VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 47652

Last change on this file since 47652 was 47652, checked in by vboxsync, 12 years ago

VMM: Removed all VBOX_WITH_OLD_[VTX|AMDV]_CODE bits.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 174.3 KB
Line 
1/* $Id: HMSVMR0.cpp 47652 2013-08-09 14:56:17Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HMSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMSVM_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
38#endif
39
40
41/*******************************************************************************
42* Defined Constants And Macros *
43*******************************************************************************/
44#ifdef VBOX_WITH_STATISTICS
45# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
46 if ((u64ExitCode) == SVM_EXIT_NPF) \
47 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
48 else \
49 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
50 } while (0)
51#else
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
53#endif
54
55/** If we decide to use a function table approach this can be useful to
56 * switch to a "static DECLCALLBACK(int)". */
57#define HMSVM_EXIT_DECL static int
58
59
60/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
61 *
62 * The CPU format of the segment attribute is described in X86DESCATTRBITS
63 * which is 16-bits (i.e. includes 4 bits of the segment limit).
64 *
65 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
66 * only the attribute bits and nothing else). Upper 4-bits are unused.
67 *
68 * @{ */
69#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
70#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
71/** @} */
72
73
74/** @name Macros for loading, storing segment registers to/from the VMCB.
75 * @{ */
76#define HMSVM_LOAD_SEG_REG(REG, reg) \
77 do \
78 { \
79 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
80 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
81 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
82 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
83 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
84 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
85 } while (0)
86
87#define HMSVM_SAVE_SEG_REG(REG, reg) \
88 do \
89 { \
90 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
92 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
93 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
94 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
95 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
96 } while (0)
97/** @} */
98
99
100/** @name Macro for checking and returning from the using function for
101 * #VMEXIT intercepts that maybe caused during delivering of another
102 * event in the guest. */
103#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
104 do \
105 { \
106 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
107 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
108 return VINF_SUCCESS; \
109 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
110 return rc; \
111 } while (0)
112/** @} */
113
114
115/**
116 * @name Exception bitmap mask for all contributory exceptions.
117 *
118 * Page fault is deliberately excluded here as it's conditional as to whether
119 * it's contributory or benign. Page faults are handled separately.
120 */
121#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
122 | RT_BIT(X86_XCPT_DE))
123/** @} */
124
125
126/** @name VMCB Clean Bits.
127 *
128 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
129 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
130 * memory.
131 *
132 * @{ */
133/** All intercepts vectors, TSC offset, PAUSE filter counter. */
134#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
135/** I/O permission bitmap, MSR permission bitmap. */
136#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
137/** ASID. */
138#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
139/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
140V_INTR_VECTOR. */
141#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
142/** Nested Paging: Nested CR3 (nCR3), PAT. */
143#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
144/** Control registers (CR0, CR3, CR4, EFER). */
145#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
146/** Debug registers (DR6, DR7). */
147#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
148/** GDT, IDT limit and base. */
149#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
150/** Segment register: CS, SS, DS, ES limit and base. */
151#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
152/** CR2.*/
153#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
154/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
155#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
156/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
157PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
158#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
159/** Mask of all valid VMCB Clean bits. */
160#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
161 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
162 | HMSVM_VMCB_CLEAN_ASID \
163 | HMSVM_VMCB_CLEAN_TPR \
164 | HMSVM_VMCB_CLEAN_NP \
165 | HMSVM_VMCB_CLEAN_CRX_EFER \
166 | HMSVM_VMCB_CLEAN_DRX \
167 | HMSVM_VMCB_CLEAN_DT \
168 | HMSVM_VMCB_CLEAN_SEG \
169 | HMSVM_VMCB_CLEAN_CR2 \
170 | HMSVM_VMCB_CLEAN_LBR \
171 | HMSVM_VMCB_CLEAN_AVIC)
172/** @} */
173
174/** @name SVM transient.
175 *
176 * A state structure for holding miscellaneous information across AMD-V
177 * VMRUN/#VMEXIT operation, restored after the transition.
178 *
179 * @{ */
180typedef struct SVMTRANSIENT
181{
182 /** The host's rflags/eflags. */
183 RTCCUINTREG uEFlags;
184#if HC_ARCH_BITS == 32
185 uint32_t u32Alignment0;
186#endif
187
188 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
189 uint64_t u64ExitCode;
190 /** The guest's TPR value used for TPR shadowing. */
191 uint8_t u8GuestTpr;
192 /** Alignment. */
193 uint8_t abAlignment0[7];
194
195 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
196 bool fRestoreTscAuxMsr;
197 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
198 * contributary exception or a page-fault. */
199 bool fVectoringPF;
200 /** Whether the TSC offset mode needs to be updated. */
201 bool fUpdateTscOffsetting;
202} SVMTRANSIENT, *PSVMTRANSIENT;
203AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
204AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
205/** @} */
206
207
208/**
209 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
210 */
211typedef enum SVMMSREXITREAD
212{
213 /** Reading this MSR causes a VM-exit. */
214 SVMMSREXIT_INTERCEPT_READ = 0xb,
215 /** Reading this MSR does not cause a VM-exit. */
216 SVMMSREXIT_PASSTHRU_READ
217} SVMMSREXITREAD;
218
219/**
220 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
221 */
222typedef enum SVMMSREXITWRITE
223{
224 /** Writing to this MSR causes a VM-exit. */
225 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
226 /** Writing to this MSR does not cause a VM-exit. */
227 SVMMSREXIT_PASSTHRU_WRITE
228} SVMMSREXITWRITE;
229
230
231/*******************************************************************************
232* Internal Functions *
233*******************************************************************************/
234static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
235static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
236
237HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
238HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
239HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
240HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
241HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
242HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
243HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
244HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
245HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
246HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
247HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
248HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
249HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
250HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
251HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
252HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
253HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
256HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
257HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
258HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
259HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
260HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
261HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
263HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
264
265DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
266
267
268/*******************************************************************************
269* Global Variables *
270*******************************************************************************/
271/** Ring-0 memory object for the IO bitmap. */
272RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
273/** Physical address of the IO bitmap. */
274RTHCPHYS g_HCPhysIOBitmap = 0;
275/** Virtual address of the IO bitmap. */
276R0PTRTYPE(void *) g_pvIOBitmap = NULL;
277
278
279/**
280 * Sets up and activates AMD-V on the current CPU.
281 *
282 * @returns VBox status code.
283 * @param pCpu Pointer to the CPU info struct.
284 * @param pVM Pointer to the VM (can be NULL after a resume!).
285 * @param pvCpuPage Pointer to the global CPU page.
286 * @param HCPhysCpuPage Physical address of the global CPU page.
287 */
288VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
289{
290 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
291 AssertReturn( HCPhysCpuPage
292 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
293 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
294
295 /*
296 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
297 */
298 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
299 if (u64HostEfer & MSR_K6_EFER_SVME)
300 {
301 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
302 if ( pVM
303 && pVM->hm.s.svm.fIgnoreInUseError)
304 {
305 pCpu->fIgnoreAMDVInUseError = true;
306 }
307
308 if (!pCpu->fIgnoreAMDVInUseError)
309 return VERR_SVM_IN_USE;
310 }
311
312 /* Turn on AMD-V in the EFER MSR. */
313 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
314
315 /* Write the physical page address where the CPU will store the host state while executing the VM. */
316 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
317
318 /*
319 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
320 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
321 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
322 * to flush the TLB with before using a new ASID.
323 */
324 pCpu->fFlushAsidBeforeUse = true;
325
326 /*
327 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
328 */
329 ++pCpu->cTlbFlushes;
330
331 return VINF_SUCCESS;
332}
333
334
335/**
336 * Deactivates AMD-V on the current CPU.
337 *
338 * @returns VBox status code.
339 * @param pCpu Pointer to the CPU info struct.
340 * @param pvCpuPage Pointer to the global CPU page.
341 * @param HCPhysCpuPage Physical address of the global CPU page.
342 */
343VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
344{
345 AssertReturn( HCPhysCpuPage
346 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
347 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
348 NOREF(pCpu);
349
350 /* Turn off AMD-V in the EFER MSR. */
351 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
352 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
353
354 /* Invalidate host state physical address. */
355 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
356
357 return VINF_SUCCESS;
358}
359
360
361/**
362 * Does global AMD-V initialization (called during module initialization).
363 *
364 * @returns VBox status code.
365 */
366VMMR0DECL(int) SVMR0GlobalInit(void)
367{
368 /*
369 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
370 * once globally here instead of per-VM.
371 */
372 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
373 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
374 if (RT_FAILURE(rc))
375 return rc;
376
377 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
378 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
379
380 /* Set all bits to intercept all IO accesses. */
381 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
382 return VINF_SUCCESS;
383}
384
385
386/**
387 * Does global AMD-V termination (called during module termination).
388 */
389VMMR0DECL(void) SVMR0GlobalTerm(void)
390{
391 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
392 {
393 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
394 g_pvIOBitmap = NULL;
395 g_HCPhysIOBitmap = 0;
396 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
397 }
398}
399
400
401/**
402 * Frees any allocated per-VCPU structures for a VM.
403 *
404 * @param pVM Pointer to the VM.
405 */
406DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
407{
408 for (uint32_t i = 0; i < pVM->cCpus; i++)
409 {
410 PVMCPU pVCpu = &pVM->aCpus[i];
411 AssertPtr(pVCpu);
412
413 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
414 {
415 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
416 pVCpu->hm.s.svm.pvVmcbHost = 0;
417 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
418 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
419 }
420
421 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
422 {
423 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
424 pVCpu->hm.s.svm.pvVmcb = 0;
425 pVCpu->hm.s.svm.HCPhysVmcb = 0;
426 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
427 }
428
429 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
430 {
431 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
432 pVCpu->hm.s.svm.pvMsrBitmap = 0;
433 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
434 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
435 }
436 }
437}
438
439
440/**
441 * Does per-VM AMD-V initialization.
442 *
443 * @returns VBox status code.
444 * @param pVM Pointer to the VM.
445 */
446VMMR0DECL(int) SVMR0InitVM(PVM pVM)
447{
448 int rc = VERR_INTERNAL_ERROR_5;
449
450 /*
451 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
452 */
453 uint32_t u32Family;
454 uint32_t u32Model;
455 uint32_t u32Stepping;
456 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
457 {
458 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
459 pVM->hm.s.svm.fAlwaysFlushTLB = true;
460 }
461
462 /*
463 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
464 */
465 for (VMCPUID i = 0; i < pVM->cCpus; i++)
466 {
467 PVMCPU pVCpu = &pVM->aCpus[i];
468 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
469 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
470 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
471 }
472
473 for (VMCPUID i = 0; i < pVM->cCpus; i++)
474 {
475 PVMCPU pVCpu = &pVM->aCpus[i];
476
477 /*
478 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
479 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
480 */
481 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
482 if (RT_FAILURE(rc))
483 goto failure_cleanup;
484
485 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
486 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
487 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
488 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
489
490 /*
491 * Allocate one page for the guest-state VMCB.
492 */
493 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
494 if (RT_FAILURE(rc))
495 goto failure_cleanup;
496
497 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
498 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
499 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
500 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
501
502 /*
503 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
504 * SVM to not require one.
505 */
506 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
507 if (RT_FAILURE(rc))
508 goto failure_cleanup;
509
510 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
511 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
512 /* Set all bits to intercept all MSR accesses (changed later on). */
513 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
514 }
515
516 return VINF_SUCCESS;
517
518failure_cleanup:
519 hmR0SvmFreeStructs(pVM);
520 return rc;
521}
522
523
524/**
525 * Does per-VM AMD-V termination.
526 *
527 * @returns VBox status code.
528 * @param pVM Pointer to the VM.
529 */
530VMMR0DECL(int) SVMR0TermVM(PVM pVM)
531{
532 hmR0SvmFreeStructs(pVM);
533 return VINF_SUCCESS;
534}
535
536
537/**
538 * Sets the permission bits for the specified MSR in the MSRPM.
539 *
540 * @param pVCpu Pointer to the VMCPU.
541 * @param uMsr The MSR for which the access permissions are being set.
542 * @param enmRead MSR read permissions.
543 * @param enmWrite MSR write permissions.
544 */
545static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
546{
547 unsigned ulBit;
548 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
549
550 /*
551 * Layout:
552 * Byte offset MSR range
553 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
554 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
555 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
556 * 0x1800 - 0x1fff Reserved
557 */
558 if (uMsr <= 0x00001FFF)
559 {
560 /* Pentium-compatible MSRs. */
561 ulBit = uMsr * 2;
562 }
563 else if ( uMsr >= 0xC0000000
564 && uMsr <= 0xC0001FFF)
565 {
566 /* AMD Sixth Generation x86 Processor MSRs. */
567 ulBit = (uMsr - 0xC0000000) * 2;
568 pbMsrBitmap += 0x800;
569 }
570 else if ( uMsr >= 0xC0010000
571 && uMsr <= 0xC0011FFF)
572 {
573 /* AMD Seventh and Eighth Generation Processor MSRs. */
574 ulBit = (uMsr - 0xC0001000) * 2;
575 pbMsrBitmap += 0x1000;
576 }
577 else
578 {
579 AssertFailed();
580 return;
581 }
582
583 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
584 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
585 ASMBitSet(pbMsrBitmap, ulBit);
586 else
587 ASMBitClear(pbMsrBitmap, ulBit);
588
589 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
590 ASMBitSet(pbMsrBitmap, ulBit + 1);
591 else
592 ASMBitClear(pbMsrBitmap, ulBit + 1);
593
594 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
595 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
596}
597
598
599/**
600 * Sets up AMD-V for the specified VM.
601 * This function is only called once per-VM during initalization.
602 *
603 * @returns VBox status code.
604 * @param pVM Pointer to the VM.
605 */
606VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
607{
608 int rc = VINF_SUCCESS;
609
610 AssertReturn(pVM, VERR_INVALID_PARAMETER);
611 Assert(pVM->hm.s.svm.fSupported);
612
613 for (VMCPUID i = 0; i < pVM->cCpus; i++)
614 {
615 PVMCPU pVCpu = &pVM->aCpus[i];
616 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
617
618 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
619
620 /* Trap exceptions unconditionally (debug purposes). */
621#ifdef HMSVM_ALWAYS_TRAP_PF
622 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
623#endif
624#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
625 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
626 pVmcb->ctrl.u32InterceptException |= 0
627 | RT_BIT(X86_XCPT_BP)
628 | RT_BIT(X86_XCPT_DB)
629 | RT_BIT(X86_XCPT_DE)
630 | RT_BIT(X86_XCPT_NM)
631 | RT_BIT(X86_XCPT_UD)
632 | RT_BIT(X86_XCPT_NP)
633 | RT_BIT(X86_XCPT_SS)
634 | RT_BIT(X86_XCPT_GP)
635 | RT_BIT(X86_XCPT_PF)
636 | RT_BIT(X86_XCPT_MF)
637 ;
638#endif
639
640 /* Set up unconditional intercepts and conditions. */
641 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
642 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
643 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
644 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
645 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
646 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
647 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
648 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
649 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
650 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
651 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
652 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
653
654 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
655 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
656 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
657 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
658 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
659 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
660 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
661 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
662 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
663 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
664
665 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
666 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
667
668 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
669 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
670
671 /* Intercept all DRx reads and writes by default. Changed later on. */
672 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
673 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
674
675 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
676 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
677
678 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
679 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
680 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
681
682 /* Set IO and MSR bitmap permission bitmap physical addresses. */
683 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
684 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
685
686 /* No LBR virtualization. */
687 pVmcb->ctrl.u64LBRVirt = 0;
688
689 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
690 pVmcb->ctrl.u64VmcbCleanBits = 0;
691
692 /* The host ASID MBZ, for the guest start with 1. */
693 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
694
695 /*
696 * Setup the PAT MSR (applicable for Nested Paging only).
697 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
698 * so choose type 6 for all PAT slots.
699 */
700 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
701
702 /* Without Nested Paging, we need additionally intercepts. */
703 if (!pVM->hm.s.fNestedPaging)
704 {
705 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
706 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
707 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
708
709 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
710 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
711 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
712
713 /* Page faults must be intercepted to implement shadow paging. */
714 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
715 }
716
717#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
718 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
719#endif
720
721 /*
722 * The following MSRs are saved/restored automatically during the world-switch.
723 * Don't intercept guest read/write accesses to these MSRs.
724 */
725 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
726 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
727 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
728 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
729 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
730 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
731 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
732 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
733 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
734 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
735 }
736
737 return rc;
738}
739
740
741/**
742 * Invalidates a guest page by guest virtual address.
743 *
744 * @returns VBox status code.
745 * @param pVM Pointer to the VM.
746 * @param pVCpu Pointer to the VMCPU.
747 * @param GCVirt Guest virtual address of the page to invalidate.
748 */
749VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
750{
751 AssertReturn(pVM, VERR_INVALID_PARAMETER);
752 Assert(pVM->hm.s.svm.fSupported);
753
754 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
755
756 /* Skip it if a TLB flush is already pending. */
757 if (!fFlushPending)
758 {
759 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
760
761 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
762 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
763
764#if HC_ARCH_BITS == 32
765 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
766 if (CPUMIsGuestInLongMode(pVCpu))
767 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
768 else
769#endif
770 {
771 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
772 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
773 }
774 }
775 return VINF_SUCCESS;
776}
777
778
779/**
780 * Flushes the appropriate tagged-TLB entries.
781 *
782 * @param pVM Pointer to the VM.
783 * @param pVCpu Pointer to the VMCPU.
784 */
785static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
786{
787 PVM pVM = pVCpu->CTX_SUFF(pVM);
788 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
789 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
790
791 /*
792 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
793 * This can happen both for start & resume due to long jumps back to ring-3.
794 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
795 * so we cannot reuse the ASIDs without flushing.
796 */
797 bool fNewAsid = false;
798 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
799 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
800 {
801 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
802 pVCpu->hm.s.fForceTLBFlush = true;
803 fNewAsid = true;
804 }
805
806 /* Set TLB flush state as checked until we return from the world switch. */
807 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
808
809 /* Check for explicit TLB shootdowns. */
810 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
811 {
812 pVCpu->hm.s.fForceTLBFlush = true;
813 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
814 }
815
816 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
817 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
818
819 if (pVM->hm.s.svm.fAlwaysFlushTLB)
820 {
821 /*
822 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
823 */
824 pCpu->uCurrentAsid = 1;
825 pVCpu->hm.s.uCurrentAsid = 1;
826 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
827 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
828 }
829 else if (pVCpu->hm.s.fForceTLBFlush)
830 {
831 if (fNewAsid)
832 {
833 ++pCpu->uCurrentAsid;
834 bool fHitASIDLimit = false;
835 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
836 {
837 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
838 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
839 fHitASIDLimit = true;
840
841 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
842 {
843 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
844 pCpu->fFlushAsidBeforeUse = true;
845 }
846 else
847 {
848 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
849 pCpu->fFlushAsidBeforeUse = false;
850 }
851 }
852
853 if ( !fHitASIDLimit
854 && pCpu->fFlushAsidBeforeUse)
855 {
856 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
857 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
858 else
859 {
860 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
861 pCpu->fFlushAsidBeforeUse = false;
862 }
863 }
864
865 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
866 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
867 }
868 else
869 {
870 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
871 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
872 else
873 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
874 }
875
876 pVCpu->hm.s.fForceTLBFlush = false;
877 }
878 else
879 {
880 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
881 * not be executed. See hmQueueInvlPage() where it is commented
882 * out. Support individual entry flushing someday. */
883 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
884 {
885 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
886 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
887 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
888 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
889 }
890 }
891
892 pVCpu->hm.s.TlbShootdown.cPages = 0;
893 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
894
895 /* Update VMCB with the ASID. */
896 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
897 {
898 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
899 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
900 }
901
902 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
903 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
904 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
905 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
906 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
907 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
908
909#ifdef VBOX_WITH_STATISTICS
910 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
911 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
912 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
913 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
914 {
915 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
916 }
917 else
918 {
919 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
920 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
921 }
922#endif
923}
924
925
926/** @name 64-bit guest on 32-bit host OS helper functions.
927 *
928 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
929 * mode (code segment, paging). These wrappers/helpers perform the necessary
930 * bits for the 32->64 switcher.
931 *
932 * @{ */
933#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
934/**
935 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
936 *
937 * @returns VBox status code.
938 * @param HCPhysVmcbHost Physical address of host VMCB.
939 * @param HCPhysVmcb Physical address of the VMCB.
940 * @param pCtx Pointer to the guest-CPU context.
941 * @param pVM Pointer to the VM.
942 * @param pVCpu Pointer to the VMCPU.
943 */
944DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
945{
946 uint32_t aParam[4];
947 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
948 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
949 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
950 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
951
952 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
953}
954
955
956/**
957 * Executes the specified VMRUN handler in 64-bit mode.
958 *
959 * @returns VBox status code.
960 * @param pVM Pointer to the VM.
961 * @param pVCpu Pointer to the VMCPU.
962 * @param pCtx Pointer to the guest-CPU context.
963 * @param enmOp The operation to perform.
964 * @param cbParam Number of parameters.
965 * @param paParam Array of 32-bit parameters.
966 */
967VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
968 uint32_t *paParam)
969{
970 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
971 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
972
973 /* Disable interrupts. */
974 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
975
976#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
977 RTCPUID idHostCpu = RTMpCpuId();
978 CPUMR0SetLApic(pVM, idHostCpu);
979#endif
980
981 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
982 CPUMSetHyperEIP(pVCpu, enmOp);
983 for (int i = (int)cbParam - 1; i >= 0; i--)
984 CPUMPushHyper(pVCpu, paParam[i]);
985
986 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
987 /* Call the switcher. */
988 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
989 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
990
991 /* Restore interrupts. */
992 ASMSetFlags(uOldEFlags);
993 return rc;
994}
995
996#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
997/** @} */
998
999
1000/**
1001 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1002 * the corresponding VMCB Clean Bit.
1003 *
1004 * @param pVmcb Pointer to the VMCB.
1005 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1006 */
1007DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1008{
1009 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1010 {
1011 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1012 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1013 }
1014}
1015
1016
1017/**
1018 * Removes an exception from the intercept-exception bitmap in the VMCB and
1019 * updates the corresponding VMCB Clean Bit.
1020 *
1021 * @param pVmcb Pointer to the VMCB.
1022 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1023 */
1024DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1025{
1026#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1027 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1028 {
1029 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1030 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1031 }
1032#endif
1033}
1034
1035
1036/**
1037 * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1038 *
1039 * @returns VBox status code.
1040 * @param pVCpu Pointer to the VMCPU.
1041 * @param pVmcb Pointer to the VMCB.
1042 * @param pCtx Pointer the guest-CPU context.
1043 *
1044 * @remarks No-long-jump zone!!!
1045 */
1046DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1047{
1048 /*
1049 * Guest CR0.
1050 */
1051 PVM pVM = pVCpu->CTX_SUFF(pVM);
1052 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1053 {
1054 uint64_t u64GuestCR0 = pCtx->cr0;
1055
1056 /* Always enable caching. */
1057 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1058
1059 /*
1060 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1061 */
1062 if (!pVM->hm.s.fNestedPaging)
1063 {
1064 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1065 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1066 }
1067
1068 /*
1069 * Guest FPU bits.
1070 */
1071 bool fInterceptNM = false;
1072 bool fInterceptMF = false;
1073 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1074 if (CPUMIsGuestFPUStateActive(pVCpu))
1075 {
1076 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1077 if (!(u64GuestCR0 & X86_CR0_NE))
1078 {
1079 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1080 fInterceptMF = true;
1081 }
1082 }
1083 else
1084 {
1085 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1086 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1087 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1088 }
1089
1090 /*
1091 * Update the exception intercept bitmap.
1092 */
1093 if (fInterceptNM)
1094 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1095 else
1096 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1097
1098 if (fInterceptMF)
1099 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1100 else
1101 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1102
1103 pVmcb->guest.u64CR0 = u64GuestCR0;
1104 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1105 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1106 }
1107
1108 /*
1109 * Guest CR2.
1110 */
1111 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1112 {
1113 pVmcb->guest.u64CR2 = pCtx->cr2;
1114 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1115 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1116 }
1117
1118 /*
1119 * Guest CR3.
1120 */
1121 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1122 {
1123 if (pVM->hm.s.fNestedPaging)
1124 {
1125 PGMMODE enmShwPagingMode;
1126#if HC_ARCH_BITS == 32
1127 if (CPUMIsGuestInLongModeEx(pCtx))
1128 enmShwPagingMode = PGMMODE_AMD64_NX;
1129 else
1130#endif
1131 enmShwPagingMode = PGMGetHostMode(pVM);
1132
1133 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1134 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1135 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1136 pVmcb->guest.u64CR3 = pCtx->cr3;
1137 }
1138 else
1139 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1140
1141 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1142 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1143 }
1144
1145 /*
1146 * Guest CR4.
1147 */
1148 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1149 {
1150 uint64_t u64GuestCR4 = pCtx->cr4;
1151 if (!pVM->hm.s.fNestedPaging)
1152 {
1153 switch (pVCpu->hm.s.enmShadowMode)
1154 {
1155 case PGMMODE_REAL:
1156 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1157 AssertFailed();
1158 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1159
1160 case PGMMODE_32_BIT: /* 32-bit paging. */
1161 u64GuestCR4 &= ~X86_CR4_PAE;
1162 break;
1163
1164 case PGMMODE_PAE: /* PAE paging. */
1165 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1166 /** Must use PAE paging as we could use physical memory > 4 GB */
1167 u64GuestCR4 |= X86_CR4_PAE;
1168 break;
1169
1170 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1171 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1172#ifdef VBOX_ENABLE_64_BITS_GUESTS
1173 break;
1174#else
1175 AssertFailed();
1176 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1177#endif
1178
1179 default: /* shut up gcc */
1180 AssertFailed();
1181 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1182 }
1183 }
1184
1185 pVmcb->guest.u64CR4 = u64GuestCR4;
1186 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1187 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1188 }
1189
1190 return VINF_SUCCESS;
1191}
1192
1193
1194/**
1195 * Loads the guest segment registers into the VMCB.
1196 *
1197 * @returns VBox status code.
1198 * @param pVCpu Pointer to the VMCPU.
1199 * @param pVmcb Pointer to the VMCB.
1200 * @param pCtx Pointer to the guest-CPU context.
1201 *
1202 * @remarks No-long-jump zone!!!
1203 */
1204DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1205{
1206 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1207 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1208 {
1209 HMSVM_LOAD_SEG_REG(CS, cs);
1210 HMSVM_LOAD_SEG_REG(SS, ss);
1211 HMSVM_LOAD_SEG_REG(DS, ds);
1212 HMSVM_LOAD_SEG_REG(ES, es);
1213 HMSVM_LOAD_SEG_REG(FS, fs);
1214 HMSVM_LOAD_SEG_REG(GS, gs);
1215
1216 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1217 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1218 }
1219
1220 /* Guest TR. */
1221 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1222 {
1223 HMSVM_LOAD_SEG_REG(TR, tr);
1224 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1225 }
1226
1227 /* Guest LDTR. */
1228 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1229 {
1230 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1231 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1232 }
1233
1234 /* Guest GDTR. */
1235 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1236 {
1237 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1238 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1239 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1240 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1241 }
1242
1243 /* Guest IDTR. */
1244 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1245 {
1246 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1247 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1248 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1249 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1250 }
1251}
1252
1253
1254/**
1255 * Loads the guest MSRs into the VMCB.
1256 *
1257 * @param pVCpu Pointer to the VMCPU.
1258 * @param pVmcb Pointer to the VMCB.
1259 * @param pCtx Pointer to the guest-CPU context.
1260 *
1261 * @remarks No-long-jump zone!!!
1262 */
1263DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1264{
1265 /* Guest Sysenter MSRs. */
1266 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1267 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1268 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1269
1270 /*
1271 * Guest EFER MSR.
1272 * AMD-V requires guest EFER.SVME to be set. Weird. .
1273 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1274 */
1275 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1276 {
1277 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1278 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1279 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1280 }
1281
1282 /* 64-bit MSRs. */
1283 if (CPUMIsGuestInLongModeEx(pCtx))
1284 {
1285 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1286 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1287 }
1288 else
1289 {
1290 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1291 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1292 {
1293 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1294 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1295 }
1296 }
1297
1298
1299 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1300 * be writable in 32-bit mode. Clarify with AMD spec. */
1301 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1302 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1303 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1304 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1305 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1306}
1307
1308
1309/**
1310 * Loads the guest debug registers into the VMCB.
1311 *
1312 * @param pVCpu Pointer to the VMCPU.
1313 * @param pVmcb Pointer to the VMCB.
1314 * @param pCtx Pointer to the guest-CPU context.
1315 *
1316 * @remarks No-long-jump zone!!!
1317 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1318 */
1319DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1320{
1321 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1322 return;
1323
1324 /** @todo Turn these into assertions if possible. */
1325 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* Set reserved bits to 1. */
1326 pCtx->dr[6] &= ~RT_BIT(12); /* MBZ. */
1327
1328 pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
1329 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
1330 pCtx->dr[7] |= X86_DR7_INIT_VAL; /* MB1. */
1331
1332 /* Update DR6, DR7 with the guest values. */
1333 pVmcb->guest.u64DR7 = pCtx->dr[7];
1334 pVmcb->guest.u64DR6 = pCtx->dr[6];
1335 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1336
1337 bool fInterceptDB = false;
1338 bool fInterceptMovDRx = false;
1339 if (DBGFIsStepping(pVCpu))
1340 {
1341 /* AMD-V doesn't have any monitor-trap flag equivalent. Instead, enable tracing in the guest and trap #DB. */
1342 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1343 fInterceptDB = true;
1344 }
1345
1346 PVM pVM = pVCpu->CTX_SUFF(pVM);
1347 if (CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1348 {
1349 if (!CPUMIsHyperDebugStateActive(pVCpu))
1350 {
1351 int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1352 AssertRC(rc);
1353
1354 /* Update DR6, DR7 with the hypervisor values. */
1355 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1356 pVmcb->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
1357 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1358 }
1359 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1360 fInterceptMovDRx = true;
1361 }
1362 else if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1363 {
1364 if (!CPUMIsGuestDebugStateActive(pVCpu))
1365 {
1366 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1367 AssertRC(rc);
1368 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1369 }
1370 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1371 Assert(fInterceptMovDRx == false);
1372 }
1373 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1374 {
1375 /* For the first time we would need to intercept MOV DRx accesses even when the guest debug registers aren't loaded. */
1376 fInterceptMovDRx = true;
1377 }
1378
1379 if (fInterceptDB)
1380 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1381 else
1382 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1383
1384 if (fInterceptMovDRx)
1385 {
1386 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1387 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1388 {
1389 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1390 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1391 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1392 }
1393 }
1394 else
1395 {
1396 if ( pVmcb->ctrl.u16InterceptRdDRx
1397 || pVmcb->ctrl.u16InterceptWrDRx)
1398 {
1399 pVmcb->ctrl.u16InterceptRdDRx = 0;
1400 pVmcb->ctrl.u16InterceptWrDRx = 0;
1401 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1402 }
1403 }
1404
1405 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1406}
1407
1408
1409/**
1410 * Loads the guest APIC state (currently just the TPR).
1411 *
1412 * @returns VBox status code.
1413 * @param pVCpu Pointer to the VMCPU.
1414 * @param pVmcb Pointer to the VMCB.
1415 * @param pCtx Pointer to the guest-CPU context.
1416 */
1417DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1418{
1419 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1420 return VINF_SUCCESS;
1421
1422 bool fPendingIntr;
1423 uint8_t u8Tpr;
1424 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1425 AssertRCReturn(rc, rc);
1426
1427 /** Assume that we need to trap all TPR accesses and thus need not check on
1428 * every #VMEXIT if we should update the TPR. */
1429 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1430 pVCpu->hm.s.svm.fSyncVTpr = false;
1431
1432 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1433 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1434 {
1435 pCtx->msrLSTAR = u8Tpr;
1436
1437 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1438 if (fPendingIntr)
1439 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1440 else
1441 {
1442 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1443 pVCpu->hm.s.svm.fSyncVTpr = true;
1444 }
1445 }
1446 else
1447 {
1448 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1449 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1450
1451 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1452 if (fPendingIntr)
1453 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1454 else
1455 {
1456 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1457 pVCpu->hm.s.svm.fSyncVTpr = true;
1458 }
1459
1460 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1461 }
1462
1463 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1464 return rc;
1465}
1466
1467
1468/**
1469 * Sets up the appropriate function to run guest code.
1470 *
1471 * @returns VBox status code.
1472 * @param pVCpu Pointer to the VMCPU.
1473 * @param pCtx Pointer to the guest-CPU context.
1474 *
1475 * @remarks No-long-jump zone!!!
1476 */
1477static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1478{
1479 if (CPUMIsGuestInLongModeEx(pCtx))
1480 {
1481#ifndef VBOX_ENABLE_64_BITS_GUESTS
1482 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1483#endif
1484 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1485#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1486 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1487 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1488#else
1489 /* 64-bit host or hybrid host. */
1490 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1491#endif
1492 }
1493 else
1494 {
1495 /* Guest is not in long mode, use the 32-bit handler. */
1496 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1497 }
1498 return VINF_SUCCESS;
1499}
1500
1501
1502/**
1503 * Enters the AMD-V session.
1504 *
1505 * @returns VBox status code.
1506 * @param pVM Pointer to the VM.
1507 * @param pVCpu Pointer to the VMCPU.
1508 * @param pCpu Pointer to the CPU info struct.
1509 */
1510VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
1511{
1512 AssertPtr(pVM);
1513 AssertPtr(pVCpu);
1514 Assert(pVM->hm.s.svm.fSupported);
1515 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1516 NOREF(pCpu);
1517
1518 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1519
1520 /* Nothing to do here. */
1521 return VINF_SUCCESS;
1522}
1523
1524
1525/**
1526 * Leaves the AMD-V session.
1527 *
1528 * @returns VBox status code.
1529 * @param pVM Pointer to the VM.
1530 * @param pVCpu Pointer to the VMCPU.
1531 * @param pCtx Pointer to the guest-CPU context.
1532 */
1533VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1534{
1535 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1536 NOREF(pVM);
1537 NOREF(pVCpu);
1538 NOREF(pCtx);
1539
1540 /* Nothing to do here. Everything is taken care of in hmR0SvmLongJmpToRing3(). */
1541 return VINF_SUCCESS;
1542}
1543
1544
1545/**
1546 * Saves the host state.
1547 *
1548 * @returns VBox status code.
1549 * @param pVM Pointer to the VM.
1550 * @param pVCpu Pointer to the VMCPU.
1551 *
1552 * @remarks No-long-jump zone!!!
1553 */
1554VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1555{
1556 NOREF(pVM);
1557 NOREF(pVCpu);
1558 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1559 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1560 return VINF_SUCCESS;
1561}
1562
1563
1564/**
1565 * Loads the guest state into the VMCB. The CPU state will be loaded from these
1566 * fields on every successful VM-entry.
1567 *
1568 * Sets up the appropriate VMRUN function to execute guest code based
1569 * on the guest CPU mode.
1570 *
1571 * @returns VBox status code.
1572 * @param pVM Pointer to the VM.
1573 * @param pVCpu Pointer to the VMCPU.
1574 * @param pMixedCtx Pointer to the guest-CPU context.
1575 *
1576 * @remarks No-long-jump zone!!!
1577 */
1578static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1579{
1580 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1581 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1582
1583 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1584
1585 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1586 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1587
1588 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1589 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1590
1591 pVmcb->guest.u64RIP = pCtx->rip;
1592 pVmcb->guest.u64RSP = pCtx->rsp;
1593 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1594 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1595 pVmcb->guest.u64RAX = pCtx->rax;
1596
1597 /* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
1598 hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
1599
1600 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1601 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1602
1603 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1604 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1605
1606 /* Clear any unused and reserved bits. */
1607 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1608 | HM_CHANGED_GUEST_RSP
1609 | HM_CHANGED_GUEST_RFLAGS
1610 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1611 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1612 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1613 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1614 | HM_CHANGED_SVM_RESERVED2
1615 | HM_CHANGED_SVM_RESERVED3);
1616
1617 AssertMsg(!pVCpu->hm.s.fContextUseFlags,
1618 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1619 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1620
1621 Log4(("Load: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
1622
1623 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1624 return rc;
1625}
1626
1627
1628/**
1629 * Loads the guest state on the way from ring-3.
1630 *
1631 * @returns VBox status code.
1632 * @param pVM Pointer to the VM.
1633 * @param pVCpu Pointer to the VMCPU.
1634 * @param pCtx Pointer to the guest-CPU context.
1635 *
1636 * @remarks No-long-jump zone!!!
1637 */
1638VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1639{
1640 /*
1641 * Avoid reloading the guest state on longjmp reentrants and do it lazily just before executing the guest.
1642 * This only helps when we get rescheduled more than once to a different host CPU on a longjmp trip before
1643 * finally executing guest code.
1644 */
1645 return VINF_SUCCESS;
1646}
1647
1648
1649/**
1650 * Saves the entire guest state from the VMCB into the
1651 * guest-CPU context. Currently there is no residual state left in the CPU that
1652 * is not updated in the VMCB.
1653 *
1654 * @returns VBox status code.
1655 * @param pVCpu Pointer to the VMCPU.
1656 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1657 * out-of-sync. Make sure to update the required fields
1658 * before using them.
1659 */
1660static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1661{
1662 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1663
1664 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1665
1666 pMixedCtx->rip = pVmcb->guest.u64RIP;
1667 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1668 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1669 pMixedCtx->rax = pVmcb->guest.u64RAX;
1670
1671 /*
1672 * Guest interrupt shadow.
1673 */
1674 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1675 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1676 else
1677 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1678
1679 /*
1680 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1681 */
1682 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1683
1684 /*
1685 * Guest MSRs.
1686 */
1687 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1688 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1689 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1690 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1691 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1692 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1693 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1694 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1695
1696 /*
1697 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1698 */
1699 HMSVM_SAVE_SEG_REG(CS, cs);
1700 HMSVM_SAVE_SEG_REG(SS, ss);
1701 HMSVM_SAVE_SEG_REG(DS, ds);
1702 HMSVM_SAVE_SEG_REG(ES, es);
1703 HMSVM_SAVE_SEG_REG(FS, fs);
1704 HMSVM_SAVE_SEG_REG(GS, gs);
1705
1706 /*
1707 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1708 * register (yet).
1709 */
1710 /** @todo SELM might need to be fixed as it too should not care about the
1711 * granularity bit. See @bugref{6785}. */
1712 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1713 && pMixedCtx->cs.Attr.n.u1Present
1714 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1715 {
1716 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1717 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1718 }
1719
1720#ifdef VBOX_STRICT
1721# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1722 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1723 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1724 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1725 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1726 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1727 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1728
1729 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1730 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1731 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1732 HMSVM_ASSERT_SEG_GRANULARITY(es);
1733 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1734 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1735
1736# undef HMSVM_ASSERT_SEL_GRANULARITY
1737#endif
1738
1739 /*
1740 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1741 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1742 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1743 * See AMD spec. 15.5.1 "Basic operation".
1744 */
1745 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1746 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1747
1748 /*
1749 * Guest Descriptor-Table registers.
1750 */
1751 HMSVM_SAVE_SEG_REG(TR, tr);
1752 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1753 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1754 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1755
1756 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1757 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1758
1759 /*
1760 * Guest Debug registers.
1761 */
1762 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1763 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1764
1765 /*
1766 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1767 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1768 */
1769 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1770 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1771 {
1772 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1773 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1774 }
1775}
1776
1777
1778/**
1779 * Does the necessary state syncing before doing a longjmp to ring-3.
1780 *
1781 * @param pVM Pointer to the VM.
1782 * @param pVCpu Pointer to the VMCPU.
1783 * @param pCtx Pointer to the guest-CPU context.
1784 * @param rcExit The reason for exiting to ring-3. Can be
1785 * VINF_VMM_UNKNOWN_RING3_CALL.
1786 *
1787 * @remarks No-long-jmp zone!!!
1788 */
1789static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
1790{
1791 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1792 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1793
1794 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1795 if (CPUMIsGuestFPUStateActive(pVCpu))
1796 {
1797 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1798 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1799 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1800 }
1801
1802 /* Restore host debug registers if necessary and resync on next R0 reentry. */
1803 if (CPUMIsGuestDebugStateActive(pVCpu))
1804 {
1805 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
1806 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1807 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1808 }
1809 else if (CPUMIsHyperDebugStateActive(pVCpu))
1810 {
1811 CPUMR0LoadHostDebugState(pVM, pVCpu);
1812 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1813#ifdef VBOX_STRICT
1814 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1815 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1816 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1817#endif
1818 }
1819
1820 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
1821 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
1822 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1823 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1824 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1825
1826 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1827}
1828
1829
1830/**
1831 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
1832 * any remaining host state) before we longjump to ring-3 and possibly get
1833 * preempted.
1834 *
1835 * @param pVCpu Pointer to the VMCPU.
1836 * @param enmOperation The operation causing the ring-3 longjump.
1837 * @param pvUser The user argument (pointer to the possibly
1838 * out-of-date guest-CPU context).
1839 *
1840 * @remarks Must never be called with @a enmOperation ==
1841 * VMMCALLRING3_VM_R0_ASSERTION.
1842 */
1843DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
1844{
1845 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
1846 Assert(pVCpu);
1847 Assert(pvUser);
1848 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1849 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1850
1851 VMMRZCallRing3Disable(pVCpu);
1852 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1853 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
1854 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser, VINF_VMM_UNKNOWN_RING3_CALL);
1855 VMMRZCallRing3Enable(pVCpu);
1856}
1857
1858
1859/**
1860 * An action requires us to go back to ring-3. This function does the necessary
1861 * steps before we can safely return to ring-3. This is not the same as longjmps
1862 * to ring-3, this is voluntary.
1863 *
1864 * @param pVM Pointer to the VM.
1865 * @param pVCpu Pointer to the VMCPU.
1866 * @param pCtx Pointer to the guest-CPU context.
1867 * @param rcExit The reason for exiting to ring-3. Can be
1868 * VINF_VMM_UNKNOWN_RING3_CALL.
1869 */
1870static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
1871{
1872 Assert(pVM);
1873 Assert(pVCpu);
1874 Assert(pCtx);
1875 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1876
1877 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
1878 {
1879 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
1880 return;
1881 }
1882
1883 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
1884 VMMRZCallRing3Disable(pVCpu);
1885 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
1886
1887 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
1888 if (pVCpu->hm.s.Event.fPending)
1889 {
1890 hmR0SvmPendingEventToTrpmTrap(pVCpu);
1891 Assert(!pVCpu->hm.s.Event.fPending);
1892 }
1893
1894 /* Sync. the guest state. */
1895 hmR0SvmLongJmpToRing3(pVM, pVCpu, pCtx, rcExit);
1896 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1897
1898 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
1899 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
1900 | CPUM_CHANGED_LDTR
1901 | CPUM_CHANGED_GDTR
1902 | CPUM_CHANGED_IDTR
1903 | CPUM_CHANGED_TR
1904 | CPUM_CHANGED_HIDDEN_SEL_REGS);
1905
1906 /* On our way back from ring-3 the following needs to be done. */
1907 /** @todo This can change with preemption hooks. */
1908 if (rcExit == VINF_EM_RAW_INTERRUPT)
1909 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
1910 else
1911 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
1912
1913 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
1914 VMMRZCallRing3Enable(pVCpu);
1915}
1916
1917
1918/**
1919 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
1920 * intercepts.
1921 *
1922 * @param pVCpu Pointer to the VMCPU.
1923 *
1924 * @remarks No-long-jump zone!!!
1925 */
1926static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
1927{
1928 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1929 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
1930 {
1931 uint64_t u64CurTSC = ASMReadTSC();
1932 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
1933 {
1934 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
1935 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
1936 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
1937 }
1938 else
1939 {
1940 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1941 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1942 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
1943 }
1944 }
1945 else
1946 {
1947 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
1948 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
1949 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
1950 }
1951
1952 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1953}
1954
1955
1956/**
1957 * Sets an event as a pending event to be injected into the guest.
1958 *
1959 * @param pVCpu Pointer to the VMCPU.
1960 * @param pEvent Pointer to the SVM event.
1961 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
1962 * page-fault.
1963 *
1964 * @remarks Statistics counter assumes this is a guest event being reflected to
1965 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
1966 */
1967DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
1968{
1969 Assert(!pVCpu->hm.s.Event.fPending);
1970 Assert(pEvent->n.u1Valid);
1971
1972 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
1973 pVCpu->hm.s.Event.fPending = true;
1974 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
1975
1976 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
1977 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
1978
1979 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
1980}
1981
1982
1983/**
1984 * Injects an event into the guest upon VMRUN by updating the relevant field
1985 * in the VMCB.
1986 *
1987 * @param pVCpu Pointer to the VMCPU.
1988 * @param pVmcb Pointer to the guest VMCB.
1989 * @param pCtx Pointer to the guest-CPU context.
1990 * @param pEvent Pointer to the event.
1991 *
1992 * @remarks No-long-jump zone!!!
1993 * @remarks Requires CR0!
1994 */
1995DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
1996{
1997 pVmcb->ctrl.EventInject.u = pEvent->u;
1998 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
1999
2000 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2001 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2002}
2003
2004
2005
2006/**
2007 * Converts any TRPM trap into a pending HM event. This is typically used when
2008 * entering from ring-3 (not longjmp returns).
2009 *
2010 * @param pVCpu Pointer to the VMCPU.
2011 */
2012static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2013{
2014 Assert(TRPMHasTrap(pVCpu));
2015 Assert(!pVCpu->hm.s.Event.fPending);
2016
2017 uint8_t uVector;
2018 TRPMEVENT enmTrpmEvent;
2019 RTGCUINT uErrCode;
2020 RTGCUINTPTR GCPtrFaultAddress;
2021 uint8_t cbInstr;
2022
2023 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2024 AssertRC(rc);
2025
2026 SVMEVENT Event;
2027 Event.u = 0;
2028 Event.n.u1Valid = 1;
2029 Event.n.u8Vector = uVector;
2030
2031 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2032 if (enmTrpmEvent == TRPM_TRAP)
2033 {
2034 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2035 switch (uVector)
2036 {
2037 case X86_XCPT_PF:
2038 case X86_XCPT_DF:
2039 case X86_XCPT_TS:
2040 case X86_XCPT_NP:
2041 case X86_XCPT_SS:
2042 case X86_XCPT_GP:
2043 case X86_XCPT_AC:
2044 {
2045 Event.n.u1ErrorCodeValid = 1;
2046 Event.n.u32ErrorCode = uErrCode;
2047 break;
2048 }
2049 }
2050 }
2051 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2052 {
2053 if (uVector == X86_XCPT_NMI)
2054 Event.n.u3Type = SVM_EVENT_NMI;
2055 else
2056 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2057 }
2058 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2059 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2060 else
2061 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2062
2063 rc = TRPMResetTrap(pVCpu);
2064 AssertRC(rc);
2065
2066 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2067 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2068
2069 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2070 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2071}
2072
2073
2074/**
2075 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2076 * AMD-V to execute any instruction.
2077 *
2078 * @param pvCpu Pointer to the VMCPU.
2079 */
2080static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2081{
2082 Assert(pVCpu->hm.s.Event.fPending);
2083 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2084
2085 SVMEVENT Event;
2086 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2087
2088 uint8_t uVector = Event.n.u8Vector;
2089 uint8_t uVectorType = Event.n.u3Type;
2090
2091 TRPMEVENT enmTrapType;
2092 switch (uVectorType)
2093 {
2094 case SVM_EVENT_EXTERNAL_IRQ:
2095 case SVM_EVENT_NMI:
2096 enmTrapType = TRPM_HARDWARE_INT;
2097 break;
2098 case SVM_EVENT_SOFTWARE_INT:
2099 enmTrapType = TRPM_SOFTWARE_INT;
2100 break;
2101 case SVM_EVENT_EXCEPTION:
2102 enmTrapType = TRPM_TRAP;
2103 break;
2104 default:
2105 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2106 enmTrapType = TRPM_32BIT_HACK;
2107 break;
2108 }
2109
2110 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2111
2112 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2113 AssertRC(rc);
2114
2115 if (Event.n.u1ErrorCodeValid)
2116 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2117
2118 if ( uVectorType == SVM_EVENT_EXCEPTION
2119 && uVector == X86_XCPT_PF)
2120 {
2121 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2122 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2123 }
2124 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2125 {
2126 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2127 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2128 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2129 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2130 }
2131 pVCpu->hm.s.Event.fPending = false;
2132}
2133
2134
2135/**
2136 * Gets the guest's interrupt-shadow.
2137 *
2138 * @returns The guest's interrupt-shadow.
2139 * @param pVCpu Pointer to the VMCPU.
2140 * @param pCtx Pointer to the guest-CPU context.
2141 *
2142 * @remarks No-long-jump zone!!!
2143 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2144 */
2145DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2146{
2147 /*
2148 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2149 * inhibit interrupts or clear any existing interrupt-inhibition.
2150 */
2151 uint32_t uIntrState = 0;
2152 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2153 {
2154 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2155 {
2156 /*
2157 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2158 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2159 */
2160 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2161 }
2162 else
2163 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2164 }
2165 return uIntrState;
2166}
2167
2168
2169/**
2170 * Sets the virtual interrupt intercept control in the VMCB which
2171 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2172 * receive interrupts.
2173 *
2174 * @param pVmcb Pointer to the VMCB.
2175 */
2176DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2177{
2178 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2179 {
2180 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2181 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2182 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2183 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2184
2185 Log4(("Setting VINTR intercept\n"));
2186 }
2187}
2188
2189
2190/**
2191 * Injects any pending events into the guest if the guest is in a state to
2192 * receive them.
2193 *
2194 * @param pVCpu Pointer to the VMCPU.
2195 * @param pCtx Pointer to the guest-CPU context.
2196 */
2197static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2198{
2199 Assert(!TRPMHasTrap(pVCpu));
2200 Log4Func(("\n"));
2201
2202 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2203 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2204 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2205
2206 SVMEVENT Event;
2207 Event.u = 0;
2208 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2209 {
2210 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2211 Assert(Event.n.u1Valid);
2212 bool fInject = true;
2213 if ( Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
2214 && ( fBlockInt
2215 || fIntShadow))
2216 {
2217 fInject = false;
2218 }
2219 else if ( Event.n.u3Type == SVM_EVENT_NMI
2220 && fIntShadow)
2221 {
2222 fInject = false;
2223 }
2224
2225 if (fInject)
2226 {
2227 Log4(("Injecting pending HM event.\n"));
2228
2229 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2230 pVCpu->hm.s.Event.fPending = false;
2231
2232#ifdef VBOX_WITH_STATISTICS
2233 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2234 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2235 else
2236 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2237#endif
2238 }
2239 else
2240 hmR0SvmSetVirtIntrIntercept(pVmcb);
2241 } /** @todo SMI. SMIs take priority over NMIs. */
2242 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2243 {
2244 if (!fIntShadow)
2245 {
2246 Log4(("Injecting NMI\n"));
2247
2248 Event.n.u1Valid = 1;
2249 Event.n.u8Vector = X86_XCPT_NMI;
2250 Event.n.u3Type = SVM_EVENT_NMI;
2251
2252 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2253 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2254
2255 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2256 }
2257 else
2258 hmR0SvmSetVirtIntrIntercept(pVmcb);
2259 }
2260 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2261 {
2262 /* Check if there are guest external interrupts (PIC/APIC) pending and inject them, if the guest can receive them. */
2263 if ( !fBlockInt
2264 && !fIntShadow)
2265 {
2266 uint8_t u8Interrupt;
2267 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2268 if (RT_SUCCESS(rc))
2269 {
2270 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2271
2272 Event.n.u1Valid = 1;
2273 Event.n.u8Vector = u8Interrupt;
2274 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2275
2276 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2277 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2278 }
2279 else
2280 {
2281 /** @todo Does this actually happen? If not turn it into an assertion. */
2282 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2283 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2284 }
2285 }
2286 else
2287 hmR0SvmSetVirtIntrIntercept(pVmcb);
2288 }
2289
2290 /* Update the guest interrupt shadow in the VMCB. */
2291 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2292}
2293
2294
2295/**
2296 * Reports world-switch error and dumps some useful debug info.
2297 *
2298 * @param pVM Pointer to the VM.
2299 * @param pVCpu Pointer to the VMCPU.
2300 * @param rcVMRun The return code from VMRUN (or
2301 * VERR_SVM_INVALID_GUEST_STATE for invalid
2302 * guest-state).
2303 * @param pCtx Pointer to the guest-CPU context.
2304 */
2305static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2306{
2307 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2308 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2309
2310 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2311 {
2312 HMDumpRegs(pVM, pVCpu, pCtx);
2313#ifdef VBOX_STRICT
2314 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2315 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2316 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2317 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2318 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2319 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2320 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2321 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2322 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2323 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2324 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2325
2326 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2327 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2328 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2329
2330 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2331 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2332 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2333 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2334 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2335 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2336 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2337 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2338 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2339 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2340
2341 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2342 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2343 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2344 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2345 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2346 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2347 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2348 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2349 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2350 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2351 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2352 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2353 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2354 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2355 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2356 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2357 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2358
2359 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2360 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2361
2362 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2363 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2364 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2365 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2366 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2367 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2368 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2369 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2370 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2371 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2372 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2373 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2374 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2375 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2376 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2377 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2378 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2379 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2380 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2381 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2382
2383 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2384 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2385
2386 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2387 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2388 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2389 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2390
2391 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2392 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2393
2394 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2395 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2396 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2397 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2398
2399 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2400 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2401 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2402 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2403 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2404 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2405 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2406
2407 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2408 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2409 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2410 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2411
2412 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2413 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2414 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2415
2416 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2417 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2418 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2419 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2420 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2421 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2422 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2423 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2424 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2425 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2426 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2427 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2428#endif
2429 }
2430 else
2431 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2432}
2433
2434
2435/**
2436 * Check per-VM and per-VCPU force flag actions that require us to go back to
2437 * ring-3 for one reason or another.
2438 *
2439 * @returns VBox status code (information status code included).
2440 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2441 * ring-3.
2442 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2443 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2444 * interrupts)
2445 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2446 * all EMTs to be in ring-3.
2447 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2448 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2449 * to the EM loop.
2450 *
2451 * @param pVM Pointer to the VM.
2452 * @param pVCpu Pointer to the VMCPU.
2453 * @param pCtx Pointer to the guest-CPU context.
2454 */
2455static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2456{
2457 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2458
2459 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2460 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2461 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2462
2463 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
2464 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
2465 | VMCPU_FF_REQUEST))
2466 {
2467 /* Pending PGM C3 sync. */
2468 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2469 {
2470 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2471 if (rc != VINF_SUCCESS)
2472 {
2473 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2474 return rc;
2475 }
2476 }
2477
2478 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2479 /* -XXX- what was that about single stepping? */
2480 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2481 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2482 {
2483 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2484 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2485 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2486 return rc;
2487 }
2488
2489 /* Pending VM request packets, such as hardware interrupts. */
2490 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2491 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2492 {
2493 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2494 return VINF_EM_PENDING_REQUEST;
2495 }
2496
2497 /* Pending PGM pool flushes. */
2498 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2499 {
2500 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2501 return VINF_PGM_POOL_FLUSH_PENDING;
2502 }
2503
2504 /* Pending DMA requests. */
2505 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2506 {
2507 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2508 return VINF_EM_RAW_TO_R3;
2509 }
2510 }
2511
2512 return VINF_SUCCESS;
2513}
2514
2515
2516/**
2517 * Does the preparations before executing guest code in AMD-V.
2518 *
2519 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2520 * recompiler. We must be cautious what we do here regarding committing
2521 * guest-state information into the the VMCB assuming we assuredly execute the
2522 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2523 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2524 * that the recompiler can (and should) use them when it resumes guest
2525 * execution. Otherwise such operations must be done when we can no longer
2526 * exit to ring-3.
2527 *
2528 * @returns VBox status code (informational status codes included).
2529 * @retval VINF_SUCCESS if we can proceed with running the guest.
2530 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2531 *
2532 * @param pVM Pointer to the VM.
2533 * @param pVCpu Pointer to the VMCPU.
2534 * @param pCtx Pointer to the guest-CPU context.
2535 * @param pSvmTransient Pointer to the SVM transient structure.
2536 */
2537DECLINLINE(int) hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2538{
2539 /* Check force flag actions that might require us to go back to ring-3. */
2540 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2541 if (rc != VINF_SUCCESS)
2542 return rc;
2543
2544#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2545 /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
2546 pSvmTransient->uEFlags = ASMIntDisableFlags();
2547 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2548 {
2549 ASMSetFlags(pSvmTransient->uEFlags);
2550 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2551 /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
2552 return VINF_EM_RAW_INTERRUPT;
2553 }
2554 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2555 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2556#endif
2557
2558 /* Convert any pending TRPM traps to HM events for injection. */
2559 /** @todo Optimization: move this before disabling interrupts, restore state
2560 * using pVmcb->ctrl.EventInject.u. */
2561 if (TRPMHasTrap(pVCpu))
2562 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2563
2564 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2565
2566 return VINF_SUCCESS;
2567}
2568
2569
2570/**
2571 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2572 * means there is no backing out to ring-3 or anywhere else at this
2573 * point.
2574 *
2575 * @param pVM Pointer to the VM.
2576 * @param pVCpu Pointer to the VMCPU.
2577 * @param pCtx Pointer to the guest-CPU context.
2578 * @param pSvmTransient Pointer to the SVM transient structure.
2579 *
2580 * @remarks Called with preemption disabled.
2581 * @remarks No-long-jump zone!!!
2582 */
2583DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2584{
2585 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2586 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2587
2588#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2589 /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
2590 pSvmTransient->uEFlags = ASMIntDisableFlags();
2591 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2592#endif
2593
2594 /*
2595 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2596 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2597 */
2598 /** @todo The above assumption could be wrong. It's not documented what
2599 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2600 * hard way. */
2601 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2602 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2603
2604#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2605 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2606#endif
2607
2608 /* Load the guest state. */
2609 int rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2610 AssertRC(rc);
2611 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
2612 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2613
2614 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2615 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2616 pVmcb->ctrl.u64VmcbCleanBits = 0;
2617
2618 /*
2619 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2620 * so we can update it on the way back if the guest changed the TPR.
2621 */
2622 if (pVCpu->hm.s.svm.fSyncVTpr)
2623 {
2624 if (pVM->hm.s.fTPRPatchingActive)
2625 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2626 else
2627 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2628 }
2629
2630 /* Setup TSC offsetting. */
2631 if ( pSvmTransient->fUpdateTscOffsetting
2632 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
2633 {
2634 hmR0SvmUpdateTscOffsetting(pVCpu);
2635 pSvmTransient->fUpdateTscOffsetting = false;
2636 }
2637
2638 /* Flush the appropriate tagged-TLB entries. */
2639 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2640 hmR0SvmFlushTaggedTlb(pVCpu);
2641 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2642
2643 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
2644
2645 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2646 to start executing. */
2647
2648 /*
2649 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2650 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2651 *
2652 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2653 */
2654 pSvmTransient->fRestoreTscAuxMsr = false;
2655 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2656 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2657 {
2658 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2659 uint64_t u64GuestTscAux = 0;
2660 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2661 AssertRC(rc2);
2662 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
2663 {
2664 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2665 pSvmTransient->fRestoreTscAuxMsr = true;
2666 }
2667 }
2668}
2669
2670
2671/**
2672 * Wrapper for running the guest code in AMD-V.
2673 *
2674 * @returns VBox strict status code.
2675 * @param pVM Pointer to the VM.
2676 * @param pVCpu Pointer to the VMCPU.
2677 * @param pCtx Pointer to the guest-CPU context.
2678 *
2679 * @remarks No-long-jump zone!!!
2680 */
2681DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2682{
2683 /*
2684 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2685 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2686 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2687 */
2688#ifdef VBOX_WITH_KERNEL_USING_XMM
2689 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2690 pVCpu->hm.s.svm.pfnVMRun);
2691#else
2692 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2693#endif
2694}
2695
2696
2697/**
2698 * Performs some essential restoration of state after running guest code in
2699 * AMD-V.
2700 *
2701 * @param pVM Pointer to the VM.
2702 * @param pVCpu Pointer to the VMCPU.
2703 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2704 * out-of-sync. Make sure to update the required fields
2705 * before using them.
2706 * @param pSvmTransient Pointer to the SVM transient structure.
2707 * @param rcVMRun Return code of VMRUN.
2708 *
2709 * @remarks Called with interrupts disabled.
2710 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2711 * unconditionally when it is safe to do so.
2712 */
2713DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2714{
2715 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2716
2717 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2718 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2719
2720 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2721 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2722
2723 if (pSvmTransient->fRestoreTscAuxMsr)
2724 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2725
2726 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2727 {
2728 /** @todo Find a way to fix hardcoding a guestimate. */
2729 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
2730 }
2731
2732 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
2733 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2734 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2735
2736 Assert(!(ASMGetFlags() & X86_EFL_IF));
2737 ASMSetFlags(pSvmTransient->uEFlags); /* Enable interrupts. */
2738
2739 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pMixedCtx);
2740 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2741
2742 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2743 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2744 {
2745 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2746 return;
2747 }
2748
2749 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2750 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2751 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2752
2753 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2754 {
2755 if (pVCpu->hm.s.svm.fSyncVTpr)
2756 {
2757 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2758 if ( pVM->hm.s.fTPRPatchingActive
2759 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2760 {
2761 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
2762 AssertRC(rc);
2763 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2764 }
2765 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2766 {
2767 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
2768 AssertRC(rc);
2769 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2770 }
2771 }
2772 }
2773}
2774
2775
2776/**
2777 * Runs the guest code using AMD-V.
2778 *
2779 * @returns VBox status code.
2780 * @param pVM Pointer to the VM.
2781 * @param pVCpu Pointer to the VMCPU.
2782 * @param pCtx Pointer to the guest-CPU context.
2783 */
2784VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2785{
2786 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2787 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2788
2789 SVMTRANSIENT SvmTransient;
2790 SvmTransient.fUpdateTscOffsetting = true;
2791 uint32_t cLoops = 0;
2792 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2793 int rc = VERR_INTERNAL_ERROR_5;
2794
2795 for (;; cLoops++)
2796 {
2797 Assert(!HMR0SuspendPending());
2798 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
2799 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
2800 (unsigned)RTMpCpuId(), cLoops));
2801
2802 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
2803 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
2804 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
2805 if (rc != VINF_SUCCESS)
2806 break;
2807
2808 /*
2809 * No longjmps to ring-3 from this point on!!!
2810 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
2811 * This also disables flushing of the R0-logger instance (if any).
2812 */
2813 VMMRZCallRing3Disable(pVCpu);
2814 VMMRZCallRing3RemoveNotification(pVCpu);
2815 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
2816
2817 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
2818
2819 /*
2820 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
2821 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
2822 */
2823 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
2824 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
2825 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
2826 {
2827 if (rc == VINF_SUCCESS)
2828 rc = VERR_SVM_INVALID_GUEST_STATE;
2829 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
2830 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
2831 return rc;
2832 }
2833
2834 /* Handle the #VMEXIT. */
2835 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
2836 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
2837 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
2838 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
2839 if (rc != VINF_SUCCESS)
2840 break;
2841 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
2842 {
2843 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
2844 rc = VINF_EM_RAW_INTERRUPT;
2845 break;
2846 }
2847 }
2848
2849 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
2850 if (rc == VERR_EM_INTERPRETER)
2851 rc = VINF_EM_RAW_EMULATE_INSTR;
2852 else if (rc == VINF_EM_RESET)
2853 rc = VINF_EM_TRIPLE_FAULT;
2854 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
2855 return rc;
2856}
2857
2858
2859/**
2860 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
2861 *
2862 * @returns VBox status code (informational status codes included).
2863 * @param pVCpu Pointer to the VMCPU.
2864 * @param pCtx Pointer to the guest-CPU context.
2865 * @param pSvmTransient Pointer to the SVM transient structure.
2866 */
2867DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2868{
2869 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
2870 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
2871
2872 /*
2873 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
2874 * normal workloads (for some definition of "normal").
2875 */
2876 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
2877 switch (pSvmTransient->u64ExitCode)
2878 {
2879 case SVM_EXIT_NPF:
2880 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
2881
2882 case SVM_EXIT_IOIO:
2883 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
2884
2885 case SVM_EXIT_RDTSC:
2886 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
2887
2888 case SVM_EXIT_RDTSCP:
2889 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
2890
2891 case SVM_EXIT_CPUID:
2892 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
2893
2894 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
2895 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
2896
2897 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
2898 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
2899
2900 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
2901 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
2902
2903 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
2904 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
2905
2906 case SVM_EXIT_MONITOR:
2907 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
2908
2909 case SVM_EXIT_MWAIT:
2910 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
2911
2912 case SVM_EXIT_HLT:
2913 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
2914
2915 case SVM_EXIT_READ_CR0:
2916 case SVM_EXIT_READ_CR3:
2917 case SVM_EXIT_READ_CR4:
2918 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
2919
2920 case SVM_EXIT_WRITE_CR0:
2921 case SVM_EXIT_WRITE_CR3:
2922 case SVM_EXIT_WRITE_CR4:
2923 case SVM_EXIT_WRITE_CR8:
2924 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
2925
2926 case SVM_EXIT_VINTR:
2927 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
2928
2929 case SVM_EXIT_INTR:
2930 case SVM_EXIT_FERR_FREEZE:
2931 case SVM_EXIT_NMI:
2932 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
2933
2934 case SVM_EXIT_MSR:
2935 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
2936
2937 case SVM_EXIT_INVLPG:
2938 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
2939
2940 case SVM_EXIT_WBINVD:
2941 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
2942
2943 case SVM_EXIT_INVD:
2944 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
2945
2946 case SVM_EXIT_RDPMC:
2947 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
2948
2949 default:
2950 {
2951 switch (pSvmTransient->u64ExitCode)
2952 {
2953 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
2954 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
2955 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
2956 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
2957 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
2958
2959 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
2960 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
2961 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
2962 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
2963 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
2964
2965 case SVM_EXIT_TASK_SWITCH:
2966 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
2967
2968 case SVM_EXIT_VMMCALL:
2969 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
2970
2971 case SVM_EXIT_SHUTDOWN:
2972 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
2973
2974 case SVM_EXIT_SMI:
2975 case SVM_EXIT_INIT:
2976 {
2977 /*
2978 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
2979 * we want to know about it so log the exit code and bail.
2980 */
2981 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
2982 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
2983 return VERR_SVM_UNEXPECTED_EXIT;
2984 }
2985
2986 case SVM_EXIT_INVLPGA:
2987 case SVM_EXIT_RSM:
2988 case SVM_EXIT_VMRUN:
2989 case SVM_EXIT_VMLOAD:
2990 case SVM_EXIT_VMSAVE:
2991 case SVM_EXIT_STGI:
2992 case SVM_EXIT_CLGI:
2993 case SVM_EXIT_SKINIT:
2994 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
2995
2996#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2997 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
2998 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
2999 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3000 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3001 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3002 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3003 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3004 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3005 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3006 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3007 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3008 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3009 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3010 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3011 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3012 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3013 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3014 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3015 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3016
3017 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3018 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3019 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3020 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3021 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3022 {
3023 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3024 SVMEVENT Event;
3025 Event.u = 0;
3026 Event.n.u1Valid = 1;
3027 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3028 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3029
3030 switch (Event.n.u8Vector)
3031 {
3032 case X86_XCPT_DE:
3033 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3034 break;
3035
3036 case X86_XCPT_BP:
3037 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3038 * next instruction. */
3039 /** @todo Investigate this later. */
3040 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3041 break;
3042
3043 case X86_XCPT_UD:
3044 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
3045 break;
3046
3047 case X86_XCPT_NP:
3048 Event.n.u1ErrorCodeValid = 1;
3049 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3050 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3051 break;
3052
3053 case X86_XCPT_SS:
3054 Event.n.u1ErrorCodeValid = 1;
3055 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3056 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3057 break;
3058
3059 case X86_XCPT_GP:
3060 Event.n.u1ErrorCodeValid = 1;
3061 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3062 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3063 break;
3064
3065 default:
3066 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3067 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3068 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3069 }
3070
3071 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3072 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3073 return VINF_SUCCESS;
3074 }
3075#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3076
3077 default:
3078 {
3079 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3080 pVCpu->hm.s.u32HMError = u32ExitCode;
3081 return VERR_SVM_UNKNOWN_EXIT;
3082 }
3083 }
3084 }
3085 }
3086 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3087}
3088
3089
3090#ifdef DEBUG
3091/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3092# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3093 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3094
3095# define HMSVM_ASSERT_PREEMPT_CPUID() \
3096 do \
3097 { \
3098 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3099 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3100 } while (0)
3101
3102# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3103 do { \
3104 AssertPtr(pVCpu); \
3105 AssertPtr(pCtx); \
3106 AssertPtr(pSvmTransient); \
3107 Assert(ASMIntAreEnabled()); \
3108 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
3109 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3110 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3111 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
3112 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3113 HMSVM_ASSERT_PREEMPT_CPUID(); \
3114 } while (0)
3115#else /* Release builds */
3116# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3117#endif
3118
3119
3120/**
3121 * Worker for hmR0SvmInterpretInvlpg().
3122 *
3123 * @return VBox status code.
3124 * @param pVCpu Pointer to the VMCPU.
3125 * @param pCpu Pointer to the disassembler state.
3126 * @param pRegFrame Pointer to the register frame.
3127 */
3128static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3129{
3130 DISQPVPARAMVAL Param1;
3131 RTGCPTR GCPtrPage;
3132
3133 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3134 if (RT_FAILURE(rc))
3135 return VERR_EM_INTERPRETER;
3136
3137 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3138 || Param1.type == DISQPV_TYPE_ADDRESS)
3139 {
3140 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3141 return VERR_EM_INTERPRETER;
3142
3143 GCPtrPage = Param1.val.val64;
3144 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3145 rc = VBOXSTRICTRC_VAL(rc2);
3146 }
3147 else
3148 {
3149 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3150 rc = VERR_EM_INTERPRETER;
3151 }
3152
3153 return rc;
3154}
3155
3156
3157/**
3158 * Interprets INVLPG.
3159 *
3160 * @returns VBox status code.
3161 * @retval VINF_* Scheduling instructions.
3162 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3163 * @retval VERR_* Fatal errors.
3164 *
3165 * @param pVM Pointer to the VM.
3166 * @param pRegFrame Pointer to the register frame.
3167 *
3168 * @remarks Updates the RIP if the instruction was executed successfully.
3169 */
3170static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3171{
3172 /* Only allow 32 & 64 bit code. */
3173 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3174 {
3175 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3176 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3177 if ( RT_SUCCESS(rc)
3178 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3179 {
3180 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3181 if (RT_SUCCESS(rc))
3182 pRegFrame->rip += pDis->cbInstr;
3183 return rc;
3184 }
3185 else
3186 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3187 }
3188 return VERR_EM_INTERPRETER;
3189}
3190
3191
3192/**
3193 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3194 *
3195 * @param pVCpu Pointer to the VMCPU.
3196 */
3197DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3198{
3199 SVMEVENT Event;
3200 Event.u = 0;
3201 Event.n.u1Valid = 1;
3202 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3203 Event.n.u8Vector = X86_XCPT_UD;
3204 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3205}
3206
3207
3208/**
3209 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3210 *
3211 * @param pVCpu Pointer to the VMCPU.
3212 */
3213DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3214{
3215 SVMEVENT Event;
3216 Event.u = 0;
3217 Event.n.u1Valid = 1;
3218 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3219 Event.n.u8Vector = X86_XCPT_DB;
3220 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3221}
3222
3223
3224/**
3225 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3226 *
3227 * @param pVCpu Pointer to the VMCPU.
3228 * @param pCtx Pointer to the guest-CPU context.
3229 * @param u32ErrCode The error-code for the page-fault.
3230 * @param uFaultAddress The page fault address (CR2).
3231 *
3232 * @remarks This updates the guest CR2 with @a uFaultAddress!
3233 */
3234DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3235{
3236 SVMEVENT Event;
3237 Event.u = 0;
3238 Event.n.u1Valid = 1;
3239 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3240 Event.n.u8Vector = X86_XCPT_PF;
3241 Event.n.u1ErrorCodeValid = 1;
3242 Event.n.u32ErrorCode = u32ErrCode;
3243
3244 /* Update CR2 of the guest. */
3245 if (pCtx->cr2 != uFaultAddress)
3246 {
3247 pCtx->cr2 = uFaultAddress;
3248 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
3249 }
3250
3251 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3252}
3253
3254
3255/**
3256 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3257 * VM.
3258 *
3259 * @param pVCpu Pointer to the VMCPU.
3260 */
3261DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3262{
3263 SVMEVENT Event;
3264 Event.u = 0;
3265 Event.n.u1Valid = 1;
3266 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3267 Event.n.u8Vector = X86_XCPT_NM;
3268 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3269}
3270
3271
3272/**
3273 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3274 *
3275 * @param pVCpu Pointer to the VMCPU.
3276 */
3277DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3278{
3279 SVMEVENT Event;
3280 Event.u = 0;
3281 Event.n.u1Valid = 1;
3282 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3283 Event.n.u8Vector = X86_XCPT_MF;
3284 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3285}
3286
3287
3288/**
3289 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3290 *
3291 * @param pVCpu Pointer to the VMCPU.
3292 */
3293DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3294{
3295 SVMEVENT Event;
3296 Event.u = 0;
3297 Event.n.u1Valid = 1;
3298 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3299 Event.n.u8Vector = X86_XCPT_DF;
3300 Event.n.u1ErrorCodeValid = 1;
3301 Event.n.u32ErrorCode = 0;
3302 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3303}
3304
3305
3306/**
3307 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3308 * guests. This simply looks up the patch record at EIP and does the required.
3309 *
3310 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3311 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3312 * TPR). See hmR3ReplaceTprInstr() for the details.
3313 *
3314 * @returns VBox status code.
3315 * @param pVM Pointer to the VM.
3316 * @param pVCpu Pointer to the VMCPU.
3317 * @param pCtx Pointer to the guest-CPU context.
3318 */
3319static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3320{
3321 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3322 for (;;)
3323 {
3324 bool fPending;
3325 uint8_t u8Tpr;
3326
3327 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3328 if (!pPatch)
3329 break;
3330
3331 switch (pPatch->enmType)
3332 {
3333 case HMTPRINSTR_READ:
3334 {
3335 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3336 AssertRC(rc);
3337
3338 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3339 AssertRC(rc);
3340 pCtx->rip += pPatch->cbOp;
3341 break;
3342 }
3343
3344 case HMTPRINSTR_WRITE_REG:
3345 case HMTPRINSTR_WRITE_IMM:
3346 {
3347 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3348 {
3349 uint32_t u32Val;
3350 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3351 AssertRC(rc);
3352 u8Tpr = u32Val;
3353 }
3354 else
3355 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3356
3357 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3358 AssertRC(rc2);
3359 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3360
3361 pCtx->rip += pPatch->cbOp;
3362 break;
3363 }
3364
3365 default:
3366 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
3367 pVCpu->hm.s.u32HMError = pPatch->enmType;
3368 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
3369 }
3370 }
3371
3372 return VINF_SUCCESS;
3373}
3374
3375/**
3376 * Determines if an exception is a contributory exception. Contributory
3377 * exceptions are ones which can cause double-faults. Page-fault is
3378 * intentionally not included here as it's a conditional contributory exception.
3379 *
3380 * @returns true if the exception is contributory, false otherwise.
3381 * @param uVector The exception vector.
3382 */
3383DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3384{
3385 switch (uVector)
3386 {
3387 case X86_XCPT_GP:
3388 case X86_XCPT_SS:
3389 case X86_XCPT_NP:
3390 case X86_XCPT_TS:
3391 case X86_XCPT_DE:
3392 return true;
3393 default:
3394 break;
3395 }
3396 return false;
3397}
3398
3399
3400/**
3401 * Handle a condition that occurred while delivering an event through the guest
3402 * IDT.
3403 *
3404 * @returns VBox status code (informational error codes included).
3405 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3406 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3407 * continue execution of the guest which will delivery the #DF.
3408 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3409 *
3410 * @param pVCpu Pointer to the VMCPU.
3411 * @param pCtx Pointer to the guest-CPU context.
3412 * @param pSvmTransient Pointer to the SVM transient structure.
3413 *
3414 * @remarks No-long-jump zone!!!
3415 */
3416static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3417{
3418 int rc = VINF_SUCCESS;
3419 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3420
3421 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3422 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3423 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3424 {
3425 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3426
3427 typedef enum
3428 {
3429 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3430 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3431 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3432 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3433 } SVMREFLECTXCPT;
3434
3435 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3436 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3437 {
3438 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3439 {
3440 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3441
3442#ifdef VBOX_STRICT
3443 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
3444 && uExitVector == X86_XCPT_PF)
3445 {
3446 Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
3447 }
3448#endif
3449 if ( uExitVector == X86_XCPT_PF
3450 && uIdtVector == X86_XCPT_PF)
3451 {
3452 pSvmTransient->fVectoringPF = true;
3453 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3454 }
3455 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3456 && hmR0SvmIsContributoryXcpt(uExitVector)
3457 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3458 || uIdtVector == X86_XCPT_PF))
3459 {
3460 enmReflect = SVMREFLECTXCPT_DF;
3461 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3462 uIdtVector, uExitVector));
3463 }
3464 else if (uIdtVector == X86_XCPT_DF)
3465 {
3466 enmReflect = SVMREFLECTXCPT_TF;
3467 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3468 uIdtVector, uExitVector));
3469 }
3470 else
3471 enmReflect = SVMREFLECTXCPT_XCPT;
3472 }
3473 else
3474 {
3475 /*
3476 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3477 * exception to the guest after handling the VM-exit.
3478 */
3479 enmReflect = SVMREFLECTXCPT_XCPT;
3480 }
3481 }
3482 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3483 {
3484 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3485 enmReflect = SVMREFLECTXCPT_XCPT;
3486 }
3487
3488 switch (enmReflect)
3489 {
3490 case SVMREFLECTXCPT_XCPT:
3491 {
3492 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3493 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
3494
3495 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3496 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3497 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3498 break;
3499 }
3500
3501 case SVMREFLECTXCPT_DF:
3502 {
3503 hmR0SvmSetPendingXcptDF(pVCpu);
3504 rc = VINF_HM_DOUBLE_FAULT;
3505 break;
3506 }
3507
3508 case SVMREFLECTXCPT_TF:
3509 {
3510 rc = VINF_EM_RESET;
3511 break;
3512 }
3513
3514 default:
3515 Assert(rc == VINF_SUCCESS);
3516 break;
3517 }
3518 }
3519 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3520 return rc;
3521}
3522
3523
3524/**
3525 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
3526 * CPU, otherwise advances the RIP by @a cb bytes.
3527 *
3528 * @param pVCpu Pointer to the VMCPU.
3529 * @param pCtx Pointer to the guest-CPU context.
3530 * @param cb RIP increment value in bytes.
3531 *
3532 * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
3533 * when NRIP_SAVE is supported by the CPU!
3534 */
3535DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
3536{
3537 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3538 {
3539 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3540 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3541 }
3542 else
3543 pCtx->rip += cb;
3544}
3545
3546
3547/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3548/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3549/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3550
3551/** @name VM-exit handlers.
3552 * @{
3553 */
3554
3555/**
3556 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3557 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3558 */
3559HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3560{
3561 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3562
3563 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
3564 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
3565 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
3566 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3567
3568 /*
3569 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
3570 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
3571 * interrupt it is until the host actually take the interrupt.
3572 *
3573 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
3574 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
3575 */
3576 return VINF_EM_RAW_INTERRUPT;
3577}
3578
3579
3580/**
3581 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3582 */
3583HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3584{
3585 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3586
3587 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3588 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3589 return VINF_SUCCESS;
3590}
3591
3592
3593/**
3594 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3595 */
3596HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3597{
3598 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3599
3600 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3601 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3602 return VINF_SUCCESS;
3603}
3604
3605
3606/**
3607 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3608 */
3609HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3610{
3611 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3612 PVM pVM = pVCpu->CTX_SUFF(pVM);
3613 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3614 if (RT_LIKELY(rc == VINF_SUCCESS))
3615 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3616 else
3617 {
3618 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3619 rc = VERR_EM_INTERPRETER;
3620 }
3621 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3622 return rc;
3623}
3624
3625
3626/**
3627 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3628 */
3629HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3630{
3631 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3632 PVM pVM = pVCpu->CTX_SUFF(pVM);
3633 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3634 if (RT_LIKELY(rc == VINF_SUCCESS))
3635 {
3636 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3637 pSvmTransient->fUpdateTscOffsetting = true;
3638 }
3639 else
3640 {
3641 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3642 rc = VERR_EM_INTERPRETER;
3643 }
3644 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3645 return rc;
3646}
3647
3648
3649/**
3650 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3651 */
3652HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3653{
3654 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3655 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3656 if (RT_LIKELY(rc == VINF_SUCCESS))
3657 {
3658 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3659 pSvmTransient->fUpdateTscOffsetting = true;
3660 }
3661 else
3662 {
3663 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3664 rc = VERR_EM_INTERPRETER;
3665 }
3666 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3667 return rc;
3668}
3669
3670
3671/**
3672 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3673 */
3674HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3675{
3676 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3677 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3678 if (RT_LIKELY(rc == VINF_SUCCESS))
3679 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3680 else
3681 {
3682 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3683 rc = VERR_EM_INTERPRETER;
3684 }
3685 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3686 return rc;
3687}
3688
3689
3690/**
3691 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3692 */
3693HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3694{
3695 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3696 PVM pVM = pVCpu->CTX_SUFF(pVM);
3697 Assert(!pVM->hm.s.fNestedPaging);
3698
3699 /** @todo Decode Assist. */
3700 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3701 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3702 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3703 return rc;
3704}
3705
3706
3707/**
3708 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3709 */
3710HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3711{
3712 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3713 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
3714 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3715 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3716 return rc;
3717}
3718
3719
3720/**
3721 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3722 */
3723HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3724{
3725 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3726 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3727 if (RT_LIKELY(rc == VINF_SUCCESS))
3728 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3729 else
3730 {
3731 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3732 rc = VERR_EM_INTERPRETER;
3733 }
3734 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3735 return rc;
3736}
3737
3738
3739/**
3740 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3741 */
3742HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3743{
3744 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3745 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3746 int rc = VBOXSTRICTRC_VAL(rc2);
3747 if ( rc == VINF_EM_HALT
3748 || rc == VINF_SUCCESS)
3749 {
3750 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3751
3752 if ( rc == VINF_EM_HALT
3753 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3754 {
3755 rc = VINF_SUCCESS;
3756 }
3757 }
3758 else
3759 {
3760 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3761 rc = VERR_EM_INTERPRETER;
3762 }
3763 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3764 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3765 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3766 return rc;
3767}
3768
3769
3770/**
3771 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
3772 * Conditional #VMEXIT.
3773 */
3774HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3775{
3776 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3777 return VINF_EM_RESET;
3778}
3779
3780
3781/**
3782 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
3783 */
3784HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3785{
3786 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3787
3788 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3789
3790 /** @todo Decode Assist. */
3791 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3792 int rc = VBOXSTRICTRC_VAL(rc2);
3793 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
3794 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
3795 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
3796 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
3797 return rc;
3798}
3799
3800
3801/**
3802 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
3803 */
3804HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3805{
3806 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3807 /** @todo Decode Assist. */
3808 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3809 int rc = VBOXSTRICTRC_VAL(rc2);
3810 if (rc == VINF_SUCCESS)
3811 {
3812 /* RIP has been updated by EMInterpretInstruction(). */
3813 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
3814 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
3815 {
3816 case 0: /* CR0. */
3817 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
3818 break;
3819
3820 case 3: /* CR3. */
3821 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
3822 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
3823 break;
3824
3825 case 4: /* CR4. */
3826 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
3827 break;
3828
3829 case 8: /* CR8 (TPR). */
3830 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3831 break;
3832
3833 default:
3834 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
3835 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
3836 break;
3837 }
3838 }
3839 else
3840 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
3841 return rc;
3842}
3843
3844
3845/**
3846 * #VMEXIT handler for instructions that result in a #UD exception delivered to
3847 * the guest.
3848 */
3849HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3850{
3851 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3852 hmR0SvmSetPendingXcptUD(pVCpu);
3853 return VINF_SUCCESS;
3854}
3855
3856
3857/**
3858 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
3859 */
3860HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3861{
3862 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3863 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3864 PVM pVM = pVCpu->CTX_SUFF(pVM);
3865
3866 int rc;
3867 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
3868 {
3869 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
3870
3871 /* Handle TPR patching; intercepted LSTAR write. */
3872 if ( pVM->hm.s.fTPRPatchingActive
3873 && pCtx->ecx == MSR_K8_LSTAR)
3874 {
3875 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
3876 {
3877 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
3878 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
3879 AssertRC(rc2);
3880 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3881 }
3882 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3883 return VINF_SUCCESS;
3884 }
3885
3886 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3887 {
3888 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3889 if (RT_LIKELY(rc == VINF_SUCCESS))
3890 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3891 else
3892 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
3893 }
3894 else
3895 {
3896 VBOXSTRICTRC rcStrict = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3897 rc = VBOXSTRICTRC_VAL(rcStrict);
3898 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3899 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
3900 /* RIP updated by EMInterpretInstruction(). */
3901 }
3902
3903 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
3904 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
3905 && pCtx->ecx <= MSR_IA32_X2APIC_END)
3906 {
3907 /* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
3908 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
3909 EMInterpretWrmsr() changes it. */
3910 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3911 }
3912 else if (pCtx->ecx == MSR_K6_EFER)
3913 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
3914 else if (pCtx->ecx == MSR_IA32_TSC)
3915 pSvmTransient->fUpdateTscOffsetting = true;
3916 }
3917 else
3918 {
3919 /* MSR Read access. */
3920 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
3921 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
3922
3923 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3924 {
3925 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3926 if (RT_LIKELY(rc == VINF_SUCCESS))
3927 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3928 else
3929 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
3930 }
3931 else
3932 {
3933 VBOXSTRICTRC rcStrict = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
3934 rc = VBOXSTRICTRC_VAL(rcStrict);
3935 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3936 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
3937 /* RIP updated by EMInterpretInstruction(). */
3938 }
3939 }
3940
3941 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
3942 return rc;
3943}
3944
3945
3946/**
3947 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
3948 */
3949HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3950{
3951 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3952 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
3953
3954 /* We should -not- get this VM-exit if the guest is debugging. */
3955 if (CPUMIsGuestDebugStateActive(pVCpu))
3956 {
3957 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx));
3958 return VERR_SVM_UNEXPECTED_EXIT;
3959 }
3960
3961 if ( !DBGFIsStepping(pVCpu)
3962 && !CPUMIsHyperDebugStateActive(pVCpu))
3963 {
3964 /* Don't intercept DRx read and writes. */
3965 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3966 pVmcb->ctrl.u16InterceptRdDRx = 0;
3967 pVmcb->ctrl.u16InterceptWrDRx = 0;
3968 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3969
3970 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
3971 PVM pVM = pVCpu->CTX_SUFF(pVM);
3972 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
3973 AssertRC(rc);
3974 Assert(CPUMIsGuestDebugStateActive(pVCpu));
3975
3976 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
3977 return rc;
3978 }
3979
3980 /** @todo Decode assist. */
3981 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3982 int rc = VBOXSTRICTRC_VAL(rc2);
3983 if (RT_LIKELY(rc == VINF_SUCCESS))
3984 {
3985 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
3986 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
3987 }
3988 else
3989 Assert(rc == VERR_EM_INTERPRETER);
3990 return rc;
3991}
3992
3993
3994/**
3995 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
3996 */
3997HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3998{
3999 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4000 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4001 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4002 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4003 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4004 return rc;
4005}
4006
4007
4008/**
4009 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
4010 */
4011HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4012{
4013 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4014
4015 /* I/O operation lookup arrays. */
4016 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4017 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4018 the result (in AL/AX/EAX). */
4019 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4020
4021 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4022 PVM pVM = pVCpu->CTX_SUFF(pVM);
4023
4024 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4025 SVMIOIOEXIT IoExitInfo;
4026 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4027 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4028 uint32_t uIOSize = s_aIOSize[uIOWidth];
4029 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4030
4031 if (RT_UNLIKELY(!uIOSize))
4032 {
4033 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4034 return VERR_EM_INTERPRETER;
4035 }
4036
4037 int rc;
4038 if (IoExitInfo.n.u1STR)
4039 {
4040 /* INS/OUTS - I/O String instruction. */
4041 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4042
4043 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4044 * in EXITINFO1? Investigate once this thing is up and running. */
4045
4046 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4047 if (rc == VINF_SUCCESS)
4048 {
4049 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4050 {
4051 VBOXSTRICTRC rc2 = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4052 (DISCPUMODE)pDis->uAddrMode, uIOSize);
4053 rc = VBOXSTRICTRC_VAL(rc2);
4054 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4055 }
4056 else
4057 {
4058 VBOXSTRICTRC rc2 = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4059 (DISCPUMODE)pDis->uAddrMode, uIOSize);
4060 rc = VBOXSTRICTRC_VAL(rc2);
4061 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4062 }
4063 }
4064 else
4065 rc = VINF_EM_RAW_EMULATE_INSTR;
4066 }
4067 else
4068 {
4069 /* IN/OUT - I/O instruction. */
4070 Assert(!IoExitInfo.n.u1REP);
4071
4072 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4073 {
4074 VBOXSTRICTRC rc2 = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
4075 rc = VBOXSTRICTRC_VAL(rc2);
4076 if (rc == VINF_IOM_R3_IOPORT_WRITE)
4077 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
4078
4079 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4080 }
4081 else
4082 {
4083 uint32_t u32Val = 0;
4084
4085 VBOXSTRICTRC rc2 = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, uIOSize);
4086 rc = VBOXSTRICTRC_VAL(rc2);
4087 if (IOM_SUCCESS(rc))
4088 {
4089 /* Save result of I/O IN instr. in AL/AX/EAX. */
4090 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4091 }
4092 else if (rc == VINF_IOM_R3_IOPORT_READ)
4093 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
4094
4095 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4096 }
4097 }
4098
4099 if (IOM_SUCCESS(rc))
4100 {
4101 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4102 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4103
4104 if (RT_LIKELY(rc == VINF_SUCCESS))
4105 {
4106 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
4107 /** @todo This is inefficient and wrong according to intel and amd specs
4108 * (regardless of which is correct). See the same code in the VT-x case.
4109 * write testcase and refactor the code to use a mostly shared
4110 * implementation after the initial DR7/CR4 checks. */
4111 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
4112 {
4113 /* I/O breakpoint length, in bytes. */
4114 static uint32_t const s_aIOBPLen[4] = { 1, 2, 0, 4 };
4115
4116 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4117 for (unsigned i = 0; i < 4; i++)
4118 {
4119 unsigned uBPLen = s_aIOBPLen[X86_DR7_GET_LEN(pCtx->dr[7], i)];
4120
4121 if ( IoExitInfo.n.u16Port >= pCtx->dr[i]
4122 && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen
4123 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
4124 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
4125 {
4126 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4127
4128 /* Clear all breakpoint status flags and set the one we just hit. */
4129 pCtx->dr[6] &= ~(X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3);
4130 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
4131
4132 /*
4133 * Note: AMD64 Architecture Programmer's Manual 13.1:
4134 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
4135 * by software after the contents have been read.
4136 */
4137 pVmcb->guest.u64DR6 = pCtx->dr[6];
4138
4139 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
4140 pCtx->dr[7] &= ~X86_DR7_GD;
4141
4142 /* Paranoia. */
4143 pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
4144 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
4145 pCtx->dr[7] |= 0x400; /* MB1. */
4146
4147 pVmcb->guest.u64DR7 = pCtx->dr[7];
4148 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4149
4150 /* Inject the debug exception. */
4151 hmR0SvmSetPendingXcptDB(pVCpu);
4152 break;
4153 }
4154 }
4155 }
4156 }
4157 }
4158
4159#ifdef VBOX_STRICT
4160 if (rc == VINF_IOM_R3_IOPORT_READ)
4161 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4162 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
4163 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4164 else
4165 {
4166 AssertMsg( RT_FAILURE(rc)
4167 || rc == VINF_SUCCESS
4168 || rc == VINF_EM_RAW_EMULATE_INSTR
4169 || rc == VINF_EM_RAW_GUEST_TRAP
4170 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
4171 }
4172#endif
4173 return rc;
4174}
4175
4176
4177/**
4178 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4179 * #VMEXIT.
4180 */
4181HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4182{
4183 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4184 PVM pVM = pVCpu->CTX_SUFF(pVM);
4185 Assert(pVM->hm.s.fNestedPaging);
4186
4187 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4188
4189 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4190 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4191 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4192 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4193
4194 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4195
4196#ifdef VBOX_HM_WITH_GUEST_PATCHING
4197 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4198 if ( pVM->hm.s.fTRPPatchingAllowed
4199 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
4200 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4201 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
4202 && !CPUMGetGuestCPL(pVCpu)
4203 && !CPUMIsGuestInLongModeEx(pCtx)
4204 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4205 {
4206 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4207 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4208
4209 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4210 {
4211 /* Only attempt to patch the instruction once. */
4212 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4213 if (!pPatch)
4214 return VINF_EM_HM_PATCH_TPR_INSTR;
4215 }
4216 }
4217#endif
4218
4219 /*
4220 * Determine the nested paging mode.
4221 */
4222 PGMMODE enmNestedPagingMode;
4223#if HC_ARCH_BITS == 32
4224 if (CPUMIsGuestInLongModeEx(pCtx))
4225 enmNestedPagingMode = PGMMODE_AMD64_NX;
4226 else
4227#endif
4228 enmNestedPagingMode = PGMGetHostMode(pVM);
4229
4230 /*
4231 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4232 */
4233 int rc;
4234 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4235 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4236 {
4237 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4238 u32ErrCode);
4239 rc = VBOXSTRICTRC_VAL(rc2);
4240
4241 /*
4242 * If we succeed, resume guest execution.
4243 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4244 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4245 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4246 * weird case. See @bugref{6043}.
4247 */
4248 if ( rc == VINF_SUCCESS
4249 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4250 || rc == VERR_PAGE_NOT_PRESENT)
4251 {
4252 /* Successfully handled MMIO operation. */
4253 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4254 rc = VINF_SUCCESS;
4255 }
4256 return rc;
4257 }
4258
4259 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4260 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4261 TRPMResetTrap(pVCpu);
4262
4263 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4264
4265 /*
4266 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4267 */
4268 if ( rc == VINF_SUCCESS
4269 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4270 || rc == VERR_PAGE_NOT_PRESENT)
4271 {
4272 /* We've successfully synced our shadow page tables. */
4273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4274 rc = VINF_SUCCESS;
4275 }
4276
4277 return rc;
4278}
4279
4280
4281/**
4282 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4283 */
4284HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4285{
4286 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4287
4288 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4289 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4290 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4291
4292 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4293 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4294 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4295
4296 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4297 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4298 return VINF_SUCCESS;
4299}
4300
4301
4302/**
4303 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4304 */
4305HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4306{
4307 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4308
4309#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
4310 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4311#endif
4312
4313 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4314 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4315 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4316 && pVCpu->hm.s.Event.fPending)
4317 {
4318 /*
4319 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4320 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4321 * when the recompiler restarts the instruction.
4322 */
4323 SVMEVENT Event;
4324 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4325 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4326 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4327 {
4328 pVCpu->hm.s.Event.fPending = false;
4329 }
4330 else
4331 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4332 }
4333
4334 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4335 * emulation. */
4336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4337 return VERR_EM_INTERPRETER;
4338}
4339
4340
4341/**
4342 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4343 */
4344HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4345{
4346 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4347
4348 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4349 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4350 hmR0SvmSetPendingXcptUD(pVCpu);
4351 return VINF_SUCCESS;
4352}
4353
4354
4355/**
4356 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
4357 * #VMEXIT.
4358 */
4359HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4360{
4361 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4362
4363 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4364
4365 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4366 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4367 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4368 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4369 PVM pVM = pVCpu->CTX_SUFF(pVM);
4370
4371#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4372 if (pVM->hm.s.fNestedPaging)
4373 {
4374 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4375 if (!pSvmTransient->fVectoringPF)
4376 {
4377 /* A genuine guest #PF, reflect it to the guest. */
4378 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4379 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4380 uFaultAddress, u32ErrCode));
4381 }
4382 else
4383 {
4384 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4385 hmR0SvmSetPendingXcptDF(pVCpu);
4386 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4387 }
4388 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4389 return VINF_SUCCESS;
4390 }
4391#endif
4392
4393 Assert(!pVM->hm.s.fNestedPaging);
4394
4395#ifdef VBOX_HM_WITH_GUEST_PATCHING
4396 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4397 if ( pVM->hm.s.fTRPPatchingAllowed
4398 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4399 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
4400 && !CPUMGetGuestCPL(pVCpu)
4401 && !CPUMIsGuestInLongModeEx(pCtx)
4402 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4403 {
4404 RTGCPHYS GCPhysApicBase;
4405 GCPhysApicBase = pCtx->msrApicBase;
4406 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4407
4408 /* Check if the page at the fault-address is the APIC base. */
4409 RTGCPHYS GCPhysPage;
4410 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4411 if ( rc2 == VINF_SUCCESS
4412 && GCPhysPage == GCPhysApicBase)
4413 {
4414 /* Only attempt to patch the instruction once. */
4415 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4416 if (!pPatch)
4417 return VINF_EM_HM_PATCH_TPR_INSTR;
4418 }
4419 }
4420#endif
4421
4422 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4423 pCtx->rip, u32ErrCode, pCtx->cr3));
4424
4425 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4426 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4427
4428 Log4(("#PF rc=%Rrc\n", rc));
4429
4430 if (rc == VINF_SUCCESS)
4431 {
4432 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4433 TRPMResetTrap(pVCpu);
4434 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4435 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4436 return rc;
4437 }
4438 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4439 {
4440 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4441
4442 if (!pSvmTransient->fVectoringPF)
4443 {
4444 /* It's a guest page fault and needs to be reflected to the guest. */
4445 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4446 TRPMResetTrap(pVCpu);
4447 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4448 }
4449 else
4450 {
4451 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4452 TRPMResetTrap(pVCpu);
4453 hmR0SvmSetPendingXcptDF(pVCpu);
4454 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4455 }
4456
4457 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4458 return VINF_SUCCESS;
4459 }
4460
4461 TRPMResetTrap(pVCpu);
4462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4463 return rc;
4464}
4465
4466
4467/**
4468 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
4469 * Conditional #VMEXIT.
4470 */
4471HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4472{
4473 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4474
4475 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4476
4477#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4478 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4479#endif
4480
4481 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4482 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4483 if (rc == VINF_SUCCESS)
4484 {
4485 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4486 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4487 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4488 return VINF_SUCCESS;
4489 }
4490
4491 /* Forward #NM to the guest. */
4492 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4493 hmR0SvmSetPendingXcptNM(pVCpu);
4494 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4495 return VINF_SUCCESS;
4496}
4497
4498
4499/**
4500 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
4501 * Conditional #VMEXIT.
4502 */
4503HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4504{
4505 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4506
4507 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4508
4509 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4510
4511 if (!(pCtx->cr0 & X86_CR0_NE))
4512 {
4513 /* Old-style FPU error reporting needs some extra work. */
4514 /** @todo don't fall back to the recompiler, but do it manually. */
4515 return VERR_EM_INTERPRETER;
4516 }
4517
4518 hmR0SvmSetPendingXcptMF(pVCpu);
4519 return VINF_SUCCESS;
4520}
4521
4522
4523/**
4524 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
4525 * #VMEXIT.
4526 */
4527HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4528{
4529 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4530
4531 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4532
4533 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4534
4535 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4536 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4537 PVM pVM = pVCpu->CTX_SUFF(pVM);
4538 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
4539 if (rc == VINF_EM_RAW_GUEST_TRAP)
4540 {
4541 /* Reflect the exception back to the guest. */
4542 hmR0SvmSetPendingXcptDB(pVCpu);
4543 rc = VINF_SUCCESS;
4544 }
4545
4546 return rc;
4547}
4548
4549/** @} */
4550
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette