VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 46774

Last change on this file since 46774 was 46774, checked in by vboxsync, 12 years ago

VMM/HMSVMR0: AMD-V bits.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 166.0 KB
Line 
1/* $Id: HMSVMR0.cpp 46774 2013-06-25 12:27:49Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HWSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMVMX_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37#endif
38
39
40/*******************************************************************************
41* Defined Constants And Macros *
42*******************************************************************************/
43#ifdef VBOX_WITH_STATISTICS
44# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
45 if ((u64ExitCode) == SVM_EXIT_NPF) \
46 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
47 else \
48 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
49 } while (0)
50#else
51# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
52#endif
53
54/** If we decide to use a function table approach this can be useful to
55 * switch to a "static DECLCALLBACK(int)". */
56#define HMSVM_EXIT_DECL static int
57
58
59/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
60 *
61 * The CPU format of the segment attribute is described in X86DESCATTRBITS
62 * which is 16-bits (i.e. includes 4 bits of the segment limit).
63 *
64 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
65 * only the attribute bits and nothing else). Upper 4-bits are unused.
66 *
67 * @{ */
68#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) (a & 0xff) | ((a & 0xf000) >> 4)
69#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) (a & 0xff) | ((a & 0x0f00) << 4)
70/** @} */
71
72
73/** @name Macros for loading, storing segment registers to/from the VMCB.
74 * @{ */
75#define HMSVM_LOAD_SEG_REG(REG, reg) \
76 do \
77 { \
78 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
79 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
80 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
81 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
82 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
83 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
84 } while (0)
85
86#define HMSVM_SAVE_SEG_REG(REG, reg) \
87 do \
88 { \
89 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
90 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
92 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
93 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
94 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
95 } while (0)
96/** @} */
97
98
99/** @name Macro for checking and returning from the using function for
100 * #VMEXIT intercepts that maybe caused during delivering of another
101 * event in the guest. */
102#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
103 do \
104 { \
105 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
106 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
107 return VINF_SUCCESS; \
108 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
109 return rc; \
110 } while (0)
111/** @} */
112
113
114/**
115 * @name Exception bitmap mask for all contributory exceptions.
116 *
117 * Page fault is deliberately excluded here as it's conditional as to whether
118 * it's contributory or benign. Page faults are handled separately.
119 */
120#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
121 | RT_BIT(X86_XCPT_DE))
122/** @} */
123
124
125/** @name VMCB Clean Bits.
126 *
127 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
128 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
129 * memory.
130 *
131 * @{ */
132/** All intercepts vectors, TSC offset, PAUSE filter counter. */
133#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
134/** I/O permission bitmap, MSR permission bitmap. */
135#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
136/** ASID. */
137#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
138/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
139V_INTR_VECTOR. */
140#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
141/** Nested Paging: Nested CR3 (nCR3), PAT. */
142#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
143/** Control registers (CR0, CR3, CR4, EFER). */
144#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
145/** Debug registers (DR6, DR7). */
146#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
147/** GDT, IDT limit and base. */
148#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
149/** Segment register: CS, SS, DS, ES limit and base. */
150#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
151/** CR2.*/
152#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
153/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
154#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
155/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
156PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
157#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
158/** Mask of all valid VMCB Clean bits. */
159#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
160 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
161 | HMSVM_VMCB_CLEAN_ASID \
162 | HMSVM_VMCB_CLEAN_TPR \
163 | HMSVM_VMCB_CLEAN_NP \
164 | HMSVM_VMCB_CLEAN_CRX_EFER \
165 | HMSVM_VMCB_CLEAN_DRX \
166 | HMSVM_VMCB_CLEAN_DT \
167 | HMSVM_VMCB_CLEAN_SEG \
168 | HMSVM_VMCB_CLEAN_CR2 \
169 | HMSVM_VMCB_CLEAN_LBR \
170 | HMSVM_VMCB_CLEAN_AVIC)
171/** @} */
172
173/** @name SVM transient.
174 *
175 * A state structure for holding miscellaneous information across AMD-V
176 * VMRUN/#VMEXIT operation, restored after the transition.
177 *
178 * @{ */
179typedef struct SVMTRANSIENT
180{
181 /** The host's rflags/eflags. */
182 RTCCUINTREG uEFlags;
183#if HC_ARCH_BITS == 32
184 uint32_t u32Alignment0;
185#endif
186
187 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
188 uint64_t u64ExitCode;
189 /** The guest's TPR value used for TPR shadowing. */
190 uint8_t u8GuestTpr;
191
192 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
193 * contributary exception or a page-fault. */
194 bool fVectoringPF;
195} SVMTRANSIENT, *PSVMTRANSIENT;
196/** @} */
197
198
199/**
200 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
201 */
202typedef enum SVMMSREXITREAD
203{
204 /** Reading this MSR causes a VM-exit. */
205 SVMMSREXIT_INTERCEPT_READ = 0xb,
206 /** Reading this MSR does not cause a VM-exit. */
207 SVMMSREXIT_PASSTHRU_READ
208} SVMMSREXITREAD;
209
210/**
211 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
212 */
213typedef enum SVMMSREXITWRITE
214{
215 /** Writing to this MSR causes a VM-exit. */
216 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
217 /** Writing to this MSR does not cause a VM-exit. */
218 SVMMSREXIT_PASSTHRU_WRITE
219} SVMMSREXITWRITE;
220
221
222/*******************************************************************************
223* Internal Functions *
224*******************************************************************************/
225static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
226static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
227
228HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
229HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
230HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
231HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
232HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
233HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
234HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
235HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
236HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
237HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
238HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
239HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
240HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
241HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
242HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
243HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
244HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
245HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
246HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
247HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
248HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
249HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
250HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
251HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
252HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
253HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255
256DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
257
258
259/*******************************************************************************
260* Global Variables *
261*******************************************************************************/
262/** Ring-0 memory object for the IO bitmap. */
263RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
264/** Physical address of the IO bitmap. */
265RTHCPHYS g_HCPhysIOBitmap = 0;
266/** Virtual address of the IO bitmap. */
267R0PTRTYPE(void *) g_pvIOBitmap = NULL;
268
269
270/**
271 * Sets up and activates AMD-V on the current CPU.
272 *
273 * @returns VBox status code.
274 * @param pCpu Pointer to the CPU info struct.
275 * @param pVM Pointer to the VM (can be NULL after a resume!).
276 * @param pvCpuPage Pointer to the global CPU page.
277 * @param HCPhysCpuPage Physical address of the global CPU page.
278 */
279VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
280{
281 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
282 AssertReturn( HCPhysCpuPage
283 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
284 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
285
286 /*
287 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
288 */
289 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
290 if (u64HostEfer & MSR_K6_EFER_SVME)
291 {
292 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
293 if ( pVM
294 && pVM->hm.s.svm.fIgnoreInUseError)
295 {
296 pCpu->fIgnoreAMDVInUseError = true;
297 }
298
299 if (!pCpu->fIgnoreAMDVInUseError)
300 return VERR_SVM_IN_USE;
301 }
302
303 /* Turn on AMD-V in the EFER MSR. */
304 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
305
306 /* Write the physical page address where the CPU will store the host state while executing the VM. */
307 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
308
309 /*
310 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
311 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
312 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
313 * to flush the TLB with before using a new ASID.
314 */
315 pCpu->fFlushAsidBeforeUse = true;
316
317 /*
318 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
319 */
320 ++pCpu->cTlbFlushes;
321
322 return VINF_SUCCESS;
323}
324
325
326/**
327 * Deactivates AMD-V on the current CPU.
328 *
329 * @returns VBox status code.
330 * @param pCpu Pointer to the CPU info struct.
331 * @param pvCpuPage Pointer to the global CPU page.
332 * @param HCPhysCpuPage Physical address of the global CPU page.
333 */
334VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
335{
336 AssertReturn( HCPhysCpuPage
337 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
338 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
339 NOREF(pCpu);
340
341 /* Turn off AMD-V in the EFER MSR if AMD-V is active. */
342 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
343 if (u64HostEfer & MSR_K6_EFER_SVME)
344 {
345 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
346
347 /* Invalidate host state physical address. */
348 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
349 }
350
351 return VINF_SUCCESS;
352}
353
354
355/**
356 * Does global AMD-V initialization (called during module initialization).
357 *
358 * @returns VBox status code.
359 */
360VMMR0DECL(int) SVMR0GlobalInit(void)
361{
362 /*
363 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
364 * once globally here instead of per-VM.
365 */
366 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
367 if (RT_FAILURE(rc))
368 return rc;
369
370 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
371 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
372
373 /* Set all bits to intercept all IO accesses. */
374 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
375 return VINF_SUCCESS;
376}
377
378
379/**
380 * Does global AMD-V termination (called during module termination).
381 */
382VMMR0DECL(void) SVMR0GlobalTerm(void)
383{
384 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
385 {
386 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
387 g_pvIOBitmap = NULL;
388 g_HCPhysIOBitmap = 0;
389 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
390 }
391}
392
393
394/**
395 * Frees any allocated per-VCPU structures for a VM.
396 *
397 * @param pVM Pointer to the VM.
398 */
399DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
400{
401 for (uint32_t i = 0; i < pVM->cCpus; i++)
402 {
403 PVMCPU pVCpu = &pVM->aCpus[i];
404 AssertPtr(pVCpu);
405
406 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
407 {
408 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
409 pVCpu->hm.s.svm.pvVmcbHost = 0;
410 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
411 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
412 }
413
414 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
415 {
416 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
417 pVCpu->hm.s.svm.pvVmcb = 0;
418 pVCpu->hm.s.svm.HCPhysVmcb = 0;
419 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
420 }
421
422 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
423 {
424 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
425 pVCpu->hm.s.svm.pvMsrBitmap = 0;
426 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
427 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
428 }
429 }
430}
431
432
433/**
434 * Does per-VM AMD-V initialization.
435 *
436 * @returns VBox status code.
437 * @param pVM Pointer to the VM.
438 */
439VMMR0DECL(int) SVMR0InitVM(PVM pVM)
440{
441 int rc = VERR_INTERNAL_ERROR_5;
442
443 /*
444 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
445 */
446 uint32_t u32Family;
447 uint32_t u32Model;
448 uint32_t u32Stepping;
449 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
450 {
451 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
452 pVM->hm.s.svm.fAlwaysFlushTLB = true;
453 }
454
455 /*
456 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
457 */
458 for (VMCPUID i = 0; i < pVM->cCpus; i++)
459 {
460 PVMCPU pVCpu = &pVM->aCpus[i];
461 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
462 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
463 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
464 }
465
466 for (VMCPUID i = 0; i < pVM->cCpus; i++)
467 {
468 PVMCPU pVCpu = &pVM->aCpus[i];
469
470 /*
471 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
472 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
473 */
474 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
475 if (RT_FAILURE(rc))
476 goto failure_cleanup;
477
478 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
479 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
480 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
481 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
482
483 /*
484 * Allocate one page for the guest-state VMCB.
485 */
486 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
487 if (RT_FAILURE(rc))
488 goto failure_cleanup;
489
490 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
491 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
492 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
493 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
494
495 /*
496 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
497 * SVM to not require one.
498 */
499 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
500 if (RT_FAILURE(rc))
501 goto failure_cleanup;
502
503 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
504 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
505 /* Set all bits to intercept all MSR accesses (changed later on). */
506 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
507 }
508
509 return VINF_SUCCESS;
510
511failure_cleanup:
512 hmR0SvmFreeStructs(pVM);
513 return rc;
514}
515
516
517/**
518 * Does per-VM AMD-V termination.
519 *
520 * @returns VBox status code.
521 * @param pVM Pointer to the VM.
522 */
523VMMR0DECL(int) SVMR0TermVM(PVM pVM)
524{
525 hmR0SvmFreeStructs(pVM);
526 return VINF_SUCCESS;
527}
528
529
530/**
531 * Sets the permission bits for the specified MSR in the MSRPM.
532 *
533 * @param pVCpu Pointer to the VMCPU.
534 * @param uMsr The MSR for which the access permissions are being set.
535 * @param enmRead MSR read permissions.
536 * @param enmWrite MSR write permissions.
537 */
538static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
539{
540 unsigned ulBit;
541 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
542
543 /*
544 * Layout:
545 * Byte offset MSR range
546 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
547 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
548 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
549 * 0x1800 - 0x1fff Reserved
550 */
551 if (uMsr <= 0x00001FFF)
552 {
553 /* Pentium-compatible MSRs. */
554 ulBit = uMsr * 2;
555 }
556 else if ( uMsr >= 0xC0000000
557 && uMsr <= 0xC0001FFF)
558 {
559 /* AMD Sixth Generation x86 Processor MSRs. */
560 ulBit = (uMsr - 0xC0000000) * 2;
561 pbMsrBitmap += 0x800;
562 }
563 else if ( uMsr >= 0xC0010000
564 && uMsr <= 0xC0011FFF)
565 {
566 /* AMD Seventh and Eighth Generation Processor MSRs. */
567 ulBit = (uMsr - 0xC0001000) * 2;
568 pbMsrBitmap += 0x1000;
569 }
570 else
571 {
572 AssertFailed();
573 return;
574 }
575
576 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
577 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
578 ASMBitSet(pbMsrBitmap, ulBit);
579 else
580 ASMBitClear(pbMsrBitmap, ulBit);
581
582 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
583 ASMBitSet(pbMsrBitmap, ulBit + 1);
584 else
585 ASMBitClear(pbMsrBitmap, ulBit + 1);
586
587 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
588 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
589}
590
591
592/**
593 * Sets up AMD-V for the specified VM.
594 * This function is only called once per-VM during initalization.
595 *
596 * @returns VBox status code.
597 * @param pVM Pointer to the VM.
598 */
599VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
600{
601 int rc = VINF_SUCCESS;
602
603 AssertReturn(pVM, VERR_INVALID_PARAMETER);
604 Assert(pVM->hm.s.svm.fSupported);
605
606 for (VMCPUID i = 0; i < pVM->cCpus; i++)
607 {
608 PVMCPU pVCpu = &pVM->aCpus[i];
609 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
610
611 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
612
613 /* Trap exceptions unconditionally (debug purposes). */
614#ifdef HMSVM_ALWAYS_TRAP_PF
615 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
616#endif
617#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
618 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
619 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_BP)
620 | RT_BIT(X86_XCPT_DB)
621 | RT_BIT(X86_XCPT_DE)
622 | RT_BIT(X86_XCPT_NM)
623 | RT_BIT(X86_XCPT_UD)
624 | RT_BIT(X86_XCPT_NP)
625 | RT_BIT(X86_XCPT_SS)
626 | RT_BIT(X86_XCPT_GP)
627 | RT_BIT(X86_XCPT_PF)
628 | RT_BIT(X86_XCPT_MF);
629#endif
630
631 /* Set up unconditional intercepts and conditions. */
632 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
633 | SVM_CTRL1_INTERCEPT_VINTR /* Interrupt-window VM-exit. */
634 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
635 | SVM_CTRL1_INTERCEPT_SMI /* System Management Interrupt cause a VM-exit. */
636 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
637 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
638 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
639 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
640 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
641 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
642 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
643 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
644 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
645 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
646
647 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
648 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
649 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
650 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
651 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
652 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
653 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
654 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
655 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
656 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
657
658 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
659 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
660
661 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
662 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
663
664 /* Intercept all DRx reads and writes by default. Changed later on. */
665 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
666 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
667
668 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
669 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
670
671 /* Ignore the priority in the TPR; we take into account the guest TPR anyway while delivering interrupts. */
672 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
673
674 /* Set IO and MSR bitmap permission bitmap physical addresses. */
675 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
676 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
677
678 /* No LBR virtualization. */
679 pVmcb->ctrl.u64LBRVirt = 0;
680
681 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from memory. */
682 pVmcb->ctrl.u64VmcbCleanBits = 0;
683
684 /* The guest ASID MBNZ, set it to 1. The host uses 0. */
685 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
686
687 /*
688 * Setup the PAT MSR (applicable for Nested Paging only).
689 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
690 * so choose type 6 for all PAT slots.
691 */
692 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
693
694 /* Without Nested Paging, we need additionally intercepts. */
695 if (!pVM->hm.s.fNestedPaging)
696 {
697 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
698 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
699 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
700
701 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
702 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
703 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
704
705 /* Page faults must be intercepted to implement shadow paging. */
706 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
707 }
708
709 /*
710 * The following MSRs are saved/restored automatically during the world-switch.
711 * Don't intercept guest read/write accesses to these MSRs.
712 */
713 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
714 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
715 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
716 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
717 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
718 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
719 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
720 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
721 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
722 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
723 }
724
725 return rc;
726}
727
728
729/**
730 * Invalidates a guest page by guest virtual address.
731 *
732 * @returns VBox status code.
733 * @param pVM Pointer to the VM.
734 * @param pVCpu Pointer to the VMCPU.
735 * @param GCVirt Guest virtual address of the page to invalidate.
736 */
737VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
738{
739 AssertReturn(pVM, VERR_INVALID_PARAMETER);
740 Assert(pVM->hm.s.svm.fSupported);
741
742 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB | VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
743
744 /* Skip it if a TLB flush is already pending. */
745 if (!fFlushPending)
746 {
747 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
748
749 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
750 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
751
752#if HC_ARCH_BITS == 32
753 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
754 if (CPUMIsGuestInLongMode(pVCpu))
755 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
756 else
757#endif
758 {
759 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
760 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
761 }
762 }
763 return VINF_SUCCESS;
764}
765
766
767/**
768 * Flushes the appropriate tagged-TLB entries.
769 *
770 * @param pVM Pointer to the VM.
771 * @param pVCpu Pointer to the VMCPU.
772 */
773static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
774{
775 PVM pVM = pVCpu->CTX_SUFF(pVM);
776 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
777 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
778
779 /*
780 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
781 * This can happen both for start & resume due to long jumps back to ring-3.
782 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
783 * so we cannot reuse the ASIDs without flushing.
784 */
785 bool fNewAsid = false;
786 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
787 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
788 {
789 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
790 pVCpu->hm.s.fForceTLBFlush = true;
791 fNewAsid = true;
792 }
793
794 /* Set TLB flush state as checked until we return from the world switch. */
795 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
796
797 /* Check for explicit TLB shootdowns. */
798 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
799 {
800 pVCpu->hm.s.fForceTLBFlush = true;
801 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
802 }
803
804 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
805 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
806
807 if (pVM->hm.s.svm.fAlwaysFlushTLB)
808 {
809 /*
810 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
811 */
812 pCpu->uCurrentAsid = 1;
813 pVCpu->hm.s.uCurrentAsid = 1;
814 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
815 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
816 }
817 else if (pVCpu->hm.s.fForceTLBFlush)
818 {
819 if (fNewAsid)
820 {
821 ++pCpu->uCurrentAsid;
822 bool fHitASIDLimit = false;
823 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
824 {
825 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
826 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
827 fHitASIDLimit = true;
828
829 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
830 {
831 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
832 pCpu->fFlushAsidBeforeUse = true;
833 }
834 else
835 {
836 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
837 pCpu->fFlushAsidBeforeUse = false;
838 }
839 }
840
841 if ( !fHitASIDLimit
842 && pCpu->fFlushAsidBeforeUse)
843 {
844 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
845 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
846 else
847 {
848 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
849 pCpu->fFlushAsidBeforeUse = false;
850 }
851 }
852
853 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
854 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
855 }
856 else
857 {
858 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
859 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
860 else
861 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
862 }
863
864 pVCpu->hm.s.fForceTLBFlush = false;
865 }
866 else
867 {
868 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
869 * not be executed. See hmQueueInvlPage() where it is commented
870 * out. Support individual entry flushing someday. */
871 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
872 {
873 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
874 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
875 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
876 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
877 }
878 }
879
880 pVCpu->hm.s.TlbShootdown.cPages = 0;
881 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
882
883 /* Update VMCB with the ASID. */
884 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
885 {
886 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
887 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
888 }
889
890 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
891 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
892 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
893 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
894 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
895 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
896
897#ifdef VBOX_WITH_STATISTICS
898 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
899 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
900 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
901 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
902 {
903 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
904 }
905 else
906 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
907#endif
908}
909
910
911/** @name 64-bit guest on 32-bit host OS helper functions.
912 *
913 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
914 * mode (code segment, paging). These wrappers/helpers perform the necessary
915 * bits for the 32->64 switcher.
916 *
917 * @{ */
918#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
919/**
920 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
921 *
922 * @returns VBox status code.
923 * @param HCPhysVmcbHost Physical address of host VMCB.
924 * @param HCPhysVmcb Physical address of the VMCB.
925 * @param pCtx Pointer to the guest-CPU context.
926 * @param pVM Pointer to the VM.
927 * @param pVCpu Pointer to the VMCPU.
928 */
929DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
930{
931 uint32_t aParam[4];
932 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
933 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
934 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
935 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
936
937 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
938}
939
940
941/**
942 * Executes the specified VMRUN handler in 64-bit mode.
943 *
944 * @returns VBox status code.
945 * @param pVM Pointer to the VM.
946 * @param pVCpu Pointer to the VMCPU.
947 * @param pCtx Pointer to the guest-CPU context.
948 * @param enmOp The operation to perform.
949 * @param cbParam Number of parameters.
950 * @param paParam Array of 32-bit parameters.
951 */
952VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
953 uint32_t *paParam)
954{
955 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
956 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
957
958 /* Disable interrupts. */
959 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
960
961#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
962 RTCPUID idHostCpu = RTMpCpuId();
963 CPUMR0SetLApic(pVM, idHostCpu);
964#endif
965
966 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
967 CPUMSetHyperEIP(pVCpu, enmOp);
968 for (int i = (int)cbParam - 1; i >= 0; i--)
969 CPUMPushHyper(pVCpu, paParam[i]);
970
971 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
972 /* Call the switcher. */
973 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
974 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
975
976 /* Restore interrupts. */
977 ASMSetFlags(uOldEFlags);
978 return rc;
979}
980
981#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
982/** @} */
983
984
985/**
986 * Adds an exception to the intercept exception bitmap in the VMCB and updates
987 * the corresponding VMCB Clean Bit.
988 *
989 * @param pVmcb Pointer to the VMCB.
990 * @param u32Xcpt The value of the exception (X86_XCPT_*).
991 */
992DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
993{
994 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
995 {
996 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
997 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
998 }
999}
1000
1001
1002/**
1003 * Removes an exception from the intercept-exception bitmap in the VMCB and
1004 * updates the corresponding VMCB Clean Bit.
1005 *
1006 * @param pVmcb Pointer to the VMCB.
1007 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1008 */
1009DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1010{
1011#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1012 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1013 {
1014 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1015 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1016 }
1017#endif
1018}
1019
1020
1021/**
1022 * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1023 *
1024 * @returns VBox status code.
1025 * @param pVCpu Pointer to the VMCPU.
1026 * @param pVmcb Pointer to the VMCB.
1027 * @param pCtx Pointer the guest-CPU context.
1028 *
1029 * @remarks No-long-jump zone!!!
1030 */
1031DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1032{
1033 /*
1034 * Guest CR0.
1035 */
1036 PVM pVM = pVCpu->CTX_SUFF(pVM);
1037 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1038 {
1039 uint64_t u64GuestCR0 = pCtx->cr0;
1040
1041 /* Always enable caching. */
1042 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1043
1044 /*
1045 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1046 */
1047 if (!pVM->hm.s.fNestedPaging)
1048 {
1049 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1050 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1051 }
1052
1053 /*
1054 * Guest FPU bits.
1055 */
1056 bool fInterceptNM = false;
1057 bool fInterceptMF = false;
1058 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1059 if (CPUMIsGuestFPUStateActive(pVCpu))
1060 {
1061 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1062 if (!(u64GuestCR0 & X86_CR0_NE))
1063 {
1064 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1065 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
1066 fInterceptMF = true;
1067 }
1068 }
1069 else
1070 {
1071 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1072 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1073 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1074 }
1075
1076 /*
1077 * Update the exception intercept bitmap.
1078 */
1079 if (fInterceptNM)
1080 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1081 else
1082 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1083
1084 if (fInterceptMF)
1085 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1086 else
1087 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1088
1089 pVmcb->guest.u64CR0 = u64GuestCR0;
1090 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1091 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1092 }
1093
1094 /*
1095 * Guest CR2.
1096 */
1097 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1098 {
1099 pVmcb->guest.u64CR2 = pCtx->cr2;
1100 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1101 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1102 }
1103
1104 /*
1105 * Guest CR3.
1106 */
1107 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1108 {
1109 if (pVM->hm.s.fNestedPaging)
1110 {
1111 PGMMODE enmShwPagingMode;
1112#if HC_ARCH_BITS == 32
1113 if (CPUMIsGuestInLongModeEx(pCtx))
1114 enmShwPagingMode = PGMMODE_AMD64_NX;
1115 else
1116#endif
1117 enmShwPagingMode = PGMGetHostMode(pVM);
1118
1119 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1120 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1121 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1122 pVmcb->guest.u64CR3 = pCtx->cr3;
1123 }
1124 else
1125 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1126
1127 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1128 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1129 }
1130
1131 /*
1132 * Guest CR4.
1133 */
1134 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1135 {
1136 uint64_t u64GuestCR4 = pCtx->cr4;
1137 if (!pVM->hm.s.fNestedPaging)
1138 {
1139 switch (pVCpu->hm.s.enmShadowMode)
1140 {
1141 case PGMMODE_REAL:
1142 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1143 AssertFailed();
1144 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1145
1146 case PGMMODE_32_BIT: /* 32-bit paging. */
1147 u64GuestCR4 &= ~X86_CR4_PAE;
1148 break;
1149
1150 case PGMMODE_PAE: /* PAE paging. */
1151 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1152 /** Must use PAE paging as we could use physical memory > 4 GB */
1153 u64GuestCR4 |= X86_CR4_PAE;
1154 break;
1155
1156 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1157 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1158#ifdef VBOX_ENABLE_64_BITS_GUESTS
1159 break;
1160#else
1161 AssertFailed();
1162 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1163#endif
1164
1165 default: /* shut up gcc */
1166 AssertFailed();
1167 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1168 }
1169 }
1170
1171 pVmcb->guest.u64CR4 = u64GuestCR4;
1172 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1173 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1174 }
1175
1176 return VINF_SUCCESS;
1177}
1178
1179
1180/**
1181 * Loads the guest segment registers into the VMCB.
1182 *
1183 * @returns VBox status code.
1184 * @param pVCpu Pointer to the VMCPU.
1185 * @param pVmcb Pointer to the VMCB.
1186 * @param pCtx Pointer to the guest-CPU context.
1187 *
1188 * @remarks No-long-jump zone!!!
1189 */
1190DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1191{
1192 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1193 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1194 {
1195 HMSVM_LOAD_SEG_REG(CS, cs);
1196 HMSVM_LOAD_SEG_REG(SS, ss);
1197 HMSVM_LOAD_SEG_REG(DS, ds);
1198 HMSVM_LOAD_SEG_REG(ES, es);
1199 HMSVM_LOAD_SEG_REG(FS, fs);
1200 HMSVM_LOAD_SEG_REG(GS, gs);
1201
1202 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1203 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1204 }
1205
1206 /* Guest TR. */
1207 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1208 {
1209 HMSVM_LOAD_SEG_REG(TR, tr);
1210 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1211 }
1212
1213 /* Guest LDTR. */
1214 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1215 {
1216 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1217 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1218 }
1219
1220 /* Guest GDTR. */
1221 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1222 {
1223 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1224 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1225 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1226 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1227 }
1228
1229 /* Guest IDTR. */
1230 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1231 {
1232 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1233 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1234 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1235 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1236 }
1237}
1238
1239
1240/**
1241 * Loads the guest MSRs into the VMCB.
1242 *
1243 * @param pVCpu Pointer to the VMCPU.
1244 * @param pVmcb Pointer to the VMCB.
1245 * @param pCtx Pointer to the guest-CPU context.
1246 *
1247 * @remarks No-long-jump zone!!!
1248 */
1249DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1250{
1251 /* Guest Sysenter MSRs. */
1252 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1253 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1254 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1255
1256 /*
1257 * Guest EFER MSR.
1258 * AMD-V requires guest EFER.SVME to be set. Weird. .
1259 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1260 */
1261 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1262 {
1263 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1264 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1265 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1266 }
1267
1268 /* 64-bit MSRs. */
1269 if (CPUMIsGuestInLongModeEx(pCtx))
1270 {
1271 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1272 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1273 }
1274 else
1275 {
1276 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1277 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1278 {
1279 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1280 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1281 }
1282 }
1283
1284
1285 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1286 * be writable in 32-bit mode. Clarify with AMD spec. */
1287 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1288 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1289 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1290 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1291 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1292}
1293
1294
1295/**
1296 * Loads the guest debug registers into the VMCB.
1297 *
1298 * @param pVCpu Pointer to the VMCPU.
1299 * @param pVmcb Pointer to the VMCB.
1300 * @param pCtx Pointer to the guest-CPU context.
1301 *
1302 * @remarks No-long-jump zone!!!
1303 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1304 */
1305DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1306{
1307 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1308 return;
1309
1310 /** @todo Turn these into assertions if possible. */
1311 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* Set reserved bits to 1. */
1312 pCtx->dr[6] &= ~RT_BIT(12); /* MBZ. */
1313
1314 pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
1315 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
1316 pCtx->dr[7] |= 0x400; /* MB1. */
1317
1318 /* Update DR6, DR7 with the guest values. */
1319 pVmcb->guest.u64DR7 = pCtx->dr[7];
1320 pVmcb->guest.u64DR6 = pCtx->dr[6];
1321 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1322
1323 bool fInterceptDB = false;
1324 bool fInterceptMovDRx = false;
1325 if (DBGFIsStepping(pVCpu))
1326 {
1327 /* AMD-V doesn't have any monitor-trap flag equivalent. Instead, enable tracing in the guest and trap #DB. */
1328 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1329 fInterceptDB = true;
1330 }
1331
1332 PVM pVM = pVCpu->CTX_SUFF(pVM);
1333 if (CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1334 {
1335 if (!CPUMIsHyperDebugStateActive(pVCpu))
1336 {
1337 int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1338 AssertRC(rc);
1339
1340 /* Update DR6, DR7 with the hypervisor values. */
1341 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1342 pVmcb->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
1343 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1344 }
1345 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1346 fInterceptMovDRx = true;
1347 }
1348 else if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1349 {
1350 if (!CPUMIsGuestDebugStateActive(pVCpu))
1351 {
1352 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1353 AssertRC(rc);
1354 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1355 }
1356 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1357 Assert(fInterceptMovDRx == false);
1358 }
1359 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1360 {
1361 /* For the first time we would need to intercept MOV DRx accesses even when the guest debug registers aren't loaded. */
1362 fInterceptMovDRx = true;
1363 }
1364
1365 if (fInterceptDB)
1366 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1367 else
1368 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1369
1370 if (fInterceptMovDRx)
1371 {
1372 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1373 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1374 {
1375 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1376 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1377 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1378 }
1379 }
1380 else
1381 {
1382 if ( pVmcb->ctrl.u16InterceptRdDRx
1383 || pVmcb->ctrl.u16InterceptWrDRx)
1384 {
1385 pVmcb->ctrl.u16InterceptRdDRx = 0;
1386 pVmcb->ctrl.u16InterceptWrDRx = 0;
1387 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1388 }
1389 }
1390
1391 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1392}
1393
1394
1395/**
1396 * Loads the guest APIC state (currently just the TPR).
1397 *
1398 * @returns VBox status code.
1399 * @param pVCpu Pointer to the VMCPU.
1400 * @param pVmcb Pointer to the VMCB.
1401 * @param pCtx Pointer to the guest-CPU context.
1402 */
1403DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1404{
1405 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1406 return VINF_SUCCESS;
1407
1408 bool fPendingIntr;
1409 uint8_t u8Tpr;
1410 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1411 AssertRCReturn(rc, rc);
1412
1413 /** Assume that we need to trap all TPR accesses and thus need not check on
1414 * every #VMEXIT if we should update the TPR. */
1415 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1416 pVCpu->hm.s.svm.fSyncVTpr = false;
1417
1418 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1419 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1420 {
1421 pCtx->msrLSTAR = u8Tpr;
1422
1423 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1424 if (fPendingIntr)
1425 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1426 else
1427 {
1428 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1429 pVCpu->hm.s.svm.fSyncVTpr = true;
1430 }
1431
1432 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
1433 }
1434 else
1435 {
1436 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1437 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1438
1439 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1440 if (fPendingIntr)
1441 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1442 else
1443 {
1444 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1445 pVCpu->hm.s.svm.fSyncVTpr = true;
1446 }
1447
1448 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1449 }
1450
1451 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1452 return rc;
1453}
1454
1455
1456/**
1457 * Sets up the appropriate function to run guest code.
1458 *
1459 * @returns VBox status code.
1460 * @param pVCpu Pointer to the VMCPU.
1461 * @param pCtx Pointer to the guest-CPU context.
1462 *
1463 * @remarks No-long-jump zone!!!
1464 */
1465static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1466{
1467 if (CPUMIsGuestInLongModeEx(pCtx))
1468 {
1469#ifndef VBOX_ENABLE_64_BITS_GUESTS
1470 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1471#endif
1472 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1473#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1474 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1475 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1476#else
1477 /* 64-bit host or hybrid host. */
1478 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1479#endif
1480 }
1481 else
1482 {
1483 /* Guest is not in long mode, use the 32-bit handler. */
1484 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1485 }
1486 return VINF_SUCCESS;
1487}
1488
1489
1490/**
1491 * Enters the AMD-V session.
1492 *
1493 * @returns VBox status code.
1494 * @param pVM Pointer to the VM.
1495 * @param pVCpu Pointer to the VMCPU.
1496 * @param pCpu Pointer to the CPU info struct.
1497 */
1498VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
1499{
1500 AssertPtr(pVM);
1501 AssertPtr(pVCpu);
1502 Assert(pVM->hm.s.svm.fSupported);
1503 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1504 NOREF(pCpu);
1505
1506 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1507
1508 /* Nothing to do here. */
1509 return VINF_SUCCESS;
1510}
1511
1512
1513/**
1514 * Leaves the AMD-V session.
1515 *
1516 * @returns VBox status code.
1517 * @param pVM Pointer to the VM.
1518 * @param pVCpu Pointer to the VMCPU.
1519 * @param pCtx Pointer to the guest-CPU context.
1520 */
1521VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1522{
1523 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1524 NOREF(pVM);
1525 NOREF(pVCpu);
1526 NOREF(pCtx);
1527
1528 /* Nothing to do here. Everything is taken care of in hmR0SvmLongJmpToRing3(). */
1529 return VINF_SUCCESS;
1530}
1531
1532
1533/**
1534 * Saves the host state.
1535 *
1536 * @returns VBox status code.
1537 * @param pVM Pointer to the VM.
1538 * @param pVCpu Pointer to the VMCPU.
1539 *
1540 * @remarks No-long-jump zone!!!
1541 */
1542VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1543{
1544 NOREF(pVM);
1545 NOREF(pVCpu);
1546 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1547 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1548 return VINF_SUCCESS;
1549}
1550
1551
1552/**
1553 * Worker for loading the guest-state into the VMCB.
1554 *
1555 * @returns VBox status code.
1556 * @param pVM Pointer to the VM.
1557 * @param pVCpu Pointer to the VMCPU.
1558 * @param pCtx Pointer to the guest-CPU context.
1559 *
1560 * @remarks No-long-jump zone!!!
1561 */
1562static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1563{
1564 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1565 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1566
1567 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1568
1569 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1570 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1571
1572 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1573 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1574
1575 pVmcb->guest.u64RIP = pCtx->rip;
1576 pVmcb->guest.u64RSP = pCtx->rsp;
1577 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1578 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1579 pVmcb->guest.u64RAX = pCtx->rax;
1580
1581 /* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
1582 hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
1583
1584 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1585 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1586
1587 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1588 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1589
1590 /* Clear any unused and reserved bits. */
1591 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_MSR /* Unused (legacy). */
1592 | HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1593 | HM_CHANGED_GUEST_RSP
1594 | HM_CHANGED_GUEST_RFLAGS
1595 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1596 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1597 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1598 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1599 | HM_CHANGED_SVM_RESERVED2
1600 | HM_CHANGED_SVM_RESERVED3);
1601
1602 AssertMsg(!pVCpu->hm.s.fContextUseFlags,
1603 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1604 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1605
1606 Log4(("Load: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
1607
1608 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1609 return rc;
1610}
1611
1612
1613/**
1614 * Loads the guest state.
1615 *
1616 * @returns VBox status code.
1617 * @param pVM Pointer to the VM.
1618 * @param pVCpu Pointer to the VMCPU.
1619 * @param pCtx Pointer to the guest-CPU context.
1620 *
1621 * @remarks No-long-jump zone!!!
1622 */
1623VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1624{
1625 /* Nothing to do here. Loading is done below before VM-entry. */
1626 return VINF_SUCCESS;
1627}
1628
1629
1630
1631/**
1632 * Saves the entire guest state from the VMCB into the
1633 * guest-CPU context. Currently there is no residual state left in the CPU that
1634 * is not updated in the VMCB.
1635 *
1636 * @returns VBox status code.
1637 * @param pVCpu Pointer to the VMCPU.
1638 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1639 * out-of-sync. Make sure to update the required fields
1640 * before using them.
1641 */
1642static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1643{
1644 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1645
1646 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1647
1648 pMixedCtx->rip = pVmcb->guest.u64RIP;
1649 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1650 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1651 pMixedCtx->rax = pVmcb->guest.u64RAX;
1652
1653 /*
1654 * Guest interrupt shadow.
1655 */
1656 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1657 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1658 else
1659 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1660
1661 /*
1662 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1663 */
1664 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1665
1666 /*
1667 * Guest MSRs.
1668 */
1669 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1670 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1671 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1672 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1673 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1674 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1675 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1676 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1677
1678 /*
1679 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1680 */
1681 HMSVM_SAVE_SEG_REG(CS, cs);
1682 HMSVM_SAVE_SEG_REG(SS, ss);
1683 HMSVM_SAVE_SEG_REG(DS, ds);
1684 HMSVM_SAVE_SEG_REG(ES, es);
1685 HMSVM_SAVE_SEG_REG(FS, fs);
1686 HMSVM_SAVE_SEG_REG(GS, gs);
1687
1688 /*
1689 * Correct the hidden CS granularity flag. Haven't seen it being wrong in any other
1690 * register (yet).
1691 */
1692 /** @todo Verify this. */
1693 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1694 && pMixedCtx->cs.Attr.n.u1Present
1695 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1696 {
1697 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1698 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1699 }
1700#ifdef VBOX_STRICT
1701# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1702 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1703 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1704 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1705 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1706 ("Invalid Segment Attributes %#x %#x %#llx\n", pMixedCtx->reg.u32Limit, \
1707 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1708
1709 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1710 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1711 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1712 HMSVM_ASSERT_SEG_GRANULARITY(es);
1713 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1714 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1715
1716# undef HMSVM_ASSERT_SEL_GRANULARITY
1717#endif
1718
1719 /*
1720 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1721 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1722 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1723 * See AMD spec. 15.5.1 "Basic operation".
1724 */
1725 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1726 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1727
1728 /*
1729 * Guest Descriptor-Table registers.
1730 */
1731 HMSVM_SAVE_SEG_REG(TR, tr);
1732 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1733 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1734 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1735
1736 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1737 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1738
1739 /*
1740 * Guest Debug registers.
1741 */
1742 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1743 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1744
1745 /*
1746 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1747 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1748 */
1749 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1750 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1751 {
1752 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1753 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1754 }
1755}
1756
1757
1758/**
1759 * Does the necessary state syncing before doing a longjmp to ring-3.
1760 *
1761 * @param pVM Pointer to the VM.
1762 * @param pVCpu Pointer to the VMCPU.
1763 * @param pCtx Pointer to the guest-CPU context.
1764 * @param rcExit The reason for exiting to ring-3. Can be
1765 * VINF_VMM_UNKNOWN_RING3_CALL.
1766 *
1767 * @remarks No-long-jmp zone!!!
1768 */
1769static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
1770{
1771 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1772 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1773
1774 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1775 if (CPUMIsGuestFPUStateActive(pVCpu))
1776 {
1777 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1778 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1779 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1780 }
1781
1782 /* Restore host debug registers if necessary and resync on next R0 reentry. */
1783 if (CPUMIsGuestDebugStateActive(pVCpu))
1784 {
1785 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
1786 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1787 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1788 }
1789 else if (CPUMIsHyperDebugStateActive(pVCpu))
1790 {
1791 CPUMR0LoadHostDebugState(pVM, pVCpu);
1792 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1793#ifdef VBOX_STRICT
1794 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1795 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1796 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1797#endif
1798 }
1799
1800 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1801 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1802}
1803
1804
1805/**
1806 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
1807 * any remaining host state) before we longjump to ring-3 and possibly get
1808 * preempted.
1809 *
1810 * @param pVCpu Pointer to the VMCPU.
1811 * @param enmOperation The operation causing the ring-3 longjump.
1812 * @param pvUser The user argument (pointer to the possibly
1813 * out-of-date guest-CPU context).
1814 *
1815 * @remarks Must never be called with @a enmOperation ==
1816 * VMMCALLRING3_VM_R0_ASSERTION.
1817 */
1818DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
1819{
1820 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
1821 Assert(pVCpu);
1822 Assert(pvUser);
1823 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1824 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1825
1826 VMMRZCallRing3Disable(pVCpu);
1827 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1828 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
1829 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser, VINF_VMM_UNKNOWN_RING3_CALL);
1830 VMMRZCallRing3Enable(pVCpu);
1831}
1832
1833
1834/**
1835 * An action requires us to go back to ring-3. This function does the necessary
1836 * steps before we can safely return to ring-3. This is not the same as longjmps
1837 * to ring-3, this is voluntary.
1838 *
1839 * @param pVM Pointer to the VM.
1840 * @param pVCpu Pointer to the VMCPU.
1841 * @param pCtx Pointer to the guest-CPU context.
1842 * @param rcExit The reason for exiting to ring-3. Can be
1843 * VINF_VMM_UNKNOWN_RING3_CALL.
1844 */
1845static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
1846{
1847 Assert(pVM);
1848 Assert(pVCpu);
1849 Assert(pCtx);
1850 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1851
1852 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
1853 {
1854 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
1855 return;
1856 }
1857
1858 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
1859 VMMRZCallRing3Disable(pVCpu);
1860 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
1861
1862 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
1863 if (pVCpu->hm.s.Event.fPending)
1864 {
1865 hmR0SvmPendingEventToTrpmTrap(pVCpu);
1866 Assert(!pVCpu->hm.s.Event.fPending);
1867 }
1868
1869 /* Sync. the guest state. */
1870 hmR0SvmLongJmpToRing3(pVM, pVCpu, pCtx, rcExit);
1871 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1872
1873 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
1874 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
1875 | CPUM_CHANGED_LDTR
1876 | CPUM_CHANGED_GDTR
1877 | CPUM_CHANGED_IDTR
1878 | CPUM_CHANGED_TR
1879 | CPUM_CHANGED_HIDDEN_SEL_REGS);
1880
1881 /* On our way back from ring-3 the following needs to be done. */
1882 /** @todo This can change with preemption hooks. */
1883 if (rcExit == VINF_EM_RAW_INTERRUPT)
1884 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
1885 else
1886 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
1887
1888 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
1889 VMMRZCallRing3Enable(pVCpu);
1890}
1891
1892
1893/**
1894 * Sets up the usage of TSC offsetting for the VCPU.
1895 *
1896 * @param pVCpu Pointer to the VMCPU.
1897 *
1898 * @remarks No-long-jump zone!!!
1899 */
1900static void hmR0SvmSetupTscOffsetting(PVMCPU pVCpu)
1901{
1902 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1903 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
1904 {
1905 uint64_t u64CurTSC = ASMReadTSC();
1906 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
1907 {
1908 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
1909 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
1910 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
1911 }
1912 else
1913 {
1914 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1915 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1916 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
1917 }
1918 }
1919 else
1920 {
1921 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1922 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1923 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
1924 }
1925
1926 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1927}
1928
1929
1930/**
1931 * Sets an event as a pending event to be injected into the guest.
1932 *
1933 * @param pVCpu Pointer to the VMCPU.
1934 * @param pEvent Pointer to the SVM event.
1935 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
1936 * page-fault.
1937 */
1938DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
1939{
1940 Assert(!pVCpu->hm.s.Event.fPending);
1941 Assert(pEvent->n.u1Valid);
1942
1943 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
1944 pVCpu->hm.s.Event.fPending = true;
1945 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
1946
1947 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
1948 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
1949}
1950
1951
1952/**
1953 * Injects an event into the guest upon VMRUN by updating the relevant field
1954 * in the VMCB.
1955 *
1956 * @param pVCpu Pointer to the VMCPU.
1957 * @param pVmcb Pointer to the guest VMCB.
1958 * @param pCtx Pointer to the guest-CPU context.
1959 * @param pEvent Pointer to the event.
1960 *
1961 * @remarks No-long-jump zone!!!
1962 * @remarks Requires CR0!
1963 */
1964DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
1965{
1966 pVmcb->ctrl.EventInject.u = pEvent->u;
1967 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
1968
1969 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
1970 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
1971}
1972
1973
1974
1975/**
1976 * Converts any TRPM trap into a pending HM event. This is typically used when
1977 * entering from ring-3 (not longjmp returns).
1978 *
1979 * @param pVCpu Pointer to the VMCPU.
1980 */
1981static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
1982{
1983 Assert(TRPMHasTrap(pVCpu));
1984 Assert(!pVCpu->hm.s.Event.fPending);
1985
1986 uint8_t uVector;
1987 TRPMEVENT enmTrpmEvent;
1988 RTGCUINT uErrCode;
1989 RTGCUINTPTR GCPtrFaultAddress;
1990 uint8_t cbInstr;
1991
1992 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
1993 AssertRC(rc);
1994
1995 SVMEVENT Event;
1996 Event.u = 0;
1997 Event.n.u1Valid = 1;
1998
1999 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2000 if (enmTrpmEvent == TRPM_TRAP)
2001 {
2002 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2003 switch (uVector)
2004 {
2005 case X86_XCPT_PF:
2006 case X86_XCPT_DF:
2007 case X86_XCPT_TS:
2008 case X86_XCPT_NP:
2009 case X86_XCPT_SS:
2010 case X86_XCPT_GP:
2011 case X86_XCPT_AC:
2012 {
2013 Event.n.u1ErrorCodeValid = 1;
2014 Event.n.u32ErrorCode = uErrCode;
2015 break;
2016 }
2017 }
2018 }
2019 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2020 {
2021 if (uVector == X86_XCPT_NMI)
2022 Event.n.u3Type = SVM_EVENT_NMI;
2023 else
2024 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2025 }
2026 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2027 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2028 else
2029 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2030
2031 rc = TRPMResetTrap(pVCpu);
2032 AssertRC(rc);
2033
2034 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2035 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2036 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2037}
2038
2039
2040/**
2041 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2042 * AMD-V to execute any instruction.
2043 *
2044 * @param pvCpu Pointer to the VMCPU.
2045 */
2046static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2047{
2048 Assert(pVCpu->hm.s.Event.fPending);
2049 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2050
2051 SVMEVENT Event;
2052 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2053
2054 uint8_t uVector = Event.n.u8Vector;
2055 uint8_t uVectorType = Event.n.u3Type;
2056
2057 TRPMEVENT enmTrapType;
2058 switch (uVectorType)
2059 {
2060 case SVM_EVENT_EXTERNAL_IRQ:
2061 case SVM_EVENT_NMI:
2062 enmTrapType = TRPM_HARDWARE_INT;
2063 break;
2064 case SVM_EVENT_SOFTWARE_INT:
2065 enmTrapType = TRPM_SOFTWARE_INT;
2066 break;
2067 case SVM_EVENT_EXCEPTION:
2068 enmTrapType = TRPM_TRAP;
2069 break;
2070 default:
2071 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2072 enmTrapType = TRPM_32BIT_HACK;
2073 break;
2074 }
2075
2076 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2077
2078 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2079 AssertRC(rc);
2080
2081 if (Event.n.u1ErrorCodeValid)
2082 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2083
2084 if ( uVectorType == SVM_EVENT_EXCEPTION
2085 && uVector == X86_XCPT_PF)
2086 {
2087 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2088 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2089 }
2090 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2091 {
2092 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2093 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2094 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2095 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2096 }
2097 pVCpu->hm.s.Event.fPending = false;
2098}
2099
2100
2101/**
2102 * Gets the guest's interrupt-shadow.
2103 *
2104 * @returns The guest's interrupt-shadow.
2105 * @param pVCpu Pointer to the VMCPU.
2106 * @param pCtx Pointer to the guest-CPU context.
2107 *
2108 * @remarks No-long-jump zone!!!
2109 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2110 */
2111DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2112{
2113 /*
2114 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2115 * inhibit interrupts or clear any existing interrupt-inhibition.
2116 */
2117 uint32_t uIntrState = 0;
2118 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2119 {
2120 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2121 {
2122 /*
2123 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2124 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2125 */
2126 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2127 }
2128 else
2129 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2130 }
2131 return uIntrState;
2132}
2133
2134
2135/**
2136 * Sets the virtual interrupt intercept control in the VMCB which
2137 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2138 * receive interrupts.
2139 *
2140 * @param pVmcb Pointer to the VMCB.
2141 */
2142DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2143{
2144 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2145 {
2146 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2147 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2148 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2149 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2150
2151 Log4(("Setting virtual interrupt intercept\n"));
2152 }
2153}
2154
2155
2156/**
2157 * Injects any pending events into the guest if the guest is in a state to
2158 * receive them.
2159 *
2160 * @param pVCpu Pointer to the VMCPU.
2161 * @param pCtx Pointer to the guest-CPU context.
2162 */
2163static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2164{
2165 Assert(!TRPMHasTrap(pVCpu));
2166
2167 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2168 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2169
2170 SVMEVENT Event;
2171 Event.u = 0;
2172 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2173 {
2174 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2175 Assert(Event.n.u1Valid);
2176 bool fInject = true;
2177 if ( fIntShadow
2178 && ( Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
2179 || Event.n.u3Type == SVM_EVENT_NMI))
2180 {
2181 fInject = false;
2182 }
2183
2184 if (fInject)
2185 {
2186 pVCpu->hm.s.Event.fPending = false;
2187 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2188 }
2189 else
2190 hmR0SvmSetVirtIntrIntercept(pVmcb);
2191 } /** @todo SMI. SMIs take priority over NMIs. */
2192 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2193 {
2194 if (!fIntShadow)
2195 {
2196 Log4(("Injecting NMI\n"));
2197
2198 Event.n.u1Valid = 1;
2199 Event.n.u8Vector = X86_XCPT_NMI;
2200 Event.n.u3Type = SVM_EVENT_NMI;
2201
2202 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2203 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2204 }
2205 else
2206 hmR0SvmSetVirtIntrIntercept(pVmcb);
2207 }
2208 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2209 {
2210 /* Check if there are guest external interrupts (PIC/APIC) pending and inject them, if the guest can receive them. */
2211 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2212 if ( !fBlockInt
2213 && !fIntShadow)
2214 {
2215 uint8_t u8Interrupt;
2216 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2217 if (RT_SUCCESS(rc))
2218 {
2219 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2220
2221 Event.n.u1Valid = 1;
2222 Event.n.u8Vector = u8Interrupt;
2223 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2224
2225 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2226 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject);
2227 }
2228 else
2229 {
2230 /** @todo Does this actually happen? If not turn it into an assertion. */
2231 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2232 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2233 }
2234 }
2235 else
2236 hmR0SvmSetVirtIntrIntercept(pVmcb);
2237 }
2238
2239 /* Update the guest interrupt shadow in the VMCB. */
2240 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2241}
2242
2243
2244/**
2245 * Reports world-switch error and dumps some useful debug info.
2246 *
2247 * @param pVM Pointer to the VM.
2248 * @param pVCpu Pointer to the VMCPU.
2249 * @param rcVMRun The return code from VMRUN (or
2250 * VERR_SVM_INVALID_GUEST_STATE for invalid
2251 * guest-state).
2252 * @param pCtx Pointer to the guest-CPU context.
2253 */
2254static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2255{
2256 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2257 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2258
2259 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2260 {
2261 HMDumpRegs(pVM, pVCpu, pCtx);
2262#ifdef VBOX_STRICT
2263 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2264 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2265 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2266 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2267 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2268 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2269 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2270 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2271 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2272 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2273 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2274
2275 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2276 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2277 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2278
2279 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2280 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2281 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2282 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2283 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2284 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2285 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2286 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2287 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2288 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2289
2290 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2291 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2292 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2293 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2294 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2295 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2296 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2297 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2298 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2299 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2300 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2301 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2302 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2303 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2304 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2305 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2306 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2307
2308 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2309 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2310
2311 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2312 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2313 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2314 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2315 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2316 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2317 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2318 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2319 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2320 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2321 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2322 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2323 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2324 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2325 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2326 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2327 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2328 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2329 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2330 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2331
2332 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2333 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2334
2335 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2336 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2337 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2338 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2339
2340 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2341 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2342
2343 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2344 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2345 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2346 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2347
2348 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2349 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2350 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2351 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2352 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2353 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2354 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2355
2356 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2357 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2358 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2359 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2360
2361 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2362 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2363 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2364
2365 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2366 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2367 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2368 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2369 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2370 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2371 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2372 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2373 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2374 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2375 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2376 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2377#endif
2378 }
2379 else
2380 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2381}
2382
2383
2384/**
2385 * Check per-VM and per-VCPU force flag actions that require us to go back to
2386 * ring-3 for one reason or another.
2387 *
2388 * @returns VBox status code (information status code included).
2389 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2390 * ring-3.
2391 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2392 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2393 * interrupts)
2394 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2395 * all EMTs to be in ring-3.
2396 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2397 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2398 * to the EM loop.
2399 *
2400 * @param pVM Pointer to the VM.
2401 * @param pVCpu Pointer to the VMCPU.
2402 * @param pCtx Pointer to the guest-CPU context.
2403 */
2404static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2405{
2406 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2407
2408 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
2409 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
2410 | VMCPU_FF_REQUEST | VMCPU_FF_HM_UPDATE_CR3))
2411 {
2412 /* Pending HM CR3 sync. No PAE PDPEs (VMCPU_FF_HM_UPDATE_PAE_PDPES) on AMD-V. */
2413 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
2414 {
2415 int rc = PGMUpdateCR3(pVCpu, pCtx->cr3);
2416 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
2417 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2418 }
2419
2420 /* Pending PGM C3 sync. */
2421 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2422 {
2423 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2424 if (rc != VINF_SUCCESS)
2425 {
2426 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2427 return rc;
2428 }
2429 }
2430
2431 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2432 /* -XXX- what was that about single stepping? */
2433 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2434 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2435 {
2436 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2437 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2438 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2439 return rc;
2440 }
2441
2442 /* Pending VM request packets, such as hardware interrupts. */
2443 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2444 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2445 {
2446 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2447 return VINF_EM_PENDING_REQUEST;
2448 }
2449
2450 /* Pending PGM pool flushes. */
2451 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2452 {
2453 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2454 return VINF_PGM_POOL_FLUSH_PENDING;
2455 }
2456
2457 /* Pending DMA requests. */
2458 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2459 {
2460 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2461 return VINF_EM_RAW_TO_R3;
2462 }
2463 }
2464
2465 return VINF_SUCCESS;
2466}
2467
2468
2469/**
2470 * Does the preparations before executing guest code in AMD-V.
2471 *
2472 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2473 * recompiler. We must be cautious what we do here regarding committing
2474 * guest-state information into the the VMCB assuming we assuredly execute the
2475 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2476 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2477 * that the recompiler can (and should) use them when it resumes guest
2478 * execution. Otherwise such operations must be done when we can no longer
2479 * exit to ring-3.
2480 *
2481 * @returns VBox status code (informational status codes included).
2482 * @retval VINF_SUCCESS if we can proceed with running the guest.
2483 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2484 *
2485 * @param pVM Pointer to the VM.
2486 * @param pVCpu Pointer to the VMCPU.
2487 * @param pCtx Pointer to the guest-CPU context.
2488 * @param pSvmTransient Pointer to the SVM transient structure.
2489 */
2490DECLINLINE(int) hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2491{
2492 /* Check force flag actions that might require us to go back to ring-3. */
2493 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2494 if (rc != VINF_SUCCESS)
2495 return rc;
2496
2497#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2498 /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
2499 pSvmTransient->uEFlags = ASMIntDisableFlags();
2500 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2501 {
2502 ASMSetFlags(pSvmTransient->uEFlags);
2503 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2504 /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
2505 return VINF_EM_RAW_INTERRUPT;
2506 }
2507 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2508 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2509#endif
2510
2511 /* Convert any pending TRPM traps to HM events for injection. */
2512 /** @todo Optimization: move this before disabling interrupts, restore state
2513 * using pVmcb->ctrl.EventInject.u. */
2514 if (TRPMHasTrap(pVCpu))
2515 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2516
2517 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2518
2519 return VINF_SUCCESS;
2520}
2521
2522
2523/**
2524 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2525 * means there is no backing out to ring-3 or anywhere else at this
2526 * point.
2527 *
2528 * @param pVM Pointer to the VM.
2529 * @param pVCpu Pointer to the VMCPU.
2530 * @param pCtx Pointer to the guest-CPU context.
2531 * @param pSvmTransient Pointer to the SVM transient structure.
2532 *
2533 * @remarks Called with preemption disabled.
2534 * @remarks No-long-jump zone!!!
2535 */
2536DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2537{
2538 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2539 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2540
2541#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2542 /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
2543 pSvmTransient->uEFlags = ASMIntDisableFlags();
2544 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2545#endif
2546
2547 /*
2548 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2549 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2550 */
2551 /** @todo The above assumption could be wrong. It's not documented what
2552 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2553 * hard way. */
2554 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2555 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2556
2557#ifdef HMVMX_SYNC_FULL_GUEST_STATE
2558 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2559#endif
2560
2561 /* Load the guest state. */
2562 int rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2563 AssertRC(rc);
2564 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
2565 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2566
2567 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2568 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2569 pVmcb->ctrl.u64VmcbCleanBits = 0;
2570
2571 /*
2572 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2573 * so we can update it on the way back if the guest changed the TPR.
2574 */
2575 if (pVCpu->hm.s.svm.fSyncVTpr)
2576 {
2577 if (pVM->hm.s.fTPRPatchingActive)
2578 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2579 else
2580 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2581 }
2582
2583 /* Flush the appropriate tagged-TLB entries. */
2584 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2585 hmR0SvmFlushTaggedTlb(pVCpu);
2586 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2587
2588 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2589 to start executing. */
2590
2591 /*
2592 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2593 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2594 *
2595 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2596 */
2597 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2598 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2599 {
2600 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2601 uint64_t u64GuestTscAux = 0;
2602 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2603 AssertRC(rc2);
2604 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2605 }
2606}
2607
2608
2609/**
2610 * Wrapper for running the guest code in AMD-V.
2611 *
2612 * @returns VBox strict status code.
2613 * @param pVM Pointer to the VM.
2614 * @param pVCpu Pointer to the VMCPU.
2615 * @param pCtx Pointer to the guest-CPU context.
2616 *
2617 * @remarks No-long-jump zone!!!
2618 */
2619DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2620{
2621 /*
2622 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2623 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2624 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2625 */
2626#ifdef VBOX_WITH_KERNEL_USING_XMM
2627 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2628 pVCpu->hm.s.svm.pfnVMRun);
2629#else
2630 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2631#endif
2632}
2633
2634
2635/**
2636 * Performs some essential restoration of state after running guest code in
2637 * AMD-V.
2638 *
2639 * @param pVM Pointer to the VM.
2640 * @param pVCpu Pointer to the VMCPU.
2641 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2642 * out-of-sync. Make sure to update the required fields
2643 * before using them.
2644 * @param pSvmTransient Pointer to the SVM transient structure.
2645 * @param rcVMRun Return code of VMRUN.
2646 *
2647 * @remarks Called with interrupts disabled.
2648 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2649 * unconditionally when it is safe to do so.
2650 */
2651DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2652{
2653 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2654
2655 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2656 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2657
2658 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2659 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2660
2661 /* Restore host's TSC_AUX if required. */
2662 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2663 {
2664 if (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2665 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2666
2667 /** @todo Find a way to fix hardcoding a guestimate. */
2668 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() +
2669 pVmcb->ctrl.u64TSCOffset - 0x400);
2670 }
2671
2672 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2673 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2674
2675 Assert(!(ASMGetFlags() & X86_EFL_IF));
2676 ASMSetFlags(pSvmTransient->uEFlags); /* Enable interrupts. */
2677
2678 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pMixedCtx);
2679 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2680
2681 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2682 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2683 {
2684 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2685 return;
2686 }
2687
2688 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2689 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2690 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2691
2692 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2693 {
2694 if (pVCpu->hm.s.svm.fSyncVTpr)
2695 {
2696 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2697 if ( pVM->hm.s.fTPRPatchingActive
2698 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2699 {
2700 int rc = PDMApicSetTPR(pVCpu, (pMixedCtx->msrLSTAR & 0xff));
2701 AssertRC(rc);
2702 }
2703 else if ((uint8_t)(pSvmTransient->u8GuestTpr >> 4) != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2704 {
2705 int rc = PDMApicSetTPR(pVCpu, (pVmcb->ctrl.IntCtrl.n.u8VTPR << 4));
2706 AssertRC(rc);
2707 }
2708 }
2709 }
2710}
2711
2712
2713/**
2714 * Runs the guest code using AMD-V.
2715 *
2716 * @returns VBox status code.
2717 * @param pVM Pointer to the VM.
2718 * @param pVCpu Pointer to the VMCPU.
2719 * @param pCtx Pointer to the guest-CPU context.
2720 */
2721VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2722{
2723 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2724 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2725
2726 SVMTRANSIENT SvmTransient;
2727 uint32_t cLoops = 0;
2728 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2729 int rc = VERR_INTERNAL_ERROR_5;
2730
2731 for (;; cLoops++)
2732 {
2733 Assert(!HMR0SuspendPending());
2734 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
2735 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
2736 (unsigned)RTMpCpuId(), cLoops));
2737
2738 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
2739 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
2740 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
2741 if (rc != VINF_SUCCESS)
2742 break;
2743
2744 /*
2745 * No longjmps to ring-3 from this point on!!!
2746 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
2747 * This also disables flushing of the R0-logger instance (if any).
2748 */
2749 VMMRZCallRing3Disable(pVCpu);
2750 VMMRZCallRing3RemoveNotification(pVCpu);
2751 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
2752
2753 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
2754
2755 /*
2756 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
2757 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
2758 */
2759 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
2760 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
2761 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
2762 {
2763 if (rc == VINF_SUCCESS)
2764 rc = VERR_SVM_INVALID_GUEST_STATE;
2765 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
2766 return rc;
2767 }
2768
2769 /* Handle the #VMEXIT. */
2770 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
2771 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
2772 if (rc != VINF_SUCCESS)
2773 break;
2774 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
2775 {
2776 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
2777 rc = VINF_EM_RAW_INTERRUPT;
2778 break;
2779 }
2780 }
2781
2782 if (rc == VERR_EM_INTERPRETER)
2783 rc = VINF_EM_RAW_EMULATE_INSTR;
2784 else if (rc == VINF_EM_RESET)
2785 rc = VINF_EM_TRIPLE_FAULT;
2786 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
2787 return rc;
2788}
2789
2790
2791/**
2792 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
2793 *
2794 * @returns VBox status code (informational status codes included).
2795 * @param pVCpu Pointer to the VMCPU.
2796 * @param pCtx Pointer to the guest-CPU context.
2797 * @param pSvmTransient Pointer to the SVM transient structure.
2798 */
2799DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2800{
2801 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
2802 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
2803
2804 /*
2805 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
2806 * normal workloads (for some definition of "normal").
2807 */
2808 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
2809 switch (pSvmTransient->u64ExitCode)
2810 {
2811 case SVM_EXIT_NPF:
2812 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
2813
2814 case SVM_EXIT_IOIO:
2815 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
2816
2817 case SVM_EXIT_RDTSC:
2818 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
2819
2820 case SVM_EXIT_RDTSCP:
2821 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
2822
2823 case SVM_EXIT_CPUID:
2824 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
2825
2826 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
2827 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
2828
2829 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
2830 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
2831
2832 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
2833 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
2834
2835 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
2836 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
2837
2838 case SVM_EXIT_MONITOR:
2839 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
2840
2841 case SVM_EXIT_MWAIT:
2842 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
2843
2844 case SVM_EXIT_HLT:
2845 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
2846
2847 case SVM_EXIT_READ_CR0:
2848 case SVM_EXIT_READ_CR3:
2849 case SVM_EXIT_READ_CR4:
2850 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
2851
2852 case SVM_EXIT_WRITE_CR0:
2853 case SVM_EXIT_WRITE_CR3:
2854 case SVM_EXIT_WRITE_CR4:
2855 case SVM_EXIT_WRITE_CR8:
2856 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
2857
2858 case SVM_EXIT_VINTR:
2859 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
2860
2861 case SVM_EXIT_INTR:
2862 case SVM_EXIT_FERR_FREEZE:
2863 case SVM_EXIT_NMI:
2864 case SVM_EXIT_INIT:
2865 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
2866
2867 case SVM_EXIT_MSR:
2868 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
2869
2870 case SVM_EXIT_INVLPG:
2871 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
2872
2873 case SVM_EXIT_WBINVD:
2874 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
2875
2876 case SVM_EXIT_INVD:
2877 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
2878
2879 case SVM_EXIT_RDPMC:
2880 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
2881
2882 default:
2883 {
2884 switch (pSvmTransient->u64ExitCode)
2885 {
2886 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2887 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
2888 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
2889 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2890 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
2891
2892 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
2893 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
2894 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
2895 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
2896 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
2897
2898 case SVM_EXIT_TASK_SWITCH:
2899 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
2900
2901 case SVM_EXIT_VMMCALL:
2902 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
2903
2904 case SVM_EXIT_SHUTDOWN:
2905 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
2906
2907 case SVM_EXIT_INVLPGA:
2908 case SVM_EXIT_RSM:
2909 case SVM_EXIT_VMRUN:
2910 case SVM_EXIT_VMLOAD:
2911 case SVM_EXIT_VMSAVE:
2912 case SVM_EXIT_STGI:
2913 case SVM_EXIT_CLGI:
2914 case SVM_EXIT_SKINIT:
2915 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
2916
2917#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2918 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
2919 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
2920 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
2921 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
2922 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
2923 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
2924 {
2925 SVMEVENT Event;
2926 Event.u = 0;
2927 Event.n.u1Valid = 1;
2928 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2929 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
2930
2931 switch (Event.n.u8Vector)
2932 {
2933 case X86_XCPT_DE:
2934 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
2935 break;
2936
2937 case X86_XCPT_BP:
2938 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
2939 * next instruction. */
2940 /** @todo Investigate this later. */
2941 break;
2942
2943 case X86_XCPT_UD:
2944 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
2945 break;
2946
2947 case X86_XCPT_NP:
2948 Event.n.u1ErrorCodeValid = 1;
2949 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
2950 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
2951 break;
2952
2953 case X86_XCPT_SS:
2954 Event.n.u1ErrorCodeValid = 1;
2955 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
2956 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
2957 break;
2958
2959 case X86_XCPT_GP:
2960 Event.n.u1ErrorCodeValid = 1;
2961 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
2962 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
2963 break;
2964 }
2965
2966 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
2967 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2968 return VINF_SUCCESS;
2969 }
2970#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
2971
2972 default:
2973 {
2974 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit code %#x\n", u32ExitCode));
2975 return VERR_SVM_UNEXPECTED_EXIT;
2976 }
2977 }
2978 }
2979 }
2980 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
2981}
2982
2983
2984#ifdef DEBUG
2985/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
2986# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
2987 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
2988
2989# define HMSVM_ASSERT_PREEMPT_CPUID() \
2990 do \
2991 { \
2992 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
2993 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
2994 } while (0)
2995
2996# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
2997 do { \
2998 AssertPtr(pVCpu); \
2999 AssertPtr(pCtx); \
3000 AssertPtr(pSvmTransient); \
3001 Assert(ASMIntAreEnabled()); \
3002 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
3003 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3004 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3005 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
3006 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3007 HMSVM_ASSERT_PREEMPT_CPUID(); \
3008 } while (0)
3009#else /* Release builds */
3010# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3011#endif
3012
3013
3014/**
3015 * Worker for hmR0SvmInterpretInvlpg().
3016 *
3017 * @return VBox status code.
3018 * @param pVCpu Pointer to the VMCPU.
3019 * @param pCpu Pointer to the disassembler state.
3020 * @param pRegFrame Pointer to the register frame.
3021 */
3022static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3023{
3024 DISQPVPARAMVAL Param1;
3025 RTGCPTR GCPtrPage;
3026
3027 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3028 if (RT_FAILURE(rc))
3029 return VERR_EM_INTERPRETER;
3030
3031 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3032 || Param1.type == DISQPV_TYPE_ADDRESS)
3033 {
3034 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3035 return VERR_EM_INTERPRETER;
3036
3037 GCPtrPage = Param1.val.val64;
3038 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3039 rc = VBOXSTRICTRC_VAL(rc2);
3040 }
3041 else
3042 {
3043 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3044 rc = VERR_EM_INTERPRETER;
3045 }
3046
3047 return rc;
3048}
3049
3050
3051/**
3052 * Interprets INVLPG.
3053 *
3054 * @returns VBox status code.
3055 * @retval VINF_* Scheduling instructions.
3056 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3057 * @retval VERR_* Fatal errors.
3058 *
3059 * @param pVM Pointer to the VM.
3060 * @param pRegFrame Pointer to the register frame.
3061 *
3062 * @remarks Updates the RIP if the instruction was executed successfully.
3063 */
3064static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3065{
3066 /* Only allow 32 & 64 bit code. */
3067 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3068 {
3069 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3070 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3071 if ( RT_SUCCESS(rc)
3072 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3073 {
3074 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3075 if (RT_SUCCESS(rc))
3076 pRegFrame->rip += pDis->cbInstr;
3077 return rc;
3078 }
3079 else
3080 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3081 }
3082 return VERR_EM_INTERPRETER;
3083}
3084
3085
3086/**
3087 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3088 *
3089 * @param pVCpu Pointer to the VMCPU.
3090 */
3091DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3092{
3093 SVMEVENT Event;
3094 Event.u = 0;
3095 Event.n.u1Valid = 1;
3096 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3097 Event.n.u8Vector = X86_XCPT_UD;
3098 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3099}
3100
3101
3102/**
3103 * Sets an debug (#DB) exception as pending-for-injection into the VM.
3104 *
3105 * @param pVCpu Pointer to the VMCPU.
3106 */
3107DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3108{
3109 SVMEVENT Event;
3110 Event.u = 0;
3111 Event.n.u1Valid = 1;
3112 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3113 Event.n.u8Vector = X86_XCPT_DB;
3114 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3115}
3116
3117
3118/**
3119 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3120 *
3121 * @param pVCpu Pointer to the VMCPU.
3122 * @param pCtx Pointer to the guest-CPU context.
3123 * @param u32ErrCode The error-code for the page-fault.
3124 * @param uFaultAddress The page fault address (CR2).
3125 *
3126 * @remarks This updates the guest CR2 with @a uFaultAddress!
3127 */
3128DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3129{
3130 SVMEVENT Event;
3131 Event.u = 0;
3132 Event.n.u1Valid = 1;
3133 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3134 Event.n.u8Vector = X86_XCPT_PF;
3135 Event.n.u1ErrorCodeValid = 1;
3136 Event.n.u32ErrorCode = u32ErrCode;
3137
3138 /* Update CR2 of the guest. */
3139 pCtx->cr2 = uFaultAddress;
3140
3141 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3142}
3143
3144
3145/**
3146 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3147 * VM.
3148 *
3149 * @param pVCpu Pointer to the VMCPU.
3150 */
3151DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3152{
3153 SVMEVENT Event;
3154 Event.u = 0;
3155 Event.n.u1Valid = 1;
3156 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3157 Event.n.u8Vector = X86_XCPT_NM;
3158 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3159}
3160
3161
3162/**
3163 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3164 *
3165 * @param pVCpu Pointer to the VMCPU.
3166 */
3167DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3168{
3169 SVMEVENT Event;
3170 Event.u = 0;
3171 Event.n.u1Valid = 1;
3172 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3173 Event.n.u8Vector = X86_XCPT_MF;
3174 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3175}
3176
3177
3178/**
3179 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3180 *
3181 * @param pVCpu Pointer to the VMCPU.
3182 */
3183DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3184{
3185 SVMEVENT Event;
3186 Event.u = 0;
3187 Event.n.u1Valid = 1;
3188 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3189 Event.n.u8Vector = X86_XCPT_DF;
3190 Event.n.u1ErrorCodeValid = 1;
3191 Event.n.u32ErrorCode = 0;
3192 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3193}
3194
3195
3196/**
3197 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3198 * guests. This simply looks up the patch record at EIP and does the required.
3199 *
3200 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3201 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3202 * TPR). See hmR3ReplaceTprInstr() for the details.
3203 *
3204 * @returns VBox status code.
3205 * @param pVM Pointer to the VM.
3206 * @param pVCpu Pointer to the VMCPU.
3207 * @param pCtx Pointer to the guest-CPU context.
3208 */
3209static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3210{
3211 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3212 for (;;)
3213 {
3214 bool fPending;
3215 uint8_t u8Tpr;
3216
3217 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3218 if (!pPatch)
3219 break;
3220
3221 switch (pPatch->enmType)
3222 {
3223 case HMTPRINSTR_READ:
3224 {
3225 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3226 AssertRC(rc);
3227
3228 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3229 AssertRC(rc);
3230 pCtx->rip += pPatch->cbOp;
3231 break;
3232 }
3233
3234 case HMTPRINSTR_WRITE_REG:
3235 case HMTPRINSTR_WRITE_IMM:
3236 {
3237 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3238 {
3239 uint32_t u32Val;
3240 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3241 AssertRC(rc);
3242 u8Tpr = u32Val;
3243 }
3244 else
3245 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3246
3247 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3248 AssertRC(rc2);
3249 pCtx->rip += pPatch->cbOp;
3250 break;
3251 }
3252
3253 default:
3254 AssertMsgFailedReturn(("Unexpected patch type %d\n", pPatch->enmType), VERR_SVM_UNEXPECTED_PATCH_TYPE);
3255 break;
3256 }
3257 }
3258
3259 return VINF_SUCCESS;
3260}
3261
3262/**
3263 * Determines if an exception is a contributory exception. Contributory
3264 * exceptions are ones which can cause double-faults. Page-fault is
3265 * intentionally not included here as it's a conditional contributory exception.
3266 *
3267 * @returns true if the exception is contributory, false otherwise.
3268 * @param uVector The exception vector.
3269 */
3270DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3271{
3272 switch (uVector)
3273 {
3274 case X86_XCPT_GP:
3275 case X86_XCPT_SS:
3276 case X86_XCPT_NP:
3277 case X86_XCPT_TS:
3278 case X86_XCPT_DE:
3279 return true;
3280 default:
3281 break;
3282 }
3283 return false;
3284}
3285
3286
3287/**
3288 * Handle a condition that occurred while delivering an event through the guest
3289 * IDT.
3290 *
3291 * @returns VBox status code (informational error codes included).
3292 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3293 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3294 * continue execution of the guest which will delivery the #DF.
3295 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3296 *
3297 * @param pVCpu Pointer to the VMCPU.
3298 * @param pCtx Pointer to the guest-CPU context.
3299 * @param pSvmTransient Pointer to the SVM transient structure.
3300 *
3301 * @remarks No-long-jump zone!!!
3302 */
3303static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3304{
3305 int rc = VINF_SUCCESS;
3306 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3307
3308 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3309 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3310 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3311 {
3312 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3313 uint8_t uExitVector = UINT8_MAX; /* Start off with an invalid vector, updated when it's valid. See below. */
3314
3315 typedef enum
3316 {
3317 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3318 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3319 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3320 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3321 } SVMREFLECTXCPT;
3322
3323 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3324 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3325 {
3326 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3327 {
3328 uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3329 if ( uExitVector == X86_XCPT_PF
3330 && uIdtVector == X86_XCPT_PF)
3331 {
3332 pSvmTransient->fVectoringPF = true;
3333 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3334 }
3335 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3336 && hmR0SvmIsContributoryXcpt(uExitVector)
3337 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3338 || uIdtVector == X86_XCPT_PF))
3339 {
3340 enmReflect = SVMREFLECTXCPT_DF;
3341 Log4(("IDT: Pending vectoring #DF %#RX64 uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo, uExitVector));
3342 }
3343 else if (uIdtVector == X86_XCPT_DF)
3344 enmReflect = SVMREFLECTXCPT_TF;
3345 else
3346 enmReflect = SVMREFLECTXCPT_XCPT;
3347 }
3348 else
3349 {
3350 /*
3351 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3352 * exception to the guest after handling the VM-exit.
3353 */
3354 enmReflect = SVMREFLECTXCPT_XCPT;
3355 }
3356 }
3357 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3358 {
3359 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3360 enmReflect = SVMREFLECTXCPT_XCPT;
3361 }
3362
3363 switch (enmReflect)
3364 {
3365 case SVMREFLECTXCPT_XCPT:
3366 {
3367 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3368
3369 pVCpu->hm.s.Event.u64IntrInfo = pVmcb->ctrl.ExitIntInfo.u;
3370 pVCpu->hm.s.Event.fPending = true;
3371
3372 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3373 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3374 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3375 break;
3376 }
3377
3378 case SVMREFLECTXCPT_DF:
3379 {
3380 hmR0SvmSetPendingXcptDF(pVCpu);
3381 rc = VINF_HM_DOUBLE_FAULT;
3382 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3383 uIdtVector, uExitVector));
3384 break;
3385 }
3386
3387 case SVMREFLECTXCPT_TF:
3388 {
3389 rc = VINF_EM_RESET;
3390 Log4(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
3391 break;
3392 }
3393
3394 default:
3395 Assert(rc == VINF_SUCCESS);
3396 break;
3397 }
3398 }
3399 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3400 return rc;
3401}
3402
3403
3404/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3405/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3406/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3407
3408/**
3409 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3410 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3411 */
3412HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3413{
3414 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3415 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3416 /* 32-bit Windows hosts (4 cores) has trouble with this on Intel; causes higher interrupt latency. Assuming the
3417 same for AMD-V.*/
3418#if HC_ARCH_BITS == 64 && defined(VBOX_WITH_VMMR0_DISABLE_PREEMPTION)
3419 Assert(ASMIntAreEnabled());
3420 return VINF_SUCCESS;
3421#else
3422 return VINF_EM_RAW_INTERRUPT;
3423#endif
3424}
3425
3426
3427/**
3428 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3429 */
3430HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3431{
3432 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3433 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3434 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3435 return VINF_SUCCESS;
3436}
3437
3438
3439/**
3440 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3441 */
3442HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3443{
3444 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3445 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3446 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3447 return VINF_SUCCESS;
3448}
3449
3450
3451/**
3452 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3453 */
3454HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3455{
3456 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3457 PVM pVM = pVCpu->CTX_SUFF(pVM);
3458 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3459 if (RT_LIKELY(rc == VINF_SUCCESS))
3460 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3461 else
3462 {
3463 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3464 rc = VERR_EM_INTERPRETER;
3465 }
3466 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3467 return rc;
3468}
3469
3470
3471/**
3472 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3473 */
3474HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3475{
3476 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3477 PVM pVM = pVCpu->CTX_SUFF(pVM);
3478 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3479 if (RT_LIKELY(rc == VINF_SUCCESS))
3480 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3481 else
3482 {
3483 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3484 rc = VERR_EM_INTERPRETER;
3485 }
3486 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3487 return rc;
3488}
3489
3490
3491/**
3492 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3493 */
3494HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3495{
3496 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3497 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3498 if (RT_LIKELY(rc == VINF_SUCCESS))
3499 pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3500 else
3501 {
3502 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3503 rc = VERR_EM_INTERPRETER;
3504 }
3505 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3506 return rc;
3507}
3508
3509
3510/**
3511 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3512 */
3513HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3514{
3515 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3516 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3517 if (RT_LIKELY(rc == VINF_SUCCESS))
3518 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3519 else
3520 {
3521 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3522 rc = VERR_EM_INTERPRETER;
3523 }
3524 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3525 return rc;
3526}
3527
3528
3529/**
3530 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3531 */
3532HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3533{
3534 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3535 PVM pVM = pVCpu->CTX_SUFF(pVM);
3536 Assert(!pVM->hm.s.fNestedPaging);
3537
3538 /** @todo Decode Assist. */
3539 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3540 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3541 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3542 return rc;
3543}
3544
3545
3546/**
3547 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3548 */
3549HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3550{
3551 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3552 pCtx->rip++; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3553 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3554 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3555 return rc;
3556}
3557
3558
3559/**
3560 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3561 */
3562HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3563{
3564 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3565 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3566 if (RT_LIKELY(rc == VINF_SUCCESS))
3567 pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3568 else
3569 {
3570 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3571 rc = VERR_EM_INTERPRETER;
3572 }
3573 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3574 return rc;
3575}
3576
3577
3578/**
3579 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3580 */
3581HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3582{
3583 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3584 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3585 int rc = VBOXSTRICTRC_VAL(rc2);
3586 if ( rc == VINF_EM_HALT
3587 || rc == VINF_SUCCESS)
3588 {
3589 pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3590
3591 if ( rc == VINF_EM_HALT
3592 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3593 {
3594 rc = VINF_SUCCESS;
3595 }
3596 }
3597 else
3598 {
3599 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3600 rc = VERR_EM_INTERPRETER;
3601 }
3602 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3603 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3604 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3605 return rc;
3606}
3607
3608
3609/**
3610 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
3611 * Conditional #VMEXIT.
3612 */
3613HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3614{
3615 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3616 return VINF_EM_RESET;
3617}
3618
3619
3620/**
3621 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
3622 */
3623HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3624{
3625 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3626
3627 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3628
3629 /** @todo Decode Assist. */
3630 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3631 int rc = VBOXSTRICTRC_VAL(rc2);
3632 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
3633 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
3634 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
3635 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
3636 return rc;
3637}
3638
3639
3640/**
3641 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
3642 */
3643HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3644{
3645 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3646 /** @todo Decode Assist. */
3647 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3648 int rc = VBOXSTRICTRC_VAL(rc2);
3649 if (rc == VINF_SUCCESS)
3650 {
3651 /* RIP has been updated by EMInterpretInstruction(). */
3652 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
3653 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
3654 {
3655 case 0: /* CR0. */
3656 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
3657 break;
3658
3659 case 3: /* CR3. */
3660 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
3661 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
3662 break;
3663
3664 case 4: /* CR4. */
3665 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
3666 break;
3667
3668 case 8: /* CR8 (TPR). */
3669 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3670 break;
3671
3672 default:
3673 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
3674 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
3675 break;
3676 }
3677 }
3678 else
3679 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
3680 return rc;
3681}
3682
3683
3684/**
3685 * #VMEXIT handler for instructions that result in a #UD exception delivered to
3686 * the guest.
3687 */
3688HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3689{
3690 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3691 hmR0SvmSetPendingXcptUD(pVCpu);
3692 return VINF_SUCCESS;
3693}
3694
3695
3696/**
3697 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
3698 */
3699HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3700{
3701 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3702 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3703 PVM pVM = pVCpu->CTX_SUFF(pVM);
3704
3705 int rc;
3706 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
3707 {
3708 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
3709
3710 /* Handle TPR patching; intercepted LSTAR write. */
3711 if ( pVM->hm.s.fTPRPatchingActive
3712 && pCtx->ecx == MSR_K8_LSTAR)
3713 {
3714 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
3715 {
3716 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
3717 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
3718 AssertRC(rc2);
3719 }
3720 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3721 return VINF_SUCCESS;
3722 }
3723
3724 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3725 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
3726
3727 if (pCtx->ecx == MSR_K6_EFER)
3728 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
3729 }
3730 else
3731 {
3732 /* MSR Read access. */
3733 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
3734 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3735 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
3736 }
3737
3738 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
3739 return rc;
3740}
3741
3742
3743/**
3744 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
3745 */
3746HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3747{
3748 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3749 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
3750
3751 /* We should -not- get this VM-exit if the guest is debugging. */
3752 if (CPUMIsGuestDebugStateActive(pVCpu))
3753 {
3754 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx));
3755 return VERR_SVM_UNEXPECTED_EXIT;
3756 }
3757
3758 if ( !DBGFIsStepping(pVCpu)
3759 && !CPUMIsHyperDebugStateActive(pVCpu))
3760 {
3761 /* Don't intercept DRx read and writes. */
3762 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3763 pVmcb->ctrl.u16InterceptRdDRx = 0;
3764 pVmcb->ctrl.u16InterceptWrDRx = 0;
3765 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3766
3767 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
3768 PVM pVM = pVCpu->CTX_SUFF(pVM);
3769 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
3770 AssertRC(rc);
3771 Assert(CPUMIsGuestDebugStateActive(pVCpu));
3772
3773 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
3774 return rc;
3775 }
3776
3777 /** @todo Decode assist. */
3778 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3779 int rc = VBOXSTRICTRC_VAL(rc2);
3780 if (RT_LIKELY(rc == VINF_SUCCESS))
3781 {
3782 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
3783 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
3784 }
3785 else
3786 Assert(rc == VERR_EM_INTERPRETER);
3787 return rc;
3788}
3789
3790
3791/**
3792 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
3793 */
3794HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3795{
3796 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3797 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
3798 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3799 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
3800 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
3801 return rc;
3802}
3803
3804
3805/**
3806 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
3807 */
3808HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3809{
3810 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3811
3812 /* I/O operation lookup arrays. */
3813 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
3814 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
3815 the result (in AL/AX/EAX). */
3816 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3817
3818 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3819 PVM pVM = pVCpu->CTX_SUFF(pVM);
3820
3821 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
3822 SVMIOIOEXIT IoExitInfo;
3823 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
3824 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
3825 uint32_t uIOSize = s_aIOSize[uIOWidth];
3826 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
3827
3828 if (RT_UNLIKELY(!uIOSize))
3829 {
3830 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
3831 return VERR_EM_INTERPRETER;
3832 }
3833
3834 int rc;
3835 if (IoExitInfo.n.u1STR)
3836 {
3837 /* INS/OUTS - I/O String instruction. */
3838 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
3839
3840 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
3841 * in EXITINFO1? Investigate once this thing is up and running. */
3842
3843 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
3844 if (rc == VINF_SUCCESS)
3845 {
3846 if (IoExitInfo.n.u1Type == 0) /* OUT */
3847 {
3848 VBOXSTRICTRC rc2 = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
3849 (DISCPUMODE)pDis->uAddrMode, uIOSize);
3850 rc = VBOXSTRICTRC_VAL(rc2);
3851 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
3852 }
3853 else
3854 {
3855 VBOXSTRICTRC rc2 = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
3856 (DISCPUMODE)pDis->uAddrMode, uIOSize);
3857 rc = VBOXSTRICTRC_VAL(rc2);
3858 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
3859 }
3860 }
3861 else
3862 rc = VINF_EM_RAW_EMULATE_INSTR;
3863 }
3864 else
3865 {
3866 /* IN/OUT - I/O instruction. */
3867 Assert(!IoExitInfo.n.u1REP);
3868
3869 if (IoExitInfo.n.u1Type == 0) /* OUT */
3870 {
3871 VBOXSTRICTRC rc2 = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
3872 rc = VBOXSTRICTRC_VAL(rc2);
3873 if (rc == VINF_IOM_R3_IOPORT_WRITE)
3874 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
3875
3876 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
3877 }
3878 else
3879 {
3880 uint32_t u32Val = 0;
3881
3882 VBOXSTRICTRC rc2 = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, uIOSize);
3883 rc = VBOXSTRICTRC_VAL(rc2);
3884 if (IOM_SUCCESS(rc))
3885 {
3886 /* Save result of I/O IN instr. in AL/AX/EAX. */
3887 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
3888 }
3889 else if (rc == VINF_IOM_R3_IOPORT_READ)
3890 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
3891
3892 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
3893 }
3894 }
3895
3896 if (IOM_SUCCESS(rc))
3897 {
3898 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
3899 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
3900
3901 if (RT_LIKELY(rc == VINF_SUCCESS))
3902 {
3903 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
3904 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
3905 {
3906 /* I/O breakpoint length, in bytes. */
3907 static uint32_t const s_aIOBPLen[4] = { 1, 2, 0, 4 };
3908
3909 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
3910 for (unsigned i = 0; i < 4; i++)
3911 {
3912 unsigned uBPLen = s_aIOBPLen[X86_DR7_GET_LEN(pCtx->dr[7], i)];
3913
3914 if ( IoExitInfo.n.u16Port >= pCtx->dr[i]
3915 && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen
3916 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
3917 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
3918 {
3919 Assert(CPUMIsGuestDebugStateActive(pVCpu));
3920
3921 /* Clear all breakpoint status flags and set the one we just hit. */
3922 pCtx->dr[6] &= ~(X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3);
3923 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
3924
3925 /*
3926 * Note: AMD64 Architecture Programmer's Manual 13.1:
3927 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
3928 * by software after the contents have been read.
3929 */
3930 pVmcb->guest.u64DR6 = pCtx->dr[6];
3931
3932 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
3933 pCtx->dr[7] &= ~X86_DR7_GD;
3934
3935 /* Paranoia. */
3936 pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
3937 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
3938 pCtx->dr[7] |= 0x400; /* MB1. */
3939
3940 pVmcb->guest.u64DR7 = pCtx->dr[7];
3941 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
3942
3943 /* Inject the debug exception. */
3944 hmR0SvmSetPendingXcptDB(pVCpu);
3945 break;
3946 }
3947 }
3948 }
3949 }
3950 }
3951
3952#ifdef DEBUG
3953 if (rc == VINF_IOM_R3_IOPORT_READ)
3954 Assert(IoExitInfo.n.u1Type != 0);
3955 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
3956 Assert(IoExitInfo.n.u1Type == 0);
3957 else
3958 {
3959 AssertMsg( RT_FAILURE(rc)
3960 || rc == VINF_SUCCESS
3961 || rc == VINF_EM_RAW_EMULATE_INSTR
3962 || rc == VINF_EM_RAW_GUEST_TRAP
3963 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
3964 }
3965#endif
3966 return rc;
3967}
3968
3969
3970/**
3971 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
3972 * #VMEXIT.
3973 */
3974HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3975{
3976 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3977 PVM pVM = pVCpu->CTX_SUFF(pVM);
3978 Assert(pVM->hm.s.fNestedPaging);
3979
3980 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
3981
3982 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
3983 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3984 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
3985 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
3986
3987 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
3988
3989#ifdef VBOX_HM_WITH_GUEST_PATCHING
3990 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
3991 if ( pVM->hm.s.fTRPPatchingAllowed
3992 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80
3993 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
3994 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
3995 && !CPUMGetGuestCPL(pVCpu)
3996 && !CPUMIsGuestInLongModeEx(pCtx)
3997 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
3998 {
3999 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4000 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4001
4002 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4003 {
4004 /* Only attempt to patch the instruction once. */
4005 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4006 if (!pPatch)
4007 return VINF_EM_HM_PATCH_TPR_INSTR;
4008 }
4009 }
4010#endif
4011
4012 /*
4013 * Determine the nested paging mode.
4014 */
4015 PGMMODE enmNestedPagingMode;
4016#if HC_ARCH_BITS == 32
4017 if (CPUMIsGuestInLongModeEx(pCtx))
4018 enmNestedPagingMode = PGMMODE_AMD64_NX;
4019 else
4020#endif
4021 enmNestedPagingMode = PGMGetHostMode(pVM);
4022
4023 /*
4024 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4025 */
4026 int rc;
4027 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4028 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4029 {
4030 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4031 u32ErrCode);
4032 rc = VBOXSTRICTRC_VAL(rc2);
4033
4034 /*
4035 * If we succeed, resume guest execution.
4036 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4037 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4038 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4039 * weird case. See @bugref{6043}.
4040 */
4041 if ( rc == VINF_SUCCESS
4042 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4043 || rc == VERR_PAGE_NOT_PRESENT)
4044 {
4045 /* Successfully handled MMIO operation. */
4046 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4047 rc = VINF_SUCCESS;
4048 }
4049 return rc;
4050 }
4051
4052 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4053 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4054 TRPMResetTrap(pVCpu);
4055
4056 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4057
4058 /*
4059 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4060 */
4061 if ( rc == VINF_SUCCESS
4062 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4063 || rc == VERR_PAGE_NOT_PRESENT)
4064 {
4065 /* We've successfully synced our shadow page tables. */
4066 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4067 rc = VINF_SUCCESS;
4068 }
4069
4070 return rc;
4071}
4072
4073
4074/**
4075 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4076 */
4077HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4078{
4079 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4080
4081 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4082 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4083 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4084
4085 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4086 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4087 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4088
4089 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4090 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4091 return VINF_SUCCESS;
4092}
4093
4094
4095/**
4096 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4097 */
4098HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4099{
4100 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4101
4102 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4103 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4104 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4105 && pVCpu->hm.s.Event.fPending)
4106 {
4107 /*
4108 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4109 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4110 * when the recompiler restarts the instruction.
4111 */
4112 SVMEVENT Event;
4113 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4114 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4115 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4116 {
4117 pVCpu->hm.s.Event.fPending = false;
4118 }
4119 else
4120 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4121 }
4122
4123 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4124 * emulation. */
4125 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4126 return VERR_EM_INTERPRETER;
4127}
4128
4129
4130/**
4131 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4132 */
4133HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4134{
4135 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4136
4137 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4138 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4139 hmR0SvmSetPendingXcptUD(pVCpu);
4140 return VINF_SUCCESS;
4141}
4142
4143
4144/**
4145 * #VMEXIT handler for page faults (SVM_EXIT_PF). Conditional #VMEXIT.
4146 */
4147HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4148{
4149 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4150
4151 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4152
4153 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4154 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4155 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4156 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4157
4158#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4159 if (pVM->hm.s.fNestedPaging)
4160 {
4161 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4162 if (!pSvmTransient->fVectoringPF)
4163 {
4164 /* A genuine guest #PF, reflect it to the guest. */
4165 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4166 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4167 uFaultAddress, u32ErrCode));
4168 }
4169 else
4170 {
4171 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4172 hmR0SvmSetPendingXcptDF(pVCpu);
4173 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4174 }
4175 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4176 return VINF_SUCCESS;
4177 }
4178#endif
4179
4180 PVM pVM = pVCpu->CTX_SUFF(pVM);
4181 Assert(!pVM->hm.s.fNestedPaging);
4182
4183#ifdef VBOX_HM_WITH_GUEST_PATCHING
4184 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4185 if ( pVM->hm.s.fTRPPatchingAllowed
4186 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4187 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4188 && !CPUMGetGuestCPL(pVCpu)
4189 && !CPUMIsGuestInLongModeEx(pCtx)
4190 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4191 {
4192 RTGCPHYS GCPhysApicBase;
4193 GCPhysApicBase = pCtx->msrApicBase;
4194 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4195
4196 /* Check if the page at the fault-address is the APIC base. */
4197 RTGCPHYS GCPhysPage;
4198 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4199 if ( rc2 == VINF_SUCCESS
4200 && GCPhysPage == GCPhysApicBase)
4201 {
4202 /* Only attempt to patch the instruction once. */
4203 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4204 if (!pPatch)
4205 return VINF_EM_HM_PATCH_TPR_INSTR;
4206 }
4207 }
4208#endif
4209
4210 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4211 pCtx->rip, u32ErrCode, pCtx->cr3));
4212
4213 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4214 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4215
4216 Log2(("#PF rc=%Rrc\n", rc));
4217 if (rc == VINF_SUCCESS)
4218 {
4219 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4220 TRPMResetTrap(pVCpu);
4221 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4222 return rc;
4223 }
4224 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4225 {
4226 if (!pSvmTransient->fVectoringPF)
4227 {
4228 /* It's a guest page fault and needs to be reflected to the guest. */
4229 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4230 TRPMResetTrap(pVCpu);
4231
4232 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4233 }
4234 else
4235 {
4236 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4237 TRPMResetTrap(pVCpu);
4238 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
4239 hmR0SvmSetPendingXcptDF(pVCpu);
4240 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4241 }
4242
4243 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4244 return VINF_SUCCESS;
4245 }
4246
4247 TRPMResetTrap(pVCpu);
4248 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4249 return rc;
4250}
4251
4252
4253/**
4254 * #VMEXIT handler for device-not-available exception (SVM_EXIT_NM). Conditional
4255 * #VMEXIT.
4256 */
4257HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4258{
4259 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4260
4261 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4262
4263#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4264 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4265#endif
4266
4267 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4268 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4269 if (rc == VINF_SUCCESS)
4270 {
4271 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4272 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4274 return VINF_SUCCESS;
4275 }
4276
4277 /* Forward #NM to the guest. */
4278 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4279 hmR0SvmSetPendingXcptNM(pVCpu);
4280 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4281 return VINF_SUCCESS;
4282}
4283
4284
4285/**
4286 * #VMEXIT handler for math-fault (SVM_EXIT_MF). Conditional #VMEXIT.
4287 */
4288HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4289{
4290 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4291
4292 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4293
4294 int rc;
4295 if (!(pCtx->cr0 & X86_CR0_NE))
4296 {
4297 /* Old-style FPU error reporting needs some extra work. */
4298 /** @todo don't fall back to the recompiler, but do it manually. */
4299 rc = VERR_EM_INTERPRETER;
4300 }
4301 else
4302 {
4303 hmR0SvmSetPendingXcptMF(pVCpu);
4304 rc = VINF_SUCCESS;
4305 }
4306 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4307 return rc;
4308}
4309
4310
4311/**
4312 * #VMEXIT handler for debug exception (SVM_EXIT_DB). Conditional #VMEXIT.
4313 */
4314HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4315{
4316 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4317
4318 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4319
4320 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4321
4322 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4323 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4324 PVM pVM = pVCpu->CTX_SUFF(pVM);
4325 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
4326 if (rc == VINF_EM_RAW_GUEST_TRAP)
4327 {
4328 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
4329 pCtx->dr[7] &= ~X86_DR7_GD;
4330
4331 /* Paranoia. */
4332 pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
4333 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
4334 pCtx->dr[7] |= 0x400; /* MB1. */
4335
4336 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4337 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4338
4339 /* Reflect the exception back to the guest. */
4340 SVMEVENT Event;
4341 Event.u = 0;
4342 Event.n.u1Valid = 1;
4343 Event.n.u3Type = SVM_EVENT_EXCEPTION;
4344 Event.n.u8Vector = X86_XCPT_DB;
4345 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
4346
4347 rc = VINF_SUCCESS;
4348 }
4349
4350 return rc;
4351}
4352
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette