VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 47989

Last change on this file since 47989 was 47989, checked in by vboxsync, 11 years ago

VMM/VMMR0: Preemption hooks implemented and enabled for Solaris and Linux hosts.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 180.7 KB
Line 
1/* $Id: HMSVMR0.cpp 47989 2013-08-22 13:56:52Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HMSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMSVM_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
38#endif
39
40
41/*******************************************************************************
42* Defined Constants And Macros *
43*******************************************************************************/
44#ifdef VBOX_WITH_STATISTICS
45# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
46 if ((u64ExitCode) == SVM_EXIT_NPF) \
47 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
48 else \
49 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
50 } while (0)
51#else
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
53#endif
54
55/** If we decide to use a function table approach this can be useful to
56 * switch to a "static DECLCALLBACK(int)". */
57#define HMSVM_EXIT_DECL static int
58
59
60/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
61 *
62 * The CPU format of the segment attribute is described in X86DESCATTRBITS
63 * which is 16-bits (i.e. includes 4 bits of the segment limit).
64 *
65 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
66 * only the attribute bits and nothing else). Upper 4-bits are unused.
67 *
68 * @{ */
69#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
70#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
71/** @} */
72
73
74/** @name Macros for loading, storing segment registers to/from the VMCB.
75 * @{ */
76#define HMSVM_LOAD_SEG_REG(REG, reg) \
77 do \
78 { \
79 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
80 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
81 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
82 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
83 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
84 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
85 } while (0)
86
87#define HMSVM_SAVE_SEG_REG(REG, reg) \
88 do \
89 { \
90 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
92 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
93 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
94 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
95 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
96 } while (0)
97/** @} */
98
99
100/** Macro for checking and returning from the using function for
101 * \#VMEXIT intercepts that maybe caused during delivering of another
102 * event in the guest. */
103#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
104 do \
105 { \
106 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
107 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
108 return VINF_SUCCESS; \
109 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
110 return rc; \
111 } while (0)
112
113/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
114 * instruction that exited. */
115#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
116 do { \
117 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
118 (a_rc) = VINF_EM_DBG_STEPPED; \
119 } while (0)
120
121/** Assert that preemption is disabled or covered by thread-context hooks. */
122#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
123 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
124
125/** Assert that we haven't migrated CPUs when thread-context hooks are not
126 * used. */
127#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
128 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
129 ("Illegal migration! Entered on CPU %u Current %u\n", \
130 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
131
132/** Exception bitmap mask for all contributory exceptions.
133 *
134 * Page fault is deliberately excluded here as it's conditional as to whether
135 * it's contributory or benign. Page faults are handled separately.
136 */
137#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
138 | RT_BIT(X86_XCPT_DE))
139
140
141/** @name VMCB Clean Bits.
142 *
143 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
144 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
145 * memory.
146 *
147 * @{ */
148/** All intercepts vectors, TSC offset, PAUSE filter counter. */
149#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
150/** I/O permission bitmap, MSR permission bitmap. */
151#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
152/** ASID. */
153#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
154/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
155V_INTR_VECTOR. */
156#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
157/** Nested Paging: Nested CR3 (nCR3), PAT. */
158#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
159/** Control registers (CR0, CR3, CR4, EFER). */
160#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
161/** Debug registers (DR6, DR7). */
162#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
163/** GDT, IDT limit and base. */
164#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
165/** Segment register: CS, SS, DS, ES limit and base. */
166#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
167/** CR2.*/
168#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
169/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
170#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
171/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
172PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
173#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
174/** Mask of all valid VMCB Clean bits. */
175#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
176 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
177 | HMSVM_VMCB_CLEAN_ASID \
178 | HMSVM_VMCB_CLEAN_TPR \
179 | HMSVM_VMCB_CLEAN_NP \
180 | HMSVM_VMCB_CLEAN_CRX_EFER \
181 | HMSVM_VMCB_CLEAN_DRX \
182 | HMSVM_VMCB_CLEAN_DT \
183 | HMSVM_VMCB_CLEAN_SEG \
184 | HMSVM_VMCB_CLEAN_CR2 \
185 | HMSVM_VMCB_CLEAN_LBR \
186 | HMSVM_VMCB_CLEAN_AVIC)
187/** @} */
188
189/** @name SVM transient.
190 *
191 * A state structure for holding miscellaneous information across AMD-V
192 * VMRUN/#VMEXIT operation, restored after the transition.
193 *
194 * @{ */
195typedef struct SVMTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG uEFlags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202
203 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
204 uint64_t u64ExitCode;
205 /** The guest's TPR value used for TPR shadowing. */
206 uint8_t u8GuestTpr;
207 /** Alignment. */
208 uint8_t abAlignment0[7];
209
210 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
211 bool fRestoreTscAuxMsr;
212 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
213 * contributary exception or a page-fault. */
214 bool fVectoringPF;
215 /** Whether the TSC offset mode needs to be updated. */
216 bool fUpdateTscOffsetting;
217} SVMTRANSIENT, *PSVMTRANSIENT;
218AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
219AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
220/** @} */
221
222
223/**
224 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
225 */
226typedef enum SVMMSREXITREAD
227{
228 /** Reading this MSR causes a VM-exit. */
229 SVMMSREXIT_INTERCEPT_READ = 0xb,
230 /** Reading this MSR does not cause a VM-exit. */
231 SVMMSREXIT_PASSTHRU_READ
232} SVMMSREXITREAD;
233
234/**
235 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
236 */
237typedef enum SVMMSREXITWRITE
238{
239 /** Writing to this MSR causes a VM-exit. */
240 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
241 /** Writing to this MSR does not cause a VM-exit. */
242 SVMMSREXIT_PASSTHRU_WRITE
243} SVMMSREXITWRITE;
244
245
246/*******************************************************************************
247* Internal Functions *
248*******************************************************************************/
249static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
250static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
251static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
252
253HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
256HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
257HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
258HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
259HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
260HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
261HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
263HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
264HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
265HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
266HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
267HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
268HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
269HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
270HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
271HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
272HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
273HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
274HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
275HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
276HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
277HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
278HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
279HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
280
281DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
282
283
284/*******************************************************************************
285* Global Variables *
286*******************************************************************************/
287/** Ring-0 memory object for the IO bitmap. */
288RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
289/** Physical address of the IO bitmap. */
290RTHCPHYS g_HCPhysIOBitmap = 0;
291/** Virtual address of the IO bitmap. */
292R0PTRTYPE(void *) g_pvIOBitmap = NULL;
293
294
295/**
296 * Sets up and activates AMD-V on the current CPU.
297 *
298 * @returns VBox status code.
299 * @param pCpu Pointer to the CPU info struct.
300 * @param pVM Pointer to the VM (can be NULL after a resume!).
301 * @param pvCpuPage Pointer to the global CPU page.
302 * @param HCPhysCpuPage Physical address of the global CPU page.
303 */
304VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
305{
306 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
307 AssertReturn( HCPhysCpuPage
308 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
309 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
310
311 /*
312 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
313 */
314 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
315 if (u64HostEfer & MSR_K6_EFER_SVME)
316 {
317 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
318 if ( pVM
319 && pVM->hm.s.svm.fIgnoreInUseError)
320 {
321 pCpu->fIgnoreAMDVInUseError = true;
322 }
323
324 if (!pCpu->fIgnoreAMDVInUseError)
325 return VERR_SVM_IN_USE;
326 }
327
328 /* Turn on AMD-V in the EFER MSR. */
329 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
330
331 /* Write the physical page address where the CPU will store the host state while executing the VM. */
332 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
333
334 /*
335 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
336 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
337 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
338 * to flush the TLB with before using a new ASID.
339 */
340 pCpu->fFlushAsidBeforeUse = true;
341
342 /*
343 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
344 */
345 ++pCpu->cTlbFlushes;
346
347 return VINF_SUCCESS;
348}
349
350
351/**
352 * Deactivates AMD-V on the current CPU.
353 *
354 * @returns VBox status code.
355 * @param pCpu Pointer to the CPU info struct.
356 * @param pvCpuPage Pointer to the global CPU page.
357 * @param HCPhysCpuPage Physical address of the global CPU page.
358 */
359VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
360{
361 AssertReturn( HCPhysCpuPage
362 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
363 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
364 NOREF(pCpu);
365
366 /* Turn off AMD-V in the EFER MSR. */
367 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
368 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
369
370 /* Invalidate host state physical address. */
371 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Does global AMD-V initialization (called during module initialization).
379 *
380 * @returns VBox status code.
381 */
382VMMR0DECL(int) SVMR0GlobalInit(void)
383{
384 /*
385 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
386 * once globally here instead of per-VM.
387 */
388 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
389 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
390 if (RT_FAILURE(rc))
391 return rc;
392
393 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
394 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
395
396 /* Set all bits to intercept all IO accesses. */
397 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
398 return VINF_SUCCESS;
399}
400
401
402/**
403 * Does global AMD-V termination (called during module termination).
404 */
405VMMR0DECL(void) SVMR0GlobalTerm(void)
406{
407 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
408 {
409 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
410 g_pvIOBitmap = NULL;
411 g_HCPhysIOBitmap = 0;
412 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
413 }
414}
415
416
417/**
418 * Frees any allocated per-VCPU structures for a VM.
419 *
420 * @param pVM Pointer to the VM.
421 */
422DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
423{
424 for (uint32_t i = 0; i < pVM->cCpus; i++)
425 {
426 PVMCPU pVCpu = &pVM->aCpus[i];
427 AssertPtr(pVCpu);
428
429 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
430 {
431 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
432 pVCpu->hm.s.svm.pvVmcbHost = 0;
433 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
434 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
435 }
436
437 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
438 {
439 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
440 pVCpu->hm.s.svm.pvVmcb = 0;
441 pVCpu->hm.s.svm.HCPhysVmcb = 0;
442 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
443 }
444
445 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
446 {
447 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
448 pVCpu->hm.s.svm.pvMsrBitmap = 0;
449 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
450 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
451 }
452 }
453}
454
455
456/**
457 * Does per-VM AMD-V initialization.
458 *
459 * @returns VBox status code.
460 * @param pVM Pointer to the VM.
461 */
462VMMR0DECL(int) SVMR0InitVM(PVM pVM)
463{
464 int rc = VERR_INTERNAL_ERROR_5;
465
466 /*
467 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
468 */
469 uint32_t u32Family;
470 uint32_t u32Model;
471 uint32_t u32Stepping;
472 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
473 {
474 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
475 pVM->hm.s.svm.fAlwaysFlushTLB = true;
476 }
477
478 /*
479 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
480 */
481 for (VMCPUID i = 0; i < pVM->cCpus; i++)
482 {
483 PVMCPU pVCpu = &pVM->aCpus[i];
484 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
485 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
486 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
487 }
488
489 for (VMCPUID i = 0; i < pVM->cCpus; i++)
490 {
491 PVMCPU pVCpu = &pVM->aCpus[i];
492
493 /*
494 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
495 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
496 */
497 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
498 if (RT_FAILURE(rc))
499 goto failure_cleanup;
500
501 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
502 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
503 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
504 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
505
506 /*
507 * Allocate one page for the guest-state VMCB.
508 */
509 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
510 if (RT_FAILURE(rc))
511 goto failure_cleanup;
512
513 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
514 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
515 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
516 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
517
518 /*
519 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
520 * SVM to not require one.
521 */
522 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
523 if (RT_FAILURE(rc))
524 goto failure_cleanup;
525
526 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
527 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
528 /* Set all bits to intercept all MSR accesses (changed later on). */
529 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
530 }
531
532 return VINF_SUCCESS;
533
534failure_cleanup:
535 hmR0SvmFreeStructs(pVM);
536 return rc;
537}
538
539
540/**
541 * Does per-VM AMD-V termination.
542 *
543 * @returns VBox status code.
544 * @param pVM Pointer to the VM.
545 */
546VMMR0DECL(int) SVMR0TermVM(PVM pVM)
547{
548 hmR0SvmFreeStructs(pVM);
549 return VINF_SUCCESS;
550}
551
552
553/**
554 * Sets the permission bits for the specified MSR in the MSRPM.
555 *
556 * @param pVCpu Pointer to the VMCPU.
557 * @param uMsr The MSR for which the access permissions are being set.
558 * @param enmRead MSR read permissions.
559 * @param enmWrite MSR write permissions.
560 */
561static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
562{
563 unsigned ulBit;
564 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
565
566 /*
567 * Layout:
568 * Byte offset MSR range
569 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
570 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
571 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
572 * 0x1800 - 0x1fff Reserved
573 */
574 if (uMsr <= 0x00001FFF)
575 {
576 /* Pentium-compatible MSRs. */
577 ulBit = uMsr * 2;
578 }
579 else if ( uMsr >= 0xC0000000
580 && uMsr <= 0xC0001FFF)
581 {
582 /* AMD Sixth Generation x86 Processor MSRs. */
583 ulBit = (uMsr - 0xC0000000) * 2;
584 pbMsrBitmap += 0x800;
585 }
586 else if ( uMsr >= 0xC0010000
587 && uMsr <= 0xC0011FFF)
588 {
589 /* AMD Seventh and Eighth Generation Processor MSRs. */
590 ulBit = (uMsr - 0xC0001000) * 2;
591 pbMsrBitmap += 0x1000;
592 }
593 else
594 {
595 AssertFailed();
596 return;
597 }
598
599 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
600 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
601 ASMBitSet(pbMsrBitmap, ulBit);
602 else
603 ASMBitClear(pbMsrBitmap, ulBit);
604
605 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
606 ASMBitSet(pbMsrBitmap, ulBit + 1);
607 else
608 ASMBitClear(pbMsrBitmap, ulBit + 1);
609
610 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
611 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
612}
613
614
615/**
616 * Sets up AMD-V for the specified VM.
617 * This function is only called once per-VM during initalization.
618 *
619 * @returns VBox status code.
620 * @param pVM Pointer to the VM.
621 */
622VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
623{
624 int rc = VINF_SUCCESS;
625
626 AssertReturn(pVM, VERR_INVALID_PARAMETER);
627 Assert(pVM->hm.s.svm.fSupported);
628
629 for (VMCPUID i = 0; i < pVM->cCpus; i++)
630 {
631 PVMCPU pVCpu = &pVM->aCpus[i];
632 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
633
634 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
635
636 /* Trap exceptions unconditionally (debug purposes). */
637#ifdef HMSVM_ALWAYS_TRAP_PF
638 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
639#endif
640#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
641 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
642 pVmcb->ctrl.u32InterceptException |= 0
643 | RT_BIT(X86_XCPT_BP)
644 | RT_BIT(X86_XCPT_DB)
645 | RT_BIT(X86_XCPT_DE)
646 | RT_BIT(X86_XCPT_NM)
647 | RT_BIT(X86_XCPT_UD)
648 | RT_BIT(X86_XCPT_NP)
649 | RT_BIT(X86_XCPT_SS)
650 | RT_BIT(X86_XCPT_GP)
651 | RT_BIT(X86_XCPT_PF)
652 | RT_BIT(X86_XCPT_MF)
653 ;
654#endif
655
656 /* Set up unconditional intercepts and conditions. */
657 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
658 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
659 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
660 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
661 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
662 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
663 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
664 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
665 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
666 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
667 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
668 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
669
670 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
671 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
672 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
673 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
674 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
675 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
676 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
677 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
678 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
679 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
680
681 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
682 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
683
684 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
685 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
686
687 /* Intercept all DRx reads and writes by default. Changed later on. */
688 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
689 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
690
691 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
692 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
693
694 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
695 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
696 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
697
698 /* Set IO and MSR bitmap permission bitmap physical addresses. */
699 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
700 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
701
702 /* No LBR virtualization. */
703 pVmcb->ctrl.u64LBRVirt = 0;
704
705 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
706 pVmcb->ctrl.u64VmcbCleanBits = 0;
707
708 /* The host ASID MBZ, for the guest start with 1. */
709 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
710
711 /*
712 * Setup the PAT MSR (applicable for Nested Paging only).
713 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
714 * so choose type 6 for all PAT slots.
715 */
716 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
717
718 /* Without Nested Paging, we need additionally intercepts. */
719 if (!pVM->hm.s.fNestedPaging)
720 {
721 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
722 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
723 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
724
725 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
726 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
727 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
728
729 /* Page faults must be intercepted to implement shadow paging. */
730 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
731 }
732
733#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
734 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
735#endif
736
737 /*
738 * The following MSRs are saved/restored automatically during the world-switch.
739 * Don't intercept guest read/write accesses to these MSRs.
740 */
741 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
742 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
743 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
744 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
745 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
746 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
747 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
748 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
749 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
750 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
751 }
752
753 return rc;
754}
755
756
757/**
758 * Invalidates a guest page by guest virtual address.
759 *
760 * @returns VBox status code.
761 * @param pVM Pointer to the VM.
762 * @param pVCpu Pointer to the VMCPU.
763 * @param GCVirt Guest virtual address of the page to invalidate.
764 */
765VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
766{
767 AssertReturn(pVM, VERR_INVALID_PARAMETER);
768 Assert(pVM->hm.s.svm.fSupported);
769
770 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
771
772 /* Skip it if a TLB flush is already pending. */
773 if (!fFlushPending)
774 {
775 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
776
777 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
778 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
779
780#if HC_ARCH_BITS == 32
781 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
782 if (CPUMIsGuestInLongMode(pVCpu))
783 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
784 else
785#endif
786 {
787 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
788 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
789 }
790 }
791 return VINF_SUCCESS;
792}
793
794
795/**
796 * Flushes the appropriate tagged-TLB entries.
797 *
798 * @param pVM Pointer to the VM.
799 * @param pVCpu Pointer to the VMCPU.
800 */
801static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
802{
803 PVM pVM = pVCpu->CTX_SUFF(pVM);
804 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
805 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
806
807 /*
808 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
809 * This can happen both for start & resume due to long jumps back to ring-3.
810 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
811 * so we cannot reuse the ASIDs without flushing.
812 */
813 bool fNewAsid = false;
814 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
815 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
816 {
817 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
818 pVCpu->hm.s.fForceTLBFlush = true;
819 fNewAsid = true;
820 }
821
822 /* Set TLB flush state as checked until we return from the world switch. */
823 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
824
825 /* Check for explicit TLB shootdowns. */
826 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
827 {
828 pVCpu->hm.s.fForceTLBFlush = true;
829 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
830 }
831
832 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
833 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
834
835 if (pVM->hm.s.svm.fAlwaysFlushTLB)
836 {
837 /*
838 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
839 */
840 pCpu->uCurrentAsid = 1;
841 pVCpu->hm.s.uCurrentAsid = 1;
842 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
843 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
844 }
845 else if (pVCpu->hm.s.fForceTLBFlush)
846 {
847 if (fNewAsid)
848 {
849 ++pCpu->uCurrentAsid;
850 bool fHitASIDLimit = false;
851 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
852 {
853 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
854 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
855 fHitASIDLimit = true;
856
857 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
858 {
859 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
860 pCpu->fFlushAsidBeforeUse = true;
861 }
862 else
863 {
864 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
865 pCpu->fFlushAsidBeforeUse = false;
866 }
867 }
868
869 if ( !fHitASIDLimit
870 && pCpu->fFlushAsidBeforeUse)
871 {
872 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
873 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
874 else
875 {
876 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
877 pCpu->fFlushAsidBeforeUse = false;
878 }
879 }
880
881 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
882 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
883 }
884 else
885 {
886 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
887 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
888 else
889 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
890 }
891
892 pVCpu->hm.s.fForceTLBFlush = false;
893 }
894 else
895 {
896 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
897 * not be executed. See hmQueueInvlPage() where it is commented
898 * out. Support individual entry flushing someday. */
899 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
900 {
901 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
902 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
903 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
904 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
905 }
906 }
907
908 pVCpu->hm.s.TlbShootdown.cPages = 0;
909 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
910
911 /* Update VMCB with the ASID. */
912 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
913 {
914 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
915 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
916 }
917
918 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
919 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
920 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
921 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
922 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
923 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
924
925#ifdef VBOX_WITH_STATISTICS
926 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
927 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
928 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
929 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
930 {
931 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
932 }
933 else
934 {
935 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
936 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
937 }
938#endif
939}
940
941
942/** @name 64-bit guest on 32-bit host OS helper functions.
943 *
944 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
945 * mode (code segment, paging). These wrappers/helpers perform the necessary
946 * bits for the 32->64 switcher.
947 *
948 * @{ */
949#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
950/**
951 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
952 *
953 * @returns VBox status code.
954 * @param HCPhysVmcbHost Physical address of host VMCB.
955 * @param HCPhysVmcb Physical address of the VMCB.
956 * @param pCtx Pointer to the guest-CPU context.
957 * @param pVM Pointer to the VM.
958 * @param pVCpu Pointer to the VMCPU.
959 */
960DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
961{
962 uint32_t aParam[4];
963 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
964 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
965 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
966 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
967
968 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
969}
970
971
972/**
973 * Executes the specified VMRUN handler in 64-bit mode.
974 *
975 * @returns VBox status code.
976 * @param pVM Pointer to the VM.
977 * @param pVCpu Pointer to the VMCPU.
978 * @param pCtx Pointer to the guest-CPU context.
979 * @param enmOp The operation to perform.
980 * @param cbParam Number of parameters.
981 * @param paParam Array of 32-bit parameters.
982 */
983VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
984 uint32_t *paParam)
985{
986 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
987 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
988
989 /* Disable interrupts. */
990 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
991
992#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
993 RTCPUID idHostCpu = RTMpCpuId();
994 CPUMR0SetLApic(pVCpu, idHostCpu);
995#endif
996
997 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
998 CPUMSetHyperEIP(pVCpu, enmOp);
999 for (int i = (int)cbParam - 1; i >= 0; i--)
1000 CPUMPushHyper(pVCpu, paParam[i]);
1001
1002 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1003 /* Call the switcher. */
1004 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1005 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1006
1007 /* Restore interrupts. */
1008 ASMSetFlags(uOldEFlags);
1009 return rc;
1010}
1011
1012#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1013/** @} */
1014
1015
1016/**
1017 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1018 * the corresponding VMCB Clean Bit.
1019 *
1020 * @param pVmcb Pointer to the VMCB.
1021 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1022 */
1023DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1024{
1025 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1026 {
1027 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1028 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1029 }
1030}
1031
1032
1033/**
1034 * Removes an exception from the intercept-exception bitmap in the VMCB and
1035 * updates the corresponding VMCB Clean Bit.
1036 *
1037 * @param pVmcb Pointer to the VMCB.
1038 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1039 */
1040DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1041{
1042#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1043 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1044 {
1045 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1046 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1047 }
1048#endif
1049}
1050
1051
1052/**
1053 * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1054 *
1055 * @returns VBox status code.
1056 * @param pVCpu Pointer to the VMCPU.
1057 * @param pVmcb Pointer to the VMCB.
1058 * @param pCtx Pointer the guest-CPU context.
1059 *
1060 * @remarks No-long-jump zone!!!
1061 */
1062DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1063{
1064 /*
1065 * Guest CR0.
1066 */
1067 PVM pVM = pVCpu->CTX_SUFF(pVM);
1068 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1069 {
1070 uint64_t u64GuestCR0 = pCtx->cr0;
1071
1072 /* Always enable caching. */
1073 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1074
1075 /*
1076 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1077 */
1078 if (!pVM->hm.s.fNestedPaging)
1079 {
1080 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1081 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1082 }
1083
1084 /*
1085 * Guest FPU bits.
1086 */
1087 bool fInterceptNM = false;
1088 bool fInterceptMF = false;
1089 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1090 if (CPUMIsGuestFPUStateActive(pVCpu))
1091 {
1092 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1093 if (!(u64GuestCR0 & X86_CR0_NE))
1094 {
1095 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1096 fInterceptMF = true;
1097 }
1098 }
1099 else
1100 {
1101 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1102 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1103 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1104 }
1105
1106 /*
1107 * Update the exception intercept bitmap.
1108 */
1109 if (fInterceptNM)
1110 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1111 else
1112 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1113
1114 if (fInterceptMF)
1115 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1116 else
1117 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1118
1119 pVmcb->guest.u64CR0 = u64GuestCR0;
1120 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1121 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1122 }
1123
1124 /*
1125 * Guest CR2.
1126 */
1127 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1128 {
1129 pVmcb->guest.u64CR2 = pCtx->cr2;
1130 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1131 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1132 }
1133
1134 /*
1135 * Guest CR3.
1136 */
1137 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1138 {
1139 if (pVM->hm.s.fNestedPaging)
1140 {
1141 PGMMODE enmShwPagingMode;
1142#if HC_ARCH_BITS == 32
1143 if (CPUMIsGuestInLongModeEx(pCtx))
1144 enmShwPagingMode = PGMMODE_AMD64_NX;
1145 else
1146#endif
1147 enmShwPagingMode = PGMGetHostMode(pVM);
1148
1149 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1150 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1151 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1152 pVmcb->guest.u64CR3 = pCtx->cr3;
1153 }
1154 else
1155 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1156
1157 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1158 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1159 }
1160
1161 /*
1162 * Guest CR4.
1163 */
1164 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1165 {
1166 uint64_t u64GuestCR4 = pCtx->cr4;
1167 if (!pVM->hm.s.fNestedPaging)
1168 {
1169 switch (pVCpu->hm.s.enmShadowMode)
1170 {
1171 case PGMMODE_REAL:
1172 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1173 AssertFailed();
1174 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1175
1176 case PGMMODE_32_BIT: /* 32-bit paging. */
1177 u64GuestCR4 &= ~X86_CR4_PAE;
1178 break;
1179
1180 case PGMMODE_PAE: /* PAE paging. */
1181 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1182 /** Must use PAE paging as we could use physical memory > 4 GB */
1183 u64GuestCR4 |= X86_CR4_PAE;
1184 break;
1185
1186 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1187 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1188#ifdef VBOX_ENABLE_64_BITS_GUESTS
1189 break;
1190#else
1191 AssertFailed();
1192 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1193#endif
1194
1195 default: /* shut up gcc */
1196 AssertFailed();
1197 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1198 }
1199 }
1200
1201 pVmcb->guest.u64CR4 = u64GuestCR4;
1202 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1203 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1204 }
1205
1206 return VINF_SUCCESS;
1207}
1208
1209
1210/**
1211 * Loads the guest segment registers into the VMCB.
1212 *
1213 * @returns VBox status code.
1214 * @param pVCpu Pointer to the VMCPU.
1215 * @param pVmcb Pointer to the VMCB.
1216 * @param pCtx Pointer to the guest-CPU context.
1217 *
1218 * @remarks No-long-jump zone!!!
1219 */
1220DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1221{
1222 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1223 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1224 {
1225 HMSVM_LOAD_SEG_REG(CS, cs);
1226 HMSVM_LOAD_SEG_REG(SS, ss);
1227 HMSVM_LOAD_SEG_REG(DS, ds);
1228 HMSVM_LOAD_SEG_REG(ES, es);
1229 HMSVM_LOAD_SEG_REG(FS, fs);
1230 HMSVM_LOAD_SEG_REG(GS, gs);
1231
1232 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1233 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1234 }
1235
1236 /* Guest TR. */
1237 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1238 {
1239 HMSVM_LOAD_SEG_REG(TR, tr);
1240 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1241 }
1242
1243 /* Guest LDTR. */
1244 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1245 {
1246 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1247 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1248 }
1249
1250 /* Guest GDTR. */
1251 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1252 {
1253 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1254 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1255 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1256 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1257 }
1258
1259 /* Guest IDTR. */
1260 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1261 {
1262 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1263 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1264 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1265 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1266 }
1267}
1268
1269
1270/**
1271 * Loads the guest MSRs into the VMCB.
1272 *
1273 * @param pVCpu Pointer to the VMCPU.
1274 * @param pVmcb Pointer to the VMCB.
1275 * @param pCtx Pointer to the guest-CPU context.
1276 *
1277 * @remarks No-long-jump zone!!!
1278 */
1279DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1280{
1281 /* Guest Sysenter MSRs. */
1282 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1283 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1284 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1285
1286 /*
1287 * Guest EFER MSR.
1288 * AMD-V requires guest EFER.SVME to be set. Weird. .
1289 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1290 */
1291 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1292 {
1293 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1294 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1295 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1296 }
1297
1298 /* 64-bit MSRs. */
1299 if (CPUMIsGuestInLongModeEx(pCtx))
1300 {
1301 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1302 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1303 }
1304 else
1305 {
1306 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1307 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1308 {
1309 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1310 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1311 }
1312 }
1313
1314
1315 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1316 * be writable in 32-bit mode. Clarify with AMD spec. */
1317 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1318 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1319 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1320 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1321 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1322}
1323
1324
1325/**
1326 * Loads the guest debug registers into the VMCB.
1327 *
1328 * @param pVCpu Pointer to the VMCPU.
1329 * @param pVmcb Pointer to the VMCB.
1330 * @param pCtx Pointer to the guest-CPU context.
1331 *
1332 * @remarks No-long-jump zone!!!
1333 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1334 */
1335DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1336{
1337 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1338 return;
1339 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1340 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1341
1342 bool fInterceptDB = false;
1343 bool fInterceptMovDRx = false;
1344
1345 /*
1346 * Anyone single stepping on the host side? If so, we'll have to use the
1347 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1348 * the VMM level like VT-x implementations does.
1349 */
1350 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1351 if (fStepping)
1352 {
1353 pVCpu->hm.s.fClearTrapFlag = true;
1354 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1355 fInterceptDB = true;
1356 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1357 }
1358
1359 PVM pVM = pVCpu->CTX_SUFF(pVM);
1360 if (fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1361 {
1362 /*
1363 * Use the combined guest and host DRx values found in the hypervisor
1364 * register set because the debugger has breakpoints active or someone
1365 * is single stepping on the host side.
1366 *
1367 * Note! DBGF expects a clean DR6 state before executing guest code.
1368 */
1369 if (!CPUMIsHyperDebugStateActive(pVCpu))
1370 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1371 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1372 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1373
1374 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1375 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1376 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu) )
1377 {
1378 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1379 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1380 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1381 }
1382
1383 /** @todo If we cared, we could optimize to allow the guest to read registers
1384 * with the same values. */
1385 fInterceptDB = true;
1386 fInterceptMovDRx = true;
1387 Log5(("hm: Loaded hyper DRx\n"));
1388 }
1389 else
1390 {
1391 /*
1392 * Update DR6, DR7 with the guest values if necessary.
1393 */
1394 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1395 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1396 {
1397 pVmcb->guest.u64DR7 = pCtx->dr[7];
1398 pVmcb->guest.u64DR6 = pCtx->dr[6];
1399 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1400 }
1401
1402 /*
1403 * If the guest has enabled debug registers, we need to load them prior to
1404 * executing guest code so they'll trigger at the right time.
1405 */
1406 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1407 {
1408 if (!CPUMIsGuestDebugStateActive(pVCpu))
1409 {
1410 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1411 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1412 }
1413 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1414 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1415 Log5(("hm: Loaded guest DRx\n"));
1416 }
1417 /*
1418 * If no debugging enabled, we'll lazy load DR0-3.
1419 */
1420 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1421 fInterceptMovDRx = true;
1422 }
1423
1424 /*
1425 * Set up the intercepts.
1426 */
1427 if (fInterceptDB)
1428 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1429 else
1430 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1431
1432 if (fInterceptMovDRx)
1433 {
1434 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1435 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1436 {
1437 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1438 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1439 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1440 }
1441 }
1442 else
1443 {
1444 if ( pVmcb->ctrl.u16InterceptRdDRx
1445 || pVmcb->ctrl.u16InterceptWrDRx)
1446 {
1447 pVmcb->ctrl.u16InterceptRdDRx = 0;
1448 pVmcb->ctrl.u16InterceptWrDRx = 0;
1449 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1450 }
1451 }
1452
1453 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1454}
1455
1456
1457/**
1458 * Loads the guest APIC state (currently just the TPR).
1459 *
1460 * @returns VBox status code.
1461 * @param pVCpu Pointer to the VMCPU.
1462 * @param pVmcb Pointer to the VMCB.
1463 * @param pCtx Pointer to the guest-CPU context.
1464 */
1465DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1466{
1467 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1468 return VINF_SUCCESS;
1469
1470 bool fPendingIntr;
1471 uint8_t u8Tpr;
1472 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1473 AssertRCReturn(rc, rc);
1474
1475 /** Assume that we need to trap all TPR accesses and thus need not check on
1476 * every #VMEXIT if we should update the TPR. */
1477 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1478 pVCpu->hm.s.svm.fSyncVTpr = false;
1479
1480 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1481 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1482 {
1483 pCtx->msrLSTAR = u8Tpr;
1484
1485 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1486 if (fPendingIntr)
1487 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1488 else
1489 {
1490 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1491 pVCpu->hm.s.svm.fSyncVTpr = true;
1492 }
1493 }
1494 else
1495 {
1496 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1497 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1498
1499 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1500 if (fPendingIntr)
1501 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1502 else
1503 {
1504 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1505 pVCpu->hm.s.svm.fSyncVTpr = true;
1506 }
1507
1508 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1509 }
1510
1511 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1512 return rc;
1513}
1514
1515
1516/**
1517 * Sets up the appropriate function to run guest code.
1518 *
1519 * @returns VBox status code.
1520 * @param pVCpu Pointer to the VMCPU.
1521 * @param pCtx Pointer to the guest-CPU context.
1522 *
1523 * @remarks No-long-jump zone!!!
1524 */
1525static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1526{
1527 if (CPUMIsGuestInLongModeEx(pCtx))
1528 {
1529#ifndef VBOX_ENABLE_64_BITS_GUESTS
1530 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1531#endif
1532 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1533#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1534 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1535 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1536#else
1537 /* 64-bit host or hybrid host. */
1538 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1539#endif
1540 }
1541 else
1542 {
1543 /* Guest is not in long mode, use the 32-bit handler. */
1544 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1545 }
1546 return VINF_SUCCESS;
1547}
1548
1549
1550/**
1551 * Enters the AMD-V session.
1552 *
1553 * @returns VBox status code.
1554 * @param pVM Pointer to the VM.
1555 * @param pVCpu Pointer to the VMCPU.
1556 * @param pCpu Pointer to the CPU info struct.
1557 */
1558VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1559{
1560 AssertPtr(pVM);
1561 AssertPtr(pVCpu);
1562 Assert(pVM->hm.s.svm.fSupported);
1563 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1564 NOREF(pCpu);
1565
1566 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1567
1568 pVCpu->hm.s.fLeaveDone = false;
1569 return VINF_SUCCESS;
1570}
1571
1572
1573/**
1574 * Leaves the AMD-V session.
1575 *
1576 * @returns VBox status code.
1577 * @param pVM Pointer to the VM.
1578 * @param pVCpu Pointer to the VMCPU.
1579 * @param pCtx Pointer to the guest-CPU context.
1580 */
1581VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1582{
1583 NOREF(pVM);
1584 NOREF(pVCpu);
1585 NOREF(pCtx);
1586
1587 /* Nothing to do here. Everything is taken care of in hmR0SvmLeave(). */
1588 return VINF_SUCCESS;
1589}
1590
1591
1592/**
1593 * Thread-context callback for AMD-V.
1594 *
1595 * @param enmEvent The thread-context event.
1596 * @param pVCpu Pointer to the VMCPU.
1597 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1598 */
1599VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1600{
1601 switch (enmEvent)
1602 {
1603 case RTTHREADCTXEVENT_PREEMPTING:
1604 {
1605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1606 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1607 VMCPU_ASSERT_EMT(pVCpu);
1608
1609 PVM pVM = pVCpu->CTX_SUFF(pVM);
1610 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1611 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1612
1613 hmR0SvmLeave(pVM, pVCpu, pCtx);
1614
1615 int rc = HMR0LeaveEx(pVCpu); /* Leave HM context, takes care of local init (term). */
1616 AssertRC(rc); NOREF(rc);
1617
1618 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1619 break;
1620 }
1621
1622 case RTTHREADCTXEVENT_RESUMED:
1623 {
1624 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1625 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1626 VMCPU_ASSERT_EMT(pVCpu);
1627
1628 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1629
1630 /*
1631 * Initialize the bare minimum state required for HM. This takes care of
1632 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1633 */
1634 HMR0EnterEx(pVCpu);
1635 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_GUEST_CR0));
1636
1637 pVCpu->hm.s.fLeaveDone = false;
1638 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1639 break;
1640 }
1641
1642 default:
1643 break;
1644 }
1645}
1646
1647
1648/**
1649 * Saves the host state.
1650 *
1651 * @returns VBox status code.
1652 * @param pVM Pointer to the VM.
1653 * @param pVCpu Pointer to the VMCPU.
1654 *
1655 * @remarks No-long-jump zone!!!
1656 */
1657VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1658{
1659 NOREF(pVM);
1660 NOREF(pVCpu);
1661 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1662 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1663 return VINF_SUCCESS;
1664}
1665
1666
1667/**
1668 * Loads the guest state into the VMCB. The CPU state will be loaded from these
1669 * fields on every successful VM-entry.
1670 *
1671 * Sets up the appropriate VMRUN function to execute guest code based
1672 * on the guest CPU mode.
1673 *
1674 * @returns VBox status code.
1675 * @param pVM Pointer to the VM.
1676 * @param pVCpu Pointer to the VMCPU.
1677 * @param pMixedCtx Pointer to the guest-CPU context.
1678 *
1679 * @remarks No-long-jump zone!!!
1680 */
1681static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1682{
1683 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1684 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1685
1686 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1687
1688 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1689 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1690
1691 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1692 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1693
1694 pVmcb->guest.u64RIP = pCtx->rip;
1695 pVmcb->guest.u64RSP = pCtx->rsp;
1696 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1697 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1698 pVmcb->guest.u64RAX = pCtx->rax;
1699
1700 /* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
1701 hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
1702
1703 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1704 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1705
1706 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1707 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1708
1709 /* Clear any unused and reserved bits. */
1710 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1711 | HM_CHANGED_GUEST_RSP
1712 | HM_CHANGED_GUEST_RFLAGS
1713 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1714 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1715 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1716 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1717 | HM_CHANGED_SVM_RESERVED2
1718 | HM_CHANGED_SVM_RESERVED3);
1719
1720 AssertMsg(!pVCpu->hm.s.fContextUseFlags,
1721 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1722 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1723
1724 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss, pCtx->rsp));
1725
1726 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1727 return rc;
1728}
1729
1730
1731/**
1732 * Loads the guest state on the way from ring-3.
1733 *
1734 * @returns VBox status code.
1735 * @param pVM Pointer to the VM.
1736 * @param pVCpu Pointer to the VMCPU.
1737 * @param pCtx Pointer to the guest-CPU context.
1738 *
1739 * @remarks No-long-jump zone!!!
1740 */
1741VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1742{
1743 /*
1744 * Avoid reloading the guest state on longjmp reentrants and do it lazily just before executing the guest.
1745 * This only helps when we get rescheduled more than once to a different host CPU on a longjmp trip before
1746 * finally executing guest code.
1747 */
1748 return VINF_SUCCESS;
1749}
1750
1751
1752/**
1753 * Saves the entire guest state from the VMCB into the
1754 * guest-CPU context. Currently there is no residual state left in the CPU that
1755 * is not updated in the VMCB.
1756 *
1757 * @returns VBox status code.
1758 * @param pVCpu Pointer to the VMCPU.
1759 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1760 * out-of-sync. Make sure to update the required fields
1761 * before using them.
1762 */
1763static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1764{
1765 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1766
1767 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1768
1769 pMixedCtx->rip = pVmcb->guest.u64RIP;
1770 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1771 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1772 pMixedCtx->rax = pVmcb->guest.u64RAX;
1773
1774 /*
1775 * Guest interrupt shadow.
1776 */
1777 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1778 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1779 else
1780 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1781
1782 /*
1783 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1784 */
1785 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1786
1787 /*
1788 * Guest MSRs.
1789 */
1790 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1791 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1792 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1793 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1794 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1795 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1796 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1797 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1798
1799 /*
1800 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1801 */
1802 HMSVM_SAVE_SEG_REG(CS, cs);
1803 HMSVM_SAVE_SEG_REG(SS, ss);
1804 HMSVM_SAVE_SEG_REG(DS, ds);
1805 HMSVM_SAVE_SEG_REG(ES, es);
1806 HMSVM_SAVE_SEG_REG(FS, fs);
1807 HMSVM_SAVE_SEG_REG(GS, gs);
1808
1809 /*
1810 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1811 * register (yet).
1812 */
1813 /** @todo SELM might need to be fixed as it too should not care about the
1814 * granularity bit. See @bugref{6785}. */
1815 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1816 && pMixedCtx->cs.Attr.n.u1Present
1817 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1818 {
1819 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1820 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1821 }
1822
1823#ifdef VBOX_STRICT
1824# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1825 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1826 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1827 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1828 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1829 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1830 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1831
1832 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1833 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1834 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1835 HMSVM_ASSERT_SEG_GRANULARITY(es);
1836 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1837 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1838
1839# undef HMSVM_ASSERT_SEL_GRANULARITY
1840#endif
1841
1842 /*
1843 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1844 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1845 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1846 * See AMD spec. 15.5.1 "Basic operation".
1847 */
1848 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1849 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1850
1851 /*
1852 * Guest Descriptor-Table registers.
1853 */
1854 HMSVM_SAVE_SEG_REG(TR, tr);
1855 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1856 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1857 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1858
1859 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1860 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1861
1862 /*
1863 * Guest Debug registers.
1864 */
1865 if (!CPUMIsHyperDebugStateActive(pVCpu))
1866 {
1867 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1868 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1869 }
1870 else
1871 {
1872 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
1873 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
1874 }
1875
1876 /*
1877 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1878 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1879 */
1880 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1881 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1882 {
1883 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1884 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1885 }
1886}
1887
1888
1889/**
1890 * Does the necessary state syncing before returning to ring-3 for any reason
1891 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
1892 *
1893 * @param pVM Pointer to the VM.
1894 * @param pVCpu Pointer to the VMCPU.
1895 * @param pMixedCtx Pointer to the guest-CPU context.
1896 *
1897 * @remarks No-long-jmp zone!!!
1898 */
1899static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1900{
1901 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1902 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1903
1904 /* Avoid repeating this work when thread-context hooks are used and we had been preempted before
1905 which would've done this work from the SVMR0ThreadCtxCallback(). */
1906 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1907 bool fPreemptDisabled = false;
1908 if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1909 {
1910 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1911 RTThreadPreemptDisable(&PreemptState);
1912 fPreemptDisabled = true;
1913 }
1914
1915 if (!pVCpu->hm.s.fLeaveDone)
1916 {
1917 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1918 if (CPUMIsGuestFPUStateActive(pVCpu))
1919 {
1920 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1921 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1922 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1923 }
1924
1925 /*
1926 * Restore host debug registers if necessary and resync on next R0 reentry.
1927 */
1928#ifdef VBOX_STRICT
1929 if (CPUMIsHyperDebugStateActive(pVCpu))
1930 {
1931 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1932 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1933 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1934 }
1935#endif
1936 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
1937 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1938
1939 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1940 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1941
1942 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
1943 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
1944 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1945 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1946 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1947
1948 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1949
1950 pVCpu->hm.s.fLeaveDone = true;
1951 }
1952
1953 /* Restore preemption if we previous disabled it ourselves. */
1954 if (fPreemptDisabled)
1955 RTThreadPreemptRestore(&PreemptState);
1956}
1957
1958
1959/**
1960 * Does the necessary state syncing before doing a longjmp to ring-3.
1961 *
1962 * @param pVM Pointer to the VM.
1963 * @param pVCpu Pointer to the VMCPU.
1964 * @param pCtx Pointer to the guest-CPU context.
1965 *
1966 * @remarks No-long-jmp zone!!!
1967 */
1968static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1969{
1970 hmR0SvmLeave(pVM, pVCpu, pCtx);
1971}
1972
1973
1974/**
1975 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
1976 * any remaining host state) before we longjump to ring-3 and possibly get
1977 * preempted.
1978 *
1979 * @param pVCpu Pointer to the VMCPU.
1980 * @param enmOperation The operation causing the ring-3 longjump.
1981 * @param pvUser The user argument (pointer to the possibly
1982 * out-of-date guest-CPU context).
1983 *
1984 * @remarks Must never be called with @a enmOperation ==
1985 * VMMCALLRING3_VM_R0_ASSERTION.
1986 */
1987DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
1988{
1989 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
1990 Assert(pVCpu);
1991 Assert(pvUser);
1992 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1993 HMSVM_ASSERT_PREEMPT_SAFE();
1994
1995 VMMRZCallRing3Disable(pVCpu);
1996 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1997
1998 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
1999 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2000
2001 VMMRZCallRing3Enable(pVCpu);
2002}
2003
2004
2005/**
2006 * Take necessary actions before going back to ring-3.
2007 *
2008 * An action requires us to go back to ring-3. This function does the necessary
2009 * steps before we can safely return to ring-3. This is not the same as longjmps
2010 * to ring-3, this is voluntary.
2011 *
2012 * @param pVM Pointer to the VM.
2013 * @param pVCpu Pointer to the VMCPU.
2014 * @param pCtx Pointer to the guest-CPU context.
2015 * @param rcExit The reason for exiting to ring-3. Can be
2016 * VINF_VMM_UNKNOWN_RING3_CALL.
2017 */
2018static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2019{
2020 Assert(pVM);
2021 Assert(pVCpu);
2022 Assert(pCtx);
2023 HMSVM_ASSERT_PREEMPT_SAFE();
2024
2025 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
2026 {
2027 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
2028 return;
2029 }
2030
2031 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2032 VMMRZCallRing3Disable(pVCpu);
2033 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2034
2035 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2036 if (pVCpu->hm.s.Event.fPending)
2037 {
2038 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2039 Assert(!pVCpu->hm.s.Event.fPending);
2040 }
2041
2042 /* Sync. the necessary state for going back to ring-3. */
2043 hmR0SvmLeave(pVM, pVCpu, pCtx);
2044 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2045
2046 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2047 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2048 | CPUM_CHANGED_LDTR
2049 | CPUM_CHANGED_GDTR
2050 | CPUM_CHANGED_IDTR
2051 | CPUM_CHANGED_TR
2052 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2053 if ( pVM->hm.s.fNestedPaging
2054 && CPUMIsGuestPagingEnabledEx(pCtx))
2055 {
2056 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2057 }
2058
2059 /* Make sure we've undo the trap flag if we tried to single step something. */
2060 if (pVCpu->hm.s.fClearTrapFlag)
2061 {
2062 pCtx->eflags.Bits.u1TF = 0;
2063 pVCpu->hm.s.fClearTrapFlag = false;
2064 }
2065
2066 /* On our way back from ring-3 the following needs to be done. */
2067 /** @todo This can change with preemption hooks. */
2068 if (rcExit == VINF_EM_RAW_INTERRUPT)
2069 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
2070 else
2071 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2072
2073 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2074 VMMRZCallRing3Enable(pVCpu);
2075}
2076
2077
2078/**
2079 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2080 * intercepts.
2081 *
2082 * @param pVCpu Pointer to the VMCPU.
2083 *
2084 * @remarks No-long-jump zone!!!
2085 */
2086static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
2087{
2088 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2089 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
2090 {
2091 uint64_t u64CurTSC = ASMReadTSC();
2092 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
2093 {
2094 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
2095 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
2096 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2097 }
2098 else
2099 {
2100 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2101 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2102 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
2103 }
2104 }
2105 else
2106 {
2107 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2108 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2109 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2110 }
2111
2112 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2113}
2114
2115
2116/**
2117 * Sets an event as a pending event to be injected into the guest.
2118 *
2119 * @param pVCpu Pointer to the VMCPU.
2120 * @param pEvent Pointer to the SVM event.
2121 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2122 * page-fault.
2123 *
2124 * @remarks Statistics counter assumes this is a guest event being reflected to
2125 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2126 */
2127DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2128{
2129 Assert(!pVCpu->hm.s.Event.fPending);
2130 Assert(pEvent->n.u1Valid);
2131
2132 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
2133 pVCpu->hm.s.Event.fPending = true;
2134 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2135
2136 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2137 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2138
2139 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
2140}
2141
2142
2143/**
2144 * Injects an event into the guest upon VMRUN by updating the relevant field
2145 * in the VMCB.
2146 *
2147 * @param pVCpu Pointer to the VMCPU.
2148 * @param pVmcb Pointer to the guest VMCB.
2149 * @param pCtx Pointer to the guest-CPU context.
2150 * @param pEvent Pointer to the event.
2151 *
2152 * @remarks No-long-jump zone!!!
2153 * @remarks Requires CR0!
2154 */
2155DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2156{
2157 pVmcb->ctrl.EventInject.u = pEvent->u;
2158 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2159
2160 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2161 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2162}
2163
2164
2165
2166/**
2167 * Converts any TRPM trap into a pending HM event. This is typically used when
2168 * entering from ring-3 (not longjmp returns).
2169 *
2170 * @param pVCpu Pointer to the VMCPU.
2171 */
2172static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2173{
2174 Assert(TRPMHasTrap(pVCpu));
2175 Assert(!pVCpu->hm.s.Event.fPending);
2176
2177 uint8_t uVector;
2178 TRPMEVENT enmTrpmEvent;
2179 RTGCUINT uErrCode;
2180 RTGCUINTPTR GCPtrFaultAddress;
2181 uint8_t cbInstr;
2182
2183 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2184 AssertRC(rc);
2185
2186 SVMEVENT Event;
2187 Event.u = 0;
2188 Event.n.u1Valid = 1;
2189 Event.n.u8Vector = uVector;
2190
2191 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2192 if (enmTrpmEvent == TRPM_TRAP)
2193 {
2194 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2195 switch (uVector)
2196 {
2197 case X86_XCPT_PF:
2198 case X86_XCPT_DF:
2199 case X86_XCPT_TS:
2200 case X86_XCPT_NP:
2201 case X86_XCPT_SS:
2202 case X86_XCPT_GP:
2203 case X86_XCPT_AC:
2204 {
2205 Event.n.u1ErrorCodeValid = 1;
2206 Event.n.u32ErrorCode = uErrCode;
2207 break;
2208 }
2209 }
2210 }
2211 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2212 {
2213 if (uVector == X86_XCPT_NMI)
2214 Event.n.u3Type = SVM_EVENT_NMI;
2215 else
2216 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2217 }
2218 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2219 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2220 else
2221 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2222
2223 rc = TRPMResetTrap(pVCpu);
2224 AssertRC(rc);
2225
2226 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2227 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2228
2229 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2230 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2231}
2232
2233
2234/**
2235 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2236 * AMD-V to execute any instruction.
2237 *
2238 * @param pvCpu Pointer to the VMCPU.
2239 */
2240static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2241{
2242 Assert(pVCpu->hm.s.Event.fPending);
2243 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2244
2245 SVMEVENT Event;
2246 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2247
2248 uint8_t uVector = Event.n.u8Vector;
2249 uint8_t uVectorType = Event.n.u3Type;
2250
2251 TRPMEVENT enmTrapType;
2252 switch (uVectorType)
2253 {
2254 case SVM_EVENT_EXTERNAL_IRQ:
2255 case SVM_EVENT_NMI:
2256 enmTrapType = TRPM_HARDWARE_INT;
2257 break;
2258 case SVM_EVENT_SOFTWARE_INT:
2259 enmTrapType = TRPM_SOFTWARE_INT;
2260 break;
2261 case SVM_EVENT_EXCEPTION:
2262 enmTrapType = TRPM_TRAP;
2263 break;
2264 default:
2265 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2266 enmTrapType = TRPM_32BIT_HACK;
2267 break;
2268 }
2269
2270 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2271
2272 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2273 AssertRC(rc);
2274
2275 if (Event.n.u1ErrorCodeValid)
2276 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2277
2278 if ( uVectorType == SVM_EVENT_EXCEPTION
2279 && uVector == X86_XCPT_PF)
2280 {
2281 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2282 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2283 }
2284 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2285 {
2286 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2287 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2288 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2289 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2290 }
2291 pVCpu->hm.s.Event.fPending = false;
2292}
2293
2294
2295/**
2296 * Gets the guest's interrupt-shadow.
2297 *
2298 * @returns The guest's interrupt-shadow.
2299 * @param pVCpu Pointer to the VMCPU.
2300 * @param pCtx Pointer to the guest-CPU context.
2301 *
2302 * @remarks No-long-jump zone!!!
2303 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2304 */
2305DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2306{
2307 /*
2308 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2309 * inhibit interrupts or clear any existing interrupt-inhibition.
2310 */
2311 uint32_t uIntrState = 0;
2312 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2313 {
2314 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2315 {
2316 /*
2317 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2318 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2319 */
2320 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2321 }
2322 else
2323 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2324 }
2325 return uIntrState;
2326}
2327
2328
2329/**
2330 * Sets the virtual interrupt intercept control in the VMCB which
2331 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2332 * receive interrupts.
2333 *
2334 * @param pVmcb Pointer to the VMCB.
2335 */
2336DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2337{
2338 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2339 {
2340 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2341 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2342 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2343 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2344
2345 Log4(("Setting VINTR intercept\n"));
2346 }
2347}
2348
2349
2350/**
2351 * Injects any pending events into the guest if the guest is in a state to
2352 * receive them.
2353 *
2354 * @param pVCpu Pointer to the VMCPU.
2355 * @param pCtx Pointer to the guest-CPU context.
2356 */
2357static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2358{
2359 Assert(!TRPMHasTrap(pVCpu));
2360 Log4Func(("\n"));
2361
2362 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2363 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2364 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2365
2366 SVMEVENT Event;
2367 Event.u = 0;
2368 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2369 {
2370 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2371 Assert(Event.n.u1Valid);
2372 bool fInject = true;
2373 if ( Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
2374 && ( fBlockInt
2375 || fIntShadow))
2376 {
2377 fInject = false;
2378 }
2379 else if ( Event.n.u3Type == SVM_EVENT_NMI
2380 && fIntShadow)
2381 {
2382 fInject = false;
2383 }
2384
2385 if (fInject)
2386 {
2387 Log4(("Injecting pending HM event.\n"));
2388
2389 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2390 pVCpu->hm.s.Event.fPending = false;
2391
2392#ifdef VBOX_WITH_STATISTICS
2393 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2394 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2395 else
2396 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2397#endif
2398 }
2399 else
2400 hmR0SvmSetVirtIntrIntercept(pVmcb);
2401 } /** @todo SMI. SMIs take priority over NMIs. */
2402 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2403 {
2404 if (!fIntShadow)
2405 {
2406 Log4(("Injecting NMI\n"));
2407
2408 Event.n.u1Valid = 1;
2409 Event.n.u8Vector = X86_XCPT_NMI;
2410 Event.n.u3Type = SVM_EVENT_NMI;
2411
2412 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2413 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2414
2415 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2416 }
2417 else
2418 hmR0SvmSetVirtIntrIntercept(pVmcb);
2419 }
2420 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2421 {
2422 /* Check if there are guest external interrupts (PIC/APIC) pending and inject them, if the guest can receive them. */
2423 if ( !fBlockInt
2424 && !fIntShadow)
2425 {
2426 uint8_t u8Interrupt;
2427 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2428 if (RT_SUCCESS(rc))
2429 {
2430 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2431
2432 Event.n.u1Valid = 1;
2433 Event.n.u8Vector = u8Interrupt;
2434 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2435
2436 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2437 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2438 }
2439 else
2440 {
2441 /** @todo Does this actually happen? If not turn it into an assertion. */
2442 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2443 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2444 }
2445 }
2446 else
2447 hmR0SvmSetVirtIntrIntercept(pVmcb);
2448 }
2449
2450 /* Update the guest interrupt shadow in the VMCB. */
2451 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2452}
2453
2454
2455/**
2456 * Reports world-switch error and dumps some useful debug info.
2457 *
2458 * @param pVM Pointer to the VM.
2459 * @param pVCpu Pointer to the VMCPU.
2460 * @param rcVMRun The return code from VMRUN (or
2461 * VERR_SVM_INVALID_GUEST_STATE for invalid
2462 * guest-state).
2463 * @param pCtx Pointer to the guest-CPU context.
2464 */
2465static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2466{
2467 HMSVM_ASSERT_PREEMPT_SAFE();
2468 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2469
2470 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2471 {
2472 HMDumpRegs(pVM, pVCpu, pCtx);
2473#ifdef VBOX_STRICT
2474 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2475 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2476 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2477 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2478 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2479 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2480 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2481 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2482 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2483 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2484 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2485
2486 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2487 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2488 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2489
2490 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2491 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2492 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2493 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2494 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2495 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2496 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2497 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2498 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2499 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2500
2501 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2502 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2503 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2504 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2505 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2506 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2507 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2508 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2509 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2510 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2511 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2512 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2513 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2514 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2515 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2516 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2517 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2518
2519 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2520 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2521
2522 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2523 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2524 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2525 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2526 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2527 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2528 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2529 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2530 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2531 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2532 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2533 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2534 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2535 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2536 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2537 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2538 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2539 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2540 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2541 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2542
2543 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2544 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2545
2546 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2547 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2548 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2549 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2550
2551 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2552 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2553
2554 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2555 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2556 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2557 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2558
2559 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2560 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2561 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2562 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2563 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2564 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2565 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2566
2567 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2568 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2569 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2570 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2571
2572 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2573 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2574 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2575
2576 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2577 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2578 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2579 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2580 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2581 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2582 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2583 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2584 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2585 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2586 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2587 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2588#endif
2589 }
2590 else
2591 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2592}
2593
2594
2595/**
2596 * Check per-VM and per-VCPU force flag actions that require us to go back to
2597 * ring-3 for one reason or another.
2598 *
2599 * @returns VBox status code (information status code included).
2600 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2601 * ring-3.
2602 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2603 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2604 * interrupts)
2605 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2606 * all EMTs to be in ring-3.
2607 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2608 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2609 * to the EM loop.
2610 *
2611 * @param pVM Pointer to the VM.
2612 * @param pVCpu Pointer to the VMCPU.
2613 * @param pCtx Pointer to the guest-CPU context.
2614 */
2615static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2616{
2617 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2618
2619 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2620 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2621 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2622
2623 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2624 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2625 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2626 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2627 {
2628 /* Pending PGM C3 sync. */
2629 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2630 {
2631 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2632 if (rc != VINF_SUCCESS)
2633 {
2634 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2635 return rc;
2636 }
2637 }
2638
2639 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2640 /* -XXX- what was that about single stepping? */
2641 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2642 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2643 {
2644 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2645 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2646 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2647 return rc;
2648 }
2649
2650 /* Pending VM request packets, such as hardware interrupts. */
2651 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2652 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2653 {
2654 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2655 return VINF_EM_PENDING_REQUEST;
2656 }
2657
2658 /* Pending PGM pool flushes. */
2659 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2660 {
2661 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2662 return VINF_PGM_POOL_FLUSH_PENDING;
2663 }
2664
2665 /* Pending DMA requests. */
2666 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2667 {
2668 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2669 return VINF_EM_RAW_TO_R3;
2670 }
2671 }
2672
2673 return VINF_SUCCESS;
2674}
2675
2676
2677/**
2678 * Does the preparations before executing guest code in AMD-V.
2679 *
2680 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2681 * recompiler. We must be cautious what we do here regarding committing
2682 * guest-state information into the the VMCB assuming we assuredly execute the
2683 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2684 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2685 * that the recompiler can (and should) use them when it resumes guest
2686 * execution. Otherwise such operations must be done when we can no longer
2687 * exit to ring-3.
2688 *
2689 * @returns VBox status code (informational status codes included).
2690 * @retval VINF_SUCCESS if we can proceed with running the guest.
2691 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2692 *
2693 * @param pVM Pointer to the VM.
2694 * @param pVCpu Pointer to the VMCPU.
2695 * @param pCtx Pointer to the guest-CPU context.
2696 * @param pSvmTransient Pointer to the SVM transient structure.
2697 */
2698DECLINLINE(int) hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2699{
2700 /* Check force flag actions that might require us to go back to ring-3. */
2701 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2702 if (rc != VINF_SUCCESS)
2703 return rc;
2704
2705#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2706 /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
2707 pSvmTransient->uEFlags = ASMIntDisableFlags();
2708 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2709 {
2710 ASMSetFlags(pSvmTransient->uEFlags);
2711 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2712 /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
2713 return VINF_EM_RAW_INTERRUPT;
2714 }
2715 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2716 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2717#endif
2718
2719 /* Convert any pending TRPM traps to HM events for injection. */
2720 /** @todo Optimization: move this before disabling interrupts, restore state
2721 * using pVmcb->ctrl.EventInject.u. */
2722 if (TRPMHasTrap(pVCpu))
2723 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2724
2725 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2726
2727 return VINF_SUCCESS;
2728}
2729
2730
2731/**
2732 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2733 * means there is no backing out to ring-3 or anywhere else at this
2734 * point.
2735 *
2736 * @param pVM Pointer to the VM.
2737 * @param pVCpu Pointer to the VMCPU.
2738 * @param pCtx Pointer to the guest-CPU context.
2739 * @param pSvmTransient Pointer to the SVM transient structure.
2740 *
2741 * @remarks Called with preemption disabled.
2742 * @remarks No-long-jump zone!!!
2743 */
2744DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2745{
2746 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2747 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2748
2749#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2750 /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
2751 pSvmTransient->uEFlags = ASMIntDisableFlags();
2752 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2753#endif
2754
2755 /*
2756 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2757 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2758 */
2759 /** @todo The above assumption could be wrong. It's not documented what
2760 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2761 * hard way. */
2762 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2763 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2764
2765#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2766 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2767#endif
2768
2769 /* Load the guest state. */
2770 int rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2771 AssertRC(rc);
2772 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
2773 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2774
2775 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2776 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2777 pVmcb->ctrl.u64VmcbCleanBits = 0;
2778
2779 /*
2780 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2781 * so we can update it on the way back if the guest changed the TPR.
2782 */
2783 if (pVCpu->hm.s.svm.fSyncVTpr)
2784 {
2785 if (pVM->hm.s.fTPRPatchingActive)
2786 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2787 else
2788 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2789 }
2790
2791 /* Setup TSC offsetting. */
2792 if ( pSvmTransient->fUpdateTscOffsetting
2793 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
2794 {
2795 hmR0SvmUpdateTscOffsetting(pVCpu);
2796 pSvmTransient->fUpdateTscOffsetting = false;
2797 }
2798
2799 /* Flush the appropriate tagged-TLB entries. */
2800 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2801 hmR0SvmFlushTaggedTlb(pVCpu);
2802 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2803
2804 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
2805
2806 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2807 to start executing. */
2808
2809 /*
2810 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2811 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2812 *
2813 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2814 */
2815 pSvmTransient->fRestoreTscAuxMsr = false;
2816 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2817 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2818 {
2819 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2820 uint64_t u64GuestTscAux = 0;
2821 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2822 AssertRC(rc2);
2823 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
2824 {
2825 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2826 pSvmTransient->fRestoreTscAuxMsr = true;
2827 }
2828 }
2829}
2830
2831
2832/**
2833 * Wrapper for running the guest code in AMD-V.
2834 *
2835 * @returns VBox strict status code.
2836 * @param pVM Pointer to the VM.
2837 * @param pVCpu Pointer to the VMCPU.
2838 * @param pCtx Pointer to the guest-CPU context.
2839 *
2840 * @remarks No-long-jump zone!!!
2841 */
2842DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2843{
2844 /*
2845 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2846 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2847 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2848 */
2849#ifdef VBOX_WITH_KERNEL_USING_XMM
2850 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2851 pVCpu->hm.s.svm.pfnVMRun);
2852#else
2853 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2854#endif
2855}
2856
2857
2858/**
2859 * Performs some essential restoration of state after running guest code in
2860 * AMD-V.
2861 *
2862 * @param pVM Pointer to the VM.
2863 * @param pVCpu Pointer to the VMCPU.
2864 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2865 * out-of-sync. Make sure to update the required fields
2866 * before using them.
2867 * @param pSvmTransient Pointer to the SVM transient structure.
2868 * @param rcVMRun Return code of VMRUN.
2869 *
2870 * @remarks Called with interrupts disabled.
2871 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2872 * unconditionally when it is safe to do so.
2873 */
2874DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2875{
2876 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2877
2878 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2879 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2880
2881 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2882 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2883
2884 if (pSvmTransient->fRestoreTscAuxMsr)
2885 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2886
2887 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2888 {
2889 /** @todo Find a way to fix hardcoding a guestimate. */
2890 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
2891 }
2892
2893 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
2894 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2895 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2896
2897 Assert(!(ASMGetFlags() & X86_EFL_IF));
2898 ASMSetFlags(pSvmTransient->uEFlags); /* Enable interrupts. */
2899
2900 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pMixedCtx);
2901 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2902
2903 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2904 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2905 {
2906 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2907 return;
2908 }
2909
2910 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2911 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2912 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2913
2914 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2915 {
2916 if (pVCpu->hm.s.svm.fSyncVTpr)
2917 {
2918 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2919 if ( pVM->hm.s.fTPRPatchingActive
2920 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2921 {
2922 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
2923 AssertRC(rc);
2924 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2925 }
2926 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2927 {
2928 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
2929 AssertRC(rc);
2930 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2931 }
2932 }
2933 }
2934}
2935
2936
2937/**
2938 * Runs the guest code using AMD-V.
2939 *
2940 * @returns VBox status code.
2941 * @param pVM Pointer to the VM.
2942 * @param pVCpu Pointer to the VMCPU.
2943 * @param pCtx Pointer to the guest-CPU context.
2944 */
2945VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2946{
2947 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2948 HMSVM_ASSERT_PREEMPT_SAFE();
2949
2950 SVMTRANSIENT SvmTransient;
2951 SvmTransient.fUpdateTscOffsetting = true;
2952 uint32_t cLoops = 0;
2953 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2954 int rc = VERR_INTERNAL_ERROR_5;
2955
2956 for (;; cLoops++)
2957 {
2958 Assert(!HMR0SuspendPending());
2959 HMSVM_ASSERT_CPU_SAFE();
2960
2961 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
2962 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
2963 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
2964 if (rc != VINF_SUCCESS)
2965 break;
2966
2967 /*
2968 * No longjmps to ring-3 from this point on!!!
2969 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
2970 * This also disables flushing of the R0-logger instance (if any).
2971 */
2972 VMMRZCallRing3Disable(pVCpu);
2973 VMMRZCallRing3RemoveNotification(pVCpu);
2974 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
2975
2976 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
2977
2978 /*
2979 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
2980 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
2981 */
2982 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
2983 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
2984 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
2985 {
2986 if (rc == VINF_SUCCESS)
2987 rc = VERR_SVM_INVALID_GUEST_STATE;
2988 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
2989 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
2990 return rc;
2991 }
2992
2993 /* Handle the #VMEXIT. */
2994 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
2995 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
2996 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
2997 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
2998 if (rc != VINF_SUCCESS)
2999 break;
3000 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
3001 {
3002 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
3003 rc = VINF_EM_RAW_INTERRUPT;
3004 break;
3005 }
3006 }
3007
3008 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3009 if (rc == VERR_EM_INTERPRETER)
3010 rc = VINF_EM_RAW_EMULATE_INSTR;
3011 else if (rc == VINF_EM_RESET)
3012 rc = VINF_EM_TRIPLE_FAULT;
3013 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3014 return rc;
3015}
3016
3017
3018/**
3019 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3020 *
3021 * @returns VBox status code (informational status codes included).
3022 * @param pVCpu Pointer to the VMCPU.
3023 * @param pCtx Pointer to the guest-CPU context.
3024 * @param pSvmTransient Pointer to the SVM transient structure.
3025 */
3026DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3027{
3028 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
3029 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3030
3031 /*
3032 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
3033 * normal workloads (for some definition of "normal").
3034 */
3035 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3036 switch (pSvmTransient->u64ExitCode)
3037 {
3038 case SVM_EXIT_NPF:
3039 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3040
3041 case SVM_EXIT_IOIO:
3042 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3043
3044 case SVM_EXIT_RDTSC:
3045 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3046
3047 case SVM_EXIT_RDTSCP:
3048 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3049
3050 case SVM_EXIT_CPUID:
3051 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3052
3053 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
3054 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3055
3056 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3057 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3058
3059 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
3060 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3061
3062 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3063 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3064
3065 case SVM_EXIT_MONITOR:
3066 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3067
3068 case SVM_EXIT_MWAIT:
3069 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3070
3071 case SVM_EXIT_HLT:
3072 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3073
3074 case SVM_EXIT_READ_CR0:
3075 case SVM_EXIT_READ_CR3:
3076 case SVM_EXIT_READ_CR4:
3077 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3078
3079 case SVM_EXIT_WRITE_CR0:
3080 case SVM_EXIT_WRITE_CR3:
3081 case SVM_EXIT_WRITE_CR4:
3082 case SVM_EXIT_WRITE_CR8:
3083 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3084
3085 case SVM_EXIT_VINTR:
3086 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3087
3088 case SVM_EXIT_INTR:
3089 case SVM_EXIT_FERR_FREEZE:
3090 case SVM_EXIT_NMI:
3091 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3092
3093 case SVM_EXIT_MSR:
3094 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3095
3096 case SVM_EXIT_INVLPG:
3097 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3098
3099 case SVM_EXIT_WBINVD:
3100 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3101
3102 case SVM_EXIT_INVD:
3103 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3104
3105 case SVM_EXIT_RDPMC:
3106 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3107
3108 default:
3109 {
3110 switch (pSvmTransient->u64ExitCode)
3111 {
3112 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3113 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3114 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3115 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3116 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3117
3118 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3119 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3120 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3121 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3122 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3123
3124 case SVM_EXIT_TASK_SWITCH:
3125 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3126
3127 case SVM_EXIT_VMMCALL:
3128 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3129
3130 case SVM_EXIT_SHUTDOWN:
3131 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3132
3133 case SVM_EXIT_SMI:
3134 case SVM_EXIT_INIT:
3135 {
3136 /*
3137 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3138 * we want to know about it so log the exit code and bail.
3139 */
3140 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3141 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3142 return VERR_SVM_UNEXPECTED_EXIT;
3143 }
3144
3145 case SVM_EXIT_INVLPGA:
3146 case SVM_EXIT_RSM:
3147 case SVM_EXIT_VMRUN:
3148 case SVM_EXIT_VMLOAD:
3149 case SVM_EXIT_VMSAVE:
3150 case SVM_EXIT_STGI:
3151 case SVM_EXIT_CLGI:
3152 case SVM_EXIT_SKINIT:
3153 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3154
3155#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3156 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3157 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3158 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3159 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3160 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3161 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3162 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3163 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3164 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3165 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3166 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3167 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3168 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3169 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3170 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3171 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3172 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3173 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3174 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3175
3176 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3177 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3178 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3179 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3180 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3181 {
3182 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3183 SVMEVENT Event;
3184 Event.u = 0;
3185 Event.n.u1Valid = 1;
3186 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3187 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3188
3189 switch (Event.n.u8Vector)
3190 {
3191 case X86_XCPT_DE:
3192 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3193 break;
3194
3195 case X86_XCPT_BP:
3196 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3197 * next instruction. */
3198 /** @todo Investigate this later. */
3199 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3200 break;
3201
3202 case X86_XCPT_UD:
3203 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
3204 break;
3205
3206 case X86_XCPT_NP:
3207 Event.n.u1ErrorCodeValid = 1;
3208 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3209 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3210 break;
3211
3212 case X86_XCPT_SS:
3213 Event.n.u1ErrorCodeValid = 1;
3214 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3215 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3216 break;
3217
3218 case X86_XCPT_GP:
3219 Event.n.u1ErrorCodeValid = 1;
3220 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3221 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3222 break;
3223
3224 default:
3225 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3226 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3227 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3228 }
3229
3230 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3231 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3232 return VINF_SUCCESS;
3233 }
3234#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3235
3236 default:
3237 {
3238 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3239 pVCpu->hm.s.u32HMError = u32ExitCode;
3240 return VERR_SVM_UNKNOWN_EXIT;
3241 }
3242 }
3243 }
3244 }
3245 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3246}
3247
3248
3249#ifdef DEBUG
3250/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3251# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3252 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3253
3254# define HMSVM_ASSERT_PREEMPT_CPUID() \
3255 do \
3256 { \
3257 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3258 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3259 } while (0)
3260
3261# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3262 do { \
3263 AssertPtr(pVCpu); \
3264 AssertPtr(pCtx); \
3265 AssertPtr(pSvmTransient); \
3266 Assert(ASMIntAreEnabled()); \
3267 HMSVM_ASSERT_PREEMPT_SAFE(); \
3268 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3269 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3270 HMSVM_ASSERT_PREEMPT_SAFE(); \
3271 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3272 HMSVM_ASSERT_PREEMPT_CPUID(); \
3273 } while (0)
3274#else /* Release builds */
3275# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3276#endif
3277
3278
3279/**
3280 * Worker for hmR0SvmInterpretInvlpg().
3281 *
3282 * @return VBox status code.
3283 * @param pVCpu Pointer to the VMCPU.
3284 * @param pCpu Pointer to the disassembler state.
3285 * @param pRegFrame Pointer to the register frame.
3286 */
3287static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3288{
3289 DISQPVPARAMVAL Param1;
3290 RTGCPTR GCPtrPage;
3291
3292 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3293 if (RT_FAILURE(rc))
3294 return VERR_EM_INTERPRETER;
3295
3296 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3297 || Param1.type == DISQPV_TYPE_ADDRESS)
3298 {
3299 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3300 return VERR_EM_INTERPRETER;
3301
3302 GCPtrPage = Param1.val.val64;
3303 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3304 rc = VBOXSTRICTRC_VAL(rc2);
3305 }
3306 else
3307 {
3308 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3309 rc = VERR_EM_INTERPRETER;
3310 }
3311
3312 return rc;
3313}
3314
3315
3316/**
3317 * Interprets INVLPG.
3318 *
3319 * @returns VBox status code.
3320 * @retval VINF_* Scheduling instructions.
3321 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3322 * @retval VERR_* Fatal errors.
3323 *
3324 * @param pVM Pointer to the VM.
3325 * @param pRegFrame Pointer to the register frame.
3326 *
3327 * @remarks Updates the RIP if the instruction was executed successfully.
3328 */
3329static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3330{
3331 /* Only allow 32 & 64 bit code. */
3332 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3333 {
3334 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3335 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3336 if ( RT_SUCCESS(rc)
3337 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3338 {
3339 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3340 if (RT_SUCCESS(rc))
3341 pRegFrame->rip += pDis->cbInstr;
3342 return rc;
3343 }
3344 else
3345 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3346 }
3347 return VERR_EM_INTERPRETER;
3348}
3349
3350
3351/**
3352 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3353 *
3354 * @param pVCpu Pointer to the VMCPU.
3355 */
3356DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3357{
3358 SVMEVENT Event;
3359 Event.u = 0;
3360 Event.n.u1Valid = 1;
3361 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3362 Event.n.u8Vector = X86_XCPT_UD;
3363 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3364}
3365
3366
3367/**
3368 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3369 *
3370 * @param pVCpu Pointer to the VMCPU.
3371 */
3372DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3373{
3374 SVMEVENT Event;
3375 Event.u = 0;
3376 Event.n.u1Valid = 1;
3377 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3378 Event.n.u8Vector = X86_XCPT_DB;
3379 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3380}
3381
3382
3383/**
3384 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3385 *
3386 * @param pVCpu Pointer to the VMCPU.
3387 * @param pCtx Pointer to the guest-CPU context.
3388 * @param u32ErrCode The error-code for the page-fault.
3389 * @param uFaultAddress The page fault address (CR2).
3390 *
3391 * @remarks This updates the guest CR2 with @a uFaultAddress!
3392 */
3393DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3394{
3395 SVMEVENT Event;
3396 Event.u = 0;
3397 Event.n.u1Valid = 1;
3398 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3399 Event.n.u8Vector = X86_XCPT_PF;
3400 Event.n.u1ErrorCodeValid = 1;
3401 Event.n.u32ErrorCode = u32ErrCode;
3402
3403 /* Update CR2 of the guest. */
3404 if (pCtx->cr2 != uFaultAddress)
3405 {
3406 pCtx->cr2 = uFaultAddress;
3407 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
3408 }
3409
3410 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3411}
3412
3413
3414/**
3415 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3416 * VM.
3417 *
3418 * @param pVCpu Pointer to the VMCPU.
3419 */
3420DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3421{
3422 SVMEVENT Event;
3423 Event.u = 0;
3424 Event.n.u1Valid = 1;
3425 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3426 Event.n.u8Vector = X86_XCPT_NM;
3427 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3428}
3429
3430
3431/**
3432 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3433 *
3434 * @param pVCpu Pointer to the VMCPU.
3435 */
3436DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3437{
3438 SVMEVENT Event;
3439 Event.u = 0;
3440 Event.n.u1Valid = 1;
3441 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3442 Event.n.u8Vector = X86_XCPT_MF;
3443 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3444}
3445
3446
3447/**
3448 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3449 *
3450 * @param pVCpu Pointer to the VMCPU.
3451 */
3452DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3453{
3454 SVMEVENT Event;
3455 Event.u = 0;
3456 Event.n.u1Valid = 1;
3457 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3458 Event.n.u8Vector = X86_XCPT_DF;
3459 Event.n.u1ErrorCodeValid = 1;
3460 Event.n.u32ErrorCode = 0;
3461 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3462}
3463
3464
3465/**
3466 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3467 * guests. This simply looks up the patch record at EIP and does the required.
3468 *
3469 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3470 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3471 * TPR). See hmR3ReplaceTprInstr() for the details.
3472 *
3473 * @returns VBox status code.
3474 * @param pVM Pointer to the VM.
3475 * @param pVCpu Pointer to the VMCPU.
3476 * @param pCtx Pointer to the guest-CPU context.
3477 */
3478static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3479{
3480 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3481 for (;;)
3482 {
3483 bool fPending;
3484 uint8_t u8Tpr;
3485
3486 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3487 if (!pPatch)
3488 break;
3489
3490 switch (pPatch->enmType)
3491 {
3492 case HMTPRINSTR_READ:
3493 {
3494 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3495 AssertRC(rc);
3496
3497 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3498 AssertRC(rc);
3499 pCtx->rip += pPatch->cbOp;
3500 break;
3501 }
3502
3503 case HMTPRINSTR_WRITE_REG:
3504 case HMTPRINSTR_WRITE_IMM:
3505 {
3506 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3507 {
3508 uint32_t u32Val;
3509 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3510 AssertRC(rc);
3511 u8Tpr = u32Val;
3512 }
3513 else
3514 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3515
3516 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3517 AssertRC(rc2);
3518 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3519
3520 pCtx->rip += pPatch->cbOp;
3521 break;
3522 }
3523
3524 default:
3525 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
3526 pVCpu->hm.s.u32HMError = pPatch->enmType;
3527 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
3528 }
3529 }
3530
3531 return VINF_SUCCESS;
3532}
3533
3534/**
3535 * Determines if an exception is a contributory exception. Contributory
3536 * exceptions are ones which can cause double-faults. Page-fault is
3537 * intentionally not included here as it's a conditional contributory exception.
3538 *
3539 * @returns true if the exception is contributory, false otherwise.
3540 * @param uVector The exception vector.
3541 */
3542DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3543{
3544 switch (uVector)
3545 {
3546 case X86_XCPT_GP:
3547 case X86_XCPT_SS:
3548 case X86_XCPT_NP:
3549 case X86_XCPT_TS:
3550 case X86_XCPT_DE:
3551 return true;
3552 default:
3553 break;
3554 }
3555 return false;
3556}
3557
3558
3559/**
3560 * Handle a condition that occurred while delivering an event through the guest
3561 * IDT.
3562 *
3563 * @returns VBox status code (informational error codes included).
3564 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3565 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3566 * continue execution of the guest which will delivery the #DF.
3567 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3568 *
3569 * @param pVCpu Pointer to the VMCPU.
3570 * @param pCtx Pointer to the guest-CPU context.
3571 * @param pSvmTransient Pointer to the SVM transient structure.
3572 *
3573 * @remarks No-long-jump zone!!!
3574 */
3575static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3576{
3577 int rc = VINF_SUCCESS;
3578 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3579
3580 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3581 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3582 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3583 {
3584 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3585
3586 typedef enum
3587 {
3588 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3589 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3590 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3591 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3592 } SVMREFLECTXCPT;
3593
3594 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3595 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3596 {
3597 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3598 {
3599 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3600
3601#ifdef VBOX_STRICT
3602 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
3603 && uExitVector == X86_XCPT_PF)
3604 {
3605 Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
3606 }
3607#endif
3608 if ( uExitVector == X86_XCPT_PF
3609 && uIdtVector == X86_XCPT_PF)
3610 {
3611 pSvmTransient->fVectoringPF = true;
3612 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3613 }
3614 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3615 && hmR0SvmIsContributoryXcpt(uExitVector)
3616 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3617 || uIdtVector == X86_XCPT_PF))
3618 {
3619 enmReflect = SVMREFLECTXCPT_DF;
3620 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3621 uIdtVector, uExitVector));
3622 }
3623 else if (uIdtVector == X86_XCPT_DF)
3624 {
3625 enmReflect = SVMREFLECTXCPT_TF;
3626 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3627 uIdtVector, uExitVector));
3628 }
3629 else
3630 enmReflect = SVMREFLECTXCPT_XCPT;
3631 }
3632 else
3633 {
3634 /*
3635 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3636 * exception to the guest after handling the VM-exit.
3637 */
3638 enmReflect = SVMREFLECTXCPT_XCPT;
3639 }
3640 }
3641 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3642 {
3643 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3644 enmReflect = SVMREFLECTXCPT_XCPT;
3645 }
3646
3647 switch (enmReflect)
3648 {
3649 case SVMREFLECTXCPT_XCPT:
3650 {
3651 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3652 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
3653
3654 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3655 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3656 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3657 break;
3658 }
3659
3660 case SVMREFLECTXCPT_DF:
3661 {
3662 hmR0SvmSetPendingXcptDF(pVCpu);
3663 rc = VINF_HM_DOUBLE_FAULT;
3664 break;
3665 }
3666
3667 case SVMREFLECTXCPT_TF:
3668 {
3669 rc = VINF_EM_RESET;
3670 break;
3671 }
3672
3673 default:
3674 Assert(rc == VINF_SUCCESS);
3675 break;
3676 }
3677 }
3678 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3679 return rc;
3680}
3681
3682
3683/**
3684 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
3685 * CPU, otherwise advances the RIP by @a cb bytes.
3686 *
3687 * @param pVCpu Pointer to the VMCPU.
3688 * @param pCtx Pointer to the guest-CPU context.
3689 * @param cb RIP increment value in bytes.
3690 *
3691 * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
3692 * when NRIP_SAVE is supported by the CPU!
3693 */
3694DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
3695{
3696 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3697 {
3698 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3699 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3700 }
3701 else
3702 pCtx->rip += cb;
3703}
3704
3705
3706/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3707/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3708/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3709
3710/** @name VM-exit handlers.
3711 * @{
3712 */
3713
3714/**
3715 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3716 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3717 */
3718HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3719{
3720 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3721
3722 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
3723 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
3724 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
3725 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3726
3727 /*
3728 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
3729 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
3730 * interrupt it is until the host actually take the interrupt.
3731 *
3732 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
3733 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
3734 */
3735 return VINF_EM_RAW_INTERRUPT;
3736}
3737
3738
3739/**
3740 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3741 */
3742HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3743{
3744 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3745
3746 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3747 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3748 int rc = VINF_SUCCESS;
3749 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3750 return rc;
3751}
3752
3753
3754/**
3755 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3756 */
3757HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3758{
3759 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3760
3761 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3762 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3763 int rc = VINF_SUCCESS;
3764 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3765 return rc;
3766}
3767
3768
3769/**
3770 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3771 */
3772HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3773{
3774 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3775 PVM pVM = pVCpu->CTX_SUFF(pVM);
3776 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3777 if (RT_LIKELY(rc == VINF_SUCCESS))
3778 {
3779 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3780 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3781 }
3782 else
3783 {
3784 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3785 rc = VERR_EM_INTERPRETER;
3786 }
3787 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3788 return rc;
3789}
3790
3791
3792/**
3793 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3794 */
3795HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3796{
3797 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3798 PVM pVM = pVCpu->CTX_SUFF(pVM);
3799 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3800 if (RT_LIKELY(rc == VINF_SUCCESS))
3801 {
3802 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3803 pSvmTransient->fUpdateTscOffsetting = true;
3804
3805 /* Single step check. */
3806 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3807 }
3808 else
3809 {
3810 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3811 rc = VERR_EM_INTERPRETER;
3812 }
3813 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3814 return rc;
3815}
3816
3817
3818/**
3819 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3820 */
3821HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3822{
3823 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3824 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3825 if (RT_LIKELY(rc == VINF_SUCCESS))
3826 {
3827 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3828 pSvmTransient->fUpdateTscOffsetting = true;
3829 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3830 }
3831 else
3832 {
3833 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3834 rc = VERR_EM_INTERPRETER;
3835 }
3836 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3837 return rc;
3838}
3839
3840
3841/**
3842 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3843 */
3844HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3845{
3846 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3847 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3848 if (RT_LIKELY(rc == VINF_SUCCESS))
3849 {
3850 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3851 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3852 }
3853 else
3854 {
3855 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3856 rc = VERR_EM_INTERPRETER;
3857 }
3858 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3859 return rc;
3860}
3861
3862
3863/**
3864 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3865 */
3866HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3867{
3868 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3869 PVM pVM = pVCpu->CTX_SUFF(pVM);
3870 Assert(!pVM->hm.s.fNestedPaging);
3871
3872 /** @todo Decode Assist. */
3873 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3874 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3875 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3876 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3877 return rc;
3878}
3879
3880
3881/**
3882 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3883 */
3884HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3885{
3886 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3887 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
3888 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3889 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3890 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3891 return rc;
3892}
3893
3894
3895/**
3896 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3897 */
3898HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3899{
3900 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3901 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3902 if (RT_LIKELY(rc == VINF_SUCCESS))
3903 {
3904 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3905 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3906 }
3907 else
3908 {
3909 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3910 rc = VERR_EM_INTERPRETER;
3911 }
3912 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3913 return rc;
3914}
3915
3916
3917/**
3918 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3919 */
3920HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3921{
3922 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3923 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3924 int rc = VBOXSTRICTRC_VAL(rc2);
3925 if ( rc == VINF_EM_HALT
3926 || rc == VINF_SUCCESS)
3927 {
3928 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3929
3930 if ( rc == VINF_EM_HALT
3931 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3932 {
3933 rc = VINF_SUCCESS;
3934 }
3935 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3936 }
3937 else
3938 {
3939 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3940 rc = VERR_EM_INTERPRETER;
3941 }
3942 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3943 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3944 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3945 return rc;
3946}
3947
3948
3949/**
3950 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
3951 * Conditional #VMEXIT.
3952 */
3953HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3954{
3955 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3956 return VINF_EM_RESET;
3957}
3958
3959
3960/**
3961 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
3962 */
3963HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3964{
3965 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3966
3967 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3968
3969 /** @todo Decode Assist. */
3970 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3971 int rc = VBOXSTRICTRC_VAL(rc2);
3972 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
3973 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
3974 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
3975 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
3976 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3977 return rc;
3978}
3979
3980
3981/**
3982 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
3983 */
3984HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3985{
3986 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3987 /** @todo Decode Assist. */
3988 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3989 int rc = VBOXSTRICTRC_VAL(rc2);
3990 if (rc == VINF_SUCCESS)
3991 {
3992 /* RIP has been updated by EMInterpretInstruction(). */
3993 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
3994 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
3995 {
3996 case 0: /* CR0. */
3997 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
3998 break;
3999
4000 case 3: /* CR3. */
4001 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4002 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
4003 break;
4004
4005 case 4: /* CR4. */
4006 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
4007 break;
4008
4009 case 8: /* CR8 (TPR). */
4010 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4011 break;
4012
4013 default:
4014 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
4015 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
4016 break;
4017 }
4018 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4019 }
4020 else
4021 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
4022 return rc;
4023}
4024
4025
4026/**
4027 * #VMEXIT handler for instructions that result in a #UD exception delivered to
4028 * the guest.
4029 */
4030HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4031{
4032 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4033 hmR0SvmSetPendingXcptUD(pVCpu);
4034 return VINF_SUCCESS;
4035}
4036
4037
4038/**
4039 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
4040 */
4041HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4042{
4043 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4044 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4045 PVM pVM = pVCpu->CTX_SUFF(pVM);
4046
4047 int rc;
4048 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4049 {
4050 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4051
4052 /* Handle TPR patching; intercepted LSTAR write. */
4053 if ( pVM->hm.s.fTPRPatchingActive
4054 && pCtx->ecx == MSR_K8_LSTAR)
4055 {
4056 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4057 {
4058 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4059 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4060 AssertRC(rc2);
4061 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4062 }
4063 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4064 rc = VINF_SUCCESS;
4065 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4066 return rc;
4067 }
4068
4069 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4070 {
4071 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4072 if (RT_LIKELY(rc == VINF_SUCCESS))
4073 {
4074 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4075 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4076 }
4077 else
4078 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4079 }
4080 else
4081 {
4082 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4083 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4084 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4085 /* RIP updated by EMInterpretInstruction(). */
4086 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4087 }
4088
4089 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4090 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4091 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4092 {
4093 /* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4094 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4095 EMInterpretWrmsr() changes it. */
4096 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4097 }
4098 else if (pCtx->ecx == MSR_K6_EFER)
4099 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
4100 else if (pCtx->ecx == MSR_IA32_TSC)
4101 pSvmTransient->fUpdateTscOffsetting = true;
4102 }
4103 else
4104 {
4105 /* MSR Read access. */
4106 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4107 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4108
4109 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4110 {
4111 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4112 if (RT_LIKELY(rc == VINF_SUCCESS))
4113 {
4114 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4115 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4116 }
4117 else
4118 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4119 }
4120 else
4121 {
4122 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4123 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4124 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4125 /* RIP updated by EMInterpretInstruction(). */
4126 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4127 }
4128 }
4129
4130 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4131 return rc;
4132}
4133
4134
4135/**
4136 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
4137 */
4138HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4139{
4140 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4141 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4142
4143 /* We should -not- get this VM-exit if the guest is debugging. */
4144 AssertMsgReturn(!CPUMIsGuestDebugStateActive(pVCpu),
4145 ("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx),
4146 VERR_SVM_UNEXPECTED_EXIT);
4147
4148 /*
4149 * Lazy DR0-3 loading?
4150 */
4151 if (!CPUMIsHyperDebugStateActive(pVCpu))
4152 {
4153 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4154 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4155
4156 /* Don't intercept DRx read and writes. */
4157 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4158 pVmcb->ctrl.u16InterceptRdDRx = 0;
4159 pVmcb->ctrl.u16InterceptWrDRx = 0;
4160 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4161
4162 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4163 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4164 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4165
4166 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4167 return VINF_SUCCESS;
4168 }
4169
4170 /*
4171 * Interpret the read/writing of DRx.
4172 */
4173 /** @todo Decode assist. */
4174 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4175 Log5(("hmR0SvmExitReadDRx: Emulatined DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4176 if (RT_LIKELY(rc == VINF_SUCCESS))
4177 {
4178 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4179 /** @todo CPUM should set this flag! */
4180 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4181 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4182 }
4183 else
4184 Assert(rc == VERR_EM_INTERPRETER);
4185 return VBOXSTRICTRC_TODO(rc);
4186}
4187
4188
4189/**
4190 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
4191 */
4192HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4193{
4194 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4195 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4196 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4197 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4198 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4199 return rc;
4200}
4201
4202
4203/**
4204 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
4205 */
4206HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4207{
4208 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4209
4210 /* I/O operation lookup arrays. */
4211 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4212 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4213 the result (in AL/AX/EAX). */
4214 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4215
4216 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4217 PVM pVM = pVCpu->CTX_SUFF(pVM);
4218
4219 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4220 SVMIOIOEXIT IoExitInfo;
4221 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4222 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4223 uint32_t cbValue = s_aIOSize[uIOWidth];
4224 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4225
4226 if (RT_UNLIKELY(!cbValue))
4227 {
4228 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4229 return VERR_EM_INTERPRETER;
4230 }
4231
4232 VBOXSTRICTRC rcStrict;
4233 if (IoExitInfo.n.u1STR)
4234 {
4235 /* INS/OUTS - I/O String instruction. */
4236 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4237
4238 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4239 * in EXITINFO1? Investigate once this thing is up and running. */
4240
4241 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4242 if (rcStrict == VINF_SUCCESS)
4243 {
4244 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4245 {
4246 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4247 (DISCPUMODE)pDis->uAddrMode, cbValue);
4248 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4249 }
4250 else
4251 {
4252 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4253 (DISCPUMODE)pDis->uAddrMode, cbValue);
4254 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4255 }
4256 }
4257 else
4258 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
4259 }
4260 else
4261 {
4262 /* IN/OUT - I/O instruction. */
4263 Assert(!IoExitInfo.n.u1REP);
4264
4265 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4266 {
4267 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
4268 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4269 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4270
4271 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4272 }
4273 else
4274 {
4275 uint32_t u32Val = 0;
4276
4277 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
4278 if (IOM_SUCCESS(rcStrict))
4279 {
4280 /* Save result of I/O IN instr. in AL/AX/EAX. */
4281 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4282 }
4283 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4284 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4285
4286 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4287 }
4288 }
4289
4290 if (IOM_SUCCESS(rcStrict))
4291 {
4292 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4293 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4294
4295 /*
4296 * If any I/O breakpoints are armed, we need to check if one triggered
4297 * and take appropriate action.
4298 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
4299 */
4300 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
4301 * execution engines about whether hyper BPs and such are pending. */
4302 uint32_t const uDr7 = pCtx->dr[7];
4303 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
4304 && X86_DR7_ANY_RW_IO(uDr7)
4305 && (pCtx->cr4 & X86_CR4_DE))
4306 || DBGFBpIsHwIoArmed(pVM)))
4307 {
4308 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4309 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
4310
4311 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
4312 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
4313 {
4314 /* Raise #DB. */
4315 pVmcb->guest.u64DR6 = pCtx->dr[6];
4316 pVmcb->guest.u64DR7 = pCtx->dr[7];
4317 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4318 hmR0SvmSetPendingXcptDB(pVCpu);
4319 }
4320 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
4321 else if ( rcStrict2 != VINF_SUCCESS
4322 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
4323 rcStrict = rcStrict2;
4324 }
4325
4326 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4327 }
4328
4329#ifdef VBOX_STRICT
4330 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4331 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4332 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4333 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4334 else
4335 {
4336 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
4337 * statuses, that the VMM device and some others may return. See
4338 * IOM_SUCCESS() for guidance. */
4339 AssertMsg( RT_FAILURE(rcStrict)
4340 || rcStrict == VINF_SUCCESS
4341 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
4342 || rcStrict == VINF_EM_DBG_BREAKPOINT
4343 || rcStrict == VINF_EM_RAW_GUEST_TRAP
4344 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
4345 }
4346#endif
4347 return VBOXSTRICTRC_TODO(rcStrict);
4348}
4349
4350
4351/**
4352 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4353 * #VMEXIT.
4354 */
4355HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4356{
4357 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4358 PVM pVM = pVCpu->CTX_SUFF(pVM);
4359 Assert(pVM->hm.s.fNestedPaging);
4360
4361 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4362
4363 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4364 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4365 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4366 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4367
4368 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4369
4370#ifdef VBOX_HM_WITH_GUEST_PATCHING
4371 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4372 if ( pVM->hm.s.fTRPPatchingAllowed
4373 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
4374 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4375 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
4376 && !CPUMGetGuestCPL(pVCpu)
4377 && !CPUMIsGuestInLongModeEx(pCtx)
4378 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4379 {
4380 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4381 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4382
4383 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4384 {
4385 /* Only attempt to patch the instruction once. */
4386 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4387 if (!pPatch)
4388 return VINF_EM_HM_PATCH_TPR_INSTR;
4389 }
4390 }
4391#endif
4392
4393 /*
4394 * Determine the nested paging mode.
4395 */
4396 PGMMODE enmNestedPagingMode;
4397#if HC_ARCH_BITS == 32
4398 if (CPUMIsGuestInLongModeEx(pCtx))
4399 enmNestedPagingMode = PGMMODE_AMD64_NX;
4400 else
4401#endif
4402 enmNestedPagingMode = PGMGetHostMode(pVM);
4403
4404 /*
4405 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4406 */
4407 int rc;
4408 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4409 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4410 {
4411 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4412 u32ErrCode);
4413 rc = VBOXSTRICTRC_VAL(rc2);
4414
4415 /*
4416 * If we succeed, resume guest execution.
4417 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4418 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4419 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4420 * weird case. See @bugref{6043}.
4421 */
4422 if ( rc == VINF_SUCCESS
4423 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4424 || rc == VERR_PAGE_NOT_PRESENT)
4425 {
4426 /* Successfully handled MMIO operation. */
4427 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4428 rc = VINF_SUCCESS;
4429 }
4430 return rc;
4431 }
4432
4433 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4434 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4435 TRPMResetTrap(pVCpu);
4436
4437 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4438
4439 /*
4440 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4441 */
4442 if ( rc == VINF_SUCCESS
4443 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4444 || rc == VERR_PAGE_NOT_PRESENT)
4445 {
4446 /* We've successfully synced our shadow page tables. */
4447 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4448 rc = VINF_SUCCESS;
4449 }
4450
4451 return rc;
4452}
4453
4454
4455/**
4456 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4457 */
4458HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4459{
4460 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4461
4462 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4463 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4464 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4465
4466 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4467 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4468 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4469
4470 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4471 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4472 return VINF_SUCCESS;
4473}
4474
4475
4476/**
4477 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4478 */
4479HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4480{
4481 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4482
4483#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
4484 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4485#endif
4486
4487 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4488 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4489 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4490 && pVCpu->hm.s.Event.fPending)
4491 {
4492 /*
4493 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4494 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4495 * when the recompiler restarts the instruction.
4496 */
4497 SVMEVENT Event;
4498 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4499 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4500 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4501 {
4502 pVCpu->hm.s.Event.fPending = false;
4503 }
4504 else
4505 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4506 }
4507
4508 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4509 * emulation. */
4510 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4511 return VERR_EM_INTERPRETER;
4512}
4513
4514
4515/**
4516 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4517 */
4518HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4519{
4520 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4521
4522 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4523 if (RT_LIKELY(rc == VINF_SUCCESS))
4524 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4525 else
4526 hmR0SvmSetPendingXcptUD(pVCpu);
4527 return VINF_SUCCESS;
4528}
4529
4530
4531/**
4532 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
4533 * #VMEXIT.
4534 */
4535HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4536{
4537 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4538
4539 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4540
4541 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4542 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4543 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4544 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4545 PVM pVM = pVCpu->CTX_SUFF(pVM);
4546
4547#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4548 if (pVM->hm.s.fNestedPaging)
4549 {
4550 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4551 if (!pSvmTransient->fVectoringPF)
4552 {
4553 /* A genuine guest #PF, reflect it to the guest. */
4554 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4555 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4556 uFaultAddress, u32ErrCode));
4557 }
4558 else
4559 {
4560 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4561 hmR0SvmSetPendingXcptDF(pVCpu);
4562 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4563 }
4564 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4565 return VINF_SUCCESS;
4566 }
4567#endif
4568
4569 Assert(!pVM->hm.s.fNestedPaging);
4570
4571#ifdef VBOX_HM_WITH_GUEST_PATCHING
4572 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4573 if ( pVM->hm.s.fTRPPatchingAllowed
4574 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4575 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
4576 && !CPUMGetGuestCPL(pVCpu)
4577 && !CPUMIsGuestInLongModeEx(pCtx)
4578 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4579 {
4580 RTGCPHYS GCPhysApicBase;
4581 GCPhysApicBase = pCtx->msrApicBase;
4582 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4583
4584 /* Check if the page at the fault-address is the APIC base. */
4585 RTGCPHYS GCPhysPage;
4586 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4587 if ( rc2 == VINF_SUCCESS
4588 && GCPhysPage == GCPhysApicBase)
4589 {
4590 /* Only attempt to patch the instruction once. */
4591 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4592 if (!pPatch)
4593 return VINF_EM_HM_PATCH_TPR_INSTR;
4594 }
4595 }
4596#endif
4597
4598 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4599 pCtx->rip, u32ErrCode, pCtx->cr3));
4600
4601 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4602 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4603
4604 Log4(("#PF rc=%Rrc\n", rc));
4605
4606 if (rc == VINF_SUCCESS)
4607 {
4608 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4609 TRPMResetTrap(pVCpu);
4610 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4611 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4612 return rc;
4613 }
4614 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4615 {
4616 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4617
4618 if (!pSvmTransient->fVectoringPF)
4619 {
4620 /* It's a guest page fault and needs to be reflected to the guest. */
4621 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4622 TRPMResetTrap(pVCpu);
4623 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4624 }
4625 else
4626 {
4627 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4628 TRPMResetTrap(pVCpu);
4629 hmR0SvmSetPendingXcptDF(pVCpu);
4630 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4631 }
4632
4633 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4634 return VINF_SUCCESS;
4635 }
4636
4637 TRPMResetTrap(pVCpu);
4638 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4639 return rc;
4640}
4641
4642
4643/**
4644 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
4645 * Conditional #VMEXIT.
4646 */
4647HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4648{
4649 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4650
4651 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4652
4653#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4654 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4655#endif
4656
4657 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4658 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4659 if (rc == VINF_SUCCESS)
4660 {
4661 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4662 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4663 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4664 return VINF_SUCCESS;
4665 }
4666
4667 /* Forward #NM to the guest. */
4668 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4669 hmR0SvmSetPendingXcptNM(pVCpu);
4670 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4671 return VINF_SUCCESS;
4672}
4673
4674
4675/**
4676 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
4677 * Conditional #VMEXIT.
4678 */
4679HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4680{
4681 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4682
4683 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4684
4685 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4686
4687 if (!(pCtx->cr0 & X86_CR0_NE))
4688 {
4689 /* Old-style FPU error reporting needs some extra work. */
4690 /** @todo don't fall back to the recompiler, but do it manually. */
4691 return VERR_EM_INTERPRETER;
4692 }
4693
4694 hmR0SvmSetPendingXcptMF(pVCpu);
4695 return VINF_SUCCESS;
4696}
4697
4698
4699/**
4700 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
4701 * #VMEXIT.
4702 */
4703HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4704{
4705 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4706
4707 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4708
4709 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4710
4711 /* If we set the trap flag above, we have to clear it. */
4712 if (pVCpu->hm.s.fClearTrapFlag)
4713 {
4714 pVCpu->hm.s.fClearTrapFlag = false;
4715 pCtx->eflags.Bits.u1TF = 0;
4716 }
4717
4718 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4719 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4720 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4721 PVM pVM = pVCpu->CTX_SUFF(pVM);
4722 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
4723 if (rc == VINF_EM_RAW_GUEST_TRAP)
4724 {
4725 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
4726 if (CPUMIsHyperDebugStateActive(pVCpu))
4727 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
4728
4729 /* Reflect the exception back to the guest. */
4730 hmR0SvmSetPendingXcptDB(pVCpu);
4731 rc = VINF_SUCCESS;
4732 }
4733
4734 /*
4735 * Update DR6.
4736 */
4737 if (CPUMIsHyperDebugStateActive(pVCpu))
4738 {
4739 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
4740 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
4741 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4742 }
4743 else
4744 {
4745 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
4746 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
4747 }
4748
4749 return rc;
4750}
4751
4752/** @} */
4753
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette