VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 57247

Last change on this file since 57247 was 57237, checked in by vboxsync, 9 years ago

Fix doxygen bugref w/ comments to use the URL format.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 206.8 KB
Line 
1/* $Id: HMSVMR0.cpp 57237 2015-08-07 10:24:50Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24
25#include <VBox/vmm/pdmapi.h>
26#include <VBox/vmm/dbgf.h>
27#include <VBox/vmm/iem.h>
28#include <VBox/vmm/iom.h>
29#include <VBox/vmm/tm.h>
30#include <VBox/vmm/gim.h>
31#include "HMInternal.h"
32#include <VBox/vmm/vm.h>
33#include "HMSVMR0.h"
34#include "dtrace/VBoxVMM.h"
35
36#ifdef DEBUG_ramshankar
37# define HMSVM_SYNC_FULL_GUEST_STATE
38# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
39# define HMSVM_ALWAYS_TRAP_PF
40# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
41#endif
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47#ifdef VBOX_WITH_STATISTICS
48# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
49 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
50 if ((u64ExitCode) == SVM_EXIT_NPF) \
51 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
52 else \
53 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
54 } while (0)
55#else
56# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
57#endif
58
59/** If we decide to use a function table approach this can be useful to
60 * switch to a "static DECLCALLBACK(int)". */
61#define HMSVM_EXIT_DECL static int
62
63/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
64 *
65 * The CPU format of the segment attribute is described in X86DESCATTRBITS
66 * which is 16-bits (i.e. includes 4 bits of the segment limit).
67 *
68 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
69 * only the attribute bits and nothing else). Upper 4-bits are unused.
70 *
71 * @{ */
72#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
73#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
74/** @} */
75
76/** @name Macros for loading, storing segment registers to/from the VMCB.
77 * @{ */
78#define HMSVM_LOAD_SEG_REG(REG, reg) \
79 do \
80 { \
81 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
82 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
83 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
84 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
85 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
86 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
87 } while (0)
88
89#define HMSVM_SAVE_SEG_REG(REG, reg) \
90 do \
91 { \
92 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
93 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
94 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
95 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
96 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
97 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
98 } while (0)
99/** @} */
100
101/** Macro for checking and returning from the using function for
102 * \#VMEXIT intercepts that maybe caused during delivering of another
103 * event in the guest. */
104#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
105 do \
106 { \
107 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
108 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT)) \
109 return VINF_SUCCESS; \
110 else if (RT_UNLIKELY(rc == VINF_EM_RESET)) \
111 return rc; \
112 } while (0)
113
114/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
115 * instruction that exited. */
116#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
117 do { \
118 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
119 (a_rc) = VINF_EM_DBG_STEPPED; \
120 } while (0)
121
122/** Assert that preemption is disabled or covered by thread-context hooks. */
123#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
124 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
125
126/** Assert that we haven't migrated CPUs when thread-context hooks are not
127 * used. */
128#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
129 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
130 ("Illegal migration! Entered on CPU %u Current %u\n", \
131 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
132
133/** Exception bitmap mask for all contributory exceptions.
134 *
135 * Page fault is deliberately excluded here as it's conditional as to whether
136 * it's contributory or benign. Page faults are handled separately.
137 */
138#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
139 | RT_BIT(X86_XCPT_DE))
140
141/** @name VMCB Clean Bits.
142 *
143 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
144 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
145 * memory.
146 *
147 * @{ */
148/** All intercepts vectors, TSC offset, PAUSE filter counter. */
149#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
150/** I/O permission bitmap, MSR permission bitmap. */
151#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
152/** ASID. */
153#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
154/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
155V_INTR_VECTOR. */
156#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
157/** Nested Paging: Nested CR3 (nCR3), PAT. */
158#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
159/** Control registers (CR0, CR3, CR4, EFER). */
160#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
161/** Debug registers (DR6, DR7). */
162#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
163/** GDT, IDT limit and base. */
164#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
165/** Segment register: CS, SS, DS, ES limit and base. */
166#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
167/** CR2.*/
168#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
169/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
170#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
171/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
172PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
173#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
174/** Mask of all valid VMCB Clean bits. */
175#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
176 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
177 | HMSVM_VMCB_CLEAN_ASID \
178 | HMSVM_VMCB_CLEAN_TPR \
179 | HMSVM_VMCB_CLEAN_NP \
180 | HMSVM_VMCB_CLEAN_CRX_EFER \
181 | HMSVM_VMCB_CLEAN_DRX \
182 | HMSVM_VMCB_CLEAN_DT \
183 | HMSVM_VMCB_CLEAN_SEG \
184 | HMSVM_VMCB_CLEAN_CR2 \
185 | HMSVM_VMCB_CLEAN_LBR \
186 | HMSVM_VMCB_CLEAN_AVIC)
187/** @} */
188
189/** @name SVM transient.
190 *
191 * A state structure for holding miscellaneous information across AMD-V
192 * VMRUN/#VMEXIT operation, restored after the transition.
193 *
194 * @{ */
195typedef struct SVMTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG fEFlags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202
203 /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
204 uint64_t u64ExitCode;
205 /** The guest's TPR value used for TPR shadowing. */
206 uint8_t u8GuestTpr;
207 /** Alignment. */
208 uint8_t abAlignment0[7];
209
210 /** Whether the guest FPU state was active at the time of #VMEXIT. */
211 bool fWasGuestFPUStateActive;
212 /** Whether the guest debug state was active at the time of #VMEXIT. */
213 bool fWasGuestDebugStateActive;
214 /** Whether the hyper debug state was active at the time of #VMEXIT. */
215 bool fWasHyperDebugStateActive;
216 /** Whether the TSC offset mode needs to be updated. */
217 bool fUpdateTscOffsetting;
218 /** Whether the TSC_AUX MSR needs restoring on #VMEXIT. */
219 bool fRestoreTscAuxMsr;
220 /** Whether the #VMEXIT was caused by a page-fault during delivery of a
221 * contributary exception or a page-fault. */
222 bool fVectoringDoublePF;
223 /** Whether the #VMEXIT was caused by a page-fault during delivery of an
224 * external interrupt or NMI. */
225 bool fVectoringPF;
226} SVMTRANSIENT, *PSVMTRANSIENT;
227AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
228AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
229/** @} */
230
231/**
232 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
233 */
234typedef enum SVMMSREXITREAD
235{
236 /** Reading this MSR causes a #VMEXIT. */
237 SVMMSREXIT_INTERCEPT_READ = 0xb,
238 /** Reading this MSR does not cause a #VMEXIT. */
239 SVMMSREXIT_PASSTHRU_READ
240} SVMMSREXITREAD;
241
242/**
243 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
244 */
245typedef enum SVMMSREXITWRITE
246{
247 /** Writing to this MSR causes a #VMEXIT. */
248 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
249 /** Writing to this MSR does not cause a #VMEXIT. */
250 SVMMSREXIT_PASSTHRU_WRITE
251} SVMMSREXITWRITE;
252
253/**
254 * SVM #VMEXIT handler.
255 *
256 * @returns VBox status code.
257 * @param pVCpu Pointer to the VMCPU.
258 * @param pMixedCtx Pointer to the guest-CPU context.
259 * @param pSvmTransient Pointer to the SVM-transient structure.
260 */
261typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262
263/*******************************************************************************
264* Internal Functions *
265*******************************************************************************/
266static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
267static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
268static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
269
270/** @name #VMEXIT handlers.
271 * @{
272 */
273static FNSVMEXITHANDLER hmR0SvmExitIntr;
274static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
275static FNSVMEXITHANDLER hmR0SvmExitInvd;
276static FNSVMEXITHANDLER hmR0SvmExitCpuid;
277static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
278static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
279static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
280static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
281static FNSVMEXITHANDLER hmR0SvmExitHlt;
282static FNSVMEXITHANDLER hmR0SvmExitMonitor;
283static FNSVMEXITHANDLER hmR0SvmExitMwait;
284static FNSVMEXITHANDLER hmR0SvmExitShutdown;
285static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
286static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
287static FNSVMEXITHANDLER hmR0SvmExitSetPendingXcptUD;
288static FNSVMEXITHANDLER hmR0SvmExitMsr;
289static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
290static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
291static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
292static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
293static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
294static FNSVMEXITHANDLER hmR0SvmExitVIntr;
295static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
296static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
297static FNSVMEXITHANDLER hmR0SvmExitIret;
298static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
299static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
300static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
301static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
302static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
303/** @} */
304
305DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
306
307/*******************************************************************************
308* Global Variables *
309*******************************************************************************/
310/** Ring-0 memory object for the IO bitmap. */
311RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
312/** Physical address of the IO bitmap. */
313RTHCPHYS g_HCPhysIOBitmap = 0;
314/** Virtual address of the IO bitmap. */
315R0PTRTYPE(void *) g_pvIOBitmap = NULL;
316
317
318/**
319 * Sets up and activates AMD-V on the current CPU.
320 *
321 * @returns VBox status code.
322 * @param pCpu Pointer to the CPU info struct.
323 * @param pVM Pointer to the VM (can be NULL after a resume!).
324 * @param pvCpuPage Pointer to the global CPU page.
325 * @param HCPhysCpuPage Physical address of the global CPU page.
326 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
327 * @param pvArg Unused on AMD-V.
328 */
329VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
330 void *pvArg)
331{
332 Assert(!fEnabledByHost);
333 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
334 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
335 Assert(pvCpuPage);
336 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
337
338 NOREF(pvArg);
339 NOREF(fEnabledByHost);
340
341 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
342 RTCCUINTREG fEFlags = ASMIntDisableFlags();
343
344 /*
345 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
346 */
347 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
348 if (u64HostEfer & MSR_K6_EFER_SVME)
349 {
350 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
351 if ( pVM
352 && pVM->hm.s.svm.fIgnoreInUseError)
353 {
354 pCpu->fIgnoreAMDVInUseError = true;
355 }
356
357 if (!pCpu->fIgnoreAMDVInUseError)
358 {
359 ASMSetFlags(fEFlags);
360 return VERR_SVM_IN_USE;
361 }
362 }
363
364 /* Turn on AMD-V in the EFER MSR. */
365 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
366
367 /* Write the physical page address where the CPU will store the host state while executing the VM. */
368 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
369
370 /* Restore interrupts. */
371 ASMSetFlags(fEFlags);
372
373 /*
374 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
375 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
376 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
377 * to flush the TLB with before using a new ASID.
378 */
379 pCpu->fFlushAsidBeforeUse = true;
380
381 /*
382 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
383 */
384 ++pCpu->cTlbFlushes;
385
386 return VINF_SUCCESS;
387}
388
389
390/**
391 * Deactivates AMD-V on the current CPU.
392 *
393 * @returns VBox status code.
394 * @param pCpu Pointer to the CPU info struct.
395 * @param pvCpuPage Pointer to the global CPU page.
396 * @param HCPhysCpuPage Physical address of the global CPU page.
397 */
398VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
399{
400 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
401 AssertReturn( HCPhysCpuPage
402 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
403 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
404 NOREF(pCpu);
405
406 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
407 RTCCUINTREG fEFlags = ASMIntDisableFlags();
408
409 /* Turn off AMD-V in the EFER MSR. */
410 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
411 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
412
413 /* Invalidate host state physical address. */
414 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
415
416 /* Restore interrupts. */
417 ASMSetFlags(fEFlags);
418
419 return VINF_SUCCESS;
420}
421
422
423/**
424 * Does global AMD-V initialization (called during module initialization).
425 *
426 * @returns VBox status code.
427 */
428VMMR0DECL(int) SVMR0GlobalInit(void)
429{
430 /*
431 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
432 * once globally here instead of per-VM.
433 */
434 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
435 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
436 if (RT_FAILURE(rc))
437 return rc;
438
439 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
440 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
441
442 /* Set all bits to intercept all IO accesses. */
443 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
444 return VINF_SUCCESS;
445}
446
447
448/**
449 * Does global AMD-V termination (called during module termination).
450 */
451VMMR0DECL(void) SVMR0GlobalTerm(void)
452{
453 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
454 {
455 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
456 g_pvIOBitmap = NULL;
457 g_HCPhysIOBitmap = 0;
458 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
459 }
460}
461
462
463/**
464 * Frees any allocated per-VCPU structures for a VM.
465 *
466 * @param pVM Pointer to the VM.
467 */
468DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
469{
470 for (uint32_t i = 0; i < pVM->cCpus; i++)
471 {
472 PVMCPU pVCpu = &pVM->aCpus[i];
473 AssertPtr(pVCpu);
474
475 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
476 {
477 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
478 pVCpu->hm.s.svm.pvVmcbHost = 0;
479 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
480 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
481 }
482
483 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
484 {
485 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
486 pVCpu->hm.s.svm.pvVmcb = 0;
487 pVCpu->hm.s.svm.HCPhysVmcb = 0;
488 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
489 }
490
491 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
492 {
493 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
494 pVCpu->hm.s.svm.pvMsrBitmap = 0;
495 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
496 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
497 }
498 }
499}
500
501
502/**
503 * Does per-VM AMD-V initialization.
504 *
505 * @returns VBox status code.
506 * @param pVM Pointer to the VM.
507 */
508VMMR0DECL(int) SVMR0InitVM(PVM pVM)
509{
510 int rc = VERR_INTERNAL_ERROR_5;
511
512 /*
513 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
514 */
515 uint32_t u32Family;
516 uint32_t u32Model;
517 uint32_t u32Stepping;
518 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
519 {
520 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
521 pVM->hm.s.svm.fAlwaysFlushTLB = true;
522 }
523
524 /*
525 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
526 */
527 for (VMCPUID i = 0; i < pVM->cCpus; i++)
528 {
529 PVMCPU pVCpu = &pVM->aCpus[i];
530 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
531 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
532 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
533 }
534
535 for (VMCPUID i = 0; i < pVM->cCpus; i++)
536 {
537 PVMCPU pVCpu = &pVM->aCpus[i];
538
539 /*
540 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
541 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
542 */
543 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
544 if (RT_FAILURE(rc))
545 goto failure_cleanup;
546
547 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
548 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
549 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
550 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
551
552 /*
553 * Allocate one page for the guest-state VMCB.
554 */
555 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
556 if (RT_FAILURE(rc))
557 goto failure_cleanup;
558
559 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
560 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
561 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
562 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
563
564 /*
565 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
566 * SVM to not require one.
567 */
568 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
569 if (RT_FAILURE(rc))
570 goto failure_cleanup;
571
572 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
573 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
574 /* Set all bits to intercept all MSR accesses (changed later on). */
575 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, UINT32_C(0xffffffff));
576 }
577
578 return VINF_SUCCESS;
579
580failure_cleanup:
581 hmR0SvmFreeStructs(pVM);
582 return rc;
583}
584
585
586/**
587 * Does per-VM AMD-V termination.
588 *
589 * @returns VBox status code.
590 * @param pVM Pointer to the VM.
591 */
592VMMR0DECL(int) SVMR0TermVM(PVM pVM)
593{
594 hmR0SvmFreeStructs(pVM);
595 return VINF_SUCCESS;
596}
597
598
599/**
600 * Sets the permission bits for the specified MSR in the MSRPM.
601 *
602 * @param pVCpu Pointer to the VMCPU.
603 * @param uMsr The MSR for which the access permissions are being set.
604 * @param enmRead MSR read permissions.
605 * @param enmWrite MSR write permissions.
606 */
607static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
608{
609 unsigned ulBit;
610 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
611
612 /*
613 * Layout:
614 * Byte offset MSR range
615 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
616 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
617 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
618 * 0x1800 - 0x1fff Reserved
619 */
620 if (uMsr <= 0x00001FFF)
621 {
622 /* Pentium-compatible MSRs. */
623 ulBit = uMsr * 2;
624 }
625 else if ( uMsr >= 0xC0000000
626 && uMsr <= 0xC0001FFF)
627 {
628 /* AMD Sixth Generation x86 Processor MSRs. */
629 ulBit = (uMsr - 0xC0000000) * 2;
630 pbMsrBitmap += 0x800;
631 }
632 else if ( uMsr >= 0xC0010000
633 && uMsr <= 0xC0011FFF)
634 {
635 /* AMD Seventh and Eighth Generation Processor MSRs. */
636 ulBit = (uMsr - 0xC0001000) * 2;
637 pbMsrBitmap += 0x1000;
638 }
639 else
640 {
641 AssertFailed();
642 return;
643 }
644
645 Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
646 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
647 ASMBitSet(pbMsrBitmap, ulBit);
648 else
649 ASMBitClear(pbMsrBitmap, ulBit);
650
651 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
652 ASMBitSet(pbMsrBitmap, ulBit + 1);
653 else
654 ASMBitClear(pbMsrBitmap, ulBit + 1);
655
656 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
657 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
658}
659
660
661/**
662 * Sets up AMD-V for the specified VM.
663 * This function is only called once per-VM during initalization.
664 *
665 * @returns VBox status code.
666 * @param pVM Pointer to the VM.
667 */
668VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
669{
670 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
671 AssertReturn(pVM, VERR_INVALID_PARAMETER);
672 Assert(pVM->hm.s.svm.fSupported);
673
674 for (VMCPUID i = 0; i < pVM->cCpus; i++)
675 {
676 PVMCPU pVCpu = &pVM->aCpus[i];
677 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
678
679 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
680
681 /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
682 Assert(!pVCpu->hm.s.idxExitHistoryFree);
683 HMCPU_EXIT_HISTORY_RESET(pVCpu);
684
685 /* Trap exceptions unconditionally (debug purposes). */
686#ifdef HMSVM_ALWAYS_TRAP_PF
687 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
688#endif
689#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
690 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
691 pVmcb->ctrl.u32InterceptException |= 0
692 | RT_BIT(X86_XCPT_BP)
693 | RT_BIT(X86_XCPT_DB)
694 | RT_BIT(X86_XCPT_DE)
695 | RT_BIT(X86_XCPT_NM)
696 | RT_BIT(X86_XCPT_UD)
697 | RT_BIT(X86_XCPT_NP)
698 | RT_BIT(X86_XCPT_SS)
699 | RT_BIT(X86_XCPT_GP)
700 | RT_BIT(X86_XCPT_PF)
701 | RT_BIT(X86_XCPT_MF)
702 ;
703#endif
704
705 /* Set up unconditional intercepts and conditions. */
706 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a #VMEXIT. */
707 | SVM_CTRL1_INTERCEPT_NMI /* Non-maskable interrupts causes a #VMEXIT. */
708 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a #VMEXIT. */
709 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a #VMEXIT. */
710 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a #VMEXIT. */
711 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a #VMEXIT. */
712 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a #VMEXIT. */
713 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO #VMEXITs. */
714 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a #VMEXIT.*/
715 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a #VMEXIT. */
716 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a #VMEXIT. */
717 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
718
719 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a #VMEXIT. */
720 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a #VMEXIT. */
721 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a #VMEXIT. */
722 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a #VMEXIT. */
723 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a #VMEXIT. */
724 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a #VMEXIT. */
725 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a #VMEXIT. */
726 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a #VMEXIT. */
727 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a #VMEXIT. */
728 | SVM_CTRL2_INTERCEPT_MWAIT /* MWAIT causes a #VMEXIT. */
729 | SVM_CTRL2_INTERCEPT_XSETBV; /* XSETBV causes a #VMEXIT. */
730
731 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
732 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
733
734 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
735 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
736
737 /* Intercept all DRx reads and writes by default. Changed later on. */
738 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
739 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
740
741 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
742 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
743
744 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
745 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
746 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
747
748 /* Set IO and MSR bitmap permission bitmap physical addresses. */
749 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
750 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
751
752 /* No LBR virtualization. */
753 pVmcb->ctrl.u64LBRVirt = 0;
754
755 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
756 pVmcb->ctrl.u64VmcbCleanBits = 0;
757
758 /* The host ASID MBZ, for the guest start with 1. */
759 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
760
761 /*
762 * Setup the PAT MSR (applicable for Nested Paging only).
763 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
764 * so choose type 6 for all PAT slots.
765 */
766 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
767
768 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
769 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
770
771 /* Without Nested Paging, we need additionally intercepts. */
772 if (!pVM->hm.s.fNestedPaging)
773 {
774 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
775 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
776 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
777
778 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
779 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
780 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
781
782 /* Page faults must be intercepted to implement shadow paging. */
783 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
784 }
785
786#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
787 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
788#endif
789
790 /* Apply the exceptions intercepts needed by the GIM provider. */
791 if (pVCpu->hm.s.fGIMTrapXcptUD)
792 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_UD);
793
794 /*
795 * The following MSRs are saved/restored automatically during the world-switch.
796 * Don't intercept guest read/write accesses to these MSRs.
797 */
798 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
799 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
800 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
801 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
802 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
803 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
804 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
805 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
806 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
807 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
808 }
809
810 return VINF_SUCCESS;
811}
812
813
814/**
815 * Invalidates a guest page by guest virtual address.
816 *
817 * @returns VBox status code.
818 * @param pVM Pointer to the VM.
819 * @param pVCpu Pointer to the VMCPU.
820 * @param GCVirt Guest virtual address of the page to invalidate.
821 */
822VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
823{
824 AssertReturn(pVM, VERR_INVALID_PARAMETER);
825 Assert(pVM->hm.s.svm.fSupported);
826
827 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
828
829 /* Skip it if a TLB flush is already pending. */
830 if (!fFlushPending)
831 {
832 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
833
834 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
835 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
836
837#if HC_ARCH_BITS == 32
838 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
839 if (CPUMIsGuestInLongMode(pVCpu))
840 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
841 else
842#endif
843 {
844 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
845 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
846 }
847 }
848 return VINF_SUCCESS;
849}
850
851
852/**
853 * Flushes the appropriate tagged-TLB entries.
854 *
855 * @param pVM Pointer to the VM.
856 * @param pVCpu Pointer to the VMCPU.
857 */
858static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
859{
860 PVM pVM = pVCpu->CTX_SUFF(pVM);
861 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
862 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
863
864 /*
865 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
866 * This can happen both for start & resume due to long jumps back to ring-3.
867 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
868 * so we cannot reuse the ASIDs without flushing.
869 */
870 bool fNewAsid = false;
871 Assert(pCpu->idCpu != NIL_RTCPUID);
872 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
873 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
874 {
875 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
876 pVCpu->hm.s.fForceTLBFlush = true;
877 fNewAsid = true;
878 }
879
880 /* Set TLB flush state as checked until we return from the world switch. */
881 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
882
883 /* Check for explicit TLB shootdowns. */
884 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
885 {
886 pVCpu->hm.s.fForceTLBFlush = true;
887 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
888 }
889
890 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
891
892 if (pVM->hm.s.svm.fAlwaysFlushTLB)
893 {
894 /*
895 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
896 */
897 pCpu->uCurrentAsid = 1;
898 pVCpu->hm.s.uCurrentAsid = 1;
899 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
900 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
901
902 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
903 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
904 }
905 else if (pVCpu->hm.s.fForceTLBFlush)
906 {
907 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
908 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
909
910 if (fNewAsid)
911 {
912 ++pCpu->uCurrentAsid;
913 bool fHitASIDLimit = false;
914 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
915 {
916 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
917 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
918 fHitASIDLimit = true;
919
920 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
921 {
922 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
923 pCpu->fFlushAsidBeforeUse = true;
924 }
925 else
926 {
927 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
928 pCpu->fFlushAsidBeforeUse = false;
929 }
930 }
931
932 if ( !fHitASIDLimit
933 && pCpu->fFlushAsidBeforeUse)
934 {
935 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
936 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
937 else
938 {
939 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
940 pCpu->fFlushAsidBeforeUse = false;
941 }
942 }
943
944 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
945 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
946 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
947 }
948 else
949 {
950 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
951 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
952 else
953 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
954 }
955
956 pVCpu->hm.s.fForceTLBFlush = false;
957 }
958 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
959 * not be executed. See hmQueueInvlPage() where it is commented
960 * out. Support individual entry flushing someday. */
961#if 0
962 else
963 {
964 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
965 {
966 /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
967 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
968 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
969 SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
970
971 pVCpu->hm.s.TlbShootdown.cPages = 0;
972 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
973 }
974 }
975#endif
976
977
978 /* Update VMCB with the ASID. */
979 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
980 {
981 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
982 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
983 }
984
985 AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
986 ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
987 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
988 ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
989 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
990 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
991 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
992 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
993
994#ifdef VBOX_WITH_STATISTICS
995 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
996 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
997 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
998 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
999 {
1000 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1001 }
1002 else
1003 {
1004 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1005 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1006 }
1007#endif
1008}
1009
1010
1011/** @name 64-bit guest on 32-bit host OS helper functions.
1012 *
1013 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1014 * mode (code segment, paging). These wrappers/helpers perform the necessary
1015 * bits for the 32->64 switcher.
1016 *
1017 * @{ */
1018#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1019/**
1020 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1021 *
1022 * @returns VBox status code.
1023 * @param HCPhysVmcbHost Physical address of host VMCB.
1024 * @param HCPhysVmcb Physical address of the VMCB.
1025 * @param pCtx Pointer to the guest-CPU context.
1026 * @param pVM Pointer to the VM.
1027 * @param pVCpu Pointer to the VMCPU.
1028 */
1029DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1030{
1031 uint32_t aParam[8];
1032 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1033 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
1034 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1035 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
1036 aParam[4] = VM_RC_ADDR(pVM, pVM);
1037 aParam[5] = 0;
1038 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1039 aParam[7] = 0;
1040
1041 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1042}
1043
1044
1045/**
1046 * Executes the specified VMRUN handler in 64-bit mode.
1047 *
1048 * @returns VBox status code.
1049 * @param pVM Pointer to the VM.
1050 * @param pVCpu Pointer to the VMCPU.
1051 * @param pCtx Pointer to the guest-CPU context.
1052 * @param enmOp The operation to perform.
1053 * @param cParams Number of parameters.
1054 * @param paParam Array of 32-bit parameters.
1055 */
1056VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
1057 uint32_t cParams, uint32_t *paParam)
1058{
1059 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1060 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1061
1062 /* Disable interrupts. */
1063 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
1064
1065#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1066 RTCPUID idHostCpu = RTMpCpuId();
1067 CPUMR0SetLApic(pVCpu, idHostCpu);
1068#endif
1069
1070 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1071 CPUMSetHyperEIP(pVCpu, enmOp);
1072 for (int i = (int)cParams - 1; i >= 0; i--)
1073 CPUMPushHyper(pVCpu, paParam[i]);
1074
1075 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1076 /* Call the switcher. */
1077 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1078 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1079
1080 /* Restore interrupts. */
1081 ASMSetFlags(uOldEFlags);
1082 return rc;
1083}
1084
1085#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1086/** @} */
1087
1088
1089/**
1090 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1091 * the corresponding VMCB Clean bit.
1092 *
1093 * @param pVmcb Pointer to the VM control block.
1094 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1095 */
1096DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1097{
1098 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1099 {
1100 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1101 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1102 }
1103}
1104
1105
1106/**
1107 * Removes an exception from the intercept-exception bitmap in the VMCB and
1108 * updates the corresponding VMCB Clean bit.
1109 *
1110 * @param pVmcb Pointer to the VM control block.
1111 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1112 */
1113DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1114{
1115#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1116 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1117 {
1118 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1119 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1120 }
1121#endif
1122}
1123
1124
1125/**
1126 * Loads the guest CR0 control register into the guest-state area in the VMCB.
1127 * Although the guest CR0 is a separate field in the VMCB we have to consider
1128 * the FPU state itself which is shared between the host and the guest.
1129 *
1130 * @returns VBox status code.
1131 * @param pVM Pointer to the VMCPU.
1132 * @param pVmcb Pointer to the VM control block.
1133 * @param pCtx Pointer to the guest-CPU context.
1134 *
1135 * @remarks No-long-jump zone!!!
1136 */
1137static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1138{
1139 /*
1140 * Guest CR0.
1141 */
1142 PVM pVM = pVCpu->CTX_SUFF(pVM);
1143 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1144 {
1145 uint64_t u64GuestCR0 = pCtx->cr0;
1146
1147 /* Always enable caching. */
1148 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1149
1150 /*
1151 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1152 */
1153 if (!pVM->hm.s.fNestedPaging)
1154 {
1155 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1156 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1157 }
1158
1159 /*
1160 * Guest FPU bits.
1161 */
1162 bool fInterceptNM = false;
1163 bool fInterceptMF = false;
1164 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1165 if (CPUMIsGuestFPUStateActive(pVCpu))
1166 {
1167 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1168 if (!(pCtx->cr0 & X86_CR0_NE))
1169 {
1170 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1171 fInterceptMF = true;
1172 }
1173 }
1174 else
1175 {
1176 fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
1177 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1178 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1179 }
1180
1181 /*
1182 * Update the exception intercept bitmap.
1183 */
1184 if (fInterceptNM)
1185 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1186 else
1187 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1188
1189 if (fInterceptMF)
1190 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1191 else
1192 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1193
1194 pVmcb->guest.u64CR0 = u64GuestCR0;
1195 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1196 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
1197 }
1198}
1199
1200
1201/**
1202 * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
1203 *
1204 * @returns VBox status code.
1205 * @param pVCpu Pointer to the VMCPU.
1206 * @param pVmcb Pointer to the VM control block.
1207 * @param pCtx Pointer to the guest-CPU context.
1208 *
1209 * @remarks No-long-jump zone!!!
1210 */
1211static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1212{
1213 PVM pVM = pVCpu->CTX_SUFF(pVM);
1214
1215 /*
1216 * Guest CR2.
1217 */
1218 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
1219 {
1220 pVmcb->guest.u64CR2 = pCtx->cr2;
1221 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1222 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
1223 }
1224
1225 /*
1226 * Guest CR3.
1227 */
1228 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
1229 {
1230 if (pVM->hm.s.fNestedPaging)
1231 {
1232 PGMMODE enmShwPagingMode;
1233#if HC_ARCH_BITS == 32
1234 if (CPUMIsGuestInLongModeEx(pCtx))
1235 enmShwPagingMode = PGMMODE_AMD64_NX;
1236 else
1237#endif
1238 enmShwPagingMode = PGMGetHostMode(pVM);
1239
1240 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1241 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1242 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1243 pVmcb->guest.u64CR3 = pCtx->cr3;
1244 }
1245 else
1246 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1247
1248 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1249 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
1250 }
1251
1252 /*
1253 * Guest CR4.
1254 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
1255 */
1256 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
1257 {
1258 uint64_t u64GuestCR4 = pCtx->cr4;
1259 if (!pVM->hm.s.fNestedPaging)
1260 {
1261 switch (pVCpu->hm.s.enmShadowMode)
1262 {
1263 case PGMMODE_REAL:
1264 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1265 AssertFailed();
1266 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1267
1268 case PGMMODE_32_BIT: /* 32-bit paging. */
1269 u64GuestCR4 &= ~X86_CR4_PAE;
1270 break;
1271
1272 case PGMMODE_PAE: /* PAE paging. */
1273 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1274 /** Must use PAE paging as we could use physical memory > 4 GB */
1275 u64GuestCR4 |= X86_CR4_PAE;
1276 break;
1277
1278 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1279 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1280#ifdef VBOX_ENABLE_64_BITS_GUESTS
1281 break;
1282#else
1283 AssertFailed();
1284 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1285#endif
1286
1287 default: /* shut up gcc */
1288 AssertFailed();
1289 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1290 }
1291 }
1292
1293 pVmcb->guest.u64CR4 = u64GuestCR4;
1294 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1295
1296 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1297 pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1298
1299 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
1300 }
1301
1302 return VINF_SUCCESS;
1303}
1304
1305
1306/**
1307 * Loads the guest segment registers into the VMCB.
1308 *
1309 * @returns VBox status code.
1310 * @param pVCpu Pointer to the VMCPU.
1311 * @param pVmcb Pointer to the VM control block.
1312 * @param pCtx Pointer to the guest-CPU context.
1313 *
1314 * @remarks No-long-jump zone!!!
1315 */
1316static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1317{
1318 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1319 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
1320 {
1321 HMSVM_LOAD_SEG_REG(CS, cs);
1322 HMSVM_LOAD_SEG_REG(SS, ss);
1323 HMSVM_LOAD_SEG_REG(DS, ds);
1324 HMSVM_LOAD_SEG_REG(ES, es);
1325 HMSVM_LOAD_SEG_REG(FS, fs);
1326 HMSVM_LOAD_SEG_REG(GS, gs);
1327
1328 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1329 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1330 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
1331 }
1332
1333 /* Guest TR. */
1334 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
1335 {
1336 HMSVM_LOAD_SEG_REG(TR, tr);
1337 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
1338 }
1339
1340 /* Guest LDTR. */
1341 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
1342 {
1343 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1344 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
1345 }
1346
1347 /* Guest GDTR. */
1348 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
1349 {
1350 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1351 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1352 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1353 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
1354 }
1355
1356 /* Guest IDTR. */
1357 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
1358 {
1359 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1360 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1361 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1362 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
1363 }
1364}
1365
1366
1367/**
1368 * Loads the guest MSRs into the VMCB.
1369 *
1370 * @param pVCpu Pointer to the VMCPU.
1371 * @param pVmcb Pointer to the VM control block.
1372 * @param pCtx Pointer to the guest-CPU context.
1373 *
1374 * @remarks No-long-jump zone!!!
1375 */
1376static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1377{
1378 /* Guest Sysenter MSRs. */
1379 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1380 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1381 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1382
1383 /*
1384 * Guest EFER MSR.
1385 * AMD-V requires guest EFER.SVME to be set. Weird.
1386 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1387 */
1388 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
1389 {
1390 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1391 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1392 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
1393 }
1394
1395 /* 64-bit MSRs. */
1396 if (CPUMIsGuestInLongModeEx(pCtx))
1397 {
1398 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1399 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1400 }
1401 else
1402 {
1403 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1404 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1405 {
1406 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1407 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1408 }
1409 }
1410
1411
1412 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1413 * be writable in 32-bit mode. Clarify with AMD spec. */
1414 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1415 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1416 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1417 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1418 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1419}
1420
1421
1422/**
1423 * Loads the guest state into the VMCB and programs the necessary intercepts
1424 * accordingly.
1425 *
1426 * @param pVCpu Pointer to the VMCPU.
1427 * @param pVmcb Pointer to the VM control block.
1428 * @param pCtx Pointer to the guest-CPU context.
1429 *
1430 * @remarks No-long-jump zone!!!
1431 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1432 */
1433static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1434{
1435 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
1436 return;
1437 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1438 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1439
1440 bool fInterceptDB = false;
1441 bool fInterceptMovDRx = false;
1442
1443 /*
1444 * Anyone single stepping on the host side? If so, we'll have to use the
1445 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1446 * the VMM level like the VT-x implementations does.
1447 */
1448 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1449 if (fStepping)
1450 {
1451 pVCpu->hm.s.fClearTrapFlag = true;
1452 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1453 fInterceptDB = true;
1454 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1455 }
1456
1457 if ( fStepping
1458 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1459 {
1460 /*
1461 * Use the combined guest and host DRx values found in the hypervisor
1462 * register set because the debugger has breakpoints active or someone
1463 * is single stepping on the host side.
1464 *
1465 * Note! DBGF expects a clean DR6 state before executing guest code.
1466 */
1467#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1468 if ( CPUMIsGuestInLongModeEx(pCtx)
1469 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1470 {
1471 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1472 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1473 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1474 }
1475 else
1476#endif
1477 if (!CPUMIsHyperDebugStateActive(pVCpu))
1478 {
1479 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1480 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1481 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1482 }
1483
1484 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1485 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1486 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1487 {
1488 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1489 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1490 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1491 pVCpu->hm.s.fUsingHyperDR7 = true;
1492 }
1493
1494 /** @todo If we cared, we could optimize to allow the guest to read registers
1495 * with the same values. */
1496 fInterceptDB = true;
1497 fInterceptMovDRx = true;
1498 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1499 }
1500 else
1501 {
1502 /*
1503 * Update DR6, DR7 with the guest values if necessary.
1504 */
1505 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1506 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1507 {
1508 pVmcb->guest.u64DR7 = pCtx->dr[7];
1509 pVmcb->guest.u64DR6 = pCtx->dr[6];
1510 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1511 pVCpu->hm.s.fUsingHyperDR7 = false;
1512 }
1513
1514 /*
1515 * If the guest has enabled debug registers, we need to load them prior to
1516 * executing guest code so they'll trigger at the right time.
1517 */
1518 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1519 {
1520#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1521 if ( CPUMIsGuestInLongModeEx(pCtx)
1522 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1523 {
1524 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1525 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1526 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1527 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1528 }
1529 else
1530#endif
1531 if (!CPUMIsGuestDebugStateActive(pVCpu))
1532 {
1533 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1534 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1535 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1536 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1537 }
1538 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1539 }
1540 /*
1541 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1542 * intercept #DB as DR6 is updated in the VMCB.
1543 */
1544#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1545 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
1546 && !CPUMIsGuestDebugStateActive(pVCpu))
1547#else
1548 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1549#endif
1550 {
1551 fInterceptMovDRx = true;
1552 }
1553 }
1554
1555 /*
1556 * Set up the intercepts.
1557 */
1558 if (fInterceptDB)
1559 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_DB);
1560 else
1561 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_DB);
1562
1563 if (fInterceptMovDRx)
1564 {
1565 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1566 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1567 {
1568 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1569 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1570 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1571 }
1572 }
1573 else
1574 {
1575 if ( pVmcb->ctrl.u16InterceptRdDRx
1576 || pVmcb->ctrl.u16InterceptWrDRx)
1577 {
1578 pVmcb->ctrl.u16InterceptRdDRx = 0;
1579 pVmcb->ctrl.u16InterceptWrDRx = 0;
1580 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1581 }
1582 }
1583
1584 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
1585}
1586
1587
1588/**
1589 * Loads the guest APIC state (currently just the TPR).
1590 *
1591 * @returns VBox status code.
1592 * @param pVCpu Pointer to the VMCPU.
1593 * @param pVmcb Pointer to the VM control block.
1594 * @param pCtx Pointer to the guest-CPU context.
1595 */
1596static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1597{
1598 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1599 return VINF_SUCCESS;
1600
1601 bool fPendingIntr;
1602 uint8_t u8Tpr;
1603 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1604 AssertRCReturn(rc, rc);
1605
1606 /* Assume that we need to trap all TPR accesses and thus need not check on
1607 every #VMEXIT if we should update the TPR. */
1608 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1609 pVCpu->hm.s.svm.fSyncVTpr = false;
1610
1611 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1612 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1613 {
1614 pCtx->msrLSTAR = u8Tpr;
1615
1616 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1617 if (fPendingIntr)
1618 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1619 else
1620 {
1621 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1622 pVCpu->hm.s.svm.fSyncVTpr = true;
1623 }
1624 }
1625 else
1626 {
1627 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1628 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1629
1630 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1631 if (fPendingIntr)
1632 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1633 else
1634 {
1635 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1636 pVCpu->hm.s.svm.fSyncVTpr = true;
1637 }
1638
1639 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1640 }
1641
1642 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1643 return rc;
1644}
1645
1646
1647/**
1648 * Loads the exception interrupts required for guest execution in the VMCB.
1649 *
1650 * @returns VBox status code.
1651 * @param pVCpu Pointer to the VMCPU.
1652 * @param pVmcb Pointer to the VM control block.
1653 * @param pCtx Pointer to the guest-CPU context.
1654 */
1655static int hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1656{
1657 int rc = VINF_SUCCESS;
1658 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1659 {
1660 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
1661 if (pVCpu->hm.s.fGIMTrapXcptUD)
1662 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
1663 else
1664 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_UD);
1665 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
1666 }
1667 return rc;
1668}
1669
1670
1671/**
1672 * Sets up the appropriate function to run guest code.
1673 *
1674 * @returns VBox status code.
1675 * @param pVCpu Pointer to the VMCPU.
1676 * @param pCtx Pointer to the guest-CPU context.
1677 *
1678 * @remarks No-long-jump zone!!!
1679 */
1680static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1681{
1682 if (CPUMIsGuestInLongModeEx(pCtx))
1683 {
1684#ifndef VBOX_ENABLE_64_BITS_GUESTS
1685 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1686#endif
1687 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1688#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1689 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1690 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1691#else
1692 /* 64-bit host or hybrid host. */
1693 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1694#endif
1695 }
1696 else
1697 {
1698 /* Guest is not in long mode, use the 32-bit handler. */
1699 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1700 }
1701 return VINF_SUCCESS;
1702}
1703
1704
1705/**
1706 * Enters the AMD-V session.
1707 *
1708 * @returns VBox status code.
1709 * @param pVM Pointer to the VM.
1710 * @param pVCpu Pointer to the VMCPU.
1711 * @param pCpu Pointer to the CPU info struct.
1712 */
1713VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1714{
1715 AssertPtr(pVM);
1716 AssertPtr(pVCpu);
1717 Assert(pVM->hm.s.svm.fSupported);
1718 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1719 NOREF(pVM); NOREF(pCpu);
1720
1721 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1722 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1723
1724 pVCpu->hm.s.fLeaveDone = false;
1725 return VINF_SUCCESS;
1726}
1727
1728
1729/**
1730 * Thread-context callback for AMD-V.
1731 *
1732 * @param enmEvent The thread-context event.
1733 * @param pVCpu Pointer to the VMCPU.
1734 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1735 * @thread EMT(pVCpu)
1736 */
1737VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1738{
1739 NOREF(fGlobalInit);
1740
1741 switch (enmEvent)
1742 {
1743 case RTTHREADCTXEVENT_OUT:
1744 {
1745 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1746 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1747 VMCPU_ASSERT_EMT(pVCpu);
1748
1749 PVM pVM = pVCpu->CTX_SUFF(pVM);
1750 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1751
1752 /* No longjmps (log-flush, locks) in this fragile context. */
1753 VMMRZCallRing3Disable(pVCpu);
1754
1755 if (!pVCpu->hm.s.fLeaveDone)
1756 {
1757 hmR0SvmLeave(pVM, pVCpu, pCtx);
1758 pVCpu->hm.s.fLeaveDone = true;
1759 }
1760
1761 /* Leave HM context, takes care of local init (term). */
1762 int rc = HMR0LeaveCpu(pVCpu);
1763 AssertRC(rc); NOREF(rc);
1764
1765 /* Restore longjmp state. */
1766 VMMRZCallRing3Enable(pVCpu);
1767 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
1768 break;
1769 }
1770
1771 case RTTHREADCTXEVENT_IN:
1772 {
1773 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1774 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1775 VMCPU_ASSERT_EMT(pVCpu);
1776
1777 /* No longjmps (log-flush, locks) in this fragile context. */
1778 VMMRZCallRing3Disable(pVCpu);
1779
1780 /*
1781 * Initialize the bare minimum state required for HM. This takes care of
1782 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1783 */
1784 int rc = HMR0EnterCpu(pVCpu);
1785 AssertRC(rc); NOREF(rc);
1786 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1787
1788 pVCpu->hm.s.fLeaveDone = false;
1789
1790 /* Restore longjmp state. */
1791 VMMRZCallRing3Enable(pVCpu);
1792 break;
1793 }
1794
1795 default:
1796 break;
1797 }
1798}
1799
1800
1801/**
1802 * Saves the host state.
1803 *
1804 * @returns VBox status code.
1805 * @param pVM Pointer to the VM.
1806 * @param pVCpu Pointer to the VMCPU.
1807 *
1808 * @remarks No-long-jump zone!!!
1809 */
1810VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1811{
1812 NOREF(pVM);
1813 NOREF(pVCpu);
1814 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1815 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
1816 return VINF_SUCCESS;
1817}
1818
1819
1820/**
1821 * Loads the guest state into the VMCB.
1822 *
1823 * The CPU state will be loaded from these fields on every successful VM-entry.
1824 * Also sets up the appropriate VMRUN function to execute guest code based on
1825 * the guest CPU mode.
1826 *
1827 * @returns VBox status code.
1828 * @param pVM Pointer to the VM.
1829 * @param pVCpu Pointer to the VMCPU.
1830 * @param pCtx Pointer to the guest-CPU context.
1831 *
1832 * @remarks No-long-jump zone!!!
1833 */
1834static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1835{
1836 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1837 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1838
1839 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1840
1841 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1842 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1843
1844 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1845 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1846
1847 pVmcb->guest.u64RIP = pCtx->rip;
1848 pVmcb->guest.u64RSP = pCtx->rsp;
1849 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1850 pVmcb->guest.u64RAX = pCtx->rax;
1851
1852 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1853 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1854
1855 rc = hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
1856 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1857
1858 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1859 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1860
1861 /* Clear any unused and reserved bits. */
1862 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1863 | HM_CHANGED_GUEST_RSP
1864 | HM_CHANGED_GUEST_RFLAGS
1865 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1866 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1867 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1868 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
1869 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1870 | HM_CHANGED_SVM_RESERVED2
1871 | HM_CHANGED_SVM_RESERVED3
1872 | HM_CHANGED_SVM_RESERVED4);
1873
1874 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
1875 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
1876 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
1877 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
1878
1879 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss.Sel, pCtx->rsp));
1880 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1881 return rc;
1882}
1883
1884
1885/**
1886 * Loads the state shared between the host and guest into the
1887 * VMCB.
1888 *
1889 * @param pVCpu Pointer to the VMCPU.
1890 * @param pVmcb Pointer to the VM control block.
1891 * @param pCtx Pointer to the guest-CPU context.
1892 *
1893 * @remarks No-long-jump zone!!!
1894 */
1895static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1896{
1897 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1898 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1899
1900 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1901 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
1902
1903 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
1904 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
1905
1906 /* Unused on AMD-V. */
1907 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
1908
1909 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
1910 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
1911}
1912
1913
1914/**
1915 * Saves the entire guest state from the VMCB into the
1916 * guest-CPU context. Currently there is no residual state left in the CPU that
1917 * is not updated in the VMCB.
1918 *
1919 * @returns VBox status code.
1920 * @param pVCpu Pointer to the VMCPU.
1921 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1922 * out-of-sync. Make sure to update the required fields
1923 * before using them.
1924 */
1925static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1926{
1927 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1928
1929 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1930
1931 pMixedCtx->rip = pVmcb->guest.u64RIP;
1932 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1933 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1934 pMixedCtx->rax = pVmcb->guest.u64RAX;
1935
1936 /*
1937 * Guest interrupt shadow.
1938 */
1939 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1940 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1941 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1942 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1943
1944 /*
1945 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1946 */
1947 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1948
1949 /*
1950 * Guest MSRs.
1951 */
1952 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1953 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1954 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1955 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1956 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1957 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1958 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1959 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1960
1961 /*
1962 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1963 */
1964 HMSVM_SAVE_SEG_REG(CS, cs);
1965 HMSVM_SAVE_SEG_REG(SS, ss);
1966 HMSVM_SAVE_SEG_REG(DS, ds);
1967 HMSVM_SAVE_SEG_REG(ES, es);
1968 HMSVM_SAVE_SEG_REG(FS, fs);
1969 HMSVM_SAVE_SEG_REG(GS, gs);
1970
1971 /*
1972 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1973 * register (yet).
1974 */
1975 /** @todo SELM might need to be fixed as it too should not care about the
1976 * granularity bit. See @bugref{6785}. */
1977 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1978 && pMixedCtx->cs.Attr.n.u1Present
1979 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1980 {
1981 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1982 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1983 }
1984
1985#ifdef VBOX_STRICT
1986# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1987 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1988 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1989 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1990 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1991 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1992 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1993
1994 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1995 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1996 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1997 HMSVM_ASSERT_SEG_GRANULARITY(es);
1998 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1999 HMSVM_ASSERT_SEG_GRANULARITY(gs);
2000
2001# undef HMSVM_ASSERT_SEL_GRANULARITY
2002#endif
2003
2004 /*
2005 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
2006 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
2007 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
2008 * See AMD spec. 15.5.1 "Basic operation".
2009 */
2010 Assert(!(pVmcb->guest.u8CPL & ~0x3));
2011 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
2012
2013 /*
2014 * Guest TR.
2015 * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
2016 * between Intel and AMD. See @bugref{6208#c39}.
2017 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2018 */
2019 HMSVM_SAVE_SEG_REG(TR, tr);
2020 if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2021 {
2022 if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2023 || CPUMIsGuestInLongModeEx(pMixedCtx))
2024 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2025 else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2026 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2027 }
2028
2029 /*
2030 * Guest Descriptor-Table registers.
2031 */
2032 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
2033 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
2034 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
2035
2036 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
2037 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
2038
2039 /*
2040 * Guest Debug registers.
2041 */
2042 if (!pVCpu->hm.s.fUsingHyperDR7)
2043 {
2044 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
2045 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
2046 }
2047 else
2048 {
2049 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
2050 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
2051 }
2052
2053 /*
2054 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
2055 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
2056 */
2057 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
2058 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
2059 {
2060 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
2061 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
2062 }
2063}
2064
2065
2066/**
2067 * Does the necessary state syncing before returning to ring-3 for any reason
2068 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2069 *
2070 * @param pVM Pointer to the VM.
2071 * @param pVCpu Pointer to the VMCPU.
2072 * @param pMixedCtx Pointer to the guest-CPU context.
2073 *
2074 * @remarks No-long-jmp zone!!!
2075 */
2076static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2077{
2078 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2079 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2080 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2081
2082 /*
2083 * !!! IMPORTANT !!!
2084 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2085 */
2086
2087 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2088 if (CPUMIsGuestFPUStateActive(pVCpu))
2089 {
2090 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
2091 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2092 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
2093 }
2094
2095 /*
2096 * Restore host debug registers if necessary and resync on next R0 reentry.
2097 */
2098#ifdef VBOX_STRICT
2099 if (CPUMIsHyperDebugStateActive(pVCpu))
2100 {
2101 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2102 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2103 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2104 }
2105#endif
2106 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
2107 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
2108
2109 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2110 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2111
2112 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2113 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
2114 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
2115 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
2116 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2117
2118 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2119}
2120
2121
2122/**
2123 * Leaves the AMD-V session.
2124 *
2125 * @returns VBox status code.
2126 * @param pVM Pointer to the VM.
2127 * @param pVCpu Pointer to the VMCPU.
2128 * @param pCtx Pointer to the guest-CPU context.
2129 */
2130static int hmR0SvmLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2131{
2132 HM_DISABLE_PREEMPT();
2133 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2134 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2135
2136 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
2137 and done this from the SVMR0ThreadCtxCallback(). */
2138 if (!pVCpu->hm.s.fLeaveDone)
2139 {
2140 hmR0SvmLeave(pVM, pVCpu, pCtx);
2141 pVCpu->hm.s.fLeaveDone = true;
2142 }
2143
2144 /*
2145 * !!! IMPORTANT !!!
2146 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2147 */
2148
2149 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2150 /* Deregister hook now that we've left HM context before re-enabling preemption. */
2151 VMMR0ThreadCtxHookDisable(pVCpu);
2152
2153 /* Leave HM context. This takes care of local init (term). */
2154 int rc = HMR0LeaveCpu(pVCpu);
2155
2156 HM_RESTORE_PREEMPT();
2157 return rc;
2158}
2159
2160
2161/**
2162 * Does the necessary state syncing before doing a longjmp to ring-3.
2163 *
2164 * @returns VBox status code.
2165 * @param pVM Pointer to the VM.
2166 * @param pVCpu Pointer to the VMCPU.
2167 * @param pCtx Pointer to the guest-CPU context.
2168 *
2169 * @remarks No-long-jmp zone!!!
2170 */
2171static int hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2172{
2173 return hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2174}
2175
2176
2177/**
2178 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2179 * any remaining host state) before we longjump to ring-3 and possibly get
2180 * preempted.
2181 *
2182 * @param pVCpu Pointer to the VMCPU.
2183 * @param enmOperation The operation causing the ring-3 longjump.
2184 * @param pvUser The user argument (pointer to the possibly
2185 * out-of-date guest-CPU context).
2186 */
2187DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2188{
2189 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
2190 {
2191 /*
2192 * !!! IMPORTANT !!!
2193 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
2194 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
2195 */
2196 VMMRZCallRing3RemoveNotification(pVCpu);
2197 VMMRZCallRing3Disable(pVCpu);
2198 HM_DISABLE_PREEMPT();
2199
2200 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2201 if (CPUMIsGuestFPUStateActive(pVCpu))
2202 CPUMR0SaveGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2203
2204 /* Restore host debug registers if necessary and resync on next R0 reentry. */
2205 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2206
2207 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
2208 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2209 VMMR0ThreadCtxHookDisable(pVCpu);
2210
2211 /* Leave HM context. This takes care of local init (term). */
2212 HMR0LeaveCpu(pVCpu);
2213
2214 HM_RESTORE_PREEMPT();
2215 return VINF_SUCCESS;
2216 }
2217
2218 Assert(pVCpu);
2219 Assert(pvUser);
2220 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2221 HMSVM_ASSERT_PREEMPT_SAFE();
2222
2223 VMMRZCallRing3Disable(pVCpu);
2224 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2225
2226 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2227 int rc = hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2228 AssertRCReturn(rc, rc);
2229
2230 VMMRZCallRing3Enable(pVCpu);
2231 return VINF_SUCCESS;
2232}
2233
2234
2235/**
2236 * Take necessary actions before going back to ring-3.
2237 *
2238 * An action requires us to go back to ring-3. This function does the necessary
2239 * steps before we can safely return to ring-3. This is not the same as longjmps
2240 * to ring-3, this is voluntary.
2241 *
2242 * @param pVM Pointer to the VM.
2243 * @param pVCpu Pointer to the VMCPU.
2244 * @param pCtx Pointer to the guest-CPU context.
2245 * @param rcExit The reason for exiting to ring-3. Can be
2246 * VINF_VMM_UNKNOWN_RING3_CALL.
2247 */
2248static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2249{
2250 Assert(pVM);
2251 Assert(pVCpu);
2252 Assert(pCtx);
2253 HMSVM_ASSERT_PREEMPT_SAFE();
2254
2255 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2256 VMMRZCallRing3Disable(pVCpu);
2257 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2258
2259 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2260 if (pVCpu->hm.s.Event.fPending)
2261 {
2262 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2263 Assert(!pVCpu->hm.s.Event.fPending);
2264 }
2265
2266 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
2267 and if we're injecting an event we should have a TRPM trap pending. */
2268 Assert(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu));
2269 Assert(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu));
2270
2271 /* Sync. the necessary state for going back to ring-3. */
2272 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2273 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2274
2275 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2276 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2277 | CPUM_CHANGED_LDTR
2278 | CPUM_CHANGED_GDTR
2279 | CPUM_CHANGED_IDTR
2280 | CPUM_CHANGED_TR
2281 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2282 if ( pVM->hm.s.fNestedPaging
2283 && CPUMIsGuestPagingEnabledEx(pCtx))
2284 {
2285 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2286 }
2287
2288 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
2289 if (rcExit != VINF_EM_RAW_INTERRUPT)
2290 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2291
2292 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2293
2294 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
2295 VMMRZCallRing3RemoveNotification(pVCpu);
2296 VMMRZCallRing3Enable(pVCpu);
2297}
2298
2299
2300/**
2301 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2302 * intercepts.
2303 *
2304 * @param pVM The shared VM handle.
2305 * @param pVCpu Pointer to the VMCPU.
2306 *
2307 * @remarks No-long-jump zone!!!
2308 */
2309static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu)
2310{
2311 bool fParavirtTsc;
2312 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2313 bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
2314 if (fCanUseRealTsc)
2315 {
2316 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
2317 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
2318 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2319 }
2320 else
2321 {
2322 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2323 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2324 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2325 }
2326 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2327
2328 /** @todo later optimize this to be done elsewhere and not before every
2329 * VM-entry. */
2330 if (fParavirtTsc)
2331 {
2332 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
2333 information before every VM-entry, hence disable it for performance sake. */
2334#if 0
2335 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
2336 AssertRC(rc);
2337#endif
2338 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
2339 }
2340}
2341
2342
2343/**
2344 * Sets an event as a pending event to be injected into the guest.
2345 *
2346 * @param pVCpu Pointer to the VMCPU.
2347 * @param pEvent Pointer to the SVM event.
2348 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2349 * page-fault.
2350 *
2351 * @remarks Statistics counter assumes this is a guest event being reflected to
2352 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2353 */
2354DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2355{
2356 Assert(!pVCpu->hm.s.Event.fPending);
2357 Assert(pEvent->n.u1Valid);
2358
2359 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
2360 pVCpu->hm.s.Event.fPending = true;
2361 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2362
2363 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2364 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2365
2366 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
2367}
2368
2369
2370/**
2371 * Injects an event into the guest upon VMRUN by updating the relevant field
2372 * in the VMCB.
2373 *
2374 * @param pVCpu Pointer to the VMCPU.
2375 * @param pVmcb Pointer to the guest VM control block.
2376 * @param pCtx Pointer to the guest-CPU context.
2377 * @param pEvent Pointer to the event.
2378 *
2379 * @remarks No-long-jump zone!!!
2380 * @remarks Requires CR0!
2381 */
2382DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2383{
2384 NOREF(pVCpu); NOREF(pCtx);
2385
2386 pVmcb->ctrl.EventInject.u = pEvent->u;
2387 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2388
2389 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2390 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2391}
2392
2393
2394
2395/**
2396 * Converts any TRPM trap into a pending HM event. This is typically used when
2397 * entering from ring-3 (not longjmp returns).
2398 *
2399 * @param pVCpu Pointer to the VMCPU.
2400 */
2401static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2402{
2403 Assert(TRPMHasTrap(pVCpu));
2404 Assert(!pVCpu->hm.s.Event.fPending);
2405
2406 uint8_t uVector;
2407 TRPMEVENT enmTrpmEvent;
2408 RTGCUINT uErrCode;
2409 RTGCUINTPTR GCPtrFaultAddress;
2410 uint8_t cbInstr;
2411
2412 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2413 AssertRC(rc);
2414
2415 SVMEVENT Event;
2416 Event.u = 0;
2417 Event.n.u1Valid = 1;
2418 Event.n.u8Vector = uVector;
2419
2420 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2421 if (enmTrpmEvent == TRPM_TRAP)
2422 {
2423 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2424 switch (uVector)
2425 {
2426 case X86_XCPT_NMI:
2427 {
2428 Event.n.u3Type = SVM_EVENT_NMI;
2429 break;
2430 }
2431
2432 case X86_XCPT_PF:
2433 case X86_XCPT_DF:
2434 case X86_XCPT_TS:
2435 case X86_XCPT_NP:
2436 case X86_XCPT_SS:
2437 case X86_XCPT_GP:
2438 case X86_XCPT_AC:
2439 {
2440 Event.n.u1ErrorCodeValid = 1;
2441 Event.n.u32ErrorCode = uErrCode;
2442 break;
2443 }
2444 }
2445 }
2446 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2447 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2448 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2449 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2450 else
2451 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2452
2453 rc = TRPMResetTrap(pVCpu);
2454 AssertRC(rc);
2455
2456 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2457 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2458
2459 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2460 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2461}
2462
2463
2464/**
2465 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2466 * AMD-V to execute any instruction.
2467 *
2468 * @param pvCpu Pointer to the VMCPU.
2469 */
2470static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2471{
2472 Assert(pVCpu->hm.s.Event.fPending);
2473 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2474
2475 SVMEVENT Event;
2476 Event.u = pVCpu->hm.s.Event.u64IntInfo;
2477
2478 uint8_t uVector = Event.n.u8Vector;
2479 uint8_t uVectorType = Event.n.u3Type;
2480
2481 TRPMEVENT enmTrapType;
2482 switch (uVectorType)
2483 {
2484 case SVM_EVENT_EXTERNAL_IRQ:
2485 enmTrapType = TRPM_HARDWARE_INT;
2486 break;
2487 case SVM_EVENT_SOFTWARE_INT:
2488 enmTrapType = TRPM_SOFTWARE_INT;
2489 break;
2490 case SVM_EVENT_EXCEPTION:
2491 case SVM_EVENT_NMI:
2492 enmTrapType = TRPM_TRAP;
2493 break;
2494 default:
2495 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2496 enmTrapType = TRPM_32BIT_HACK;
2497 break;
2498 }
2499
2500 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2501
2502 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2503 AssertRC(rc);
2504
2505 if (Event.n.u1ErrorCodeValid)
2506 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2507
2508 if ( uVectorType == SVM_EVENT_EXCEPTION
2509 && uVector == X86_XCPT_PF)
2510 {
2511 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2512 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2513 }
2514 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2515 {
2516 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2517 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2518 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2519 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2520 }
2521 pVCpu->hm.s.Event.fPending = false;
2522}
2523
2524
2525/**
2526 * Gets the guest's interrupt-shadow.
2527 *
2528 * @returns The guest's interrupt-shadow.
2529 * @param pVCpu Pointer to the VMCPU.
2530 * @param pCtx Pointer to the guest-CPU context.
2531 *
2532 * @remarks No-long-jump zone!!!
2533 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2534 */
2535DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2536{
2537 /*
2538 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2539 * inhibit interrupts or clear any existing interrupt-inhibition.
2540 */
2541 uint32_t uIntrState = 0;
2542 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2543 {
2544 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2545 {
2546 /*
2547 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2548 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2549 */
2550 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2551 }
2552 else
2553 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2554 }
2555 return uIntrState;
2556}
2557
2558
2559/**
2560 * Sets the virtual interrupt intercept control in the VMCB which
2561 * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
2562 * receive interrupts.
2563 *
2564 * @param pVmcb Pointer to the VM control block.
2565 */
2566DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2567{
2568 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2569 {
2570 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2571 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2572 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2573 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2574
2575 Log4(("Setting VINTR intercept\n"));
2576 }
2577}
2578
2579
2580/**
2581 * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
2582 * #VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
2583 * virtual NMIs.
2584 *
2585 * @param pVmcb Pointer to the VM control block.
2586 */
2587DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
2588{
2589 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_IRET))
2590 {
2591 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_IRET;
2592 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
2593
2594 Log4(("Setting IRET intercept\n"));
2595 }
2596}
2597
2598
2599/**
2600 * Clears the IRET intercept control in the VMCB.
2601 *
2602 * @param pVmcb Pointer to the VM control block.
2603 */
2604DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
2605{
2606 if (pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_IRET)
2607 {
2608 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_IRET;
2609 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
2610
2611 Log4(("Clearing IRET intercept\n"));
2612 }
2613}
2614
2615
2616/**
2617 * Evaluates the event to be delivered to the guest and sets it as the pending
2618 * event.
2619 *
2620 * @param pVCpu Pointer to the VMCPU.
2621 * @param pCtx Pointer to the guest-CPU context.
2622 */
2623static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2624{
2625 Assert(!pVCpu->hm.s.Event.fPending);
2626 Log4Func(("\n"));
2627
2628 bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
2629 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2630 bool const fBlockNmi = RT_BOOL(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
2631 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2632
2633 SVMEVENT Event;
2634 Event.u = 0;
2635 /** @todo SMI. SMIs take priority over NMIs. */
2636 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2637 {
2638 if (fBlockNmi)
2639 hmR0SvmSetIretIntercept(pVmcb);
2640 else if (fIntShadow)
2641 hmR0SvmSetVirtIntrIntercept(pVmcb);
2642 else
2643 {
2644 Log4(("Pending NMI\n"));
2645
2646 Event.n.u1Valid = 1;
2647 Event.n.u8Vector = X86_XCPT_NMI;
2648 Event.n.u3Type = SVM_EVENT_NMI;
2649
2650 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2651 hmR0SvmSetIretIntercept(pVmcb);
2652 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2653 }
2654 }
2655 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2656 {
2657 /*
2658 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
2659 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
2660 * evaluated here and not set as pending, solely based on the force-flags.
2661 */
2662 if ( !fBlockInt
2663 && !fIntShadow)
2664 {
2665 uint8_t u8Interrupt;
2666 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2667 if (RT_SUCCESS(rc))
2668 {
2669 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2670
2671 Event.n.u1Valid = 1;
2672 Event.n.u8Vector = u8Interrupt;
2673 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2674
2675 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2676 }
2677 else
2678 {
2679 /** @todo Does this actually happen? If not turn it into an assertion. */
2680 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
2681 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2682 }
2683 }
2684 else
2685 hmR0SvmSetVirtIntrIntercept(pVmcb);
2686 }
2687}
2688
2689
2690/**
2691 * Injects any pending events into the guest if the guest is in a state to
2692 * receive them.
2693 *
2694 * @param pVCpu Pointer to the VMCPU.
2695 * @param pCtx Pointer to the guest-CPU context.
2696 */
2697static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2698{
2699 Assert(!TRPMHasTrap(pVCpu));
2700 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2701
2702 bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
2703 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2704 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2705
2706 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2707 {
2708 SVMEVENT Event;
2709 Event.u = pVCpu->hm.s.Event.u64IntInfo;
2710 Assert(Event.n.u1Valid);
2711#ifdef VBOX_STRICT
2712 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2713 {
2714 Assert(!fBlockInt);
2715 Assert(!fIntShadow);
2716 }
2717 else if (Event.n.u3Type == SVM_EVENT_NMI)
2718 Assert(!fIntShadow);
2719#endif
2720
2721 Log4(("Injecting pending HM event.\n"));
2722 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2723 pVCpu->hm.s.Event.fPending = false;
2724
2725#ifdef VBOX_WITH_STATISTICS
2726 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2727 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2728 else
2729 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2730#endif
2731 }
2732
2733 /* Update the guest interrupt shadow in the VMCB. */
2734 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2735 NOREF(fBlockInt);
2736}
2737
2738
2739/**
2740 * Reports world-switch error and dumps some useful debug info.
2741 *
2742 * @param pVM Pointer to the VM.
2743 * @param pVCpu Pointer to the VMCPU.
2744 * @param rcVMRun The return code from VMRUN (or
2745 * VERR_SVM_INVALID_GUEST_STATE for invalid
2746 * guest-state).
2747 * @param pCtx Pointer to the guest-CPU context.
2748 */
2749static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2750{
2751 NOREF(pCtx);
2752 HMSVM_ASSERT_PREEMPT_SAFE();
2753 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2754
2755 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2756 {
2757 HMDumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
2758#ifdef VBOX_STRICT
2759 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2760 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2761 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2762 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2763 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2764 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2765 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2766 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2767 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2768 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2769 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2770
2771 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2772 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2773 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2774
2775 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2776 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2777 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2778 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2779 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2780 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2781 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2782 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2783 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2784 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2785
2786 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2787 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2788 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2789 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2790 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2791 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2792 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2793 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2794 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2795 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2796 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2797 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2798 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2799 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2800 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2801 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2802 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2803
2804 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2805 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2806
2807 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2808 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2809 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2810 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2811 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2812 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2813 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2814 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2815 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2816 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2817 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2818 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2819 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2820 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2821 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2822 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2823 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2824 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2825 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2826 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2827
2828 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2829 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2830
2831 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2832 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2833 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2834 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2835
2836 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2837 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2838
2839 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2840 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2841 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2842 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2843
2844 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2845 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2846 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2847 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2848 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2849 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2850 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2851
2852 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2853 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2854 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2855 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2856
2857 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2858 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2859 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2860
2861 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2862 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2863 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2864 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2865 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2866 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2867 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2868 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2869 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2870 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2871 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2872 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2873#else
2874 NOREF(pVmcb);
2875#endif /* VBOX_STRICT */
2876 }
2877 else
2878 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2879}
2880
2881
2882/**
2883 * Check per-VM and per-VCPU force flag actions that require us to go back to
2884 * ring-3 for one reason or another.
2885 *
2886 * @returns VBox status code (information status code included).
2887 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2888 * ring-3.
2889 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2890 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2891 * interrupts)
2892 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2893 * all EMTs to be in ring-3.
2894 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2895 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2896 * to the EM loop.
2897 *
2898 * @param pVM Pointer to the VM.
2899 * @param pVCpu Pointer to the VMCPU.
2900 * @param pCtx Pointer to the guest-CPU context.
2901 */
2902static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2903{
2904 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2905
2906 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2907 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2908 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2909
2910 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2911 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2912 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2913 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2914 {
2915 /* Pending PGM C3 sync. */
2916 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2917 {
2918 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2919 if (rc != VINF_SUCCESS)
2920 {
2921 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2922 return rc;
2923 }
2924 }
2925
2926 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2927 /* -XXX- what was that about single stepping? */
2928 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2929 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2930 {
2931 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2932 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2933 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2934 return rc;
2935 }
2936
2937 /* Pending VM request packets, such as hardware interrupts. */
2938 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2939 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2940 {
2941 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2942 return VINF_EM_PENDING_REQUEST;
2943 }
2944
2945 /* Pending PGM pool flushes. */
2946 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2947 {
2948 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2949 return VINF_PGM_POOL_FLUSH_PENDING;
2950 }
2951
2952 /* Pending DMA requests. */
2953 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2954 {
2955 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2956 return VINF_EM_RAW_TO_R3;
2957 }
2958 }
2959
2960 return VINF_SUCCESS;
2961}
2962
2963
2964/**
2965 * Does the preparations before executing guest code in AMD-V.
2966 *
2967 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2968 * recompiler. We must be cautious what we do here regarding committing
2969 * guest-state information into the the VMCB assuming we assuredly execute the
2970 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2971 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2972 * that the recompiler can (and should) use them when it resumes guest
2973 * execution. Otherwise such operations must be done when we can no longer
2974 * exit to ring-3.
2975 *
2976 * @returns VBox status code (informational status codes included).
2977 * @retval VINF_SUCCESS if we can proceed with running the guest.
2978 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2979 *
2980 * @param pVM Pointer to the VM.
2981 * @param pVCpu Pointer to the VMCPU.
2982 * @param pCtx Pointer to the guest-CPU context.
2983 * @param pSvmTransient Pointer to the SVM transient structure.
2984 */
2985static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2986{
2987 HMSVM_ASSERT_PREEMPT_SAFE();
2988
2989 /* Check force flag actions that might require us to go back to ring-3. */
2990 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2991 if (rc != VINF_SUCCESS)
2992 return rc;
2993
2994 if (TRPMHasTrap(pVCpu))
2995 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2996 else if (!pVCpu->hm.s.Event.fPending)
2997 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
2998
2999#ifdef HMSVM_SYNC_FULL_GUEST_STATE
3000 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3001#endif
3002
3003 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
3004 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
3005 AssertRCReturn(rc, rc);
3006 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
3007
3008 /*
3009 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
3010 * so we can update it on the way back if the guest changed the TPR.
3011 */
3012 if (pVCpu->hm.s.svm.fSyncVTpr)
3013 {
3014 if (pVM->hm.s.fTPRPatchingActive)
3015 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
3016 else
3017 {
3018 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3019 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
3020 }
3021 }
3022
3023 /*
3024 * No longjmps to ring-3 from this point on!!!
3025 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3026 * This also disables flushing of the R0-logger instance (if any).
3027 */
3028 VMMRZCallRing3Disable(pVCpu);
3029
3030 /*
3031 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
3032 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
3033 *
3034 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
3035 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
3036 *
3037 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
3038 * executing guest code.
3039 */
3040 pSvmTransient->fEFlags = ASMIntDisableFlags();
3041 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
3042 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3043 {
3044 ASMSetFlags(pSvmTransient->fEFlags);
3045 VMMRZCallRing3Enable(pVCpu);
3046 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3047 return VINF_EM_RAW_TO_R3;
3048 }
3049 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3050 {
3051 ASMSetFlags(pSvmTransient->fEFlags);
3052 VMMRZCallRing3Enable(pVCpu);
3053 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
3054 return VINF_EM_RAW_INTERRUPT;
3055 }
3056
3057 /*
3058 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
3059 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
3060 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
3061 *
3062 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
3063 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
3064 */
3065 if (pVCpu->hm.s.Event.fPending)
3066 {
3067 SVMEVENT Event;
3068 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3069 if ( Event.n.u1Valid
3070 && Event.n.u3Type == SVM_EVENT_NMI
3071 && Event.n.u8Vector == X86_XCPT_NMI
3072 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
3073 {
3074 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3075 }
3076 }
3077
3078 return VINF_SUCCESS;
3079}
3080
3081
3082/**
3083 * Prepares to run guest code in AMD-V and we've committed to doing so. This
3084 * means there is no backing out to ring-3 or anywhere else at this
3085 * point.
3086 *
3087 * @param pVM Pointer to the VM.
3088 * @param pVCpu Pointer to the VMCPU.
3089 * @param pCtx Pointer to the guest-CPU context.
3090 * @param pSvmTransient Pointer to the SVM transient structure.
3091 *
3092 * @remarks Called with preemption disabled.
3093 * @remarks No-long-jump zone!!!
3094 */
3095static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3096{
3097 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3098 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3099 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3100
3101 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3102 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
3103
3104 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
3105
3106 if ( pVCpu->hm.s.fPreloadGuestFpu
3107 && !CPUMIsGuestFPUStateActive(pVCpu))
3108 {
3109 CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
3110 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
3111 }
3112
3113 /* Load the state shared between host and guest (FPU, debug). */
3114 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3115 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
3116 hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
3117 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
3118 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
3119
3120 /* Setup TSC offsetting. */
3121 RTCPUID idCurrentCpu = HMR0GetCurrentCpu()->idCpu;
3122 if ( pSvmTransient->fUpdateTscOffsetting
3123 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
3124 {
3125 hmR0SvmUpdateTscOffsetting(pVM, pVCpu);
3126 pSvmTransient->fUpdateTscOffsetting = false;
3127 }
3128
3129 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
3130 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
3131 pVmcb->ctrl.u64VmcbCleanBits = 0;
3132
3133 /* Store status of the shared guest-host state at the time of VMRUN. */
3134#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3135 if (CPUMIsGuestInLongModeEx(pCtx))
3136 {
3137 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
3138 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
3139 }
3140 else
3141#endif
3142 {
3143 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
3144 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
3145 }
3146 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
3147
3148 /* Flush the appropriate tagged-TLB entries. */
3149 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
3150 hmR0SvmFlushTaggedTlb(pVCpu);
3151 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
3152
3153 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
3154
3155 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
3156 to start executing. */
3157
3158 /*
3159 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
3160 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
3161 *
3162 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
3163 */
3164 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
3165 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
3166 {
3167 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
3168 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
3169 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
3170 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
3171 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
3172 pSvmTransient->fRestoreTscAuxMsr = true;
3173 }
3174 else
3175 {
3176 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
3177 pSvmTransient->fRestoreTscAuxMsr = false;
3178 }
3179
3180 /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
3181 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
3182 pVmcb->ctrl.u64VmcbCleanBits = 0;
3183}
3184
3185
3186/**
3187 * Wrapper for running the guest code in AMD-V.
3188 *
3189 * @returns VBox strict status code.
3190 * @param pVM Pointer to the VM.
3191 * @param pVCpu Pointer to the VMCPU.
3192 * @param pCtx Pointer to the guest-CPU context.
3193 *
3194 * @remarks No-long-jump zone!!!
3195 */
3196DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3197{
3198 /*
3199 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
3200 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
3201 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
3202 */
3203#ifdef VBOX_WITH_KERNEL_USING_XMM
3204 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
3205 pVCpu->hm.s.svm.pfnVMRun);
3206#else
3207 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
3208#endif
3209}
3210
3211
3212/**
3213 * Performs some essential restoration of state after running guest code in
3214 * AMD-V.
3215 *
3216 * @param pVM Pointer to the VM.
3217 * @param pVCpu Pointer to the VMCPU.
3218 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
3219 * out-of-sync. Make sure to update the required fields
3220 * before using them.
3221 * @param pSvmTransient Pointer to the SVM transient structure.
3222 * @param rcVMRun Return code of VMRUN.
3223 *
3224 * @remarks Called with interrupts disabled.
3225 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
3226 * unconditionally when it is safe to do so.
3227 */
3228static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
3229{
3230 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3231
3232 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
3233 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
3234
3235 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3236 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
3237
3238 if (pSvmTransient->fRestoreTscAuxMsr)
3239 {
3240 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
3241 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
3242 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
3243 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
3244 }
3245
3246 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
3247 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
3248
3249 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
3250 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
3251 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3252
3253 Assert(!(ASMGetFlags() & X86_EFL_IF));
3254 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
3255 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
3256
3257 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
3258 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
3259 {
3260 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
3261 return;
3262 }
3263
3264 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
3265 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
3266 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
3267 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
3268
3269 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
3270
3271 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
3272 {
3273 if (pVCpu->hm.s.svm.fSyncVTpr)
3274 {
3275 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
3276 if ( pVM->hm.s.fTPRPatchingActive
3277 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
3278 {
3279 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
3280 AssertRC(rc);
3281 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
3282 }
3283 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
3284 {
3285 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
3286 AssertRC(rc);
3287 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
3288 }
3289 }
3290 }
3291}
3292
3293
3294/**
3295 * Runs the guest code using AMD-V.
3296 *
3297 * @returns VBox status code.
3298 * @param pVM Pointer to the VM.
3299 * @param pVCpu Pointer to the VMCPU.
3300 */
3301static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3302{
3303 SVMTRANSIENT SvmTransient;
3304 SvmTransient.fUpdateTscOffsetting = true;
3305 uint32_t cLoops = 0;
3306 int rc = VERR_INTERNAL_ERROR_5;
3307
3308 for (;; cLoops++)
3309 {
3310 Assert(!HMR0SuspendPending());
3311 HMSVM_ASSERT_CPU_SAFE();
3312
3313 /* Preparatory work for running guest code, this may force us to return
3314 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
3315 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3316 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3317 if (rc != VINF_SUCCESS)
3318 break;
3319
3320 /*
3321 * No longjmps to ring-3 from this point on!!!
3322 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3323 * This also disables flushing of the R0-logger instance (if any).
3324 */
3325 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3326 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3327
3328 /* Restore any residual host-state and save any bits shared between host
3329 and guest into the guest-CPU state. Re-enables interrupts! */
3330 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3331
3332 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3333 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3334 {
3335 if (rc == VINF_SUCCESS)
3336 rc = VERR_SVM_INVALID_GUEST_STATE;
3337 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3338 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3339 break;
3340 }
3341
3342 /* Handle the #VMEXIT. */
3343 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3344 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3345 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
3346 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3347 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3348 if (rc != VINF_SUCCESS)
3349 break;
3350 if (cLoops > pVM->hm.s.cMaxResumeLoops)
3351 {
3352 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
3353 rc = VINF_EM_RAW_INTERRUPT;
3354 break;
3355 }
3356 }
3357
3358 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3359 return rc;
3360}
3361
3362
3363/**
3364 * Runs the guest code using AMD-V in single step mode.
3365 *
3366 * @returns VBox status code.
3367 * @param pVM Pointer to the VM.
3368 * @param pVCpu Pointer to the VMCPU.
3369 * @param pCtx Pointer to the guest-CPU context.
3370 */
3371static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3372{
3373 SVMTRANSIENT SvmTransient;
3374 SvmTransient.fUpdateTscOffsetting = true;
3375 uint32_t cLoops = 0;
3376 int rc = VERR_INTERNAL_ERROR_5;
3377 uint16_t uCsStart = pCtx->cs.Sel;
3378 uint64_t uRipStart = pCtx->rip;
3379
3380 for (;; cLoops++)
3381 {
3382 Assert(!HMR0SuspendPending());
3383 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
3384 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
3385 (unsigned)RTMpCpuId(), cLoops));
3386
3387 /* Preparatory work for running guest code, this may force us to return
3388 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
3389 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3390 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3391 if (rc != VINF_SUCCESS)
3392 break;
3393
3394 /*
3395 * No longjmps to ring-3 from this point on!!!
3396 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3397 * This also disables flushing of the R0-logger instance (if any).
3398 */
3399 VMMRZCallRing3Disable(pVCpu);
3400 VMMRZCallRing3RemoveNotification(pVCpu);
3401 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3402
3403 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3404
3405 /*
3406 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
3407 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
3408 */
3409 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3410 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3411 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3412 {
3413 if (rc == VINF_SUCCESS)
3414 rc = VERR_SVM_INVALID_GUEST_STATE;
3415 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3416 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3417 return rc;
3418 }
3419
3420 /* Handle the #VMEXIT. */
3421 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3422 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3423 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
3424 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3425 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3426 if (rc != VINF_SUCCESS)
3427 break;
3428 if (cLoops > pVM->hm.s.cMaxResumeLoops)
3429 {
3430 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
3431 rc = VINF_EM_RAW_INTERRUPT;
3432 break;
3433 }
3434
3435 /*
3436 * Did the RIP change, if so, consider it a single step.
3437 * Otherwise, make sure one of the TFs gets set.
3438 */
3439 if ( pCtx->rip != uRipStart
3440 || pCtx->cs.Sel != uCsStart)
3441 {
3442 rc = VINF_EM_DBG_STEPPED;
3443 break;
3444 }
3445 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
3446 }
3447
3448 /*
3449 * Clear the X86_EFL_TF if necessary.
3450 */
3451 if (pVCpu->hm.s.fClearTrapFlag)
3452 {
3453 pVCpu->hm.s.fClearTrapFlag = false;
3454 pCtx->eflags.Bits.u1TF = 0;
3455 }
3456
3457 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3458 return rc;
3459}
3460
3461
3462/**
3463 * Runs the guest code using AMD-V.
3464 *
3465 * @returns VBox status code.
3466 * @param pVM Pointer to the VM.
3467 * @param pVCpu Pointer to the VMCPU.
3468 * @param pCtx Pointer to the guest-CPU context.
3469 */
3470VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3471{
3472 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3473 HMSVM_ASSERT_PREEMPT_SAFE();
3474 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
3475
3476 int rc;
3477 if (!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu))
3478 rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx);
3479 else
3480 rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx);
3481
3482 if (rc == VERR_EM_INTERPRETER)
3483 rc = VINF_EM_RAW_EMULATE_INSTR;
3484 else if (rc == VINF_EM_RESET)
3485 rc = VINF_EM_TRIPLE_FAULT;
3486
3487 /* Prepare to return to ring-3. This will remove longjmp notifications. */
3488 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3489 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
3490 return rc;
3491}
3492
3493
3494/**
3495 * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3496 *
3497 * @returns VBox status code (informational status codes included).
3498 * @param pVCpu Pointer to the VMCPU.
3499 * @param pCtx Pointer to the guest-CPU context.
3500 * @param pSvmTransient Pointer to the SVM transient structure.
3501 */
3502DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3503{
3504 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
3505 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3506
3507 /*
3508 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
3509 * normal workloads (for some definition of "normal").
3510 */
3511 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3512 switch (pSvmTransient->u64ExitCode)
3513 {
3514 case SVM_EXIT_NPF:
3515 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3516
3517 case SVM_EXIT_IOIO:
3518 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3519
3520 case SVM_EXIT_RDTSC:
3521 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3522
3523 case SVM_EXIT_RDTSCP:
3524 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3525
3526 case SVM_EXIT_CPUID:
3527 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3528
3529 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
3530 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3531
3532 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3533 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3534
3535 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3536 return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
3537
3538 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
3539 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3540
3541 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3542 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3543
3544 case SVM_EXIT_MONITOR:
3545 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3546
3547 case SVM_EXIT_MWAIT:
3548 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3549
3550 case SVM_EXIT_HLT:
3551 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3552
3553 case SVM_EXIT_READ_CR0:
3554 case SVM_EXIT_READ_CR3:
3555 case SVM_EXIT_READ_CR4:
3556 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3557
3558 case SVM_EXIT_WRITE_CR0:
3559 case SVM_EXIT_WRITE_CR3:
3560 case SVM_EXIT_WRITE_CR4:
3561 case SVM_EXIT_WRITE_CR8:
3562 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3563
3564 case SVM_EXIT_VMMCALL:
3565 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3566
3567 case SVM_EXIT_VINTR:
3568 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3569
3570 case SVM_EXIT_INTR:
3571 case SVM_EXIT_FERR_FREEZE:
3572 case SVM_EXIT_NMI:
3573 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3574
3575 case SVM_EXIT_MSR:
3576 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3577
3578 case SVM_EXIT_INVLPG:
3579 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3580
3581 case SVM_EXIT_WBINVD:
3582 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3583
3584 case SVM_EXIT_INVD:
3585 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3586
3587 case SVM_EXIT_RDPMC:
3588 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3589
3590 default:
3591 {
3592 switch (pSvmTransient->u64ExitCode)
3593 {
3594 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3595 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3596 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3597 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3598 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3599
3600 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3601 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3602 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3603 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3604 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3605
3606 case SVM_EXIT_XSETBV:
3607 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
3608
3609 case SVM_EXIT_TASK_SWITCH:
3610 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3611
3612 case SVM_EXIT_IRET:
3613 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
3614
3615 case SVM_EXIT_SHUTDOWN:
3616 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3617
3618 case SVM_EXIT_SMI:
3619 case SVM_EXIT_INIT:
3620 {
3621 /*
3622 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3623 * we want to know about it so log the exit code and bail.
3624 */
3625 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3626 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3627 return VERR_SVM_UNEXPECTED_EXIT;
3628 }
3629
3630 case SVM_EXIT_INVLPGA:
3631 case SVM_EXIT_RSM:
3632 case SVM_EXIT_VMRUN:
3633 case SVM_EXIT_VMLOAD:
3634 case SVM_EXIT_VMSAVE:
3635 case SVM_EXIT_STGI:
3636 case SVM_EXIT_CLGI:
3637 case SVM_EXIT_SKINIT:
3638 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3639
3640#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3641 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3642 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3643 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3644 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3645 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3646 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3647 /* case SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
3648 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3649 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3650 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3651 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3652 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3653 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3654 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3655 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3656 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3657 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3658 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3659 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3660 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3661 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3662 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3663 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3664 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3665 {
3666 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3667 SVMEVENT Event;
3668 Event.u = 0;
3669 Event.n.u1Valid = 1;
3670 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3671 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3672
3673 switch (Event.n.u8Vector)
3674 {
3675 case X86_XCPT_DE:
3676 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3677 break;
3678
3679 case X86_XCPT_BP:
3680 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3681 * next instruction. */
3682 /** @todo Investigate this later. */
3683 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3684 break;
3685
3686 case X86_XCPT_NP:
3687 Event.n.u1ErrorCodeValid = 1;
3688 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3689 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3690 break;
3691
3692 case X86_XCPT_SS:
3693 Event.n.u1ErrorCodeValid = 1;
3694 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3695 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3696 break;
3697
3698 case X86_XCPT_GP:
3699 Event.n.u1ErrorCodeValid = 1;
3700 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3701 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3702 break;
3703
3704 default:
3705 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3706 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3707 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3708 }
3709
3710 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3711 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3712 return VINF_SUCCESS;
3713 }
3714#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3715
3716 default:
3717 {
3718 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3719 pVCpu->hm.s.u32HMError = u32ExitCode;
3720 return VERR_SVM_UNKNOWN_EXIT;
3721 }
3722 }
3723 }
3724 }
3725 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3726}
3727
3728
3729#ifdef DEBUG
3730/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3731# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3732 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3733
3734# define HMSVM_ASSERT_PREEMPT_CPUID() \
3735 do \
3736 { \
3737 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3738 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3739 } while (0)
3740
3741# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3742 do { \
3743 AssertPtr(pVCpu); \
3744 AssertPtr(pCtx); \
3745 AssertPtr(pSvmTransient); \
3746 Assert(ASMIntAreEnabled()); \
3747 HMSVM_ASSERT_PREEMPT_SAFE(); \
3748 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3749 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3750 HMSVM_ASSERT_PREEMPT_SAFE(); \
3751 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3752 HMSVM_ASSERT_PREEMPT_CPUID(); \
3753 } while (0)
3754#else /* Release builds */
3755# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
3756#endif
3757
3758
3759/**
3760 * Worker for hmR0SvmInterpretInvlpg().
3761 *
3762 * @return VBox status code.
3763 * @param pVCpu Pointer to the VMCPU.
3764 * @param pCpu Pointer to the disassembler state.
3765 * @param pCtx The guest CPU context.
3766 */
3767static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
3768{
3769 DISQPVPARAMVAL Param1;
3770 RTGCPTR GCPtrPage;
3771
3772 int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3773 if (RT_FAILURE(rc))
3774 return VERR_EM_INTERPRETER;
3775
3776 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3777 || Param1.type == DISQPV_TYPE_ADDRESS)
3778 {
3779 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3780 return VERR_EM_INTERPRETER;
3781
3782 GCPtrPage = Param1.val.val64;
3783 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
3784 rc = VBOXSTRICTRC_VAL(rc2);
3785 }
3786 else
3787 {
3788 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3789 rc = VERR_EM_INTERPRETER;
3790 }
3791
3792 return rc;
3793}
3794
3795
3796/**
3797 * Interprets INVLPG.
3798 *
3799 * @returns VBox status code.
3800 * @retval VINF_* Scheduling instructions.
3801 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3802 * @retval VERR_* Fatal errors.
3803 *
3804 * @param pVM Pointer to the VM.
3805 * @param pCtx The guest CPU context.
3806 *
3807 * @remarks Updates the RIP if the instruction was executed successfully.
3808 */
3809static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3810{
3811 /* Only allow 32 & 64 bit code. */
3812 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3813 {
3814 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3815 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3816 if ( RT_SUCCESS(rc)
3817 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3818 {
3819 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
3820 if (RT_SUCCESS(rc))
3821 pCtx->rip += pDis->cbInstr;
3822 return rc;
3823 }
3824 else
3825 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3826 }
3827 return VERR_EM_INTERPRETER;
3828}
3829
3830
3831/**
3832 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
3833 *
3834 * @param pVCpu Pointer to the VMCPU.
3835 */
3836DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3837{
3838 SVMEVENT Event;
3839 Event.u = 0;
3840 Event.n.u1Valid = 1;
3841 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3842 Event.n.u8Vector = X86_XCPT_UD;
3843 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3844}
3845
3846
3847/**
3848 * Sets a debug (#DB) exception as pending-for-injection into the VM.
3849 *
3850 * @param pVCpu Pointer to the VMCPU.
3851 */
3852DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3853{
3854 SVMEVENT Event;
3855 Event.u = 0;
3856 Event.n.u1Valid = 1;
3857 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3858 Event.n.u8Vector = X86_XCPT_DB;
3859 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3860}
3861
3862
3863/**
3864 * Sets a page fault (#PF) exception as pending-for-injection into the VM.
3865 *
3866 * @param pVCpu Pointer to the VMCPU.
3867 * @param pCtx Pointer to the guest-CPU context.
3868 * @param u32ErrCode The error-code for the page-fault.
3869 * @param uFaultAddress The page fault address (CR2).
3870 *
3871 * @remarks This updates the guest CR2 with @a uFaultAddress!
3872 */
3873DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3874{
3875 SVMEVENT Event;
3876 Event.u = 0;
3877 Event.n.u1Valid = 1;
3878 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3879 Event.n.u8Vector = X86_XCPT_PF;
3880 Event.n.u1ErrorCodeValid = 1;
3881 Event.n.u32ErrorCode = u32ErrCode;
3882
3883 /* Update CR2 of the guest. */
3884 if (pCtx->cr2 != uFaultAddress)
3885 {
3886 pCtx->cr2 = uFaultAddress;
3887 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
3888 }
3889
3890 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3891}
3892
3893
3894/**
3895 * Sets a device-not-available (#NM) exception as pending-for-injection into the
3896 * VM.
3897 *
3898 * @param pVCpu Pointer to the VMCPU.
3899 */
3900DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3901{
3902 SVMEVENT Event;
3903 Event.u = 0;
3904 Event.n.u1Valid = 1;
3905 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3906 Event.n.u8Vector = X86_XCPT_NM;
3907 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3908}
3909
3910
3911/**
3912 * Sets a math-fault (#MF) exception as pending-for-injection into the VM.
3913 *
3914 * @param pVCpu Pointer to the VMCPU.
3915 */
3916DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3917{
3918 SVMEVENT Event;
3919 Event.u = 0;
3920 Event.n.u1Valid = 1;
3921 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3922 Event.n.u8Vector = X86_XCPT_MF;
3923 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3924}
3925
3926
3927/**
3928 * Sets a double fault (#DF) exception as pending-for-injection into the VM.
3929 *
3930 * @param pVCpu Pointer to the VMCPU.
3931 */
3932DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3933{
3934 SVMEVENT Event;
3935 Event.u = 0;
3936 Event.n.u1Valid = 1;
3937 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3938 Event.n.u8Vector = X86_XCPT_DF;
3939 Event.n.u1ErrorCodeValid = 1;
3940 Event.n.u32ErrorCode = 0;
3941 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3942}
3943
3944
3945/**
3946 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3947 * guests. This simply looks up the patch record at EIP and does the required.
3948 *
3949 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3950 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3951 * TPR). See hmR3ReplaceTprInstr() for the details.
3952 *
3953 * @returns VBox status code.
3954 * @retval VINF_SUCCESS if the access was handled successfully.
3955 * @retval VERR_NOT_FOUND if no patch record for this RIP could be found.
3956 * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE if the found patch type is invalid.
3957 *
3958 * @param pVM Pointer to the VM.
3959 * @param pVCpu Pointer to the VMCPU.
3960 * @param pCtx Pointer to the guest-CPU context.
3961 */
3962static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3963{
3964 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3965
3966 /*
3967 * We do this in a loop as we increment the RIP after a successful emulation
3968 * and the new RIP may be a patched instruction which needs emulation as well.
3969 */
3970 bool fPatchFound = false;
3971 for (;;)
3972 {
3973 bool fPending;
3974 uint8_t u8Tpr;
3975
3976 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3977 if (!pPatch)
3978 break;
3979
3980 fPatchFound = true;
3981 switch (pPatch->enmType)
3982 {
3983 case HMTPRINSTR_READ:
3984 {
3985 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
3986 AssertRC(rc);
3987
3988 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
3989 AssertRC(rc);
3990 pCtx->rip += pPatch->cbOp;
3991 break;
3992 }
3993
3994 case HMTPRINSTR_WRITE_REG:
3995 case HMTPRINSTR_WRITE_IMM:
3996 {
3997 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
3998 {
3999 uint32_t u32Val;
4000 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
4001 AssertRC(rc);
4002 u8Tpr = u32Val;
4003 }
4004 else
4005 u8Tpr = (uint8_t)pPatch->uSrcOperand;
4006
4007 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
4008 AssertRC(rc2);
4009 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4010
4011 pCtx->rip += pPatch->cbOp;
4012 break;
4013 }
4014
4015 default:
4016 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
4017 pVCpu->hm.s.u32HMError = pPatch->enmType;
4018 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
4019 }
4020 }
4021
4022 if (fPatchFound)
4023 return VINF_SUCCESS;
4024 return VERR_NOT_FOUND;
4025}
4026
4027
4028/**
4029 * Determines if an exception is a contributory exception.
4030 *
4031 * Contributory exceptions are ones which can cause double-faults unless the
4032 * original exception was a benign exception. Page-fault is intentionally not
4033 * included here as it's a conditional contributory exception.
4034 *
4035 * @returns true if the exception is contributory, false otherwise.
4036 * @param uVector The exception vector.
4037 */
4038DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
4039{
4040 switch (uVector)
4041 {
4042 case X86_XCPT_GP:
4043 case X86_XCPT_SS:
4044 case X86_XCPT_NP:
4045 case X86_XCPT_TS:
4046 case X86_XCPT_DE:
4047 return true;
4048 default:
4049 break;
4050 }
4051 return false;
4052}
4053
4054
4055/**
4056 * Handle a condition that occurred while delivering an event through the guest
4057 * IDT.
4058 *
4059 * @returns VBox status code (informational error codes included).
4060 * @retval VINF_SUCCESS if we should continue handling the #VMEXIT.
4061 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
4062 * continue execution of the guest which will delivery the #DF.
4063 * @retval VINF_EM_RESET if we detected a triple-fault condition.
4064 *
4065 * @param pVCpu Pointer to the VMCPU.
4066 * @param pCtx Pointer to the guest-CPU context.
4067 * @param pSvmTransient Pointer to the SVM transient structure.
4068 *
4069 * @remarks No-long-jump zone!!!
4070 */
4071static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4072{
4073 int rc = VINF_SUCCESS;
4074 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4075
4076 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
4077 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
4078 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
4079 {
4080 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
4081
4082 typedef enum
4083 {
4084 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
4085 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
4086 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
4087 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
4088 } SVMREFLECTXCPT;
4089
4090 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
4091 bool fReflectingNmi = false;
4092 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
4093 {
4094 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
4095 {
4096 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
4097
4098#ifdef VBOX_STRICT
4099 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
4100 && uExitVector == X86_XCPT_PF)
4101 {
4102 Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
4103 }
4104#endif
4105 if ( uExitVector == X86_XCPT_PF
4106 && uIdtVector == X86_XCPT_PF)
4107 {
4108 pSvmTransient->fVectoringDoublePF = true;
4109 Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
4110 }
4111 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
4112 && hmR0SvmIsContributoryXcpt(uExitVector)
4113 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
4114 || uIdtVector == X86_XCPT_PF))
4115 {
4116 enmReflect = SVMREFLECTXCPT_DF;
4117 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
4118 uIdtVector, uExitVector));
4119 }
4120 else if (uIdtVector == X86_XCPT_DF)
4121 {
4122 enmReflect = SVMREFLECTXCPT_TF;
4123 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
4124 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
4125 }
4126 else
4127 enmReflect = SVMREFLECTXCPT_XCPT;
4128 }
4129 else
4130 {
4131 /*
4132 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
4133 * exception to the guest after handling the #VMEXIT.
4134 */
4135 enmReflect = SVMREFLECTXCPT_XCPT;
4136 }
4137 }
4138 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
4139 || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
4140 {
4141 enmReflect = SVMREFLECTXCPT_XCPT;
4142 fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
4143
4144 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
4145 {
4146 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
4147 if (uExitVector == X86_XCPT_PF)
4148 {
4149 pSvmTransient->fVectoringPF = true;
4150 Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
4151 }
4152 }
4153 }
4154 /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
4155
4156 switch (enmReflect)
4157 {
4158 case SVMREFLECTXCPT_XCPT:
4159 {
4160 /* If we are re-injecting the NMI, clear NMI blocking. */
4161 if (fReflectingNmi)
4162 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
4163
4164 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
4165 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
4166
4167 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
4168 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
4169 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4170 break;
4171 }
4172
4173 case SVMREFLECTXCPT_DF:
4174 {
4175 hmR0SvmSetPendingXcptDF(pVCpu);
4176 rc = VINF_HM_DOUBLE_FAULT;
4177 break;
4178 }
4179
4180 case SVMREFLECTXCPT_TF:
4181 {
4182 rc = VINF_EM_RESET;
4183 break;
4184 }
4185
4186 default:
4187 Assert(rc == VINF_SUCCESS);
4188 break;
4189 }
4190 }
4191 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
4192 NOREF(pCtx);
4193 return rc;
4194}
4195
4196
4197/**
4198 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
4199 * CPU, otherwise advances the RIP by @a cb bytes.
4200 *
4201 * @param pVCpu Pointer to the VMCPU.
4202 * @param pCtx Pointer to the guest-CPU context.
4203 * @param cb RIP increment value in bytes.
4204 *
4205 * @remarks Use this function only from #VMEXIT's where the NRIP value is valid
4206 * when NRIP_SAVE is supported by the CPU!
4207 */
4208DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
4209{
4210 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4211 {
4212 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4213 Assert(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb);
4214 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4215 }
4216 else
4217 pCtx->rip += cb;
4218}
4219
4220
4221/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
4222/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
4223/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
4224
4225/** @name #VMEXIT handlers.
4226 * @{
4227 */
4228
4229/**
4230 * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
4231 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
4232 */
4233HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4234{
4235 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4236
4237 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
4238 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
4239 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
4240 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
4241
4242 /*
4243 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
4244 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
4245 * interrupt it is until the host actually take the interrupt.
4246 *
4247 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
4248 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
4249 */
4250 return VINF_EM_RAW_INTERRUPT;
4251}
4252
4253
4254/**
4255 * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
4256 */
4257HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4258{
4259 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4260
4261 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4262 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
4263 int rc = VINF_SUCCESS;
4264 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4265 return rc;
4266}
4267
4268
4269/**
4270 * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
4271 */
4272HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4273{
4274 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4275
4276 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4277 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
4278 int rc = VINF_SUCCESS;
4279 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4280 return rc;
4281}
4282
4283
4284/**
4285 * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
4286 */
4287HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4288{
4289 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4290 PVM pVM = pVCpu->CTX_SUFF(pVM);
4291 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4292 if (RT_LIKELY(rc == VINF_SUCCESS))
4293 {
4294 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4295 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4296 }
4297 else
4298 {
4299 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
4300 rc = VERR_EM_INTERPRETER;
4301 }
4302 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
4303 return rc;
4304}
4305
4306
4307/**
4308 * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
4309 */
4310HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4311{
4312 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4313 PVM pVM = pVCpu->CTX_SUFF(pVM);
4314 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4315 if (RT_LIKELY(rc == VINF_SUCCESS))
4316 {
4317 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4318 pSvmTransient->fUpdateTscOffsetting = true;
4319
4320 /* Single step check. */
4321 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4322 }
4323 else
4324 {
4325 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
4326 rc = VERR_EM_INTERPRETER;
4327 }
4328 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
4329 return rc;
4330}
4331
4332
4333/**
4334 * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
4335 */
4336HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4337{
4338 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4339 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4340 if (RT_LIKELY(rc == VINF_SUCCESS))
4341 {
4342 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
4343 pSvmTransient->fUpdateTscOffsetting = true;
4344 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4345 }
4346 else
4347 {
4348 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
4349 rc = VERR_EM_INTERPRETER;
4350 }
4351 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
4352 return rc;
4353}
4354
4355
4356/**
4357 * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
4358 */
4359HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4360{
4361 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4362 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4363 if (RT_LIKELY(rc == VINF_SUCCESS))
4364 {
4365 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4366 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4367 }
4368 else
4369 {
4370 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
4371 rc = VERR_EM_INTERPRETER;
4372 }
4373 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
4374 return rc;
4375}
4376
4377
4378/**
4379 * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
4380 */
4381HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4382{
4383 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4384 PVM pVM = pVCpu->CTX_SUFF(pVM);
4385 Assert(!pVM->hm.s.fNestedPaging);
4386
4387 /** @todo Decode Assist. */
4388 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
4389 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
4390 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
4391 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4392 return rc;
4393}
4394
4395
4396/**
4397 * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
4398 */
4399HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4400{
4401 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4402
4403 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
4404 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
4405 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4406 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
4407 if (rc != VINF_SUCCESS)
4408 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
4409 return rc;
4410}
4411
4412
4413/**
4414 * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
4415 */
4416HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4417{
4418 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4419 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4420 if (RT_LIKELY(rc == VINF_SUCCESS))
4421 {
4422 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
4423 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4424 }
4425 else
4426 {
4427 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
4428 rc = VERR_EM_INTERPRETER;
4429 }
4430 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
4431 return rc;
4432}
4433
4434
4435/**
4436 * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
4437 */
4438HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4439{
4440 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4441 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4442 int rc = VBOXSTRICTRC_VAL(rc2);
4443 if ( rc == VINF_EM_HALT
4444 || rc == VINF_SUCCESS)
4445 {
4446 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
4447
4448 if ( rc == VINF_EM_HALT
4449 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
4450 {
4451 rc = VINF_SUCCESS;
4452 }
4453 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4454 }
4455 else
4456 {
4457 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
4458 rc = VERR_EM_INTERPRETER;
4459 }
4460 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
4461 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
4462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
4463 return rc;
4464}
4465
4466
4467/**
4468 * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
4469 * Conditional #VMEXIT.
4470 */
4471HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4472{
4473 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4474 return VINF_EM_RESET;
4475}
4476
4477
4478/**
4479 * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
4480 */
4481HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4482{
4483 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4484
4485 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4486
4487 /** @todo Decode Assist. */
4488 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4489 int rc = VBOXSTRICTRC_VAL(rc2);
4490 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
4491 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
4492 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
4493 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
4494 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4495 return rc;
4496}
4497
4498
4499/**
4500 * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
4501 */
4502HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4503{
4504 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4505
4506 /** @todo Decode Assist. */
4507 VBOXSTRICTRC rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
4508 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
4509 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
4510 rcStrict = VERR_EM_INTERPRETER;
4511 if (rcStrict == VINF_SUCCESS)
4512 {
4513 /* RIP has been updated by EMInterpretInstruction(). */
4514 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
4515 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
4516 {
4517 case 0: /* CR0. */
4518 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
4519 break;
4520
4521 case 3: /* CR3. */
4522 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4523 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
4524 break;
4525
4526 case 4: /* CR4. */
4527 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
4528 break;
4529
4530 case 8: /* CR8 (TPR). */
4531 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4532 break;
4533
4534 default:
4535 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
4536 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
4537 break;
4538 }
4539 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4540 }
4541 else
4542 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
4543 return VBOXSTRICTRC_TODO(rcStrict);
4544}
4545
4546
4547/**
4548 * #VMEXIT handler for instructions that result in a #UD exception delivered to
4549 * the guest.
4550 */
4551HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4552{
4553 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4554 hmR0SvmSetPendingXcptUD(pVCpu);
4555 return VINF_SUCCESS;
4556}
4557
4558
4559/**
4560 * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
4561 */
4562HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4563{
4564 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4565 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4566 PVM pVM = pVCpu->CTX_SUFF(pVM);
4567
4568 int rc;
4569 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4570 {
4571 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4572
4573 /* Handle TPR patching; intercepted LSTAR write. */
4574 if ( pVM->hm.s.fTPRPatchingActive
4575 && pCtx->ecx == MSR_K8_LSTAR)
4576 {
4577 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4578 {
4579 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4580 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4581 AssertRC(rc2);
4582 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4583 }
4584 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4585 rc = VINF_SUCCESS;
4586 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4587 return rc;
4588 }
4589
4590 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4591 {
4592 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4593 if (RT_LIKELY(rc == VINF_SUCCESS))
4594 {
4595 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4596 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4597 }
4598 else
4599 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4600 }
4601 else
4602 {
4603 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4604 if (RT_LIKELY(rc == VINF_SUCCESS))
4605 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
4606 else
4607 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4608 }
4609
4610 if (rc == VINF_SUCCESS)
4611 {
4612 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4613 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4614 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4615 {
4616 /*
4617 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4618 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4619 * EMInterpretWrmsr() changes it.
4620 */
4621 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4622 }
4623 else if (pCtx->ecx == MSR_K6_EFER)
4624 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4625 else if (pCtx->ecx == MSR_IA32_TSC)
4626 pSvmTransient->fUpdateTscOffsetting = true;
4627 }
4628 }
4629 else
4630 {
4631 /* MSR Read access. */
4632 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4633 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4634
4635 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4636 {
4637 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4638 if (RT_LIKELY(rc == VINF_SUCCESS))
4639 {
4640 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4641 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4642 }
4643 else
4644 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4645 }
4646 else
4647 {
4648 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4649 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4650 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4651 /* RIP updated by EMInterpretInstruction(). */
4652 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4653 }
4654 }
4655
4656 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4657 return rc;
4658}
4659
4660
4661/**
4662 * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
4663 */
4664HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4665{
4666 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4667 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4668
4669 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
4670 if (pSvmTransient->fWasGuestDebugStateActive)
4671 {
4672 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
4673 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
4674 return VERR_SVM_UNEXPECTED_EXIT;
4675 }
4676
4677 /*
4678 * Lazy DR0-3 loading.
4679 */
4680 if (!pSvmTransient->fWasHyperDebugStateActive)
4681 {
4682 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4683 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4684
4685 /* Don't intercept DRx read and writes. */
4686 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4687 pVmcb->ctrl.u16InterceptRdDRx = 0;
4688 pVmcb->ctrl.u16InterceptWrDRx = 0;
4689 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4690
4691 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
4692 VMMRZCallRing3Disable(pVCpu);
4693 HM_DISABLE_PREEMPT();
4694
4695 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4696 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4697 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
4698
4699 HM_RESTORE_PREEMPT();
4700 VMMRZCallRing3Enable(pVCpu);
4701
4702 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4703 return VINF_SUCCESS;
4704 }
4705
4706 /*
4707 * Interpret the read/writing of DRx.
4708 */
4709 /** @todo Decode assist. */
4710 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4711 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4712 if (RT_LIKELY(rc == VINF_SUCCESS))
4713 {
4714 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4715 /** @todo CPUM should set this flag! */
4716 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
4717 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4718 }
4719 else
4720 Assert(rc == VERR_EM_INTERPRETER);
4721 return VBOXSTRICTRC_TODO(rc);
4722}
4723
4724
4725/**
4726 * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
4727 */
4728HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4729{
4730 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4731 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4732 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4733 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4734 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4735 return rc;
4736}
4737
4738
4739/**
4740 * #VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional #VMEXIT.
4741 */
4742HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4743{
4744 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4745
4746 /** @todo decode assists... */
4747 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
4748 if (rcStrict == VINF_IEM_RAISED_XCPT)
4749 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
4750
4751 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4752 Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
4753 pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
4754
4755 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4756 return VBOXSTRICTRC_TODO(rcStrict);
4757}
4758
4759
4760/**
4761 * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
4762 */
4763HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4764{
4765 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4766
4767 /* I/O operation lookup arrays. */
4768 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4769 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4770 the result (in AL/AX/EAX). */
4771 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4772
4773 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4774 PVM pVM = pVCpu->CTX_SUFF(pVM);
4775
4776 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4777 SVMIOIOEXIT IoExitInfo;
4778 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4779 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4780 uint32_t cbValue = s_aIOSize[uIOWidth];
4781 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4782
4783 if (RT_UNLIKELY(!cbValue))
4784 {
4785 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4786 return VERR_EM_INTERPRETER;
4787 }
4788
4789 VBOXSTRICTRC rcStrict;
4790 bool fUpdateRipAlready = false;
4791 if (IoExitInfo.n.u1STR)
4792 {
4793#ifdef VBOX_WITH_2ND_IEM_STEP
4794 /* INS/OUTS - I/O String instruction. */
4795 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4796 * in EXITINFO1? Investigate once this thing is up and running. */
4797 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
4798 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
4799 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
4800 static IEMMODE const s_aenmAddrMode[8] =
4801 {
4802 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
4803 };
4804 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
4805 if (enmAddrMode != (IEMMODE)-1)
4806 {
4807 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
4808 if (cbInstr <= 15 && cbInstr >= 1)
4809 {
4810 Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
4811 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4812 {
4813 /* Don't know exactly how to detect whether u3SEG is valid, currently
4814 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
4815 2384 Opterons when only checking NRIP. */
4816 if ( (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4817 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
4818 {
4819 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
4820 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
4821 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
4822 IoExitInfo.n.u3SEG);
4823 }
4824 else if (cbInstr == 1U + IoExitInfo.n.u1REP)
4825 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
4826 X86_SREG_DS);
4827 else
4828 rcStrict = IEMExecOne(pVCpu);
4829 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4830 }
4831 else
4832 {
4833 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
4834 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr);
4835 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4836 }
4837 }
4838 else
4839 {
4840 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
4841 rcStrict = IEMExecOne(pVCpu);
4842 }
4843 }
4844 else
4845 {
4846 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
4847 rcStrict = IEMExecOne(pVCpu);
4848 }
4849 fUpdateRipAlready = true;
4850
4851#else
4852 /* INS/OUTS - I/O String instruction. */
4853 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4854
4855 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4856 * in EXITINFO1? Investigate once this thing is up and running. */
4857
4858 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4859 if (rcStrict == VINF_SUCCESS)
4860 {
4861 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4862 {
4863 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4864 (DISCPUMODE)pDis->uAddrMode, cbValue);
4865 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4866 }
4867 else
4868 {
4869 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4870 (DISCPUMODE)pDis->uAddrMode, cbValue);
4871 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4872 }
4873 }
4874 else
4875 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
4876#endif
4877 }
4878 else
4879 {
4880 /* IN/OUT - I/O instruction. */
4881 Assert(!IoExitInfo.n.u1REP);
4882
4883 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4884 {
4885 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
4886 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4887 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4888
4889 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4890 }
4891 else
4892 {
4893 uint32_t u32Val = 0;
4894 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
4895 if (IOM_SUCCESS(rcStrict))
4896 {
4897 /* Save result of I/O IN instr. in AL/AX/EAX. */
4898 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
4899 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4900 }
4901 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4902 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4903
4904 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4905 }
4906 }
4907
4908 if (IOM_SUCCESS(rcStrict))
4909 {
4910 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4911 if (!fUpdateRipAlready)
4912 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4913
4914 /*
4915 * If any I/O breakpoints are armed, we need to check if one triggered
4916 * and take appropriate action.
4917 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
4918 */
4919 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
4920 * execution engines about whether hyper BPs and such are pending. */
4921 uint32_t const uDr7 = pCtx->dr[7];
4922 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
4923 && X86_DR7_ANY_RW_IO(uDr7)
4924 && (pCtx->cr4 & X86_CR4_DE))
4925 || DBGFBpIsHwIoArmed(pVM)))
4926 {
4927 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
4928 VMMRZCallRing3Disable(pVCpu);
4929 HM_DISABLE_PREEMPT();
4930
4931 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4932 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
4933
4934 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
4935 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
4936 {
4937 /* Raise #DB. */
4938 pVmcb->guest.u64DR6 = pCtx->dr[6];
4939 pVmcb->guest.u64DR7 = pCtx->dr[7];
4940 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4941 hmR0SvmSetPendingXcptDB(pVCpu);
4942 }
4943 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
4944 else if ( rcStrict2 != VINF_SUCCESS
4945 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
4946 rcStrict = rcStrict2;
4947
4948 HM_RESTORE_PREEMPT();
4949 VMMRZCallRing3Enable(pVCpu);
4950 }
4951
4952 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4953 }
4954
4955#ifdef VBOX_STRICT
4956 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4957 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4958 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4959 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4960 else
4961 {
4962 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
4963 * statuses, that the VMM device and some others may return. See
4964 * IOM_SUCCESS() for guidance. */
4965 AssertMsg( RT_FAILURE(rcStrict)
4966 || rcStrict == VINF_SUCCESS
4967 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
4968 || rcStrict == VINF_EM_DBG_BREAKPOINT
4969 || rcStrict == VINF_EM_RAW_GUEST_TRAP
4970 || rcStrict == VINF_EM_RAW_TO_R3
4971 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
4972 }
4973#endif
4974 return VBOXSTRICTRC_TODO(rcStrict);
4975}
4976
4977
4978/**
4979 * #VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional
4980 * #VMEXIT.
4981 */
4982HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4983{
4984 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4985 PVM pVM = pVCpu->CTX_SUFF(pVM);
4986 Assert(pVM->hm.s.fNestedPaging);
4987
4988 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
4989
4990 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
4991 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4992 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
4993 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
4994
4995 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
4996
4997#ifdef VBOX_HM_WITH_GUEST_PATCHING
4998 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
4999 if ( pVM->hm.s.fTprPatchingAllowed
5000 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
5001 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
5002 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
5003 && !CPUMIsGuestInLongModeEx(pCtx)
5004 && !CPUMGetGuestCPL(pVCpu)
5005 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
5006 {
5007 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
5008 GCPhysApicBase &= PAGE_BASE_GC_MASK;
5009
5010 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
5011 {
5012 /* Only attempt to patch the instruction once. */
5013 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
5014 if (!pPatch)
5015 return VINF_EM_HM_PATCH_TPR_INSTR;
5016 }
5017 }
5018#endif
5019
5020 /*
5021 * Determine the nested paging mode.
5022 */
5023 PGMMODE enmNestedPagingMode;
5024#if HC_ARCH_BITS == 32
5025 if (CPUMIsGuestInLongModeEx(pCtx))
5026 enmNestedPagingMode = PGMMODE_AMD64_NX;
5027 else
5028#endif
5029 enmNestedPagingMode = PGMGetHostMode(pVM);
5030
5031 /*
5032 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
5033 */
5034 int rc;
5035 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
5036 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
5037 {
5038 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
5039 u32ErrCode);
5040 rc = VBOXSTRICTRC_VAL(rc2);
5041
5042 /*
5043 * If we succeed, resume guest execution.
5044 * If we fail in interpreting the instruction because we couldn't get the guest physical address
5045 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
5046 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
5047 * weird case. See @bugref{6043}.
5048 */
5049 if ( rc == VINF_SUCCESS
5050 || rc == VERR_PAGE_TABLE_NOT_PRESENT
5051 || rc == VERR_PAGE_NOT_PRESENT)
5052 {
5053 /* Successfully handled MMIO operation. */
5054 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
5055 rc = VINF_SUCCESS;
5056 }
5057 return rc;
5058 }
5059
5060 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
5061 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
5062 TRPMResetTrap(pVCpu);
5063
5064 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
5065
5066 /*
5067 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
5068 */
5069 if ( rc == VINF_SUCCESS
5070 || rc == VERR_PAGE_TABLE_NOT_PRESENT
5071 || rc == VERR_PAGE_NOT_PRESENT)
5072 {
5073 /* We've successfully synced our shadow page tables. */
5074 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
5075 rc = VINF_SUCCESS;
5076 }
5077
5078 return rc;
5079}
5080
5081
5082/**
5083 * #VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional #VMEXIT.
5084 */
5085HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5086{
5087 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5088
5089 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5090 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
5091 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
5092
5093 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive interrupts/NMIs, it is now ready. */
5094 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
5095 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
5096
5097 /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
5098 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
5099 return VINF_SUCCESS;
5100}
5101
5102
5103/**
5104 * #VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional #VMEXIT.
5105 */
5106HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5107{
5108 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5109
5110#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
5111 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5112#endif
5113
5114 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
5115 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5116 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
5117 && pVCpu->hm.s.Event.fPending) /** @todo fPending cannot be 'true', see hmR0SvmInjectPendingEvent(). See @bugref{7362}.*/
5118 {
5119 /*
5120 * AMD-V does not provide us with the original exception but we have it in u64IntInfo since we
5121 * injected the event during VM-entry.
5122 */
5123 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
5124 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
5125 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5126 }
5127
5128 /** @todo Emulate task switch someday, currently just going back to ring-3 for
5129 * emulation. */
5130 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
5131 return VERR_EM_INTERPRETER;
5132}
5133
5134
5135/**
5136 * #VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional #VMEXIT.
5137 */
5138HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5139{
5140 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5141 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
5142
5143 /* First check if this is a patched VMMCALL for mov TPR */
5144 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
5145 if (rc == VINF_SUCCESS)
5146 {
5147 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5148 return VINF_SUCCESS;
5149 }
5150 else if (rc == VERR_NOT_FOUND)
5151 {
5152 if (pVCpu->hm.s.fHypercallsEnabled)
5153 {
5154 rc = GIMHypercall(pVCpu, pCtx);
5155 if (RT_SUCCESS(rc))
5156 {
5157 /* If the hypercall changes anything other than guest general-purpose registers,
5158 we would need to reload the guest changed bits here before VM-reentry. */
5159 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
5160 return VINF_SUCCESS;
5161 }
5162 }
5163 }
5164
5165 hmR0SvmSetPendingXcptUD(pVCpu);
5166 return VINF_SUCCESS;
5167}
5168
5169
5170/**
5171 * #VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional #VMEXIT.
5172 */
5173HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5174{
5175 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5176
5177 /* Clear NMI blocking. */
5178 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5179
5180 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
5181 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5182 hmR0SvmClearIretIntercept(pVmcb);
5183
5184 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
5185 return VINF_SUCCESS;
5186}
5187
5188
5189/**
5190 * #VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E). Conditional
5191 * #VMEXIT.
5192 */
5193HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5194{
5195 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5196
5197 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5198
5199 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
5200 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5201 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
5202 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
5203 PVM pVM = pVCpu->CTX_SUFF(pVM);
5204
5205#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
5206 if (pVM->hm.s.fNestedPaging)
5207 {
5208 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
5209 if (!pSvmTransient->fVectoringDoublePF)
5210 {
5211 /* A genuine guest #PF, reflect it to the guest. */
5212 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
5213 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
5214 uFaultAddress, u32ErrCode));
5215 }
5216 else
5217 {
5218 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
5219 hmR0SvmSetPendingXcptDF(pVCpu);
5220 Log4(("Pending #DF due to vectoring #PF. NP\n"));
5221 }
5222 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
5223 return VINF_SUCCESS;
5224 }
5225#endif
5226
5227 Assert(!pVM->hm.s.fNestedPaging);
5228
5229#ifdef VBOX_HM_WITH_GUEST_PATCHING
5230 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
5231 if ( pVM->hm.s.fTprPatchingAllowed
5232 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
5233 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
5234 && !CPUMIsGuestInLongModeEx(pCtx)
5235 && !CPUMGetGuestCPL(pVCpu)
5236 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
5237 {
5238 RTGCPHYS GCPhysApicBase;
5239 GCPhysApicBase = pCtx->msrApicBase;
5240 GCPhysApicBase &= PAGE_BASE_GC_MASK;
5241
5242 /* Check if the page at the fault-address is the APIC base. */
5243 RTGCPHYS GCPhysPage;
5244 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
5245 if ( rc2 == VINF_SUCCESS
5246 && GCPhysPage == GCPhysApicBase)
5247 {
5248 /* Only attempt to patch the instruction once. */
5249 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
5250 if (!pPatch)
5251 return VINF_EM_HM_PATCH_TPR_INSTR;
5252 }
5253 }
5254#endif
5255
5256 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
5257 pCtx->rip, u32ErrCode, pCtx->cr3));
5258
5259 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
5260 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
5261 if (pSvmTransient->fVectoringPF)
5262 {
5263 Assert(pVCpu->hm.s.Event.fPending);
5264 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5265 }
5266
5267 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
5268 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
5269
5270 Log4(("#PF rc=%Rrc\n", rc));
5271
5272 if (rc == VINF_SUCCESS)
5273 {
5274 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
5275 TRPMResetTrap(pVCpu);
5276 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
5277 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
5278 return rc;
5279 }
5280 else if (rc == VINF_EM_RAW_GUEST_TRAP)
5281 {
5282 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
5283
5284 if (!pSvmTransient->fVectoringDoublePF)
5285 {
5286 /* It's a guest page fault and needs to be reflected to the guest. */
5287 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
5288 TRPMResetTrap(pVCpu);
5289 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
5290 }
5291 else
5292 {
5293 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
5294 TRPMResetTrap(pVCpu);
5295 hmR0SvmSetPendingXcptDF(pVCpu);
5296 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
5297 }
5298
5299 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
5300 return VINF_SUCCESS;
5301 }
5302
5303 TRPMResetTrap(pVCpu);
5304 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
5305 return rc;
5306}
5307
5308
5309/**
5310 * #VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
5311 * Conditional #VMEXIT.
5312 */
5313HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5314{
5315 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5316
5317 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5318
5319 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
5320 VMMRZCallRing3Disable(pVCpu);
5321 HM_DISABLE_PREEMPT();
5322
5323 int rc;
5324 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
5325 if (pSvmTransient->fWasGuestFPUStateActive)
5326 {
5327 rc = VINF_EM_RAW_GUEST_TRAP;
5328 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
5329 }
5330 else
5331 {
5332#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5333 Assert(!pSvmTransient->fWasGuestFPUStateActive);
5334#endif
5335 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
5336 Assert(rc == VINF_EM_RAW_GUEST_TRAP || (rc == VINF_SUCCESS && CPUMIsGuestFPUStateActive(pVCpu)));
5337 }
5338
5339 HM_RESTORE_PREEMPT();
5340 VMMRZCallRing3Enable(pVCpu);
5341
5342 if (rc == VINF_SUCCESS)
5343 {
5344 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
5345 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
5346 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
5347 pVCpu->hm.s.fPreloadGuestFpu = true;
5348 }
5349 else
5350 {
5351 /* Forward #NM to the guest. */
5352 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
5353 hmR0SvmSetPendingXcptNM(pVCpu);
5354 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
5355 }
5356 return VINF_SUCCESS;
5357}
5358
5359
5360/**
5361 * #VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6).
5362 * Conditional #VMEXIT.
5363 */
5364HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5365{
5366 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5367
5368 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5369
5370 if (pVCpu->hm.s.fGIMTrapXcptUD)
5371 GIMXcptUD(pVCpu, pCtx, NULL /* pDis */);
5372 else
5373 hmR0SvmSetPendingXcptUD(pVCpu);
5374
5375 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
5376 return VINF_SUCCESS;
5377}
5378
5379
5380/**
5381 * #VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
5382 * Conditional #VMEXIT.
5383 */
5384HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5385{
5386 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5387
5388 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5389
5390 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
5391
5392 if (!(pCtx->cr0 & X86_CR0_NE))
5393 {
5394 PVM pVM = pVCpu->CTX_SUFF(pVM);
5395 PDISSTATE pDis = &pVCpu->hm.s.DisState;
5396 unsigned cbOp;
5397 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
5398 if (RT_SUCCESS(rc))
5399 {
5400 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
5401 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
5402 if (RT_SUCCESS(rc))
5403 pCtx->rip += cbOp;
5404 }
5405 else
5406 Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
5407 return rc;
5408 }
5409
5410 hmR0SvmSetPendingXcptMF(pVCpu);
5411 return VINF_SUCCESS;
5412}
5413
5414
5415/**
5416 * #VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
5417 * #VMEXIT.
5418 */
5419HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5420{
5421 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5422
5423 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5424
5425 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
5426
5427 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
5428 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
5429 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5430 PVM pVM = pVCpu->CTX_SUFF(pVM);
5431 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
5432 if (rc == VINF_EM_RAW_GUEST_TRAP)
5433 {
5434 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
5435 if (CPUMIsHyperDebugStateActive(pVCpu))
5436 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
5437
5438 /* Reflect the exception back to the guest. */
5439 hmR0SvmSetPendingXcptDB(pVCpu);
5440 rc = VINF_SUCCESS;
5441 }
5442
5443 /*
5444 * Update DR6.
5445 */
5446 if (CPUMIsHyperDebugStateActive(pVCpu))
5447 {
5448 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
5449 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
5450 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
5451 }
5452 else
5453 {
5454 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
5455 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
5456 }
5457
5458 return rc;
5459}
5460
5461/** @} */
5462
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette