VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 48140

Last change on this file since 48140 was 48140, checked in by vboxsync, 11 years ago

VMM/HMVMXR0: Safer longjmp coverage, only restore host state when altered by VT-x.
VMM/HMSVMR0: Exit normally while getting errors during the world-switch.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 182.1 KB
Line 
1/* $Id: HMSVMR0.cpp 48140 2013-08-29 09:39:53Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HMSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMSVM_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
38#endif
39
40
41/*******************************************************************************
42* Defined Constants And Macros *
43*******************************************************************************/
44#ifdef VBOX_WITH_STATISTICS
45# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
46 if ((u64ExitCode) == SVM_EXIT_NPF) \
47 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
48 else \
49 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
50 } while (0)
51#else
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
53#endif
54
55/** If we decide to use a function table approach this can be useful to
56 * switch to a "static DECLCALLBACK(int)". */
57#define HMSVM_EXIT_DECL static int
58
59
60/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
61 *
62 * The CPU format of the segment attribute is described in X86DESCATTRBITS
63 * which is 16-bits (i.e. includes 4 bits of the segment limit).
64 *
65 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
66 * only the attribute bits and nothing else). Upper 4-bits are unused.
67 *
68 * @{ */
69#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
70#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
71/** @} */
72
73
74/** @name Macros for loading, storing segment registers to/from the VMCB.
75 * @{ */
76#define HMSVM_LOAD_SEG_REG(REG, reg) \
77 do \
78 { \
79 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
80 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
81 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
82 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
83 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
84 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
85 } while (0)
86
87#define HMSVM_SAVE_SEG_REG(REG, reg) \
88 do \
89 { \
90 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
92 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
93 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
94 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
95 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
96 } while (0)
97/** @} */
98
99
100/** Macro for checking and returning from the using function for
101 * \#VMEXIT intercepts that maybe caused during delivering of another
102 * event in the guest. */
103#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
104 do \
105 { \
106 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
107 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
108 return VINF_SUCCESS; \
109 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
110 return rc; \
111 } while (0)
112
113/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
114 * instruction that exited. */
115#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
116 do { \
117 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
118 (a_rc) = VINF_EM_DBG_STEPPED; \
119 } while (0)
120
121/** Assert that preemption is disabled or covered by thread-context hooks. */
122#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
123 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
124
125/** Assert that we haven't migrated CPUs when thread-context hooks are not
126 * used. */
127#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
128 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
129 ("Illegal migration! Entered on CPU %u Current %u\n", \
130 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
131
132/** Exception bitmap mask for all contributory exceptions.
133 *
134 * Page fault is deliberately excluded here as it's conditional as to whether
135 * it's contributory or benign. Page faults are handled separately.
136 */
137#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
138 | RT_BIT(X86_XCPT_DE))
139
140
141/** @name VMCB Clean Bits.
142 *
143 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
144 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
145 * memory.
146 *
147 * @{ */
148/** All intercepts vectors, TSC offset, PAUSE filter counter. */
149#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
150/** I/O permission bitmap, MSR permission bitmap. */
151#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
152/** ASID. */
153#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
154/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
155V_INTR_VECTOR. */
156#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
157/** Nested Paging: Nested CR3 (nCR3), PAT. */
158#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
159/** Control registers (CR0, CR3, CR4, EFER). */
160#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
161/** Debug registers (DR6, DR7). */
162#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
163/** GDT, IDT limit and base. */
164#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
165/** Segment register: CS, SS, DS, ES limit and base. */
166#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
167/** CR2.*/
168#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
169/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
170#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
171/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
172PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
173#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
174/** Mask of all valid VMCB Clean bits. */
175#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
176 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
177 | HMSVM_VMCB_CLEAN_ASID \
178 | HMSVM_VMCB_CLEAN_TPR \
179 | HMSVM_VMCB_CLEAN_NP \
180 | HMSVM_VMCB_CLEAN_CRX_EFER \
181 | HMSVM_VMCB_CLEAN_DRX \
182 | HMSVM_VMCB_CLEAN_DT \
183 | HMSVM_VMCB_CLEAN_SEG \
184 | HMSVM_VMCB_CLEAN_CR2 \
185 | HMSVM_VMCB_CLEAN_LBR \
186 | HMSVM_VMCB_CLEAN_AVIC)
187/** @} */
188
189/** @name SVM transient.
190 *
191 * A state structure for holding miscellaneous information across AMD-V
192 * VMRUN/#VMEXIT operation, restored after the transition.
193 *
194 * @{ */
195typedef struct SVMTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG uEflags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202
203 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
204 uint64_t u64ExitCode;
205 /** The guest's TPR value used for TPR shadowing. */
206 uint8_t u8GuestTpr;
207 /** Alignment. */
208 uint8_t abAlignment0[7];
209
210 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
211 bool fRestoreTscAuxMsr;
212 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
213 * contributary exception or a page-fault. */
214 bool fVectoringPF;
215 /** Whether the TSC offset mode needs to be updated. */
216 bool fUpdateTscOffsetting;
217} SVMTRANSIENT, *PSVMTRANSIENT;
218AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
219AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
220/** @} */
221
222
223/**
224 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
225 */
226typedef enum SVMMSREXITREAD
227{
228 /** Reading this MSR causes a VM-exit. */
229 SVMMSREXIT_INTERCEPT_READ = 0xb,
230 /** Reading this MSR does not cause a VM-exit. */
231 SVMMSREXIT_PASSTHRU_READ
232} SVMMSREXITREAD;
233
234/**
235 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
236 */
237typedef enum SVMMSREXITWRITE
238{
239 /** Writing to this MSR causes a VM-exit. */
240 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
241 /** Writing to this MSR does not cause a VM-exit. */
242 SVMMSREXIT_PASSTHRU_WRITE
243} SVMMSREXITWRITE;
244
245
246/*******************************************************************************
247* Internal Functions *
248*******************************************************************************/
249static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
250static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
251static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
252
253HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
256HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
257HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
258HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
259HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
260HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
261HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
263HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
264HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
265HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
266HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
267HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
268HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
269HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
270HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
271HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
272HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
273HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
274HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
275HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
276HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
277HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
278HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
279HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
280
281DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
282
283
284/*******************************************************************************
285* Global Variables *
286*******************************************************************************/
287/** Ring-0 memory object for the IO bitmap. */
288RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
289/** Physical address of the IO bitmap. */
290RTHCPHYS g_HCPhysIOBitmap = 0;
291/** Virtual address of the IO bitmap. */
292R0PTRTYPE(void *) g_pvIOBitmap = NULL;
293
294
295/**
296 * Sets up and activates AMD-V on the current CPU.
297 *
298 * @returns VBox status code.
299 * @param pCpu Pointer to the CPU info struct.
300 * @param pVM Pointer to the VM (can be NULL after a resume!).
301 * @param pvCpuPage Pointer to the global CPU page.
302 * @param HCPhysCpuPage Physical address of the global CPU page.
303 */
304VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
305{
306 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
307 AssertReturn( HCPhysCpuPage
308 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
309 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
310
311 /*
312 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
313 */
314 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
315 if (u64HostEfer & MSR_K6_EFER_SVME)
316 {
317 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
318 if ( pVM
319 && pVM->hm.s.svm.fIgnoreInUseError)
320 {
321 pCpu->fIgnoreAMDVInUseError = true;
322 }
323
324 if (!pCpu->fIgnoreAMDVInUseError)
325 return VERR_SVM_IN_USE;
326 }
327
328 /* Turn on AMD-V in the EFER MSR. */
329 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
330
331 /* Write the physical page address where the CPU will store the host state while executing the VM. */
332 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
333
334 /*
335 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
336 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
337 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
338 * to flush the TLB with before using a new ASID.
339 */
340 pCpu->fFlushAsidBeforeUse = true;
341
342 /*
343 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
344 */
345 ++pCpu->cTlbFlushes;
346
347 return VINF_SUCCESS;
348}
349
350
351/**
352 * Deactivates AMD-V on the current CPU.
353 *
354 * @returns VBox status code.
355 * @param pCpu Pointer to the CPU info struct.
356 * @param pvCpuPage Pointer to the global CPU page.
357 * @param HCPhysCpuPage Physical address of the global CPU page.
358 */
359VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
360{
361 AssertReturn( HCPhysCpuPage
362 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
363 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
364 NOREF(pCpu);
365
366 /* Turn off AMD-V in the EFER MSR. */
367 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
368 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
369
370 /* Invalidate host state physical address. */
371 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Does global AMD-V initialization (called during module initialization).
379 *
380 * @returns VBox status code.
381 */
382VMMR0DECL(int) SVMR0GlobalInit(void)
383{
384 /*
385 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
386 * once globally here instead of per-VM.
387 */
388 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
389 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
390 if (RT_FAILURE(rc))
391 return rc;
392
393 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
394 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
395
396 /* Set all bits to intercept all IO accesses. */
397 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
398 return VINF_SUCCESS;
399}
400
401
402/**
403 * Does global AMD-V termination (called during module termination).
404 */
405VMMR0DECL(void) SVMR0GlobalTerm(void)
406{
407 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
408 {
409 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
410 g_pvIOBitmap = NULL;
411 g_HCPhysIOBitmap = 0;
412 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
413 }
414}
415
416
417/**
418 * Frees any allocated per-VCPU structures for a VM.
419 *
420 * @param pVM Pointer to the VM.
421 */
422DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
423{
424 for (uint32_t i = 0; i < pVM->cCpus; i++)
425 {
426 PVMCPU pVCpu = &pVM->aCpus[i];
427 AssertPtr(pVCpu);
428
429 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
430 {
431 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
432 pVCpu->hm.s.svm.pvVmcbHost = 0;
433 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
434 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
435 }
436
437 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
438 {
439 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
440 pVCpu->hm.s.svm.pvVmcb = 0;
441 pVCpu->hm.s.svm.HCPhysVmcb = 0;
442 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
443 }
444
445 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
446 {
447 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
448 pVCpu->hm.s.svm.pvMsrBitmap = 0;
449 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
450 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
451 }
452 }
453}
454
455
456/**
457 * Does per-VM AMD-V initialization.
458 *
459 * @returns VBox status code.
460 * @param pVM Pointer to the VM.
461 */
462VMMR0DECL(int) SVMR0InitVM(PVM pVM)
463{
464 int rc = VERR_INTERNAL_ERROR_5;
465
466 /*
467 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
468 */
469 uint32_t u32Family;
470 uint32_t u32Model;
471 uint32_t u32Stepping;
472 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
473 {
474 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
475 pVM->hm.s.svm.fAlwaysFlushTLB = true;
476 }
477
478 /*
479 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
480 */
481 for (VMCPUID i = 0; i < pVM->cCpus; i++)
482 {
483 PVMCPU pVCpu = &pVM->aCpus[i];
484 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
485 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
486 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
487 }
488
489 for (VMCPUID i = 0; i < pVM->cCpus; i++)
490 {
491 PVMCPU pVCpu = &pVM->aCpus[i];
492
493 /*
494 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
495 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
496 */
497 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
498 if (RT_FAILURE(rc))
499 goto failure_cleanup;
500
501 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
502 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
503 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
504 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
505
506 /*
507 * Allocate one page for the guest-state VMCB.
508 */
509 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
510 if (RT_FAILURE(rc))
511 goto failure_cleanup;
512
513 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
514 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
515 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
516 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
517
518 /*
519 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
520 * SVM to not require one.
521 */
522 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
523 if (RT_FAILURE(rc))
524 goto failure_cleanup;
525
526 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
527 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
528 /* Set all bits to intercept all MSR accesses (changed later on). */
529 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
530 }
531
532 return VINF_SUCCESS;
533
534failure_cleanup:
535 hmR0SvmFreeStructs(pVM);
536 return rc;
537}
538
539
540/**
541 * Does per-VM AMD-V termination.
542 *
543 * @returns VBox status code.
544 * @param pVM Pointer to the VM.
545 */
546VMMR0DECL(int) SVMR0TermVM(PVM pVM)
547{
548 hmR0SvmFreeStructs(pVM);
549 return VINF_SUCCESS;
550}
551
552
553/**
554 * Sets the permission bits for the specified MSR in the MSRPM.
555 *
556 * @param pVCpu Pointer to the VMCPU.
557 * @param uMsr The MSR for which the access permissions are being set.
558 * @param enmRead MSR read permissions.
559 * @param enmWrite MSR write permissions.
560 */
561static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
562{
563 unsigned ulBit;
564 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
565
566 /*
567 * Layout:
568 * Byte offset MSR range
569 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
570 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
571 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
572 * 0x1800 - 0x1fff Reserved
573 */
574 if (uMsr <= 0x00001FFF)
575 {
576 /* Pentium-compatible MSRs. */
577 ulBit = uMsr * 2;
578 }
579 else if ( uMsr >= 0xC0000000
580 && uMsr <= 0xC0001FFF)
581 {
582 /* AMD Sixth Generation x86 Processor MSRs. */
583 ulBit = (uMsr - 0xC0000000) * 2;
584 pbMsrBitmap += 0x800;
585 }
586 else if ( uMsr >= 0xC0010000
587 && uMsr <= 0xC0011FFF)
588 {
589 /* AMD Seventh and Eighth Generation Processor MSRs. */
590 ulBit = (uMsr - 0xC0001000) * 2;
591 pbMsrBitmap += 0x1000;
592 }
593 else
594 {
595 AssertFailed();
596 return;
597 }
598
599 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
600 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
601 ASMBitSet(pbMsrBitmap, ulBit);
602 else
603 ASMBitClear(pbMsrBitmap, ulBit);
604
605 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
606 ASMBitSet(pbMsrBitmap, ulBit + 1);
607 else
608 ASMBitClear(pbMsrBitmap, ulBit + 1);
609
610 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
611 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
612}
613
614
615/**
616 * Sets up AMD-V for the specified VM.
617 * This function is only called once per-VM during initalization.
618 *
619 * @returns VBox status code.
620 * @param pVM Pointer to the VM.
621 */
622VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
623{
624 int rc = VINF_SUCCESS;
625
626 AssertReturn(pVM, VERR_INVALID_PARAMETER);
627 Assert(pVM->hm.s.svm.fSupported);
628
629 for (VMCPUID i = 0; i < pVM->cCpus; i++)
630 {
631 PVMCPU pVCpu = &pVM->aCpus[i];
632 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
633
634 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
635
636 /* Trap exceptions unconditionally (debug purposes). */
637#ifdef HMSVM_ALWAYS_TRAP_PF
638 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
639#endif
640#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
641 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
642 pVmcb->ctrl.u32InterceptException |= 0
643 | RT_BIT(X86_XCPT_BP)
644 | RT_BIT(X86_XCPT_DB)
645 | RT_BIT(X86_XCPT_DE)
646 | RT_BIT(X86_XCPT_NM)
647 | RT_BIT(X86_XCPT_UD)
648 | RT_BIT(X86_XCPT_NP)
649 | RT_BIT(X86_XCPT_SS)
650 | RT_BIT(X86_XCPT_GP)
651 | RT_BIT(X86_XCPT_PF)
652 | RT_BIT(X86_XCPT_MF)
653 ;
654#endif
655
656 /* Set up unconditional intercepts and conditions. */
657 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
658 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
659 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
660 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
661 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
662 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
663 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
664 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
665 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
666 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
667 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
668 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
669
670 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
671 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
672 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
673 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
674 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
675 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
676 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
677 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
678 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
679 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
680
681 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
682 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
683
684 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
685 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
686
687 /* Intercept all DRx reads and writes by default. Changed later on. */
688 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
689 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
690
691 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
692 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
693
694 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
695 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
696 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
697
698 /* Set IO and MSR bitmap permission bitmap physical addresses. */
699 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
700 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
701
702 /* No LBR virtualization. */
703 pVmcb->ctrl.u64LBRVirt = 0;
704
705 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
706 pVmcb->ctrl.u64VmcbCleanBits = 0;
707
708 /* The host ASID MBZ, for the guest start with 1. */
709 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
710
711 /*
712 * Setup the PAT MSR (applicable for Nested Paging only).
713 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
714 * so choose type 6 for all PAT slots.
715 */
716 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
717
718 /* Without Nested Paging, we need additionally intercepts. */
719 if (!pVM->hm.s.fNestedPaging)
720 {
721 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
722 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
723 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
724
725 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
726 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
727 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
728
729 /* Page faults must be intercepted to implement shadow paging. */
730 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
731 }
732
733#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
734 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
735#endif
736
737 /*
738 * The following MSRs are saved/restored automatically during the world-switch.
739 * Don't intercept guest read/write accesses to these MSRs.
740 */
741 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
742 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
743 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
744 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
745 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
746 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
747 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
748 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
749 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
750 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
751 }
752
753 return rc;
754}
755
756
757/**
758 * Invalidates a guest page by guest virtual address.
759 *
760 * @returns VBox status code.
761 * @param pVM Pointer to the VM.
762 * @param pVCpu Pointer to the VMCPU.
763 * @param GCVirt Guest virtual address of the page to invalidate.
764 */
765VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
766{
767 AssertReturn(pVM, VERR_INVALID_PARAMETER);
768 Assert(pVM->hm.s.svm.fSupported);
769
770 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
771
772 /* Skip it if a TLB flush is already pending. */
773 if (!fFlushPending)
774 {
775 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
776
777 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
778 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
779
780#if HC_ARCH_BITS == 32
781 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
782 if (CPUMIsGuestInLongMode(pVCpu))
783 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
784 else
785#endif
786 {
787 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
788 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
789 }
790 }
791 return VINF_SUCCESS;
792}
793
794
795/**
796 * Flushes the appropriate tagged-TLB entries.
797 *
798 * @param pVM Pointer to the VM.
799 * @param pVCpu Pointer to the VMCPU.
800 */
801static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
802{
803 PVM pVM = pVCpu->CTX_SUFF(pVM);
804 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
805 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
806
807 /*
808 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
809 * This can happen both for start & resume due to long jumps back to ring-3.
810 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
811 * so we cannot reuse the ASIDs without flushing.
812 */
813 bool fNewAsid = false;
814 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
815 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
816 {
817 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
818 pVCpu->hm.s.fForceTLBFlush = true;
819 fNewAsid = true;
820 }
821
822 /* Set TLB flush state as checked until we return from the world switch. */
823 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
824
825 /* Check for explicit TLB shootdowns. */
826 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
827 {
828 pVCpu->hm.s.fForceTLBFlush = true;
829 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
830 }
831
832 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
833 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
834
835 if (pVM->hm.s.svm.fAlwaysFlushTLB)
836 {
837 /*
838 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
839 */
840 pCpu->uCurrentAsid = 1;
841 pVCpu->hm.s.uCurrentAsid = 1;
842 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
843 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
844 }
845 else if (pVCpu->hm.s.fForceTLBFlush)
846 {
847 if (fNewAsid)
848 {
849 ++pCpu->uCurrentAsid;
850 bool fHitASIDLimit = false;
851 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
852 {
853 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
854 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
855 fHitASIDLimit = true;
856
857 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
858 {
859 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
860 pCpu->fFlushAsidBeforeUse = true;
861 }
862 else
863 {
864 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
865 pCpu->fFlushAsidBeforeUse = false;
866 }
867 }
868
869 if ( !fHitASIDLimit
870 && pCpu->fFlushAsidBeforeUse)
871 {
872 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
873 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
874 else
875 {
876 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
877 pCpu->fFlushAsidBeforeUse = false;
878 }
879 }
880
881 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
882 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
883 }
884 else
885 {
886 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
887 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
888 else
889 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
890 }
891
892 pVCpu->hm.s.fForceTLBFlush = false;
893 }
894 else
895 {
896 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
897 * not be executed. See hmQueueInvlPage() where it is commented
898 * out. Support individual entry flushing someday. */
899 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
900 {
901 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
902 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
903 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
904 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
905 }
906 }
907
908 pVCpu->hm.s.TlbShootdown.cPages = 0;
909 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
910
911 /* Update VMCB with the ASID. */
912 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
913 {
914 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
915 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
916 }
917
918 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
919 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
920 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
921 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
922 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
923 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
924
925#ifdef VBOX_WITH_STATISTICS
926 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
927 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
928 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
929 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
930 {
931 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
932 }
933 else
934 {
935 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
936 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
937 }
938#endif
939}
940
941
942/** @name 64-bit guest on 32-bit host OS helper functions.
943 *
944 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
945 * mode (code segment, paging). These wrappers/helpers perform the necessary
946 * bits for the 32->64 switcher.
947 *
948 * @{ */
949#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
950/**
951 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
952 *
953 * @returns VBox status code.
954 * @param HCPhysVmcbHost Physical address of host VMCB.
955 * @param HCPhysVmcb Physical address of the VMCB.
956 * @param pCtx Pointer to the guest-CPU context.
957 * @param pVM Pointer to the VM.
958 * @param pVCpu Pointer to the VMCPU.
959 */
960DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
961{
962 uint32_t aParam[4];
963 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
964 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
965 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
966 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
967
968 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
969}
970
971
972/**
973 * Executes the specified VMRUN handler in 64-bit mode.
974 *
975 * @returns VBox status code.
976 * @param pVM Pointer to the VM.
977 * @param pVCpu Pointer to the VMCPU.
978 * @param pCtx Pointer to the guest-CPU context.
979 * @param enmOp The operation to perform.
980 * @param cbParam Number of parameters.
981 * @param paParam Array of 32-bit parameters.
982 */
983VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
984 uint32_t *paParam)
985{
986 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
987 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
988
989 /* Disable interrupts. */
990 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
991
992#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
993 RTCPUID idHostCpu = RTMpCpuId();
994 CPUMR0SetLApic(pVCpu, idHostCpu);
995#endif
996
997 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
998 CPUMSetHyperEIP(pVCpu, enmOp);
999 for (int i = (int)cbParam - 1; i >= 0; i--)
1000 CPUMPushHyper(pVCpu, paParam[i]);
1001
1002 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1003 /* Call the switcher. */
1004 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1005 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1006
1007 /* Restore interrupts. */
1008 ASMSetFlags(uOldEFlags);
1009 return rc;
1010}
1011
1012#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1013/** @} */
1014
1015
1016/**
1017 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1018 * the corresponding VMCB Clean Bit.
1019 *
1020 * @param pVmcb Pointer to the VMCB.
1021 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1022 */
1023DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1024{
1025 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1026 {
1027 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1028 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1029 }
1030}
1031
1032
1033/**
1034 * Removes an exception from the intercept-exception bitmap in the VMCB and
1035 * updates the corresponding VMCB Clean Bit.
1036 *
1037 * @param pVmcb Pointer to the VMCB.
1038 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1039 */
1040DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1041{
1042#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1043 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1044 {
1045 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1046 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1047 }
1048#endif
1049}
1050
1051
1052/**
1053 * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1054 *
1055 * @returns VBox status code.
1056 * @param pVCpu Pointer to the VMCPU.
1057 * @param pVmcb Pointer to the VMCB.
1058 * @param pCtx Pointer the guest-CPU context.
1059 *
1060 * @remarks No-long-jump zone!!!
1061 */
1062DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1063{
1064 /*
1065 * Guest CR0.
1066 */
1067 PVM pVM = pVCpu->CTX_SUFF(pVM);
1068 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1069 {
1070 uint64_t u64GuestCR0 = pCtx->cr0;
1071
1072 /* Always enable caching. */
1073 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1074
1075 /*
1076 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1077 */
1078 if (!pVM->hm.s.fNestedPaging)
1079 {
1080 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1081 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1082 }
1083
1084 /*
1085 * Guest FPU bits.
1086 */
1087 bool fInterceptNM = false;
1088 bool fInterceptMF = false;
1089 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1090 if (CPUMIsGuestFPUStateActive(pVCpu))
1091 {
1092 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1093 if (!(u64GuestCR0 & X86_CR0_NE))
1094 {
1095 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1096 fInterceptMF = true;
1097 }
1098 }
1099 else
1100 {
1101 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1102 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1103 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1104 }
1105
1106 /*
1107 * Update the exception intercept bitmap.
1108 */
1109 if (fInterceptNM)
1110 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1111 else
1112 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1113
1114 if (fInterceptMF)
1115 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1116 else
1117 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1118
1119 pVmcb->guest.u64CR0 = u64GuestCR0;
1120 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1121 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1122 }
1123
1124 /*
1125 * Guest CR2.
1126 */
1127 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1128 {
1129 pVmcb->guest.u64CR2 = pCtx->cr2;
1130 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1131 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1132 }
1133
1134 /*
1135 * Guest CR3.
1136 */
1137 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1138 {
1139 if (pVM->hm.s.fNestedPaging)
1140 {
1141 PGMMODE enmShwPagingMode;
1142#if HC_ARCH_BITS == 32
1143 if (CPUMIsGuestInLongModeEx(pCtx))
1144 enmShwPagingMode = PGMMODE_AMD64_NX;
1145 else
1146#endif
1147 enmShwPagingMode = PGMGetHostMode(pVM);
1148
1149 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1150 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1151 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1152 pVmcb->guest.u64CR3 = pCtx->cr3;
1153 }
1154 else
1155 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1156
1157 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1158 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1159 }
1160
1161 /*
1162 * Guest CR4.
1163 */
1164 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1165 {
1166 uint64_t u64GuestCR4 = pCtx->cr4;
1167 if (!pVM->hm.s.fNestedPaging)
1168 {
1169 switch (pVCpu->hm.s.enmShadowMode)
1170 {
1171 case PGMMODE_REAL:
1172 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1173 AssertFailed();
1174 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1175
1176 case PGMMODE_32_BIT: /* 32-bit paging. */
1177 u64GuestCR4 &= ~X86_CR4_PAE;
1178 break;
1179
1180 case PGMMODE_PAE: /* PAE paging. */
1181 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1182 /** Must use PAE paging as we could use physical memory > 4 GB */
1183 u64GuestCR4 |= X86_CR4_PAE;
1184 break;
1185
1186 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1187 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1188#ifdef VBOX_ENABLE_64_BITS_GUESTS
1189 break;
1190#else
1191 AssertFailed();
1192 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1193#endif
1194
1195 default: /* shut up gcc */
1196 AssertFailed();
1197 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1198 }
1199 }
1200
1201 pVmcb->guest.u64CR4 = u64GuestCR4;
1202 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1203 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1204 }
1205
1206 return VINF_SUCCESS;
1207}
1208
1209
1210/**
1211 * Loads the guest segment registers into the VMCB.
1212 *
1213 * @returns VBox status code.
1214 * @param pVCpu Pointer to the VMCPU.
1215 * @param pVmcb Pointer to the VMCB.
1216 * @param pCtx Pointer to the guest-CPU context.
1217 *
1218 * @remarks No-long-jump zone!!!
1219 */
1220DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1221{
1222 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1223 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1224 {
1225 HMSVM_LOAD_SEG_REG(CS, cs);
1226 HMSVM_LOAD_SEG_REG(SS, ss);
1227 HMSVM_LOAD_SEG_REG(DS, ds);
1228 HMSVM_LOAD_SEG_REG(ES, es);
1229 HMSVM_LOAD_SEG_REG(FS, fs);
1230 HMSVM_LOAD_SEG_REG(GS, gs);
1231
1232 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1233 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1234 }
1235
1236 /* Guest TR. */
1237 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1238 {
1239 HMSVM_LOAD_SEG_REG(TR, tr);
1240 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1241 }
1242
1243 /* Guest LDTR. */
1244 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1245 {
1246 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1247 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1248 }
1249
1250 /* Guest GDTR. */
1251 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1252 {
1253 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1254 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1255 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1256 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1257 }
1258
1259 /* Guest IDTR. */
1260 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1261 {
1262 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1263 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1264 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1265 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1266 }
1267}
1268
1269
1270/**
1271 * Loads the guest MSRs into the VMCB.
1272 *
1273 * @param pVCpu Pointer to the VMCPU.
1274 * @param pVmcb Pointer to the VMCB.
1275 * @param pCtx Pointer to the guest-CPU context.
1276 *
1277 * @remarks No-long-jump zone!!!
1278 */
1279DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1280{
1281 /* Guest Sysenter MSRs. */
1282 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1283 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1284 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1285
1286 /*
1287 * Guest EFER MSR.
1288 * AMD-V requires guest EFER.SVME to be set. Weird. .
1289 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1290 */
1291 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1292 {
1293 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1294 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1295 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1296 }
1297
1298 /* 64-bit MSRs. */
1299 if (CPUMIsGuestInLongModeEx(pCtx))
1300 {
1301 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1302 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1303 }
1304 else
1305 {
1306 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1307 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1308 {
1309 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1310 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1311 }
1312 }
1313
1314
1315 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1316 * be writable in 32-bit mode. Clarify with AMD spec. */
1317 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1318 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1319 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1320 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1321 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1322}
1323
1324
1325/**
1326 * Loads the guest debug registers into the VMCB.
1327 *
1328 * @param pVCpu Pointer to the VMCPU.
1329 * @param pVmcb Pointer to the VMCB.
1330 * @param pCtx Pointer to the guest-CPU context.
1331 *
1332 * @remarks No-long-jump zone!!!
1333 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1334 */
1335DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1336{
1337 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1338 return;
1339 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1340 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1341
1342 bool fInterceptDB = false;
1343 bool fInterceptMovDRx = false;
1344
1345 /*
1346 * Anyone single stepping on the host side? If so, we'll have to use the
1347 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1348 * the VMM level like VT-x implementations does.
1349 */
1350 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1351 if (fStepping)
1352 {
1353 pVCpu->hm.s.fClearTrapFlag = true;
1354 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1355 fInterceptDB = true;
1356 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1357 }
1358
1359 PVM pVM = pVCpu->CTX_SUFF(pVM);
1360 if (fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1361 {
1362 /*
1363 * Use the combined guest and host DRx values found in the hypervisor
1364 * register set because the debugger has breakpoints active or someone
1365 * is single stepping on the host side.
1366 *
1367 * Note! DBGF expects a clean DR6 state before executing guest code.
1368 */
1369 if (!CPUMIsHyperDebugStateActive(pVCpu))
1370 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1371 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1372 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1373
1374 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1375 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1376 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu) )
1377 {
1378 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1379 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1380 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1381 }
1382
1383 /** @todo If we cared, we could optimize to allow the guest to read registers
1384 * with the same values. */
1385 fInterceptDB = true;
1386 fInterceptMovDRx = true;
1387 Log5(("hm: Loaded hyper DRx\n"));
1388 }
1389 else
1390 {
1391 /*
1392 * Update DR6, DR7 with the guest values if necessary.
1393 */
1394 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1395 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1396 {
1397 pVmcb->guest.u64DR7 = pCtx->dr[7];
1398 pVmcb->guest.u64DR6 = pCtx->dr[6];
1399 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1400 }
1401
1402 /*
1403 * If the guest has enabled debug registers, we need to load them prior to
1404 * executing guest code so they'll trigger at the right time.
1405 */
1406 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1407 {
1408 if (!CPUMIsGuestDebugStateActive(pVCpu))
1409 {
1410 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1411 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1412 }
1413 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1414 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1415 Log5(("hm: Loaded guest DRx\n"));
1416 }
1417 /*
1418 * If no debugging enabled, we'll lazy load DR0-3.
1419 */
1420 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1421 fInterceptMovDRx = true;
1422 }
1423
1424 /*
1425 * Set up the intercepts.
1426 */
1427 if (fInterceptDB)
1428 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1429 else
1430 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1431
1432 if (fInterceptMovDRx)
1433 {
1434 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1435 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1436 {
1437 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1438 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1439 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1440 }
1441 }
1442 else
1443 {
1444 if ( pVmcb->ctrl.u16InterceptRdDRx
1445 || pVmcb->ctrl.u16InterceptWrDRx)
1446 {
1447 pVmcb->ctrl.u16InterceptRdDRx = 0;
1448 pVmcb->ctrl.u16InterceptWrDRx = 0;
1449 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1450 }
1451 }
1452
1453 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1454}
1455
1456
1457/**
1458 * Loads the guest APIC state (currently just the TPR).
1459 *
1460 * @returns VBox status code.
1461 * @param pVCpu Pointer to the VMCPU.
1462 * @param pVmcb Pointer to the VMCB.
1463 * @param pCtx Pointer to the guest-CPU context.
1464 */
1465DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1466{
1467 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1468 return VINF_SUCCESS;
1469
1470 bool fPendingIntr;
1471 uint8_t u8Tpr;
1472 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1473 AssertRCReturn(rc, rc);
1474
1475 /** Assume that we need to trap all TPR accesses and thus need not check on
1476 * every #VMEXIT if we should update the TPR. */
1477 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1478 pVCpu->hm.s.svm.fSyncVTpr = false;
1479
1480 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1481 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1482 {
1483 pCtx->msrLSTAR = u8Tpr;
1484
1485 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1486 if (fPendingIntr)
1487 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1488 else
1489 {
1490 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1491 pVCpu->hm.s.svm.fSyncVTpr = true;
1492 }
1493 }
1494 else
1495 {
1496 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1497 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1498
1499 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1500 if (fPendingIntr)
1501 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1502 else
1503 {
1504 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1505 pVCpu->hm.s.svm.fSyncVTpr = true;
1506 }
1507
1508 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1509 }
1510
1511 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1512 return rc;
1513}
1514
1515
1516/**
1517 * Sets up the appropriate function to run guest code.
1518 *
1519 * @returns VBox status code.
1520 * @param pVCpu Pointer to the VMCPU.
1521 * @param pCtx Pointer to the guest-CPU context.
1522 *
1523 * @remarks No-long-jump zone!!!
1524 */
1525static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1526{
1527 if (CPUMIsGuestInLongModeEx(pCtx))
1528 {
1529#ifndef VBOX_ENABLE_64_BITS_GUESTS
1530 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1531#endif
1532 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1533#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1534 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1535 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1536#else
1537 /* 64-bit host or hybrid host. */
1538 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1539#endif
1540 }
1541 else
1542 {
1543 /* Guest is not in long mode, use the 32-bit handler. */
1544 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1545 }
1546 return VINF_SUCCESS;
1547}
1548
1549
1550/**
1551 * Enters the AMD-V session.
1552 *
1553 * @returns VBox status code.
1554 * @param pVM Pointer to the VM.
1555 * @param pVCpu Pointer to the VMCPU.
1556 * @param pCpu Pointer to the CPU info struct.
1557 */
1558VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1559{
1560 AssertPtr(pVM);
1561 AssertPtr(pVCpu);
1562 Assert(pVM->hm.s.svm.fSupported);
1563 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1564 NOREF(pCpu);
1565
1566 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1567
1568 pVCpu->hm.s.fLeaveDone = false;
1569 return VINF_SUCCESS;
1570}
1571
1572
1573/**
1574 * Thread-context callback for AMD-V.
1575 *
1576 * @param enmEvent The thread-context event.
1577 * @param pVCpu Pointer to the VMCPU.
1578 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1579 */
1580VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1581{
1582 switch (enmEvent)
1583 {
1584 case RTTHREADCTXEVENT_PREEMPTING:
1585 {
1586 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1587 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1588 VMCPU_ASSERT_EMT(pVCpu);
1589
1590 PVM pVM = pVCpu->CTX_SUFF(pVM);
1591 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1592 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1593
1594 if (!pVCpu->hm.s.fLeaveDone)
1595 {
1596 hmR0SvmLeave(pVM, pVCpu, pCtx);
1597 pVCpu->hm.s.fLeaveDone = true;
1598 }
1599
1600 int rc = HMR0LeaveCpu(pVCpu); /* Leave HM context, takes care of local init (term). */
1601 AssertRC(rc); NOREF(rc);
1602
1603 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1604 break;
1605 }
1606
1607 case RTTHREADCTXEVENT_RESUMED:
1608 {
1609 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1610 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1611 VMCPU_ASSERT_EMT(pVCpu);
1612
1613 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1614
1615 /*
1616 * Initialize the bare minimum state required for HM. This takes care of
1617 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1618 */
1619 int rc = HMR0EnterCpu(pVCpu);
1620 AssertRC(rc); NOREF(rc);
1621 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1622
1623 pVCpu->hm.s.fLeaveDone = false;
1624 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1625 break;
1626 }
1627
1628 default:
1629 break;
1630 }
1631}
1632
1633
1634/**
1635 * Saves the host state.
1636 *
1637 * @returns VBox status code.
1638 * @param pVM Pointer to the VM.
1639 * @param pVCpu Pointer to the VMCPU.
1640 *
1641 * @remarks No-long-jump zone!!!
1642 */
1643VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1644{
1645 NOREF(pVM);
1646 NOREF(pVCpu);
1647 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1648 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1649 return VINF_SUCCESS;
1650}
1651
1652
1653/**
1654 * Loads the guest state into the VMCB. The CPU state will be loaded from these
1655 * fields on every successful VM-entry.
1656 *
1657 * Sets up the appropriate VMRUN function to execute guest code based
1658 * on the guest CPU mode.
1659 *
1660 * @returns VBox status code.
1661 * @param pVM Pointer to the VM.
1662 * @param pVCpu Pointer to the VMCPU.
1663 * @param pMixedCtx Pointer to the guest-CPU context.
1664 *
1665 * @remarks No-long-jump zone!!!
1666 */
1667static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1668{
1669 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1670 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1671
1672 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1673
1674 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1675 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1676
1677 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1678 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1679
1680 pVmcb->guest.u64RIP = pCtx->rip;
1681 pVmcb->guest.u64RSP = pCtx->rsp;
1682 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1683 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1684 pVmcb->guest.u64RAX = pCtx->rax;
1685
1686 /* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
1687 hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
1688
1689 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1690 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1691
1692 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1693 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1694
1695 /* Clear any unused and reserved bits. */
1696 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1697 | HM_CHANGED_GUEST_RSP
1698 | HM_CHANGED_GUEST_RFLAGS
1699 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1700 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1701 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1702 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1703 | HM_CHANGED_SVM_RESERVED2
1704 | HM_CHANGED_SVM_RESERVED3);
1705
1706 /* All the guest state bits should be loaded except maybe the host context and shared host/guest bits. */
1707 AssertMsg( !(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST)
1708 || !(pVCpu->hm.s.fContextUseFlags & ~(HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE)),
1709 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1710 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1711
1712 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss, pCtx->rsp));
1713
1714 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1715 return rc;
1716}
1717
1718
1719/**
1720 * Loads the guest state on the way from ring-3.
1721 *
1722 * @returns VBox status code.
1723 * @param pVM Pointer to the VM.
1724 * @param pVCpu Pointer to the VMCPU.
1725 * @param pCtx Pointer to the guest-CPU context.
1726 *
1727 * @remarks No-long-jump zone!!!
1728 */
1729VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1730{
1731 /*
1732 * Avoid reloading the guest state on longjmp reentrants and do it lazily just before executing the guest.
1733 * This only helps when we get rescheduled more than once to a different host CPU on a longjmp trip before
1734 * finally executing guest code.
1735 */
1736 return VINF_SUCCESS;
1737}
1738
1739
1740/**
1741 * Saves the entire guest state from the VMCB into the
1742 * guest-CPU context. Currently there is no residual state left in the CPU that
1743 * is not updated in the VMCB.
1744 *
1745 * @returns VBox status code.
1746 * @param pVCpu Pointer to the VMCPU.
1747 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1748 * out-of-sync. Make sure to update the required fields
1749 * before using them.
1750 */
1751static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1752{
1753 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1754
1755 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1756
1757 pMixedCtx->rip = pVmcb->guest.u64RIP;
1758 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1759 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1760 pMixedCtx->rax = pVmcb->guest.u64RAX;
1761
1762 /*
1763 * Guest interrupt shadow.
1764 */
1765 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1766 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1767 else
1768 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1769
1770 /*
1771 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1772 */
1773 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1774
1775 /*
1776 * Guest MSRs.
1777 */
1778 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1779 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1780 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1781 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1782 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1783 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1784 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1785 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1786
1787 /*
1788 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1789 */
1790 HMSVM_SAVE_SEG_REG(CS, cs);
1791 HMSVM_SAVE_SEG_REG(SS, ss);
1792 HMSVM_SAVE_SEG_REG(DS, ds);
1793 HMSVM_SAVE_SEG_REG(ES, es);
1794 HMSVM_SAVE_SEG_REG(FS, fs);
1795 HMSVM_SAVE_SEG_REG(GS, gs);
1796
1797 /*
1798 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1799 * register (yet).
1800 */
1801 /** @todo SELM might need to be fixed as it too should not care about the
1802 * granularity bit. See @bugref{6785}. */
1803 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1804 && pMixedCtx->cs.Attr.n.u1Present
1805 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1806 {
1807 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1808 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1809 }
1810
1811#ifdef VBOX_STRICT
1812# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1813 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1814 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1815 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1816 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1817 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1818 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1819
1820 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1821 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1822 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1823 HMSVM_ASSERT_SEG_GRANULARITY(es);
1824 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1825 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1826
1827# undef HMSVM_ASSERT_SEL_GRANULARITY
1828#endif
1829
1830 /*
1831 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1832 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1833 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1834 * See AMD spec. 15.5.1 "Basic operation".
1835 */
1836 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1837 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1838
1839 /*
1840 * Guest Descriptor-Table registers.
1841 */
1842 HMSVM_SAVE_SEG_REG(TR, tr);
1843 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1844 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1845 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1846
1847 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1848 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1849
1850 /*
1851 * Guest Debug registers.
1852 */
1853 if (!CPUMIsHyperDebugStateActive(pVCpu))
1854 {
1855 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1856 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1857 }
1858 else
1859 {
1860 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
1861 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
1862 }
1863
1864 /*
1865 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1866 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1867 */
1868 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1869 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1870 {
1871 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1872 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1873 }
1874}
1875
1876
1877/**
1878 * Does the necessary state syncing before returning to ring-3 for any reason
1879 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
1880 *
1881 * @param pVM Pointer to the VM.
1882 * @param pVCpu Pointer to the VMCPU.
1883 * @param pMixedCtx Pointer to the guest-CPU context.
1884 *
1885 * @remarks No-long-jmp zone!!!
1886 */
1887static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1888{
1889 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1890 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1891 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1892
1893 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1894 if (CPUMIsGuestFPUStateActive(pVCpu))
1895 {
1896 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1897 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1898 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1899 }
1900
1901 /*
1902 * Restore host debug registers if necessary and resync on next R0 reentry.
1903 */
1904#ifdef VBOX_STRICT
1905 if (CPUMIsHyperDebugStateActive(pVCpu))
1906 {
1907 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1908 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1909 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1910 }
1911#endif
1912 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
1913 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1914
1915 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1916 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1917
1918 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
1919 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
1920 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1921 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1922 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1923
1924 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1925}
1926
1927
1928/**
1929 * Leaves the AMD-V session.
1930 *
1931 * @returns VBox status code.
1932 * @param pVM Pointer to the VM.
1933 * @param pVCpu Pointer to the VMCPU.
1934 * @param pCtx Pointer to the guest-CPU context.
1935 */
1936DECLINLINE(void) hmR0SvmLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1937{
1938 HM_DISABLE_PREEMPT_IF_NEEDED();
1939 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1940 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1941
1942 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
1943 and done this from the VMXR0ThreadCtxCallback(). */
1944 if (!pVCpu->hm.s.fLeaveDone)
1945 {
1946 hmR0SvmLeave(pVM, pVCpu, pCtx);
1947 pVCpu->hm.s.fLeaveDone = true;
1948 }
1949
1950 /* Deregister hook now that we've left HM context before re-enabling preemption. */
1951 /** @todo This is bad. Deregistering here means we need to VMCLEAR always
1952 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
1953 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
1954 VMMR0ThreadCtxHooksDeregister(pVCpu);
1955
1956 /* Leave HM context. This takes care of local init (term). */
1957 int rc = HMR0LeaveCpu(pVCpu);
1958 AssertRC(rc); NOREF(rc);
1959
1960 HM_RESTORE_PREEMPT_IF_NEEDED();
1961}
1962
1963
1964/**
1965 * Does the necessary state syncing before doing a longjmp to ring-3.
1966 *
1967 * @param pVM Pointer to the VM.
1968 * @param pVCpu Pointer to the VMCPU.
1969 * @param pCtx Pointer to the guest-CPU context.
1970 *
1971 * @remarks No-long-jmp zone!!!
1972 */
1973static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1974{
1975 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
1976}
1977
1978
1979/**
1980 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
1981 * any remaining host state) before we longjump to ring-3 and possibly get
1982 * preempted.
1983 *
1984 * @param pVCpu Pointer to the VMCPU.
1985 * @param enmOperation The operation causing the ring-3 longjump.
1986 * @param pvUser The user argument (pointer to the possibly
1987 * out-of-date guest-CPU context).
1988 *
1989 * @remarks Must never be called with @a enmOperation ==
1990 * VMMCALLRING3_VM_R0_ASSERTION.
1991 */
1992DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
1993{
1994 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
1995 Assert(pVCpu);
1996 Assert(pvUser);
1997 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1998 HMSVM_ASSERT_PREEMPT_SAFE();
1999
2000 VMMRZCallRing3Disable(pVCpu);
2001 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2002
2003 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2004 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2005
2006 VMMRZCallRing3Enable(pVCpu);
2007}
2008
2009
2010/**
2011 * Take necessary actions before going back to ring-3.
2012 *
2013 * An action requires us to go back to ring-3. This function does the necessary
2014 * steps before we can safely return to ring-3. This is not the same as longjmps
2015 * to ring-3, this is voluntary.
2016 *
2017 * @param pVM Pointer to the VM.
2018 * @param pVCpu Pointer to the VMCPU.
2019 * @param pCtx Pointer to the guest-CPU context.
2020 * @param rcExit The reason for exiting to ring-3. Can be
2021 * VINF_VMM_UNKNOWN_RING3_CALL.
2022 */
2023static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2024{
2025 Assert(pVM);
2026 Assert(pVCpu);
2027 Assert(pCtx);
2028 HMSVM_ASSERT_PREEMPT_SAFE();
2029
2030 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
2031 {
2032 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
2033 return;
2034 }
2035
2036 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2037 VMMRZCallRing3Disable(pVCpu);
2038 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2039
2040 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2041 if (pVCpu->hm.s.Event.fPending)
2042 {
2043 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2044 Assert(!pVCpu->hm.s.Event.fPending);
2045 }
2046
2047 /* Sync. the necessary state for going back to ring-3. */
2048 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2049 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2050
2051 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2052 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2053 | CPUM_CHANGED_LDTR
2054 | CPUM_CHANGED_GDTR
2055 | CPUM_CHANGED_IDTR
2056 | CPUM_CHANGED_TR
2057 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2058 if ( pVM->hm.s.fNestedPaging
2059 && CPUMIsGuestPagingEnabledEx(pCtx))
2060 {
2061 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2062 }
2063
2064 /* Make sure we've undo the trap flag if we tried to single step something. */
2065 if (pVCpu->hm.s.fClearTrapFlag)
2066 {
2067 pCtx->eflags.Bits.u1TF = 0;
2068 pVCpu->hm.s.fClearTrapFlag = false;
2069 }
2070
2071 /* On our way back from ring-3 the following needs to be done. */
2072 /** @todo This can change with preemption hooks. */
2073 if (rcExit == VINF_EM_RAW_INTERRUPT)
2074 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
2075 else
2076 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2077
2078 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2079 VMMRZCallRing3Enable(pVCpu);
2080}
2081
2082
2083/**
2084 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2085 * intercepts.
2086 *
2087 * @param pVCpu Pointer to the VMCPU.
2088 *
2089 * @remarks No-long-jump zone!!!
2090 */
2091static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
2092{
2093 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2094 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
2095 {
2096 uint64_t u64CurTSC = ASMReadTSC();
2097 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
2098 {
2099 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
2100 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
2101 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2102 }
2103 else
2104 {
2105 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2106 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2107 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
2108 }
2109 }
2110 else
2111 {
2112 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2113 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2114 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2115 }
2116
2117 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2118}
2119
2120
2121/**
2122 * Sets an event as a pending event to be injected into the guest.
2123 *
2124 * @param pVCpu Pointer to the VMCPU.
2125 * @param pEvent Pointer to the SVM event.
2126 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2127 * page-fault.
2128 *
2129 * @remarks Statistics counter assumes this is a guest event being reflected to
2130 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2131 */
2132DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2133{
2134 Assert(!pVCpu->hm.s.Event.fPending);
2135 Assert(pEvent->n.u1Valid);
2136
2137 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
2138 pVCpu->hm.s.Event.fPending = true;
2139 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2140
2141 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2142 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2143
2144 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
2145}
2146
2147
2148/**
2149 * Injects an event into the guest upon VMRUN by updating the relevant field
2150 * in the VMCB.
2151 *
2152 * @param pVCpu Pointer to the VMCPU.
2153 * @param pVmcb Pointer to the guest VMCB.
2154 * @param pCtx Pointer to the guest-CPU context.
2155 * @param pEvent Pointer to the event.
2156 *
2157 * @remarks No-long-jump zone!!!
2158 * @remarks Requires CR0!
2159 */
2160DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2161{
2162 pVmcb->ctrl.EventInject.u = pEvent->u;
2163 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2164
2165 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2166 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2167}
2168
2169
2170
2171/**
2172 * Converts any TRPM trap into a pending HM event. This is typically used when
2173 * entering from ring-3 (not longjmp returns).
2174 *
2175 * @param pVCpu Pointer to the VMCPU.
2176 */
2177static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2178{
2179 Assert(TRPMHasTrap(pVCpu));
2180 Assert(!pVCpu->hm.s.Event.fPending);
2181
2182 uint8_t uVector;
2183 TRPMEVENT enmTrpmEvent;
2184 RTGCUINT uErrCode;
2185 RTGCUINTPTR GCPtrFaultAddress;
2186 uint8_t cbInstr;
2187
2188 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2189 AssertRC(rc);
2190
2191 SVMEVENT Event;
2192 Event.u = 0;
2193 Event.n.u1Valid = 1;
2194 Event.n.u8Vector = uVector;
2195
2196 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2197 if (enmTrpmEvent == TRPM_TRAP)
2198 {
2199 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2200 switch (uVector)
2201 {
2202 case X86_XCPT_PF:
2203 case X86_XCPT_DF:
2204 case X86_XCPT_TS:
2205 case X86_XCPT_NP:
2206 case X86_XCPT_SS:
2207 case X86_XCPT_GP:
2208 case X86_XCPT_AC:
2209 {
2210 Event.n.u1ErrorCodeValid = 1;
2211 Event.n.u32ErrorCode = uErrCode;
2212 break;
2213 }
2214 }
2215 }
2216 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2217 {
2218 if (uVector == X86_XCPT_NMI)
2219 Event.n.u3Type = SVM_EVENT_NMI;
2220 else
2221 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2222 }
2223 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2224 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2225 else
2226 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2227
2228 rc = TRPMResetTrap(pVCpu);
2229 AssertRC(rc);
2230
2231 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2232 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2233
2234 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2235 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2236}
2237
2238
2239/**
2240 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2241 * AMD-V to execute any instruction.
2242 *
2243 * @param pvCpu Pointer to the VMCPU.
2244 */
2245static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2246{
2247 Assert(pVCpu->hm.s.Event.fPending);
2248 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2249
2250 SVMEVENT Event;
2251 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2252
2253 uint8_t uVector = Event.n.u8Vector;
2254 uint8_t uVectorType = Event.n.u3Type;
2255
2256 TRPMEVENT enmTrapType;
2257 switch (uVectorType)
2258 {
2259 case SVM_EVENT_EXTERNAL_IRQ:
2260 case SVM_EVENT_NMI:
2261 enmTrapType = TRPM_HARDWARE_INT;
2262 break;
2263 case SVM_EVENT_SOFTWARE_INT:
2264 enmTrapType = TRPM_SOFTWARE_INT;
2265 break;
2266 case SVM_EVENT_EXCEPTION:
2267 enmTrapType = TRPM_TRAP;
2268 break;
2269 default:
2270 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2271 enmTrapType = TRPM_32BIT_HACK;
2272 break;
2273 }
2274
2275 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2276
2277 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2278 AssertRC(rc);
2279
2280 if (Event.n.u1ErrorCodeValid)
2281 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2282
2283 if ( uVectorType == SVM_EVENT_EXCEPTION
2284 && uVector == X86_XCPT_PF)
2285 {
2286 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2287 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2288 }
2289 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2290 {
2291 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2292 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2293 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2294 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2295 }
2296 pVCpu->hm.s.Event.fPending = false;
2297}
2298
2299
2300/**
2301 * Gets the guest's interrupt-shadow.
2302 *
2303 * @returns The guest's interrupt-shadow.
2304 * @param pVCpu Pointer to the VMCPU.
2305 * @param pCtx Pointer to the guest-CPU context.
2306 *
2307 * @remarks No-long-jump zone!!!
2308 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2309 */
2310DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2311{
2312 /*
2313 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2314 * inhibit interrupts or clear any existing interrupt-inhibition.
2315 */
2316 uint32_t uIntrState = 0;
2317 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2318 {
2319 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2320 {
2321 /*
2322 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2323 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2324 */
2325 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2326 }
2327 else
2328 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2329 }
2330 return uIntrState;
2331}
2332
2333
2334/**
2335 * Sets the virtual interrupt intercept control in the VMCB which
2336 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2337 * receive interrupts.
2338 *
2339 * @param pVmcb Pointer to the VMCB.
2340 */
2341DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2342{
2343 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2344 {
2345 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2346 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2347 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2348 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2349
2350 Log4(("Setting VINTR intercept\n"));
2351 }
2352}
2353
2354
2355/**
2356 * Evaluates the event to be delivered to the guest and sets it as the pending
2357 * event.
2358 *
2359 * @param pVCpu Pointer to the VMCPU.
2360 * @param pCtx Pointer to the guest-CPU context.
2361 */
2362static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2363{
2364 Assert(!pVCpu->hm.s.Event.fPending);
2365 Log4Func(("\n"));
2366
2367 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2368 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2369 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2370
2371 SVMEVENT Event;
2372 Event.u = 0;
2373 /** @todo SMI. SMIs take priority over NMIs. */
2374 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2375 {
2376 if (!fIntShadow)
2377 {
2378 Log4(("Pending NMI\n"));
2379
2380 Event.n.u1Valid = 1;
2381 Event.n.u8Vector = X86_XCPT_NMI;
2382 Event.n.u3Type = SVM_EVENT_NMI;
2383
2384 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2385 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2386 }
2387 else
2388 hmR0SvmSetVirtIntrIntercept(pVmcb);
2389 }
2390 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2391 {
2392 /*
2393 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
2394 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
2395 * evaluated here and not set as pending, solely based on the force-flags.
2396 */
2397 if ( !fBlockInt
2398 && !fIntShadow)
2399 {
2400 uint8_t u8Interrupt;
2401 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2402 if (RT_SUCCESS(rc))
2403 {
2404 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2405
2406 Event.n.u1Valid = 1;
2407 Event.n.u8Vector = u8Interrupt;
2408 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2409
2410 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2411 }
2412 else
2413 {
2414 /** @todo Does this actually happen? If not turn it into an assertion. */
2415 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2416 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2417 }
2418 }
2419 else
2420 hmR0SvmSetVirtIntrIntercept(pVmcb);
2421 }
2422}
2423
2424
2425/**
2426 * Injects any pending events into the guest if the guest is in a state to
2427 * receive them.
2428 *
2429 * @param pVCpu Pointer to the VMCPU.
2430 * @param pCtx Pointer to the guest-CPU context.
2431 */
2432static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2433{
2434 Assert(!TRPMHasTrap(pVCpu));
2435 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2436 Log4Func(("\n"));
2437
2438 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2439 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2440 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2441
2442 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2443 {
2444 SVMEVENT Event;
2445 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2446 Assert(Event.n.u1Valid);
2447#ifdef VBOX_STRICT
2448 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2449 {
2450 Assert(!fBlockInt);
2451 Assert(!fIntShadow);
2452 }
2453 else if (Event.n.u3Type == SVM_EVENT_NMI)
2454 Assert(!fIntShadow);
2455#endif
2456
2457 Log4(("Injecting pending HM event.\n"));
2458 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2459 pVCpu->hm.s.Event.fPending = false;
2460
2461#ifdef VBOX_WITH_STATISTICS
2462 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2463 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2464 else
2465 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2466#endif
2467 }
2468
2469 /* Update the guest interrupt shadow in the VMCB. */
2470 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2471}
2472
2473
2474/**
2475 * Reports world-switch error and dumps some useful debug info.
2476 *
2477 * @param pVM Pointer to the VM.
2478 * @param pVCpu Pointer to the VMCPU.
2479 * @param rcVMRun The return code from VMRUN (or
2480 * VERR_SVM_INVALID_GUEST_STATE for invalid
2481 * guest-state).
2482 * @param pCtx Pointer to the guest-CPU context.
2483 */
2484static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2485{
2486 HMSVM_ASSERT_PREEMPT_SAFE();
2487 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2488
2489 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2490 {
2491 HMDumpRegs(pVM, pVCpu, pCtx);
2492#ifdef VBOX_STRICT
2493 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2494 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2495 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2496 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2497 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2498 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2499 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2500 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2501 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2502 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2503 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2504
2505 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2506 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2507 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2508
2509 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2510 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2511 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2512 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2513 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2514 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2515 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2516 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2517 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2518 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2519
2520 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2521 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2522 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2523 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2524 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2525 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2526 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2527 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2528 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2529 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2530 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2531 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2532 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2533 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2534 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2535 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2536 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2537
2538 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2539 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2540
2541 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2542 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2543 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2544 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2545 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2546 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2547 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2548 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2549 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2550 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2551 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2552 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2553 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2554 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2555 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2556 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2557 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2558 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2559 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2560 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2561
2562 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2563 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2564
2565 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2566 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2567 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2568 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2569
2570 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2571 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2572
2573 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2574 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2575 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2576 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2577
2578 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2579 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2580 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2581 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2582 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2583 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2584 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2585
2586 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2587 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2588 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2589 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2590
2591 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2592 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2593 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2594
2595 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2596 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2597 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2598 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2599 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2600 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2601 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2602 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2603 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2604 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2605 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2606 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2607#endif
2608 }
2609 else
2610 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2611}
2612
2613
2614/**
2615 * Check per-VM and per-VCPU force flag actions that require us to go back to
2616 * ring-3 for one reason or another.
2617 *
2618 * @returns VBox status code (information status code included).
2619 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2620 * ring-3.
2621 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2622 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2623 * interrupts)
2624 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2625 * all EMTs to be in ring-3.
2626 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2627 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2628 * to the EM loop.
2629 *
2630 * @param pVM Pointer to the VM.
2631 * @param pVCpu Pointer to the VMCPU.
2632 * @param pCtx Pointer to the guest-CPU context.
2633 */
2634static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2635{
2636 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2637
2638 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2639 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2640 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2641
2642 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2643 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2644 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2645 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2646 {
2647 /* Pending PGM C3 sync. */
2648 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2649 {
2650 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2651 if (rc != VINF_SUCCESS)
2652 {
2653 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2654 return rc;
2655 }
2656 }
2657
2658 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2659 /* -XXX- what was that about single stepping? */
2660 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2661 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2662 {
2663 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2664 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2665 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2666 return rc;
2667 }
2668
2669 /* Pending VM request packets, such as hardware interrupts. */
2670 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2671 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2672 {
2673 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2674 return VINF_EM_PENDING_REQUEST;
2675 }
2676
2677 /* Pending PGM pool flushes. */
2678 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2679 {
2680 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2681 return VINF_PGM_POOL_FLUSH_PENDING;
2682 }
2683
2684 /* Pending DMA requests. */
2685 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2686 {
2687 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2688 return VINF_EM_RAW_TO_R3;
2689 }
2690 }
2691
2692 return VINF_SUCCESS;
2693}
2694
2695
2696/**
2697 * Does the preparations before executing guest code in AMD-V.
2698 *
2699 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2700 * recompiler. We must be cautious what we do here regarding committing
2701 * guest-state information into the the VMCB assuming we assuredly execute the
2702 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2703 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2704 * that the recompiler can (and should) use them when it resumes guest
2705 * execution. Otherwise such operations must be done when we can no longer
2706 * exit to ring-3.
2707 *
2708 * @returns VBox status code (informational status codes included).
2709 * @retval VINF_SUCCESS if we can proceed with running the guest.
2710 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2711 *
2712 * @param pVM Pointer to the VM.
2713 * @param pVCpu Pointer to the VMCPU.
2714 * @param pCtx Pointer to the guest-CPU context.
2715 * @param pSvmTransient Pointer to the SVM transient structure.
2716 */
2717DECLINLINE(int) hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2718{
2719 /* Check force flag actions that might require us to go back to ring-3. */
2720 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2721 if (rc != VINF_SUCCESS)
2722 return rc;
2723
2724 if (TRPMHasTrap(pVCpu))
2725 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2726 else if (!pVCpu->hm.s.Event.fPending)
2727 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
2728
2729 /*
2730 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
2731 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
2732 *
2733 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
2734 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
2735 *
2736 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
2737 * executing guest code.
2738 */
2739 pSvmTransient->uEflags = ASMIntDisableFlags();
2740 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2741 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2742 {
2743 ASMSetFlags(pSvmTransient->uEflags);
2744 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2745 return VINF_EM_RAW_TO_R3;
2746 }
2747 else if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2748 {
2749 ASMSetFlags(pSvmTransient->uEflags);
2750 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2751 return VINF_EM_RAW_INTERRUPT;
2752 }
2753
2754 /* Indicate the start of guest execution. No more longjmps or returns to ring-3 from this point!!! */
2755 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2756 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2757
2758 return VINF_SUCCESS;
2759}
2760
2761
2762/**
2763 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2764 * means there is no backing out to ring-3 or anywhere else at this
2765 * point.
2766 *
2767 * @param pVM Pointer to the VM.
2768 * @param pVCpu Pointer to the VMCPU.
2769 * @param pCtx Pointer to the guest-CPU context.
2770 * @param pSvmTransient Pointer to the SVM transient structure.
2771 *
2772 * @remarks Called with preemption disabled.
2773 * @remarks No-long-jump zone!!!
2774 */
2775DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2776{
2777 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2778 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2779
2780 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2781
2782 /*
2783 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2784 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2785 */
2786 /** @todo The above assumption could be wrong. It's not documented what
2787 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2788 * hard way. */
2789 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2790 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2791
2792#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2793 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2794#endif
2795
2796 /* Load the guest state. */
2797 int rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2798 AssertRC(rc);
2799 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
2800 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
2801 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2802
2803 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2804 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2805 pVmcb->ctrl.u64VmcbCleanBits = 0;
2806
2807 /*
2808 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2809 * so we can update it on the way back if the guest changed the TPR.
2810 */
2811 if (pVCpu->hm.s.svm.fSyncVTpr)
2812 {
2813 if (pVM->hm.s.fTPRPatchingActive)
2814 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2815 else
2816 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2817 }
2818
2819 /* Setup TSC offsetting. */
2820 if ( pSvmTransient->fUpdateTscOffsetting
2821 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
2822 {
2823 hmR0SvmUpdateTscOffsetting(pVCpu);
2824 pSvmTransient->fUpdateTscOffsetting = false;
2825 }
2826
2827 /* Flush the appropriate tagged-TLB entries. */
2828 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2829 hmR0SvmFlushTaggedTlb(pVCpu);
2830 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2831
2832 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
2833
2834 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2835 to start executing. */
2836
2837 /*
2838 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2839 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2840 *
2841 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2842 */
2843 pSvmTransient->fRestoreTscAuxMsr = false;
2844 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2845 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2846 {
2847 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2848 uint64_t u64GuestTscAux = 0;
2849 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2850 AssertRC(rc2);
2851 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
2852 {
2853 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2854 pSvmTransient->fRestoreTscAuxMsr = true;
2855 }
2856 }
2857}
2858
2859
2860/**
2861 * Wrapper for running the guest code in AMD-V.
2862 *
2863 * @returns VBox strict status code.
2864 * @param pVM Pointer to the VM.
2865 * @param pVCpu Pointer to the VMCPU.
2866 * @param pCtx Pointer to the guest-CPU context.
2867 *
2868 * @remarks No-long-jump zone!!!
2869 */
2870DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2871{
2872 /*
2873 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2874 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2875 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2876 */
2877#ifdef VBOX_WITH_KERNEL_USING_XMM
2878 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2879 pVCpu->hm.s.svm.pfnVMRun);
2880#else
2881 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2882#endif
2883}
2884
2885
2886/**
2887 * Performs some essential restoration of state after running guest code in
2888 * AMD-V.
2889 *
2890 * @param pVM Pointer to the VM.
2891 * @param pVCpu Pointer to the VMCPU.
2892 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2893 * out-of-sync. Make sure to update the required fields
2894 * before using them.
2895 * @param pSvmTransient Pointer to the SVM transient structure.
2896 * @param rcVMRun Return code of VMRUN.
2897 *
2898 * @remarks Called with interrupts disabled.
2899 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2900 * unconditionally when it is safe to do so.
2901 */
2902DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2903{
2904 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2905
2906 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2907 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2908
2909 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2910 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2911
2912 if (pSvmTransient->fRestoreTscAuxMsr)
2913 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2914
2915 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2916 {
2917 /** @todo Find a way to fix hardcoding a guestimate. */
2918 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
2919 }
2920
2921 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
2922 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2923 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2924
2925 Assert(!(ASMGetFlags() & X86_EFL_IF));
2926 ASMSetFlags(pSvmTransient->uEflags); /* Enable interrupts. */
2927
2928 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2929
2930 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2931 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2932 {
2933 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2934 return;
2935 }
2936
2937 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2938 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2939 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2940
2941 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2942 {
2943 if (pVCpu->hm.s.svm.fSyncVTpr)
2944 {
2945 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2946 if ( pVM->hm.s.fTPRPatchingActive
2947 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2948 {
2949 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
2950 AssertRC(rc);
2951 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2952 }
2953 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2954 {
2955 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
2956 AssertRC(rc);
2957 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2958 }
2959 }
2960 }
2961}
2962
2963
2964/**
2965 * Runs the guest code using AMD-V.
2966 *
2967 * @returns VBox status code.
2968 * @param pVM Pointer to the VM.
2969 * @param pVCpu Pointer to the VMCPU.
2970 * @param pCtx Pointer to the guest-CPU context.
2971 */
2972VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2973{
2974 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2975 HMSVM_ASSERT_PREEMPT_SAFE();
2976 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
2977
2978 SVMTRANSIENT SvmTransient;
2979 SvmTransient.fUpdateTscOffsetting = true;
2980 uint32_t cLoops = 0;
2981 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2982 int rc = VERR_INTERNAL_ERROR_5;
2983
2984 for (;; cLoops++)
2985 {
2986 Assert(!HMR0SuspendPending());
2987 HMSVM_ASSERT_CPU_SAFE();
2988
2989 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
2990 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
2991 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
2992 if (rc != VINF_SUCCESS)
2993 break;
2994
2995 /*
2996 * No longjmps to ring-3 from this point on!!!
2997 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
2998 * This also disables flushing of the R0-logger instance (if any).
2999 */
3000 VMMRZCallRing3Disable(pVCpu);
3001 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3002
3003 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3004
3005 /*
3006 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
3007 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
3008 */
3009 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3010 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3011 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3012 {
3013 if (rc == VINF_SUCCESS)
3014 rc = VERR_SVM_INVALID_GUEST_STATE;
3015 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3016 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3017 break;
3018 }
3019
3020 /* Handle the #VMEXIT. */
3021 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3022 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3023 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3024 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3025 if (rc != VINF_SUCCESS)
3026 break;
3027 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
3028 {
3029 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
3030 rc = VINF_EM_RAW_INTERRUPT;
3031 break;
3032 }
3033 }
3034
3035 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3036 if (rc == VERR_EM_INTERPRETER)
3037 rc = VINF_EM_RAW_EMULATE_INSTR;
3038 else if (rc == VINF_EM_RESET)
3039 rc = VINF_EM_TRIPLE_FAULT;
3040
3041 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3042 VMMRZCallRing3RemoveNotification(pVCpu);
3043 return rc;
3044}
3045
3046
3047/**
3048 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3049 *
3050 * @returns VBox status code (informational status codes included).
3051 * @param pVCpu Pointer to the VMCPU.
3052 * @param pCtx Pointer to the guest-CPU context.
3053 * @param pSvmTransient Pointer to the SVM transient structure.
3054 */
3055DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3056{
3057 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
3058 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3059
3060 /*
3061 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
3062 * normal workloads (for some definition of "normal").
3063 */
3064 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3065 switch (pSvmTransient->u64ExitCode)
3066 {
3067 case SVM_EXIT_NPF:
3068 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3069
3070 case SVM_EXIT_IOIO:
3071 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3072
3073 case SVM_EXIT_RDTSC:
3074 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3075
3076 case SVM_EXIT_RDTSCP:
3077 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3078
3079 case SVM_EXIT_CPUID:
3080 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3081
3082 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
3083 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3084
3085 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3086 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3087
3088 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
3089 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3090
3091 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3092 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3093
3094 case SVM_EXIT_MONITOR:
3095 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3096
3097 case SVM_EXIT_MWAIT:
3098 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3099
3100 case SVM_EXIT_HLT:
3101 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3102
3103 case SVM_EXIT_READ_CR0:
3104 case SVM_EXIT_READ_CR3:
3105 case SVM_EXIT_READ_CR4:
3106 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3107
3108 case SVM_EXIT_WRITE_CR0:
3109 case SVM_EXIT_WRITE_CR3:
3110 case SVM_EXIT_WRITE_CR4:
3111 case SVM_EXIT_WRITE_CR8:
3112 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3113
3114 case SVM_EXIT_VINTR:
3115 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3116
3117 case SVM_EXIT_INTR:
3118 case SVM_EXIT_FERR_FREEZE:
3119 case SVM_EXIT_NMI:
3120 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3121
3122 case SVM_EXIT_MSR:
3123 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3124
3125 case SVM_EXIT_INVLPG:
3126 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3127
3128 case SVM_EXIT_WBINVD:
3129 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3130
3131 case SVM_EXIT_INVD:
3132 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3133
3134 case SVM_EXIT_RDPMC:
3135 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3136
3137 default:
3138 {
3139 switch (pSvmTransient->u64ExitCode)
3140 {
3141 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3142 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3143 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3144 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3145 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3146
3147 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3148 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3149 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3150 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3151 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3152
3153 case SVM_EXIT_TASK_SWITCH:
3154 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3155
3156 case SVM_EXIT_VMMCALL:
3157 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3158
3159 case SVM_EXIT_SHUTDOWN:
3160 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3161
3162 case SVM_EXIT_SMI:
3163 case SVM_EXIT_INIT:
3164 {
3165 /*
3166 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3167 * we want to know about it so log the exit code and bail.
3168 */
3169 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3170 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3171 return VERR_SVM_UNEXPECTED_EXIT;
3172 }
3173
3174 case SVM_EXIT_INVLPGA:
3175 case SVM_EXIT_RSM:
3176 case SVM_EXIT_VMRUN:
3177 case SVM_EXIT_VMLOAD:
3178 case SVM_EXIT_VMSAVE:
3179 case SVM_EXIT_STGI:
3180 case SVM_EXIT_CLGI:
3181 case SVM_EXIT_SKINIT:
3182 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3183
3184#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3185 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3186 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3187 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3188 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3189 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3190 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3191 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3192 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3193 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3194 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3195 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3196 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3197 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3198 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3199 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3200 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3201 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3202 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3203 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3204
3205 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3206 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3207 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3208 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3209 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3210 {
3211 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3212 SVMEVENT Event;
3213 Event.u = 0;
3214 Event.n.u1Valid = 1;
3215 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3216 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3217
3218 switch (Event.n.u8Vector)
3219 {
3220 case X86_XCPT_DE:
3221 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3222 break;
3223
3224 case X86_XCPT_BP:
3225 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3226 * next instruction. */
3227 /** @todo Investigate this later. */
3228 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3229 break;
3230
3231 case X86_XCPT_UD:
3232 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
3233 break;
3234
3235 case X86_XCPT_NP:
3236 Event.n.u1ErrorCodeValid = 1;
3237 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3238 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3239 break;
3240
3241 case X86_XCPT_SS:
3242 Event.n.u1ErrorCodeValid = 1;
3243 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3244 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3245 break;
3246
3247 case X86_XCPT_GP:
3248 Event.n.u1ErrorCodeValid = 1;
3249 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3250 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3251 break;
3252
3253 default:
3254 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3255 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3256 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3257 }
3258
3259 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3260 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3261 return VINF_SUCCESS;
3262 }
3263#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3264
3265 default:
3266 {
3267 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3268 pVCpu->hm.s.u32HMError = u32ExitCode;
3269 return VERR_SVM_UNKNOWN_EXIT;
3270 }
3271 }
3272 }
3273 }
3274 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3275}
3276
3277
3278#ifdef DEBUG
3279/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3280# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3281 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3282
3283# define HMSVM_ASSERT_PREEMPT_CPUID() \
3284 do \
3285 { \
3286 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3287 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3288 } while (0)
3289
3290# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3291 do { \
3292 AssertPtr(pVCpu); \
3293 AssertPtr(pCtx); \
3294 AssertPtr(pSvmTransient); \
3295 Assert(ASMIntAreEnabled()); \
3296 HMSVM_ASSERT_PREEMPT_SAFE(); \
3297 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3298 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3299 HMSVM_ASSERT_PREEMPT_SAFE(); \
3300 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3301 HMSVM_ASSERT_PREEMPT_CPUID(); \
3302 } while (0)
3303#else /* Release builds */
3304# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3305#endif
3306
3307
3308/**
3309 * Worker for hmR0SvmInterpretInvlpg().
3310 *
3311 * @return VBox status code.
3312 * @param pVCpu Pointer to the VMCPU.
3313 * @param pCpu Pointer to the disassembler state.
3314 * @param pRegFrame Pointer to the register frame.
3315 */
3316static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3317{
3318 DISQPVPARAMVAL Param1;
3319 RTGCPTR GCPtrPage;
3320
3321 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3322 if (RT_FAILURE(rc))
3323 return VERR_EM_INTERPRETER;
3324
3325 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3326 || Param1.type == DISQPV_TYPE_ADDRESS)
3327 {
3328 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3329 return VERR_EM_INTERPRETER;
3330
3331 GCPtrPage = Param1.val.val64;
3332 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3333 rc = VBOXSTRICTRC_VAL(rc2);
3334 }
3335 else
3336 {
3337 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3338 rc = VERR_EM_INTERPRETER;
3339 }
3340
3341 return rc;
3342}
3343
3344
3345/**
3346 * Interprets INVLPG.
3347 *
3348 * @returns VBox status code.
3349 * @retval VINF_* Scheduling instructions.
3350 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3351 * @retval VERR_* Fatal errors.
3352 *
3353 * @param pVM Pointer to the VM.
3354 * @param pRegFrame Pointer to the register frame.
3355 *
3356 * @remarks Updates the RIP if the instruction was executed successfully.
3357 */
3358static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3359{
3360 /* Only allow 32 & 64 bit code. */
3361 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3362 {
3363 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3364 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3365 if ( RT_SUCCESS(rc)
3366 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3367 {
3368 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3369 if (RT_SUCCESS(rc))
3370 pRegFrame->rip += pDis->cbInstr;
3371 return rc;
3372 }
3373 else
3374 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3375 }
3376 return VERR_EM_INTERPRETER;
3377}
3378
3379
3380/**
3381 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3382 *
3383 * @param pVCpu Pointer to the VMCPU.
3384 */
3385DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3386{
3387 SVMEVENT Event;
3388 Event.u = 0;
3389 Event.n.u1Valid = 1;
3390 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3391 Event.n.u8Vector = X86_XCPT_UD;
3392 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3393}
3394
3395
3396/**
3397 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3398 *
3399 * @param pVCpu Pointer to the VMCPU.
3400 */
3401DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3402{
3403 SVMEVENT Event;
3404 Event.u = 0;
3405 Event.n.u1Valid = 1;
3406 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3407 Event.n.u8Vector = X86_XCPT_DB;
3408 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3409}
3410
3411
3412/**
3413 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3414 *
3415 * @param pVCpu Pointer to the VMCPU.
3416 * @param pCtx Pointer to the guest-CPU context.
3417 * @param u32ErrCode The error-code for the page-fault.
3418 * @param uFaultAddress The page fault address (CR2).
3419 *
3420 * @remarks This updates the guest CR2 with @a uFaultAddress!
3421 */
3422DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3423{
3424 SVMEVENT Event;
3425 Event.u = 0;
3426 Event.n.u1Valid = 1;
3427 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3428 Event.n.u8Vector = X86_XCPT_PF;
3429 Event.n.u1ErrorCodeValid = 1;
3430 Event.n.u32ErrorCode = u32ErrCode;
3431
3432 /* Update CR2 of the guest. */
3433 if (pCtx->cr2 != uFaultAddress)
3434 {
3435 pCtx->cr2 = uFaultAddress;
3436 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
3437 }
3438
3439 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3440}
3441
3442
3443/**
3444 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3445 * VM.
3446 *
3447 * @param pVCpu Pointer to the VMCPU.
3448 */
3449DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3450{
3451 SVMEVENT Event;
3452 Event.u = 0;
3453 Event.n.u1Valid = 1;
3454 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3455 Event.n.u8Vector = X86_XCPT_NM;
3456 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3457}
3458
3459
3460/**
3461 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3462 *
3463 * @param pVCpu Pointer to the VMCPU.
3464 */
3465DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3466{
3467 SVMEVENT Event;
3468 Event.u = 0;
3469 Event.n.u1Valid = 1;
3470 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3471 Event.n.u8Vector = X86_XCPT_MF;
3472 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3473}
3474
3475
3476/**
3477 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3478 *
3479 * @param pVCpu Pointer to the VMCPU.
3480 */
3481DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3482{
3483 SVMEVENT Event;
3484 Event.u = 0;
3485 Event.n.u1Valid = 1;
3486 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3487 Event.n.u8Vector = X86_XCPT_DF;
3488 Event.n.u1ErrorCodeValid = 1;
3489 Event.n.u32ErrorCode = 0;
3490 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3491}
3492
3493
3494/**
3495 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3496 * guests. This simply looks up the patch record at EIP and does the required.
3497 *
3498 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3499 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3500 * TPR). See hmR3ReplaceTprInstr() for the details.
3501 *
3502 * @returns VBox status code.
3503 * @param pVM Pointer to the VM.
3504 * @param pVCpu Pointer to the VMCPU.
3505 * @param pCtx Pointer to the guest-CPU context.
3506 */
3507static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3508{
3509 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3510 for (;;)
3511 {
3512 bool fPending;
3513 uint8_t u8Tpr;
3514
3515 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3516 if (!pPatch)
3517 break;
3518
3519 switch (pPatch->enmType)
3520 {
3521 case HMTPRINSTR_READ:
3522 {
3523 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3524 AssertRC(rc);
3525
3526 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3527 AssertRC(rc);
3528 pCtx->rip += pPatch->cbOp;
3529 break;
3530 }
3531
3532 case HMTPRINSTR_WRITE_REG:
3533 case HMTPRINSTR_WRITE_IMM:
3534 {
3535 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3536 {
3537 uint32_t u32Val;
3538 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3539 AssertRC(rc);
3540 u8Tpr = u32Val;
3541 }
3542 else
3543 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3544
3545 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3546 AssertRC(rc2);
3547 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3548
3549 pCtx->rip += pPatch->cbOp;
3550 break;
3551 }
3552
3553 default:
3554 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
3555 pVCpu->hm.s.u32HMError = pPatch->enmType;
3556 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
3557 }
3558 }
3559
3560 return VINF_SUCCESS;
3561}
3562
3563/**
3564 * Determines if an exception is a contributory exception. Contributory
3565 * exceptions are ones which can cause double-faults. Page-fault is
3566 * intentionally not included here as it's a conditional contributory exception.
3567 *
3568 * @returns true if the exception is contributory, false otherwise.
3569 * @param uVector The exception vector.
3570 */
3571DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3572{
3573 switch (uVector)
3574 {
3575 case X86_XCPT_GP:
3576 case X86_XCPT_SS:
3577 case X86_XCPT_NP:
3578 case X86_XCPT_TS:
3579 case X86_XCPT_DE:
3580 return true;
3581 default:
3582 break;
3583 }
3584 return false;
3585}
3586
3587
3588/**
3589 * Handle a condition that occurred while delivering an event through the guest
3590 * IDT.
3591 *
3592 * @returns VBox status code (informational error codes included).
3593 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3594 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3595 * continue execution of the guest which will delivery the #DF.
3596 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3597 *
3598 * @param pVCpu Pointer to the VMCPU.
3599 * @param pCtx Pointer to the guest-CPU context.
3600 * @param pSvmTransient Pointer to the SVM transient structure.
3601 *
3602 * @remarks No-long-jump zone!!!
3603 */
3604static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3605{
3606 int rc = VINF_SUCCESS;
3607 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3608
3609 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3610 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3611 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3612 {
3613 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3614
3615 typedef enum
3616 {
3617 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3618 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3619 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3620 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3621 } SVMREFLECTXCPT;
3622
3623 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3624 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3625 {
3626 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3627 {
3628 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3629
3630#ifdef VBOX_STRICT
3631 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
3632 && uExitVector == X86_XCPT_PF)
3633 {
3634 Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
3635 }
3636#endif
3637 if ( uExitVector == X86_XCPT_PF
3638 && uIdtVector == X86_XCPT_PF)
3639 {
3640 pSvmTransient->fVectoringPF = true;
3641 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3642 }
3643 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3644 && hmR0SvmIsContributoryXcpt(uExitVector)
3645 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3646 || uIdtVector == X86_XCPT_PF))
3647 {
3648 enmReflect = SVMREFLECTXCPT_DF;
3649 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3650 uIdtVector, uExitVector));
3651 }
3652 else if (uIdtVector == X86_XCPT_DF)
3653 {
3654 enmReflect = SVMREFLECTXCPT_TF;
3655 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3656 uIdtVector, uExitVector));
3657 }
3658 else
3659 enmReflect = SVMREFLECTXCPT_XCPT;
3660 }
3661 else
3662 {
3663 /*
3664 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3665 * exception to the guest after handling the VM-exit.
3666 */
3667 enmReflect = SVMREFLECTXCPT_XCPT;
3668 }
3669 }
3670 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3671 {
3672 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3673 enmReflect = SVMREFLECTXCPT_XCPT;
3674 }
3675
3676 switch (enmReflect)
3677 {
3678 case SVMREFLECTXCPT_XCPT:
3679 {
3680 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3681 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
3682
3683 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3684 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3685 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3686 break;
3687 }
3688
3689 case SVMREFLECTXCPT_DF:
3690 {
3691 hmR0SvmSetPendingXcptDF(pVCpu);
3692 rc = VINF_HM_DOUBLE_FAULT;
3693 break;
3694 }
3695
3696 case SVMREFLECTXCPT_TF:
3697 {
3698 rc = VINF_EM_RESET;
3699 break;
3700 }
3701
3702 default:
3703 Assert(rc == VINF_SUCCESS);
3704 break;
3705 }
3706 }
3707 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3708 return rc;
3709}
3710
3711
3712/**
3713 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
3714 * CPU, otherwise advances the RIP by @a cb bytes.
3715 *
3716 * @param pVCpu Pointer to the VMCPU.
3717 * @param pCtx Pointer to the guest-CPU context.
3718 * @param cb RIP increment value in bytes.
3719 *
3720 * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
3721 * when NRIP_SAVE is supported by the CPU!
3722 */
3723DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
3724{
3725 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3726 {
3727 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3728 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3729 }
3730 else
3731 pCtx->rip += cb;
3732}
3733
3734
3735/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3736/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3737/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3738
3739/** @name VM-exit handlers.
3740 * @{
3741 */
3742
3743/**
3744 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3745 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3746 */
3747HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3748{
3749 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3750
3751 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
3752 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
3753 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
3754 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3755
3756 /*
3757 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
3758 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
3759 * interrupt it is until the host actually take the interrupt.
3760 *
3761 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
3762 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
3763 */
3764 return VINF_EM_RAW_INTERRUPT;
3765}
3766
3767
3768/**
3769 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3770 */
3771HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3772{
3773 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3774
3775 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3776 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3777 int rc = VINF_SUCCESS;
3778 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3779 return rc;
3780}
3781
3782
3783/**
3784 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3785 */
3786HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3787{
3788 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3789
3790 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3791 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3792 int rc = VINF_SUCCESS;
3793 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3794 return rc;
3795}
3796
3797
3798/**
3799 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3800 */
3801HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3802{
3803 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3804 PVM pVM = pVCpu->CTX_SUFF(pVM);
3805 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3806 if (RT_LIKELY(rc == VINF_SUCCESS))
3807 {
3808 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3809 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3810 }
3811 else
3812 {
3813 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3814 rc = VERR_EM_INTERPRETER;
3815 }
3816 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3817 return rc;
3818}
3819
3820
3821/**
3822 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3823 */
3824HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3825{
3826 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3827 PVM pVM = pVCpu->CTX_SUFF(pVM);
3828 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3829 if (RT_LIKELY(rc == VINF_SUCCESS))
3830 {
3831 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3832 pSvmTransient->fUpdateTscOffsetting = true;
3833
3834 /* Single step check. */
3835 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3836 }
3837 else
3838 {
3839 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3840 rc = VERR_EM_INTERPRETER;
3841 }
3842 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3843 return rc;
3844}
3845
3846
3847/**
3848 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3849 */
3850HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3851{
3852 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3853 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3854 if (RT_LIKELY(rc == VINF_SUCCESS))
3855 {
3856 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3857 pSvmTransient->fUpdateTscOffsetting = true;
3858 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3859 }
3860 else
3861 {
3862 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3863 rc = VERR_EM_INTERPRETER;
3864 }
3865 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3866 return rc;
3867}
3868
3869
3870/**
3871 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3872 */
3873HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3874{
3875 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3876 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3877 if (RT_LIKELY(rc == VINF_SUCCESS))
3878 {
3879 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3880 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3881 }
3882 else
3883 {
3884 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3885 rc = VERR_EM_INTERPRETER;
3886 }
3887 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3888 return rc;
3889}
3890
3891
3892/**
3893 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3894 */
3895HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3896{
3897 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3898 PVM pVM = pVCpu->CTX_SUFF(pVM);
3899 Assert(!pVM->hm.s.fNestedPaging);
3900
3901 /** @todo Decode Assist. */
3902 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3903 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3904 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3905 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3906 return rc;
3907}
3908
3909
3910/**
3911 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3912 */
3913HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3914{
3915 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3916 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
3917 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3918 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3919 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3920 return rc;
3921}
3922
3923
3924/**
3925 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3926 */
3927HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3928{
3929 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3930 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3931 if (RT_LIKELY(rc == VINF_SUCCESS))
3932 {
3933 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3934 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3935 }
3936 else
3937 {
3938 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3939 rc = VERR_EM_INTERPRETER;
3940 }
3941 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3942 return rc;
3943}
3944
3945
3946/**
3947 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3948 */
3949HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3950{
3951 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3952 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3953 int rc = VBOXSTRICTRC_VAL(rc2);
3954 if ( rc == VINF_EM_HALT
3955 || rc == VINF_SUCCESS)
3956 {
3957 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3958
3959 if ( rc == VINF_EM_HALT
3960 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3961 {
3962 rc = VINF_SUCCESS;
3963 }
3964 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3965 }
3966 else
3967 {
3968 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3969 rc = VERR_EM_INTERPRETER;
3970 }
3971 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3972 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3973 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3974 return rc;
3975}
3976
3977
3978/**
3979 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
3980 * Conditional #VMEXIT.
3981 */
3982HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3983{
3984 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3985 return VINF_EM_RESET;
3986}
3987
3988
3989/**
3990 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
3991 */
3992HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3993{
3994 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3995
3996 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
3997
3998 /** @todo Decode Assist. */
3999 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4000 int rc = VBOXSTRICTRC_VAL(rc2);
4001 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
4002 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
4003 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
4004 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
4005 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4006 return rc;
4007}
4008
4009
4010/**
4011 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
4012 */
4013HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4014{
4015 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4016 /** @todo Decode Assist. */
4017 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4018 int rc = VBOXSTRICTRC_VAL(rc2);
4019 if (rc == VINF_SUCCESS)
4020 {
4021 /* RIP has been updated by EMInterpretInstruction(). */
4022 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
4023 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
4024 {
4025 case 0: /* CR0. */
4026 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4027 break;
4028
4029 case 3: /* CR3. */
4030 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4031 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
4032 break;
4033
4034 case 4: /* CR4. */
4035 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
4036 break;
4037
4038 case 8: /* CR8 (TPR). */
4039 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4040 break;
4041
4042 default:
4043 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
4044 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
4045 break;
4046 }
4047 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4048 }
4049 else
4050 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
4051 return rc;
4052}
4053
4054
4055/**
4056 * #VMEXIT handler for instructions that result in a #UD exception delivered to
4057 * the guest.
4058 */
4059HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4060{
4061 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4062 hmR0SvmSetPendingXcptUD(pVCpu);
4063 return VINF_SUCCESS;
4064}
4065
4066
4067/**
4068 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
4069 */
4070HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4071{
4072 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4073 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4074 PVM pVM = pVCpu->CTX_SUFF(pVM);
4075
4076 int rc;
4077 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4078 {
4079 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4080
4081 /* Handle TPR patching; intercepted LSTAR write. */
4082 if ( pVM->hm.s.fTPRPatchingActive
4083 && pCtx->ecx == MSR_K8_LSTAR)
4084 {
4085 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4086 {
4087 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4088 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4089 AssertRC(rc2);
4090 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4091 }
4092 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4093 rc = VINF_SUCCESS;
4094 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4095 return rc;
4096 }
4097
4098 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4099 {
4100 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4101 if (RT_LIKELY(rc == VINF_SUCCESS))
4102 {
4103 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4104 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4105 }
4106 else
4107 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4108 }
4109 else
4110 {
4111 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4112 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4113 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4114 /* RIP updated by EMInterpretInstruction(). */
4115 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4116 }
4117
4118 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4119 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4120 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4121 {
4122 /* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4123 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4124 EMInterpretWrmsr() changes it. */
4125 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4126 }
4127 else if (pCtx->ecx == MSR_K6_EFER)
4128 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
4129 else if (pCtx->ecx == MSR_IA32_TSC)
4130 pSvmTransient->fUpdateTscOffsetting = true;
4131 }
4132 else
4133 {
4134 /* MSR Read access. */
4135 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4136 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4137
4138 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4139 {
4140 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4141 if (RT_LIKELY(rc == VINF_SUCCESS))
4142 {
4143 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4144 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4145 }
4146 else
4147 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4148 }
4149 else
4150 {
4151 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4152 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4153 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4154 /* RIP updated by EMInterpretInstruction(). */
4155 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4156 }
4157 }
4158
4159 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4160 return rc;
4161}
4162
4163
4164/**
4165 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
4166 */
4167HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4168{
4169 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4170 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4171
4172 /* We should -not- get this VM-exit if the guest is debugging. */
4173 AssertMsgReturn(!CPUMIsGuestDebugStateActive(pVCpu),
4174 ("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx),
4175 VERR_SVM_UNEXPECTED_EXIT);
4176
4177 /*
4178 * Lazy DR0-3 loading?
4179 */
4180 if (!CPUMIsHyperDebugStateActive(pVCpu))
4181 {
4182 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4183 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4184
4185 /* Don't intercept DRx read and writes. */
4186 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4187 pVmcb->ctrl.u16InterceptRdDRx = 0;
4188 pVmcb->ctrl.u16InterceptWrDRx = 0;
4189 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4190
4191 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4192 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4193 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4194
4195 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4196 return VINF_SUCCESS;
4197 }
4198
4199 /*
4200 * Interpret the read/writing of DRx.
4201 */
4202 /** @todo Decode assist. */
4203 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4204 Log5(("hmR0SvmExitReadDRx: Emulatined DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4205 if (RT_LIKELY(rc == VINF_SUCCESS))
4206 {
4207 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4208 /** @todo CPUM should set this flag! */
4209 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4210 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4211 }
4212 else
4213 Assert(rc == VERR_EM_INTERPRETER);
4214 return VBOXSTRICTRC_TODO(rc);
4215}
4216
4217
4218/**
4219 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
4220 */
4221HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4222{
4223 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4224 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4225 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4226 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4227 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4228 return rc;
4229}
4230
4231
4232/**
4233 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
4234 */
4235HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4236{
4237 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4238
4239 /* I/O operation lookup arrays. */
4240 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4241 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4242 the result (in AL/AX/EAX). */
4243 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4244
4245 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4246 PVM pVM = pVCpu->CTX_SUFF(pVM);
4247
4248 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4249 SVMIOIOEXIT IoExitInfo;
4250 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4251 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4252 uint32_t cbValue = s_aIOSize[uIOWidth];
4253 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4254
4255 if (RT_UNLIKELY(!cbValue))
4256 {
4257 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4258 return VERR_EM_INTERPRETER;
4259 }
4260
4261 VBOXSTRICTRC rcStrict;
4262 if (IoExitInfo.n.u1STR)
4263 {
4264 /* INS/OUTS - I/O String instruction. */
4265 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4266
4267 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4268 * in EXITINFO1? Investigate once this thing is up and running. */
4269
4270 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4271 if (rcStrict == VINF_SUCCESS)
4272 {
4273 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4274 {
4275 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4276 (DISCPUMODE)pDis->uAddrMode, cbValue);
4277 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4278 }
4279 else
4280 {
4281 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4282 (DISCPUMODE)pDis->uAddrMode, cbValue);
4283 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4284 }
4285 }
4286 else
4287 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
4288 }
4289 else
4290 {
4291 /* IN/OUT - I/O instruction. */
4292 Assert(!IoExitInfo.n.u1REP);
4293
4294 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4295 {
4296 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
4297 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4298 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4299
4300 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4301 }
4302 else
4303 {
4304 uint32_t u32Val = 0;
4305
4306 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
4307 if (IOM_SUCCESS(rcStrict))
4308 {
4309 /* Save result of I/O IN instr. in AL/AX/EAX. */
4310 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4311 }
4312 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4313 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4314
4315 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4316 }
4317 }
4318
4319 if (IOM_SUCCESS(rcStrict))
4320 {
4321 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4322 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4323
4324 /*
4325 * If any I/O breakpoints are armed, we need to check if one triggered
4326 * and take appropriate action.
4327 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
4328 */
4329 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
4330 * execution engines about whether hyper BPs and such are pending. */
4331 uint32_t const uDr7 = pCtx->dr[7];
4332 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
4333 && X86_DR7_ANY_RW_IO(uDr7)
4334 && (pCtx->cr4 & X86_CR4_DE))
4335 || DBGFBpIsHwIoArmed(pVM)))
4336 {
4337 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4338 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
4339
4340 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
4341 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
4342 {
4343 /* Raise #DB. */
4344 pVmcb->guest.u64DR6 = pCtx->dr[6];
4345 pVmcb->guest.u64DR7 = pCtx->dr[7];
4346 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4347 hmR0SvmSetPendingXcptDB(pVCpu);
4348 }
4349 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
4350 else if ( rcStrict2 != VINF_SUCCESS
4351 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
4352 rcStrict = rcStrict2;
4353 }
4354
4355 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4356 }
4357
4358#ifdef VBOX_STRICT
4359 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4360 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4361 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4362 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4363 else
4364 {
4365 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
4366 * statuses, that the VMM device and some others may return. See
4367 * IOM_SUCCESS() for guidance. */
4368 AssertMsg( RT_FAILURE(rcStrict)
4369 || rcStrict == VINF_SUCCESS
4370 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
4371 || rcStrict == VINF_EM_DBG_BREAKPOINT
4372 || rcStrict == VINF_EM_RAW_GUEST_TRAP
4373 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
4374 }
4375#endif
4376 return VBOXSTRICTRC_TODO(rcStrict);
4377}
4378
4379
4380/**
4381 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4382 * #VMEXIT.
4383 */
4384HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4385{
4386 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4387 PVM pVM = pVCpu->CTX_SUFF(pVM);
4388 Assert(pVM->hm.s.fNestedPaging);
4389
4390 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4391
4392 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4393 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4394 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4395 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4396
4397 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4398
4399#ifdef VBOX_HM_WITH_GUEST_PATCHING
4400 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4401 if ( pVM->hm.s.fTRPPatchingAllowed
4402 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
4403 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4404 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
4405 && !CPUMGetGuestCPL(pVCpu)
4406 && !CPUMIsGuestInLongModeEx(pCtx)
4407 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4408 {
4409 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4410 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4411
4412 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4413 {
4414 /* Only attempt to patch the instruction once. */
4415 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4416 if (!pPatch)
4417 return VINF_EM_HM_PATCH_TPR_INSTR;
4418 }
4419 }
4420#endif
4421
4422 /*
4423 * Determine the nested paging mode.
4424 */
4425 PGMMODE enmNestedPagingMode;
4426#if HC_ARCH_BITS == 32
4427 if (CPUMIsGuestInLongModeEx(pCtx))
4428 enmNestedPagingMode = PGMMODE_AMD64_NX;
4429 else
4430#endif
4431 enmNestedPagingMode = PGMGetHostMode(pVM);
4432
4433 /*
4434 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4435 */
4436 int rc;
4437 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4438 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4439 {
4440 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4441 u32ErrCode);
4442 rc = VBOXSTRICTRC_VAL(rc2);
4443
4444 /*
4445 * If we succeed, resume guest execution.
4446 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4447 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4448 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4449 * weird case. See @bugref{6043}.
4450 */
4451 if ( rc == VINF_SUCCESS
4452 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4453 || rc == VERR_PAGE_NOT_PRESENT)
4454 {
4455 /* Successfully handled MMIO operation. */
4456 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4457 rc = VINF_SUCCESS;
4458 }
4459 return rc;
4460 }
4461
4462 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4463 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4464 TRPMResetTrap(pVCpu);
4465
4466 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4467
4468 /*
4469 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4470 */
4471 if ( rc == VINF_SUCCESS
4472 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4473 || rc == VERR_PAGE_NOT_PRESENT)
4474 {
4475 /* We've successfully synced our shadow page tables. */
4476 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4477 rc = VINF_SUCCESS;
4478 }
4479
4480 return rc;
4481}
4482
4483
4484/**
4485 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4486 */
4487HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4488{
4489 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4490
4491 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4492 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4493 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4494
4495 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4496 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4497 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4498
4499 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4500 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4501 return VINF_SUCCESS;
4502}
4503
4504
4505/**
4506 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4507 */
4508HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4509{
4510 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4511
4512#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
4513 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4514#endif
4515
4516 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4517 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4518 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4519 && pVCpu->hm.s.Event.fPending)
4520 {
4521 /*
4522 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4523 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4524 * when the recompiler restarts the instruction.
4525 */
4526 SVMEVENT Event;
4527 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4528 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4529 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4530 {
4531 pVCpu->hm.s.Event.fPending = false;
4532 }
4533 else
4534 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4535 }
4536
4537 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4538 * emulation. */
4539 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4540 return VERR_EM_INTERPRETER;
4541}
4542
4543
4544/**
4545 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4546 */
4547HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4548{
4549 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4550
4551 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4552 if (RT_LIKELY(rc == VINF_SUCCESS))
4553 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4554 else
4555 hmR0SvmSetPendingXcptUD(pVCpu);
4556 return VINF_SUCCESS;
4557}
4558
4559
4560/**
4561 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
4562 * #VMEXIT.
4563 */
4564HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4565{
4566 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4567
4568 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4569
4570 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4571 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4572 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4573 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4574 PVM pVM = pVCpu->CTX_SUFF(pVM);
4575
4576#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4577 if (pVM->hm.s.fNestedPaging)
4578 {
4579 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4580 if (!pSvmTransient->fVectoringPF)
4581 {
4582 /* A genuine guest #PF, reflect it to the guest. */
4583 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4584 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4585 uFaultAddress, u32ErrCode));
4586 }
4587 else
4588 {
4589 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4590 hmR0SvmSetPendingXcptDF(pVCpu);
4591 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4592 }
4593 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4594 return VINF_SUCCESS;
4595 }
4596#endif
4597
4598 Assert(!pVM->hm.s.fNestedPaging);
4599
4600#ifdef VBOX_HM_WITH_GUEST_PATCHING
4601 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4602 if ( pVM->hm.s.fTRPPatchingAllowed
4603 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4604 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
4605 && !CPUMGetGuestCPL(pVCpu)
4606 && !CPUMIsGuestInLongModeEx(pCtx)
4607 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4608 {
4609 RTGCPHYS GCPhysApicBase;
4610 GCPhysApicBase = pCtx->msrApicBase;
4611 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4612
4613 /* Check if the page at the fault-address is the APIC base. */
4614 RTGCPHYS GCPhysPage;
4615 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4616 if ( rc2 == VINF_SUCCESS
4617 && GCPhysPage == GCPhysApicBase)
4618 {
4619 /* Only attempt to patch the instruction once. */
4620 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4621 if (!pPatch)
4622 return VINF_EM_HM_PATCH_TPR_INSTR;
4623 }
4624 }
4625#endif
4626
4627 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4628 pCtx->rip, u32ErrCode, pCtx->cr3));
4629
4630 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4631 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4632
4633 Log4(("#PF rc=%Rrc\n", rc));
4634
4635 if (rc == VINF_SUCCESS)
4636 {
4637 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4638 TRPMResetTrap(pVCpu);
4639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4640 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4641 return rc;
4642 }
4643 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4644 {
4645 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4646
4647 if (!pSvmTransient->fVectoringPF)
4648 {
4649 /* It's a guest page fault and needs to be reflected to the guest. */
4650 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4651 TRPMResetTrap(pVCpu);
4652 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4653 }
4654 else
4655 {
4656 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4657 TRPMResetTrap(pVCpu);
4658 hmR0SvmSetPendingXcptDF(pVCpu);
4659 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4660 }
4661
4662 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4663 return VINF_SUCCESS;
4664 }
4665
4666 TRPMResetTrap(pVCpu);
4667 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4668 return rc;
4669}
4670
4671
4672/**
4673 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
4674 * Conditional #VMEXIT.
4675 */
4676HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4677{
4678 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4679
4680 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4681
4682#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4683 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4684#endif
4685
4686 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4687 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4688 if (rc == VINF_SUCCESS)
4689 {
4690 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4691 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4692 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4693 return VINF_SUCCESS;
4694 }
4695
4696 /* Forward #NM to the guest. */
4697 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4698 hmR0SvmSetPendingXcptNM(pVCpu);
4699 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4700 return VINF_SUCCESS;
4701}
4702
4703
4704/**
4705 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
4706 * Conditional #VMEXIT.
4707 */
4708HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4709{
4710 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4711
4712 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4713
4714 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4715
4716 if (!(pCtx->cr0 & X86_CR0_NE))
4717 {
4718 /* Old-style FPU error reporting needs some extra work. */
4719 /** @todo don't fall back to the recompiler, but do it manually. */
4720 return VERR_EM_INTERPRETER;
4721 }
4722
4723 hmR0SvmSetPendingXcptMF(pVCpu);
4724 return VINF_SUCCESS;
4725}
4726
4727
4728/**
4729 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
4730 * #VMEXIT.
4731 */
4732HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4733{
4734 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4735
4736 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4737
4738 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4739
4740 /* If we set the trap flag above, we have to clear it. */
4741 if (pVCpu->hm.s.fClearTrapFlag)
4742 {
4743 pVCpu->hm.s.fClearTrapFlag = false;
4744 pCtx->eflags.Bits.u1TF = 0;
4745 }
4746
4747 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4748 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4749 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4750 PVM pVM = pVCpu->CTX_SUFF(pVM);
4751 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
4752 if (rc == VINF_EM_RAW_GUEST_TRAP)
4753 {
4754 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
4755 if (CPUMIsHyperDebugStateActive(pVCpu))
4756 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
4757
4758 /* Reflect the exception back to the guest. */
4759 hmR0SvmSetPendingXcptDB(pVCpu);
4760 rc = VINF_SUCCESS;
4761 }
4762
4763 /*
4764 * Update DR6.
4765 */
4766 if (CPUMIsHyperDebugStateActive(pVCpu))
4767 {
4768 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
4769 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
4770 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4771 }
4772 else
4773 {
4774 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
4775 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
4776 }
4777
4778 return rc;
4779}
4780
4781/** @} */
4782
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette