VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 48037

Last change on this file since 48037 was 48037, checked in by vboxsync, 11 years ago

VMM/HM: Preemption hooks, work in progress. Hopefully I didn't break the non-hook case.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 181.8 KB
Line 
1/* $Id: HMSVMR0.cpp 48037 2013-08-23 18:11:36Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HMSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMSVM_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
38#endif
39
40
41/*******************************************************************************
42* Defined Constants And Macros *
43*******************************************************************************/
44#ifdef VBOX_WITH_STATISTICS
45# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
46 if ((u64ExitCode) == SVM_EXIT_NPF) \
47 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
48 else \
49 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
50 } while (0)
51#else
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
53#endif
54
55/** If we decide to use a function table approach this can be useful to
56 * switch to a "static DECLCALLBACK(int)". */
57#define HMSVM_EXIT_DECL static int
58
59
60/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
61 *
62 * The CPU format of the segment attribute is described in X86DESCATTRBITS
63 * which is 16-bits (i.e. includes 4 bits of the segment limit).
64 *
65 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
66 * only the attribute bits and nothing else). Upper 4-bits are unused.
67 *
68 * @{ */
69#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
70#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
71/** @} */
72
73
74/** @name Macros for loading, storing segment registers to/from the VMCB.
75 * @{ */
76#define HMSVM_LOAD_SEG_REG(REG, reg) \
77 do \
78 { \
79 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
80 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
81 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
82 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
83 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
84 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
85 } while (0)
86
87#define HMSVM_SAVE_SEG_REG(REG, reg) \
88 do \
89 { \
90 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
92 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
93 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
94 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
95 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
96 } while (0)
97/** @} */
98
99
100/** Macro for checking and returning from the using function for
101 * \#VMEXIT intercepts that maybe caused during delivering of another
102 * event in the guest. */
103#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
104 do \
105 { \
106 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
107 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
108 return VINF_SUCCESS; \
109 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
110 return rc; \
111 } while (0)
112
113/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
114 * instruction that exited. */
115#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
116 do { \
117 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
118 (a_rc) = VINF_EM_DBG_STEPPED; \
119 } while (0)
120
121/** Assert that preemption is disabled or covered by thread-context hooks. */
122#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
123 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
124
125/** Assert that we haven't migrated CPUs when thread-context hooks are not
126 * used. */
127#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
128 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
129 ("Illegal migration! Entered on CPU %u Current %u\n", \
130 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
131
132/** Exception bitmap mask for all contributory exceptions.
133 *
134 * Page fault is deliberately excluded here as it's conditional as to whether
135 * it's contributory or benign. Page faults are handled separately.
136 */
137#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
138 | RT_BIT(X86_XCPT_DE))
139
140
141/** @name VMCB Clean Bits.
142 *
143 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
144 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
145 * memory.
146 *
147 * @{ */
148/** All intercepts vectors, TSC offset, PAUSE filter counter. */
149#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
150/** I/O permission bitmap, MSR permission bitmap. */
151#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
152/** ASID. */
153#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
154/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
155V_INTR_VECTOR. */
156#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
157/** Nested Paging: Nested CR3 (nCR3), PAT. */
158#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
159/** Control registers (CR0, CR3, CR4, EFER). */
160#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
161/** Debug registers (DR6, DR7). */
162#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
163/** GDT, IDT limit and base. */
164#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
165/** Segment register: CS, SS, DS, ES limit and base. */
166#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
167/** CR2.*/
168#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
169/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
170#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
171/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
172PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
173#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
174/** Mask of all valid VMCB Clean bits. */
175#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
176 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
177 | HMSVM_VMCB_CLEAN_ASID \
178 | HMSVM_VMCB_CLEAN_TPR \
179 | HMSVM_VMCB_CLEAN_NP \
180 | HMSVM_VMCB_CLEAN_CRX_EFER \
181 | HMSVM_VMCB_CLEAN_DRX \
182 | HMSVM_VMCB_CLEAN_DT \
183 | HMSVM_VMCB_CLEAN_SEG \
184 | HMSVM_VMCB_CLEAN_CR2 \
185 | HMSVM_VMCB_CLEAN_LBR \
186 | HMSVM_VMCB_CLEAN_AVIC)
187/** @} */
188
189/** @name SVM transient.
190 *
191 * A state structure for holding miscellaneous information across AMD-V
192 * VMRUN/#VMEXIT operation, restored after the transition.
193 *
194 * @{ */
195typedef struct SVMTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG uEFlags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202
203 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
204 uint64_t u64ExitCode;
205 /** The guest's TPR value used for TPR shadowing. */
206 uint8_t u8GuestTpr;
207 /** Alignment. */
208 uint8_t abAlignment0[7];
209
210 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
211 bool fRestoreTscAuxMsr;
212 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
213 * contributary exception or a page-fault. */
214 bool fVectoringPF;
215 /** Whether the TSC offset mode needs to be updated. */
216 bool fUpdateTscOffsetting;
217} SVMTRANSIENT, *PSVMTRANSIENT;
218AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
219AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
220/** @} */
221
222
223/**
224 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
225 */
226typedef enum SVMMSREXITREAD
227{
228 /** Reading this MSR causes a VM-exit. */
229 SVMMSREXIT_INTERCEPT_READ = 0xb,
230 /** Reading this MSR does not cause a VM-exit. */
231 SVMMSREXIT_PASSTHRU_READ
232} SVMMSREXITREAD;
233
234/**
235 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
236 */
237typedef enum SVMMSREXITWRITE
238{
239 /** Writing to this MSR causes a VM-exit. */
240 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
241 /** Writing to this MSR does not cause a VM-exit. */
242 SVMMSREXIT_PASSTHRU_WRITE
243} SVMMSREXITWRITE;
244
245
246/*******************************************************************************
247* Internal Functions *
248*******************************************************************************/
249static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
250static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
251static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
252
253HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
256HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
257HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
258HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
259HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
260HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
261HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
263HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
264HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
265HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
266HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
267HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
268HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
269HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
270HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
271HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
272HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
273HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
274HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
275HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
276HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
277HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
278HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
279HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
280
281DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
282
283
284/*******************************************************************************
285* Global Variables *
286*******************************************************************************/
287/** Ring-0 memory object for the IO bitmap. */
288RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
289/** Physical address of the IO bitmap. */
290RTHCPHYS g_HCPhysIOBitmap = 0;
291/** Virtual address of the IO bitmap. */
292R0PTRTYPE(void *) g_pvIOBitmap = NULL;
293
294
295/**
296 * Sets up and activates AMD-V on the current CPU.
297 *
298 * @returns VBox status code.
299 * @param pCpu Pointer to the CPU info struct.
300 * @param pVM Pointer to the VM (can be NULL after a resume!).
301 * @param pvCpuPage Pointer to the global CPU page.
302 * @param HCPhysCpuPage Physical address of the global CPU page.
303 */
304VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
305{
306 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
307 AssertReturn( HCPhysCpuPage
308 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
309 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
310
311 /*
312 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
313 */
314 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
315 if (u64HostEfer & MSR_K6_EFER_SVME)
316 {
317 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
318 if ( pVM
319 && pVM->hm.s.svm.fIgnoreInUseError)
320 {
321 pCpu->fIgnoreAMDVInUseError = true;
322 }
323
324 if (!pCpu->fIgnoreAMDVInUseError)
325 return VERR_SVM_IN_USE;
326 }
327
328 /* Turn on AMD-V in the EFER MSR. */
329 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
330
331 /* Write the physical page address where the CPU will store the host state while executing the VM. */
332 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
333
334 /*
335 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
336 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
337 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
338 * to flush the TLB with before using a new ASID.
339 */
340 pCpu->fFlushAsidBeforeUse = true;
341
342 /*
343 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
344 */
345 ++pCpu->cTlbFlushes;
346
347 return VINF_SUCCESS;
348}
349
350
351/**
352 * Deactivates AMD-V on the current CPU.
353 *
354 * @returns VBox status code.
355 * @param pCpu Pointer to the CPU info struct.
356 * @param pvCpuPage Pointer to the global CPU page.
357 * @param HCPhysCpuPage Physical address of the global CPU page.
358 */
359VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
360{
361 AssertReturn( HCPhysCpuPage
362 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
363 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
364 NOREF(pCpu);
365
366 /* Turn off AMD-V in the EFER MSR. */
367 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
368 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
369
370 /* Invalidate host state physical address. */
371 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Does global AMD-V initialization (called during module initialization).
379 *
380 * @returns VBox status code.
381 */
382VMMR0DECL(int) SVMR0GlobalInit(void)
383{
384 /*
385 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
386 * once globally here instead of per-VM.
387 */
388 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
389 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
390 if (RT_FAILURE(rc))
391 return rc;
392
393 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
394 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
395
396 /* Set all bits to intercept all IO accesses. */
397 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
398 return VINF_SUCCESS;
399}
400
401
402/**
403 * Does global AMD-V termination (called during module termination).
404 */
405VMMR0DECL(void) SVMR0GlobalTerm(void)
406{
407 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
408 {
409 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
410 g_pvIOBitmap = NULL;
411 g_HCPhysIOBitmap = 0;
412 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
413 }
414}
415
416
417/**
418 * Frees any allocated per-VCPU structures for a VM.
419 *
420 * @param pVM Pointer to the VM.
421 */
422DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
423{
424 for (uint32_t i = 0; i < pVM->cCpus; i++)
425 {
426 PVMCPU pVCpu = &pVM->aCpus[i];
427 AssertPtr(pVCpu);
428
429 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
430 {
431 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
432 pVCpu->hm.s.svm.pvVmcbHost = 0;
433 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
434 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
435 }
436
437 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
438 {
439 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
440 pVCpu->hm.s.svm.pvVmcb = 0;
441 pVCpu->hm.s.svm.HCPhysVmcb = 0;
442 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
443 }
444
445 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
446 {
447 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
448 pVCpu->hm.s.svm.pvMsrBitmap = 0;
449 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
450 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
451 }
452 }
453}
454
455
456/**
457 * Does per-VM AMD-V initialization.
458 *
459 * @returns VBox status code.
460 * @param pVM Pointer to the VM.
461 */
462VMMR0DECL(int) SVMR0InitVM(PVM pVM)
463{
464 int rc = VERR_INTERNAL_ERROR_5;
465
466 /*
467 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
468 */
469 uint32_t u32Family;
470 uint32_t u32Model;
471 uint32_t u32Stepping;
472 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
473 {
474 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
475 pVM->hm.s.svm.fAlwaysFlushTLB = true;
476 }
477
478 /*
479 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
480 */
481 for (VMCPUID i = 0; i < pVM->cCpus; i++)
482 {
483 PVMCPU pVCpu = &pVM->aCpus[i];
484 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
485 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
486 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
487 }
488
489 for (VMCPUID i = 0; i < pVM->cCpus; i++)
490 {
491 PVMCPU pVCpu = &pVM->aCpus[i];
492
493 /*
494 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
495 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
496 */
497 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
498 if (RT_FAILURE(rc))
499 goto failure_cleanup;
500
501 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
502 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
503 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
504 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
505
506 /*
507 * Allocate one page for the guest-state VMCB.
508 */
509 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
510 if (RT_FAILURE(rc))
511 goto failure_cleanup;
512
513 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
514 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
515 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
516 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
517
518 /*
519 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
520 * SVM to not require one.
521 */
522 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
523 if (RT_FAILURE(rc))
524 goto failure_cleanup;
525
526 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
527 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
528 /* Set all bits to intercept all MSR accesses (changed later on). */
529 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
530 }
531
532 return VINF_SUCCESS;
533
534failure_cleanup:
535 hmR0SvmFreeStructs(pVM);
536 return rc;
537}
538
539
540/**
541 * Does per-VM AMD-V termination.
542 *
543 * @returns VBox status code.
544 * @param pVM Pointer to the VM.
545 */
546VMMR0DECL(int) SVMR0TermVM(PVM pVM)
547{
548 hmR0SvmFreeStructs(pVM);
549 return VINF_SUCCESS;
550}
551
552
553/**
554 * Sets the permission bits for the specified MSR in the MSRPM.
555 *
556 * @param pVCpu Pointer to the VMCPU.
557 * @param uMsr The MSR for which the access permissions are being set.
558 * @param enmRead MSR read permissions.
559 * @param enmWrite MSR write permissions.
560 */
561static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
562{
563 unsigned ulBit;
564 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
565
566 /*
567 * Layout:
568 * Byte offset MSR range
569 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
570 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
571 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
572 * 0x1800 - 0x1fff Reserved
573 */
574 if (uMsr <= 0x00001FFF)
575 {
576 /* Pentium-compatible MSRs. */
577 ulBit = uMsr * 2;
578 }
579 else if ( uMsr >= 0xC0000000
580 && uMsr <= 0xC0001FFF)
581 {
582 /* AMD Sixth Generation x86 Processor MSRs. */
583 ulBit = (uMsr - 0xC0000000) * 2;
584 pbMsrBitmap += 0x800;
585 }
586 else if ( uMsr >= 0xC0010000
587 && uMsr <= 0xC0011FFF)
588 {
589 /* AMD Seventh and Eighth Generation Processor MSRs. */
590 ulBit = (uMsr - 0xC0001000) * 2;
591 pbMsrBitmap += 0x1000;
592 }
593 else
594 {
595 AssertFailed();
596 return;
597 }
598
599 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
600 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
601 ASMBitSet(pbMsrBitmap, ulBit);
602 else
603 ASMBitClear(pbMsrBitmap, ulBit);
604
605 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
606 ASMBitSet(pbMsrBitmap, ulBit + 1);
607 else
608 ASMBitClear(pbMsrBitmap, ulBit + 1);
609
610 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
611 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
612}
613
614
615/**
616 * Sets up AMD-V for the specified VM.
617 * This function is only called once per-VM during initalization.
618 *
619 * @returns VBox status code.
620 * @param pVM Pointer to the VM.
621 */
622VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
623{
624 int rc = VINF_SUCCESS;
625
626 AssertReturn(pVM, VERR_INVALID_PARAMETER);
627 Assert(pVM->hm.s.svm.fSupported);
628
629 for (VMCPUID i = 0; i < pVM->cCpus; i++)
630 {
631 PVMCPU pVCpu = &pVM->aCpus[i];
632 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
633
634 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
635
636 /* Trap exceptions unconditionally (debug purposes). */
637#ifdef HMSVM_ALWAYS_TRAP_PF
638 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
639#endif
640#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
641 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
642 pVmcb->ctrl.u32InterceptException |= 0
643 | RT_BIT(X86_XCPT_BP)
644 | RT_BIT(X86_XCPT_DB)
645 | RT_BIT(X86_XCPT_DE)
646 | RT_BIT(X86_XCPT_NM)
647 | RT_BIT(X86_XCPT_UD)
648 | RT_BIT(X86_XCPT_NP)
649 | RT_BIT(X86_XCPT_SS)
650 | RT_BIT(X86_XCPT_GP)
651 | RT_BIT(X86_XCPT_PF)
652 | RT_BIT(X86_XCPT_MF)
653 ;
654#endif
655
656 /* Set up unconditional intercepts and conditions. */
657 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
658 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
659 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
660 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
661 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
662 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
663 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
664 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
665 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
666 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
667 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
668 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
669
670 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
671 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
672 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
673 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
674 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
675 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
676 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
677 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
678 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
679 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
680
681 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
682 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
683
684 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
685 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
686
687 /* Intercept all DRx reads and writes by default. Changed later on. */
688 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
689 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
690
691 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
692 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
693
694 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
695 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
696 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
697
698 /* Set IO and MSR bitmap permission bitmap physical addresses. */
699 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
700 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
701
702 /* No LBR virtualization. */
703 pVmcb->ctrl.u64LBRVirt = 0;
704
705 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
706 pVmcb->ctrl.u64VmcbCleanBits = 0;
707
708 /* The host ASID MBZ, for the guest start with 1. */
709 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
710
711 /*
712 * Setup the PAT MSR (applicable for Nested Paging only).
713 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
714 * so choose type 6 for all PAT slots.
715 */
716 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
717
718 /* Without Nested Paging, we need additionally intercepts. */
719 if (!pVM->hm.s.fNestedPaging)
720 {
721 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
722 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
723 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
724
725 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
726 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
727 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
728
729 /* Page faults must be intercepted to implement shadow paging. */
730 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
731 }
732
733#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
734 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
735#endif
736
737 /*
738 * The following MSRs are saved/restored automatically during the world-switch.
739 * Don't intercept guest read/write accesses to these MSRs.
740 */
741 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
742 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
743 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
744 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
745 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
746 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
747 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
748 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
749 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
750 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
751 }
752
753 return rc;
754}
755
756
757/**
758 * Invalidates a guest page by guest virtual address.
759 *
760 * @returns VBox status code.
761 * @param pVM Pointer to the VM.
762 * @param pVCpu Pointer to the VMCPU.
763 * @param GCVirt Guest virtual address of the page to invalidate.
764 */
765VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
766{
767 AssertReturn(pVM, VERR_INVALID_PARAMETER);
768 Assert(pVM->hm.s.svm.fSupported);
769
770 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
771
772 /* Skip it if a TLB flush is already pending. */
773 if (!fFlushPending)
774 {
775 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
776
777 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
778 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
779
780#if HC_ARCH_BITS == 32
781 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
782 if (CPUMIsGuestInLongMode(pVCpu))
783 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
784 else
785#endif
786 {
787 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
788 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
789 }
790 }
791 return VINF_SUCCESS;
792}
793
794
795/**
796 * Flushes the appropriate tagged-TLB entries.
797 *
798 * @param pVM Pointer to the VM.
799 * @param pVCpu Pointer to the VMCPU.
800 */
801static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
802{
803 PVM pVM = pVCpu->CTX_SUFF(pVM);
804 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
805 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
806
807 /*
808 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
809 * This can happen both for start & resume due to long jumps back to ring-3.
810 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
811 * so we cannot reuse the ASIDs without flushing.
812 */
813 bool fNewAsid = false;
814 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
815 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
816 {
817 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
818 pVCpu->hm.s.fForceTLBFlush = true;
819 fNewAsid = true;
820 }
821
822 /* Set TLB flush state as checked until we return from the world switch. */
823 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
824
825 /* Check for explicit TLB shootdowns. */
826 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
827 {
828 pVCpu->hm.s.fForceTLBFlush = true;
829 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
830 }
831
832 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
833 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
834
835 if (pVM->hm.s.svm.fAlwaysFlushTLB)
836 {
837 /*
838 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
839 */
840 pCpu->uCurrentAsid = 1;
841 pVCpu->hm.s.uCurrentAsid = 1;
842 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
843 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
844 }
845 else if (pVCpu->hm.s.fForceTLBFlush)
846 {
847 if (fNewAsid)
848 {
849 ++pCpu->uCurrentAsid;
850 bool fHitASIDLimit = false;
851 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
852 {
853 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
854 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
855 fHitASIDLimit = true;
856
857 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
858 {
859 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
860 pCpu->fFlushAsidBeforeUse = true;
861 }
862 else
863 {
864 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
865 pCpu->fFlushAsidBeforeUse = false;
866 }
867 }
868
869 if ( !fHitASIDLimit
870 && pCpu->fFlushAsidBeforeUse)
871 {
872 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
873 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
874 else
875 {
876 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
877 pCpu->fFlushAsidBeforeUse = false;
878 }
879 }
880
881 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
882 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
883 }
884 else
885 {
886 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
887 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
888 else
889 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
890 }
891
892 pVCpu->hm.s.fForceTLBFlush = false;
893 }
894 else
895 {
896 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
897 * not be executed. See hmQueueInvlPage() where it is commented
898 * out. Support individual entry flushing someday. */
899 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
900 {
901 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
902 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
903 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
904 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
905 }
906 }
907
908 pVCpu->hm.s.TlbShootdown.cPages = 0;
909 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
910
911 /* Update VMCB with the ASID. */
912 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
913 {
914 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
915 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
916 }
917
918 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
919 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
920 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
921 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
922 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
923 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
924
925#ifdef VBOX_WITH_STATISTICS
926 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
927 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
928 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
929 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
930 {
931 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
932 }
933 else
934 {
935 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
936 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
937 }
938#endif
939}
940
941
942/** @name 64-bit guest on 32-bit host OS helper functions.
943 *
944 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
945 * mode (code segment, paging). These wrappers/helpers perform the necessary
946 * bits for the 32->64 switcher.
947 *
948 * @{ */
949#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
950/**
951 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
952 *
953 * @returns VBox status code.
954 * @param HCPhysVmcbHost Physical address of host VMCB.
955 * @param HCPhysVmcb Physical address of the VMCB.
956 * @param pCtx Pointer to the guest-CPU context.
957 * @param pVM Pointer to the VM.
958 * @param pVCpu Pointer to the VMCPU.
959 */
960DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
961{
962 uint32_t aParam[4];
963 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
964 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
965 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
966 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
967
968 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
969}
970
971
972/**
973 * Executes the specified VMRUN handler in 64-bit mode.
974 *
975 * @returns VBox status code.
976 * @param pVM Pointer to the VM.
977 * @param pVCpu Pointer to the VMCPU.
978 * @param pCtx Pointer to the guest-CPU context.
979 * @param enmOp The operation to perform.
980 * @param cbParam Number of parameters.
981 * @param paParam Array of 32-bit parameters.
982 */
983VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
984 uint32_t *paParam)
985{
986 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
987 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
988
989 /* Disable interrupts. */
990 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
991
992#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
993 RTCPUID idHostCpu = RTMpCpuId();
994 CPUMR0SetLApic(pVCpu, idHostCpu);
995#endif
996
997 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
998 CPUMSetHyperEIP(pVCpu, enmOp);
999 for (int i = (int)cbParam - 1; i >= 0; i--)
1000 CPUMPushHyper(pVCpu, paParam[i]);
1001
1002 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1003 /* Call the switcher. */
1004 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1005 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1006
1007 /* Restore interrupts. */
1008 ASMSetFlags(uOldEFlags);
1009 return rc;
1010}
1011
1012#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1013/** @} */
1014
1015
1016/**
1017 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1018 * the corresponding VMCB Clean Bit.
1019 *
1020 * @param pVmcb Pointer to the VMCB.
1021 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1022 */
1023DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1024{
1025 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1026 {
1027 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1028 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1029 }
1030}
1031
1032
1033/**
1034 * Removes an exception from the intercept-exception bitmap in the VMCB and
1035 * updates the corresponding VMCB Clean Bit.
1036 *
1037 * @param pVmcb Pointer to the VMCB.
1038 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1039 */
1040DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1041{
1042#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1043 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1044 {
1045 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1046 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1047 }
1048#endif
1049}
1050
1051
1052/**
1053 * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1054 *
1055 * @returns VBox status code.
1056 * @param pVCpu Pointer to the VMCPU.
1057 * @param pVmcb Pointer to the VMCB.
1058 * @param pCtx Pointer the guest-CPU context.
1059 *
1060 * @remarks No-long-jump zone!!!
1061 */
1062DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1063{
1064 /*
1065 * Guest CR0.
1066 */
1067 PVM pVM = pVCpu->CTX_SUFF(pVM);
1068 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1069 {
1070 uint64_t u64GuestCR0 = pCtx->cr0;
1071
1072 /* Always enable caching. */
1073 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1074
1075 /*
1076 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1077 */
1078 if (!pVM->hm.s.fNestedPaging)
1079 {
1080 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1081 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1082 }
1083
1084 /*
1085 * Guest FPU bits.
1086 */
1087 bool fInterceptNM = false;
1088 bool fInterceptMF = false;
1089 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1090 if (CPUMIsGuestFPUStateActive(pVCpu))
1091 {
1092 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1093 if (!(u64GuestCR0 & X86_CR0_NE))
1094 {
1095 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1096 fInterceptMF = true;
1097 }
1098 }
1099 else
1100 {
1101 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1102 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1103 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1104 }
1105
1106 /*
1107 * Update the exception intercept bitmap.
1108 */
1109 if (fInterceptNM)
1110 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1111 else
1112 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1113
1114 if (fInterceptMF)
1115 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1116 else
1117 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1118
1119 pVmcb->guest.u64CR0 = u64GuestCR0;
1120 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1121 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1122 }
1123
1124 /*
1125 * Guest CR2.
1126 */
1127 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1128 {
1129 pVmcb->guest.u64CR2 = pCtx->cr2;
1130 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1131 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1132 }
1133
1134 /*
1135 * Guest CR3.
1136 */
1137 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1138 {
1139 if (pVM->hm.s.fNestedPaging)
1140 {
1141 PGMMODE enmShwPagingMode;
1142#if HC_ARCH_BITS == 32
1143 if (CPUMIsGuestInLongModeEx(pCtx))
1144 enmShwPagingMode = PGMMODE_AMD64_NX;
1145 else
1146#endif
1147 enmShwPagingMode = PGMGetHostMode(pVM);
1148
1149 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1150 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1151 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1152 pVmcb->guest.u64CR3 = pCtx->cr3;
1153 }
1154 else
1155 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1156
1157 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1158 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1159 }
1160
1161 /*
1162 * Guest CR4.
1163 */
1164 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1165 {
1166 uint64_t u64GuestCR4 = pCtx->cr4;
1167 if (!pVM->hm.s.fNestedPaging)
1168 {
1169 switch (pVCpu->hm.s.enmShadowMode)
1170 {
1171 case PGMMODE_REAL:
1172 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1173 AssertFailed();
1174 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1175
1176 case PGMMODE_32_BIT: /* 32-bit paging. */
1177 u64GuestCR4 &= ~X86_CR4_PAE;
1178 break;
1179
1180 case PGMMODE_PAE: /* PAE paging. */
1181 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1182 /** Must use PAE paging as we could use physical memory > 4 GB */
1183 u64GuestCR4 |= X86_CR4_PAE;
1184 break;
1185
1186 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1187 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1188#ifdef VBOX_ENABLE_64_BITS_GUESTS
1189 break;
1190#else
1191 AssertFailed();
1192 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1193#endif
1194
1195 default: /* shut up gcc */
1196 AssertFailed();
1197 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1198 }
1199 }
1200
1201 pVmcb->guest.u64CR4 = u64GuestCR4;
1202 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1203 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1204 }
1205
1206 return VINF_SUCCESS;
1207}
1208
1209
1210/**
1211 * Loads the guest segment registers into the VMCB.
1212 *
1213 * @returns VBox status code.
1214 * @param pVCpu Pointer to the VMCPU.
1215 * @param pVmcb Pointer to the VMCB.
1216 * @param pCtx Pointer to the guest-CPU context.
1217 *
1218 * @remarks No-long-jump zone!!!
1219 */
1220DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1221{
1222 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1223 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1224 {
1225 HMSVM_LOAD_SEG_REG(CS, cs);
1226 HMSVM_LOAD_SEG_REG(SS, ss);
1227 HMSVM_LOAD_SEG_REG(DS, ds);
1228 HMSVM_LOAD_SEG_REG(ES, es);
1229 HMSVM_LOAD_SEG_REG(FS, fs);
1230 HMSVM_LOAD_SEG_REG(GS, gs);
1231
1232 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1233 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1234 }
1235
1236 /* Guest TR. */
1237 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1238 {
1239 HMSVM_LOAD_SEG_REG(TR, tr);
1240 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1241 }
1242
1243 /* Guest LDTR. */
1244 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1245 {
1246 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1247 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1248 }
1249
1250 /* Guest GDTR. */
1251 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1252 {
1253 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1254 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1255 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1256 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1257 }
1258
1259 /* Guest IDTR. */
1260 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1261 {
1262 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1263 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1264 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1265 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1266 }
1267}
1268
1269
1270/**
1271 * Loads the guest MSRs into the VMCB.
1272 *
1273 * @param pVCpu Pointer to the VMCPU.
1274 * @param pVmcb Pointer to the VMCB.
1275 * @param pCtx Pointer to the guest-CPU context.
1276 *
1277 * @remarks No-long-jump zone!!!
1278 */
1279DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1280{
1281 /* Guest Sysenter MSRs. */
1282 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1283 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1284 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1285
1286 /*
1287 * Guest EFER MSR.
1288 * AMD-V requires guest EFER.SVME to be set. Weird. .
1289 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1290 */
1291 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1292 {
1293 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1294 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1295 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1296 }
1297
1298 /* 64-bit MSRs. */
1299 if (CPUMIsGuestInLongModeEx(pCtx))
1300 {
1301 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1302 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1303 }
1304 else
1305 {
1306 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1307 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1308 {
1309 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1310 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1311 }
1312 }
1313
1314
1315 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1316 * be writable in 32-bit mode. Clarify with AMD spec. */
1317 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1318 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1319 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1320 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1321 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1322}
1323
1324
1325/**
1326 * Loads the guest debug registers into the VMCB.
1327 *
1328 * @param pVCpu Pointer to the VMCPU.
1329 * @param pVmcb Pointer to the VMCB.
1330 * @param pCtx Pointer to the guest-CPU context.
1331 *
1332 * @remarks No-long-jump zone!!!
1333 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1334 */
1335DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1336{
1337 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1338 return;
1339 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1340 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1341
1342 bool fInterceptDB = false;
1343 bool fInterceptMovDRx = false;
1344
1345 /*
1346 * Anyone single stepping on the host side? If so, we'll have to use the
1347 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1348 * the VMM level like VT-x implementations does.
1349 */
1350 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1351 if (fStepping)
1352 {
1353 pVCpu->hm.s.fClearTrapFlag = true;
1354 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1355 fInterceptDB = true;
1356 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1357 }
1358
1359 PVM pVM = pVCpu->CTX_SUFF(pVM);
1360 if (fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1361 {
1362 /*
1363 * Use the combined guest and host DRx values found in the hypervisor
1364 * register set because the debugger has breakpoints active or someone
1365 * is single stepping on the host side.
1366 *
1367 * Note! DBGF expects a clean DR6 state before executing guest code.
1368 */
1369 if (!CPUMIsHyperDebugStateActive(pVCpu))
1370 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1371 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1372 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1373
1374 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1375 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1376 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu) )
1377 {
1378 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1379 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1380 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1381 }
1382
1383 /** @todo If we cared, we could optimize to allow the guest to read registers
1384 * with the same values. */
1385 fInterceptDB = true;
1386 fInterceptMovDRx = true;
1387 Log5(("hm: Loaded hyper DRx\n"));
1388 }
1389 else
1390 {
1391 /*
1392 * Update DR6, DR7 with the guest values if necessary.
1393 */
1394 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1395 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1396 {
1397 pVmcb->guest.u64DR7 = pCtx->dr[7];
1398 pVmcb->guest.u64DR6 = pCtx->dr[6];
1399 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1400 }
1401
1402 /*
1403 * If the guest has enabled debug registers, we need to load them prior to
1404 * executing guest code so they'll trigger at the right time.
1405 */
1406 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1407 {
1408 if (!CPUMIsGuestDebugStateActive(pVCpu))
1409 {
1410 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1411 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1412 }
1413 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1414 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1415 Log5(("hm: Loaded guest DRx\n"));
1416 }
1417 /*
1418 * If no debugging enabled, we'll lazy load DR0-3.
1419 */
1420 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1421 fInterceptMovDRx = true;
1422 }
1423
1424 /*
1425 * Set up the intercepts.
1426 */
1427 if (fInterceptDB)
1428 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1429 else
1430 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1431
1432 if (fInterceptMovDRx)
1433 {
1434 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1435 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1436 {
1437 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1438 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1439 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1440 }
1441 }
1442 else
1443 {
1444 if ( pVmcb->ctrl.u16InterceptRdDRx
1445 || pVmcb->ctrl.u16InterceptWrDRx)
1446 {
1447 pVmcb->ctrl.u16InterceptRdDRx = 0;
1448 pVmcb->ctrl.u16InterceptWrDRx = 0;
1449 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1450 }
1451 }
1452
1453 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1454}
1455
1456
1457/**
1458 * Loads the guest APIC state (currently just the TPR).
1459 *
1460 * @returns VBox status code.
1461 * @param pVCpu Pointer to the VMCPU.
1462 * @param pVmcb Pointer to the VMCB.
1463 * @param pCtx Pointer to the guest-CPU context.
1464 */
1465DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1466{
1467 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1468 return VINF_SUCCESS;
1469
1470 bool fPendingIntr;
1471 uint8_t u8Tpr;
1472 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1473 AssertRCReturn(rc, rc);
1474
1475 /** Assume that we need to trap all TPR accesses and thus need not check on
1476 * every #VMEXIT if we should update the TPR. */
1477 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1478 pVCpu->hm.s.svm.fSyncVTpr = false;
1479
1480 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1481 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1482 {
1483 pCtx->msrLSTAR = u8Tpr;
1484
1485 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1486 if (fPendingIntr)
1487 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1488 else
1489 {
1490 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1491 pVCpu->hm.s.svm.fSyncVTpr = true;
1492 }
1493 }
1494 else
1495 {
1496 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1497 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1498
1499 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1500 if (fPendingIntr)
1501 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1502 else
1503 {
1504 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1505 pVCpu->hm.s.svm.fSyncVTpr = true;
1506 }
1507
1508 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1509 }
1510
1511 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1512 return rc;
1513}
1514
1515
1516/**
1517 * Sets up the appropriate function to run guest code.
1518 *
1519 * @returns VBox status code.
1520 * @param pVCpu Pointer to the VMCPU.
1521 * @param pCtx Pointer to the guest-CPU context.
1522 *
1523 * @remarks No-long-jump zone!!!
1524 */
1525static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1526{
1527 if (CPUMIsGuestInLongModeEx(pCtx))
1528 {
1529#ifndef VBOX_ENABLE_64_BITS_GUESTS
1530 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1531#endif
1532 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1533#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1534 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1535 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1536#else
1537 /* 64-bit host or hybrid host. */
1538 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1539#endif
1540 }
1541 else
1542 {
1543 /* Guest is not in long mode, use the 32-bit handler. */
1544 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1545 }
1546 return VINF_SUCCESS;
1547}
1548
1549
1550/**
1551 * Enters the AMD-V session.
1552 *
1553 * @returns VBox status code.
1554 * @param pVM Pointer to the VM.
1555 * @param pVCpu Pointer to the VMCPU.
1556 * @param pCpu Pointer to the CPU info struct.
1557 */
1558VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1559{
1560 AssertPtr(pVM);
1561 AssertPtr(pVCpu);
1562 Assert(pVM->hm.s.svm.fSupported);
1563 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1564 NOREF(pCpu);
1565
1566 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1567
1568 pVCpu->hm.s.fLeaveDone = false;
1569 return VINF_SUCCESS;
1570}
1571
1572
1573/**
1574 * Leaves the AMD-V session.
1575 *
1576 * @returns VBox status code.
1577 * @param pVM Pointer to the VM.
1578 * @param pVCpu Pointer to the VMCPU.
1579 * @param pCtx Pointer to the guest-CPU context.
1580 */
1581VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1582{
1583 NOREF(pVM);
1584 NOREF(pVCpu);
1585 NOREF(pCtx);
1586
1587 /* Nothing to do here. Everything is taken care of in hmR0SvmLeave(). */
1588 return VINF_SUCCESS;
1589}
1590
1591
1592/**
1593 * Thread-context callback for AMD-V.
1594 *
1595 * @param enmEvent The thread-context event.
1596 * @param pVCpu Pointer to the VMCPU.
1597 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1598 */
1599VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1600{
1601 switch (enmEvent)
1602 {
1603 case RTTHREADCTXEVENT_PREEMPTING:
1604 {
1605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1606 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1607 VMCPU_ASSERT_EMT(pVCpu);
1608
1609 PVM pVM = pVCpu->CTX_SUFF(pVM);
1610 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1611 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1612
1613 if (!pVCpu->hm.s.fLeaveDone)
1614 {
1615 hmR0SvmLeave(pVM, pVCpu, pCtx);
1616 pVCpu->hm.s.fLeaveDone = true;
1617 }
1618
1619 int rc = HMR0LeaveCpu(pVCpu); /* Leave HM context, takes care of local init (term). */
1620 AssertRC(rc); NOREF(rc);
1621
1622 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1623 break;
1624 }
1625
1626 case RTTHREADCTXEVENT_RESUMED:
1627 {
1628 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1629 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1630 VMCPU_ASSERT_EMT(pVCpu);
1631
1632 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1633
1634 /*
1635 * Initialize the bare minimum state required for HM. This takes care of
1636 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1637 */
1638 int rc = HMR0EnterCpu(pVCpu);
1639 AssertRC(rc); NOREF(rc);
1640 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1641
1642 pVCpu->hm.s.fLeaveDone = false;
1643 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1644 break;
1645 }
1646
1647 default:
1648 break;
1649 }
1650}
1651
1652
1653/**
1654 * Saves the host state.
1655 *
1656 * @returns VBox status code.
1657 * @param pVM Pointer to the VM.
1658 * @param pVCpu Pointer to the VMCPU.
1659 *
1660 * @remarks No-long-jump zone!!!
1661 */
1662VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1663{
1664 NOREF(pVM);
1665 NOREF(pVCpu);
1666 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1667 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1668 return VINF_SUCCESS;
1669}
1670
1671
1672/**
1673 * Loads the guest state into the VMCB. The CPU state will be loaded from these
1674 * fields on every successful VM-entry.
1675 *
1676 * Sets up the appropriate VMRUN function to execute guest code based
1677 * on the guest CPU mode.
1678 *
1679 * @returns VBox status code.
1680 * @param pVM Pointer to the VM.
1681 * @param pVCpu Pointer to the VMCPU.
1682 * @param pMixedCtx Pointer to the guest-CPU context.
1683 *
1684 * @remarks No-long-jump zone!!!
1685 */
1686static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1687{
1688 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1689 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1690
1691 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1692
1693 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1694 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1695
1696 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1697 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1698
1699 pVmcb->guest.u64RIP = pCtx->rip;
1700 pVmcb->guest.u64RSP = pCtx->rsp;
1701 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1702 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1703 pVmcb->guest.u64RAX = pCtx->rax;
1704
1705 /* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
1706 hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
1707
1708 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1709 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1710
1711 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1712 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1713
1714 /* Clear any unused and reserved bits. */
1715 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1716 | HM_CHANGED_GUEST_RSP
1717 | HM_CHANGED_GUEST_RFLAGS
1718 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1719 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1720 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1721 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1722 | HM_CHANGED_SVM_RESERVED2
1723 | HM_CHANGED_SVM_RESERVED3);
1724
1725 /* All the guest state bits should be loaded except maybe the host context and shared host/guest bits. */
1726 AssertMsg( !(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST)
1727 || !(pVCpu->hm.s.fContextUseFlags & ~(HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE)),
1728 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1729 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1730
1731 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss, pCtx->rsp));
1732
1733 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1734 return rc;
1735}
1736
1737
1738/**
1739 * Loads the guest state on the way from ring-3.
1740 *
1741 * @returns VBox status code.
1742 * @param pVM Pointer to the VM.
1743 * @param pVCpu Pointer to the VMCPU.
1744 * @param pCtx Pointer to the guest-CPU context.
1745 *
1746 * @remarks No-long-jump zone!!!
1747 */
1748VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1749{
1750 /*
1751 * Avoid reloading the guest state on longjmp reentrants and do it lazily just before executing the guest.
1752 * This only helps when we get rescheduled more than once to a different host CPU on a longjmp trip before
1753 * finally executing guest code.
1754 */
1755 return VINF_SUCCESS;
1756}
1757
1758
1759/**
1760 * Saves the entire guest state from the VMCB into the
1761 * guest-CPU context. Currently there is no residual state left in the CPU that
1762 * is not updated in the VMCB.
1763 *
1764 * @returns VBox status code.
1765 * @param pVCpu Pointer to the VMCPU.
1766 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1767 * out-of-sync. Make sure to update the required fields
1768 * before using them.
1769 */
1770static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1771{
1772 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1773
1774 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1775
1776 pMixedCtx->rip = pVmcb->guest.u64RIP;
1777 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1778 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1779 pMixedCtx->rax = pVmcb->guest.u64RAX;
1780
1781 /*
1782 * Guest interrupt shadow.
1783 */
1784 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1785 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1786 else
1787 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1788
1789 /*
1790 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1791 */
1792 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1793
1794 /*
1795 * Guest MSRs.
1796 */
1797 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1798 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1799 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1800 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1801 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1802 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1803 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1804 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1805
1806 /*
1807 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1808 */
1809 HMSVM_SAVE_SEG_REG(CS, cs);
1810 HMSVM_SAVE_SEG_REG(SS, ss);
1811 HMSVM_SAVE_SEG_REG(DS, ds);
1812 HMSVM_SAVE_SEG_REG(ES, es);
1813 HMSVM_SAVE_SEG_REG(FS, fs);
1814 HMSVM_SAVE_SEG_REG(GS, gs);
1815
1816 /*
1817 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1818 * register (yet).
1819 */
1820 /** @todo SELM might need to be fixed as it too should not care about the
1821 * granularity bit. See @bugref{6785}. */
1822 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1823 && pMixedCtx->cs.Attr.n.u1Present
1824 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1825 {
1826 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1827 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1828 }
1829
1830#ifdef VBOX_STRICT
1831# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1832 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1833 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1834 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1835 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1836 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1837 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1838
1839 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1840 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1841 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1842 HMSVM_ASSERT_SEG_GRANULARITY(es);
1843 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1844 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1845
1846# undef HMSVM_ASSERT_SEL_GRANULARITY
1847#endif
1848
1849 /*
1850 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1851 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1852 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1853 * See AMD spec. 15.5.1 "Basic operation".
1854 */
1855 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1856 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1857
1858 /*
1859 * Guest Descriptor-Table registers.
1860 */
1861 HMSVM_SAVE_SEG_REG(TR, tr);
1862 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1863 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1864 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1865
1866 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1867 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1868
1869 /*
1870 * Guest Debug registers.
1871 */
1872 if (!CPUMIsHyperDebugStateActive(pVCpu))
1873 {
1874 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1875 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1876 }
1877 else
1878 {
1879 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
1880 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
1881 }
1882
1883 /*
1884 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1885 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1886 */
1887 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1888 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1889 {
1890 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1891 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1892 }
1893}
1894
1895
1896/**
1897 * Does the necessary state syncing before returning to ring-3 for any reason
1898 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
1899 *
1900 * @param pVM Pointer to the VM.
1901 * @param pVCpu Pointer to the VMCPU.
1902 * @param pMixedCtx Pointer to the guest-CPU context.
1903 *
1904 * @remarks No-long-jmp zone!!!
1905 */
1906static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1907{
1908 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1909 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1910 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1911
1912 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1913 if (CPUMIsGuestFPUStateActive(pVCpu))
1914 {
1915 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1916 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1917 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1918 }
1919
1920 /*
1921 * Restore host debug registers if necessary and resync on next R0 reentry.
1922 */
1923#ifdef VBOX_STRICT
1924 if (CPUMIsHyperDebugStateActive(pVCpu))
1925 {
1926 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1927 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1928 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1929 }
1930#endif
1931 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
1932 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1933
1934 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1935 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1936
1937 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
1938 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
1939 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1940 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1941 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1942
1943 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1944}
1945
1946
1947DECLINLINE(void) hmR0SvmLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1948{
1949 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1950
1951 /* Avoid repeating this work when thread-context hooks are used and we had been preempted before
1952 which would've done this work from the VMXR0ThreadCtxCallback(). */
1953 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1954 bool fPreemptDisabled = false;
1955 if (RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1956 {
1957 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1958 RTThreadPreemptDisable(&PreemptState);
1959 fPreemptDisabled = true;
1960 }
1961
1962 if (!pVCpu->hm.s.fLeaveDone)
1963 {
1964 hmR0SvmLeave(pVM, pVCpu, pCtx);
1965 pVCpu->hm.s.fLeaveDone = true;
1966 }
1967
1968 /* Deregister hook now that we've left HM context before re-enabling preemption. */
1969 /** @todo This is bad. Deregistering here means we need to VMCLEAR always
1970 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
1971 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
1972 VMMR0ThreadCtxHooksDeregister(pVCpu);
1973
1974 /* Leave HM context. This takes care of local init (term). */
1975 int rc = HMR0LeaveCpu(pVCpu);
1976 AssertRC(rc); NOREF(rc);
1977
1978 /* Restore preemption if we previous disabled it ourselves. */
1979 if (fPreemptDisabled)
1980 RTThreadPreemptRestore(&PreemptState);
1981}
1982
1983
1984/**
1985 * Does the necessary state syncing before doing a longjmp to ring-3.
1986 *
1987 * @param pVM Pointer to the VM.
1988 * @param pVCpu Pointer to the VMCPU.
1989 * @param pCtx Pointer to the guest-CPU context.
1990 *
1991 * @remarks No-long-jmp zone!!!
1992 */
1993static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1994{
1995 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
1996}
1997
1998
1999/**
2000 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2001 * any remaining host state) before we longjump to ring-3 and possibly get
2002 * preempted.
2003 *
2004 * @param pVCpu Pointer to the VMCPU.
2005 * @param enmOperation The operation causing the ring-3 longjump.
2006 * @param pvUser The user argument (pointer to the possibly
2007 * out-of-date guest-CPU context).
2008 *
2009 * @remarks Must never be called with @a enmOperation ==
2010 * VMMCALLRING3_VM_R0_ASSERTION.
2011 */
2012DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2013{
2014 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
2015 Assert(pVCpu);
2016 Assert(pvUser);
2017 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2018 HMSVM_ASSERT_PREEMPT_SAFE();
2019
2020 VMMRZCallRing3Disable(pVCpu);
2021 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2022
2023 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2024 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2025
2026 VMMRZCallRing3Enable(pVCpu);
2027}
2028
2029
2030/**
2031 * Take necessary actions before going back to ring-3.
2032 *
2033 * An action requires us to go back to ring-3. This function does the necessary
2034 * steps before we can safely return to ring-3. This is not the same as longjmps
2035 * to ring-3, this is voluntary.
2036 *
2037 * @param pVM Pointer to the VM.
2038 * @param pVCpu Pointer to the VMCPU.
2039 * @param pCtx Pointer to the guest-CPU context.
2040 * @param rcExit The reason for exiting to ring-3. Can be
2041 * VINF_VMM_UNKNOWN_RING3_CALL.
2042 */
2043static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2044{
2045 Assert(pVM);
2046 Assert(pVCpu);
2047 Assert(pCtx);
2048 HMSVM_ASSERT_PREEMPT_SAFE();
2049
2050 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
2051 {
2052 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
2053 return;
2054 }
2055
2056 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2057 VMMRZCallRing3Disable(pVCpu);
2058 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2059
2060 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2061 if (pVCpu->hm.s.Event.fPending)
2062 {
2063 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2064 Assert(!pVCpu->hm.s.Event.fPending);
2065 }
2066
2067 /* Sync. the necessary state for going back to ring-3. */
2068 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2069 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2070
2071 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2072 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2073 | CPUM_CHANGED_LDTR
2074 | CPUM_CHANGED_GDTR
2075 | CPUM_CHANGED_IDTR
2076 | CPUM_CHANGED_TR
2077 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2078 if ( pVM->hm.s.fNestedPaging
2079 && CPUMIsGuestPagingEnabledEx(pCtx))
2080 {
2081 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2082 }
2083
2084 /* Make sure we've undo the trap flag if we tried to single step something. */
2085 if (pVCpu->hm.s.fClearTrapFlag)
2086 {
2087 pCtx->eflags.Bits.u1TF = 0;
2088 pVCpu->hm.s.fClearTrapFlag = false;
2089 }
2090
2091 /* On our way back from ring-3 the following needs to be done. */
2092 /** @todo This can change with preemption hooks. */
2093 if (rcExit == VINF_EM_RAW_INTERRUPT)
2094 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
2095 else
2096 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2097
2098 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2099 VMMRZCallRing3Enable(pVCpu);
2100}
2101
2102
2103/**
2104 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2105 * intercepts.
2106 *
2107 * @param pVCpu Pointer to the VMCPU.
2108 *
2109 * @remarks No-long-jump zone!!!
2110 */
2111static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
2112{
2113 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2114 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
2115 {
2116 uint64_t u64CurTSC = ASMReadTSC();
2117 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
2118 {
2119 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
2120 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
2121 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2122 }
2123 else
2124 {
2125 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2126 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2127 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
2128 }
2129 }
2130 else
2131 {
2132 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2133 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2134 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2135 }
2136
2137 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2138}
2139
2140
2141/**
2142 * Sets an event as a pending event to be injected into the guest.
2143 *
2144 * @param pVCpu Pointer to the VMCPU.
2145 * @param pEvent Pointer to the SVM event.
2146 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2147 * page-fault.
2148 *
2149 * @remarks Statistics counter assumes this is a guest event being reflected to
2150 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2151 */
2152DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2153{
2154 Assert(!pVCpu->hm.s.Event.fPending);
2155 Assert(pEvent->n.u1Valid);
2156
2157 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
2158 pVCpu->hm.s.Event.fPending = true;
2159 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2160
2161 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2162 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2163
2164 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
2165}
2166
2167
2168/**
2169 * Injects an event into the guest upon VMRUN by updating the relevant field
2170 * in the VMCB.
2171 *
2172 * @param pVCpu Pointer to the VMCPU.
2173 * @param pVmcb Pointer to the guest VMCB.
2174 * @param pCtx Pointer to the guest-CPU context.
2175 * @param pEvent Pointer to the event.
2176 *
2177 * @remarks No-long-jump zone!!!
2178 * @remarks Requires CR0!
2179 */
2180DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2181{
2182 pVmcb->ctrl.EventInject.u = pEvent->u;
2183 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2184
2185 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2186 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2187}
2188
2189
2190
2191/**
2192 * Converts any TRPM trap into a pending HM event. This is typically used when
2193 * entering from ring-3 (not longjmp returns).
2194 *
2195 * @param pVCpu Pointer to the VMCPU.
2196 */
2197static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2198{
2199 Assert(TRPMHasTrap(pVCpu));
2200 Assert(!pVCpu->hm.s.Event.fPending);
2201
2202 uint8_t uVector;
2203 TRPMEVENT enmTrpmEvent;
2204 RTGCUINT uErrCode;
2205 RTGCUINTPTR GCPtrFaultAddress;
2206 uint8_t cbInstr;
2207
2208 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2209 AssertRC(rc);
2210
2211 SVMEVENT Event;
2212 Event.u = 0;
2213 Event.n.u1Valid = 1;
2214 Event.n.u8Vector = uVector;
2215
2216 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2217 if (enmTrpmEvent == TRPM_TRAP)
2218 {
2219 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2220 switch (uVector)
2221 {
2222 case X86_XCPT_PF:
2223 case X86_XCPT_DF:
2224 case X86_XCPT_TS:
2225 case X86_XCPT_NP:
2226 case X86_XCPT_SS:
2227 case X86_XCPT_GP:
2228 case X86_XCPT_AC:
2229 {
2230 Event.n.u1ErrorCodeValid = 1;
2231 Event.n.u32ErrorCode = uErrCode;
2232 break;
2233 }
2234 }
2235 }
2236 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2237 {
2238 if (uVector == X86_XCPT_NMI)
2239 Event.n.u3Type = SVM_EVENT_NMI;
2240 else
2241 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2242 }
2243 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2244 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2245 else
2246 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2247
2248 rc = TRPMResetTrap(pVCpu);
2249 AssertRC(rc);
2250
2251 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2252 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2253
2254 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2255 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2256}
2257
2258
2259/**
2260 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2261 * AMD-V to execute any instruction.
2262 *
2263 * @param pvCpu Pointer to the VMCPU.
2264 */
2265static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2266{
2267 Assert(pVCpu->hm.s.Event.fPending);
2268 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2269
2270 SVMEVENT Event;
2271 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2272
2273 uint8_t uVector = Event.n.u8Vector;
2274 uint8_t uVectorType = Event.n.u3Type;
2275
2276 TRPMEVENT enmTrapType;
2277 switch (uVectorType)
2278 {
2279 case SVM_EVENT_EXTERNAL_IRQ:
2280 case SVM_EVENT_NMI:
2281 enmTrapType = TRPM_HARDWARE_INT;
2282 break;
2283 case SVM_EVENT_SOFTWARE_INT:
2284 enmTrapType = TRPM_SOFTWARE_INT;
2285 break;
2286 case SVM_EVENT_EXCEPTION:
2287 enmTrapType = TRPM_TRAP;
2288 break;
2289 default:
2290 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2291 enmTrapType = TRPM_32BIT_HACK;
2292 break;
2293 }
2294
2295 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2296
2297 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2298 AssertRC(rc);
2299
2300 if (Event.n.u1ErrorCodeValid)
2301 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2302
2303 if ( uVectorType == SVM_EVENT_EXCEPTION
2304 && uVector == X86_XCPT_PF)
2305 {
2306 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2307 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2308 }
2309 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2310 {
2311 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2312 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2313 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2314 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2315 }
2316 pVCpu->hm.s.Event.fPending = false;
2317}
2318
2319
2320/**
2321 * Gets the guest's interrupt-shadow.
2322 *
2323 * @returns The guest's interrupt-shadow.
2324 * @param pVCpu Pointer to the VMCPU.
2325 * @param pCtx Pointer to the guest-CPU context.
2326 *
2327 * @remarks No-long-jump zone!!!
2328 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2329 */
2330DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2331{
2332 /*
2333 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2334 * inhibit interrupts or clear any existing interrupt-inhibition.
2335 */
2336 uint32_t uIntrState = 0;
2337 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2338 {
2339 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2340 {
2341 /*
2342 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2343 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2344 */
2345 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2346 }
2347 else
2348 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2349 }
2350 return uIntrState;
2351}
2352
2353
2354/**
2355 * Sets the virtual interrupt intercept control in the VMCB which
2356 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2357 * receive interrupts.
2358 *
2359 * @param pVmcb Pointer to the VMCB.
2360 */
2361DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2362{
2363 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2364 {
2365 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2366 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2367 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2368 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2369
2370 Log4(("Setting VINTR intercept\n"));
2371 }
2372}
2373
2374
2375/**
2376 * Injects any pending events into the guest if the guest is in a state to
2377 * receive them.
2378 *
2379 * @param pVCpu Pointer to the VMCPU.
2380 * @param pCtx Pointer to the guest-CPU context.
2381 */
2382static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2383{
2384 Assert(!TRPMHasTrap(pVCpu));
2385 Log4Func(("\n"));
2386
2387 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2388 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2389 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2390
2391 SVMEVENT Event;
2392 Event.u = 0;
2393 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2394 {
2395 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2396 Assert(Event.n.u1Valid);
2397 bool fInject = true;
2398 if ( Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
2399 && ( fBlockInt
2400 || fIntShadow))
2401 {
2402 fInject = false;
2403 }
2404 else if ( Event.n.u3Type == SVM_EVENT_NMI
2405 && fIntShadow)
2406 {
2407 fInject = false;
2408 }
2409
2410 if (fInject)
2411 {
2412 Log4(("Injecting pending HM event.\n"));
2413
2414 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2415 pVCpu->hm.s.Event.fPending = false;
2416
2417#ifdef VBOX_WITH_STATISTICS
2418 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2419 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2420 else
2421 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2422#endif
2423 }
2424 else
2425 hmR0SvmSetVirtIntrIntercept(pVmcb);
2426 } /** @todo SMI. SMIs take priority over NMIs. */
2427 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2428 {
2429 if (!fIntShadow)
2430 {
2431 Log4(("Injecting NMI\n"));
2432
2433 Event.n.u1Valid = 1;
2434 Event.n.u8Vector = X86_XCPT_NMI;
2435 Event.n.u3Type = SVM_EVENT_NMI;
2436
2437 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2438 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2439
2440 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2441 }
2442 else
2443 hmR0SvmSetVirtIntrIntercept(pVmcb);
2444 }
2445 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2446 {
2447 /* Check if there are guest external interrupts (PIC/APIC) pending and inject them, if the guest can receive them. */
2448 if ( !fBlockInt
2449 && !fIntShadow)
2450 {
2451 uint8_t u8Interrupt;
2452 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2453 if (RT_SUCCESS(rc))
2454 {
2455 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2456
2457 Event.n.u1Valid = 1;
2458 Event.n.u8Vector = u8Interrupt;
2459 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2460
2461 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2462 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2463 }
2464 else
2465 {
2466 /** @todo Does this actually happen? If not turn it into an assertion. */
2467 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2468 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2469 }
2470 }
2471 else
2472 hmR0SvmSetVirtIntrIntercept(pVmcb);
2473 }
2474
2475 /* Update the guest interrupt shadow in the VMCB. */
2476 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2477}
2478
2479
2480/**
2481 * Reports world-switch error and dumps some useful debug info.
2482 *
2483 * @param pVM Pointer to the VM.
2484 * @param pVCpu Pointer to the VMCPU.
2485 * @param rcVMRun The return code from VMRUN (or
2486 * VERR_SVM_INVALID_GUEST_STATE for invalid
2487 * guest-state).
2488 * @param pCtx Pointer to the guest-CPU context.
2489 */
2490static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2491{
2492 HMSVM_ASSERT_PREEMPT_SAFE();
2493 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2494
2495 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2496 {
2497 HMDumpRegs(pVM, pVCpu, pCtx);
2498#ifdef VBOX_STRICT
2499 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2500 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2501 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2502 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2503 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2504 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2505 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2506 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2507 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2508 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2509 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2510
2511 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2512 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2513 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2514
2515 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2516 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2517 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2518 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2519 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2520 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2521 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2522 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2523 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2524 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2525
2526 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2527 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2528 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2529 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2530 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2531 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2532 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2533 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2534 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2535 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2536 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2537 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2538 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2539 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2540 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2541 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2542 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2543
2544 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2545 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2546
2547 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2548 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2549 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2550 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2551 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2552 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2553 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2554 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2555 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2556 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2557 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2558 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2559 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2560 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2561 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2562 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2563 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2564 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2565 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2566 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2567
2568 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2569 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2570
2571 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2572 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2573 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2574 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2575
2576 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2577 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2578
2579 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2580 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2581 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2582 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2583
2584 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2585 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2586 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2587 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2588 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2589 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2590 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2591
2592 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2593 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2594 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2595 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2596
2597 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2598 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2599 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2600
2601 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2602 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2603 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2604 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2605 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2606 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2607 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2608 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2609 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2610 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2611 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2612 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2613#endif
2614 }
2615 else
2616 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2617}
2618
2619
2620/**
2621 * Check per-VM and per-VCPU force flag actions that require us to go back to
2622 * ring-3 for one reason or another.
2623 *
2624 * @returns VBox status code (information status code included).
2625 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2626 * ring-3.
2627 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2628 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2629 * interrupts)
2630 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2631 * all EMTs to be in ring-3.
2632 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2633 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2634 * to the EM loop.
2635 *
2636 * @param pVM Pointer to the VM.
2637 * @param pVCpu Pointer to the VMCPU.
2638 * @param pCtx Pointer to the guest-CPU context.
2639 */
2640static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2641{
2642 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2643
2644 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2645 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2646 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2647
2648 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2649 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2650 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2651 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2652 {
2653 /* Pending PGM C3 sync. */
2654 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2655 {
2656 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2657 if (rc != VINF_SUCCESS)
2658 {
2659 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2660 return rc;
2661 }
2662 }
2663
2664 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2665 /* -XXX- what was that about single stepping? */
2666 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2667 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2668 {
2669 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2670 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2671 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2672 return rc;
2673 }
2674
2675 /* Pending VM request packets, such as hardware interrupts. */
2676 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2677 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2678 {
2679 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2680 return VINF_EM_PENDING_REQUEST;
2681 }
2682
2683 /* Pending PGM pool flushes. */
2684 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2685 {
2686 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2687 return VINF_PGM_POOL_FLUSH_PENDING;
2688 }
2689
2690 /* Pending DMA requests. */
2691 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2692 {
2693 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2694 return VINF_EM_RAW_TO_R3;
2695 }
2696 }
2697
2698 return VINF_SUCCESS;
2699}
2700
2701
2702/**
2703 * Does the preparations before executing guest code in AMD-V.
2704 *
2705 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2706 * recompiler. We must be cautious what we do here regarding committing
2707 * guest-state information into the the VMCB assuming we assuredly execute the
2708 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2709 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2710 * that the recompiler can (and should) use them when it resumes guest
2711 * execution. Otherwise such operations must be done when we can no longer
2712 * exit to ring-3.
2713 *
2714 * @returns VBox status code (informational status codes included).
2715 * @retval VINF_SUCCESS if we can proceed with running the guest.
2716 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2717 *
2718 * @param pVM Pointer to the VM.
2719 * @param pVCpu Pointer to the VMCPU.
2720 * @param pCtx Pointer to the guest-CPU context.
2721 * @param pSvmTransient Pointer to the SVM transient structure.
2722 */
2723DECLINLINE(int) hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2724{
2725 /* Check force flag actions that might require us to go back to ring-3. */
2726 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2727 if (rc != VINF_SUCCESS)
2728 return rc;
2729
2730#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2731 /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
2732 pSvmTransient->uEFlags = ASMIntDisableFlags();
2733 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2734 {
2735 ASMSetFlags(pSvmTransient->uEFlags);
2736 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2737 /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
2738 return VINF_EM_RAW_INTERRUPT;
2739 }
2740 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2741 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2742#endif
2743
2744 /* Convert any pending TRPM traps to HM events for injection. */
2745 /** @todo Optimization: move this before disabling interrupts, restore state
2746 * using pVmcb->ctrl.EventInject.u. */
2747 if (TRPMHasTrap(pVCpu))
2748 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2749
2750 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2751
2752 return VINF_SUCCESS;
2753}
2754
2755
2756/**
2757 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2758 * means there is no backing out to ring-3 or anywhere else at this
2759 * point.
2760 *
2761 * @param pVM Pointer to the VM.
2762 * @param pVCpu Pointer to the VMCPU.
2763 * @param pCtx Pointer to the guest-CPU context.
2764 * @param pSvmTransient Pointer to the SVM transient structure.
2765 *
2766 * @remarks Called with preemption disabled.
2767 * @remarks No-long-jump zone!!!
2768 */
2769DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2770{
2771 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2772 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2773
2774#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
2775 /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
2776 pSvmTransient->uEFlags = ASMIntDisableFlags();
2777 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2778#endif
2779
2780 /*
2781 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2782 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2783 */
2784 /** @todo The above assumption could be wrong. It's not documented what
2785 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2786 * hard way. */
2787 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2788 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2789
2790#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2791 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2792#endif
2793
2794 /* Load the guest state. */
2795 int rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2796 AssertRC(rc);
2797 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
2798 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
2799 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2800
2801 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2802 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2803 pVmcb->ctrl.u64VmcbCleanBits = 0;
2804
2805 /*
2806 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2807 * so we can update it on the way back if the guest changed the TPR.
2808 */
2809 if (pVCpu->hm.s.svm.fSyncVTpr)
2810 {
2811 if (pVM->hm.s.fTPRPatchingActive)
2812 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2813 else
2814 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2815 }
2816
2817 /* Setup TSC offsetting. */
2818 if ( pSvmTransient->fUpdateTscOffsetting
2819 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
2820 {
2821 hmR0SvmUpdateTscOffsetting(pVCpu);
2822 pSvmTransient->fUpdateTscOffsetting = false;
2823 }
2824
2825 /* Flush the appropriate tagged-TLB entries. */
2826 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2827 hmR0SvmFlushTaggedTlb(pVCpu);
2828 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2829
2830 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
2831
2832 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2833 to start executing. */
2834
2835 /*
2836 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2837 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2838 *
2839 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2840 */
2841 pSvmTransient->fRestoreTscAuxMsr = false;
2842 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2843 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2844 {
2845 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2846 uint64_t u64GuestTscAux = 0;
2847 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2848 AssertRC(rc2);
2849 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
2850 {
2851 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2852 pSvmTransient->fRestoreTscAuxMsr = true;
2853 }
2854 }
2855}
2856
2857
2858/**
2859 * Wrapper for running the guest code in AMD-V.
2860 *
2861 * @returns VBox strict status code.
2862 * @param pVM Pointer to the VM.
2863 * @param pVCpu Pointer to the VMCPU.
2864 * @param pCtx Pointer to the guest-CPU context.
2865 *
2866 * @remarks No-long-jump zone!!!
2867 */
2868DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2869{
2870 /*
2871 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2872 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2873 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2874 */
2875#ifdef VBOX_WITH_KERNEL_USING_XMM
2876 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2877 pVCpu->hm.s.svm.pfnVMRun);
2878#else
2879 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2880#endif
2881}
2882
2883
2884/**
2885 * Performs some essential restoration of state after running guest code in
2886 * AMD-V.
2887 *
2888 * @param pVM Pointer to the VM.
2889 * @param pVCpu Pointer to the VMCPU.
2890 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2891 * out-of-sync. Make sure to update the required fields
2892 * before using them.
2893 * @param pSvmTransient Pointer to the SVM transient structure.
2894 * @param rcVMRun Return code of VMRUN.
2895 *
2896 * @remarks Called with interrupts disabled.
2897 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2898 * unconditionally when it is safe to do so.
2899 */
2900DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2901{
2902 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2903
2904 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2905 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2906
2907 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2908 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2909
2910 if (pSvmTransient->fRestoreTscAuxMsr)
2911 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2912
2913 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2914 {
2915 /** @todo Find a way to fix hardcoding a guestimate. */
2916 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
2917 }
2918
2919 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
2920 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2921 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2922
2923 Assert(!(ASMGetFlags() & X86_EFL_IF));
2924 ASMSetFlags(pSvmTransient->uEFlags); /* Enable interrupts. */
2925
2926 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pMixedCtx);
2927 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2928
2929 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2930 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2931 {
2932 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2933 return;
2934 }
2935
2936 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2937 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2938 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2939
2940 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2941 {
2942 if (pVCpu->hm.s.svm.fSyncVTpr)
2943 {
2944 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2945 if ( pVM->hm.s.fTPRPatchingActive
2946 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2947 {
2948 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
2949 AssertRC(rc);
2950 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2951 }
2952 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2953 {
2954 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
2955 AssertRC(rc);
2956 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2957 }
2958 }
2959 }
2960}
2961
2962
2963/**
2964 * Runs the guest code using AMD-V.
2965 *
2966 * @returns VBox status code.
2967 * @param pVM Pointer to the VM.
2968 * @param pVCpu Pointer to the VMCPU.
2969 * @param pCtx Pointer to the guest-CPU context.
2970 */
2971VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2972{
2973 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2974 HMSVM_ASSERT_PREEMPT_SAFE();
2975
2976 SVMTRANSIENT SvmTransient;
2977 SvmTransient.fUpdateTscOffsetting = true;
2978 uint32_t cLoops = 0;
2979 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2980 int rc = VERR_INTERNAL_ERROR_5;
2981
2982 for (;; cLoops++)
2983 {
2984 Assert(!HMR0SuspendPending());
2985 HMSVM_ASSERT_CPU_SAFE();
2986
2987 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
2988 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
2989 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
2990 if (rc != VINF_SUCCESS)
2991 break;
2992
2993 /*
2994 * No longjmps to ring-3 from this point on!!!
2995 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
2996 * This also disables flushing of the R0-logger instance (if any).
2997 */
2998 VMMRZCallRing3Disable(pVCpu);
2999 VMMRZCallRing3RemoveNotification(pVCpu);
3000 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3001
3002 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3003
3004 /*
3005 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
3006 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
3007 */
3008 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3009 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3010 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3011 {
3012 if (rc == VINF_SUCCESS)
3013 rc = VERR_SVM_INVALID_GUEST_STATE;
3014 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3015 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3016 return rc;
3017 }
3018
3019 /* Handle the #VMEXIT. */
3020 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3021 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3022 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3023 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3024 if (rc != VINF_SUCCESS)
3025 break;
3026 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
3027 {
3028 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
3029 rc = VINF_EM_RAW_INTERRUPT;
3030 break;
3031 }
3032 }
3033
3034 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3035 if (rc == VERR_EM_INTERPRETER)
3036 rc = VINF_EM_RAW_EMULATE_INSTR;
3037 else if (rc == VINF_EM_RESET)
3038 rc = VINF_EM_TRIPLE_FAULT;
3039 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3040 return rc;
3041}
3042
3043
3044/**
3045 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3046 *
3047 * @returns VBox status code (informational status codes included).
3048 * @param pVCpu Pointer to the VMCPU.
3049 * @param pCtx Pointer to the guest-CPU context.
3050 * @param pSvmTransient Pointer to the SVM transient structure.
3051 */
3052DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3053{
3054 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
3055 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3056
3057 /*
3058 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
3059 * normal workloads (for some definition of "normal").
3060 */
3061 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3062 switch (pSvmTransient->u64ExitCode)
3063 {
3064 case SVM_EXIT_NPF:
3065 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3066
3067 case SVM_EXIT_IOIO:
3068 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3069
3070 case SVM_EXIT_RDTSC:
3071 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3072
3073 case SVM_EXIT_RDTSCP:
3074 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3075
3076 case SVM_EXIT_CPUID:
3077 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3078
3079 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
3080 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3081
3082 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3083 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3084
3085 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
3086 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3087
3088 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3089 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3090
3091 case SVM_EXIT_MONITOR:
3092 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3093
3094 case SVM_EXIT_MWAIT:
3095 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3096
3097 case SVM_EXIT_HLT:
3098 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3099
3100 case SVM_EXIT_READ_CR0:
3101 case SVM_EXIT_READ_CR3:
3102 case SVM_EXIT_READ_CR4:
3103 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3104
3105 case SVM_EXIT_WRITE_CR0:
3106 case SVM_EXIT_WRITE_CR3:
3107 case SVM_EXIT_WRITE_CR4:
3108 case SVM_EXIT_WRITE_CR8:
3109 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3110
3111 case SVM_EXIT_VINTR:
3112 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3113
3114 case SVM_EXIT_INTR:
3115 case SVM_EXIT_FERR_FREEZE:
3116 case SVM_EXIT_NMI:
3117 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3118
3119 case SVM_EXIT_MSR:
3120 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3121
3122 case SVM_EXIT_INVLPG:
3123 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3124
3125 case SVM_EXIT_WBINVD:
3126 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3127
3128 case SVM_EXIT_INVD:
3129 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3130
3131 case SVM_EXIT_RDPMC:
3132 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3133
3134 default:
3135 {
3136 switch (pSvmTransient->u64ExitCode)
3137 {
3138 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3139 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3140 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3141 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3142 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3143
3144 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3145 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3146 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3147 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3148 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3149
3150 case SVM_EXIT_TASK_SWITCH:
3151 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3152
3153 case SVM_EXIT_VMMCALL:
3154 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3155
3156 case SVM_EXIT_SHUTDOWN:
3157 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3158
3159 case SVM_EXIT_SMI:
3160 case SVM_EXIT_INIT:
3161 {
3162 /*
3163 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3164 * we want to know about it so log the exit code and bail.
3165 */
3166 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3167 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3168 return VERR_SVM_UNEXPECTED_EXIT;
3169 }
3170
3171 case SVM_EXIT_INVLPGA:
3172 case SVM_EXIT_RSM:
3173 case SVM_EXIT_VMRUN:
3174 case SVM_EXIT_VMLOAD:
3175 case SVM_EXIT_VMSAVE:
3176 case SVM_EXIT_STGI:
3177 case SVM_EXIT_CLGI:
3178 case SVM_EXIT_SKINIT:
3179 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3180
3181#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3182 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3183 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3184 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3185 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3186 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3187 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3188 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3189 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3190 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3191 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3192 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3193 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3194 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3195 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3196 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3197 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3198 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3199 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3200 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3201
3202 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3203 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3204 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3205 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3206 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3207 {
3208 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3209 SVMEVENT Event;
3210 Event.u = 0;
3211 Event.n.u1Valid = 1;
3212 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3213 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3214
3215 switch (Event.n.u8Vector)
3216 {
3217 case X86_XCPT_DE:
3218 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3219 break;
3220
3221 case X86_XCPT_BP:
3222 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3223 * next instruction. */
3224 /** @todo Investigate this later. */
3225 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3226 break;
3227
3228 case X86_XCPT_UD:
3229 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
3230 break;
3231
3232 case X86_XCPT_NP:
3233 Event.n.u1ErrorCodeValid = 1;
3234 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3235 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3236 break;
3237
3238 case X86_XCPT_SS:
3239 Event.n.u1ErrorCodeValid = 1;
3240 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3241 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3242 break;
3243
3244 case X86_XCPT_GP:
3245 Event.n.u1ErrorCodeValid = 1;
3246 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3247 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3248 break;
3249
3250 default:
3251 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3252 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3253 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3254 }
3255
3256 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3257 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3258 return VINF_SUCCESS;
3259 }
3260#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3261
3262 default:
3263 {
3264 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3265 pVCpu->hm.s.u32HMError = u32ExitCode;
3266 return VERR_SVM_UNKNOWN_EXIT;
3267 }
3268 }
3269 }
3270 }
3271 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3272}
3273
3274
3275#ifdef DEBUG
3276/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3277# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3278 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3279
3280# define HMSVM_ASSERT_PREEMPT_CPUID() \
3281 do \
3282 { \
3283 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3284 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3285 } while (0)
3286
3287# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3288 do { \
3289 AssertPtr(pVCpu); \
3290 AssertPtr(pCtx); \
3291 AssertPtr(pSvmTransient); \
3292 Assert(ASMIntAreEnabled()); \
3293 HMSVM_ASSERT_PREEMPT_SAFE(); \
3294 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3295 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3296 HMSVM_ASSERT_PREEMPT_SAFE(); \
3297 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3298 HMSVM_ASSERT_PREEMPT_CPUID(); \
3299 } while (0)
3300#else /* Release builds */
3301# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3302#endif
3303
3304
3305/**
3306 * Worker for hmR0SvmInterpretInvlpg().
3307 *
3308 * @return VBox status code.
3309 * @param pVCpu Pointer to the VMCPU.
3310 * @param pCpu Pointer to the disassembler state.
3311 * @param pRegFrame Pointer to the register frame.
3312 */
3313static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3314{
3315 DISQPVPARAMVAL Param1;
3316 RTGCPTR GCPtrPage;
3317
3318 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3319 if (RT_FAILURE(rc))
3320 return VERR_EM_INTERPRETER;
3321
3322 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3323 || Param1.type == DISQPV_TYPE_ADDRESS)
3324 {
3325 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3326 return VERR_EM_INTERPRETER;
3327
3328 GCPtrPage = Param1.val.val64;
3329 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3330 rc = VBOXSTRICTRC_VAL(rc2);
3331 }
3332 else
3333 {
3334 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3335 rc = VERR_EM_INTERPRETER;
3336 }
3337
3338 return rc;
3339}
3340
3341
3342/**
3343 * Interprets INVLPG.
3344 *
3345 * @returns VBox status code.
3346 * @retval VINF_* Scheduling instructions.
3347 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3348 * @retval VERR_* Fatal errors.
3349 *
3350 * @param pVM Pointer to the VM.
3351 * @param pRegFrame Pointer to the register frame.
3352 *
3353 * @remarks Updates the RIP if the instruction was executed successfully.
3354 */
3355static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3356{
3357 /* Only allow 32 & 64 bit code. */
3358 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3359 {
3360 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3361 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3362 if ( RT_SUCCESS(rc)
3363 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3364 {
3365 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3366 if (RT_SUCCESS(rc))
3367 pRegFrame->rip += pDis->cbInstr;
3368 return rc;
3369 }
3370 else
3371 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3372 }
3373 return VERR_EM_INTERPRETER;
3374}
3375
3376
3377/**
3378 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3379 *
3380 * @param pVCpu Pointer to the VMCPU.
3381 */
3382DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3383{
3384 SVMEVENT Event;
3385 Event.u = 0;
3386 Event.n.u1Valid = 1;
3387 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3388 Event.n.u8Vector = X86_XCPT_UD;
3389 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3390}
3391
3392
3393/**
3394 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3395 *
3396 * @param pVCpu Pointer to the VMCPU.
3397 */
3398DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3399{
3400 SVMEVENT Event;
3401 Event.u = 0;
3402 Event.n.u1Valid = 1;
3403 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3404 Event.n.u8Vector = X86_XCPT_DB;
3405 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3406}
3407
3408
3409/**
3410 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3411 *
3412 * @param pVCpu Pointer to the VMCPU.
3413 * @param pCtx Pointer to the guest-CPU context.
3414 * @param u32ErrCode The error-code for the page-fault.
3415 * @param uFaultAddress The page fault address (CR2).
3416 *
3417 * @remarks This updates the guest CR2 with @a uFaultAddress!
3418 */
3419DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3420{
3421 SVMEVENT Event;
3422 Event.u = 0;
3423 Event.n.u1Valid = 1;
3424 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3425 Event.n.u8Vector = X86_XCPT_PF;
3426 Event.n.u1ErrorCodeValid = 1;
3427 Event.n.u32ErrorCode = u32ErrCode;
3428
3429 /* Update CR2 of the guest. */
3430 if (pCtx->cr2 != uFaultAddress)
3431 {
3432 pCtx->cr2 = uFaultAddress;
3433 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
3434 }
3435
3436 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3437}
3438
3439
3440/**
3441 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3442 * VM.
3443 *
3444 * @param pVCpu Pointer to the VMCPU.
3445 */
3446DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3447{
3448 SVMEVENT Event;
3449 Event.u = 0;
3450 Event.n.u1Valid = 1;
3451 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3452 Event.n.u8Vector = X86_XCPT_NM;
3453 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3454}
3455
3456
3457/**
3458 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3459 *
3460 * @param pVCpu Pointer to the VMCPU.
3461 */
3462DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3463{
3464 SVMEVENT Event;
3465 Event.u = 0;
3466 Event.n.u1Valid = 1;
3467 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3468 Event.n.u8Vector = X86_XCPT_MF;
3469 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3470}
3471
3472
3473/**
3474 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3475 *
3476 * @param pVCpu Pointer to the VMCPU.
3477 */
3478DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3479{
3480 SVMEVENT Event;
3481 Event.u = 0;
3482 Event.n.u1Valid = 1;
3483 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3484 Event.n.u8Vector = X86_XCPT_DF;
3485 Event.n.u1ErrorCodeValid = 1;
3486 Event.n.u32ErrorCode = 0;
3487 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3488}
3489
3490
3491/**
3492 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3493 * guests. This simply looks up the patch record at EIP and does the required.
3494 *
3495 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3496 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3497 * TPR). See hmR3ReplaceTprInstr() for the details.
3498 *
3499 * @returns VBox status code.
3500 * @param pVM Pointer to the VM.
3501 * @param pVCpu Pointer to the VMCPU.
3502 * @param pCtx Pointer to the guest-CPU context.
3503 */
3504static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3505{
3506 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3507 for (;;)
3508 {
3509 bool fPending;
3510 uint8_t u8Tpr;
3511
3512 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3513 if (!pPatch)
3514 break;
3515
3516 switch (pPatch->enmType)
3517 {
3518 case HMTPRINSTR_READ:
3519 {
3520 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3521 AssertRC(rc);
3522
3523 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3524 AssertRC(rc);
3525 pCtx->rip += pPatch->cbOp;
3526 break;
3527 }
3528
3529 case HMTPRINSTR_WRITE_REG:
3530 case HMTPRINSTR_WRITE_IMM:
3531 {
3532 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3533 {
3534 uint32_t u32Val;
3535 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3536 AssertRC(rc);
3537 u8Tpr = u32Val;
3538 }
3539 else
3540 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3541
3542 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3543 AssertRC(rc2);
3544 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3545
3546 pCtx->rip += pPatch->cbOp;
3547 break;
3548 }
3549
3550 default:
3551 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
3552 pVCpu->hm.s.u32HMError = pPatch->enmType;
3553 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
3554 }
3555 }
3556
3557 return VINF_SUCCESS;
3558}
3559
3560/**
3561 * Determines if an exception is a contributory exception. Contributory
3562 * exceptions are ones which can cause double-faults. Page-fault is
3563 * intentionally not included here as it's a conditional contributory exception.
3564 *
3565 * @returns true if the exception is contributory, false otherwise.
3566 * @param uVector The exception vector.
3567 */
3568DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3569{
3570 switch (uVector)
3571 {
3572 case X86_XCPT_GP:
3573 case X86_XCPT_SS:
3574 case X86_XCPT_NP:
3575 case X86_XCPT_TS:
3576 case X86_XCPT_DE:
3577 return true;
3578 default:
3579 break;
3580 }
3581 return false;
3582}
3583
3584
3585/**
3586 * Handle a condition that occurred while delivering an event through the guest
3587 * IDT.
3588 *
3589 * @returns VBox status code (informational error codes included).
3590 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3591 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3592 * continue execution of the guest which will delivery the #DF.
3593 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3594 *
3595 * @param pVCpu Pointer to the VMCPU.
3596 * @param pCtx Pointer to the guest-CPU context.
3597 * @param pSvmTransient Pointer to the SVM transient structure.
3598 *
3599 * @remarks No-long-jump zone!!!
3600 */
3601static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3602{
3603 int rc = VINF_SUCCESS;
3604 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3605
3606 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3607 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3608 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3609 {
3610 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3611
3612 typedef enum
3613 {
3614 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3615 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3616 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3617 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3618 } SVMREFLECTXCPT;
3619
3620 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3621 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3622 {
3623 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3624 {
3625 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3626
3627#ifdef VBOX_STRICT
3628 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
3629 && uExitVector == X86_XCPT_PF)
3630 {
3631 Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
3632 }
3633#endif
3634 if ( uExitVector == X86_XCPT_PF
3635 && uIdtVector == X86_XCPT_PF)
3636 {
3637 pSvmTransient->fVectoringPF = true;
3638 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3639 }
3640 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3641 && hmR0SvmIsContributoryXcpt(uExitVector)
3642 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3643 || uIdtVector == X86_XCPT_PF))
3644 {
3645 enmReflect = SVMREFLECTXCPT_DF;
3646 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3647 uIdtVector, uExitVector));
3648 }
3649 else if (uIdtVector == X86_XCPT_DF)
3650 {
3651 enmReflect = SVMREFLECTXCPT_TF;
3652 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3653 uIdtVector, uExitVector));
3654 }
3655 else
3656 enmReflect = SVMREFLECTXCPT_XCPT;
3657 }
3658 else
3659 {
3660 /*
3661 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3662 * exception to the guest after handling the VM-exit.
3663 */
3664 enmReflect = SVMREFLECTXCPT_XCPT;
3665 }
3666 }
3667 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3668 {
3669 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3670 enmReflect = SVMREFLECTXCPT_XCPT;
3671 }
3672
3673 switch (enmReflect)
3674 {
3675 case SVMREFLECTXCPT_XCPT:
3676 {
3677 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3678 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
3679
3680 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3681 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3682 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3683 break;
3684 }
3685
3686 case SVMREFLECTXCPT_DF:
3687 {
3688 hmR0SvmSetPendingXcptDF(pVCpu);
3689 rc = VINF_HM_DOUBLE_FAULT;
3690 break;
3691 }
3692
3693 case SVMREFLECTXCPT_TF:
3694 {
3695 rc = VINF_EM_RESET;
3696 break;
3697 }
3698
3699 default:
3700 Assert(rc == VINF_SUCCESS);
3701 break;
3702 }
3703 }
3704 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3705 return rc;
3706}
3707
3708
3709/**
3710 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
3711 * CPU, otherwise advances the RIP by @a cb bytes.
3712 *
3713 * @param pVCpu Pointer to the VMCPU.
3714 * @param pCtx Pointer to the guest-CPU context.
3715 * @param cb RIP increment value in bytes.
3716 *
3717 * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
3718 * when NRIP_SAVE is supported by the CPU!
3719 */
3720DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
3721{
3722 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3723 {
3724 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3725 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3726 }
3727 else
3728 pCtx->rip += cb;
3729}
3730
3731
3732/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3733/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3734/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3735
3736/** @name VM-exit handlers.
3737 * @{
3738 */
3739
3740/**
3741 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3742 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3743 */
3744HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3745{
3746 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3747
3748 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
3749 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
3750 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
3751 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3752
3753 /*
3754 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
3755 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
3756 * interrupt it is until the host actually take the interrupt.
3757 *
3758 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
3759 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
3760 */
3761 return VINF_EM_RAW_INTERRUPT;
3762}
3763
3764
3765/**
3766 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3767 */
3768HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3769{
3770 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3771
3772 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3773 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3774 int rc = VINF_SUCCESS;
3775 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3776 return rc;
3777}
3778
3779
3780/**
3781 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3782 */
3783HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3784{
3785 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3786
3787 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3788 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3789 int rc = VINF_SUCCESS;
3790 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3791 return rc;
3792}
3793
3794
3795/**
3796 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3797 */
3798HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3799{
3800 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3801 PVM pVM = pVCpu->CTX_SUFF(pVM);
3802 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3803 if (RT_LIKELY(rc == VINF_SUCCESS))
3804 {
3805 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3806 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3807 }
3808 else
3809 {
3810 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3811 rc = VERR_EM_INTERPRETER;
3812 }
3813 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3814 return rc;
3815}
3816
3817
3818/**
3819 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3820 */
3821HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3822{
3823 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3824 PVM pVM = pVCpu->CTX_SUFF(pVM);
3825 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3826 if (RT_LIKELY(rc == VINF_SUCCESS))
3827 {
3828 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3829 pSvmTransient->fUpdateTscOffsetting = true;
3830
3831 /* Single step check. */
3832 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3833 }
3834 else
3835 {
3836 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3837 rc = VERR_EM_INTERPRETER;
3838 }
3839 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3840 return rc;
3841}
3842
3843
3844/**
3845 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3846 */
3847HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3848{
3849 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3850 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3851 if (RT_LIKELY(rc == VINF_SUCCESS))
3852 {
3853 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3854 pSvmTransient->fUpdateTscOffsetting = true;
3855 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3856 }
3857 else
3858 {
3859 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3860 rc = VERR_EM_INTERPRETER;
3861 }
3862 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3863 return rc;
3864}
3865
3866
3867/**
3868 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3869 */
3870HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3871{
3872 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3873 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3874 if (RT_LIKELY(rc == VINF_SUCCESS))
3875 {
3876 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3877 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3878 }
3879 else
3880 {
3881 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3882 rc = VERR_EM_INTERPRETER;
3883 }
3884 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3885 return rc;
3886}
3887
3888
3889/**
3890 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3891 */
3892HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3893{
3894 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3895 PVM pVM = pVCpu->CTX_SUFF(pVM);
3896 Assert(!pVM->hm.s.fNestedPaging);
3897
3898 /** @todo Decode Assist. */
3899 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3900 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3901 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3902 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3903 return rc;
3904}
3905
3906
3907/**
3908 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3909 */
3910HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3911{
3912 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3913 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
3914 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3915 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3916 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3917 return rc;
3918}
3919
3920
3921/**
3922 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3923 */
3924HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3925{
3926 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3927 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3928 if (RT_LIKELY(rc == VINF_SUCCESS))
3929 {
3930 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3931 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3932 }
3933 else
3934 {
3935 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3936 rc = VERR_EM_INTERPRETER;
3937 }
3938 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3939 return rc;
3940}
3941
3942
3943/**
3944 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3945 */
3946HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3947{
3948 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3949 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3950 int rc = VBOXSTRICTRC_VAL(rc2);
3951 if ( rc == VINF_EM_HALT
3952 || rc == VINF_SUCCESS)
3953 {
3954 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3955
3956 if ( rc == VINF_EM_HALT
3957 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3958 {
3959 rc = VINF_SUCCESS;
3960 }
3961 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3962 }
3963 else
3964 {
3965 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3966 rc = VERR_EM_INTERPRETER;
3967 }
3968 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3969 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3970 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3971 return rc;
3972}
3973
3974
3975/**
3976 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
3977 * Conditional #VMEXIT.
3978 */
3979HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3980{
3981 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3982 return VINF_EM_RESET;
3983}
3984
3985
3986/**
3987 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
3988 */
3989HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3990{
3991 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3992
3993 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3994
3995 /** @todo Decode Assist. */
3996 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
3997 int rc = VBOXSTRICTRC_VAL(rc2);
3998 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
3999 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
4000 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
4001 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
4002 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4003 return rc;
4004}
4005
4006
4007/**
4008 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
4009 */
4010HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4011{
4012 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4013 /** @todo Decode Assist. */
4014 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4015 int rc = VBOXSTRICTRC_VAL(rc2);
4016 if (rc == VINF_SUCCESS)
4017 {
4018 /* RIP has been updated by EMInterpretInstruction(). */
4019 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
4020 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
4021 {
4022 case 0: /* CR0. */
4023 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4024 break;
4025
4026 case 3: /* CR3. */
4027 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4028 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
4029 break;
4030
4031 case 4: /* CR4. */
4032 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
4033 break;
4034
4035 case 8: /* CR8 (TPR). */
4036 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4037 break;
4038
4039 default:
4040 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
4041 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
4042 break;
4043 }
4044 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4045 }
4046 else
4047 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
4048 return rc;
4049}
4050
4051
4052/**
4053 * #VMEXIT handler for instructions that result in a #UD exception delivered to
4054 * the guest.
4055 */
4056HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4057{
4058 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4059 hmR0SvmSetPendingXcptUD(pVCpu);
4060 return VINF_SUCCESS;
4061}
4062
4063
4064/**
4065 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
4066 */
4067HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4068{
4069 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4070 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4071 PVM pVM = pVCpu->CTX_SUFF(pVM);
4072
4073 int rc;
4074 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4075 {
4076 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4077
4078 /* Handle TPR patching; intercepted LSTAR write. */
4079 if ( pVM->hm.s.fTPRPatchingActive
4080 && pCtx->ecx == MSR_K8_LSTAR)
4081 {
4082 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4083 {
4084 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4085 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4086 AssertRC(rc2);
4087 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4088 }
4089 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4090 rc = VINF_SUCCESS;
4091 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4092 return rc;
4093 }
4094
4095 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4096 {
4097 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4098 if (RT_LIKELY(rc == VINF_SUCCESS))
4099 {
4100 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4101 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4102 }
4103 else
4104 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4105 }
4106 else
4107 {
4108 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4109 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4110 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4111 /* RIP updated by EMInterpretInstruction(). */
4112 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4113 }
4114
4115 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4116 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4117 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4118 {
4119 /* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4120 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4121 EMInterpretWrmsr() changes it. */
4122 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4123 }
4124 else if (pCtx->ecx == MSR_K6_EFER)
4125 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
4126 else if (pCtx->ecx == MSR_IA32_TSC)
4127 pSvmTransient->fUpdateTscOffsetting = true;
4128 }
4129 else
4130 {
4131 /* MSR Read access. */
4132 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4133 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4134
4135 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4136 {
4137 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4138 if (RT_LIKELY(rc == VINF_SUCCESS))
4139 {
4140 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4141 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4142 }
4143 else
4144 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4145 }
4146 else
4147 {
4148 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4149 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4150 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4151 /* RIP updated by EMInterpretInstruction(). */
4152 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4153 }
4154 }
4155
4156 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4157 return rc;
4158}
4159
4160
4161/**
4162 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
4163 */
4164HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4165{
4166 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4167 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4168
4169 /* We should -not- get this VM-exit if the guest is debugging. */
4170 AssertMsgReturn(!CPUMIsGuestDebugStateActive(pVCpu),
4171 ("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx),
4172 VERR_SVM_UNEXPECTED_EXIT);
4173
4174 /*
4175 * Lazy DR0-3 loading?
4176 */
4177 if (!CPUMIsHyperDebugStateActive(pVCpu))
4178 {
4179 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4180 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4181
4182 /* Don't intercept DRx read and writes. */
4183 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4184 pVmcb->ctrl.u16InterceptRdDRx = 0;
4185 pVmcb->ctrl.u16InterceptWrDRx = 0;
4186 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4187
4188 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4189 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4190 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4191
4192 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4193 return VINF_SUCCESS;
4194 }
4195
4196 /*
4197 * Interpret the read/writing of DRx.
4198 */
4199 /** @todo Decode assist. */
4200 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4201 Log5(("hmR0SvmExitReadDRx: Emulatined DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4202 if (RT_LIKELY(rc == VINF_SUCCESS))
4203 {
4204 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4205 /** @todo CPUM should set this flag! */
4206 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4207 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4208 }
4209 else
4210 Assert(rc == VERR_EM_INTERPRETER);
4211 return VBOXSTRICTRC_TODO(rc);
4212}
4213
4214
4215/**
4216 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
4217 */
4218HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4219{
4220 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4221 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4222 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4223 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4224 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4225 return rc;
4226}
4227
4228
4229/**
4230 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
4231 */
4232HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4233{
4234 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4235
4236 /* I/O operation lookup arrays. */
4237 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4238 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4239 the result (in AL/AX/EAX). */
4240 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4241
4242 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4243 PVM pVM = pVCpu->CTX_SUFF(pVM);
4244
4245 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4246 SVMIOIOEXIT IoExitInfo;
4247 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4248 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4249 uint32_t cbValue = s_aIOSize[uIOWidth];
4250 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4251
4252 if (RT_UNLIKELY(!cbValue))
4253 {
4254 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4255 return VERR_EM_INTERPRETER;
4256 }
4257
4258 VBOXSTRICTRC rcStrict;
4259 if (IoExitInfo.n.u1STR)
4260 {
4261 /* INS/OUTS - I/O String instruction. */
4262 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4263
4264 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4265 * in EXITINFO1? Investigate once this thing is up and running. */
4266
4267 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4268 if (rcStrict == VINF_SUCCESS)
4269 {
4270 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4271 {
4272 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4273 (DISCPUMODE)pDis->uAddrMode, cbValue);
4274 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4275 }
4276 else
4277 {
4278 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4279 (DISCPUMODE)pDis->uAddrMode, cbValue);
4280 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4281 }
4282 }
4283 else
4284 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
4285 }
4286 else
4287 {
4288 /* IN/OUT - I/O instruction. */
4289 Assert(!IoExitInfo.n.u1REP);
4290
4291 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4292 {
4293 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
4294 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4295 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4296
4297 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4298 }
4299 else
4300 {
4301 uint32_t u32Val = 0;
4302
4303 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
4304 if (IOM_SUCCESS(rcStrict))
4305 {
4306 /* Save result of I/O IN instr. in AL/AX/EAX. */
4307 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4308 }
4309 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4310 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4311
4312 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4313 }
4314 }
4315
4316 if (IOM_SUCCESS(rcStrict))
4317 {
4318 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4319 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4320
4321 /*
4322 * If any I/O breakpoints are armed, we need to check if one triggered
4323 * and take appropriate action.
4324 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
4325 */
4326 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
4327 * execution engines about whether hyper BPs and such are pending. */
4328 uint32_t const uDr7 = pCtx->dr[7];
4329 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
4330 && X86_DR7_ANY_RW_IO(uDr7)
4331 && (pCtx->cr4 & X86_CR4_DE))
4332 || DBGFBpIsHwIoArmed(pVM)))
4333 {
4334 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4335 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
4336
4337 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
4338 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
4339 {
4340 /* Raise #DB. */
4341 pVmcb->guest.u64DR6 = pCtx->dr[6];
4342 pVmcb->guest.u64DR7 = pCtx->dr[7];
4343 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4344 hmR0SvmSetPendingXcptDB(pVCpu);
4345 }
4346 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
4347 else if ( rcStrict2 != VINF_SUCCESS
4348 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
4349 rcStrict = rcStrict2;
4350 }
4351
4352 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4353 }
4354
4355#ifdef VBOX_STRICT
4356 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4357 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4358 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4359 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4360 else
4361 {
4362 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
4363 * statuses, that the VMM device and some others may return. See
4364 * IOM_SUCCESS() for guidance. */
4365 AssertMsg( RT_FAILURE(rcStrict)
4366 || rcStrict == VINF_SUCCESS
4367 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
4368 || rcStrict == VINF_EM_DBG_BREAKPOINT
4369 || rcStrict == VINF_EM_RAW_GUEST_TRAP
4370 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
4371 }
4372#endif
4373 return VBOXSTRICTRC_TODO(rcStrict);
4374}
4375
4376
4377/**
4378 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4379 * #VMEXIT.
4380 */
4381HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4382{
4383 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4384 PVM pVM = pVCpu->CTX_SUFF(pVM);
4385 Assert(pVM->hm.s.fNestedPaging);
4386
4387 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4388
4389 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4390 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4391 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4392 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4393
4394 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4395
4396#ifdef VBOX_HM_WITH_GUEST_PATCHING
4397 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4398 if ( pVM->hm.s.fTRPPatchingAllowed
4399 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
4400 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4401 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
4402 && !CPUMGetGuestCPL(pVCpu)
4403 && !CPUMIsGuestInLongModeEx(pCtx)
4404 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4405 {
4406 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4407 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4408
4409 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4410 {
4411 /* Only attempt to patch the instruction once. */
4412 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4413 if (!pPatch)
4414 return VINF_EM_HM_PATCH_TPR_INSTR;
4415 }
4416 }
4417#endif
4418
4419 /*
4420 * Determine the nested paging mode.
4421 */
4422 PGMMODE enmNestedPagingMode;
4423#if HC_ARCH_BITS == 32
4424 if (CPUMIsGuestInLongModeEx(pCtx))
4425 enmNestedPagingMode = PGMMODE_AMD64_NX;
4426 else
4427#endif
4428 enmNestedPagingMode = PGMGetHostMode(pVM);
4429
4430 /*
4431 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4432 */
4433 int rc;
4434 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4435 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4436 {
4437 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4438 u32ErrCode);
4439 rc = VBOXSTRICTRC_VAL(rc2);
4440
4441 /*
4442 * If we succeed, resume guest execution.
4443 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4444 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4445 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4446 * weird case. See @bugref{6043}.
4447 */
4448 if ( rc == VINF_SUCCESS
4449 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4450 || rc == VERR_PAGE_NOT_PRESENT)
4451 {
4452 /* Successfully handled MMIO operation. */
4453 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4454 rc = VINF_SUCCESS;
4455 }
4456 return rc;
4457 }
4458
4459 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4460 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4461 TRPMResetTrap(pVCpu);
4462
4463 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4464
4465 /*
4466 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4467 */
4468 if ( rc == VINF_SUCCESS
4469 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4470 || rc == VERR_PAGE_NOT_PRESENT)
4471 {
4472 /* We've successfully synced our shadow page tables. */
4473 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4474 rc = VINF_SUCCESS;
4475 }
4476
4477 return rc;
4478}
4479
4480
4481/**
4482 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4483 */
4484HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4485{
4486 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4487
4488 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4489 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4490 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4491
4492 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4493 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4494 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4495
4496 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4497 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4498 return VINF_SUCCESS;
4499}
4500
4501
4502/**
4503 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4504 */
4505HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4506{
4507 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4508
4509#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
4510 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4511#endif
4512
4513 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4514 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4515 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4516 && pVCpu->hm.s.Event.fPending)
4517 {
4518 /*
4519 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4520 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4521 * when the recompiler restarts the instruction.
4522 */
4523 SVMEVENT Event;
4524 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4525 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4526 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4527 {
4528 pVCpu->hm.s.Event.fPending = false;
4529 }
4530 else
4531 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4532 }
4533
4534 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4535 * emulation. */
4536 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4537 return VERR_EM_INTERPRETER;
4538}
4539
4540
4541/**
4542 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4543 */
4544HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4545{
4546 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4547
4548 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4549 if (RT_LIKELY(rc == VINF_SUCCESS))
4550 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4551 else
4552 hmR0SvmSetPendingXcptUD(pVCpu);
4553 return VINF_SUCCESS;
4554}
4555
4556
4557/**
4558 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
4559 * #VMEXIT.
4560 */
4561HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4562{
4563 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4564
4565 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4566
4567 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4568 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4569 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4570 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4571 PVM pVM = pVCpu->CTX_SUFF(pVM);
4572
4573#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4574 if (pVM->hm.s.fNestedPaging)
4575 {
4576 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4577 if (!pSvmTransient->fVectoringPF)
4578 {
4579 /* A genuine guest #PF, reflect it to the guest. */
4580 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4581 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4582 uFaultAddress, u32ErrCode));
4583 }
4584 else
4585 {
4586 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4587 hmR0SvmSetPendingXcptDF(pVCpu);
4588 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4589 }
4590 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4591 return VINF_SUCCESS;
4592 }
4593#endif
4594
4595 Assert(!pVM->hm.s.fNestedPaging);
4596
4597#ifdef VBOX_HM_WITH_GUEST_PATCHING
4598 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4599 if ( pVM->hm.s.fTRPPatchingAllowed
4600 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4601 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
4602 && !CPUMGetGuestCPL(pVCpu)
4603 && !CPUMIsGuestInLongModeEx(pCtx)
4604 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4605 {
4606 RTGCPHYS GCPhysApicBase;
4607 GCPhysApicBase = pCtx->msrApicBase;
4608 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4609
4610 /* Check if the page at the fault-address is the APIC base. */
4611 RTGCPHYS GCPhysPage;
4612 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4613 if ( rc2 == VINF_SUCCESS
4614 && GCPhysPage == GCPhysApicBase)
4615 {
4616 /* Only attempt to patch the instruction once. */
4617 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4618 if (!pPatch)
4619 return VINF_EM_HM_PATCH_TPR_INSTR;
4620 }
4621 }
4622#endif
4623
4624 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4625 pCtx->rip, u32ErrCode, pCtx->cr3));
4626
4627 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4628 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4629
4630 Log4(("#PF rc=%Rrc\n", rc));
4631
4632 if (rc == VINF_SUCCESS)
4633 {
4634 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4635 TRPMResetTrap(pVCpu);
4636 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4637 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4638 return rc;
4639 }
4640 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4641 {
4642 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4643
4644 if (!pSvmTransient->fVectoringPF)
4645 {
4646 /* It's a guest page fault and needs to be reflected to the guest. */
4647 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4648 TRPMResetTrap(pVCpu);
4649 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4650 }
4651 else
4652 {
4653 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4654 TRPMResetTrap(pVCpu);
4655 hmR0SvmSetPendingXcptDF(pVCpu);
4656 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4657 }
4658
4659 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4660 return VINF_SUCCESS;
4661 }
4662
4663 TRPMResetTrap(pVCpu);
4664 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4665 return rc;
4666}
4667
4668
4669/**
4670 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
4671 * Conditional #VMEXIT.
4672 */
4673HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4674{
4675 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4676
4677 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4678
4679#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4680 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4681#endif
4682
4683 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4684 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4685 if (rc == VINF_SUCCESS)
4686 {
4687 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4688 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4689 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4690 return VINF_SUCCESS;
4691 }
4692
4693 /* Forward #NM to the guest. */
4694 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4695 hmR0SvmSetPendingXcptNM(pVCpu);
4696 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4697 return VINF_SUCCESS;
4698}
4699
4700
4701/**
4702 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
4703 * Conditional #VMEXIT.
4704 */
4705HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4706{
4707 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4708
4709 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4710
4711 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4712
4713 if (!(pCtx->cr0 & X86_CR0_NE))
4714 {
4715 /* Old-style FPU error reporting needs some extra work. */
4716 /** @todo don't fall back to the recompiler, but do it manually. */
4717 return VERR_EM_INTERPRETER;
4718 }
4719
4720 hmR0SvmSetPendingXcptMF(pVCpu);
4721 return VINF_SUCCESS;
4722}
4723
4724
4725/**
4726 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
4727 * #VMEXIT.
4728 */
4729HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4730{
4731 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4732
4733 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4734
4735 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4736
4737 /* If we set the trap flag above, we have to clear it. */
4738 if (pVCpu->hm.s.fClearTrapFlag)
4739 {
4740 pVCpu->hm.s.fClearTrapFlag = false;
4741 pCtx->eflags.Bits.u1TF = 0;
4742 }
4743
4744 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4745 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4746 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4747 PVM pVM = pVCpu->CTX_SUFF(pVM);
4748 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
4749 if (rc == VINF_EM_RAW_GUEST_TRAP)
4750 {
4751 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
4752 if (CPUMIsHyperDebugStateActive(pVCpu))
4753 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
4754
4755 /* Reflect the exception back to the guest. */
4756 hmR0SvmSetPendingXcptDB(pVCpu);
4757 rc = VINF_SUCCESS;
4758 }
4759
4760 /*
4761 * Update DR6.
4762 */
4763 if (CPUMIsHyperDebugStateActive(pVCpu))
4764 {
4765 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
4766 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
4767 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4768 }
4769 else
4770 {
4771 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
4772 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
4773 }
4774
4775 return rc;
4776}
4777
4778/** @} */
4779
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette