCCESS) { /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */ hmR0SvmAdvanceRip(pVCpu, cbInstr); rcStrict = VINF_SUCCESS; HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); } else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING) rcStrict = VINF_SUCCESS; else if (rcStrict == VINF_GIM_R3_HYPERCALL) rcStrict = VINF_GIM_R3_HYPERCALL; else { Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict))); rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT; } } if (pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER); if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)) { /* Ideally, IEM should just handle all these special #UD situations, but we don't quite trust things to behave optimially when doing that. So, for now we'll restrict ourselves to a handful of possible sysenter and sysexit encodings that we filter right here. */ uint8_t abInstr[SVM_CTRL_GUEST_INSTR_BYTES_MAX]; uint8_t cbInstr = pVmcb->ctrl.cbInstrFetched; uint32_t const uCpl = CPUMGetGuestCPL(pVCpu); uint8_t const cbMin = uCpl != 0 ? 2 : 1 + 2; RTGCPTR const GCPtrInstr = pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base; if (cbInstr < cbMin || cbInstr > SVM_CTRL_GUEST_INSTR_BYTES_MAX) { cbInstr = cbMin; int rc2 = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, GCPtrInstr, cbInstr); AssertRCStmt(rc2, cbInstr = 0); } else memcpy(abInstr, pVmcb->ctrl.abInstr, cbInstr); /* unlikely */ if ( cbInstr == 0 /* read error */ || (cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x34) /* sysenter */ || ( uCpl == 0 && ( ( cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x35) /* sysexit */ || ( cbInstr >= 3 && abInstr[1] == 0x0f && abInstr[2] == 0x35 /* rex.w sysexit */ && (abInstr[0] & (X86_OP_REX_W | 0xf0)) == X86_OP_REX_W)))) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK /* without ES+DS+GS the app will #GP later - go figure */); Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl)); rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), GCPtrInstr, abInstr, cbInstr); Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: rcStrict=%Rrc %04x:%08RX64 %08RX64 %04x:%08RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); /** @todo Lazy bird. */ if (rcStrict == VINF_IEM_RAISED_XCPT) rcStrict = VINF_SUCCESS; return rcStrict; } Log6(("hmR0SvmExitXcptUD: not sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl)); } else Log6(("hmR0SvmExitXcptUD: not in long mode at %04x:%llx\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); } /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */ if (RT_FAILURE(rcStrict)) { hmR0SvmSetPendingXcptUD(pVCpu); rcStrict = VINF_SUCCESS; } STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); return rcStrict; } /** * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16). * Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); /* Paranoia; Ensure we cannot be called as a result of event delivery. */ Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); if (!(pCtx->cr0 & X86_CR0_NE)) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); PDISSTATE pDis = &pVCpu->hmr0.s.svm.DisState; unsigned cbInstr; int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr); if (RT_SUCCESS(rc)) { /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */ rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */); if (RT_SUCCESS(rc)) hmR0SvmAdvanceRip(pVCpu, cbInstr); } else Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode)); return rc; } hmR0SvmSetPendingXcptMF(pVCpu); return VINF_SUCCESS; } /** * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional * \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret); return VINF_EM_RAW_INJECT_TRPM_EVENT; } STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); /* * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception * handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; int rc = DBGFTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction); if (rc == VINF_EM_RAW_GUEST_TRAP) { Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6)); if (CPUMIsHyperDebugStateActive(pVCpu)) CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6); /* Reflect the exception back to the guest. */ hmR0SvmSetPendingXcptDB(pVCpu); rc = VINF_SUCCESS; } /* * Update DR6. */ if (CPUMIsHyperDebugStateActive(pVCpu)) { Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc)); pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL; pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX; } else { AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu)); } return rc; } /** * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17). * Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_AC; Event.n.u1ErrorCodeValid = 1; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); return VINF_SUCCESS; } /** * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3). * Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; int rc = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_EM_RAW_GUEST_TRAP) { SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_BP; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); rc = VINF_SUCCESS; } Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT); return rc; } /** * Hacks its way around the lovely mesa driver's backdoor accesses. * * @sa hmR0VmxHandleMesaDrvGp */ static int hmR0SvmHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK); Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n", pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx)); RT_NOREF(pCtx, pVmcb); /* For now we'll just skip the instruction. */ hmR0SvmAdvanceRip(pVCpu, 1); return VINF_SUCCESS; } /** * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely * backdoor logging w/o checking what it is running inside. * * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the * backdoor port and magic numbers loaded in registers. * * @returns true if it is, false if it isn't. * @sa hmR0VmxIsMesaDrvGp */ DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb) { /* Check magic and port. */ Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX))); /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/ if (pCtx->dx != UINT32_C(0x5658)) return false; if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868)) return false; /* Check that it is #GP(0). */ if (pVmcb->ctrl.u64ExitInfo1 != 0) return false; /* Flat ring-3 CS. */ /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/ if (pVmcb->guest.u8CPL != 3) return false; if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0) return false; /* 0xed: IN eAX,dx */ if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */ { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER); uint8_t abInstr[1]; int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr)); /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */ if (RT_FAILURE(rc)) return false; if (abInstr[0] != 0xed) return false; } else { /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/ if (pVmcb->ctrl.abInstr[0] != 0xed) return false; } return true; } /** * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP). * Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode); PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb)) { SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_GP; Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); return VINF_SUCCESS; } return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb); } #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM) /** * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0; uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1; Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode); Assert(uVector <= X86_XCPT_LAST); Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode)); SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = uVector; switch (uVector) { /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */ case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5; case X86_XCPT_DF: case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP: case X86_XCPT_AC: { Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = uErrCode; break; } } #ifdef VBOX_WITH_STATISTICS switch (uVector) { case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break; case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break; case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break; case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break; case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break; case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break; case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break; case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break; case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break; case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break; case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break; case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break; case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break; case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break; case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break; case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break; default: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk); break; } #endif hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); return VINF_SUCCESS; } #endif #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /** * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); Assert(pVmcb); Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT; if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_SUCCESS) ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT); else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); /* * When VGIF is not used we always intercept STGI instructions. When VGIF is used, * we only intercept STGI when events are pending for GIF to become 1. */ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable) hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT; if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_SUCCESS) ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT); else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); Assert(pVmcb); Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS; if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_SUCCESS) { ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS | HM_CHANGED_GUEST_SYSENTER_MSR_MASK); } else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); if (fSupportsNextRipSave) { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK); PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr); } else { HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); rcStrict = IEMExecOne(pVCpu); } if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); /* We shall import the entire state here, just in case we enter and continue execution of the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and could lose lose part of CPU state. */ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); VBOXSTRICTRC rcStrict; bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu); STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z); if (fSupportsNextRipSave) { PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu); uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip; rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr); } else { /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any instruction(s) when interrupt inhibition is set as part of emulating the VMRUN instruction itself, see @bugref{7243#c126} */ rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */); } STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z); if (rcStrict == VINF_SUCCESS) { rcStrict = VINF_SVM_VMRUN; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK); } else if (rcStrict == VINF_IEM_RAISED_XCPT) { rcStrict = VINF_SUCCESS; ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); } HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict); return rcStrict; } /** * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). * Unconditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); if (pVCpu->hm.s.Event.fPending) { STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret); return VINF_EM_RAW_INJECT_TRPM_EVENT; } hmR0SvmSetPendingXcptDB(pVCpu); return VINF_SUCCESS; } /** * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3). * Conditional \#VMEXIT. */ HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient) { HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient); HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient); SVMEVENT Event; Event.u = 0; Event.n.u1Valid = 1; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u8Vector = X86_XCPT_BP; hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */); return VINF_SUCCESS; } #endif /* VBOX_WITH_NESTED_HWVIRT_SVM */ /** @} */