1 | /* $Id: HMSVMR0.cpp 46444 2013-06-07 17:02:46Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM SVM (AMD-V) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2013 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | /*******************************************************************************
|
---|
19 | * Header Files *
|
---|
20 | *******************************************************************************/
|
---|
21 |
|
---|
22 | #ifdef DEBUG_ramshankar
|
---|
23 | # define HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
24 | # define HMSVM_ALWAYS_TRAP_PF
|
---|
25 | #endif
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Defined Constants And Macros *
|
---|
30 | *******************************************************************************/
|
---|
31 | /** @name Segment attribute conversion between CPU and AMD-V VMCB format.
|
---|
32 | *
|
---|
33 | * The CPU format of the segment attribute is described in X86DESCATTRBITS
|
---|
34 | * which is 16-bits (i.e. includes 4 bits of the segment limit).
|
---|
35 | *
|
---|
36 | * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
|
---|
37 | * only the attribute bits and nothing else). Upper 4-bits are unused.
|
---|
38 | *
|
---|
39 | * @{ */
|
---|
40 | #define HMSVM_CPU_2_VMCB_SEG_ATTR(a) (a & 0xff) | ((a & 0xf000) >> 4)
|
---|
41 | #define HMSVM_VMCB_2_CPU_SEG_ATTR(a) (a & 0xff) | ((a & 0x0f00) << 4)
|
---|
42 | /** @} */
|
---|
43 |
|
---|
44 | /** @name Macros for loading, storing segment registers to/from the VMCB.
|
---|
45 | * @{ */
|
---|
46 | #define HMSVM_LOAD_SEG_REG(REG, reg) \
|
---|
47 | do \
|
---|
48 | { \
|
---|
49 | Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
|
---|
50 | Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
|
---|
51 | pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
|
---|
52 | pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
|
---|
53 | pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
|
---|
54 | pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
|
---|
55 | } while (0)
|
---|
56 |
|
---|
57 | #define HMSVM_SAVE_SEG_REG(REG, reg) \
|
---|
58 | do \
|
---|
59 | { \
|
---|
60 | pCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
|
---|
61 | pCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
|
---|
62 | pCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
|
---|
63 | pCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
|
---|
64 | pCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
|
---|
65 | pCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
|
---|
66 | } while (0)
|
---|
67 | /** @} */
|
---|
68 |
|
---|
69 | /**
|
---|
70 | * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
|
---|
71 | */
|
---|
72 | typedef enum SVMMSREXITREAD
|
---|
73 | {
|
---|
74 | /** Reading this MSR causes a VM-exit. */
|
---|
75 | SVMMSREXIT_INTERCEPT_READ = 0xb,
|
---|
76 | /** Reading this MSR does not cause a VM-exit. */
|
---|
77 | SVMMSREXIT_PASSTHRU_READ
|
---|
78 | } VMXMSREXITREAD;
|
---|
79 |
|
---|
80 | /**
|
---|
81 | * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
|
---|
82 | */
|
---|
83 | typedef enum SVMMSREXITWRITE
|
---|
84 | {
|
---|
85 | /** Writing to this MSR causes a VM-exit. */
|
---|
86 | SVMMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
87 | /** Writing to this MSR does not cause a VM-exit. */
|
---|
88 | SVMMSREXIT_PASSTHRU_WRITE
|
---|
89 | } VMXMSREXITWRITE;
|
---|
90 |
|
---|
91 |
|
---|
92 | /*******************************************************************************
|
---|
93 | * Internal Functions *
|
---|
94 | *******************************************************************************/
|
---|
95 | static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
|
---|
96 |
|
---|
97 |
|
---|
98 | /*******************************************************************************
|
---|
99 | * Global Variables *
|
---|
100 | *******************************************************************************/
|
---|
101 | /** Ring-0 memory object for the IO bitmap. */
|
---|
102 | RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
103 | /** Physical address of the IO bitmap. */
|
---|
104 | RTHCPHYS g_HCPhysIOBitmap = 0;
|
---|
105 | /** Virtual address of the IO bitmap. */
|
---|
106 | R0PTRTYPE(void *) g_pvIOBitmap = NULL;
|
---|
107 |
|
---|
108 |
|
---|
109 | /**
|
---|
110 | * Sets up and activates AMD-V on the current CPU.
|
---|
111 | *
|
---|
112 | * @returns VBox status code.
|
---|
113 | * @param pCpu Pointer to the CPU info struct.
|
---|
114 | * @param pVM Pointer to the VM (can be NULL after a resume!).
|
---|
115 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
116 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
117 | */
|
---|
118 | VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
|
---|
119 | {
|
---|
120 | AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
|
---|
121 | AssertReturn( HCPhysCpuPage
|
---|
122 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
123 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
124 |
|
---|
125 | /*
|
---|
126 | * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
|
---|
127 | */
|
---|
128 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
129 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
130 | {
|
---|
131 | /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
|
---|
132 | if ( pVM
|
---|
133 | && pVM->hm.s.svm.fIgnoreInUseError)
|
---|
134 | {
|
---|
135 | pCpu->fIgnoreAMDVInUseError = true;
|
---|
136 | }
|
---|
137 |
|
---|
138 | if (!pCpu->fIgnoreAMDVInUseError)
|
---|
139 | return VERR_SVM_IN_USE;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /* Turn on AMD-V in the EFER MSR. */
|
---|
143 | ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
|
---|
144 |
|
---|
145 | /* Write the physical page address where the CPU will store the host state while executing the VM. */
|
---|
146 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
|
---|
147 |
|
---|
148 | /*
|
---|
149 | * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
|
---|
150 | * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
|
---|
151 | * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
|
---|
152 | * to flush the TLB with before using a new ASID.
|
---|
153 | */
|
---|
154 | pCpu->fFlushAsidBeforeUse = true;
|
---|
155 |
|
---|
156 | /*
|
---|
157 | * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
|
---|
158 | */
|
---|
159 | ++pCpu->cTlbFlushes;
|
---|
160 |
|
---|
161 | return VINF_SUCCESS;
|
---|
162 | }
|
---|
163 |
|
---|
164 |
|
---|
165 | /**
|
---|
166 | * Deactivates AMD-V on the current CPU.
|
---|
167 | *
|
---|
168 | * @returns VBox status code.
|
---|
169 | * @param pCpu Pointer to the CPU info struct.
|
---|
170 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
171 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
172 | */
|
---|
173 | VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
174 | {
|
---|
175 | AssertReturn( HCPhysCpuPage
|
---|
176 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
177 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
178 | NOREF(pCpu);
|
---|
179 |
|
---|
180 | /* Turn off AMD-V in the EFER MSR if AMD-V is active. */
|
---|
181 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
182 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
183 | {
|
---|
184 | ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
|
---|
185 |
|
---|
186 | /* Invalidate host state physical address. */
|
---|
187 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
|
---|
188 | }
|
---|
189 |
|
---|
190 | return VINF_SUCCESS;
|
---|
191 | }
|
---|
192 |
|
---|
193 |
|
---|
194 | /**
|
---|
195 | * Does global AMD-V initialization (called during module initialization).
|
---|
196 | *
|
---|
197 | * @returns VBox status code.
|
---|
198 | */
|
---|
199 | VMMR0DECL(int) SVMR0GlobalInit(void)
|
---|
200 | {
|
---|
201 | /*
|
---|
202 | * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
|
---|
203 | * once globally here instead of per-VM.
|
---|
204 | */
|
---|
205 | int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
|
---|
206 | if (RT_FAILURE(rc))
|
---|
207 | return rc;
|
---|
208 |
|
---|
209 | g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
|
---|
210 | g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
|
---|
211 |
|
---|
212 | /* Set all bits to intercept all IO accesses. */
|
---|
213 | ASMMemFill32(pVM->hm.s.svm.pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
|
---|
214 | }
|
---|
215 |
|
---|
216 |
|
---|
217 | /**
|
---|
218 | * Does global VT-x termination (called during module termination).
|
---|
219 | */
|
---|
220 | VMMR0DECL(void) SVMR0GlobalTerm(void)
|
---|
221 | {
|
---|
222 | if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
|
---|
223 | {
|
---|
224 | RTR0MemObjFree(pVM->hm.s.svm.hMemObjIOBitmap, false /* fFreeMappings */);
|
---|
225 | g_pvIOBitmap = NULL;
|
---|
226 | g_HCPhysIOBitmap = 0;
|
---|
227 | g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
228 | }
|
---|
229 | }
|
---|
230 |
|
---|
231 |
|
---|
232 | /**
|
---|
233 | * Frees any allocated per-VCPU structures for a VM.
|
---|
234 | *
|
---|
235 | * @param pVM Pointer to the VM.
|
---|
236 | */
|
---|
237 | DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
|
---|
238 | {
|
---|
239 | for (uint32_t i = 0; i < pVM->cCpus; i++)
|
---|
240 | {
|
---|
241 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
242 | AssertPtr(pVCpu);
|
---|
243 |
|
---|
244 | if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
|
---|
245 | {
|
---|
246 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
|
---|
247 | pVCpu->hm.s.svm.pvVmcbHost = 0;
|
---|
248 | pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
|
---|
249 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
250 | }
|
---|
251 |
|
---|
252 | if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
|
---|
253 | {
|
---|
254 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
|
---|
255 | pVCpu->hm.s.svm.pvVmcb = 0;
|
---|
256 | pVCpu->hm.s.svm.HCPhysVmcb = 0;
|
---|
257 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
258 | }
|
---|
259 |
|
---|
260 | if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
|
---|
261 | {
|
---|
262 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
|
---|
263 | pVCpu->hm.s.svm.pvMsrBitmap = 0;
|
---|
264 | pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
|
---|
265 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
266 | }
|
---|
267 | }
|
---|
268 | }
|
---|
269 |
|
---|
270 |
|
---|
271 | /**
|
---|
272 | * Does per-VM AMD-V initialization.
|
---|
273 | *
|
---|
274 | * @returns VBox status code.
|
---|
275 | * @param pVM Pointer to the VM.
|
---|
276 | */
|
---|
277 | VMMR0DECL(int) SVMR0InitVM(PVM pVM)
|
---|
278 | {
|
---|
279 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
280 |
|
---|
281 | /*
|
---|
282 | * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
|
---|
283 | */
|
---|
284 | uint32_t u32Family;
|
---|
285 | uint32_t u32Model;
|
---|
286 | uint32_t u32Stepping;
|
---|
287 | if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
|
---|
288 | {
|
---|
289 | Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
|
---|
290 | pVM->hm.s.svm.fAlwaysFlushTLB = true;
|
---|
291 | }
|
---|
292 |
|
---|
293 | /*
|
---|
294 | * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
|
---|
295 | */
|
---|
296 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
297 | {
|
---|
298 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
299 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
300 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
301 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
302 | }
|
---|
303 |
|
---|
304 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
305 | {
|
---|
306 | /*
|
---|
307 | * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
|
---|
308 | * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
|
---|
309 | */
|
---|
310 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
|
---|
311 | if (RT_FAILURE(rc))
|
---|
312 | goto failure_cleanup;
|
---|
313 |
|
---|
314 | pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
|
---|
315 | pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
|
---|
316 | Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
|
---|
317 | ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
|
---|
318 |
|
---|
319 | /*
|
---|
320 | * Allocate one page for the guest-state VMCB.
|
---|
321 | */
|
---|
322 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
|
---|
323 | if (RT_FAILURE(rc))
|
---|
324 | goto failure_cleanup;
|
---|
325 |
|
---|
326 | pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
|
---|
327 | pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
|
---|
328 | Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
|
---|
329 | ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
|
---|
330 |
|
---|
331 | /*
|
---|
332 | * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
|
---|
333 | * SVM to not require one.
|
---|
334 | */
|
---|
335 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
|
---|
336 | if (RT_FAILURE(rc))
|
---|
337 | failure_cleanup;
|
---|
338 |
|
---|
339 | pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
|
---|
340 | pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
|
---|
341 | /* Set all bits to intercept all MSR accesses (changed later on). */
|
---|
342 | ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
|
---|
343 | }
|
---|
344 |
|
---|
345 | return VINF_SUCCESS;
|
---|
346 |
|
---|
347 | failure_cleanup:
|
---|
348 | hmR0SvmFreeVMStructs(pVM);
|
---|
349 | return rc;
|
---|
350 | }
|
---|
351 |
|
---|
352 |
|
---|
353 | /**
|
---|
354 | * Does per-VM AMD-V termination.
|
---|
355 | *
|
---|
356 | * @returns VBox status code.
|
---|
357 | * @param pVM Pointer to the VM.
|
---|
358 | */
|
---|
359 | VMMR0DECL(int) SVMR0TermVM(PVM pVM)
|
---|
360 | {
|
---|
361 | hmR0SvmFreeVMStructs(pVM);
|
---|
362 | return VINF_SUCCESS;
|
---|
363 | }
|
---|
364 |
|
---|
365 |
|
---|
366 | /**
|
---|
367 | * Sets the permission bits for the specified MSR in the MSRPM.
|
---|
368 | *
|
---|
369 | * @param pVCpu Pointer to the VMCPU.
|
---|
370 | * @param uMsr The MSR.
|
---|
371 | * @param fRead Whether reading is allowed.
|
---|
372 | * @param fWrite Whether writing is allowed.
|
---|
373 | */
|
---|
374 | static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
|
---|
375 | {
|
---|
376 | unsigned ulBit;
|
---|
377 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
378 |
|
---|
379 | /*
|
---|
380 | * Layout:
|
---|
381 | * Byte offset MSR range
|
---|
382 | * 0x000 - 0x7ff 0x00000000 - 0x00001fff
|
---|
383 | * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
|
---|
384 | * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
|
---|
385 | * 0x1800 - 0x1fff Reserved
|
---|
386 | */
|
---|
387 | if (uMsr <= 0x00001FFF)
|
---|
388 | {
|
---|
389 | /* Pentium-compatible MSRs */
|
---|
390 | ulBit = uMsr * 2;
|
---|
391 | }
|
---|
392 | else if ( uMsr >= 0xC0000000
|
---|
393 | && uMsr <= 0xC0001FFF)
|
---|
394 | {
|
---|
395 | /* AMD Sixth Generation x86 Processor MSRs and SYSCALL */
|
---|
396 | ulBit = (uMsr - 0xC0000000) * 2;
|
---|
397 | pbMsrBitmap += 0x800;
|
---|
398 | }
|
---|
399 | else if ( uMsr >= 0xC0010000
|
---|
400 | && uMsr <= 0xC0011FFF)
|
---|
401 | {
|
---|
402 | /* AMD Seventh and Eighth Generation Processor MSRs */
|
---|
403 | ulBit = (uMsr - 0xC0001000) * 2;
|
---|
404 | pbMsrBitmap += 0x1000;
|
---|
405 | }
|
---|
406 | else
|
---|
407 | {
|
---|
408 | AssertFailed();
|
---|
409 | return;
|
---|
410 | }
|
---|
411 |
|
---|
412 | Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
|
---|
413 | if (enmRead == SVMMSREXIT_INTERCEPT_READ)
|
---|
414 | ASMBitSet(pbMsrBitmap, ulBit);
|
---|
415 | else
|
---|
416 | ASMBitClear(pbMsrBitmap, ulBit);
|
---|
417 |
|
---|
418 | if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
|
---|
419 | ASMBitSet(pbMsrBitmap, ulBit + 1);
|
---|
420 | else
|
---|
421 | ASMBitClear(pbMsrBitmap, ulBit + 1);
|
---|
422 | }
|
---|
423 |
|
---|
424 |
|
---|
425 | /**
|
---|
426 | * Sets up AMD-V for the specified VM.
|
---|
427 | * This function is only called once per-VM during initalization.
|
---|
428 | *
|
---|
429 | * @returns VBox status code.
|
---|
430 | * @param pVM Pointer to the VM.
|
---|
431 | */
|
---|
432 | VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
|
---|
433 | {
|
---|
434 | int rc = VINF_SUCCESS;
|
---|
435 |
|
---|
436 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
437 | Assert(pVM->hm.s.svm.fSupported);
|
---|
438 |
|
---|
439 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
440 | {
|
---|
441 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
442 | PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcbGuest;
|
---|
443 |
|
---|
444 | AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
|
---|
445 |
|
---|
446 | /* Trap exceptions unconditionally (debug purposes). */
|
---|
447 | #ifdef HMSVM_ALWAYS_TRAP_PF
|
---|
448 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
|
---|
449 | #endif
|
---|
450 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
451 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_BP)
|
---|
452 | | RT_BIT(X86_XCPT_DB)
|
---|
453 | | RT_BIT(X86_XCPT_DE)
|
---|
454 | | RT_BIT(X86_XCPT_NM)
|
---|
455 | | RT_BIT(X86_XCPT_UD)
|
---|
456 | | RT_BIT(X86_XCPT_NP)
|
---|
457 | | RT_BIT(X86_XCPT_SS)
|
---|
458 | | RT_BIT(X86_XCPT_GP)
|
---|
459 | | RT_BIT(X86_XCPT_PF)
|
---|
460 | | RT_BIT(X86_XCPT_MF);
|
---|
461 | #endif
|
---|
462 |
|
---|
463 | /* Set up unconditional intercepts and conditions. */
|
---|
464 | pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
|
---|
465 | | SVM_CTRL1_INTERCEPT_VINTR /* When guest enabled interrupts cause a VM-exit. */
|
---|
466 | | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
|
---|
467 | | SVM_CTRL1_INTERCEPT_SMI /* System Management Interrupt cause a VM-exit. */
|
---|
468 | | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
|
---|
469 | | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
|
---|
470 | | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
|
---|
471 | | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
|
---|
472 | | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
|
---|
473 | | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
|
---|
474 | | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
|
---|
475 | | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
|
---|
476 | | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
|
---|
477 | | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
|
---|
478 |
|
---|
479 | pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
|
---|
480 | | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
|
---|
481 | | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
|
---|
482 | | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
|
---|
483 | | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
|
---|
484 | | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
|
---|
485 | | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
|
---|
486 | | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
|
---|
487 | | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
|
---|
488 | | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* MWAIT causes a VM-exit. */
|
---|
489 |
|
---|
490 | /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
|
---|
491 | pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
|
---|
492 |
|
---|
493 | /* CR0, CR4 writes must be intercepted for obvious reasons. */
|
---|
494 | pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
|
---|
495 |
|
---|
496 | /* Intercept all DRx reads and writes by default. Changed later on. */
|
---|
497 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
498 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
499 |
|
---|
500 | /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
|
---|
501 | pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
|
---|
502 |
|
---|
503 | /* Ignore the priority in the TPR; just deliver it to the guest when we tell it to. */
|
---|
504 | pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
|
---|
505 |
|
---|
506 | /* Set IO and MSR bitmap permission bitmap physical addresses. */
|
---|
507 | pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
508 | pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
|
---|
509 |
|
---|
510 | /* No LBR virtualization. */
|
---|
511 | pVmcb->ctrl.u64LBRVirt = 0;
|
---|
512 |
|
---|
513 | /* The ASID must start at 1; the host uses 0. */
|
---|
514 | pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
|
---|
515 |
|
---|
516 | /*
|
---|
517 | * Setup the PAT MSR (applicable for Nested Paging only).
|
---|
518 | * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
|
---|
519 | * so choose type 6 for all PAT slots.
|
---|
520 | */
|
---|
521 | pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
|
---|
522 |
|
---|
523 | /* Without Nested Paging, we need additionally intercepts. */
|
---|
524 | if (!pVM->hm.s.fNestedPaging)
|
---|
525 | {
|
---|
526 | /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
|
---|
527 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
|
---|
528 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
|
---|
529 |
|
---|
530 | /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
|
---|
531 | pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
|
---|
532 | | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
|
---|
533 |
|
---|
534 | /* Page faults must be intercepted to implement shadow paging. */
|
---|
535 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
|
---|
536 | }
|
---|
537 |
|
---|
538 | /*
|
---|
539 | * The following MSRs are saved/restored automatically during the world-switch.
|
---|
540 | * Don't intercept guest read/write accesses to these MSRs.
|
---|
541 | */
|
---|
542 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
543 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
544 | hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
545 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
546 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
547 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
548 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
549 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
550 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
551 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
552 | }
|
---|
553 |
|
---|
554 | return rc;
|
---|
555 | }
|
---|
556 |
|
---|
557 |
|
---|
558 | /**
|
---|
559 | * Flushes the appropriate tagged-TLB entries.
|
---|
560 | *
|
---|
561 | * @param pVM Pointer to the VM.
|
---|
562 | * @param pVCpu Pointer to the VMCPU.
|
---|
563 | */
|
---|
564 | static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
|
---|
565 | {
|
---|
566 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
567 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcbGuest;
|
---|
568 | PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
|
---|
569 |
|
---|
570 | /*
|
---|
571 | * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
|
---|
572 | * This can happen both for start & resume due to long jumps back to ring-3.
|
---|
573 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
|
---|
574 | * so we cannot reuse the ASIDs without flushing.
|
---|
575 | */
|
---|
576 | bool fNewAsid = false;
|
---|
577 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
578 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
579 | {
|
---|
580 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
581 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
582 | fNewAsid = true;
|
---|
583 | }
|
---|
584 |
|
---|
585 | /* Set TLB flush state as checked until we return from the world switch. */
|
---|
586 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
|
---|
587 |
|
---|
588 | /* Check for explicit TLB shootdowns. */
|
---|
589 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
590 | {
|
---|
591 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
592 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
593 | }
|
---|
594 |
|
---|
595 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
596 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
|
---|
597 |
|
---|
598 | if (pVM->hm.s.svm.fAlwaysFlushTLB)
|
---|
599 | {
|
---|
600 | /*
|
---|
601 | * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
|
---|
602 | */
|
---|
603 | pCpu->uCurrentAsid = 1;
|
---|
604 | pVCpu->hm.s.uCurrentAsid = 1;
|
---|
605 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
606 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
607 | }
|
---|
608 | else if (pVCpu->hm.s.fForceTLBFlush)
|
---|
609 | {
|
---|
610 | if (fNewAsid)
|
---|
611 | {
|
---|
612 | ++pCpu->uCurrentAsid;
|
---|
613 | bool fHitASIDLimit = false;
|
---|
614 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
615 | {
|
---|
616 | pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
|
---|
617 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
618 | fHitASIDLimit = true;
|
---|
619 |
|
---|
620 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
621 | {
|
---|
622 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
623 | pCpu->fFlushAsidBeforeUse = true;
|
---|
624 | }
|
---|
625 | else
|
---|
626 | {
|
---|
627 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
628 | pCpu->fFlushAsidBeforeUse = false;
|
---|
629 | }
|
---|
630 | }
|
---|
631 |
|
---|
632 | if ( !fHitASIDLimit
|
---|
633 | && pCpu->fFlushAsidBeforeUse)
|
---|
634 | {
|
---|
635 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
636 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
637 | else
|
---|
638 | {
|
---|
639 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
640 | pCpu->fFlushAsidBeforeUse = false;
|
---|
641 | }
|
---|
642 | }
|
---|
643 |
|
---|
644 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
645 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
646 | }
|
---|
647 | else
|
---|
648 | {
|
---|
649 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
650 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
651 | else
|
---|
652 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
653 | }
|
---|
654 |
|
---|
655 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
656 | }
|
---|
657 | else
|
---|
658 | {
|
---|
659 | /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
|
---|
660 | * not be executed. See hmQueueInvlPage() where it is commented
|
---|
661 | * out. Support individual entry flushing someday. */
|
---|
662 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
|
---|
663 | {
|
---|
664 | /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
|
---|
665 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
|
---|
666 | for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
|
---|
667 | SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
|
---|
668 | }
|
---|
669 | }
|
---|
670 |
|
---|
671 | pVCpu->hm.s.TlbShootdown.cPages = 0;
|
---|
672 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
|
---|
673 |
|
---|
674 | /* Update VMCB with the ASID. */
|
---|
675 | pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
|
---|
676 |
|
---|
677 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
678 | ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
679 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
680 | ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
|
---|
681 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
682 | ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
683 |
|
---|
684 | #ifdef VBOX_WITH_STATISTICS
|
---|
685 | if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
|
---|
686 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
687 | else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
|
---|
688 | || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
689 | {
|
---|
690 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
691 | }
|
---|
692 | else
|
---|
693 | Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE)
|
---|
694 | #endif
|
---|
695 | }
|
---|
696 |
|
---|
697 |
|
---|
698 | /** @name 64-bit guest on 32-bit host OS helper functions.
|
---|
699 | *
|
---|
700 | * The host CPU is still 64-bit capable but the host OS is running in 32-bit
|
---|
701 | * mode (code segment, paging). These wrappers/helpers perform the necessary
|
---|
702 | * bits for the 32->64 switcher.
|
---|
703 | *
|
---|
704 | * @{ */
|
---|
705 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
706 | /**
|
---|
707 | * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
|
---|
708 | *
|
---|
709 | * @returns VBox status code.
|
---|
710 | * @param HCPhysVmcbHost Physical address of host VMCB.
|
---|
711 | * @param HCPhysVmcb Physical address of the VMCB.
|
---|
712 | * @param pCtx Pointer to the guest-CPU context.
|
---|
713 | * @param pVM Pointer to the VM.
|
---|
714 | * @param pVCpu Pointer to the VMCPU.
|
---|
715 | */
|
---|
716 | DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
|
---|
717 | {
|
---|
718 | uint32_t aParam[4];
|
---|
719 | aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
|
---|
720 | aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
|
---|
721 | aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
|
---|
722 | aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
|
---|
723 |
|
---|
724 | return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
|
---|
725 | }
|
---|
726 |
|
---|
727 |
|
---|
728 | /**
|
---|
729 | * Executes the specified VMRUN handler in 64-bit mode.
|
---|
730 | *
|
---|
731 | * @returns VBox status code.
|
---|
732 | * @param pVM Pointer to the VM.
|
---|
733 | * @param pVCpu Pointer to the VMCPU.
|
---|
734 | * @param pCtx Pointer to the guest-CPU context.
|
---|
735 | * @param enmOp The operation to perform.
|
---|
736 | * @param cbParam Number of parameters.
|
---|
737 | * @param paParam Array of 32-bit parameters.
|
---|
738 | */
|
---|
739 | VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
|
---|
740 | uint32_t *paParam)
|
---|
741 | {
|
---|
742 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
743 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
744 |
|
---|
745 | /* Disable interrupts. */
|
---|
746 | RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
|
---|
747 |
|
---|
748 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
749 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
750 | CPUMR0SetLApic(pVM, idHostCpu);
|
---|
751 | #endif
|
---|
752 |
|
---|
753 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
754 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
755 | for (int i = (int)cbParam - 1; i >= 0; i--)
|
---|
756 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
757 |
|
---|
758 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
759 | /* Call the switcher. */
|
---|
760 | int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
|
---|
761 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
762 |
|
---|
763 | /* Restore interrupts. */
|
---|
764 | ASMSetFlags(uOldEFlags);
|
---|
765 | return rc;
|
---|
766 | }
|
---|
767 |
|
---|
768 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
|
---|
769 | /** @} */
|
---|
770 |
|
---|
771 |
|
---|
772 | /**
|
---|
773 | * Saves the host state.
|
---|
774 | *
|
---|
775 | * @returns VBox status code.
|
---|
776 | * @param pVM Pointer to the VM.
|
---|
777 | * @param pVCpu Pointer to the VMCPU.
|
---|
778 | *
|
---|
779 | * @remarks No-long-jump zone!!!
|
---|
780 | */
|
---|
781 | VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
782 | {
|
---|
783 | NOREF(pVM);
|
---|
784 | NOREF(pVCpu);
|
---|
785 | /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
|
---|
786 | return VINF_SUCCESS;
|
---|
787 | }
|
---|
788 |
|
---|
789 |
|
---|
790 | DECLINLINE(void) hmR0VmxSvmAddXcptIntercept(uint32_t u32Xcpt)
|
---|
791 | {
|
---|
792 | if (!(pVmcb->ctrl.u32InterceptException & u32Xcpt)
|
---|
793 | {
|
---|
794 | pVmcb->ctrl.u32InterceptException |= u32Xcpt;
|
---|
795 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_INTERCEPT_VECTORS;
|
---|
796 | }
|
---|
797 | }
|
---|
798 |
|
---|
799 | DECLINLINE(void) hmR0VmxSvmRemoveXcptIntercept(uint32_t u32Xcpt)
|
---|
800 | {
|
---|
801 | if (pVmcb->ctrl.u32InterceptException & u32Xcpt)
|
---|
802 | {
|
---|
803 | pVmcb->ctrl.u32InterceptException &= ~u32Xcpt;
|
---|
804 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_INTERCEPT_VECTORS;
|
---|
805 | }
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | /**
|
---|
810 | * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
|
---|
811 | *
|
---|
812 | * @returns VBox status code.
|
---|
813 | * @param pVCpu Pointer to the VMCPU.
|
---|
814 | * @param pCtx Pointer the guest-CPU context.
|
---|
815 | *
|
---|
816 | * @remarks No-long-jump zone!!!
|
---|
817 | */
|
---|
818 | static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
819 | {
|
---|
820 | /*
|
---|
821 | * Guest CR0.
|
---|
822 | */
|
---|
823 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
|
---|
824 | {
|
---|
825 | uint64_t u64GuestCR0 = pCtx->cr0;
|
---|
826 |
|
---|
827 | /* Always enable caching. */
|
---|
828 | u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
---|
829 |
|
---|
830 | /*
|
---|
831 | * With Nested Paging, the guest is allowed to run with paging disabled; guest-physical to host-physical translations
|
---|
832 | * will remain active through the Nested CR3. AMD supports paged real-mode, See AMD spec. 15.19 "Paged Real Mode".
|
---|
833 | */
|
---|
834 | if (!pVM->hm.s.fNestedPaging)
|
---|
835 | {
|
---|
836 | u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available use shadow page tables. */
|
---|
837 | u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
|
---|
838 | }
|
---|
839 |
|
---|
840 | /*
|
---|
841 | * Guest FPU bits.
|
---|
842 | */
|
---|
843 | bool fInterceptNM = false;
|
---|
844 | bool fInterceptMF = false;
|
---|
845 | u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
|
---|
846 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
847 | {
|
---|
848 | /* Catch floating point exceptions if we need to report them to the guest in a different way. */
|
---|
849 | if (!(u64GuestCR0 & X86_CR0_NE))
|
---|
850 | {
|
---|
851 | Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
|
---|
852 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
|
---|
853 | fInterceptMF = true;
|
---|
854 | }
|
---|
855 | }
|
---|
856 | else
|
---|
857 | {
|
---|
858 | fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
|
---|
859 | u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
|
---|
860 | | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
|
---|
861 | }
|
---|
862 |
|
---|
863 | /*
|
---|
864 | * Update the exception intercept bitmap.
|
---|
865 | */
|
---|
866 | if (fInterceptNM)
|
---|
867 | hmR0VmxSvmAddXcptIntercept(RT_BIT(X86_XCPT_NM));
|
---|
868 | else
|
---|
869 | hmR0VmxSvmRemoveXcptIntercept(RT_BIT(X86_XCPT_NM));
|
---|
870 |
|
---|
871 | if (fInterceptMF)
|
---|
872 | hmR0VmxSvmAddXcptIntercept(RT_BIT(X86_XCPT_MF));
|
---|
873 | else
|
---|
874 | hmR0VmxSvmRemoveXcptIntercept(RT_BIT(X86_XCPT_MF));
|
---|
875 |
|
---|
876 | pVmcb->guest.u64CR0 = u64GuestCR0;
|
---|
877 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
|
---|
878 | }
|
---|
879 |
|
---|
880 | /*
|
---|
881 | * Guest CR2.
|
---|
882 | */
|
---|
883 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
|
---|
884 | {
|
---|
885 | pVmcb->guest.u64CR2 = pCtx->cr2;
|
---|
886 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
|
---|
887 | }
|
---|
888 |
|
---|
889 | /*
|
---|
890 | * Guest CR3.
|
---|
891 | */
|
---|
892 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
|
---|
893 | {
|
---|
894 | if (pVM->hm.s.fNestedPaging)
|
---|
895 | {
|
---|
896 | PGMMODE enmShwPagingMode;
|
---|
897 | #if HC_ARCH_BITS == 32
|
---|
898 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
899 | enmShwPagingMode = PGMMODE_AMD64_NX;
|
---|
900 | else
|
---|
901 | #endif
|
---|
902 | enmShwPagingMode = PGMGetHostMode(pVM);
|
---|
903 |
|
---|
904 | pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
|
---|
905 | Assert(pVmcb->ctrl.u64NestedPagingCR3);
|
---|
906 | pVmcb->guest.u64CR3 = pCtx->cr3;
|
---|
907 | }
|
---|
908 | else
|
---|
909 | pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
|
---|
910 |
|
---|
911 | pVCpu->hm.s.fContextUseFlags &= HM_CHANGED_GUEST_CR3;
|
---|
912 | }
|
---|
913 |
|
---|
914 | /*
|
---|
915 | * Guest CR4.
|
---|
916 | */
|
---|
917 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
|
---|
918 | {
|
---|
919 | uint64_t u64GuestCR4 = pCtx->cr4;
|
---|
920 | if (!pVM->hm.s.fNestedPaging)
|
---|
921 | {
|
---|
922 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
923 | {
|
---|
924 | case PGMMODE_REAL:
|
---|
925 | case PGMMODE_PROTECTED: /* Protected mode, no paging. */
|
---|
926 | AssertFailed();
|
---|
927 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
928 |
|
---|
929 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
930 | u64GuestCR4 &= ~X86_CR4_PAE;
|
---|
931 | break;
|
---|
932 |
|
---|
933 | case PGMMODE_PAE: /* PAE paging. */
|
---|
934 | case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
|
---|
935 | /** Must use PAE paging as we could use physical memory > 4 GB */
|
---|
936 | u64GuestCR4 |= X86_CR4_PAE;
|
---|
937 | break;
|
---|
938 |
|
---|
939 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
940 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
941 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
942 | break;
|
---|
943 | #else
|
---|
944 | AssertFailed();
|
---|
945 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
946 | #endif
|
---|
947 |
|
---|
948 | default: /* shut up gcc */
|
---|
949 | AssertFailed();
|
---|
950 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
951 | }
|
---|
952 | }
|
---|
953 |
|
---|
954 | pVmcb->guest.u64CR4 = u64GuestCR4;
|
---|
955 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
|
---|
956 | }
|
---|
957 |
|
---|
958 | return VINF_SUCCESS;
|
---|
959 | }
|
---|
960 |
|
---|
961 | /**
|
---|
962 | * Loads the guest segment registers into the VMCB.
|
---|
963 | *
|
---|
964 | * @returns VBox status code.
|
---|
965 | * @param pVCpu Pointer to the VMCPU.
|
---|
966 | * @param pCtx Pointer to the guest-CPU context.
|
---|
967 | *
|
---|
968 | * @remarks No-long-jump zone!!!
|
---|
969 | */
|
---|
970 | static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
971 | {
|
---|
972 | /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
|
---|
973 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
|
---|
974 | {
|
---|
975 | HMSVM_LOAD_SEG_REG(CS, cs);
|
---|
976 | HMSVM_LOAD_SEG_REG(SS, cs);
|
---|
977 | HMSVM_LOAD_SEG_REG(DS, cs);
|
---|
978 | HMSVM_LOAD_SEG_REG(ES, cs);
|
---|
979 | HMSVM_LOAD_SEG_REG(FS, cs);
|
---|
980 | HMSVM_LOAD_SEG_REG(GS, cs);
|
---|
981 |
|
---|
982 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
|
---|
983 | }
|
---|
984 |
|
---|
985 | /* Guest TR. */
|
---|
986 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
|
---|
987 | {
|
---|
988 | HMSVM_LOAD_SEG_REG(TR, tr);
|
---|
989 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
|
---|
990 | }
|
---|
991 |
|
---|
992 | /* Guest LDTR. */
|
---|
993 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
|
---|
994 | {
|
---|
995 | HMSVM_LOAD_SEG_REG(LDTR, ldtr);
|
---|
996 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
|
---|
997 | }
|
---|
998 |
|
---|
999 | /* Guest GDTR. */
|
---|
1000 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
|
---|
1001 | {
|
---|
1002 | pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
|
---|
1003 | pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
|
---|
1004 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | /* Guest IDTR. */
|
---|
1008 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
|
---|
1009 | {
|
---|
1010 | pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
|
---|
1011 | pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
|
---|
1012 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
|
---|
1013 | }
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | /**
|
---|
1018 | * Loads the guest MSRs into the VMCB.
|
---|
1019 | *
|
---|
1020 | * @param pVCpu Pointer to the VMCPU.
|
---|
1021 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1022 | *
|
---|
1023 | * @remarks No-long-jump zone!!!
|
---|
1024 | */
|
---|
1025 | static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1026 | {
|
---|
1027 | /* Guest Sysenter MSRs. */
|
---|
1028 | pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
|
---|
1029 | pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
|
---|
1030 | pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
|
---|
1031 |
|
---|
1032 | /* Guest EFER MSR. */
|
---|
1033 | /* AMD-V requires guest EFER.SVME to be set. Weird.
|
---|
1034 | See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks". */
|
---|
1035 | pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
|
---|
1036 |
|
---|
1037 | /* 64-bit MSRs. */
|
---|
1038 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1039 | {
|
---|
1040 | pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
|
---|
1041 | pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
|
---|
1042 | }
|
---|
1043 | else
|
---|
1044 | {
|
---|
1045 | /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
|
---|
1046 | pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
|
---|
1047 | }
|
---|
1048 |
|
---|
1049 | /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
|
---|
1050 | * be writable in 32-bit mode. Clarify with AMD spec. */
|
---|
1051 | pVmcb->guest.u64STAR = pCtx->msrSTAR;
|
---|
1052 | pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
|
---|
1053 | pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
|
---|
1054 | pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
|
---|
1055 | pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 |
|
---|
1059 | /**
|
---|
1060 | * Sets up the appropriate function to run guest code.
|
---|
1061 | *
|
---|
1062 | * @returns VBox status code.
|
---|
1063 | * @param pVCpu Pointer to the VMCPU.
|
---|
1064 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
1065 | * out-of-sync. Make sure to update the required fields
|
---|
1066 | * before using them.
|
---|
1067 | *
|
---|
1068 | * @remarks No-long-jump zone!!!
|
---|
1069 | */
|
---|
1070 | static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1071 | {
|
---|
1072 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1073 | {
|
---|
1074 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1075 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1076 | #endif
|
---|
1077 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
1078 | #if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
1079 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
1080 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
|
---|
1081 | #else
|
---|
1082 | /* 64-bit host or hybrid host. */
|
---|
1083 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
|
---|
1084 | #endif
|
---|
1085 | }
|
---|
1086 | else
|
---|
1087 | {
|
---|
1088 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
1089 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
|
---|
1090 | }
|
---|
1091 | return VINF_SUCCESS;
|
---|
1092 | }
|
---|
1093 |
|
---|
1094 |
|
---|
1095 | /**
|
---|
1096 | * Loads the guest state.
|
---|
1097 | *
|
---|
1098 | * @returns VBox status code.
|
---|
1099 | * @param pVM Pointer to the VM.
|
---|
1100 | * @param pVCpu Pointer to the VMCPU.
|
---|
1101 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1102 | *
|
---|
1103 | * @remarks No-long-jump zone!!!
|
---|
1104 | */
|
---|
1105 | VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1106 | {
|
---|
1107 | AssertPtr(pVM);
|
---|
1108 | AssertPtr(pVCpu);
|
---|
1109 | AssertPtr(pMixedCtx);
|
---|
1110 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1111 |
|
---|
1112 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
1113 | AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
|
---|
1114 |
|
---|
1115 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
1116 |
|
---|
1117 | int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pMixedCtx);
|
---|
1118 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1119 |
|
---|
1120 | hmR0SvmLoadGuestSegmentRegs(pVCpu, pCtx);
|
---|
1121 | hmR0SvmLoadGuestMsrs(pVCpu, pCtx);
|
---|
1122 |
|
---|
1123 | /* Guest RIP, RSP, RFLAGS, CPL. */
|
---|
1124 | pVmcb->guest.u64RIP = pCtx->rip;
|
---|
1125 | pVmcb->guest.u64RSP = pCtx->rsp;
|
---|
1126 | pVmcb->guest.u64RFlags = pCtx->eflags.u32;
|
---|
1127 | pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
|
---|
1128 |
|
---|
1129 | /* Guest RAX (VMRUN uses RAX as an implicit parameter). */
|
---|
1130 | pVmcb->guest.u64RAX = pCtx->rax;
|
---|
1131 |
|
---|
1132 | rc = hmR0SvmSetupVMRunHandler(pVCpu, pMixedCtx);
|
---|
1133 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1134 |
|
---|
1135 | /* Clear any unused and reserved bits. */
|
---|
1136 | pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_SYSENTER_CS_MSR
|
---|
1137 | | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
|
---|
1138 | | HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
|
---|
1139 |
|
---|
1140 | AssertMsg(!pVCpu->hm.s.fContextUseFlags,
|
---|
1141 | ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
|
---|
1142 | pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
|
---|
1143 |
|
---|
1144 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
1145 |
|
---|
1146 | return rc;
|
---|
1147 | }
|
---|
1148 |
|
---|