VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 47123

Last change on this file since 47123 was 47123, checked in by vboxsync, 11 years ago

VMM/HM: Dispatch host NMIs on Intel. Added separate STAM counter for host NMIs with the necessary changes to old, new VT-x, AMD-V code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 172.7 KB
Line 
1/* $Id: HMSVMR0.cpp 47123 2013-07-12 15:31:44Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HWSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMSVM_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37#endif
38
39
40/*******************************************************************************
41* Defined Constants And Macros *
42*******************************************************************************/
43#ifdef VBOX_WITH_STATISTICS
44# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
45 if ((u64ExitCode) == SVM_EXIT_NPF) \
46 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
47 else \
48 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
49 } while (0)
50#else
51# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
52#endif
53
54/** If we decide to use a function table approach this can be useful to
55 * switch to a "static DECLCALLBACK(int)". */
56#define HMSVM_EXIT_DECL static int
57
58
59/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
60 *
61 * The CPU format of the segment attribute is described in X86DESCATTRBITS
62 * which is 16-bits (i.e. includes 4 bits of the segment limit).
63 *
64 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
65 * only the attribute bits and nothing else). Upper 4-bits are unused.
66 *
67 * @{ */
68#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) (a & 0xff) | ((a & 0xf000) >> 4)
69#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) (a & 0xff) | ((a & 0x0f00) << 4)
70/** @} */
71
72
73/** @name Macros for loading, storing segment registers to/from the VMCB.
74 * @{ */
75#define HMSVM_LOAD_SEG_REG(REG, reg) \
76 do \
77 { \
78 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
79 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
80 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
81 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
82 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
83 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
84 } while (0)
85
86#define HMSVM_SAVE_SEG_REG(REG, reg) \
87 do \
88 { \
89 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
90 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
92 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
93 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
94 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
95 } while (0)
96/** @} */
97
98
99/** @name Macro for checking and returning from the using function for
100 * #VMEXIT intercepts that maybe caused during delivering of another
101 * event in the guest. */
102#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
103 do \
104 { \
105 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
106 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
107 return VINF_SUCCESS; \
108 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
109 return rc; \
110 } while (0)
111/** @} */
112
113
114/**
115 * @name Exception bitmap mask for all contributory exceptions.
116 *
117 * Page fault is deliberately excluded here as it's conditional as to whether
118 * it's contributory or benign. Page faults are handled separately.
119 */
120#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
121 | RT_BIT(X86_XCPT_DE))
122/** @} */
123
124
125/** @name VMCB Clean Bits.
126 *
127 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
128 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
129 * memory.
130 *
131 * @{ */
132/** All intercepts vectors, TSC offset, PAUSE filter counter. */
133#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
134/** I/O permission bitmap, MSR permission bitmap. */
135#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
136/** ASID. */
137#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
138/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
139V_INTR_VECTOR. */
140#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
141/** Nested Paging: Nested CR3 (nCR3), PAT. */
142#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
143/** Control registers (CR0, CR3, CR4, EFER). */
144#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
145/** Debug registers (DR6, DR7). */
146#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
147/** GDT, IDT limit and base. */
148#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
149/** Segment register: CS, SS, DS, ES limit and base. */
150#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
151/** CR2.*/
152#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
153/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
154#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
155/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
156PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
157#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
158/** Mask of all valid VMCB Clean bits. */
159#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
160 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
161 | HMSVM_VMCB_CLEAN_ASID \
162 | HMSVM_VMCB_CLEAN_TPR \
163 | HMSVM_VMCB_CLEAN_NP \
164 | HMSVM_VMCB_CLEAN_CRX_EFER \
165 | HMSVM_VMCB_CLEAN_DRX \
166 | HMSVM_VMCB_CLEAN_DT \
167 | HMSVM_VMCB_CLEAN_SEG \
168 | HMSVM_VMCB_CLEAN_CR2 \
169 | HMSVM_VMCB_CLEAN_LBR \
170 | HMSVM_VMCB_CLEAN_AVIC)
171/** @} */
172
173/** @name SVM transient.
174 *
175 * A state structure for holding miscellaneous information across AMD-V
176 * VMRUN/#VMEXIT operation, restored after the transition.
177 *
178 * @{ */
179typedef struct SVMTRANSIENT
180{
181 /** The host's rflags/eflags. */
182 RTCCUINTREG uEFlags;
183#if HC_ARCH_BITS == 32
184 uint32_t u32Alignment0;
185#endif
186
187 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
188 uint64_t u64ExitCode;
189 /** The guest's TPR value used for TPR shadowing. */
190 uint8_t u8GuestTpr;
191 /** Alignment. */
192 uint8_t abAlignment0[7];
193
194 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
195 bool fRestoreTscAuxMsr;
196 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
197 * contributary exception or a page-fault. */
198 bool fVectoringPF;
199 /** Whether the TSC offset mode needs to be updated. */
200 bool fUpdateTscOffsetting;
201} SVMTRANSIENT, *PSVMTRANSIENT;
202AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
203AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
204/** @} */
205
206
207/**
208 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
209 */
210typedef enum SVMMSREXITREAD
211{
212 /** Reading this MSR causes a VM-exit. */
213 SVMMSREXIT_INTERCEPT_READ = 0xb,
214 /** Reading this MSR does not cause a VM-exit. */
215 SVMMSREXIT_PASSTHRU_READ
216} SVMMSREXITREAD;
217
218/**
219 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
220 */
221typedef enum SVMMSREXITWRITE
222{
223 /** Writing to this MSR causes a VM-exit. */
224 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
225 /** Writing to this MSR does not cause a VM-exit. */
226 SVMMSREXIT_PASSTHRU_WRITE
227} SVMMSREXITWRITE;
228
229
230/*******************************************************************************
231* Internal Functions *
232*******************************************************************************/
233static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
234static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
235
236HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
237HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
238HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
239HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
240HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
241HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
242HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
243HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
244HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
245HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
246HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
247HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
248HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
249HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
250HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
251HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
252HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
253HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
256HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
257HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
258HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
259HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
260HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
261HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
263
264DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
265
266
267/*******************************************************************************
268* Global Variables *
269*******************************************************************************/
270/** Ring-0 memory object for the IO bitmap. */
271RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
272/** Physical address of the IO bitmap. */
273RTHCPHYS g_HCPhysIOBitmap = 0;
274/** Virtual address of the IO bitmap. */
275R0PTRTYPE(void *) g_pvIOBitmap = NULL;
276
277
278/**
279 * Sets up and activates AMD-V on the current CPU.
280 *
281 * @returns VBox status code.
282 * @param pCpu Pointer to the CPU info struct.
283 * @param pVM Pointer to the VM (can be NULL after a resume!).
284 * @param pvCpuPage Pointer to the global CPU page.
285 * @param HCPhysCpuPage Physical address of the global CPU page.
286 */
287VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
288{
289 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
290 AssertReturn( HCPhysCpuPage
291 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
292 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
293
294 /*
295 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
296 */
297 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
298 if (u64HostEfer & MSR_K6_EFER_SVME)
299 {
300 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
301 if ( pVM
302 && pVM->hm.s.svm.fIgnoreInUseError)
303 {
304 pCpu->fIgnoreAMDVInUseError = true;
305 }
306
307 if (!pCpu->fIgnoreAMDVInUseError)
308 return VERR_SVM_IN_USE;
309 }
310
311 /* Turn on AMD-V in the EFER MSR. */
312 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
313
314 /* Write the physical page address where the CPU will store the host state while executing the VM. */
315 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
316
317 /*
318 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
319 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
320 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
321 * to flush the TLB with before using a new ASID.
322 */
323 pCpu->fFlushAsidBeforeUse = true;
324
325 /*
326 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
327 */
328 ++pCpu->cTlbFlushes;
329
330 return VINF_SUCCESS;
331}
332
333
334/**
335 * Deactivates AMD-V on the current CPU.
336 *
337 * @returns VBox status code.
338 * @param pCpu Pointer to the CPU info struct.
339 * @param pvCpuPage Pointer to the global CPU page.
340 * @param HCPhysCpuPage Physical address of the global CPU page.
341 */
342VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
343{
344 AssertReturn( HCPhysCpuPage
345 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
346 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
347 NOREF(pCpu);
348
349 /* Turn off AMD-V in the EFER MSR. */
350 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
351 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
352
353 /* Invalidate host state physical address. */
354 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
355
356 return VINF_SUCCESS;
357}
358
359
360/**
361 * Does global AMD-V initialization (called during module initialization).
362 *
363 * @returns VBox status code.
364 */
365VMMR0DECL(int) SVMR0GlobalInit(void)
366{
367 /*
368 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
369 * once globally here instead of per-VM.
370 */
371 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
372 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
373 if (RT_FAILURE(rc))
374 return rc;
375
376 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
377 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
378
379 /* Set all bits to intercept all IO accesses. */
380 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
381 return VINF_SUCCESS;
382}
383
384
385/**
386 * Does global AMD-V termination (called during module termination).
387 */
388VMMR0DECL(void) SVMR0GlobalTerm(void)
389{
390 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
391 {
392 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
393 g_pvIOBitmap = NULL;
394 g_HCPhysIOBitmap = 0;
395 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
396 }
397}
398
399
400/**
401 * Frees any allocated per-VCPU structures for a VM.
402 *
403 * @param pVM Pointer to the VM.
404 */
405DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
406{
407 for (uint32_t i = 0; i < pVM->cCpus; i++)
408 {
409 PVMCPU pVCpu = &pVM->aCpus[i];
410 AssertPtr(pVCpu);
411
412 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
413 {
414 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
415 pVCpu->hm.s.svm.pvVmcbHost = 0;
416 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
417 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
418 }
419
420 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
421 {
422 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
423 pVCpu->hm.s.svm.pvVmcb = 0;
424 pVCpu->hm.s.svm.HCPhysVmcb = 0;
425 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
426 }
427
428 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
429 {
430 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
431 pVCpu->hm.s.svm.pvMsrBitmap = 0;
432 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
433 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
434 }
435 }
436}
437
438
439/**
440 * Does per-VM AMD-V initialization.
441 *
442 * @returns VBox status code.
443 * @param pVM Pointer to the VM.
444 */
445VMMR0DECL(int) SVMR0InitVM(PVM pVM)
446{
447 int rc = VERR_INTERNAL_ERROR_5;
448
449 /*
450 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
451 */
452 uint32_t u32Family;
453 uint32_t u32Model;
454 uint32_t u32Stepping;
455 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
456 {
457 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
458 pVM->hm.s.svm.fAlwaysFlushTLB = true;
459 }
460
461 /*
462 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
463 */
464 for (VMCPUID i = 0; i < pVM->cCpus; i++)
465 {
466 PVMCPU pVCpu = &pVM->aCpus[i];
467 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
468 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
469 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
470 }
471
472 for (VMCPUID i = 0; i < pVM->cCpus; i++)
473 {
474 PVMCPU pVCpu = &pVM->aCpus[i];
475
476 /*
477 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
478 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
479 */
480 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
481 if (RT_FAILURE(rc))
482 goto failure_cleanup;
483
484 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
485 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
486 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
487 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
488
489 /*
490 * Allocate one page for the guest-state VMCB.
491 */
492 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
493 if (RT_FAILURE(rc))
494 goto failure_cleanup;
495
496 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
497 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
498 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
499 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
500
501 /*
502 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
503 * SVM to not require one.
504 */
505 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
506 if (RT_FAILURE(rc))
507 goto failure_cleanup;
508
509 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
510 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
511 /* Set all bits to intercept all MSR accesses (changed later on). */
512 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
513 }
514
515 return VINF_SUCCESS;
516
517failure_cleanup:
518 hmR0SvmFreeStructs(pVM);
519 return rc;
520}
521
522
523/**
524 * Does per-VM AMD-V termination.
525 *
526 * @returns VBox status code.
527 * @param pVM Pointer to the VM.
528 */
529VMMR0DECL(int) SVMR0TermVM(PVM pVM)
530{
531 hmR0SvmFreeStructs(pVM);
532 return VINF_SUCCESS;
533}
534
535
536/**
537 * Sets the permission bits for the specified MSR in the MSRPM.
538 *
539 * @param pVCpu Pointer to the VMCPU.
540 * @param uMsr The MSR for which the access permissions are being set.
541 * @param enmRead MSR read permissions.
542 * @param enmWrite MSR write permissions.
543 */
544static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
545{
546 unsigned ulBit;
547 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
548
549 /*
550 * Layout:
551 * Byte offset MSR range
552 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
553 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
554 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
555 * 0x1800 - 0x1fff Reserved
556 */
557 if (uMsr <= 0x00001FFF)
558 {
559 /* Pentium-compatible MSRs. */
560 ulBit = uMsr * 2;
561 }
562 else if ( uMsr >= 0xC0000000
563 && uMsr <= 0xC0001FFF)
564 {
565 /* AMD Sixth Generation x86 Processor MSRs. */
566 ulBit = (uMsr - 0xC0000000) * 2;
567 pbMsrBitmap += 0x800;
568 }
569 else if ( uMsr >= 0xC0010000
570 && uMsr <= 0xC0011FFF)
571 {
572 /* AMD Seventh and Eighth Generation Processor MSRs. */
573 ulBit = (uMsr - 0xC0001000) * 2;
574 pbMsrBitmap += 0x1000;
575 }
576 else
577 {
578 AssertFailed();
579 return;
580 }
581
582 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
583 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
584 ASMBitSet(pbMsrBitmap, ulBit);
585 else
586 ASMBitClear(pbMsrBitmap, ulBit);
587
588 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
589 ASMBitSet(pbMsrBitmap, ulBit + 1);
590 else
591 ASMBitClear(pbMsrBitmap, ulBit + 1);
592
593 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
594 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
595}
596
597
598/**
599 * Sets up AMD-V for the specified VM.
600 * This function is only called once per-VM during initalization.
601 *
602 * @returns VBox status code.
603 * @param pVM Pointer to the VM.
604 */
605VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
606{
607 int rc = VINF_SUCCESS;
608
609 AssertReturn(pVM, VERR_INVALID_PARAMETER);
610 Assert(pVM->hm.s.svm.fSupported);
611
612 for (VMCPUID i = 0; i < pVM->cCpus; i++)
613 {
614 PVMCPU pVCpu = &pVM->aCpus[i];
615 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
616
617 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
618
619 /* Trap exceptions unconditionally (debug purposes). */
620#ifdef HMSVM_ALWAYS_TRAP_PF
621 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
622#endif
623#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
624 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
625 pVmcb->ctrl.u32InterceptException |= 0
626 | RT_BIT(X86_XCPT_BP)
627 | RT_BIT(X86_XCPT_DB)
628 | RT_BIT(X86_XCPT_DE)
629 | RT_BIT(X86_XCPT_NM)
630 | RT_BIT(X86_XCPT_UD)
631 | RT_BIT(X86_XCPT_NP)
632 | RT_BIT(X86_XCPT_SS)
633 | RT_BIT(X86_XCPT_GP)
634 | RT_BIT(X86_XCPT_PF)
635 | RT_BIT(X86_XCPT_MF)
636 ;
637#endif
638
639 /* Set up unconditional intercepts and conditions. */
640 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
641 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
642 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
643 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
644 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
645 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
646 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
647 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
648 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
649 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
650 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
651 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
652
653 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
654 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
655 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
656 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
657 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
658 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
659 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
660 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
661 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
662 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
663
664 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
665 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
666
667 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
668 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
669
670 /* Intercept all DRx reads and writes by default. Changed later on. */
671 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
672 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
673
674 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
675 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
676
677 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
678 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
679 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
680
681 /* Set IO and MSR bitmap permission bitmap physical addresses. */
682 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
683 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
684
685 /* No LBR virtualization. */
686 pVmcb->ctrl.u64LBRVirt = 0;
687
688 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
689 pVmcb->ctrl.u64VmcbCleanBits = 0;
690
691 /* The host ASID MBZ, for the guest start with 1. */
692 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
693
694 /*
695 * Setup the PAT MSR (applicable for Nested Paging only).
696 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
697 * so choose type 6 for all PAT slots.
698 */
699 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
700
701 /* Without Nested Paging, we need additionally intercepts. */
702 if (!pVM->hm.s.fNestedPaging)
703 {
704 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
705 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
706 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
707
708 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
709 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
710 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
711
712 /* Page faults must be intercepted to implement shadow paging. */
713 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
714 }
715
716 /*
717 * The following MSRs are saved/restored automatically during the world-switch.
718 * Don't intercept guest read/write accesses to these MSRs.
719 */
720 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
721 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
722 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
723 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
724 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
725 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
726 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
727 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
728 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
729 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
730 }
731
732 return rc;
733}
734
735
736/**
737 * Invalidates a guest page by guest virtual address.
738 *
739 * @returns VBox status code.
740 * @param pVM Pointer to the VM.
741 * @param pVCpu Pointer to the VMCPU.
742 * @param GCVirt Guest virtual address of the page to invalidate.
743 */
744VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
745{
746 AssertReturn(pVM, VERR_INVALID_PARAMETER);
747 Assert(pVM->hm.s.svm.fSupported);
748
749 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
750
751 /* Skip it if a TLB flush is already pending. */
752 if (!fFlushPending)
753 {
754 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
755
756 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
757 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
758
759#if HC_ARCH_BITS == 32
760 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
761 if (CPUMIsGuestInLongMode(pVCpu))
762 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
763 else
764#endif
765 {
766 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
767 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
768 }
769 }
770 return VINF_SUCCESS;
771}
772
773
774/**
775 * Flushes the appropriate tagged-TLB entries.
776 *
777 * @param pVM Pointer to the VM.
778 * @param pVCpu Pointer to the VMCPU.
779 */
780static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
781{
782 PVM pVM = pVCpu->CTX_SUFF(pVM);
783 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
784 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
785
786 /*
787 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
788 * This can happen both for start & resume due to long jumps back to ring-3.
789 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
790 * so we cannot reuse the ASIDs without flushing.
791 */
792 bool fNewAsid = false;
793 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
794 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
795 {
796 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
797 pVCpu->hm.s.fForceTLBFlush = true;
798 fNewAsid = true;
799 }
800
801 /* Set TLB flush state as checked until we return from the world switch. */
802 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
803
804 /* Check for explicit TLB shootdowns. */
805 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
806 {
807 pVCpu->hm.s.fForceTLBFlush = true;
808 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
809 }
810
811 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
812 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
813
814 if (pVM->hm.s.svm.fAlwaysFlushTLB)
815 {
816 /*
817 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
818 */
819 pCpu->uCurrentAsid = 1;
820 pVCpu->hm.s.uCurrentAsid = 1;
821 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
822 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
823 }
824 else if (pVCpu->hm.s.fForceTLBFlush)
825 {
826 if (fNewAsid)
827 {
828 ++pCpu->uCurrentAsid;
829 bool fHitASIDLimit = false;
830 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
831 {
832 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
833 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
834 fHitASIDLimit = true;
835
836 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
837 {
838 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
839 pCpu->fFlushAsidBeforeUse = true;
840 }
841 else
842 {
843 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
844 pCpu->fFlushAsidBeforeUse = false;
845 }
846 }
847
848 if ( !fHitASIDLimit
849 && pCpu->fFlushAsidBeforeUse)
850 {
851 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
852 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
853 else
854 {
855 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
856 pCpu->fFlushAsidBeforeUse = false;
857 }
858 }
859
860 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
861 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
862 }
863 else
864 {
865 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
866 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
867 else
868 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
869 }
870
871 pVCpu->hm.s.fForceTLBFlush = false;
872 }
873 else
874 {
875 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
876 * not be executed. See hmQueueInvlPage() where it is commented
877 * out. Support individual entry flushing someday. */
878 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
879 {
880 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
881 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
882 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
883 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
884 }
885 }
886
887 pVCpu->hm.s.TlbShootdown.cPages = 0;
888 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
889
890 /* Update VMCB with the ASID. */
891 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
892 {
893 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
894 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
895 }
896
897 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
898 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
899 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
900 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
901 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
902 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
903
904#ifdef VBOX_WITH_STATISTICS
905 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
906 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
907 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
908 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
909 {
910 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
911 }
912 else
913 {
914 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
915 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
916 }
917#endif
918}
919
920
921/** @name 64-bit guest on 32-bit host OS helper functions.
922 *
923 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
924 * mode (code segment, paging). These wrappers/helpers perform the necessary
925 * bits for the 32->64 switcher.
926 *
927 * @{ */
928#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
929/**
930 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
931 *
932 * @returns VBox status code.
933 * @param HCPhysVmcbHost Physical address of host VMCB.
934 * @param HCPhysVmcb Physical address of the VMCB.
935 * @param pCtx Pointer to the guest-CPU context.
936 * @param pVM Pointer to the VM.
937 * @param pVCpu Pointer to the VMCPU.
938 */
939DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
940{
941 uint32_t aParam[4];
942 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
943 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
944 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
945 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
946
947 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
948}
949
950
951/**
952 * Executes the specified VMRUN handler in 64-bit mode.
953 *
954 * @returns VBox status code.
955 * @param pVM Pointer to the VM.
956 * @param pVCpu Pointer to the VMCPU.
957 * @param pCtx Pointer to the guest-CPU context.
958 * @param enmOp The operation to perform.
959 * @param cbParam Number of parameters.
960 * @param paParam Array of 32-bit parameters.
961 */
962VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
963 uint32_t *paParam)
964{
965 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
966 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
967
968 /* Disable interrupts. */
969 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
970
971#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
972 RTCPUID idHostCpu = RTMpCpuId();
973 CPUMR0SetLApic(pVM, idHostCpu);
974#endif
975
976 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
977 CPUMSetHyperEIP(pVCpu, enmOp);
978 for (int i = (int)cbParam - 1; i >= 0; i--)
979 CPUMPushHyper(pVCpu, paParam[i]);
980
981 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
982 /* Call the switcher. */
983 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
984 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
985
986 /* Restore interrupts. */
987 ASMSetFlags(uOldEFlags);
988 return rc;
989}
990
991#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
992/** @} */
993
994
995/**
996 * Adds an exception to the intercept exception bitmap in the VMCB and updates
997 * the corresponding VMCB Clean Bit.
998 *
999 * @param pVmcb Pointer to the VMCB.
1000 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1001 */
1002DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1003{
1004 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1005 {
1006 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1007 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1008 }
1009}
1010
1011
1012/**
1013 * Removes an exception from the intercept-exception bitmap in the VMCB and
1014 * updates the corresponding VMCB Clean Bit.
1015 *
1016 * @param pVmcb Pointer to the VMCB.
1017 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1018 */
1019DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1020{
1021#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1022 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1023 {
1024 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1025 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1026 }
1027#endif
1028}
1029
1030
1031/**
1032 * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1033 *
1034 * @returns VBox status code.
1035 * @param pVCpu Pointer to the VMCPU.
1036 * @param pVmcb Pointer to the VMCB.
1037 * @param pCtx Pointer the guest-CPU context.
1038 *
1039 * @remarks No-long-jump zone!!!
1040 */
1041DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1042{
1043 /*
1044 * Guest CR0.
1045 */
1046 PVM pVM = pVCpu->CTX_SUFF(pVM);
1047 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1048 {
1049 uint64_t u64GuestCR0 = pCtx->cr0;
1050
1051 /* Always enable caching. */
1052 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1053
1054 /*
1055 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1056 */
1057 if (!pVM->hm.s.fNestedPaging)
1058 {
1059 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1060 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1061 }
1062
1063 /*
1064 * Guest FPU bits.
1065 */
1066 bool fInterceptNM = false;
1067 bool fInterceptMF = false;
1068 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1069 if (CPUMIsGuestFPUStateActive(pVCpu))
1070 {
1071 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1072 if (!(u64GuestCR0 & X86_CR0_NE))
1073 {
1074 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1075 fInterceptMF = true;
1076 }
1077 }
1078 else
1079 {
1080 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1081 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1082 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1083 }
1084
1085 /*
1086 * Update the exception intercept bitmap.
1087 */
1088 if (fInterceptNM)
1089 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1090 else
1091 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1092
1093 if (fInterceptMF)
1094 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1095 else
1096 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1097
1098 pVmcb->guest.u64CR0 = u64GuestCR0;
1099 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1100 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1101 }
1102
1103 /*
1104 * Guest CR2.
1105 */
1106 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1107 {
1108 pVmcb->guest.u64CR2 = pCtx->cr2;
1109 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1110 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1111 }
1112
1113 /*
1114 * Guest CR3.
1115 */
1116 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1117 {
1118 if (pVM->hm.s.fNestedPaging)
1119 {
1120 PGMMODE enmShwPagingMode;
1121#if HC_ARCH_BITS == 32
1122 if (CPUMIsGuestInLongModeEx(pCtx))
1123 enmShwPagingMode = PGMMODE_AMD64_NX;
1124 else
1125#endif
1126 enmShwPagingMode = PGMGetHostMode(pVM);
1127
1128 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1129 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1130 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1131 pVmcb->guest.u64CR3 = pCtx->cr3;
1132 }
1133 else
1134 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1135
1136 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1137 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1138 }
1139
1140 /*
1141 * Guest CR4.
1142 */
1143 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1144 {
1145 uint64_t u64GuestCR4 = pCtx->cr4;
1146 if (!pVM->hm.s.fNestedPaging)
1147 {
1148 switch (pVCpu->hm.s.enmShadowMode)
1149 {
1150 case PGMMODE_REAL:
1151 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1152 AssertFailed();
1153 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1154
1155 case PGMMODE_32_BIT: /* 32-bit paging. */
1156 u64GuestCR4 &= ~X86_CR4_PAE;
1157 break;
1158
1159 case PGMMODE_PAE: /* PAE paging. */
1160 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1161 /** Must use PAE paging as we could use physical memory > 4 GB */
1162 u64GuestCR4 |= X86_CR4_PAE;
1163 break;
1164
1165 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1166 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1167#ifdef VBOX_ENABLE_64_BITS_GUESTS
1168 break;
1169#else
1170 AssertFailed();
1171 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1172#endif
1173
1174 default: /* shut up gcc */
1175 AssertFailed();
1176 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1177 }
1178 }
1179
1180 pVmcb->guest.u64CR4 = u64GuestCR4;
1181 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1182 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1183 }
1184
1185 return VINF_SUCCESS;
1186}
1187
1188
1189/**
1190 * Loads the guest segment registers into the VMCB.
1191 *
1192 * @returns VBox status code.
1193 * @param pVCpu Pointer to the VMCPU.
1194 * @param pVmcb Pointer to the VMCB.
1195 * @param pCtx Pointer to the guest-CPU context.
1196 *
1197 * @remarks No-long-jump zone!!!
1198 */
1199DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1200{
1201 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1202 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1203 {
1204 HMSVM_LOAD_SEG_REG(CS, cs);
1205 HMSVM_LOAD_SEG_REG(SS, ss);
1206 HMSVM_LOAD_SEG_REG(DS, ds);
1207 HMSVM_LOAD_SEG_REG(ES, es);
1208 HMSVM_LOAD_SEG_REG(FS, fs);
1209 HMSVM_LOAD_SEG_REG(GS, gs);
1210
1211 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1212 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1213 }
1214
1215 /* Guest TR. */
1216 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1217 {
1218 HMSVM_LOAD_SEG_REG(TR, tr);
1219 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1220 }
1221
1222 /* Guest LDTR. */
1223 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1224 {
1225 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1226 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1227 }
1228
1229 /* Guest GDTR. */
1230 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1231 {
1232 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1233 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1234 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1235 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1236 }
1237
1238 /* Guest IDTR. */
1239 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1240 {
1241 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1242 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1243 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1244 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1245 }
1246}
1247
1248
1249/**
1250 * Loads the guest MSRs into the VMCB.
1251 *
1252 * @param pVCpu Pointer to the VMCPU.
1253 * @param pVmcb Pointer to the VMCB.
1254 * @param pCtx Pointer to the guest-CPU context.
1255 *
1256 * @remarks No-long-jump zone!!!
1257 */
1258DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1259{
1260 /* Guest Sysenter MSRs. */
1261 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1262 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1263 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1264
1265 /*
1266 * Guest EFER MSR.
1267 * AMD-V requires guest EFER.SVME to be set. Weird. .
1268 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1269 */
1270 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1271 {
1272 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1273 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1274 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1275 }
1276
1277 /* 64-bit MSRs. */
1278 if (CPUMIsGuestInLongModeEx(pCtx))
1279 {
1280 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1281 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1282 }
1283 else
1284 {
1285 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1286 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1287 {
1288 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1289 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1290 }
1291 }
1292
1293
1294 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1295 * be writable in 32-bit mode. Clarify with AMD spec. */
1296 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1297 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1298 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1299 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1300 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1301}
1302
1303
1304/**
1305 * Loads the guest debug registers into the VMCB.
1306 *
1307 * @param pVCpu Pointer to the VMCPU.
1308 * @param pVmcb Pointer to the VMCB.
1309 * @param pCtx Pointer to the guest-CPU context.
1310 *
1311 * @remarks No-long-jump zone!!!
1312 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1313 */
1314DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1315{
1316 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1317 return;
1318
1319 /** @todo Turn these into assertions if possible. */
1320 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* Set reserved bits to 1. */
1321 pCtx->dr[6] &= ~RT_BIT(12); /* MBZ. */
1322
1323 pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
1324 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
1325 pCtx->dr[7] |= 0x400; /* MB1. */
1326
1327 /* Update DR6, DR7 with the guest values. */
1328 pVmcb->guest.u64DR7 = pCtx->dr[7];
1329 pVmcb->guest.u64DR6 = pCtx->dr[6];
1330 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1331
1332 bool fInterceptDB = false;
1333 bool fInterceptMovDRx = false;
1334 if (DBGFIsStepping(pVCpu))
1335 {
1336 /* AMD-V doesn't have any monitor-trap flag equivalent. Instead, enable tracing in the guest and trap #DB. */
1337 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1338 fInterceptDB = true;
1339 }
1340
1341 PVM pVM = pVCpu->CTX_SUFF(pVM);
1342 if (CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1343 {
1344 if (!CPUMIsHyperDebugStateActive(pVCpu))
1345 {
1346 int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1347 AssertRC(rc);
1348
1349 /* Update DR6, DR7 with the hypervisor values. */
1350 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1351 pVmcb->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
1352 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1353 }
1354 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1355 fInterceptMovDRx = true;
1356 }
1357 else if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1358 {
1359 if (!CPUMIsGuestDebugStateActive(pVCpu))
1360 {
1361 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1362 AssertRC(rc);
1363 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1364 }
1365 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1366 Assert(fInterceptMovDRx == false);
1367 }
1368 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1369 {
1370 /* For the first time we would need to intercept MOV DRx accesses even when the guest debug registers aren't loaded. */
1371 fInterceptMovDRx = true;
1372 }
1373
1374 if (fInterceptDB)
1375 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1376 else
1377 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1378
1379 if (fInterceptMovDRx)
1380 {
1381 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1382 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1383 {
1384 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1385 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1386 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1387 }
1388 }
1389 else
1390 {
1391 if ( pVmcb->ctrl.u16InterceptRdDRx
1392 || pVmcb->ctrl.u16InterceptWrDRx)
1393 {
1394 pVmcb->ctrl.u16InterceptRdDRx = 0;
1395 pVmcb->ctrl.u16InterceptWrDRx = 0;
1396 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1397 }
1398 }
1399
1400 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1401}
1402
1403
1404/**
1405 * Loads the guest APIC state (currently just the TPR).
1406 *
1407 * @returns VBox status code.
1408 * @param pVCpu Pointer to the VMCPU.
1409 * @param pVmcb Pointer to the VMCB.
1410 * @param pCtx Pointer to the guest-CPU context.
1411 */
1412DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1413{
1414 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1415 return VINF_SUCCESS;
1416
1417 bool fPendingIntr;
1418 uint8_t u8Tpr;
1419 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1420 AssertRCReturn(rc, rc);
1421
1422 /** Assume that we need to trap all TPR accesses and thus need not check on
1423 * every #VMEXIT if we should update the TPR. */
1424 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1425 pVCpu->hm.s.svm.fSyncVTpr = false;
1426
1427 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1428 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1429 {
1430 pCtx->msrLSTAR = u8Tpr;
1431
1432 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1433 if (fPendingIntr)
1434 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1435 else
1436 {
1437 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1438 pVCpu->hm.s.svm.fSyncVTpr = true;
1439 }
1440 }
1441 else
1442 {
1443 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1444 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1445
1446 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1447 if (fPendingIntr)
1448 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1449 else
1450 {
1451 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1452 pVCpu->hm.s.svm.fSyncVTpr = true;
1453 }
1454
1455 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1456 }
1457
1458 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1459 return rc;
1460}
1461
1462
1463/**
1464 * Sets up the appropriate function to run guest code.
1465 *
1466 * @returns VBox status code.
1467 * @param pVCpu Pointer to the VMCPU.
1468 * @param pCtx Pointer to the guest-CPU context.
1469 *
1470 * @remarks No-long-jump zone!!!
1471 */
1472static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1473{
1474 if (CPUMIsGuestInLongModeEx(pCtx))
1475 {
1476#ifndef VBOX_ENABLE_64_BITS_GUESTS
1477 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1478#endif
1479 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1480#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1481 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1482 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1483#else
1484 /* 64-bit host or hybrid host. */
1485 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1486#endif
1487 }
1488 else
1489 {
1490 /* Guest is not in long mode, use the 32-bit handler. */
1491 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1492 }
1493 return VINF_SUCCESS;
1494}
1495
1496
1497/**
1498 * Enters the AMD-V session.
1499 *
1500 * @returns VBox status code.
1501 * @param pVM Pointer to the VM.
1502 * @param pVCpu Pointer to the VMCPU.
1503 * @param pCpu Pointer to the CPU info struct.
1504 */
1505VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
1506{
1507 AssertPtr(pVM);
1508 AssertPtr(pVCpu);
1509 Assert(pVM->hm.s.svm.fSupported);
1510 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1511 NOREF(pCpu);
1512
1513 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1514
1515 /* Nothing to do here. */
1516 return VINF_SUCCESS;
1517}
1518
1519
1520/**
1521 * Leaves the AMD-V session.
1522 *
1523 * @returns VBox status code.
1524 * @param pVM Pointer to the VM.
1525 * @param pVCpu Pointer to the VMCPU.
1526 * @param pCtx Pointer to the guest-CPU context.
1527 */
1528VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1529{
1530 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1531 NOREF(pVM);
1532 NOREF(pVCpu);
1533 NOREF(pCtx);
1534
1535 /* Nothing to do here. Everything is taken care of in hmR0SvmLongJmpToRing3(). */
1536 return VINF_SUCCESS;
1537}
1538
1539
1540/**
1541 * Saves the host state.
1542 *
1543 * @returns VBox status code.
1544 * @param pVM Pointer to the VM.
1545 * @param pVCpu Pointer to the VMCPU.
1546 *
1547 * @remarks No-long-jump zone!!!
1548 */
1549VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1550{
1551 NOREF(pVM);
1552 NOREF(pVCpu);
1553 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1554 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1555 return VINF_SUCCESS;
1556}
1557
1558
1559/**
1560 * Loads the guest state into the VMCB. The CPU state will be loaded from these
1561 * fields on every successful VM-entry.
1562 *
1563 * Sets up the appropriate VMRUN function to execute guest code based
1564 * on the guest CPU mode.
1565 *
1566 * @returns VBox status code.
1567 * @param pVM Pointer to the VM.
1568 * @param pVCpu Pointer to the VMCPU.
1569 * @param pMixedCtx Pointer to the guest-CPU context.
1570 *
1571 * @remarks No-long-jump zone!!!
1572 */
1573static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1574{
1575 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1576 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1577
1578 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1579
1580 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1581 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1582
1583 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1584 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1585
1586 pVmcb->guest.u64RIP = pCtx->rip;
1587 pVmcb->guest.u64RSP = pCtx->rsp;
1588 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1589 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1590 pVmcb->guest.u64RAX = pCtx->rax;
1591
1592 /* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
1593 hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
1594
1595 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1596 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1597
1598 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1599 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1600
1601 /* Clear any unused and reserved bits. */
1602 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_MSR /* Unused (legacy). */
1603 | HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1604 | HM_CHANGED_GUEST_RSP
1605 | HM_CHANGED_GUEST_RFLAGS
1606 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1607 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1608 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1609 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1610 | HM_CHANGED_SVM_RESERVED2
1611 | HM_CHANGED_SVM_RESERVED3);
1612
1613 AssertMsg(!pVCpu->hm.s.fContextUseFlags,
1614 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1615 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1616
1617 Log4(("Load: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
1618
1619 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1620 return rc;
1621}
1622
1623
1624/**
1625 * Loads the guest state on the way from ring-3.
1626 *
1627 * @returns VBox status code.
1628 * @param pVM Pointer to the VM.
1629 * @param pVCpu Pointer to the VMCPU.
1630 * @param pCtx Pointer to the guest-CPU context.
1631 *
1632 * @remarks No-long-jump zone!!!
1633 */
1634VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1635{
1636 /*
1637 * Avoid reloading the guest state on longjmp reentrants and do it lazily just before executing the guest.
1638 * This only helps when we get rescheduled more than once to a different host CPU on a longjmp trip before
1639 * finally executing guest code.
1640 */
1641 return VINF_SUCCESS;
1642}
1643
1644
1645/**
1646 * Saves the entire guest state from the VMCB into the
1647 * guest-CPU context. Currently there is no residual state left in the CPU that
1648 * is not updated in the VMCB.
1649 *
1650 * @returns VBox status code.
1651 * @param pVCpu Pointer to the VMCPU.
1652 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1653 * out-of-sync. Make sure to update the required fields
1654 * before using them.
1655 */
1656static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1657{
1658 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1659
1660 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1661
1662 pMixedCtx->rip = pVmcb->guest.u64RIP;
1663 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1664 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1665 pMixedCtx->rax = pVmcb->guest.u64RAX;
1666
1667 /*
1668 * Guest interrupt shadow.
1669 */
1670 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1671 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1672 else
1673 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1674
1675 /*
1676 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1677 */
1678 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1679
1680 /*
1681 * Guest MSRs.
1682 */
1683 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1684 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1685 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1686 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1687 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1688 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1689 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1690 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1691
1692 /*
1693 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1694 */
1695 HMSVM_SAVE_SEG_REG(CS, cs);
1696 HMSVM_SAVE_SEG_REG(SS, ss);
1697 HMSVM_SAVE_SEG_REG(DS, ds);
1698 HMSVM_SAVE_SEG_REG(ES, es);
1699 HMSVM_SAVE_SEG_REG(FS, fs);
1700 HMSVM_SAVE_SEG_REG(GS, gs);
1701
1702 /*
1703 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1704 * register (yet).
1705 */
1706 /** @todo SELM might need to be fixed as it too should not care about the
1707 * granularity bit. See @bugref{6785}. */
1708 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1709 && pMixedCtx->cs.Attr.n.u1Present
1710 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1711 {
1712 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1713 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1714 }
1715
1716#ifdef VBOX_STRICT
1717# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1718 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1719 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1720 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1721 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1722 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1723 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1724
1725 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1726 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1727 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1728 HMSVM_ASSERT_SEG_GRANULARITY(es);
1729 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1730 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1731
1732# undef HMSVM_ASSERT_SEL_GRANULARITY
1733#endif
1734
1735 /*
1736 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1737 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1738 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1739 * See AMD spec. 15.5.1 "Basic operation".
1740 */
1741 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1742 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1743
1744 /*
1745 * Guest Descriptor-Table registers.
1746 */
1747 HMSVM_SAVE_SEG_REG(TR, tr);
1748 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1749 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1750 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1751
1752 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1753 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1754
1755 /*
1756 * Guest Debug registers.
1757 */
1758 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1759 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1760
1761 /*
1762 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1763 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1764 */
1765 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1766 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1767 {
1768 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1769 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1770 }
1771}
1772
1773
1774/**
1775 * Does the necessary state syncing before doing a longjmp to ring-3.
1776 *
1777 * @param pVM Pointer to the VM.
1778 * @param pVCpu Pointer to the VMCPU.
1779 * @param pCtx Pointer to the guest-CPU context.
1780 * @param rcExit The reason for exiting to ring-3. Can be
1781 * VINF_VMM_UNKNOWN_RING3_CALL.
1782 *
1783 * @remarks No-long-jmp zone!!!
1784 */
1785static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
1786{
1787 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1788 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1789
1790 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1791 if (CPUMIsGuestFPUStateActive(pVCpu))
1792 {
1793 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1794 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1795 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1796 }
1797
1798 /* Restore host debug registers if necessary and resync on next R0 reentry. */
1799 if (CPUMIsGuestDebugStateActive(pVCpu))
1800 {
1801 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
1802 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1803 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1804 }
1805 else if (CPUMIsHyperDebugStateActive(pVCpu))
1806 {
1807 CPUMR0LoadHostDebugState(pVM, pVCpu);
1808 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1809#ifdef VBOX_STRICT
1810 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1811 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1812 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1813#endif
1814 }
1815
1816 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
1817 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
1818 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1819 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1820 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1821
1822 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1823}
1824
1825
1826/**
1827 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
1828 * any remaining host state) before we longjump to ring-3 and possibly get
1829 * preempted.
1830 *
1831 * @param pVCpu Pointer to the VMCPU.
1832 * @param enmOperation The operation causing the ring-3 longjump.
1833 * @param pvUser The user argument (pointer to the possibly
1834 * out-of-date guest-CPU context).
1835 *
1836 * @remarks Must never be called with @a enmOperation ==
1837 * VMMCALLRING3_VM_R0_ASSERTION.
1838 */
1839DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
1840{
1841 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
1842 Assert(pVCpu);
1843 Assert(pvUser);
1844 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1845 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1846
1847 VMMRZCallRing3Disable(pVCpu);
1848 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1849 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
1850 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser, VINF_VMM_UNKNOWN_RING3_CALL);
1851 VMMRZCallRing3Enable(pVCpu);
1852}
1853
1854
1855/**
1856 * An action requires us to go back to ring-3. This function does the necessary
1857 * steps before we can safely return to ring-3. This is not the same as longjmps
1858 * to ring-3, this is voluntary.
1859 *
1860 * @param pVM Pointer to the VM.
1861 * @param pVCpu Pointer to the VMCPU.
1862 * @param pCtx Pointer to the guest-CPU context.
1863 * @param rcExit The reason for exiting to ring-3. Can be
1864 * VINF_VMM_UNKNOWN_RING3_CALL.
1865 */
1866static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
1867{
1868 Assert(pVM);
1869 Assert(pVCpu);
1870 Assert(pCtx);
1871 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1872
1873 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
1874 {
1875 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
1876 return;
1877 }
1878
1879 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
1880 VMMRZCallRing3Disable(pVCpu);
1881 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
1882
1883 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
1884 if (pVCpu->hm.s.Event.fPending)
1885 {
1886 hmR0SvmPendingEventToTrpmTrap(pVCpu);
1887 Assert(!pVCpu->hm.s.Event.fPending);
1888 }
1889
1890 /* Sync. the guest state. */
1891 hmR0SvmLongJmpToRing3(pVM, pVCpu, pCtx, rcExit);
1892 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1893
1894 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
1895 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
1896 | CPUM_CHANGED_LDTR
1897 | CPUM_CHANGED_GDTR
1898 | CPUM_CHANGED_IDTR
1899 | CPUM_CHANGED_TR
1900 | CPUM_CHANGED_HIDDEN_SEL_REGS);
1901
1902 /* On our way back from ring-3 the following needs to be done. */
1903 /** @todo This can change with preemption hooks. */
1904 if (rcExit == VINF_EM_RAW_INTERRUPT)
1905 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
1906 else
1907 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
1908
1909 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
1910 VMMRZCallRing3Enable(pVCpu);
1911}
1912
1913
1914/**
1915 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
1916 * intercepts.
1917 *
1918 * @param pVCpu Pointer to the VMCPU.
1919 *
1920 * @remarks No-long-jump zone!!!
1921 */
1922static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
1923{
1924 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1925 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
1926 {
1927 uint64_t u64CurTSC = ASMReadTSC();
1928 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
1929 {
1930 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
1931 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
1932 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
1933 }
1934 else
1935 {
1936 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1937 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1938 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
1939 }
1940 }
1941 else
1942 {
1943 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1944 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1945 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
1946 }
1947
1948 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1949}
1950
1951
1952/**
1953 * Sets an event as a pending event to be injected into the guest.
1954 *
1955 * @param pVCpu Pointer to the VMCPU.
1956 * @param pEvent Pointer to the SVM event.
1957 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
1958 * page-fault.
1959 *
1960 * @remarks Statistics counter assumes this is a guest event being reflected to
1961 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
1962 */
1963DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
1964{
1965 Assert(!pVCpu->hm.s.Event.fPending);
1966 Assert(pEvent->n.u1Valid);
1967
1968 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
1969 pVCpu->hm.s.Event.fPending = true;
1970 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
1971
1972 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
1973 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
1974
1975 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
1976}
1977
1978
1979/**
1980 * Injects an event into the guest upon VMRUN by updating the relevant field
1981 * in the VMCB.
1982 *
1983 * @param pVCpu Pointer to the VMCPU.
1984 * @param pVmcb Pointer to the guest VMCB.
1985 * @param pCtx Pointer to the guest-CPU context.
1986 * @param pEvent Pointer to the event.
1987 *
1988 * @remarks No-long-jump zone!!!
1989 * @remarks Requires CR0!
1990 */
1991DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
1992{
1993 pVmcb->ctrl.EventInject.u = pEvent->u;
1994 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
1995
1996 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
1997 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
1998}
1999
2000
2001
2002/**
2003 * Converts any TRPM trap into a pending HM event. This is typically used when
2004 * entering from ring-3 (not longjmp returns).
2005 *
2006 * @param pVCpu Pointer to the VMCPU.
2007 */
2008static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2009{
2010 Assert(TRPMHasTrap(pVCpu));
2011 Assert(!pVCpu->hm.s.Event.fPending);
2012
2013 uint8_t uVector;
2014 TRPMEVENT enmTrpmEvent;
2015 RTGCUINT uErrCode;
2016 RTGCUINTPTR GCPtrFaultAddress;
2017 uint8_t cbInstr;
2018
2019 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2020 AssertRC(rc);
2021
2022 SVMEVENT Event;
2023 Event.u = 0;
2024 Event.n.u1Valid = 1;
2025 Event.n.u8Vector = uVector;
2026
2027 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2028 if (enmTrpmEvent == TRPM_TRAP)
2029 {
2030 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2031 switch (uVector)
2032 {
2033 case X86_XCPT_PF:
2034 case X86_XCPT_DF:
2035 case X86_XCPT_TS:
2036 case X86_XCPT_NP:
2037 case X86_XCPT_SS:
2038 case X86_XCPT_GP:
2039 case X86_XCPT_AC:
2040 {
2041 Event.n.u1ErrorCodeValid = 1;
2042 Event.n.u32ErrorCode = uErrCode;
2043 break;
2044 }
2045 }
2046 }
2047 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2048 {
2049 if (uVector == X86_XCPT_NMI)
2050 Event.n.u3Type = SVM_EVENT_NMI;
2051 else
2052 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2053 }
2054 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2055 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2056 else
2057 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2058
2059 rc = TRPMResetTrap(pVCpu);
2060 AssertRC(rc);
2061
2062 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2063 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2064
2065 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2066 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2067}
2068
2069
2070/**
2071 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2072 * AMD-V to execute any instruction.
2073 *
2074 * @param pvCpu Pointer to the VMCPU.
2075 */
2076static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2077{
2078 Assert(pVCpu->hm.s.Event.fPending);
2079 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2080
2081 SVMEVENT Event;
2082 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2083
2084 uint8_t uVector = Event.n.u8Vector;
2085 uint8_t uVectorType = Event.n.u3Type;
2086
2087 TRPMEVENT enmTrapType;
2088 switch (uVectorType)
2089 {
2090 case SVM_EVENT_EXTERNAL_IRQ:
2091 case SVM_EVENT_NMI:
2092 enmTrapType = TRPM_HARDWARE_INT;
2093 break;
2094 case SVM_EVENT_SOFTWARE_INT:
2095 enmTrapType = TRPM_SOFTWARE_INT;
2096 break;
2097 case SVM_EVENT_EXCEPTION:
2098 enmTrapType = TRPM_TRAP;
2099 break;
2100 default:
2101 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2102 enmTrapType = TRPM_32BIT_HACK;
2103 break;
2104 }
2105
2106 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2107
2108 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2109 AssertRC(rc);
2110
2111 if (Event.n.u1ErrorCodeValid)
2112 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2113
2114 if ( uVectorType == SVM_EVENT_EXCEPTION
2115 && uVector == X86_XCPT_PF)
2116 {
2117 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2118 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2119 }
2120 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2121 {
2122 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2123 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2124 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2125 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2126 }
2127 pVCpu->hm.s.Event.fPending = false;
2128}
2129
2130
2131/**
2132 * Gets the guest's interrupt-shadow.
2133 *
2134 * @returns The guest's interrupt-shadow.
2135 * @param pVCpu Pointer to the VMCPU.
2136 * @param pCtx Pointer to the guest-CPU context.
2137 *
2138 * @remarks No-long-jump zone!!!
2139 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2140 */
2141DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2142{
2143 /*
2144 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2145 * inhibit interrupts or clear any existing interrupt-inhibition.
2146 */
2147 uint32_t uIntrState = 0;
2148 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2149 {
2150 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2151 {
2152 /*
2153 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2154 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2155 */
2156 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2157 }
2158 else
2159 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2160 }
2161 return uIntrState;
2162}
2163
2164
2165/**
2166 * Sets the virtual interrupt intercept control in the VMCB which
2167 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2168 * receive interrupts.
2169 *
2170 * @param pVmcb Pointer to the VMCB.
2171 */
2172DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2173{
2174 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2175 {
2176 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2177 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2178 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2179 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2180
2181 Log4(("Setting VINTR intercept\n"));
2182 }
2183}
2184
2185
2186/**
2187 * Injects any pending events into the guest if the guest is in a state to
2188 * receive them.
2189 *
2190 * @param pVCpu Pointer to the VMCPU.
2191 * @param pCtx Pointer to the guest-CPU context.
2192 */
2193static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2194{
2195 Assert(!TRPMHasTrap(pVCpu));
2196 Log4Func(("\n"));
2197
2198 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2199 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2200 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2201
2202 SVMEVENT Event;
2203 Event.u = 0;
2204 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2205 {
2206 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2207 Assert(Event.n.u1Valid);
2208 bool fInject = true;
2209 if ( Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
2210 && ( fBlockInt
2211 || fIntShadow))
2212 {
2213 fInject = false;
2214 }
2215 else if ( Event.n.u3Type == SVM_EVENT_NMI
2216 && fIntShadow)
2217 {
2218 fInject = false;
2219 }
2220
2221 if (fInject)
2222 {
2223 Log4(("Injecting pending HM event.\n"));
2224
2225 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2226 pVCpu->hm.s.Event.fPending = false;
2227
2228#ifdef VBOX_WITH_STATISTICS
2229 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2230 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2231 else
2232 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2233#endif
2234 }
2235 else
2236 hmR0SvmSetVirtIntrIntercept(pVmcb);
2237 } /** @todo SMI. SMIs take priority over NMIs. */
2238 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2239 {
2240 if (!fIntShadow)
2241 {
2242 Log4(("Injecting NMI\n"));
2243
2244 Event.n.u1Valid = 1;
2245 Event.n.u8Vector = X86_XCPT_NMI;
2246 Event.n.u3Type = SVM_EVENT_NMI;
2247
2248 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2249 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2250
2251 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2252 }
2253 else
2254 hmR0SvmSetVirtIntrIntercept(pVmcb);
2255 }
2256 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2257 {
2258 /* Check if there are guest external interrupts (PIC/APIC) pending and inject them, if the guest can receive them. */
2259 if ( !fBlockInt
2260 && !fIntShadow)
2261 {
2262 uint8_t u8Interrupt;
2263 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2264 if (RT_SUCCESS(rc))
2265 {
2266 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2267
2268 Event.n.u1Valid = 1;
2269 Event.n.u8Vector = u8Interrupt;
2270 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2271
2272 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2273 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2274 }
2275 else
2276 {
2277 /** @todo Does this actually happen? If not turn it into an assertion. */
2278 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2279 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2280 }
2281 }
2282 else
2283 hmR0SvmSetVirtIntrIntercept(pVmcb);
2284 }
2285
2286 /* Update the guest interrupt shadow in the VMCB. */
2287 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2288}
2289
2290
2291/**
2292 * Reports world-switch error and dumps some useful debug info.
2293 *
2294 * @param pVM Pointer to the VM.
2295 * @param pVCpu Pointer to the VMCPU.
2296 * @param rcVMRun The return code from VMRUN (or
2297 * VERR_SVM_INVALID_GUEST_STATE for invalid
2298 * guest-state).
2299 * @param pCtx Pointer to the guest-CPU context.
2300 */
2301static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2302{
2303 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2304 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2305
2306 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2307 {
2308 HMDumpRegs(pVM, pVCpu, pCtx);
2309#ifdef VBOX_STRICT
2310 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2311 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2312 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2313 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2314 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2315 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2316 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2317 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2318 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2319 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2320 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2321
2322 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2323 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2324 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2325
2326 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2327 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2328 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2329 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2330 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2331 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2332 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2333 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2334 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2335 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2336
2337 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2338 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2339 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2340 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2341 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2342 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2343 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2344 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2345 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2346 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2347 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2348 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2349 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2350 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2351 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2352 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2353 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2354
2355 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2356 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2357
2358 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2359 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2360 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2361 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2362 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2363 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2364 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2365 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2366 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2367 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2368 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2369 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2370 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2371 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2372 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2373 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2374 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2375 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2376 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2377 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2378
2379 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2380 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2381
2382 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2383 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2384 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2385 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2386
2387 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2388 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2389
2390 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2391 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2392 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2393 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2394
2395 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2396 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2397 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2398 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2399 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2400 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2401 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2402
2403 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2404 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2405 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2406 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2407
2408 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2409 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2410 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2411
2412 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2413 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2414 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2415 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2416 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2417 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2418 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2419 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2420 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2421 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2422 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2423 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2424#endif
2425 }
2426 else
2427 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2428}
2429
2430
2431/**
2432 * Check per-VM and per-VCPU force flag actions that require us to go back to
2433 * ring-3 for one reason or another.
2434 *
2435 * @returns VBox status code (information status code included).
2436 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2437 * ring-3.
2438 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2439 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2440 * interrupts)
2441 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2442 * all EMTs to be in ring-3.
2443 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2444 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2445 * to the EM loop.
2446 *
2447 * @param pVM Pointer to the VM.
2448 * @param pVCpu Pointer to the VMCPU.
2449 * @param pCtx Pointer to the guest-CPU context.
2450 */
2451static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2452{
2453 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2454
2455 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2456 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2457 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2458
2459 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
2460 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
2461 | VMCPU_FF_REQUEST))
2462 {
2463 /* Pending PGM C3 sync. */
2464 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2465 {
2466 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2467 if (rc != VINF_SUCCESS)
2468 {
2469 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2470 return rc;
2471 }
2472 }
2473
2474 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2475 /* -XXX- what was that about single stepping? */
2476 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2477 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2478 {
2479 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2480 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2481 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2482 return rc;
2483 }
2484
2485 /* Pending VM request packets, such as hardware interrupts. */
2486 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2487 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2488 {
2489 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2490 return VINF_EM_PENDING_REQUEST;
2491 }
2492
2493 /* Pending PGM pool flushes. */
2494 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2495 {
2496 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2497 return VINF_PGM_POOL_FLUSH_PENDING;
2498 }
2499
2500 /* Pending DMA requests. */
2501 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2502 {
2503 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2504 return VINF_EM_RAW_TO_R3;
2505 }
2506 }
2507
2508 return VINF_SUCCESS;
2509}
2510
2511
2512/**
2513 * Does the preparations before executing guest code in AMD-V.
2514 *
2515 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2516 * recompiler. We must be cautious what we do here regarding committing
2517 * guest-state information into the the VMCB assuming we assuredly execute the
2518 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2519 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2520 * that the recompiler can (and should) use them when it resumes guest
2521 * execution. Otherwise such operations must be done when we can no longer
2522 * exit to ring-3.
2523 *
2524 * @returns VBox status code (informational status codes included).
2525 * @retval VINF_SUCCESS if we can proceed with running the guest.
2526 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2527 *
2528 * @param pVM Pointer to the VM.
2529 * @param pVCpu Pointer to the VMCPU.
2530 * @param pCtx Pointer to the guest-CPU context.
2531 * @param pSvmTransient Pointer to the SVM transient structure.
2532 */
2533DECLINLINE(int) hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2534{
2535 /* Check force flag actions that might require us to go back to ring-3. */
2536 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2537 if (rc != VINF_SUCCESS)
2538 return rc;
2539
2540#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2541 /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
2542 pSvmTransient->uEFlags = ASMIntDisableFlags();
2543 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2544 {
2545 ASMSetFlags(pSvmTransient->uEFlags);
2546 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2547 /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
2548 return VINF_EM_RAW_INTERRUPT;
2549 }
2550 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2551 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2552#endif
2553
2554 /* Convert any pending TRPM traps to HM events for injection. */
2555 /** @todo Optimization: move this before disabling interrupts, restore state
2556 * using pVmcb->ctrl.EventInject.u. */
2557 if (TRPMHasTrap(pVCpu))
2558 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2559
2560 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2561
2562 return VINF_SUCCESS;
2563}
2564
2565
2566/**
2567 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2568 * means there is no backing out to ring-3 or anywhere else at this
2569 * point.
2570 *
2571 * @param pVM Pointer to the VM.
2572 * @param pVCpu Pointer to the VMCPU.
2573 * @param pCtx Pointer to the guest-CPU context.
2574 * @param pSvmTransient Pointer to the SVM transient structure.
2575 *
2576 * @remarks Called with preemption disabled.
2577 * @remarks No-long-jump zone!!!
2578 */
2579DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2580{
2581 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2582 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2583
2584#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2585 /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
2586 pSvmTransient->uEFlags = ASMIntDisableFlags();
2587 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2588#endif
2589
2590 /*
2591 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2592 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2593 */
2594 /** @todo The above assumption could be wrong. It's not documented what
2595 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2596 * hard way. */
2597 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2598 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2599
2600#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2601 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2602#endif
2603
2604 /* Load the guest state. */
2605 int rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2606 AssertRC(rc);
2607 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
2608 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2609
2610 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2611 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2612 pVmcb->ctrl.u64VmcbCleanBits = 0;
2613
2614 /*
2615 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2616 * so we can update it on the way back if the guest changed the TPR.
2617 */
2618 if (pVCpu->hm.s.svm.fSyncVTpr)
2619 {
2620 if (pVM->hm.s.fTPRPatchingActive)
2621 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2622 else
2623 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2624 }
2625
2626 /* Setup TSC offsetting. */
2627 if ( pSvmTransient->fUpdateTscOffsetting
2628 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
2629 {
2630 hmR0SvmUpdateTscOffsetting(pVCpu);
2631 pSvmTransient->fUpdateTscOffsetting = false;
2632 }
2633
2634 /* Flush the appropriate tagged-TLB entries. */
2635 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2636 hmR0SvmFlushTaggedTlb(pVCpu);
2637 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2638
2639 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
2640
2641 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2642 to start executing. */
2643
2644 /*
2645 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2646 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2647 *
2648 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2649 */
2650 pSvmTransient->fRestoreTscAuxMsr = false;
2651 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2652 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2653 {
2654 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2655 uint64_t u64GuestTscAux = 0;
2656 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2657 AssertRC(rc2);
2658 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
2659 {
2660 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2661 pSvmTransient->fRestoreTscAuxMsr = true;
2662 }
2663 }
2664}
2665
2666
2667/**
2668 * Wrapper for running the guest code in AMD-V.
2669 *
2670 * @returns VBox strict status code.
2671 * @param pVM Pointer to the VM.
2672 * @param pVCpu Pointer to the VMCPU.
2673 * @param pCtx Pointer to the guest-CPU context.
2674 *
2675 * @remarks No-long-jump zone!!!
2676 */
2677DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2678{
2679 /*
2680 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2681 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2682 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2683 */
2684#ifdef VBOX_WITH_KERNEL_USING_XMM
2685 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2686 pVCpu->hm.s.svm.pfnVMRun);
2687#else
2688 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2689#endif
2690}
2691
2692
2693/**
2694 * Performs some essential restoration of state after running guest code in
2695 * AMD-V.
2696 *
2697 * @param pVM Pointer to the VM.
2698 * @param pVCpu Pointer to the VMCPU.
2699 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2700 * out-of-sync. Make sure to update the required fields
2701 * before using them.
2702 * @param pSvmTransient Pointer to the SVM transient structure.
2703 * @param rcVMRun Return code of VMRUN.
2704 *
2705 * @remarks Called with interrupts disabled.
2706 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2707 * unconditionally when it is safe to do so.
2708 */
2709DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2710{
2711 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2712
2713 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2714 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2715
2716 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2717 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2718
2719 if (pSvmTransient->fRestoreTscAuxMsr)
2720 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2721
2722 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2723 {
2724 /** @todo Find a way to fix hardcoding a guestimate. */
2725 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
2726 }
2727
2728 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
2729 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2730 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2731
2732 Assert(!(ASMGetFlags() & X86_EFL_IF));
2733 ASMSetFlags(pSvmTransient->uEFlags); /* Enable interrupts. */
2734
2735 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pMixedCtx);
2736 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2737
2738 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2739 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2740 {
2741 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2742 return;
2743 }
2744
2745 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2746 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2747 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2748
2749 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2750 {
2751 if (pVCpu->hm.s.svm.fSyncVTpr)
2752 {
2753 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2754 if ( pVM->hm.s.fTPRPatchingActive
2755 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2756 {
2757 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
2758 AssertRC(rc);
2759 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2760 }
2761 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2762 {
2763 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
2764 AssertRC(rc);
2765 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2766 }
2767 }
2768 }
2769}
2770
2771
2772/**
2773 * Runs the guest code using AMD-V.
2774 *
2775 * @returns VBox status code.
2776 * @param pVM Pointer to the VM.
2777 * @param pVCpu Pointer to the VMCPU.
2778 * @param pCtx Pointer to the guest-CPU context.
2779 */
2780VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2781{
2782 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2783 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2784
2785 SVMTRANSIENT SvmTransient;
2786 SvmTransient.fUpdateTscOffsetting = true;
2787 uint32_t cLoops = 0;
2788 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2789 int rc = VERR_INTERNAL_ERROR_5;
2790
2791 for (;; cLoops++)
2792 {
2793 Assert(!HMR0SuspendPending());
2794 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
2795 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
2796 (unsigned)RTMpCpuId(), cLoops));
2797
2798 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
2799 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
2800 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
2801 if (rc != VINF_SUCCESS)
2802 break;
2803
2804 /*
2805 * No longjmps to ring-3 from this point on!!!
2806 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
2807 * This also disables flushing of the R0-logger instance (if any).
2808 */
2809 VMMRZCallRing3Disable(pVCpu);
2810 VMMRZCallRing3RemoveNotification(pVCpu);
2811 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
2812
2813 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
2814
2815 /*
2816 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
2817 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
2818 */
2819 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
2820 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
2821 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
2822 {
2823 if (rc == VINF_SUCCESS)
2824 rc = VERR_SVM_INVALID_GUEST_STATE;
2825 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
2826 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
2827 return rc;
2828 }
2829
2830 /* Handle the #VMEXIT. */
2831 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
2832 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
2833 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
2834 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
2835 if (rc != VINF_SUCCESS)
2836 break;
2837 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
2838 {
2839 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
2840 rc = VINF_EM_RAW_INTERRUPT;
2841 break;
2842 }
2843 }
2844
2845 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
2846 if (rc == VERR_EM_INTERPRETER)
2847 rc = VINF_EM_RAW_EMULATE_INSTR;
2848 else if (rc == VINF_EM_RESET)
2849 rc = VINF_EM_TRIPLE_FAULT;
2850 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
2851 return rc;
2852}
2853
2854
2855/**
2856 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
2857 *
2858 * @returns VBox status code (informational status codes included).
2859 * @param pVCpu Pointer to the VMCPU.
2860 * @param pCtx Pointer to the guest-CPU context.
2861 * @param pSvmTransient Pointer to the SVM transient structure.
2862 */
2863DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2864{
2865 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
2866 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
2867
2868 /*
2869 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
2870 * normal workloads (for some definition of "normal").
2871 */
2872 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
2873 switch (pSvmTransient->u64ExitCode)
2874 {
2875 case SVM_EXIT_NPF:
2876 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
2877
2878 case SVM_EXIT_IOIO:
2879 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
2880
2881 case SVM_EXIT_RDTSC:
2882 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
2883
2884 case SVM_EXIT_RDTSCP:
2885 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
2886
2887 case SVM_EXIT_CPUID:
2888 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
2889
2890 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
2891 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
2892
2893 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
2894 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
2895
2896 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
2897 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
2898
2899 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
2900 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
2901
2902 case SVM_EXIT_MONITOR:
2903 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
2904
2905 case SVM_EXIT_MWAIT:
2906 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
2907
2908 case SVM_EXIT_HLT:
2909 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
2910
2911 case SVM_EXIT_READ_CR0:
2912 case SVM_EXIT_READ_CR3:
2913 case SVM_EXIT_READ_CR4:
2914 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
2915
2916 case SVM_EXIT_WRITE_CR0:
2917 case SVM_EXIT_WRITE_CR3:
2918 case SVM_EXIT_WRITE_CR4:
2919 case SVM_EXIT_WRITE_CR8:
2920 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
2921
2922 case SVM_EXIT_VINTR:
2923 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
2924
2925 case SVM_EXIT_INTR:
2926 case SVM_EXIT_FERR_FREEZE:
2927 case SVM_EXIT_NMI:
2928 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
2929
2930 case SVM_EXIT_MSR:
2931 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
2932
2933 case SVM_EXIT_INVLPG:
2934 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
2935
2936 case SVM_EXIT_WBINVD:
2937 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
2938
2939 case SVM_EXIT_INVD:
2940 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
2941
2942 case SVM_EXIT_RDPMC:
2943 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
2944
2945 default:
2946 {
2947 switch (pSvmTransient->u64ExitCode)
2948 {
2949 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2950 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
2951 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
2952 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2953 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
2954
2955 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
2956 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
2957 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
2958 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
2959 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
2960
2961 case SVM_EXIT_TASK_SWITCH:
2962 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
2963
2964 case SVM_EXIT_VMMCALL:
2965 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
2966
2967 case SVM_EXIT_SHUTDOWN:
2968 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
2969
2970 case SVM_EXIT_SMI:
2971 case SVM_EXIT_INIT:
2972 {
2973 /*
2974 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
2975 * we want to know about it so log the exit code and bail.
2976 */
2977 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
2978 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
2979 return VERR_SVM_UNEXPECTED_EXIT;
2980 }
2981
2982 case SVM_EXIT_INVLPGA:
2983 case SVM_EXIT_RSM:
2984 case SVM_EXIT_VMRUN:
2985 case SVM_EXIT_VMLOAD:
2986 case SVM_EXIT_VMSAVE:
2987 case SVM_EXIT_STGI:
2988 case SVM_EXIT_CLGI:
2989 case SVM_EXIT_SKINIT:
2990 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
2991
2992#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2993 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
2994 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
2995 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
2996 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
2997 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
2998 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
2999 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3000 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3001 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3002 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3003 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3004 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3005 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3006 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3007 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3008 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3009 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3010 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3011 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3012
3013 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3014 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3015 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3016 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3017 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3018 {
3019 SVMEVENT Event;
3020 Event.u = 0;
3021 Event.n.u1Valid = 1;
3022 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3023 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3024
3025 switch (Event.n.u8Vector)
3026 {
3027 case X86_XCPT_DE:
3028 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3029 break;
3030
3031 case X86_XCPT_BP:
3032 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3033 * next instruction. */
3034 /** @todo Investigate this later. */
3035 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3036 break;
3037
3038 case X86_XCPT_UD:
3039 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
3040 break;
3041
3042 case X86_XCPT_NP:
3043 Event.n.u1ErrorCodeValid = 1;
3044 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3045 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3046 break;
3047
3048 case X86_XCPT_SS:
3049 Event.n.u1ErrorCodeValid = 1;
3050 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3051 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3052 break;
3053
3054 case X86_XCPT_GP:
3055 Event.n.u1ErrorCodeValid = 1;
3056 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3057 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3058 break;
3059
3060 default:
3061 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3062 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3063 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3064 }
3065
3066 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3067 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3068 return VINF_SUCCESS;
3069 }
3070#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3071
3072 default:
3073 {
3074 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3075 pVCpu->hm.s.u32HMError = u32ExitCode;
3076 return VERR_SVM_UNKNOWN_EXIT;
3077 }
3078 }
3079 }
3080 }
3081 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3082}
3083
3084
3085#ifdef DEBUG
3086/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3087# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3088 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3089
3090# define HMSVM_ASSERT_PREEMPT_CPUID() \
3091 do \
3092 { \
3093 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3094 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3095 } while (0)
3096
3097# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3098 do { \
3099 AssertPtr(pVCpu); \
3100 AssertPtr(pCtx); \
3101 AssertPtr(pSvmTransient); \
3102 Assert(ASMIntAreEnabled()); \
3103 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
3104 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3105 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3106 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
3107 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3108 HMSVM_ASSERT_PREEMPT_CPUID(); \
3109 } while (0)
3110#else /* Release builds */
3111# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3112#endif
3113
3114
3115/**
3116 * Worker for hmR0SvmInterpretInvlpg().
3117 *
3118 * @return VBox status code.
3119 * @param pVCpu Pointer to the VMCPU.
3120 * @param pCpu Pointer to the disassembler state.
3121 * @param pRegFrame Pointer to the register frame.
3122 */
3123static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3124{
3125 DISQPVPARAMVAL Param1;
3126 RTGCPTR GCPtrPage;
3127
3128 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3129 if (RT_FAILURE(rc))
3130 return VERR_EM_INTERPRETER;
3131
3132 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3133 || Param1.type == DISQPV_TYPE_ADDRESS)
3134 {
3135 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3136 return VERR_EM_INTERPRETER;
3137
3138 GCPtrPage = Param1.val.val64;
3139 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3140 rc = VBOXSTRICTRC_VAL(rc2);
3141 }
3142 else
3143 {
3144 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3145 rc = VERR_EM_INTERPRETER;
3146 }
3147
3148 return rc;
3149}
3150
3151
3152/**
3153 * Interprets INVLPG.
3154 *
3155 * @returns VBox status code.
3156 * @retval VINF_* Scheduling instructions.
3157 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3158 * @retval VERR_* Fatal errors.
3159 *
3160 * @param pVM Pointer to the VM.
3161 * @param pRegFrame Pointer to the register frame.
3162 *
3163 * @remarks Updates the RIP if the instruction was executed successfully.
3164 */
3165static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3166{
3167 /* Only allow 32 & 64 bit code. */
3168 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3169 {
3170 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3171 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3172 if ( RT_SUCCESS(rc)
3173 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3174 {
3175 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3176 if (RT_SUCCESS(rc))
3177 pRegFrame->rip += pDis->cbInstr;
3178 return rc;
3179 }
3180 else
3181 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3182 }
3183 return VERR_EM_INTERPRETER;
3184}
3185
3186
3187/**
3188 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3189 *
3190 * @param pVCpu Pointer to the VMCPU.
3191 */
3192DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3193{
3194 SVMEVENT Event;
3195 Event.u = 0;
3196 Event.n.u1Valid = 1;
3197 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3198 Event.n.u8Vector = X86_XCPT_UD;
3199 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3200}
3201
3202
3203/**
3204 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3205 *
3206 * @param pVCpu Pointer to the VMCPU.
3207 */
3208DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3209{
3210 SVMEVENT Event;
3211 Event.u = 0;
3212 Event.n.u1Valid = 1;
3213 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3214 Event.n.u8Vector = X86_XCPT_DB;
3215 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3216}
3217
3218
3219/**
3220 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3221 *
3222 * @param pVCpu Pointer to the VMCPU.
3223 * @param pCtx Pointer to the guest-CPU context.
3224 * @param u32ErrCode The error-code for the page-fault.
3225 * @param uFaultAddress The page fault address (CR2).
3226 *
3227 * @remarks This updates the guest CR2 with @a uFaultAddress!
3228 */
3229DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3230{
3231 SVMEVENT Event;
3232 Event.u = 0;
3233 Event.n.u1Valid = 1;
3234 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3235 Event.n.u8Vector = X86_XCPT_PF;
3236 Event.n.u1ErrorCodeValid = 1;
3237 Event.n.u32ErrorCode = u32ErrCode;
3238
3239 /* Update CR2 of the guest. */
3240 if (pCtx->cr2 != uFaultAddress)
3241 {
3242 pCtx->cr2 = uFaultAddress;
3243 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
3244 }
3245
3246 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3247}
3248
3249
3250/**
3251 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3252 * VM.
3253 *
3254 * @param pVCpu Pointer to the VMCPU.
3255 */
3256DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3257{
3258 SVMEVENT Event;
3259 Event.u = 0;
3260 Event.n.u1Valid = 1;
3261 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3262 Event.n.u8Vector = X86_XCPT_NM;
3263 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3264}
3265
3266
3267/**
3268 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3269 *
3270 * @param pVCpu Pointer to the VMCPU.
3271 */
3272DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3273{
3274 SVMEVENT Event;
3275 Event.u = 0;
3276 Event.n.u1Valid = 1;
3277 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3278 Event.n.u8Vector = X86_XCPT_MF;
3279 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3280}
3281
3282
3283/**
3284 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3285 *
3286 * @param pVCpu Pointer to the VMCPU.
3287 */
3288DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3289{
3290 SVMEVENT Event;
3291 Event.u = 0;
3292 Event.n.u1Valid = 1;
3293 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3294 Event.n.u8Vector = X86_XCPT_DF;
3295 Event.n.u1ErrorCodeValid = 1;
3296 Event.n.u32ErrorCode = 0;
3297 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3298}
3299
3300
3301/**
3302 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3303 * guests. This simply looks up the patch record at EIP and does the required.
3304 *
3305 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3306 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3307 * TPR). See hmR3ReplaceTprInstr() for the details.
3308 *
3309 * @returns VBox status code.
3310 * @param pVM Pointer to the VM.
3311 * @param pVCpu Pointer to the VMCPU.
3312 * @param pCtx Pointer to the guest-CPU context.
3313 */
3314static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3315{
3316 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3317 for (;;)
3318 {
3319 bool fPending;
3320 uint8_t u8Tpr;
3321
3322 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3323 if (!pPatch)
3324 break;
3325
3326 switch (pPatch->enmType)
3327 {
3328 case HMTPRINSTR_READ:
3329 {
3330 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3331 AssertRC(rc);
3332
3333 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3334 AssertRC(rc);
3335 pCtx->rip += pPatch->cbOp;
3336 break;
3337 }
3338
3339 case HMTPRINSTR_WRITE_REG:
3340 case HMTPRINSTR_WRITE_IMM:
3341 {
3342 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3343 {
3344 uint32_t u32Val;
3345 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3346 AssertRC(rc);
3347 u8Tpr = u32Val;
3348 }
3349 else
3350 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3351
3352 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3353 AssertRC(rc2);
3354 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3355
3356 pCtx->rip += pPatch->cbOp;
3357 break;
3358 }
3359
3360 default:
3361 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
3362 pVCpu->hm.s.u32HMError = pPatch->enmType;
3363 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
3364 }
3365 }
3366
3367 return VINF_SUCCESS;
3368}
3369
3370/**
3371 * Determines if an exception is a contributory exception. Contributory
3372 * exceptions are ones which can cause double-faults. Page-fault is
3373 * intentionally not included here as it's a conditional contributory exception.
3374 *
3375 * @returns true if the exception is contributory, false otherwise.
3376 * @param uVector The exception vector.
3377 */
3378DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3379{
3380 switch (uVector)
3381 {
3382 case X86_XCPT_GP:
3383 case X86_XCPT_SS:
3384 case X86_XCPT_NP:
3385 case X86_XCPT_TS:
3386 case X86_XCPT_DE:
3387 return true;
3388 default:
3389 break;
3390 }
3391 return false;
3392}
3393
3394
3395/**
3396 * Handle a condition that occurred while delivering an event through the guest
3397 * IDT.
3398 *
3399 * @returns VBox status code (informational error codes included).
3400 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3401 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3402 * continue execution of the guest which will delivery the #DF.
3403 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3404 *
3405 * @param pVCpu Pointer to the VMCPU.
3406 * @param pCtx Pointer to the guest-CPU context.
3407 * @param pSvmTransient Pointer to the SVM transient structure.
3408 *
3409 * @remarks No-long-jump zone!!!
3410 */
3411static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3412{
3413 int rc = VINF_SUCCESS;
3414 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3415
3416 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3417 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3418 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3419 {
3420 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3421
3422 typedef enum
3423 {
3424 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3425 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3426 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3427 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3428 } SVMREFLECTXCPT;
3429
3430 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3431 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3432 {
3433 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3434 {
3435 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3436
3437#ifdef VBOX_STRICT
3438 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
3439 && uExitVector == X86_XCPT_PF)
3440 {
3441 Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
3442 }
3443#endif
3444 if ( uExitVector == X86_XCPT_PF
3445 && uIdtVector == X86_XCPT_PF)
3446 {
3447 pSvmTransient->fVectoringPF = true;
3448 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3449 }
3450 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3451 && hmR0SvmIsContributoryXcpt(uExitVector)
3452 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3453 || uIdtVector == X86_XCPT_PF))
3454 {
3455 enmReflect = SVMREFLECTXCPT_DF;
3456 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3457 uIdtVector, uExitVector));
3458 }
3459 else if (uIdtVector == X86_XCPT_DF)
3460 {
3461 enmReflect = SVMREFLECTXCPT_TF;
3462 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3463 uIdtVector, uExitVector));
3464 }
3465 else
3466 enmReflect = SVMREFLECTXCPT_XCPT;
3467 }
3468 else
3469 {
3470 /*
3471 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3472 * exception to the guest after handling the VM-exit.
3473 */
3474 enmReflect = SVMREFLECTXCPT_XCPT;
3475 }
3476 }
3477 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3478 {
3479 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3480 enmReflect = SVMREFLECTXCPT_XCPT;
3481 }
3482
3483 switch (enmReflect)
3484 {
3485 case SVMREFLECTXCPT_XCPT:
3486 {
3487 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3488 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
3489
3490 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3491 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3492 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3493 break;
3494 }
3495
3496 case SVMREFLECTXCPT_DF:
3497 {
3498 hmR0SvmSetPendingXcptDF(pVCpu);
3499 rc = VINF_HM_DOUBLE_FAULT;
3500 break;
3501 }
3502
3503 case SVMREFLECTXCPT_TF:
3504 {
3505 rc = VINF_EM_RESET;
3506 break;
3507 }
3508
3509 default:
3510 Assert(rc == VINF_SUCCESS);
3511 break;
3512 }
3513 }
3514 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3515 return rc;
3516}
3517
3518
3519/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3520/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3521/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3522
3523/** @name VM-exit handlers.
3524 * @{
3525 */
3526
3527/**
3528 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3529 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3530 */
3531HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3532{
3533 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3534
3535#ifdef VBOX_WITH_STATISTICS
3536 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
3537 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
3538 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
3539 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3540#endif
3541
3542 /*
3543 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
3544 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
3545 * interrupt it is until the host actually take the interrupt.
3546 *
3547 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
3548 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
3549 */
3550 return VINF_EM_RAW_INTERRUPT;
3551}
3552
3553
3554/**
3555 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3556 */
3557HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3558{
3559 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3560 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3561 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3562 return VINF_SUCCESS;
3563}
3564
3565
3566/**
3567 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3568 */
3569HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3570{
3571 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3572 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3573 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3574 return VINF_SUCCESS;
3575}
3576
3577
3578/**
3579 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3580 */
3581HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3582{
3583 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3584 PVM pVM = pVCpu->CTX_SUFF(pVM);
3585 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3586 if (RT_LIKELY(rc == VINF_SUCCESS))
3587 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3588 else
3589 {
3590 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3591 rc = VERR_EM_INTERPRETER;
3592 }
3593 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3594 return rc;
3595}
3596
3597
3598/**
3599 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3600 */
3601HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3602{
3603 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3604 PVM pVM = pVCpu->CTX_SUFF(pVM);
3605 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3606 if (RT_LIKELY(rc == VINF_SUCCESS))
3607 {
3608 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3609 pSvmTransient->fUpdateTscOffsetting = true;
3610 }
3611 else
3612 {
3613 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3614 rc = VERR_EM_INTERPRETER;
3615 }
3616 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3617 return rc;
3618}
3619
3620
3621/**
3622 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3623 */
3624HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3625{
3626 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3627 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3628 if (RT_LIKELY(rc == VINF_SUCCESS))
3629 {
3630 pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3631 pSvmTransient->fUpdateTscOffsetting = true;
3632 }
3633 else
3634 {
3635 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3636 rc = VERR_EM_INTERPRETER;
3637 }
3638 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3639 return rc;
3640}
3641
3642
3643/**
3644 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3645 */
3646HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3647{
3648 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3649 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3650 if (RT_LIKELY(rc == VINF_SUCCESS))
3651 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3652 else
3653 {
3654 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3655 rc = VERR_EM_INTERPRETER;
3656 }
3657 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3658 return rc;
3659}
3660
3661
3662/**
3663 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3664 */
3665HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3666{
3667 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3668 PVM pVM = pVCpu->CTX_SUFF(pVM);
3669 Assert(!pVM->hm.s.fNestedPaging);
3670
3671 /** @todo Decode Assist. */
3672 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3673 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3674 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3675 return rc;
3676}
3677
3678
3679/**
3680 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3681 */
3682HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3683{
3684 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3685 pCtx->rip++; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3686 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3687 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3688 return rc;
3689}
3690
3691
3692/**
3693 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3694 */
3695HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3696{
3697 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3698 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3699 if (RT_LIKELY(rc == VINF_SUCCESS))
3700 pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3701 else
3702 {
3703 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3704 rc = VERR_EM_INTERPRETER;
3705 }
3706 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3707 return rc;
3708}
3709
3710
3711/**
3712 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3713 */
3714HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3715{
3716 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3717 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3718 int rc = VBOXSTRICTRC_VAL(rc2);
3719 if ( rc == VINF_EM_HALT
3720 || rc == VINF_SUCCESS)
3721 {
3722 pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3723
3724 if ( rc == VINF_EM_HALT
3725 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3726 {
3727 rc = VINF_SUCCESS;
3728 }
3729 }
3730 else
3731 {
3732 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3733 rc = VERR_EM_INTERPRETER;
3734 }
3735 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3736 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3737 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3738 return rc;
3739}
3740
3741
3742/**
3743 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
3744 * Conditional #VMEXIT.
3745 */
3746HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3747{
3748 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3749 return VINF_EM_RESET;
3750}
3751
3752
3753/**
3754 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
3755 */
3756HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3757{
3758 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3759
3760 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3761
3762 /** @todo Decode Assist. */
3763 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3764 int rc = VBOXSTRICTRC_VAL(rc2);
3765 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
3766 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
3767 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
3768 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
3769 return rc;
3770}
3771
3772
3773/**
3774 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
3775 */
3776HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3777{
3778 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3779 /** @todo Decode Assist. */
3780 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3781 int rc = VBOXSTRICTRC_VAL(rc2);
3782 if (rc == VINF_SUCCESS)
3783 {
3784 /* RIP has been updated by EMInterpretInstruction(). */
3785 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
3786 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
3787 {
3788 case 0: /* CR0. */
3789 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
3790 break;
3791
3792 case 3: /* CR3. */
3793 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
3794 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
3795 break;
3796
3797 case 4: /* CR4. */
3798 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
3799 break;
3800
3801 case 8: /* CR8 (TPR). */
3802 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3803 break;
3804
3805 default:
3806 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
3807 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
3808 break;
3809 }
3810 }
3811 else
3812 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
3813 return rc;
3814}
3815
3816
3817/**
3818 * #VMEXIT handler for instructions that result in a #UD exception delivered to
3819 * the guest.
3820 */
3821HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3822{
3823 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3824 hmR0SvmSetPendingXcptUD(pVCpu);
3825 return VINF_SUCCESS;
3826}
3827
3828
3829/**
3830 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
3831 */
3832HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3833{
3834 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3835 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3836 PVM pVM = pVCpu->CTX_SUFF(pVM);
3837
3838 /** @todo r=ramshankar: This cannot be right if prefixes are involved. When
3839 * NRIP_SAVE isn't available we have to disassemble the instruction. */
3840 int rc;
3841 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
3842 {
3843 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
3844
3845 /* Handle TPR patching; intercepted LSTAR write. */
3846 if ( pVM->hm.s.fTPRPatchingActive
3847 && pCtx->ecx == MSR_K8_LSTAR)
3848 {
3849 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
3850 {
3851 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
3852 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
3853 AssertRC(rc2);
3854 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3855 }
3856 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3857 return VINF_SUCCESS;
3858 }
3859
3860 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3861 if (RT_LIKELY(rc == VINF_SUCCESS))
3862 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3863 else
3864 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
3865
3866 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
3867 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
3868 && pCtx->ecx <= MSR_IA32_X2APIC_END)
3869 {
3870 /* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
3871 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
3872 EMInterpretWrmsr() changes it. */
3873 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3874 }
3875 else if (pCtx->ecx == MSR_K6_EFER)
3876 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
3877 else if (pCtx->ecx == MSR_IA32_TSC)
3878 pSvmTransient->fUpdateTscOffsetting = true;
3879 }
3880 else
3881 {
3882 /* MSR Read access. */
3883 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
3884 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3885 if (RT_LIKELY(rc == VINF_SUCCESS))
3886 pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
3887 else
3888 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
3889 }
3890
3891 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
3892 return rc;
3893}
3894
3895
3896/**
3897 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
3898 */
3899HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3900{
3901 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3902 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
3903
3904 /* We should -not- get this VM-exit if the guest is debugging. */
3905 if (CPUMIsGuestDebugStateActive(pVCpu))
3906 {
3907 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx));
3908 return VERR_SVM_UNEXPECTED_EXIT;
3909 }
3910
3911 if ( !DBGFIsStepping(pVCpu)
3912 && !CPUMIsHyperDebugStateActive(pVCpu))
3913 {
3914 /* Don't intercept DRx read and writes. */
3915 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3916 pVmcb->ctrl.u16InterceptRdDRx = 0;
3917 pVmcb->ctrl.u16InterceptWrDRx = 0;
3918 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3919
3920 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
3921 PVM pVM = pVCpu->CTX_SUFF(pVM);
3922 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
3923 AssertRC(rc);
3924 Assert(CPUMIsGuestDebugStateActive(pVCpu));
3925
3926 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
3927 return rc;
3928 }
3929
3930 /** @todo Decode assist. */
3931 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3932 int rc = VBOXSTRICTRC_VAL(rc2);
3933 if (RT_LIKELY(rc == VINF_SUCCESS))
3934 {
3935 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
3936 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
3937 }
3938 else
3939 Assert(rc == VERR_EM_INTERPRETER);
3940 return rc;
3941}
3942
3943
3944/**
3945 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
3946 */
3947HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3948{
3949 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3950 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
3951 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3952 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
3953 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
3954 return rc;
3955}
3956
3957
3958/**
3959 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
3960 */
3961HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3962{
3963 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3964
3965 /* I/O operation lookup arrays. */
3966 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
3967 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
3968 the result (in AL/AX/EAX). */
3969 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3970
3971 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3972 PVM pVM = pVCpu->CTX_SUFF(pVM);
3973
3974 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
3975 SVMIOIOEXIT IoExitInfo;
3976 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
3977 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
3978 uint32_t uIOSize = s_aIOSize[uIOWidth];
3979 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
3980
3981 if (RT_UNLIKELY(!uIOSize))
3982 {
3983 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
3984 return VERR_EM_INTERPRETER;
3985 }
3986
3987 int rc;
3988 if (IoExitInfo.n.u1STR)
3989 {
3990 /* INS/OUTS - I/O String instruction. */
3991 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
3992
3993 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
3994 * in EXITINFO1? Investigate once this thing is up and running. */
3995
3996 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
3997 if (rc == VINF_SUCCESS)
3998 {
3999 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4000 {
4001 VBOXSTRICTRC rc2 = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4002 (DISCPUMODE)pDis->uAddrMode, uIOSize);
4003 rc = VBOXSTRICTRC_VAL(rc2);
4004 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4005 }
4006 else
4007 {
4008 VBOXSTRICTRC rc2 = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4009 (DISCPUMODE)pDis->uAddrMode, uIOSize);
4010 rc = VBOXSTRICTRC_VAL(rc2);
4011 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4012 }
4013 }
4014 else
4015 rc = VINF_EM_RAW_EMULATE_INSTR;
4016 }
4017 else
4018 {
4019 /* IN/OUT - I/O instruction. */
4020 Assert(!IoExitInfo.n.u1REP);
4021
4022 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4023 {
4024 VBOXSTRICTRC rc2 = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
4025 rc = VBOXSTRICTRC_VAL(rc2);
4026 if (rc == VINF_IOM_R3_IOPORT_WRITE)
4027 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
4028
4029 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4030 }
4031 else
4032 {
4033 uint32_t u32Val = 0;
4034
4035 VBOXSTRICTRC rc2 = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, uIOSize);
4036 rc = VBOXSTRICTRC_VAL(rc2);
4037 if (IOM_SUCCESS(rc))
4038 {
4039 /* Save result of I/O IN instr. in AL/AX/EAX. */
4040 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4041 }
4042 else if (rc == VINF_IOM_R3_IOPORT_READ)
4043 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
4044
4045 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4046 }
4047 }
4048
4049 if (IOM_SUCCESS(rc))
4050 {
4051 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4052 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4053
4054 if (RT_LIKELY(rc == VINF_SUCCESS))
4055 {
4056 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
4057 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
4058 {
4059 /* I/O breakpoint length, in bytes. */
4060 static uint32_t const s_aIOBPLen[4] = { 1, 2, 0, 4 };
4061
4062 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4063 for (unsigned i = 0; i < 4; i++)
4064 {
4065 unsigned uBPLen = s_aIOBPLen[X86_DR7_GET_LEN(pCtx->dr[7], i)];
4066
4067 if ( IoExitInfo.n.u16Port >= pCtx->dr[i]
4068 && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen
4069 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
4070 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
4071 {
4072 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4073
4074 /* Clear all breakpoint status flags and set the one we just hit. */
4075 pCtx->dr[6] &= ~(X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3);
4076 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
4077
4078 /*
4079 * Note: AMD64 Architecture Programmer's Manual 13.1:
4080 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
4081 * by software after the contents have been read.
4082 */
4083 pVmcb->guest.u64DR6 = pCtx->dr[6];
4084
4085 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
4086 pCtx->dr[7] &= ~X86_DR7_GD;
4087
4088 /* Paranoia. */
4089 pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
4090 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
4091 pCtx->dr[7] |= 0x400; /* MB1. */
4092
4093 pVmcb->guest.u64DR7 = pCtx->dr[7];
4094 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4095
4096 /* Inject the debug exception. */
4097 hmR0SvmSetPendingXcptDB(pVCpu);
4098 break;
4099 }
4100 }
4101 }
4102 }
4103 }
4104
4105#ifdef VBOX_STRICT
4106 if (rc == VINF_IOM_R3_IOPORT_READ)
4107 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4108 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
4109 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4110 else
4111 {
4112 AssertMsg( RT_FAILURE(rc)
4113 || rc == VINF_SUCCESS
4114 || rc == VINF_EM_RAW_EMULATE_INSTR
4115 || rc == VINF_EM_RAW_GUEST_TRAP
4116 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
4117 }
4118#endif
4119 return rc;
4120}
4121
4122
4123/**
4124 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4125 * #VMEXIT.
4126 */
4127HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4128{
4129 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4130 PVM pVM = pVCpu->CTX_SUFF(pVM);
4131 Assert(pVM->hm.s.fNestedPaging);
4132
4133 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4134
4135 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4136 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4137 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4138 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4139
4140 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4141
4142#ifdef VBOX_HM_WITH_GUEST_PATCHING
4143 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4144 if ( pVM->hm.s.fTRPPatchingAllowed
4145 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
4146 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4147 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
4148 && !CPUMGetGuestCPL(pVCpu)
4149 && !CPUMIsGuestInLongModeEx(pCtx)
4150 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4151 {
4152 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4153 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4154
4155 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4156 {
4157 /* Only attempt to patch the instruction once. */
4158 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4159 if (!pPatch)
4160 return VINF_EM_HM_PATCH_TPR_INSTR;
4161 }
4162 }
4163#endif
4164
4165 /*
4166 * Determine the nested paging mode.
4167 */
4168 PGMMODE enmNestedPagingMode;
4169#if HC_ARCH_BITS == 32
4170 if (CPUMIsGuestInLongModeEx(pCtx))
4171 enmNestedPagingMode = PGMMODE_AMD64_NX;
4172 else
4173#endif
4174 enmNestedPagingMode = PGMGetHostMode(pVM);
4175
4176 /*
4177 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4178 */
4179 int rc;
4180 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4181 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4182 {
4183 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4184 u32ErrCode);
4185 rc = VBOXSTRICTRC_VAL(rc2);
4186
4187 /*
4188 * If we succeed, resume guest execution.
4189 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4190 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4191 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4192 * weird case. See @bugref{6043}.
4193 */
4194 if ( rc == VINF_SUCCESS
4195 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4196 || rc == VERR_PAGE_NOT_PRESENT)
4197 {
4198 /* Successfully handled MMIO operation. */
4199 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4200 rc = VINF_SUCCESS;
4201 }
4202 return rc;
4203 }
4204
4205 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4206 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4207 TRPMResetTrap(pVCpu);
4208
4209 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4210
4211 /*
4212 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4213 */
4214 if ( rc == VINF_SUCCESS
4215 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4216 || rc == VERR_PAGE_NOT_PRESENT)
4217 {
4218 /* We've successfully synced our shadow page tables. */
4219 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4220 rc = VINF_SUCCESS;
4221 }
4222
4223 return rc;
4224}
4225
4226
4227/**
4228 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4229 */
4230HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4231{
4232 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4233
4234 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4235 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4236 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4237
4238 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4239 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4240 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4241
4242 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4243 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4244 return VINF_SUCCESS;
4245}
4246
4247
4248/**
4249 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4250 */
4251HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4252{
4253 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4254
4255 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4256 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4257 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4258 && pVCpu->hm.s.Event.fPending)
4259 {
4260 /*
4261 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4262 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4263 * when the recompiler restarts the instruction.
4264 */
4265 SVMEVENT Event;
4266 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4267 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4268 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4269 {
4270 pVCpu->hm.s.Event.fPending = false;
4271 }
4272 else
4273 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4274 }
4275
4276 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4277 * emulation. */
4278 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4279 return VERR_EM_INTERPRETER;
4280}
4281
4282
4283/**
4284 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4285 */
4286HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4287{
4288 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4289
4290 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4291 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4292 hmR0SvmSetPendingXcptUD(pVCpu);
4293 return VINF_SUCCESS;
4294}
4295
4296
4297/**
4298 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
4299 * #VMEXIT.
4300 */
4301HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4302{
4303 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4304
4305 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4306
4307 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4308 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4309 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4310 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4311
4312#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4313 if (pVM->hm.s.fNestedPaging)
4314 {
4315 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4316 if (!pSvmTransient->fVectoringPF)
4317 {
4318 /* A genuine guest #PF, reflect it to the guest. */
4319 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4320 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4321 uFaultAddress, u32ErrCode));
4322 }
4323 else
4324 {
4325 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4326 hmR0SvmSetPendingXcptDF(pVCpu);
4327 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4328 }
4329 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4330 return VINF_SUCCESS;
4331 }
4332#endif
4333
4334 PVM pVM = pVCpu->CTX_SUFF(pVM);
4335 Assert(!pVM->hm.s.fNestedPaging);
4336
4337#ifdef VBOX_HM_WITH_GUEST_PATCHING
4338 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4339 if ( pVM->hm.s.fTRPPatchingAllowed
4340 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4341 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
4342 && !CPUMGetGuestCPL(pVCpu)
4343 && !CPUMIsGuestInLongModeEx(pCtx)
4344 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4345 {
4346 RTGCPHYS GCPhysApicBase;
4347 GCPhysApicBase = pCtx->msrApicBase;
4348 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4349
4350 /* Check if the page at the fault-address is the APIC base. */
4351 RTGCPHYS GCPhysPage;
4352 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4353 if ( rc2 == VINF_SUCCESS
4354 && GCPhysPage == GCPhysApicBase)
4355 {
4356 /* Only attempt to patch the instruction once. */
4357 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4358 if (!pPatch)
4359 return VINF_EM_HM_PATCH_TPR_INSTR;
4360 }
4361 }
4362#endif
4363
4364 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4365 pCtx->rip, u32ErrCode, pCtx->cr3));
4366
4367 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4368 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4369
4370 Log4(("#PF rc=%Rrc\n", rc));
4371
4372 if (rc == VINF_SUCCESS)
4373 {
4374 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4375 TRPMResetTrap(pVCpu);
4376 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4377 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4378 return rc;
4379 }
4380 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4381 {
4382 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4383
4384 if (!pSvmTransient->fVectoringPF)
4385 {
4386 /* It's a guest page fault and needs to be reflected to the guest. */
4387 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4388 TRPMResetTrap(pVCpu);
4389 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4390 }
4391 else
4392 {
4393 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4394 TRPMResetTrap(pVCpu);
4395 hmR0SvmSetPendingXcptDF(pVCpu);
4396 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4397 }
4398
4399 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4400 return VINF_SUCCESS;
4401 }
4402
4403 TRPMResetTrap(pVCpu);
4404 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4405 return rc;
4406}
4407
4408
4409/**
4410 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
4411 * Conditional #VMEXIT.
4412 */
4413HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4414{
4415 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4416
4417 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4418
4419#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4420 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4421#endif
4422
4423 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4424 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4425 if (rc == VINF_SUCCESS)
4426 {
4427 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4428 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4429 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4430 return VINF_SUCCESS;
4431 }
4432
4433 /* Forward #NM to the guest. */
4434 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4435 hmR0SvmSetPendingXcptNM(pVCpu);
4436 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4437 return VINF_SUCCESS;
4438}
4439
4440
4441/**
4442 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
4443 * Conditional #VMEXIT.
4444 */
4445HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4446{
4447 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4448
4449 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4450
4451 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4452
4453 if (!(pCtx->cr0 & X86_CR0_NE))
4454 {
4455 /* Old-style FPU error reporting needs some extra work. */
4456 /** @todo don't fall back to the recompiler, but do it manually. */
4457 return VERR_EM_INTERPRETER;
4458 }
4459
4460 hmR0SvmSetPendingXcptMF(pVCpu);
4461 return VINF_SUCCESS;
4462}
4463
4464
4465/**
4466 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
4467 * #VMEXIT.
4468 */
4469HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4470{
4471 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4472
4473 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4474
4475 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4476
4477 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4478 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4479 PVM pVM = pVCpu->CTX_SUFF(pVM);
4480 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
4481 if (rc == VINF_EM_RAW_GUEST_TRAP)
4482 {
4483 /* Reflect the exception back to the guest. */
4484 hmR0SvmSetPendingXcptDB(pVCpu);
4485 rc = VINF_SUCCESS;
4486 }
4487
4488 return rc;
4489}
4490
4491/** @} */
4492
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette