VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 48201

Last change on this file since 48201 was 48200, checked in by vboxsync, 11 years ago

VMM/HMSVMR0: Fewer inline hints.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 183.6 KB
Line 
1/* $Id: HMSVMR0.cpp 48200 2013-08-30 15:13:58Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include "HMSVMR0.h"
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32
33#ifdef DEBUG_ramshankar
34# define HMSVM_SYNC_FULL_GUEST_STATE
35# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
36# define HMSVM_ALWAYS_TRAP_PF
37# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
38#endif
39
40
41/*******************************************************************************
42* Defined Constants And Macros *
43*******************************************************************************/
44#ifdef VBOX_WITH_STATISTICS
45# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
46 if ((u64ExitCode) == SVM_EXIT_NPF) \
47 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
48 else \
49 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
50 } while (0)
51#else
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
53#endif
54
55/** If we decide to use a function table approach this can be useful to
56 * switch to a "static DECLCALLBACK(int)". */
57#define HMSVM_EXIT_DECL static int
58
59
60/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
61 *
62 * The CPU format of the segment attribute is described in X86DESCATTRBITS
63 * which is 16-bits (i.e. includes 4 bits of the segment limit).
64 *
65 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
66 * only the attribute bits and nothing else). Upper 4-bits are unused.
67 *
68 * @{ */
69#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
70#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
71/** @} */
72
73
74/** @name Macros for loading, storing segment registers to/from the VMCB.
75 * @{ */
76#define HMSVM_LOAD_SEG_REG(REG, reg) \
77 do \
78 { \
79 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
80 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
81 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
82 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
83 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
84 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
85 } while (0)
86
87#define HMSVM_SAVE_SEG_REG(REG, reg) \
88 do \
89 { \
90 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
91 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
92 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
93 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
94 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
95 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
96 } while (0)
97/** @} */
98
99
100/** Macro for checking and returning from the using function for
101 * \#VMEXIT intercepts that maybe caused during delivering of another
102 * event in the guest. */
103#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
104 do \
105 { \
106 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
107 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
108 return VINF_SUCCESS; \
109 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
110 return rc; \
111 } while (0)
112
113/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
114 * instruction that exited. */
115#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
116 do { \
117 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
118 (a_rc) = VINF_EM_DBG_STEPPED; \
119 } while (0)
120
121/** Assert that preemption is disabled or covered by thread-context hooks. */
122#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
123 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
124
125/** Assert that we haven't migrated CPUs when thread-context hooks are not
126 * used. */
127#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
128 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
129 ("Illegal migration! Entered on CPU %u Current %u\n", \
130 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
131
132/** Exception bitmap mask for all contributory exceptions.
133 *
134 * Page fault is deliberately excluded here as it's conditional as to whether
135 * it's contributory or benign. Page faults are handled separately.
136 */
137#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
138 | RT_BIT(X86_XCPT_DE))
139
140
141/** @name VMCB Clean Bits.
142 *
143 * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
144 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
145 * memory.
146 *
147 * @{ */
148/** All intercepts vectors, TSC offset, PAUSE filter counter. */
149#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
150/** I/O permission bitmap, MSR permission bitmap. */
151#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
152/** ASID. */
153#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
154/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
155V_INTR_VECTOR. */
156#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
157/** Nested Paging: Nested CR3 (nCR3), PAT. */
158#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
159/** Control registers (CR0, CR3, CR4, EFER). */
160#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
161/** Debug registers (DR6, DR7). */
162#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
163/** GDT, IDT limit and base. */
164#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
165/** Segment register: CS, SS, DS, ES limit and base. */
166#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
167/** CR2.*/
168#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
169/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
170#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
171/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
172PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
173#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
174/** Mask of all valid VMCB Clean bits. */
175#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
176 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
177 | HMSVM_VMCB_CLEAN_ASID \
178 | HMSVM_VMCB_CLEAN_TPR \
179 | HMSVM_VMCB_CLEAN_NP \
180 | HMSVM_VMCB_CLEAN_CRX_EFER \
181 | HMSVM_VMCB_CLEAN_DRX \
182 | HMSVM_VMCB_CLEAN_DT \
183 | HMSVM_VMCB_CLEAN_SEG \
184 | HMSVM_VMCB_CLEAN_CR2 \
185 | HMSVM_VMCB_CLEAN_LBR \
186 | HMSVM_VMCB_CLEAN_AVIC)
187/** @} */
188
189/** @name SVM transient.
190 *
191 * A state structure for holding miscellaneous information across AMD-V
192 * VMRUN/#VMEXIT operation, restored after the transition.
193 *
194 * @{ */
195typedef struct SVMTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG uEflags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202
203 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
204 uint64_t u64ExitCode;
205 /** The guest's TPR value used for TPR shadowing. */
206 uint8_t u8GuestTpr;
207 /** Alignment. */
208 uint8_t abAlignment0[7];
209
210 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
211 bool fRestoreTscAuxMsr;
212 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
213 * contributary exception or a page-fault. */
214 bool fVectoringPF;
215 /** Whether the TSC offset mode needs to be updated. */
216 bool fUpdateTscOffsetting;
217} SVMTRANSIENT, *PSVMTRANSIENT;
218AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
219AssertCompileMemberAlignment(SVMTRANSIENT, fRestoreTscAuxMsr, sizeof(uint64_t));
220/** @} */
221
222
223/**
224 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
225 */
226typedef enum SVMMSREXITREAD
227{
228 /** Reading this MSR causes a VM-exit. */
229 SVMMSREXIT_INTERCEPT_READ = 0xb,
230 /** Reading this MSR does not cause a VM-exit. */
231 SVMMSREXIT_PASSTHRU_READ
232} SVMMSREXITREAD;
233
234/**
235 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
236 */
237typedef enum SVMMSREXITWRITE
238{
239 /** Writing to this MSR causes a VM-exit. */
240 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
241 /** Writing to this MSR does not cause a VM-exit. */
242 SVMMSREXIT_PASSTHRU_WRITE
243} SVMMSREXITWRITE;
244
245
246/*******************************************************************************
247* Internal Functions *
248*******************************************************************************/
249static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
250static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
251static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
252
253HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
254HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
255HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
256HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
257HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
258HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
259HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
260HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
261HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
263HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
264HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
265HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
266HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
267HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
268HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
269HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
270HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
271HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
272HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
273HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
274HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
275HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
276HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
277HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
278HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
279HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
280
281DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
282
283
284/*******************************************************************************
285* Global Variables *
286*******************************************************************************/
287/** Ring-0 memory object for the IO bitmap. */
288RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
289/** Physical address of the IO bitmap. */
290RTHCPHYS g_HCPhysIOBitmap = 0;
291/** Virtual address of the IO bitmap. */
292R0PTRTYPE(void *) g_pvIOBitmap = NULL;
293
294
295/**
296 * Sets up and activates AMD-V on the current CPU.
297 *
298 * @returns VBox status code.
299 * @param pCpu Pointer to the CPU info struct.
300 * @param pVM Pointer to the VM (can be NULL after a resume!).
301 * @param pvCpuPage Pointer to the global CPU page.
302 * @param HCPhysCpuPage Physical address of the global CPU page.
303 */
304VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
305{
306 AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
307 AssertReturn( HCPhysCpuPage
308 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
309 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
310
311 /*
312 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
313 */
314 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
315 if (u64HostEfer & MSR_K6_EFER_SVME)
316 {
317 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
318 if ( pVM
319 && pVM->hm.s.svm.fIgnoreInUseError)
320 {
321 pCpu->fIgnoreAMDVInUseError = true;
322 }
323
324 if (!pCpu->fIgnoreAMDVInUseError)
325 return VERR_SVM_IN_USE;
326 }
327
328 /* Turn on AMD-V in the EFER MSR. */
329 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
330
331 /* Write the physical page address where the CPU will store the host state while executing the VM. */
332 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
333
334 /*
335 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
336 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
337 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
338 * to flush the TLB with before using a new ASID.
339 */
340 pCpu->fFlushAsidBeforeUse = true;
341
342 /*
343 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
344 */
345 ++pCpu->cTlbFlushes;
346
347 return VINF_SUCCESS;
348}
349
350
351/**
352 * Deactivates AMD-V on the current CPU.
353 *
354 * @returns VBox status code.
355 * @param pCpu Pointer to the CPU info struct.
356 * @param pvCpuPage Pointer to the global CPU page.
357 * @param HCPhysCpuPage Physical address of the global CPU page.
358 */
359VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
360{
361 AssertReturn( HCPhysCpuPage
362 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
363 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
364 NOREF(pCpu);
365
366 /* Turn off AMD-V in the EFER MSR. */
367 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
368 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
369
370 /* Invalidate host state physical address. */
371 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Does global AMD-V initialization (called during module initialization).
379 *
380 * @returns VBox status code.
381 */
382VMMR0DECL(int) SVMR0GlobalInit(void)
383{
384 /*
385 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
386 * once globally here instead of per-VM.
387 */
388 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
389 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
390 if (RT_FAILURE(rc))
391 return rc;
392
393 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
394 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
395
396 /* Set all bits to intercept all IO accesses. */
397 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
398 return VINF_SUCCESS;
399}
400
401
402/**
403 * Does global AMD-V termination (called during module termination).
404 */
405VMMR0DECL(void) SVMR0GlobalTerm(void)
406{
407 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
408 {
409 RTR0MemObjFree(g_hMemObjIOBitmap, false /* fFreeMappings */);
410 g_pvIOBitmap = NULL;
411 g_HCPhysIOBitmap = 0;
412 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
413 }
414}
415
416
417/**
418 * Frees any allocated per-VCPU structures for a VM.
419 *
420 * @param pVM Pointer to the VM.
421 */
422DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
423{
424 for (uint32_t i = 0; i < pVM->cCpus; i++)
425 {
426 PVMCPU pVCpu = &pVM->aCpus[i];
427 AssertPtr(pVCpu);
428
429 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
430 {
431 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
432 pVCpu->hm.s.svm.pvVmcbHost = 0;
433 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
434 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
435 }
436
437 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
438 {
439 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
440 pVCpu->hm.s.svm.pvVmcb = 0;
441 pVCpu->hm.s.svm.HCPhysVmcb = 0;
442 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
443 }
444
445 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
446 {
447 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
448 pVCpu->hm.s.svm.pvMsrBitmap = 0;
449 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
450 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
451 }
452 }
453}
454
455
456/**
457 * Does per-VM AMD-V initialization.
458 *
459 * @returns VBox status code.
460 * @param pVM Pointer to the VM.
461 */
462VMMR0DECL(int) SVMR0InitVM(PVM pVM)
463{
464 int rc = VERR_INTERNAL_ERROR_5;
465
466 /*
467 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
468 */
469 uint32_t u32Family;
470 uint32_t u32Model;
471 uint32_t u32Stepping;
472 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
473 {
474 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
475 pVM->hm.s.svm.fAlwaysFlushTLB = true;
476 }
477
478 /*
479 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
480 */
481 for (VMCPUID i = 0; i < pVM->cCpus; i++)
482 {
483 PVMCPU pVCpu = &pVM->aCpus[i];
484 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
485 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
486 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
487 }
488
489 for (VMCPUID i = 0; i < pVM->cCpus; i++)
490 {
491 PVMCPU pVCpu = &pVM->aCpus[i];
492
493 /*
494 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
495 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
496 */
497 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
498 if (RT_FAILURE(rc))
499 goto failure_cleanup;
500
501 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
502 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
503 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
504 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
505
506 /*
507 * Allocate one page for the guest-state VMCB.
508 */
509 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
510 if (RT_FAILURE(rc))
511 goto failure_cleanup;
512
513 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
514 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
515 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
516 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
517
518 /*
519 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
520 * SVM to not require one.
521 */
522 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
523 if (RT_FAILURE(rc))
524 goto failure_cleanup;
525
526 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
527 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
528 /* Set all bits to intercept all MSR accesses (changed later on). */
529 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
530 }
531
532 return VINF_SUCCESS;
533
534failure_cleanup:
535 hmR0SvmFreeStructs(pVM);
536 return rc;
537}
538
539
540/**
541 * Does per-VM AMD-V termination.
542 *
543 * @returns VBox status code.
544 * @param pVM Pointer to the VM.
545 */
546VMMR0DECL(int) SVMR0TermVM(PVM pVM)
547{
548 hmR0SvmFreeStructs(pVM);
549 return VINF_SUCCESS;
550}
551
552
553/**
554 * Sets the permission bits for the specified MSR in the MSRPM.
555 *
556 * @param pVCpu Pointer to the VMCPU.
557 * @param uMsr The MSR for which the access permissions are being set.
558 * @param enmRead MSR read permissions.
559 * @param enmWrite MSR write permissions.
560 */
561static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
562{
563 unsigned ulBit;
564 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
565
566 /*
567 * Layout:
568 * Byte offset MSR range
569 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
570 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
571 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
572 * 0x1800 - 0x1fff Reserved
573 */
574 if (uMsr <= 0x00001FFF)
575 {
576 /* Pentium-compatible MSRs. */
577 ulBit = uMsr * 2;
578 }
579 else if ( uMsr >= 0xC0000000
580 && uMsr <= 0xC0001FFF)
581 {
582 /* AMD Sixth Generation x86 Processor MSRs. */
583 ulBit = (uMsr - 0xC0000000) * 2;
584 pbMsrBitmap += 0x800;
585 }
586 else if ( uMsr >= 0xC0010000
587 && uMsr <= 0xC0011FFF)
588 {
589 /* AMD Seventh and Eighth Generation Processor MSRs. */
590 ulBit = (uMsr - 0xC0001000) * 2;
591 pbMsrBitmap += 0x1000;
592 }
593 else
594 {
595 AssertFailed();
596 return;
597 }
598
599 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
600 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
601 ASMBitSet(pbMsrBitmap, ulBit);
602 else
603 ASMBitClear(pbMsrBitmap, ulBit);
604
605 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
606 ASMBitSet(pbMsrBitmap, ulBit + 1);
607 else
608 ASMBitClear(pbMsrBitmap, ulBit + 1);
609
610 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
611 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
612}
613
614
615/**
616 * Sets up AMD-V for the specified VM.
617 * This function is only called once per-VM during initalization.
618 *
619 * @returns VBox status code.
620 * @param pVM Pointer to the VM.
621 */
622VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
623{
624 int rc = VINF_SUCCESS;
625
626 AssertReturn(pVM, VERR_INVALID_PARAMETER);
627 Assert(pVM->hm.s.svm.fSupported);
628
629 for (VMCPUID i = 0; i < pVM->cCpus; i++)
630 {
631 PVMCPU pVCpu = &pVM->aCpus[i];
632 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
633
634 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
635
636 /* Trap exceptions unconditionally (debug purposes). */
637#ifdef HMSVM_ALWAYS_TRAP_PF
638 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
639#endif
640#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
641 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
642 pVmcb->ctrl.u32InterceptException |= 0
643 | RT_BIT(X86_XCPT_BP)
644 | RT_BIT(X86_XCPT_DB)
645 | RT_BIT(X86_XCPT_DE)
646 | RT_BIT(X86_XCPT_NM)
647 | RT_BIT(X86_XCPT_UD)
648 | RT_BIT(X86_XCPT_NP)
649 | RT_BIT(X86_XCPT_SS)
650 | RT_BIT(X86_XCPT_GP)
651 | RT_BIT(X86_XCPT_PF)
652 | RT_BIT(X86_XCPT_MF)
653 ;
654#endif
655
656 /* Set up unconditional intercepts and conditions. */
657 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
658 | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
659 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
660 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
661 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
662 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
663 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
664 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
665 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
666 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
667 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
668 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
669
670 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
671 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
672 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
673 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
674 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
675 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
676 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
677 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
678 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
679 | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
680
681 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
682 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
683
684 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
685 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
686
687 /* Intercept all DRx reads and writes by default. Changed later on. */
688 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
689 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
690
691 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
692 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
693
694 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
695 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
696 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
697
698 /* Set IO and MSR bitmap permission bitmap physical addresses. */
699 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
700 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
701
702 /* No LBR virtualization. */
703 pVmcb->ctrl.u64LBRVirt = 0;
704
705 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
706 pVmcb->ctrl.u64VmcbCleanBits = 0;
707
708 /* The host ASID MBZ, for the guest start with 1. */
709 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
710
711 /*
712 * Setup the PAT MSR (applicable for Nested Paging only).
713 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
714 * so choose type 6 for all PAT slots.
715 */
716 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
717
718 /* Without Nested Paging, we need additionally intercepts. */
719 if (!pVM->hm.s.fNestedPaging)
720 {
721 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
722 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
723 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
724
725 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
726 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
727 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
728
729 /* Page faults must be intercepted to implement shadow paging. */
730 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
731 }
732
733#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
734 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
735#endif
736
737 /*
738 * The following MSRs are saved/restored automatically during the world-switch.
739 * Don't intercept guest read/write accesses to these MSRs.
740 */
741 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
742 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
743 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
744 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
745 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
746 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
747 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
748 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
749 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
750 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
751 }
752
753 return rc;
754}
755
756
757/**
758 * Invalidates a guest page by guest virtual address.
759 *
760 * @returns VBox status code.
761 * @param pVM Pointer to the VM.
762 * @param pVCpu Pointer to the VMCPU.
763 * @param GCVirt Guest virtual address of the page to invalidate.
764 */
765VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
766{
767 AssertReturn(pVM, VERR_INVALID_PARAMETER);
768 Assert(pVM->hm.s.svm.fSupported);
769
770 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
771
772 /* Skip it if a TLB flush is already pending. */
773 if (!fFlushPending)
774 {
775 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
776
777 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
778 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
779
780#if HC_ARCH_BITS == 32
781 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
782 if (CPUMIsGuestInLongMode(pVCpu))
783 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
784 else
785#endif
786 {
787 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
788 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
789 }
790 }
791 return VINF_SUCCESS;
792}
793
794
795/**
796 * Flushes the appropriate tagged-TLB entries.
797 *
798 * @param pVM Pointer to the VM.
799 * @param pVCpu Pointer to the VMCPU.
800 */
801static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
802{
803 PVM pVM = pVCpu->CTX_SUFF(pVM);
804 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
805 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
806
807 /*
808 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
809 * This can happen both for start & resume due to long jumps back to ring-3.
810 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
811 * so we cannot reuse the ASIDs without flushing.
812 */
813 bool fNewAsid = false;
814 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
815 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
816 {
817 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
818 pVCpu->hm.s.fForceTLBFlush = true;
819 fNewAsid = true;
820 }
821
822 /* Set TLB flush state as checked until we return from the world switch. */
823 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
824
825 /* Check for explicit TLB shootdowns. */
826 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
827 {
828 pVCpu->hm.s.fForceTLBFlush = true;
829 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
830 }
831
832 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
833 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
834
835 if (pVM->hm.s.svm.fAlwaysFlushTLB)
836 {
837 /*
838 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
839 */
840 pCpu->uCurrentAsid = 1;
841 pVCpu->hm.s.uCurrentAsid = 1;
842 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
843 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
844 }
845 else if (pVCpu->hm.s.fForceTLBFlush)
846 {
847 if (fNewAsid)
848 {
849 ++pCpu->uCurrentAsid;
850 bool fHitASIDLimit = false;
851 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
852 {
853 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
854 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
855 fHitASIDLimit = true;
856
857 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
858 {
859 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
860 pCpu->fFlushAsidBeforeUse = true;
861 }
862 else
863 {
864 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
865 pCpu->fFlushAsidBeforeUse = false;
866 }
867 }
868
869 if ( !fHitASIDLimit
870 && pCpu->fFlushAsidBeforeUse)
871 {
872 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
873 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
874 else
875 {
876 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
877 pCpu->fFlushAsidBeforeUse = false;
878 }
879 }
880
881 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
882 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
883 }
884 else
885 {
886 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
887 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
888 else
889 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
890 }
891
892 pVCpu->hm.s.fForceTLBFlush = false;
893 }
894 else
895 {
896 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
897 * not be executed. See hmQueueInvlPage() where it is commented
898 * out. Support individual entry flushing someday. */
899 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
900 {
901 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
902 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
903 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
904 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
905 }
906 }
907
908 pVCpu->hm.s.TlbShootdown.cPages = 0;
909 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
910
911 /* Update VMCB with the ASID. */
912 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
913 {
914 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
915 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
916 }
917
918 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
919 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
920 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
921 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
922 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
923 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
924
925#ifdef VBOX_WITH_STATISTICS
926 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
927 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
928 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
929 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
930 {
931 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
932 }
933 else
934 {
935 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
936 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
937 }
938#endif
939}
940
941
942/** @name 64-bit guest on 32-bit host OS helper functions.
943 *
944 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
945 * mode (code segment, paging). These wrappers/helpers perform the necessary
946 * bits for the 32->64 switcher.
947 *
948 * @{ */
949#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
950/**
951 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
952 *
953 * @returns VBox status code.
954 * @param HCPhysVmcbHost Physical address of host VMCB.
955 * @param HCPhysVmcb Physical address of the VMCB.
956 * @param pCtx Pointer to the guest-CPU context.
957 * @param pVM Pointer to the VM.
958 * @param pVCpu Pointer to the VMCPU.
959 */
960DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
961{
962 uint32_t aParam[4];
963 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
964 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
965 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
966 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
967
968 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
969}
970
971
972/**
973 * Executes the specified VMRUN handler in 64-bit mode.
974 *
975 * @returns VBox status code.
976 * @param pVM Pointer to the VM.
977 * @param pVCpu Pointer to the VMCPU.
978 * @param pCtx Pointer to the guest-CPU context.
979 * @param enmOp The operation to perform.
980 * @param cbParam Number of parameters.
981 * @param paParam Array of 32-bit parameters.
982 */
983VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
984 uint32_t *paParam)
985{
986 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
987 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
988
989 /* Disable interrupts. */
990 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
991
992#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
993 RTCPUID idHostCpu = RTMpCpuId();
994 CPUMR0SetLApic(pVCpu, idHostCpu);
995#endif
996
997 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
998 CPUMSetHyperEIP(pVCpu, enmOp);
999 for (int i = (int)cbParam - 1; i >= 0; i--)
1000 CPUMPushHyper(pVCpu, paParam[i]);
1001
1002 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1003 /* Call the switcher. */
1004 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1005 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1006
1007 /* Restore interrupts. */
1008 ASMSetFlags(uOldEFlags);
1009 return rc;
1010}
1011
1012#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1013/** @} */
1014
1015
1016/**
1017 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1018 * the corresponding VMCB Clean Bit.
1019 *
1020 * @param pVmcb Pointer to the VMCB.
1021 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1022 */
1023DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1024{
1025 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1026 {
1027 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1028 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1029 }
1030}
1031
1032
1033/**
1034 * Removes an exception from the intercept-exception bitmap in the VMCB and
1035 * updates the corresponding VMCB Clean Bit.
1036 *
1037 * @param pVmcb Pointer to the VMCB.
1038 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1039 */
1040DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1041{
1042#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1043 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1044 {
1045 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1046 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1047 }
1048#endif
1049}
1050
1051
1052/**
1053 * Loads the guest CR0 control register into the guest-state area in the VMCB.
1054 * Although the guest CR0 is a separate field in the VMCB we have to consider
1055 * the FPU state itself which is shared between the host and the guest.
1056 *
1057 * @returns VBox status code.
1058 * @param pVM Pointer to the VMCPU.
1059 * @param pVmcb Pointer to the VMCB.
1060 * @param pCtx Pointer to the guest-CPU context.
1061 *
1062 * @remarks No-long-jump zone!!!
1063 */
1064static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1065{
1066 /*
1067 * Guest CR0.
1068 */
1069 PVM pVM = pVCpu->CTX_SUFF(pVM);
1070 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1071 {
1072 uint64_t u64GuestCR0 = pCtx->cr0;
1073
1074 /* Always enable caching. */
1075 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1076
1077 /*
1078 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1079 */
1080 if (!pVM->hm.s.fNestedPaging)
1081 {
1082 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1083 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
1084 }
1085
1086 /*
1087 * Guest FPU bits.
1088 */
1089 bool fInterceptNM = false;
1090 bool fInterceptMF = false;
1091 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1092 if (CPUMIsGuestFPUStateActive(pVCpu))
1093 {
1094 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1095 if (!(u64GuestCR0 & X86_CR0_NE))
1096 {
1097 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1098 fInterceptMF = true;
1099 }
1100 }
1101 else
1102 {
1103 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
1104 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1105 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1106 }
1107
1108 /*
1109 * Update the exception intercept bitmap.
1110 */
1111 if (fInterceptNM)
1112 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1113 else
1114 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1115
1116 if (fInterceptMF)
1117 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1118 else
1119 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1120
1121 pVmcb->guest.u64CR0 = u64GuestCR0;
1122 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1123 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
1124 }
1125}
1126
1127
1128/**
1129 * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
1130 *
1131 * @returns VBox status code.
1132 * @param pVCpu Pointer to the VMCPU.
1133 * @param pVmcb Pointer to the VMCB.
1134 * @param pCtx Pointer to the guest-CPU context.
1135 *
1136 * @remarks No-long-jump zone!!!
1137 */
1138static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1139{
1140 PVM pVM = pVCpu->CTX_SUFF(pVM);
1141
1142 /*
1143 * Guest CR2.
1144 */
1145 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
1146 {
1147 pVmcb->guest.u64CR2 = pCtx->cr2;
1148 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1149 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
1150 }
1151
1152 /*
1153 * Guest CR3.
1154 */
1155 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
1156 {
1157 if (pVM->hm.s.fNestedPaging)
1158 {
1159 PGMMODE enmShwPagingMode;
1160#if HC_ARCH_BITS == 32
1161 if (CPUMIsGuestInLongModeEx(pCtx))
1162 enmShwPagingMode = PGMMODE_AMD64_NX;
1163 else
1164#endif
1165 enmShwPagingMode = PGMGetHostMode(pVM);
1166
1167 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1168 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1169 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1170 pVmcb->guest.u64CR3 = pCtx->cr3;
1171 }
1172 else
1173 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1174
1175 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1176 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
1177 }
1178
1179 /*
1180 * Guest CR4.
1181 */
1182 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1183 {
1184 uint64_t u64GuestCR4 = pCtx->cr4;
1185 if (!pVM->hm.s.fNestedPaging)
1186 {
1187 switch (pVCpu->hm.s.enmShadowMode)
1188 {
1189 case PGMMODE_REAL:
1190 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1191 AssertFailed();
1192 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1193
1194 case PGMMODE_32_BIT: /* 32-bit paging. */
1195 u64GuestCR4 &= ~X86_CR4_PAE;
1196 break;
1197
1198 case PGMMODE_PAE: /* PAE paging. */
1199 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1200 /** Must use PAE paging as we could use physical memory > 4 GB */
1201 u64GuestCR4 |= X86_CR4_PAE;
1202 break;
1203
1204 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1205 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1206#ifdef VBOX_ENABLE_64_BITS_GUESTS
1207 break;
1208#else
1209 AssertFailed();
1210 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1211#endif
1212
1213 default: /* shut up gcc */
1214 AssertFailed();
1215 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1216 }
1217 }
1218
1219 pVmcb->guest.u64CR4 = u64GuestCR4;
1220 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1221 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
1222 }
1223
1224 return VINF_SUCCESS;
1225}
1226
1227
1228/**
1229 * Loads the guest segment registers into the VMCB.
1230 *
1231 * @returns VBox status code.
1232 * @param pVCpu Pointer to the VMCPU.
1233 * @param pVmcb Pointer to the VMCB.
1234 * @param pCtx Pointer to the guest-CPU context.
1235 *
1236 * @remarks No-long-jump zone!!!
1237 */
1238static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1239{
1240 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1241 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1242 {
1243 HMSVM_LOAD_SEG_REG(CS, cs);
1244 HMSVM_LOAD_SEG_REG(SS, ss);
1245 HMSVM_LOAD_SEG_REG(DS, ds);
1246 HMSVM_LOAD_SEG_REG(ES, es);
1247 HMSVM_LOAD_SEG_REG(FS, fs);
1248 HMSVM_LOAD_SEG_REG(GS, gs);
1249
1250 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1251 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
1252 }
1253
1254 /* Guest TR. */
1255 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1256 {
1257 HMSVM_LOAD_SEG_REG(TR, tr);
1258 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
1259 }
1260
1261 /* Guest LDTR. */
1262 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1263 {
1264 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1265 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
1266 }
1267
1268 /* Guest GDTR. */
1269 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1270 {
1271 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1272 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1273 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1274 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
1275 }
1276
1277 /* Guest IDTR. */
1278 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1279 {
1280 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1281 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1282 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1283 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
1284 }
1285}
1286
1287
1288/**
1289 * Loads the guest MSRs into the VMCB.
1290 *
1291 * @param pVCpu Pointer to the VMCPU.
1292 * @param pVmcb Pointer to the VMCB.
1293 * @param pCtx Pointer to the guest-CPU context.
1294 *
1295 * @remarks No-long-jump zone!!!
1296 */
1297static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1298{
1299 /* Guest Sysenter MSRs. */
1300 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1301 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1302 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1303
1304 /*
1305 * Guest EFER MSR.
1306 * AMD-V requires guest EFER.SVME to be set. Weird. .
1307 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1308 */
1309 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_EFER_MSR)
1310 {
1311 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1312 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1313 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_EFER_MSR;
1314 }
1315
1316 /* 64-bit MSRs. */
1317 if (CPUMIsGuestInLongModeEx(pCtx))
1318 {
1319 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1320 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1321 }
1322 else
1323 {
1324 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1325 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1326 {
1327 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1328 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1329 }
1330 }
1331
1332
1333 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1334 * be writable in 32-bit mode. Clarify with AMD spec. */
1335 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1336 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1337 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1338 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1339 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1340}
1341
1342
1343/**
1344 * Loads the guest state into the VMCB and programs the necessary intercepts
1345 * accordingly.
1346 *
1347 * @param pVCpu Pointer to the VMCPU.
1348 * @param pVmcb Pointer to the VMCB.
1349 * @param pCtx Pointer to the guest-CPU context.
1350 *
1351 * @remarks No-long-jump zone!!!
1352 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1353 */
1354static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1355{
1356 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
1357 return;
1358 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1359 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1360
1361 bool fInterceptDB = false;
1362 bool fInterceptMovDRx = false;
1363
1364 /*
1365 * Anyone single stepping on the host side? If so, we'll have to use the
1366 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1367 * the VMM level like VT-x implementations does.
1368 */
1369 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1370 if (fStepping)
1371 {
1372 pVCpu->hm.s.fClearTrapFlag = true;
1373 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1374 fInterceptDB = true;
1375 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1376 }
1377
1378 PVM pVM = pVCpu->CTX_SUFF(pVM);
1379 if (fStepping || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1380 {
1381 /*
1382 * Use the combined guest and host DRx values found in the hypervisor
1383 * register set because the debugger has breakpoints active or someone
1384 * is single stepping on the host side.
1385 *
1386 * Note! DBGF expects a clean DR6 state before executing guest code.
1387 */
1388 if (!CPUMIsHyperDebugStateActive(pVCpu))
1389 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1390 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1391 Assert(CPUMIsHyperDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
1392
1393 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1394 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1395 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu) )
1396 {
1397 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1398 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1399 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1400 }
1401
1402 /** @todo If we cared, we could optimize to allow the guest to read registers
1403 * with the same values. */
1404 fInterceptDB = true;
1405 fInterceptMovDRx = true;
1406 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1407 }
1408 else
1409 {
1410 /*
1411 * Update DR6, DR7 with the guest values if necessary.
1412 */
1413 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1414 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1415 {
1416 pVmcb->guest.u64DR7 = pCtx->dr[7];
1417 pVmcb->guest.u64DR6 = pCtx->dr[6];
1418 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1419 }
1420
1421 /*
1422 * If the guest has enabled debug registers, we need to load them prior to
1423 * executing guest code so they'll trigger at the right time.
1424 */
1425 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1426 {
1427 if (!CPUMIsGuestDebugStateActive(pVCpu))
1428 {
1429 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1430 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1431 }
1432 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1433 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
1434 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1435 }
1436 /*
1437 * If no debugging enabled, we'll lazy load DR0-3.
1438 */
1439 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1440 fInterceptMovDRx = true;
1441 }
1442
1443 /*
1444 * Set up the intercepts.
1445 */
1446 if (fInterceptDB)
1447 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1448 else
1449 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1450
1451 if (fInterceptMovDRx)
1452 {
1453 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1454 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1455 {
1456 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1457 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1458 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1459 }
1460 }
1461 else
1462 {
1463 if ( pVmcb->ctrl.u16InterceptRdDRx
1464 || pVmcb->ctrl.u16InterceptWrDRx)
1465 {
1466 pVmcb->ctrl.u16InterceptRdDRx = 0;
1467 pVmcb->ctrl.u16InterceptWrDRx = 0;
1468 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1469 }
1470 }
1471
1472 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
1473}
1474
1475
1476/**
1477 * Loads the guest APIC state (currently just the TPR).
1478 *
1479 * @returns VBox status code.
1480 * @param pVCpu Pointer to the VMCPU.
1481 * @param pVmcb Pointer to the VMCB.
1482 * @param pCtx Pointer to the guest-CPU context.
1483 */
1484static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1485{
1486 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
1487 return VINF_SUCCESS;
1488
1489 bool fPendingIntr;
1490 uint8_t u8Tpr;
1491 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1492 AssertRCReturn(rc, rc);
1493
1494 /** Assume that we need to trap all TPR accesses and thus need not check on
1495 * every #VMEXIT if we should update the TPR. */
1496 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1497 pVCpu->hm.s.svm.fSyncVTpr = false;
1498
1499 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1500 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1501 {
1502 pCtx->msrLSTAR = u8Tpr;
1503
1504 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1505 if (fPendingIntr)
1506 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1507 else
1508 {
1509 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1510 pVCpu->hm.s.svm.fSyncVTpr = true;
1511 }
1512 }
1513 else
1514 {
1515 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1516 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1517
1518 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1519 if (fPendingIntr)
1520 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1521 else
1522 {
1523 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1524 pVCpu->hm.s.svm.fSyncVTpr = true;
1525 }
1526
1527 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1528 }
1529
1530 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
1531 return rc;
1532}
1533
1534
1535/**
1536 * Sets up the appropriate function to run guest code.
1537 *
1538 * @returns VBox status code.
1539 * @param pVCpu Pointer to the VMCPU.
1540 * @param pCtx Pointer to the guest-CPU context.
1541 *
1542 * @remarks No-long-jump zone!!!
1543 */
1544static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1545{
1546 if (CPUMIsGuestInLongModeEx(pCtx))
1547 {
1548#ifndef VBOX_ENABLE_64_BITS_GUESTS
1549 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1550#endif
1551 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1552#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1553 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1554 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1555#else
1556 /* 64-bit host or hybrid host. */
1557 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1558#endif
1559 }
1560 else
1561 {
1562 /* Guest is not in long mode, use the 32-bit handler. */
1563 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1564 }
1565 return VINF_SUCCESS;
1566}
1567
1568
1569/**
1570 * Enters the AMD-V session.
1571 *
1572 * @returns VBox status code.
1573 * @param pVM Pointer to the VM.
1574 * @param pVCpu Pointer to the VMCPU.
1575 * @param pCpu Pointer to the CPU info struct.
1576 */
1577VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1578{
1579 AssertPtr(pVM);
1580 AssertPtr(pVCpu);
1581 Assert(pVM->hm.s.svm.fSupported);
1582 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1583 NOREF(pCpu);
1584
1585 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1586
1587 pVCpu->hm.s.fLeaveDone = false;
1588 return VINF_SUCCESS;
1589}
1590
1591
1592/**
1593 * Thread-context callback for AMD-V.
1594 *
1595 * @param enmEvent The thread-context event.
1596 * @param pVCpu Pointer to the VMCPU.
1597 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1598 */
1599VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1600{
1601 switch (enmEvent)
1602 {
1603 case RTTHREADCTXEVENT_PREEMPTING:
1604 {
1605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1606 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1607 VMCPU_ASSERT_EMT(pVCpu);
1608
1609 PVM pVM = pVCpu->CTX_SUFF(pVM);
1610 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1611 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1612
1613 if (!pVCpu->hm.s.fLeaveDone)
1614 {
1615 hmR0SvmLeave(pVM, pVCpu, pCtx);
1616 pVCpu->hm.s.fLeaveDone = true;
1617 }
1618
1619 int rc = HMR0LeaveCpu(pVCpu); /* Leave HM context, takes care of local init (term). */
1620 AssertRC(rc); NOREF(rc);
1621
1622 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1623 break;
1624 }
1625
1626 case RTTHREADCTXEVENT_RESUMED:
1627 {
1628 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1629 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
1630 VMCPU_ASSERT_EMT(pVCpu);
1631
1632 VMMRZCallRing3Disable(pVCpu); /* No longjmps (log-flush, locks) in this fragile context. */
1633
1634 /*
1635 * Initialize the bare minimum state required for HM. This takes care of
1636 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1637 */
1638 int rc = HMR0EnterCpu(pVCpu);
1639 AssertRC(rc); NOREF(rc);
1640 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1641
1642 pVCpu->hm.s.fLeaveDone = false;
1643 VMMRZCallRing3Enable(pVCpu); /* Restore longjmp state. */
1644 break;
1645 }
1646
1647 default:
1648 break;
1649 }
1650}
1651
1652
1653/**
1654 * Saves the host state.
1655 *
1656 * @returns VBox status code.
1657 * @param pVM Pointer to the VM.
1658 * @param pVCpu Pointer to the VMCPU.
1659 *
1660 * @remarks No-long-jump zone!!!
1661 */
1662VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1663{
1664 NOREF(pVM);
1665 NOREF(pVCpu);
1666 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1667 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1668 return VINF_SUCCESS;
1669}
1670
1671
1672/**
1673 * Loads the guest state into the VMCB. The CPU state will be loaded from these
1674 * fields on every successful VM-entry.
1675 *
1676 * Sets up the appropriate VMRUN function to execute guest code based
1677 * on the guest CPU mode.
1678 *
1679 * @returns VBox status code.
1680 * @param pVM Pointer to the VM.
1681 * @param pVCpu Pointer to the VMCPU.
1682 * @param pMixedCtx Pointer to the guest-CPU context.
1683 *
1684 * @remarks No-long-jump zone!!!
1685 */
1686static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1687{
1688 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1689 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1690
1691 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1692
1693 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1694 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1695
1696 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1697 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1698
1699 pVmcb->guest.u64RIP = pCtx->rip;
1700 pVmcb->guest.u64RSP = pCtx->rsp;
1701 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1702 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1703 pVmcb->guest.u64RAX = pCtx->rax;
1704
1705 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1706 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1707
1708 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1709 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1710
1711 /* Clear any unused and reserved bits. */
1712 pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1713 | HM_CHANGED_GUEST_RSP
1714 | HM_CHANGED_GUEST_RFLAGS
1715 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1716 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1717 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1718 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1719 | HM_CHANGED_SVM_RESERVED2
1720 | HM_CHANGED_SVM_RESERVED3);
1721
1722 /* All the guest state bits should be loaded except maybe the host context and shared host/guest bits. */
1723 AssertMsg( !(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST)
1724 || !(pVCpu->hm.s.fContextUseFlags & ~(HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE)),
1725 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
1726 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
1727
1728 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss, pCtx->rsp));
1729
1730 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1731 return rc;
1732}
1733
1734
1735/**
1736 * Loads the state shared between the host and guest into the
1737 * VMCB.
1738 *
1739 * @param pVM Pointer to the VM.
1740 * @param pVCpu Pointer to the VMCPU.
1741 * @param pCtx Pointer to the guest-CPU context.
1742 *
1743 * @remarks No-long-jump zone!!!
1744 */
1745static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1746{
1747 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1748 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1749 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1750
1751 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1752 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
1753
1754 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG)
1755 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
1756
1757 AssertMsg(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_GUEST_SHARED_STATE), ("fContextUseFlags=%#x\n",
1758 pVCpu->hm.s.fContextUseFlags));
1759}
1760
1761
1762/**
1763 * Saves the entire guest state from the VMCB into the
1764 * guest-CPU context. Currently there is no residual state left in the CPU that
1765 * is not updated in the VMCB.
1766 *
1767 * @returns VBox status code.
1768 * @param pVCpu Pointer to the VMCPU.
1769 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1770 * out-of-sync. Make sure to update the required fields
1771 * before using them.
1772 */
1773static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1774{
1775 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1776
1777 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1778
1779 pMixedCtx->rip = pVmcb->guest.u64RIP;
1780 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1781 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1782 pMixedCtx->rax = pVmcb->guest.u64RAX;
1783
1784 /*
1785 * Guest interrupt shadow.
1786 */
1787 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1788 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1789 else
1790 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1791
1792 /*
1793 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1794 */
1795 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1796
1797 /*
1798 * Guest MSRs.
1799 */
1800 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1801 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1802 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1803 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1804 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1805 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1806 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1807 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1808
1809 /*
1810 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1811 */
1812 HMSVM_SAVE_SEG_REG(CS, cs);
1813 HMSVM_SAVE_SEG_REG(SS, ss);
1814 HMSVM_SAVE_SEG_REG(DS, ds);
1815 HMSVM_SAVE_SEG_REG(ES, es);
1816 HMSVM_SAVE_SEG_REG(FS, fs);
1817 HMSVM_SAVE_SEG_REG(GS, gs);
1818
1819 /*
1820 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1821 * register (yet).
1822 */
1823 /** @todo SELM might need to be fixed as it too should not care about the
1824 * granularity bit. See @bugref{6785}. */
1825 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1826 && pMixedCtx->cs.Attr.n.u1Present
1827 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1828 {
1829 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1830 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1831 }
1832
1833#ifdef VBOX_STRICT
1834# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1835 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1836 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1837 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1838 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1839 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1840 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1841
1842 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1843 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1844 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1845 HMSVM_ASSERT_SEG_GRANULARITY(es);
1846 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1847 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1848
1849# undef HMSVM_ASSERT_SEL_GRANULARITY
1850#endif
1851
1852 /*
1853 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1854 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1855 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1856 * See AMD spec. 15.5.1 "Basic operation".
1857 */
1858 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1859 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1860
1861 /*
1862 * Guest Descriptor-Table registers.
1863 */
1864 HMSVM_SAVE_SEG_REG(TR, tr);
1865 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
1866 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
1867 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
1868
1869 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
1870 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
1871
1872 /*
1873 * Guest Debug registers.
1874 */
1875 if (!CPUMIsHyperDebugStateActive(pVCpu))
1876 {
1877 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
1878 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
1879 }
1880 else
1881 {
1882 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
1883 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
1884 }
1885
1886 /*
1887 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
1888 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
1889 */
1890 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
1891 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
1892 {
1893 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
1894 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
1895 }
1896}
1897
1898
1899/**
1900 * Does the necessary state syncing before returning to ring-3 for any reason
1901 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
1902 *
1903 * @param pVM Pointer to the VM.
1904 * @param pVCpu Pointer to the VMCPU.
1905 * @param pMixedCtx Pointer to the guest-CPU context.
1906 *
1907 * @remarks No-long-jmp zone!!!
1908 */
1909static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1910{
1911 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1912 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1913 Assert(VMMR0IsLogFlushDisabled(pVCpu));
1914
1915 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
1916 if (CPUMIsGuestFPUStateActive(pVCpu))
1917 {
1918 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
1919 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
1920 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
1921 }
1922
1923 /*
1924 * Restore host debug registers if necessary and resync on next R0 reentry.
1925 */
1926#ifdef VBOX_STRICT
1927 if (CPUMIsHyperDebugStateActive(pVCpu))
1928 {
1929 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1930 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
1931 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
1932 }
1933#endif
1934 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
1935 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
1936
1937 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1938 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1939
1940 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
1941 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
1942 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
1943 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
1944 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
1945
1946 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
1947}
1948
1949
1950/**
1951 * Leaves the AMD-V session.
1952 *
1953 * @returns VBox status code.
1954 * @param pVM Pointer to the VM.
1955 * @param pVCpu Pointer to the VMCPU.
1956 * @param pCtx Pointer to the guest-CPU context.
1957 */
1958static void hmR0SvmLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1959{
1960 HM_DISABLE_PREEMPT_IF_NEEDED();
1961 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1962 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1963
1964 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
1965 and done this from the VMXR0ThreadCtxCallback(). */
1966 if (!pVCpu->hm.s.fLeaveDone)
1967 {
1968 hmR0SvmLeave(pVM, pVCpu, pCtx);
1969 pVCpu->hm.s.fLeaveDone = true;
1970 }
1971
1972 /* Deregister hook now that we've left HM context before re-enabling preemption. */
1973 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
1974 VMMR0ThreadCtxHooksDeregister(pVCpu);
1975
1976 /* Leave HM context. This takes care of local init (term). */
1977 int rc = HMR0LeaveCpu(pVCpu);
1978 AssertRC(rc); NOREF(rc);
1979
1980 HM_RESTORE_PREEMPT_IF_NEEDED();
1981}
1982
1983
1984/**
1985 * Does the necessary state syncing before doing a longjmp to ring-3.
1986 *
1987 * @param pVM Pointer to the VM.
1988 * @param pVCpu Pointer to the VMCPU.
1989 * @param pCtx Pointer to the guest-CPU context.
1990 *
1991 * @remarks No-long-jmp zone!!!
1992 */
1993static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1994{
1995 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
1996}
1997
1998
1999/**
2000 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2001 * any remaining host state) before we longjump to ring-3 and possibly get
2002 * preempted.
2003 *
2004 * @param pVCpu Pointer to the VMCPU.
2005 * @param enmOperation The operation causing the ring-3 longjump.
2006 * @param pvUser The user argument (pointer to the possibly
2007 * out-of-date guest-CPU context).
2008 *
2009 * @remarks Must never be called with @a enmOperation ==
2010 * VMMCALLRING3_VM_R0_ASSERTION.
2011 */
2012DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2013{
2014 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
2015 Assert(pVCpu);
2016 Assert(pvUser);
2017 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2018 HMSVM_ASSERT_PREEMPT_SAFE();
2019
2020 VMMRZCallRing3Disable(pVCpu);
2021 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2022
2023 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2024 hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2025
2026 VMMRZCallRing3Enable(pVCpu);
2027}
2028
2029
2030/**
2031 * Take necessary actions before going back to ring-3.
2032 *
2033 * An action requires us to go back to ring-3. This function does the necessary
2034 * steps before we can safely return to ring-3. This is not the same as longjmps
2035 * to ring-3, this is voluntary.
2036 *
2037 * @param pVM Pointer to the VM.
2038 * @param pVCpu Pointer to the VMCPU.
2039 * @param pCtx Pointer to the guest-CPU context.
2040 * @param rcExit The reason for exiting to ring-3. Can be
2041 * VINF_VMM_UNKNOWN_RING3_CALL.
2042 */
2043static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2044{
2045 Assert(pVM);
2046 Assert(pVCpu);
2047 Assert(pCtx);
2048 HMSVM_ASSERT_PREEMPT_SAFE();
2049
2050 if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
2051 {
2052 /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
2053 return;
2054 }
2055
2056 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2057 VMMRZCallRing3Disable(pVCpu);
2058 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2059
2060 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2061 if (pVCpu->hm.s.Event.fPending)
2062 {
2063 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2064 Assert(!pVCpu->hm.s.Event.fPending);
2065 }
2066
2067 /* Sync. the necessary state for going back to ring-3. */
2068 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2069 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2070
2071 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2072 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2073 | CPUM_CHANGED_LDTR
2074 | CPUM_CHANGED_GDTR
2075 | CPUM_CHANGED_IDTR
2076 | CPUM_CHANGED_TR
2077 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2078 if ( pVM->hm.s.fNestedPaging
2079 && CPUMIsGuestPagingEnabledEx(pCtx))
2080 {
2081 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2082 }
2083
2084 /* Make sure we've undo the trap flag if we tried to single step something. */
2085 if (pVCpu->hm.s.fClearTrapFlag)
2086 {
2087 pCtx->eflags.Bits.u1TF = 0;
2088 pVCpu->hm.s.fClearTrapFlag = false;
2089 }
2090
2091 /* On our way back from ring-3 the following needs to be done. */
2092 /** @todo This can change with preemption hooks. */
2093 if (rcExit == VINF_EM_RAW_INTERRUPT)
2094 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
2095 else
2096 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2097
2098 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2099 VMMRZCallRing3Enable(pVCpu);
2100}
2101
2102
2103/**
2104 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2105 * intercepts.
2106 *
2107 * @param pVCpu Pointer to the VMCPU.
2108 *
2109 * @remarks No-long-jump zone!!!
2110 */
2111static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu)
2112{
2113 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2114 if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
2115 {
2116 uint64_t u64CurTSC = ASMReadTSC();
2117 if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
2118 {
2119 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
2120 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
2121 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2122 }
2123 else
2124 {
2125 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2126 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2127 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
2128 }
2129 }
2130 else
2131 {
2132 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2133 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2134 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2135 }
2136
2137 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2138}
2139
2140
2141/**
2142 * Sets an event as a pending event to be injected into the guest.
2143 *
2144 * @param pVCpu Pointer to the VMCPU.
2145 * @param pEvent Pointer to the SVM event.
2146 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2147 * page-fault.
2148 *
2149 * @remarks Statistics counter assumes this is a guest event being reflected to
2150 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2151 */
2152DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2153{
2154 Assert(!pVCpu->hm.s.Event.fPending);
2155 Assert(pEvent->n.u1Valid);
2156
2157 pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
2158 pVCpu->hm.s.Event.fPending = true;
2159 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2160
2161 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2162 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2163
2164 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
2165}
2166
2167
2168/**
2169 * Injects an event into the guest upon VMRUN by updating the relevant field
2170 * in the VMCB.
2171 *
2172 * @param pVCpu Pointer to the VMCPU.
2173 * @param pVmcb Pointer to the guest VMCB.
2174 * @param pCtx Pointer to the guest-CPU context.
2175 * @param pEvent Pointer to the event.
2176 *
2177 * @remarks No-long-jump zone!!!
2178 * @remarks Requires CR0!
2179 */
2180DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2181{
2182 pVmcb->ctrl.EventInject.u = pEvent->u;
2183 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2184
2185 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2186 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2187}
2188
2189
2190
2191/**
2192 * Converts any TRPM trap into a pending HM event. This is typically used when
2193 * entering from ring-3 (not longjmp returns).
2194 *
2195 * @param pVCpu Pointer to the VMCPU.
2196 */
2197static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2198{
2199 Assert(TRPMHasTrap(pVCpu));
2200 Assert(!pVCpu->hm.s.Event.fPending);
2201
2202 uint8_t uVector;
2203 TRPMEVENT enmTrpmEvent;
2204 RTGCUINT uErrCode;
2205 RTGCUINTPTR GCPtrFaultAddress;
2206 uint8_t cbInstr;
2207
2208 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2209 AssertRC(rc);
2210
2211 SVMEVENT Event;
2212 Event.u = 0;
2213 Event.n.u1Valid = 1;
2214 Event.n.u8Vector = uVector;
2215
2216 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2217 if (enmTrpmEvent == TRPM_TRAP)
2218 {
2219 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2220 switch (uVector)
2221 {
2222 case X86_XCPT_PF:
2223 case X86_XCPT_DF:
2224 case X86_XCPT_TS:
2225 case X86_XCPT_NP:
2226 case X86_XCPT_SS:
2227 case X86_XCPT_GP:
2228 case X86_XCPT_AC:
2229 {
2230 Event.n.u1ErrorCodeValid = 1;
2231 Event.n.u32ErrorCode = uErrCode;
2232 break;
2233 }
2234 }
2235 }
2236 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2237 {
2238 if (uVector == X86_XCPT_NMI)
2239 Event.n.u3Type = SVM_EVENT_NMI;
2240 else
2241 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2242 }
2243 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2244 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2245 else
2246 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2247
2248 rc = TRPMResetTrap(pVCpu);
2249 AssertRC(rc);
2250
2251 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2252 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2253
2254 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2255 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2256}
2257
2258
2259/**
2260 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2261 * AMD-V to execute any instruction.
2262 *
2263 * @param pvCpu Pointer to the VMCPU.
2264 */
2265static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2266{
2267 Assert(pVCpu->hm.s.Event.fPending);
2268 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2269
2270 SVMEVENT Event;
2271 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2272
2273 uint8_t uVector = Event.n.u8Vector;
2274 uint8_t uVectorType = Event.n.u3Type;
2275
2276 TRPMEVENT enmTrapType;
2277 switch (uVectorType)
2278 {
2279 case SVM_EVENT_EXTERNAL_IRQ:
2280 case SVM_EVENT_NMI:
2281 enmTrapType = TRPM_HARDWARE_INT;
2282 break;
2283 case SVM_EVENT_SOFTWARE_INT:
2284 enmTrapType = TRPM_SOFTWARE_INT;
2285 break;
2286 case SVM_EVENT_EXCEPTION:
2287 enmTrapType = TRPM_TRAP;
2288 break;
2289 default:
2290 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2291 enmTrapType = TRPM_32BIT_HACK;
2292 break;
2293 }
2294
2295 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2296
2297 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2298 AssertRC(rc);
2299
2300 if (Event.n.u1ErrorCodeValid)
2301 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2302
2303 if ( uVectorType == SVM_EVENT_EXCEPTION
2304 && uVector == X86_XCPT_PF)
2305 {
2306 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2307 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2308 }
2309 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2310 {
2311 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2312 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2313 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2314 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2315 }
2316 pVCpu->hm.s.Event.fPending = false;
2317}
2318
2319
2320/**
2321 * Gets the guest's interrupt-shadow.
2322 *
2323 * @returns The guest's interrupt-shadow.
2324 * @param pVCpu Pointer to the VMCPU.
2325 * @param pCtx Pointer to the guest-CPU context.
2326 *
2327 * @remarks No-long-jump zone!!!
2328 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2329 */
2330DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2331{
2332 /*
2333 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2334 * inhibit interrupts or clear any existing interrupt-inhibition.
2335 */
2336 uint32_t uIntrState = 0;
2337 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2338 {
2339 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2340 {
2341 /*
2342 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2343 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2344 */
2345 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2346 }
2347 else
2348 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2349 }
2350 return uIntrState;
2351}
2352
2353
2354/**
2355 * Sets the virtual interrupt intercept control in the VMCB which
2356 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2357 * receive interrupts.
2358 *
2359 * @param pVmcb Pointer to the VMCB.
2360 */
2361DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2362{
2363 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2364 {
2365 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2366 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2367 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2368 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2369
2370 Log4(("Setting VINTR intercept\n"));
2371 }
2372}
2373
2374
2375/**
2376 * Evaluates the event to be delivered to the guest and sets it as the pending
2377 * event.
2378 *
2379 * @param pVCpu Pointer to the VMCPU.
2380 * @param pCtx Pointer to the guest-CPU context.
2381 */
2382static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2383{
2384 Assert(!pVCpu->hm.s.Event.fPending);
2385 Log4Func(("\n"));
2386
2387 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2388 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2389 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2390
2391 SVMEVENT Event;
2392 Event.u = 0;
2393 /** @todo SMI. SMIs take priority over NMIs. */
2394 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2395 {
2396 if (!fIntShadow)
2397 {
2398 Log4(("Pending NMI\n"));
2399
2400 Event.n.u1Valid = 1;
2401 Event.n.u8Vector = X86_XCPT_NMI;
2402 Event.n.u3Type = SVM_EVENT_NMI;
2403
2404 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2405 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2406 }
2407 else
2408 hmR0SvmSetVirtIntrIntercept(pVmcb);
2409 }
2410 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2411 {
2412 /*
2413 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
2414 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
2415 * evaluated here and not set as pending, solely based on the force-flags.
2416 */
2417 if ( !fBlockInt
2418 && !fIntShadow)
2419 {
2420 uint8_t u8Interrupt;
2421 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2422 if (RT_SUCCESS(rc))
2423 {
2424 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2425
2426 Event.n.u1Valid = 1;
2427 Event.n.u8Vector = u8Interrupt;
2428 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2429
2430 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2431 }
2432 else
2433 {
2434 /** @todo Does this actually happen? If not turn it into an assertion. */
2435 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2436 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2437 }
2438 }
2439 else
2440 hmR0SvmSetVirtIntrIntercept(pVmcb);
2441 }
2442}
2443
2444
2445/**
2446 * Injects any pending events into the guest if the guest is in a state to
2447 * receive them.
2448 *
2449 * @param pVCpu Pointer to the VMCPU.
2450 * @param pCtx Pointer to the guest-CPU context.
2451 */
2452static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2453{
2454 Assert(!TRPMHasTrap(pVCpu));
2455 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2456 Log4Func(("\n"));
2457
2458 const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
2459 const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2460 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2461
2462 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2463 {
2464 SVMEVENT Event;
2465 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
2466 Assert(Event.n.u1Valid);
2467#ifdef VBOX_STRICT
2468 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2469 {
2470 Assert(!fBlockInt);
2471 Assert(!fIntShadow);
2472 }
2473 else if (Event.n.u3Type == SVM_EVENT_NMI)
2474 Assert(!fIntShadow);
2475#endif
2476
2477 Log4(("Injecting pending HM event.\n"));
2478 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2479 pVCpu->hm.s.Event.fPending = false;
2480
2481#ifdef VBOX_WITH_STATISTICS
2482 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2483 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2484 else
2485 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2486#endif
2487 }
2488
2489 /* Update the guest interrupt shadow in the VMCB. */
2490 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2491}
2492
2493
2494/**
2495 * Reports world-switch error and dumps some useful debug info.
2496 *
2497 * @param pVM Pointer to the VM.
2498 * @param pVCpu Pointer to the VMCPU.
2499 * @param rcVMRun The return code from VMRUN (or
2500 * VERR_SVM_INVALID_GUEST_STATE for invalid
2501 * guest-state).
2502 * @param pCtx Pointer to the guest-CPU context.
2503 */
2504static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2505{
2506 HMSVM_ASSERT_PREEMPT_SAFE();
2507 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2508
2509 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2510 {
2511 HMDumpRegs(pVM, pVCpu, pCtx);
2512#ifdef VBOX_STRICT
2513 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2514 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2515 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2516 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2517 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2518 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2519 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2520 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2521 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2522 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2523 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2524
2525 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2526 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2527 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2528
2529 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2530 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2531 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2532 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2533 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2534 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2535 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2536 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2537 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2538 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2539
2540 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2541 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2542 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2543 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2544 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2545 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2546 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2547 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2548 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2549 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2550 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2551 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2552 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2553 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2554 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2555 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2556 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2557
2558 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2559 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2560
2561 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2562 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2563 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2564 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2565 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2566 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2567 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2568 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2569 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2570 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2571 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2572 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2573 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2574 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2575 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2576 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2577 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2578 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2579 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2580 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2581
2582 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2583 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2584
2585 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2586 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2587 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2588 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2589
2590 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2591 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2592
2593 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2594 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2595 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2596 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2597
2598 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2599 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2600 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2601 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2602 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2603 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2604 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2605
2606 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2607 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2608 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2609 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2610
2611 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2612 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2613 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2614
2615 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2616 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2617 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2618 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2619 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2620 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2621 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2622 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2623 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2624 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2625 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2626 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2627#endif
2628 }
2629 else
2630 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2631}
2632
2633
2634/**
2635 * Check per-VM and per-VCPU force flag actions that require us to go back to
2636 * ring-3 for one reason or another.
2637 *
2638 * @returns VBox status code (information status code included).
2639 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2640 * ring-3.
2641 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2642 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2643 * interrupts)
2644 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2645 * all EMTs to be in ring-3.
2646 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2647 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2648 * to the EM loop.
2649 *
2650 * @param pVM Pointer to the VM.
2651 * @param pVCpu Pointer to the VMCPU.
2652 * @param pCtx Pointer to the guest-CPU context.
2653 */
2654static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2655{
2656 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2657
2658 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2659 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2660 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2661
2662 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2663 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2664 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2665 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2666 {
2667 /* Pending PGM C3 sync. */
2668 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2669 {
2670 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2671 if (rc != VINF_SUCCESS)
2672 {
2673 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2674 return rc;
2675 }
2676 }
2677
2678 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2679 /* -XXX- what was that about single stepping? */
2680 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2681 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2682 {
2683 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2684 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2685 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2686 return rc;
2687 }
2688
2689 /* Pending VM request packets, such as hardware interrupts. */
2690 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2691 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2692 {
2693 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2694 return VINF_EM_PENDING_REQUEST;
2695 }
2696
2697 /* Pending PGM pool flushes. */
2698 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2699 {
2700 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2701 return VINF_PGM_POOL_FLUSH_PENDING;
2702 }
2703
2704 /* Pending DMA requests. */
2705 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2706 {
2707 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2708 return VINF_EM_RAW_TO_R3;
2709 }
2710 }
2711
2712 return VINF_SUCCESS;
2713}
2714
2715
2716/**
2717 * Does the preparations before executing guest code in AMD-V.
2718 *
2719 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2720 * recompiler. We must be cautious what we do here regarding committing
2721 * guest-state information into the the VMCB assuming we assuredly execute the
2722 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2723 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2724 * that the recompiler can (and should) use them when it resumes guest
2725 * execution. Otherwise such operations must be done when we can no longer
2726 * exit to ring-3.
2727 *
2728 * @returns VBox status code (informational status codes included).
2729 * @retval VINF_SUCCESS if we can proceed with running the guest.
2730 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2731 *
2732 * @param pVM Pointer to the VM.
2733 * @param pVCpu Pointer to the VMCPU.
2734 * @param pCtx Pointer to the guest-CPU context.
2735 * @param pSvmTransient Pointer to the SVM transient structure.
2736 */
2737static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2738{
2739 /* Check force flag actions that might require us to go back to ring-3. */
2740 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2741 if (rc != VINF_SUCCESS)
2742 return rc;
2743
2744 if (TRPMHasTrap(pVCpu))
2745 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2746 else if (!pVCpu->hm.s.Event.fPending)
2747 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
2748
2749 /*
2750 * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
2751 * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
2752 */
2753 /** @todo The above assumption could be wrong. It's not documented what
2754 * should be done wrt to the VMCB Clean Bit, but we'll find out the
2755 * hard way. */
2756 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2757 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
2758
2759#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2760 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
2761#endif
2762
2763 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
2764 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
2765 AssertRCReturn(rc, rc);
2766 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
2767
2768 /*
2769 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
2770 * so we can update it on the way back if the guest changed the TPR.
2771 */
2772 if (pVCpu->hm.s.svm.fSyncVTpr)
2773 {
2774 if (pVM->hm.s.fTPRPatchingActive)
2775 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
2776 else
2777 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
2778 }
2779
2780 /*
2781 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
2782 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
2783 *
2784 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
2785 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
2786 *
2787 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
2788 * executing guest code.
2789 */
2790 pSvmTransient->uEflags = ASMIntDisableFlags();
2791 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2792 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2793 {
2794 ASMSetFlags(pSvmTransient->uEflags);
2795 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2796 return VINF_EM_RAW_TO_R3;
2797 }
2798 else if (RTThreadPreemptIsPending(NIL_RTTHREAD))
2799 {
2800 ASMSetFlags(pSvmTransient->uEflags);
2801 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
2802 return VINF_EM_RAW_INTERRUPT;
2803 }
2804
2805 /* Indicate the start of guest execution. No more longjmps or returns to ring-3 from this point!!! */
2806 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2807 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
2808
2809 return VINF_SUCCESS;
2810}
2811
2812
2813/**
2814 * Prepares to run guest code in AMD-V and we've committed to doing so. This
2815 * means there is no backing out to ring-3 or anywhere else at this
2816 * point.
2817 *
2818 * @param pVM Pointer to the VM.
2819 * @param pVCpu Pointer to the VMCPU.
2820 * @param pCtx Pointer to the guest-CPU context.
2821 * @param pSvmTransient Pointer to the SVM transient structure.
2822 *
2823 * @remarks Called with preemption disabled.
2824 * @remarks No-long-jump zone!!!
2825 */
2826static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2827{
2828 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2829 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2830
2831 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
2832
2833 /* Load the state shared between host and guest (FPU, debug). */
2834 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_GUEST_SHARED_STATE)
2835 hmR0VmxLoadSharedState(pVM, pVCpu, pCtx);
2836 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
2837 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags=%#x\n", pVCpu->hm.s.fContextUseFlags));
2838
2839 /* If VMCB Clean Bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
2840 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2841 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
2842 pVmcb->ctrl.u64VmcbCleanBits = 0;
2843
2844 /* Setup TSC offsetting. */
2845 if ( pSvmTransient->fUpdateTscOffsetting
2846 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
2847 {
2848 hmR0SvmUpdateTscOffsetting(pVCpu);
2849 pSvmTransient->fUpdateTscOffsetting = false;
2850 }
2851
2852 /* Flush the appropriate tagged-TLB entries. */
2853 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
2854 hmR0SvmFlushTaggedTlb(pVCpu);
2855 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
2856
2857 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
2858
2859 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
2860 to start executing. */
2861
2862 /*
2863 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
2864 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
2865 *
2866 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
2867 */
2868 pSvmTransient->fRestoreTscAuxMsr = false;
2869 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
2870 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
2871 {
2872 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
2873 uint64_t u64GuestTscAux = 0;
2874 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
2875 AssertRC(rc2);
2876 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
2877 {
2878 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
2879 pSvmTransient->fRestoreTscAuxMsr = true;
2880 }
2881 }
2882}
2883
2884
2885/**
2886 * Wrapper for running the guest code in AMD-V.
2887 *
2888 * @returns VBox strict status code.
2889 * @param pVM Pointer to the VM.
2890 * @param pVCpu Pointer to the VMCPU.
2891 * @param pCtx Pointer to the guest-CPU context.
2892 *
2893 * @remarks No-long-jump zone!!!
2894 */
2895DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2896{
2897 /*
2898 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
2899 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
2900 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
2901 */
2902#ifdef VBOX_WITH_KERNEL_USING_XMM
2903 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
2904 pVCpu->hm.s.svm.pfnVMRun);
2905#else
2906 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
2907#endif
2908}
2909
2910
2911/**
2912 * Performs some essential restoration of state after running guest code in
2913 * AMD-V.
2914 *
2915 * @param pVM Pointer to the VM.
2916 * @param pVCpu Pointer to the VMCPU.
2917 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
2918 * out-of-sync. Make sure to update the required fields
2919 * before using them.
2920 * @param pSvmTransient Pointer to the SVM transient structure.
2921 * @param rcVMRun Return code of VMRUN.
2922 *
2923 * @remarks Called with interrupts disabled.
2924 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
2925 * unconditionally when it is safe to do so.
2926 */
2927static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
2928{
2929 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2930
2931 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
2932 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
2933
2934 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2935 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
2936
2937 if (pSvmTransient->fRestoreTscAuxMsr)
2938 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
2939
2940 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
2941 {
2942 /** @todo Find a way to fix hardcoding a guestimate. */
2943 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400);
2944 }
2945
2946 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
2947 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
2948 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
2949
2950 Assert(!(ASMGetFlags() & X86_EFL_IF));
2951 ASMSetFlags(pSvmTransient->uEflags); /* Enable interrupts. */
2952
2953 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
2954
2955 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
2956 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
2957 {
2958 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
2959 return;
2960 }
2961
2962 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
2963 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
2964 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
2965
2966 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
2967 {
2968 if (pVCpu->hm.s.svm.fSyncVTpr)
2969 {
2970 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
2971 if ( pVM->hm.s.fTPRPatchingActive
2972 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
2973 {
2974 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
2975 AssertRC(rc);
2976 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2977 }
2978 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
2979 {
2980 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
2981 AssertRC(rc);
2982 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
2983 }
2984 }
2985 }
2986}
2987
2988
2989/**
2990 * Runs the guest code using AMD-V.
2991 *
2992 * @returns VBox status code.
2993 * @param pVM Pointer to the VM.
2994 * @param pVCpu Pointer to the VMCPU.
2995 * @param pCtx Pointer to the guest-CPU context.
2996 */
2997VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2998{
2999 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3000 HMSVM_ASSERT_PREEMPT_SAFE();
3001 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
3002
3003 SVMTRANSIENT SvmTransient;
3004 SvmTransient.fUpdateTscOffsetting = true;
3005 uint32_t cLoops = 0;
3006 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3007 int rc = VERR_INTERNAL_ERROR_5;
3008
3009 for (;; cLoops++)
3010 {
3011 Assert(!HMR0SuspendPending());
3012 HMSVM_ASSERT_CPU_SAFE();
3013
3014 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
3015 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3016 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3017 if (rc != VINF_SUCCESS)
3018 break;
3019
3020 /*
3021 * No longjmps to ring-3 from this point on!!!
3022 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3023 * This also disables flushing of the R0-logger instance (if any).
3024 */
3025 VMMRZCallRing3Disable(pVCpu);
3026 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3027
3028 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3029
3030 /*
3031 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
3032 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
3033 */
3034 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3035 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3036 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3037 {
3038 if (rc == VINF_SUCCESS)
3039 rc = VERR_SVM_INVALID_GUEST_STATE;
3040 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3041 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3042 break;
3043 }
3044
3045 /* Handle the #VMEXIT. */
3046 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3047 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3048 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3049 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3050 if (rc != VINF_SUCCESS)
3051 break;
3052 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
3053 {
3054 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
3055 rc = VINF_EM_RAW_INTERRUPT;
3056 break;
3057 }
3058 }
3059
3060 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3061 if (rc == VERR_EM_INTERPRETER)
3062 rc = VINF_EM_RAW_EMULATE_INSTR;
3063 else if (rc == VINF_EM_RESET)
3064 rc = VINF_EM_TRIPLE_FAULT;
3065
3066 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3067 VMMRZCallRing3RemoveNotification(pVCpu);
3068 return rc;
3069}
3070
3071
3072/**
3073 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3074 *
3075 * @returns VBox status code (informational status codes included).
3076 * @param pVCpu Pointer to the VMCPU.
3077 * @param pCtx Pointer to the guest-CPU context.
3078 * @param pSvmTransient Pointer to the SVM transient structure.
3079 */
3080DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3081{
3082 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
3083 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3084
3085 /*
3086 * The ordering of the case labels is based on most-frequently-occurring VM-exits for most guests under
3087 * normal workloads (for some definition of "normal").
3088 */
3089 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3090 switch (pSvmTransient->u64ExitCode)
3091 {
3092 case SVM_EXIT_NPF:
3093 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3094
3095 case SVM_EXIT_IOIO:
3096 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3097
3098 case SVM_EXIT_RDTSC:
3099 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3100
3101 case SVM_EXIT_RDTSCP:
3102 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3103
3104 case SVM_EXIT_CPUID:
3105 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3106
3107 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
3108 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3109
3110 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3111 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3112
3113 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
3114 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3115
3116 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3117 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3118
3119 case SVM_EXIT_MONITOR:
3120 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3121
3122 case SVM_EXIT_MWAIT:
3123 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3124
3125 case SVM_EXIT_HLT:
3126 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3127
3128 case SVM_EXIT_READ_CR0:
3129 case SVM_EXIT_READ_CR3:
3130 case SVM_EXIT_READ_CR4:
3131 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3132
3133 case SVM_EXIT_WRITE_CR0:
3134 case SVM_EXIT_WRITE_CR3:
3135 case SVM_EXIT_WRITE_CR4:
3136 case SVM_EXIT_WRITE_CR8:
3137 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3138
3139 case SVM_EXIT_VINTR:
3140 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3141
3142 case SVM_EXIT_INTR:
3143 case SVM_EXIT_FERR_FREEZE:
3144 case SVM_EXIT_NMI:
3145 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3146
3147 case SVM_EXIT_MSR:
3148 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3149
3150 case SVM_EXIT_INVLPG:
3151 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3152
3153 case SVM_EXIT_WBINVD:
3154 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3155
3156 case SVM_EXIT_INVD:
3157 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3158
3159 case SVM_EXIT_RDPMC:
3160 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3161
3162 default:
3163 {
3164 switch (pSvmTransient->u64ExitCode)
3165 {
3166 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3167 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3168 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3169 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3170 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3171
3172 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3173 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3174 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3175 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3176 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3177
3178 case SVM_EXIT_TASK_SWITCH:
3179 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3180
3181 case SVM_EXIT_VMMCALL:
3182 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3183
3184 case SVM_EXIT_SHUTDOWN:
3185 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3186
3187 case SVM_EXIT_SMI:
3188 case SVM_EXIT_INIT:
3189 {
3190 /*
3191 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3192 * we want to know about it so log the exit code and bail.
3193 */
3194 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3195 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3196 return VERR_SVM_UNEXPECTED_EXIT;
3197 }
3198
3199 case SVM_EXIT_INVLPGA:
3200 case SVM_EXIT_RSM:
3201 case SVM_EXIT_VMRUN:
3202 case SVM_EXIT_VMLOAD:
3203 case SVM_EXIT_VMSAVE:
3204 case SVM_EXIT_STGI:
3205 case SVM_EXIT_CLGI:
3206 case SVM_EXIT_SKINIT:
3207 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3208
3209#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3210 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3211 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3212 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3213 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3214 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3215 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3216 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3217 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3218 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3219 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3220 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3221 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3222 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3223 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3224 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3225 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3226 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3227 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3228 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3229
3230 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3231 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3232 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3233 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3234 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3235 {
3236 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3237 SVMEVENT Event;
3238 Event.u = 0;
3239 Event.n.u1Valid = 1;
3240 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3241 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3242
3243 switch (Event.n.u8Vector)
3244 {
3245 case X86_XCPT_DE:
3246 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3247 break;
3248
3249 case X86_XCPT_BP:
3250 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3251 * next instruction. */
3252 /** @todo Investigate this later. */
3253 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3254 break;
3255
3256 case X86_XCPT_UD:
3257 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
3258 break;
3259
3260 case X86_XCPT_NP:
3261 Event.n.u1ErrorCodeValid = 1;
3262 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3263 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3264 break;
3265
3266 case X86_XCPT_SS:
3267 Event.n.u1ErrorCodeValid = 1;
3268 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3269 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3270 break;
3271
3272 case X86_XCPT_GP:
3273 Event.n.u1ErrorCodeValid = 1;
3274 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3275 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3276 break;
3277
3278 default:
3279 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3280 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3281 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3282 }
3283
3284 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3285 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3286 return VINF_SUCCESS;
3287 }
3288#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3289
3290 default:
3291 {
3292 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3293 pVCpu->hm.s.u32HMError = u32ExitCode;
3294 return VERR_SVM_UNKNOWN_EXIT;
3295 }
3296 }
3297 }
3298 }
3299 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3300}
3301
3302
3303#ifdef DEBUG
3304/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3305# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3306 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3307
3308# define HMSVM_ASSERT_PREEMPT_CPUID() \
3309 do \
3310 { \
3311 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3312 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3313 } while (0)
3314
3315# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3316 do { \
3317 AssertPtr(pVCpu); \
3318 AssertPtr(pCtx); \
3319 AssertPtr(pSvmTransient); \
3320 Assert(ASMIntAreEnabled()); \
3321 HMSVM_ASSERT_PREEMPT_SAFE(); \
3322 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3323 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3324 HMSVM_ASSERT_PREEMPT_SAFE(); \
3325 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3326 HMSVM_ASSERT_PREEMPT_CPUID(); \
3327 } while (0)
3328#else /* Release builds */
3329# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
3330#endif
3331
3332
3333/**
3334 * Worker for hmR0SvmInterpretInvlpg().
3335 *
3336 * @return VBox status code.
3337 * @param pVCpu Pointer to the VMCPU.
3338 * @param pCpu Pointer to the disassembler state.
3339 * @param pRegFrame Pointer to the register frame.
3340 */
3341static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
3342{
3343 DISQPVPARAMVAL Param1;
3344 RTGCPTR GCPtrPage;
3345
3346 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3347 if (RT_FAILURE(rc))
3348 return VERR_EM_INTERPRETER;
3349
3350 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3351 || Param1.type == DISQPV_TYPE_ADDRESS)
3352 {
3353 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3354 return VERR_EM_INTERPRETER;
3355
3356 GCPtrPage = Param1.val.val64;
3357 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
3358 rc = VBOXSTRICTRC_VAL(rc2);
3359 }
3360 else
3361 {
3362 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3363 rc = VERR_EM_INTERPRETER;
3364 }
3365
3366 return rc;
3367}
3368
3369
3370/**
3371 * Interprets INVLPG.
3372 *
3373 * @returns VBox status code.
3374 * @retval VINF_* Scheduling instructions.
3375 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3376 * @retval VERR_* Fatal errors.
3377 *
3378 * @param pVM Pointer to the VM.
3379 * @param pRegFrame Pointer to the register frame.
3380 *
3381 * @remarks Updates the RIP if the instruction was executed successfully.
3382 */
3383static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
3384{
3385 /* Only allow 32 & 64 bit code. */
3386 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3387 {
3388 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3389 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3390 if ( RT_SUCCESS(rc)
3391 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3392 {
3393 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
3394 if (RT_SUCCESS(rc))
3395 pRegFrame->rip += pDis->cbInstr;
3396 return rc;
3397 }
3398 else
3399 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3400 }
3401 return VERR_EM_INTERPRETER;
3402}
3403
3404
3405/**
3406 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3407 *
3408 * @param pVCpu Pointer to the VMCPU.
3409 */
3410DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3411{
3412 SVMEVENT Event;
3413 Event.u = 0;
3414 Event.n.u1Valid = 1;
3415 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3416 Event.n.u8Vector = X86_XCPT_UD;
3417 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3418}
3419
3420
3421/**
3422 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3423 *
3424 * @param pVCpu Pointer to the VMCPU.
3425 */
3426DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3427{
3428 SVMEVENT Event;
3429 Event.u = 0;
3430 Event.n.u1Valid = 1;
3431 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3432 Event.n.u8Vector = X86_XCPT_DB;
3433 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3434}
3435
3436
3437/**
3438 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3439 *
3440 * @param pVCpu Pointer to the VMCPU.
3441 * @param pCtx Pointer to the guest-CPU context.
3442 * @param u32ErrCode The error-code for the page-fault.
3443 * @param uFaultAddress The page fault address (CR2).
3444 *
3445 * @remarks This updates the guest CR2 with @a uFaultAddress!
3446 */
3447DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3448{
3449 SVMEVENT Event;
3450 Event.u = 0;
3451 Event.n.u1Valid = 1;
3452 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3453 Event.n.u8Vector = X86_XCPT_PF;
3454 Event.n.u1ErrorCodeValid = 1;
3455 Event.n.u32ErrorCode = u32ErrCode;
3456
3457 /* Update CR2 of the guest. */
3458 if (pCtx->cr2 != uFaultAddress)
3459 {
3460 pCtx->cr2 = uFaultAddress;
3461 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR2;
3462 }
3463
3464 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3465}
3466
3467
3468/**
3469 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3470 * VM.
3471 *
3472 * @param pVCpu Pointer to the VMCPU.
3473 */
3474DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3475{
3476 SVMEVENT Event;
3477 Event.u = 0;
3478 Event.n.u1Valid = 1;
3479 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3480 Event.n.u8Vector = X86_XCPT_NM;
3481 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3482}
3483
3484
3485/**
3486 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3487 *
3488 * @param pVCpu Pointer to the VMCPU.
3489 */
3490DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3491{
3492 SVMEVENT Event;
3493 Event.u = 0;
3494 Event.n.u1Valid = 1;
3495 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3496 Event.n.u8Vector = X86_XCPT_MF;
3497 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3498}
3499
3500
3501/**
3502 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3503 *
3504 * @param pVCpu Pointer to the VMCPU.
3505 */
3506DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3507{
3508 SVMEVENT Event;
3509 Event.u = 0;
3510 Event.n.u1Valid = 1;
3511 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3512 Event.n.u8Vector = X86_XCPT_DF;
3513 Event.n.u1ErrorCodeValid = 1;
3514 Event.n.u32ErrorCode = 0;
3515 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3516}
3517
3518
3519/**
3520 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3521 * guests. This simply looks up the patch record at EIP and does the required.
3522 *
3523 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3524 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3525 * TPR). See hmR3ReplaceTprInstr() for the details.
3526 *
3527 * @returns VBox status code.
3528 * @param pVM Pointer to the VM.
3529 * @param pVCpu Pointer to the VMCPU.
3530 * @param pCtx Pointer to the guest-CPU context.
3531 */
3532static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3533{
3534 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3535 for (;;)
3536 {
3537 bool fPending;
3538 uint8_t u8Tpr;
3539
3540 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3541 if (!pPatch)
3542 break;
3543
3544 switch (pPatch->enmType)
3545 {
3546 case HMTPRINSTR_READ:
3547 {
3548 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3549 AssertRC(rc);
3550
3551 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3552 AssertRC(rc);
3553 pCtx->rip += pPatch->cbOp;
3554 break;
3555 }
3556
3557 case HMTPRINSTR_WRITE_REG:
3558 case HMTPRINSTR_WRITE_IMM:
3559 {
3560 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3561 {
3562 uint32_t u32Val;
3563 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
3564 AssertRC(rc);
3565 u8Tpr = u32Val;
3566 }
3567 else
3568 u8Tpr = (uint8_t)pPatch->uSrcOperand;
3569
3570 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
3571 AssertRC(rc2);
3572 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
3573
3574 pCtx->rip += pPatch->cbOp;
3575 break;
3576 }
3577
3578 default:
3579 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
3580 pVCpu->hm.s.u32HMError = pPatch->enmType;
3581 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
3582 }
3583 }
3584
3585 return VINF_SUCCESS;
3586}
3587
3588/**
3589 * Determines if an exception is a contributory exception. Contributory
3590 * exceptions are ones which can cause double-faults. Page-fault is
3591 * intentionally not included here as it's a conditional contributory exception.
3592 *
3593 * @returns true if the exception is contributory, false otherwise.
3594 * @param uVector The exception vector.
3595 */
3596DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
3597{
3598 switch (uVector)
3599 {
3600 case X86_XCPT_GP:
3601 case X86_XCPT_SS:
3602 case X86_XCPT_NP:
3603 case X86_XCPT_TS:
3604 case X86_XCPT_DE:
3605 return true;
3606 default:
3607 break;
3608 }
3609 return false;
3610}
3611
3612
3613/**
3614 * Handle a condition that occurred while delivering an event through the guest
3615 * IDT.
3616 *
3617 * @returns VBox status code (informational error codes included).
3618 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
3619 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
3620 * continue execution of the guest which will delivery the #DF.
3621 * @retval VINF_EM_RESET if we detected a triple-fault condition.
3622 *
3623 * @param pVCpu Pointer to the VMCPU.
3624 * @param pCtx Pointer to the guest-CPU context.
3625 * @param pSvmTransient Pointer to the SVM transient structure.
3626 *
3627 * @remarks No-long-jump zone!!!
3628 */
3629static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3630{
3631 int rc = VINF_SUCCESS;
3632 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3633
3634 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
3635 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
3636 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
3637 {
3638 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
3639
3640 typedef enum
3641 {
3642 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
3643 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
3644 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
3645 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
3646 } SVMREFLECTXCPT;
3647
3648 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
3649 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
3650 {
3651 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
3652 {
3653 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
3654
3655#ifdef VBOX_STRICT
3656 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
3657 && uExitVector == X86_XCPT_PF)
3658 {
3659 Log4(("IDT: Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
3660 }
3661#endif
3662 if ( uExitVector == X86_XCPT_PF
3663 && uIdtVector == X86_XCPT_PF)
3664 {
3665 pSvmTransient->fVectoringPF = true;
3666 Log4(("IDT: Vectoring #PF uCR2=%#RX64\n", pCtx->cr2));
3667 }
3668 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
3669 && hmR0SvmIsContributoryXcpt(uExitVector)
3670 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
3671 || uIdtVector == X86_XCPT_PF))
3672 {
3673 enmReflect = SVMREFLECTXCPT_DF;
3674 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3675 uIdtVector, uExitVector));
3676 }
3677 else if (uIdtVector == X86_XCPT_DF)
3678 {
3679 enmReflect = SVMREFLECTXCPT_TF;
3680 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
3681 uIdtVector, uExitVector));
3682 }
3683 else
3684 enmReflect = SVMREFLECTXCPT_XCPT;
3685 }
3686 else
3687 {
3688 /*
3689 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
3690 * exception to the guest after handling the VM-exit.
3691 */
3692 enmReflect = SVMREFLECTXCPT_XCPT;
3693 }
3694 }
3695 else if (pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT)
3696 {
3697 /* Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
3698 enmReflect = SVMREFLECTXCPT_XCPT;
3699 }
3700
3701 switch (enmReflect)
3702 {
3703 case SVMREFLECTXCPT_XCPT:
3704 {
3705 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
3706 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
3707
3708 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
3709 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
3710 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3711 break;
3712 }
3713
3714 case SVMREFLECTXCPT_DF:
3715 {
3716 hmR0SvmSetPendingXcptDF(pVCpu);
3717 rc = VINF_HM_DOUBLE_FAULT;
3718 break;
3719 }
3720
3721 case SVMREFLECTXCPT_TF:
3722 {
3723 rc = VINF_EM_RESET;
3724 break;
3725 }
3726
3727 default:
3728 Assert(rc == VINF_SUCCESS);
3729 break;
3730 }
3731 }
3732 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
3733 return rc;
3734}
3735
3736
3737/**
3738 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
3739 * CPU, otherwise advances the RIP by @a cb bytes.
3740 *
3741 * @param pVCpu Pointer to the VMCPU.
3742 * @param pCtx Pointer to the guest-CPU context.
3743 * @param cb RIP increment value in bytes.
3744 *
3745 * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
3746 * when NRIP_SAVE is supported by the CPU!
3747 */
3748DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
3749{
3750 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
3751 {
3752 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3753 pCtx->rip = pVmcb->ctrl.u64NextRIP;
3754 }
3755 else
3756 pCtx->rip += cb;
3757}
3758
3759
3760/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3761/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
3762/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
3763
3764/** @name VM-exit handlers.
3765 * @{
3766 */
3767
3768/**
3769 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
3770 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
3771 */
3772HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3773{
3774 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3775
3776 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
3777 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
3778 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
3779 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
3780
3781 /*
3782 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
3783 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
3784 * interrupt it is until the host actually take the interrupt.
3785 *
3786 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
3787 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
3788 */
3789 return VINF_EM_RAW_INTERRUPT;
3790}
3791
3792
3793/**
3794 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
3795 */
3796HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3797{
3798 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3799
3800 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3801 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
3802 int rc = VINF_SUCCESS;
3803 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3804 return rc;
3805}
3806
3807
3808/**
3809 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
3810 */
3811HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3812{
3813 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3814
3815 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3816 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
3817 int rc = VINF_SUCCESS;
3818 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3819 return rc;
3820}
3821
3822
3823/**
3824 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
3825 */
3826HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3827{
3828 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3829 PVM pVM = pVCpu->CTX_SUFF(pVM);
3830 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3831 if (RT_LIKELY(rc == VINF_SUCCESS))
3832 {
3833 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3834 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3835 }
3836 else
3837 {
3838 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
3839 rc = VERR_EM_INTERPRETER;
3840 }
3841 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
3842 return rc;
3843}
3844
3845
3846/**
3847 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
3848 */
3849HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3850{
3851 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3852 PVM pVM = pVCpu->CTX_SUFF(pVM);
3853 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3854 if (RT_LIKELY(rc == VINF_SUCCESS))
3855 {
3856 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3857 pSvmTransient->fUpdateTscOffsetting = true;
3858
3859 /* Single step check. */
3860 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3861 }
3862 else
3863 {
3864 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
3865 rc = VERR_EM_INTERPRETER;
3866 }
3867 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
3868 return rc;
3869}
3870
3871
3872/**
3873 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
3874 */
3875HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3876{
3877 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3878 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
3879 if (RT_LIKELY(rc == VINF_SUCCESS))
3880 {
3881 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3882 pSvmTransient->fUpdateTscOffsetting = true;
3883 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3884 }
3885 else
3886 {
3887 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
3888 rc = VERR_EM_INTERPRETER;
3889 }
3890 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
3891 return rc;
3892}
3893
3894
3895/**
3896 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
3897 */
3898HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3899{
3900 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3901 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3902 if (RT_LIKELY(rc == VINF_SUCCESS))
3903 {
3904 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
3905 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3906 }
3907 else
3908 {
3909 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
3910 rc = VERR_EM_INTERPRETER;
3911 }
3912 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
3913 return rc;
3914}
3915
3916
3917/**
3918 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
3919 */
3920HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3921{
3922 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3923 PVM pVM = pVCpu->CTX_SUFF(pVM);
3924 Assert(!pVM->hm.s.fNestedPaging);
3925
3926 /** @todo Decode Assist. */
3927 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
3928 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
3929 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
3930 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3931 return rc;
3932}
3933
3934
3935/**
3936 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
3937 */
3938HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3939{
3940 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3941 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
3942 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
3943 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3944 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3945 return rc;
3946}
3947
3948
3949/**
3950 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
3951 */
3952HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3953{
3954 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3955 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3956 if (RT_LIKELY(rc == VINF_SUCCESS))
3957 {
3958 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3959 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3960 }
3961 else
3962 {
3963 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
3964 rc = VERR_EM_INTERPRETER;
3965 }
3966 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
3967 return rc;
3968}
3969
3970
3971/**
3972 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
3973 */
3974HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3975{
3976 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
3977 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
3978 int rc = VBOXSTRICTRC_VAL(rc2);
3979 if ( rc == VINF_EM_HALT
3980 || rc == VINF_SUCCESS)
3981 {
3982 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
3983
3984 if ( rc == VINF_EM_HALT
3985 && EMShouldContinueAfterHalt(pVCpu, pCtx))
3986 {
3987 rc = VINF_SUCCESS;
3988 }
3989 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
3990 }
3991 else
3992 {
3993 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
3994 rc = VERR_EM_INTERPRETER;
3995 }
3996 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
3997 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
3998 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
3999 return rc;
4000}
4001
4002
4003/**
4004 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
4005 * Conditional #VMEXIT.
4006 */
4007HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4008{
4009 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4010 return VINF_EM_RESET;
4011}
4012
4013
4014/**
4015 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
4016 */
4017HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4018{
4019 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4020
4021 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4022
4023 /** @todo Decode Assist. */
4024 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4025 int rc = VBOXSTRICTRC_VAL(rc2);
4026 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
4027 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
4028 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
4029 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
4030 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4031 return rc;
4032}
4033
4034
4035/**
4036 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
4037 */
4038HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4039{
4040 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4041 /** @todo Decode Assist. */
4042 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4043 int rc = VBOXSTRICTRC_VAL(rc2);
4044 if (rc == VINF_SUCCESS)
4045 {
4046 /* RIP has been updated by EMInterpretInstruction(). */
4047 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
4048 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
4049 {
4050 case 0: /* CR0. */
4051 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4052 break;
4053
4054 case 3: /* CR3. */
4055 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4056 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
4057 break;
4058
4059 case 4: /* CR4. */
4060 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
4061 break;
4062
4063 case 8: /* CR8 (TPR). */
4064 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4065 break;
4066
4067 default:
4068 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
4069 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
4070 break;
4071 }
4072 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4073 }
4074 else
4075 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
4076 return rc;
4077}
4078
4079
4080/**
4081 * #VMEXIT handler for instructions that result in a #UD exception delivered to
4082 * the guest.
4083 */
4084HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4085{
4086 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4087 hmR0SvmSetPendingXcptUD(pVCpu);
4088 return VINF_SUCCESS;
4089}
4090
4091
4092/**
4093 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
4094 */
4095HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4096{
4097 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4098 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4099 PVM pVM = pVCpu->CTX_SUFF(pVM);
4100
4101 int rc;
4102 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4103 {
4104 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4105
4106 /* Handle TPR patching; intercepted LSTAR write. */
4107 if ( pVM->hm.s.fTPRPatchingActive
4108 && pCtx->ecx == MSR_K8_LSTAR)
4109 {
4110 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4111 {
4112 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4113 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4114 AssertRC(rc2);
4115 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4116 }
4117 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4118 rc = VINF_SUCCESS;
4119 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4120 return rc;
4121 }
4122
4123 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4124 {
4125 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4126 if (RT_LIKELY(rc == VINF_SUCCESS))
4127 {
4128 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4129 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4130 }
4131 else
4132 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4133 }
4134 else
4135 {
4136 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4137 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4138 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4139 /* RIP updated by EMInterpretInstruction(). */
4140 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4141 }
4142
4143 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4144 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4145 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4146 {
4147 /* We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4148 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4149 EMInterpretWrmsr() changes it. */
4150 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4151 }
4152 else if (pCtx->ecx == MSR_K6_EFER)
4153 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_EFER_MSR;
4154 else if (pCtx->ecx == MSR_IA32_TSC)
4155 pSvmTransient->fUpdateTscOffsetting = true;
4156 }
4157 else
4158 {
4159 /* MSR Read access. */
4160 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4161 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4162
4163 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4164 {
4165 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4166 if (RT_LIKELY(rc == VINF_SUCCESS))
4167 {
4168 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4169 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4170 }
4171 else
4172 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4173 }
4174 else
4175 {
4176 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4177 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4178 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4179 /* RIP updated by EMInterpretInstruction(). */
4180 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4181 }
4182 }
4183
4184 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4185 return rc;
4186}
4187
4188
4189/**
4190 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
4191 */
4192HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4193{
4194 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4195 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4196
4197 /* We should -not- get this VM-exit if the guest is debugging. */
4198 AssertMsgReturn(!CPUMIsGuestDebugStateActive(pVCpu),
4199 ("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx),
4200 VERR_SVM_UNEXPECTED_EXIT);
4201
4202 /*
4203 * Lazy DR0-3 loading?
4204 */
4205 if (!CPUMIsHyperDebugStateActive(pVCpu))
4206 {
4207 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4208 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4209
4210 /* Don't intercept DRx read and writes. */
4211 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4212 pVmcb->ctrl.u16InterceptRdDRx = 0;
4213 pVmcb->ctrl.u16InterceptWrDRx = 0;
4214 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4215
4216 /* We're playing with the host CPU state here, make sure we don't preempt. */
4217 HM_DISABLE_PREEMPT_IF_NEEDED();
4218
4219 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4220 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4221 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
4222
4223 HM_RESTORE_PREEMPT_IF_NEEDED();
4224
4225 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4226 return VINF_SUCCESS;
4227 }
4228
4229 /*
4230 * Interpret the read/writing of DRx.
4231 */
4232 /** @todo Decode assist. */
4233 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4234 Log5(("hmR0SvmExitReadDRx: Emulatined DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4235 if (RT_LIKELY(rc == VINF_SUCCESS))
4236 {
4237 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4238 /** @todo CPUM should set this flag! */
4239 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4240 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4241 }
4242 else
4243 Assert(rc == VERR_EM_INTERPRETER);
4244 return VBOXSTRICTRC_TODO(rc);
4245}
4246
4247
4248/**
4249 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
4250 */
4251HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4252{
4253 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4254 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4255 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4256 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4257 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4258 return rc;
4259}
4260
4261
4262/**
4263 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
4264 */
4265HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4266{
4267 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4268
4269 /* I/O operation lookup arrays. */
4270 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4271 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4272 the result (in AL/AX/EAX). */
4273 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4274
4275 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4276 PVM pVM = pVCpu->CTX_SUFF(pVM);
4277
4278 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4279 SVMIOIOEXIT IoExitInfo;
4280 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4281 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4282 uint32_t cbValue = s_aIOSize[uIOWidth];
4283 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4284
4285 if (RT_UNLIKELY(!cbValue))
4286 {
4287 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4288 return VERR_EM_INTERPRETER;
4289 }
4290
4291 VBOXSTRICTRC rcStrict;
4292 if (IoExitInfo.n.u1STR)
4293 {
4294 /* INS/OUTS - I/O String instruction. */
4295 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4296
4297 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4298 * in EXITINFO1? Investigate once this thing is up and running. */
4299
4300 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4301 if (rcStrict == VINF_SUCCESS)
4302 {
4303 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4304 {
4305 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4306 (DISCPUMODE)pDis->uAddrMode, cbValue);
4307 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4308 }
4309 else
4310 {
4311 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4312 (DISCPUMODE)pDis->uAddrMode, cbValue);
4313 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4314 }
4315 }
4316 else
4317 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
4318 }
4319 else
4320 {
4321 /* IN/OUT - I/O instruction. */
4322 Assert(!IoExitInfo.n.u1REP);
4323
4324 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4325 {
4326 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
4327 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4328 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4329
4330 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4331 }
4332 else
4333 {
4334 uint32_t u32Val = 0;
4335
4336 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
4337 if (IOM_SUCCESS(rcStrict))
4338 {
4339 /* Save result of I/O IN instr. in AL/AX/EAX. */
4340 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4341 }
4342 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4343 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4344
4345 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4346 }
4347 }
4348
4349 if (IOM_SUCCESS(rcStrict))
4350 {
4351 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4352 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4353
4354 /*
4355 * If any I/O breakpoints are armed, we need to check if one triggered
4356 * and take appropriate action.
4357 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
4358 */
4359 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
4360 * execution engines about whether hyper BPs and such are pending. */
4361 uint32_t const uDr7 = pCtx->dr[7];
4362 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
4363 && X86_DR7_ANY_RW_IO(uDr7)
4364 && (pCtx->cr4 & X86_CR4_DE))
4365 || DBGFBpIsHwIoArmed(pVM)))
4366 {
4367 /* We're playing with the host CPU state here, make sure we don't preempt. */
4368 HM_DISABLE_PREEMPT_IF_NEEDED();
4369
4370 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4371 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
4372
4373 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
4374 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
4375 {
4376 /* Raise #DB. */
4377 pVmcb->guest.u64DR6 = pCtx->dr[6];
4378 pVmcb->guest.u64DR7 = pCtx->dr[7];
4379 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4380 hmR0SvmSetPendingXcptDB(pVCpu);
4381 }
4382 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
4383 else if ( rcStrict2 != VINF_SUCCESS
4384 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
4385 rcStrict = rcStrict2;
4386
4387 HM_RESTORE_PREEMPT_IF_NEEDED();
4388 }
4389
4390 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4391 }
4392
4393#ifdef VBOX_STRICT
4394 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4395 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4396 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4397 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4398 else
4399 {
4400 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
4401 * statuses, that the VMM device and some others may return. See
4402 * IOM_SUCCESS() for guidance. */
4403 AssertMsg( RT_FAILURE(rcStrict)
4404 || rcStrict == VINF_SUCCESS
4405 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
4406 || rcStrict == VINF_EM_DBG_BREAKPOINT
4407 || rcStrict == VINF_EM_RAW_GUEST_TRAP
4408 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
4409 }
4410#endif
4411 return VBOXSTRICTRC_TODO(rcStrict);
4412}
4413
4414
4415/**
4416 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4417 * #VMEXIT.
4418 */
4419HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4420{
4421 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4422 PVM pVM = pVCpu->CTX_SUFF(pVM);
4423 Assert(pVM->hm.s.fNestedPaging);
4424
4425 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4426
4427 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4428 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4429 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4430 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4431
4432 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4433
4434#ifdef VBOX_HM_WITH_GUEST_PATCHING
4435 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4436 if ( pVM->hm.s.fTRPPatchingAllowed
4437 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
4438 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
4439 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
4440 && !CPUMGetGuestCPL(pVCpu)
4441 && !CPUMIsGuestInLongModeEx(pCtx)
4442 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4443 {
4444 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4445 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4446
4447 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
4448 {
4449 /* Only attempt to patch the instruction once. */
4450 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4451 if (!pPatch)
4452 return VINF_EM_HM_PATCH_TPR_INSTR;
4453 }
4454 }
4455#endif
4456
4457 /*
4458 * Determine the nested paging mode.
4459 */
4460 PGMMODE enmNestedPagingMode;
4461#if HC_ARCH_BITS == 32
4462 if (CPUMIsGuestInLongModeEx(pCtx))
4463 enmNestedPagingMode = PGMMODE_AMD64_NX;
4464 else
4465#endif
4466 enmNestedPagingMode = PGMGetHostMode(pVM);
4467
4468 /*
4469 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
4470 */
4471 int rc;
4472 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
4473 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
4474 {
4475 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
4476 u32ErrCode);
4477 rc = VBOXSTRICTRC_VAL(rc2);
4478
4479 /*
4480 * If we succeed, resume guest execution.
4481 * If we fail in interpreting the instruction because we couldn't get the guest physical address
4482 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4483 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4484 * weird case. See @bugref{6043}.
4485 */
4486 if ( rc == VINF_SUCCESS
4487 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4488 || rc == VERR_PAGE_NOT_PRESENT)
4489 {
4490 /* Successfully handled MMIO operation. */
4491 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4492 rc = VINF_SUCCESS;
4493 }
4494 return rc;
4495 }
4496
4497 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
4498 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
4499 TRPMResetTrap(pVCpu);
4500
4501 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
4502
4503 /*
4504 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
4505 */
4506 if ( rc == VINF_SUCCESS
4507 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4508 || rc == VERR_PAGE_NOT_PRESENT)
4509 {
4510 /* We've successfully synced our shadow page tables. */
4511 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4512 rc = VINF_SUCCESS;
4513 }
4514
4515 return rc;
4516}
4517
4518
4519/**
4520 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
4521 */
4522HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4523{
4524 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4525
4526 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4527 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one before reentry. */
4528 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
4529
4530 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
4531 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
4532 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
4533
4534 /* Deliver the pending interrupt via hmR0SvmPreRunGuest()->hmR0SvmInjectEventVmcb() and resume guest execution. */
4535 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4536 return VINF_SUCCESS;
4537}
4538
4539
4540/**
4541 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
4542 */
4543HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4544{
4545 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4546
4547#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
4548 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4549#endif
4550
4551 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
4552 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4553 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
4554 && pVCpu->hm.s.Event.fPending)
4555 {
4556 /*
4557 * AMD-V does not provide us with the original exception but we have it in u64IntrInfo since we
4558 * injected the event during VM-entry. Software interrupts and exceptions will be regenerated
4559 * when the recompiler restarts the instruction.
4560 */
4561 SVMEVENT Event;
4562 Event.u = pVCpu->hm.s.Event.u64IntrInfo;
4563 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
4564 || Event.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4565 {
4566 pVCpu->hm.s.Event.fPending = false;
4567 }
4568 else
4569 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery. Kept pending u8Vector=%#x\n", Event.n.u8Vector));
4570 }
4571
4572 /** @todo Emulate task switch someday, currently just going back to ring-3 for
4573 * emulation. */
4574 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
4575 return VERR_EM_INTERPRETER;
4576}
4577
4578
4579/**
4580 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
4581 */
4582HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4583{
4584 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4585
4586 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4587 if (RT_LIKELY(rc == VINF_SUCCESS))
4588 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4589 else
4590 hmR0SvmSetPendingXcptUD(pVCpu);
4591 return VINF_SUCCESS;
4592}
4593
4594
4595/**
4596 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
4597 * #VMEXIT.
4598 */
4599HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4600{
4601 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4602
4603 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4604
4605 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
4606 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4607 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4608 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
4609 PVM pVM = pVCpu->CTX_SUFF(pVM);
4610
4611#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
4612 if (pVM->hm.s.fNestedPaging)
4613 {
4614 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4615 if (!pSvmTransient->fVectoringPF)
4616 {
4617 /* A genuine guest #PF, reflect it to the guest. */
4618 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4619 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
4620 uFaultAddress, u32ErrCode));
4621 }
4622 else
4623 {
4624 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4625 hmR0SvmSetPendingXcptDF(pVCpu);
4626 Log4(("Pending #DF due to vectoring #PF. NP\n"));
4627 }
4628 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4629 return VINF_SUCCESS;
4630 }
4631#endif
4632
4633 Assert(!pVM->hm.s.fNestedPaging);
4634
4635#ifdef VBOX_HM_WITH_GUEST_PATCHING
4636 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
4637 if ( pVM->hm.s.fTRPPatchingAllowed
4638 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
4639 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
4640 && !CPUMGetGuestCPL(pVCpu)
4641 && !CPUMIsGuestInLongModeEx(pCtx)
4642 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
4643 {
4644 RTGCPHYS GCPhysApicBase;
4645 GCPhysApicBase = pCtx->msrApicBase;
4646 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4647
4648 /* Check if the page at the fault-address is the APIC base. */
4649 RTGCPHYS GCPhysPage;
4650 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
4651 if ( rc2 == VINF_SUCCESS
4652 && GCPhysPage == GCPhysApicBase)
4653 {
4654 /* Only attempt to patch the instruction once. */
4655 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
4656 if (!pPatch)
4657 return VINF_EM_HM_PATCH_TPR_INSTR;
4658 }
4659 }
4660#endif
4661
4662 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
4663 pCtx->rip, u32ErrCode, pCtx->cr3));
4664
4665 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
4666 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
4667
4668 Log4(("#PF rc=%Rrc\n", rc));
4669
4670 if (rc == VINF_SUCCESS)
4671 {
4672 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
4673 TRPMResetTrap(pVCpu);
4674 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
4675 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
4676 return rc;
4677 }
4678 else if (rc == VINF_EM_RAW_GUEST_TRAP)
4679 {
4680 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
4681
4682 if (!pSvmTransient->fVectoringPF)
4683 {
4684 /* It's a guest page fault and needs to be reflected to the guest. */
4685 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
4686 TRPMResetTrap(pVCpu);
4687 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4688 }
4689 else
4690 {
4691 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
4692 TRPMResetTrap(pVCpu);
4693 hmR0SvmSetPendingXcptDF(pVCpu);
4694 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
4695 }
4696
4697 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
4698 return VINF_SUCCESS;
4699 }
4700
4701 TRPMResetTrap(pVCpu);
4702 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
4703 return rc;
4704}
4705
4706
4707/**
4708 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
4709 * Conditional #VMEXIT.
4710 */
4711HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4712{
4713 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4714
4715 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4716
4717#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
4718 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
4719#endif
4720
4721 /* We're playing with the host CPU state here, make sure we don't preempt. */
4722 HM_DISABLE_PREEMPT_IF_NEEDED();
4723
4724 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
4725 int rc = CPUMR0LoadGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4726 if (rc == VINF_SUCCESS)
4727 {
4728 Assert(CPUMIsGuestFPUStateActive(pVCpu));
4729 HM_RESTORE_PREEMPT_IF_NEEDED();
4730
4731 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4732 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
4733 return VINF_SUCCESS;
4734 }
4735
4736 HM_RESTORE_PREEMPT_IF_NEEDED();
4737
4738 /* Forward #NM to the guest. */
4739 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
4740 hmR0SvmSetPendingXcptNM(pVCpu);
4741 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
4742 return VINF_SUCCESS;
4743}
4744
4745
4746/**
4747 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
4748 * Conditional #VMEXIT.
4749 */
4750HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4751{
4752 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4753
4754 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4755
4756 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
4757
4758 if (!(pCtx->cr0 & X86_CR0_NE))
4759 {
4760 /* Old-style FPU error reporting needs some extra work. */
4761 /** @todo don't fall back to the recompiler, but do it manually. */
4762 return VERR_EM_INTERPRETER;
4763 }
4764
4765 hmR0SvmSetPendingXcptMF(pVCpu);
4766 return VINF_SUCCESS;
4767}
4768
4769
4770/**
4771 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
4772 * #VMEXIT.
4773 */
4774HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4775{
4776 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4777
4778 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4779
4780 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
4781
4782 /* If we set the trap flag above, we have to clear it. */
4783 if (pVCpu->hm.s.fClearTrapFlag)
4784 {
4785 pVCpu->hm.s.fClearTrapFlag = false;
4786 pCtx->eflags.Bits.u1TF = 0;
4787 }
4788
4789 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
4790 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
4791 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4792 PVM pVM = pVCpu->CTX_SUFF(pVM);
4793 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
4794 if (rc == VINF_EM_RAW_GUEST_TRAP)
4795 {
4796 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
4797 if (CPUMIsHyperDebugStateActive(pVCpu))
4798 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
4799
4800 /* Reflect the exception back to the guest. */
4801 hmR0SvmSetPendingXcptDB(pVCpu);
4802 rc = VINF_SUCCESS;
4803 }
4804
4805 /*
4806 * Update DR6.
4807 */
4808 if (CPUMIsHyperDebugStateActive(pVCpu))
4809 {
4810 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
4811 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
4812 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4813 }
4814 else
4815 {
4816 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
4817 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
4818 }
4819
4820 return rc;
4821}
4822
4823/** @} */
4824
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette