VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 60732

Last change on this file since 60732 was 60732, checked in by vboxsync, 9 years ago

VMM/HM: Add stat. counter for intr masked-by-TPR during event injection.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 211.1 KB
Line 
1/* $Id: HMSVMR0.cpp 60732 2016-04-28 10:29:17Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/asm-amd64-x86.h>
24#include <iprt/thread.h>
25
26#include <VBox/vmm/pdmapi.h>
27#include <VBox/vmm/dbgf.h>
28#include <VBox/vmm/iem.h>
29#include <VBox/vmm/iom.h>
30#include <VBox/vmm/tm.h>
31#include <VBox/vmm/gim.h>
32#include "HMInternal.h"
33#include <VBox/vmm/vm.h>
34#include "HMSVMR0.h"
35#include "dtrace/VBoxVMM.h"
36
37#ifdef DEBUG_ramshankar
38# define HMSVM_SYNC_FULL_GUEST_STATE
39# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
40# define HMSVM_ALWAYS_TRAP_PF
41# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
42#endif
43
44
45/*********************************************************************************************************************************
46* Defined Constants And Macros *
47*********************************************************************************************************************************/
48#ifdef VBOX_WITH_STATISTICS
49# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
50 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
51 if ((u64ExitCode) == SVM_EXIT_NPF) \
52 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
53 else \
54 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
55 } while (0)
56#else
57# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
58#endif
59
60/** If we decide to use a function table approach this can be useful to
61 * switch to a "static DECLCALLBACK(int)". */
62#define HMSVM_EXIT_DECL static int
63
64/** @name Segment attribute conversion between CPU and AMD-V VMCB format.
65 *
66 * The CPU format of the segment attribute is described in X86DESCATTRBITS
67 * which is 16-bits (i.e. includes 4 bits of the segment limit).
68 *
69 * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
70 * only the attribute bits and nothing else). Upper 4-bits are unused.
71 *
72 * @{ */
73#define HMSVM_CPU_2_VMCB_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0xf000) >> 4) )
74#define HMSVM_VMCB_2_CPU_SEG_ATTR(a) ( ((a) & 0xff) | (((a) & 0x0f00) << 4) )
75/** @} */
76
77/** @name Macros for loading, storing segment registers to/from the VMCB.
78 * @{ */
79#define HMSVM_LOAD_SEG_REG(REG, reg) \
80 do \
81 { \
82 Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
83 Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
84 pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
85 pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
86 pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
87 pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
88 } while (0)
89
90#define HMSVM_SAVE_SEG_REG(REG, reg) \
91 do \
92 { \
93 pMixedCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
94 pMixedCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
95 pMixedCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
96 pMixedCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
97 pMixedCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
98 pMixedCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
99 } while (0)
100/** @} */
101
102/** Macro for checking and returning from the using function for
103 * \#VMEXIT intercepts that maybe caused during delivering of another
104 * event in the guest. */
105#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
106 do \
107 { \
108 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
109 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* likely */ } \
110 else if (rc == VINF_HM_DOUBLE_FAULT) \
111 return VINF_SUCCESS; \
112 else \
113 return rc; \
114 } while (0)
115
116/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
117 * instruction that exited. */
118#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
119 do { \
120 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
121 (a_rc) = VINF_EM_DBG_STEPPED; \
122 } while (0)
123
124/** Assert that preemption is disabled or covered by thread-context hooks. */
125#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
126 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
127
128/** Assert that we haven't migrated CPUs when thread-context hooks are not
129 * used. */
130#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
131 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
132 ("Illegal migration! Entered on CPU %u Current %u\n", \
133 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
134
135/** Exception bitmap mask for all contributory exceptions.
136 *
137 * Page fault is deliberately excluded here as it's conditional as to whether
138 * it's contributory or benign. Page faults are handled separately.
139 */
140#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
141 | RT_BIT(X86_XCPT_DE))
142
143/** @name VMCB Clean Bits.
144 *
145 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
146 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
147 * memory.
148 *
149 * @{ */
150/** All intercepts vectors, TSC offset, PAUSE filter counter. */
151#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
152/** I/O permission bitmap, MSR permission bitmap. */
153#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
154/** ASID. */
155#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
156/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
157V_INTR_VECTOR. */
158#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
159/** Nested Paging: Nested CR3 (nCR3), PAT. */
160#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
161/** Control registers (CR0, CR3, CR4, EFER). */
162#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
163/** Debug registers (DR6, DR7). */
164#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
165/** GDT, IDT limit and base. */
166#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
167/** Segment register: CS, SS, DS, ES limit and base. */
168#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
169/** CR2.*/
170#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
171/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
172#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
173/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
174PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
175#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
176/** Mask of all valid VMCB Clean bits. */
177#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
178 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
179 | HMSVM_VMCB_CLEAN_ASID \
180 | HMSVM_VMCB_CLEAN_TPR \
181 | HMSVM_VMCB_CLEAN_NP \
182 | HMSVM_VMCB_CLEAN_CRX_EFER \
183 | HMSVM_VMCB_CLEAN_DRX \
184 | HMSVM_VMCB_CLEAN_DT \
185 | HMSVM_VMCB_CLEAN_SEG \
186 | HMSVM_VMCB_CLEAN_CR2 \
187 | HMSVM_VMCB_CLEAN_LBR \
188 | HMSVM_VMCB_CLEAN_AVIC)
189/** @} */
190
191/** @name SVM transient.
192 *
193 * A state structure for holding miscellaneous information across AMD-V
194 * VMRUN/\#VMEXIT operation, restored after the transition.
195 *
196 * @{ */
197typedef struct SVMTRANSIENT
198{
199 /** The host's rflags/eflags. */
200 RTCCUINTREG fEFlags;
201#if HC_ARCH_BITS == 32
202 uint32_t u32Alignment0;
203#endif
204
205 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
206 uint64_t u64ExitCode;
207 /** The guest's TPR value used for TPR shadowing. */
208 uint8_t u8GuestTpr;
209 /** Alignment. */
210 uint8_t abAlignment0[7];
211
212 /** Whether the guest FPU state was active at the time of \#VMEXIT. */
213 bool fWasGuestFPUStateActive;
214 /** Whether the guest debug state was active at the time of \#VMEXIT. */
215 bool fWasGuestDebugStateActive;
216 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
217 bool fWasHyperDebugStateActive;
218 /** Whether the TSC offset mode needs to be updated. */
219 bool fUpdateTscOffsetting;
220 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
221 bool fRestoreTscAuxMsr;
222 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
223 * contributary exception or a page-fault. */
224 bool fVectoringDoublePF;
225 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
226 * external interrupt or NMI. */
227 bool fVectoringPF;
228} SVMTRANSIENT, *PSVMTRANSIENT;
229AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
230AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
231/** @} */
232
233/**
234 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
235 */
236typedef enum SVMMSREXITREAD
237{
238 /** Reading this MSR causes a \#VMEXIT. */
239 SVMMSREXIT_INTERCEPT_READ = 0xb,
240 /** Reading this MSR does not cause a \#VMEXIT. */
241 SVMMSREXIT_PASSTHRU_READ
242} SVMMSREXITREAD;
243
244/**
245 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
246 */
247typedef enum SVMMSREXITWRITE
248{
249 /** Writing to this MSR causes a \#VMEXIT. */
250 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
251 /** Writing to this MSR does not cause a \#VMEXIT. */
252 SVMMSREXIT_PASSTHRU_WRITE
253} SVMMSREXITWRITE;
254
255/**
256 * SVM \#VMEXIT handler.
257 *
258 * @returns VBox status code.
259 * @param pVCpu The cross context virtual CPU structure.
260 * @param pMixedCtx Pointer to the guest-CPU context.
261 * @param pSvmTransient Pointer to the SVM-transient structure.
262 */
263typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
264
265
266/*********************************************************************************************************************************
267* Internal Functions *
268*********************************************************************************************************************************/
269static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
270static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
271static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
272
273/** @name \#VMEXIT handlers.
274 * @{
275 */
276static FNSVMEXITHANDLER hmR0SvmExitIntr;
277static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
278static FNSVMEXITHANDLER hmR0SvmExitInvd;
279static FNSVMEXITHANDLER hmR0SvmExitCpuid;
280static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
281static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
282static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
283static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
284static FNSVMEXITHANDLER hmR0SvmExitHlt;
285static FNSVMEXITHANDLER hmR0SvmExitMonitor;
286static FNSVMEXITHANDLER hmR0SvmExitMwait;
287static FNSVMEXITHANDLER hmR0SvmExitShutdown;
288static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
289static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
290static FNSVMEXITHANDLER hmR0SvmExitSetPendingXcptUD;
291static FNSVMEXITHANDLER hmR0SvmExitMsr;
292static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
293static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
294static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
295static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
296static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
297static FNSVMEXITHANDLER hmR0SvmExitVIntr;
298static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
299static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
300static FNSVMEXITHANDLER hmR0SvmExitPause;
301static FNSVMEXITHANDLER hmR0SvmExitIret;
302static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
303static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
304static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
305static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
306static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
307static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
308/** @} */
309
310DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
311
312
313/*********************************************************************************************************************************
314* Global Variables *
315*********************************************************************************************************************************/
316/** Ring-0 memory object for the IO bitmap. */
317RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
318/** Physical address of the IO bitmap. */
319RTHCPHYS g_HCPhysIOBitmap = 0;
320/** Virtual address of the IO bitmap. */
321R0PTRTYPE(void *) g_pvIOBitmap = NULL;
322
323
324/**
325 * Sets up and activates AMD-V on the current CPU.
326 *
327 * @returns VBox status code.
328 * @param pCpu Pointer to the CPU info struct.
329 * @param pVM The cross context VM structure. Can be
330 * NULL after a resume!
331 * @param pvCpuPage Pointer to the global CPU page.
332 * @param HCPhysCpuPage Physical address of the global CPU page.
333 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
334 * @param pvArg Unused on AMD-V.
335 */
336VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
337 void *pvArg)
338{
339 Assert(!fEnabledByHost);
340 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
341 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
342 Assert(pvCpuPage); NOREF(pvCpuPage);
343 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
344
345 NOREF(pvArg);
346 NOREF(fEnabledByHost);
347
348 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
349 RTCCUINTREG fEFlags = ASMIntDisableFlags();
350
351 /*
352 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
353 */
354 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
355 if (u64HostEfer & MSR_K6_EFER_SVME)
356 {
357 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
358 if ( pVM
359 && pVM->hm.s.svm.fIgnoreInUseError)
360 {
361 pCpu->fIgnoreAMDVInUseError = true;
362 }
363
364 if (!pCpu->fIgnoreAMDVInUseError)
365 {
366 ASMSetFlags(fEFlags);
367 return VERR_SVM_IN_USE;
368 }
369 }
370
371 /* Turn on AMD-V in the EFER MSR. */
372 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
373
374 /* Write the physical page address where the CPU will store the host state while executing the VM. */
375 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
376
377 /* Restore interrupts. */
378 ASMSetFlags(fEFlags);
379
380 /*
381 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
382 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
383 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
384 * to flush the TLB with before using a new ASID.
385 */
386 pCpu->fFlushAsidBeforeUse = true;
387
388 /*
389 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
390 */
391 ++pCpu->cTlbFlushes;
392
393 return VINF_SUCCESS;
394}
395
396
397/**
398 * Deactivates AMD-V on the current CPU.
399 *
400 * @returns VBox status code.
401 * @param pCpu Pointer to the CPU info struct.
402 * @param pvCpuPage Pointer to the global CPU page.
403 * @param HCPhysCpuPage Physical address of the global CPU page.
404 */
405VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
406{
407 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
408 AssertReturn( HCPhysCpuPage
409 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
410 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
411 NOREF(pCpu);
412
413 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
414 RTCCUINTREG fEFlags = ASMIntDisableFlags();
415
416 /* Turn off AMD-V in the EFER MSR. */
417 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
418 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
419
420 /* Invalidate host state physical address. */
421 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
422
423 /* Restore interrupts. */
424 ASMSetFlags(fEFlags);
425
426 return VINF_SUCCESS;
427}
428
429
430/**
431 * Does global AMD-V initialization (called during module initialization).
432 *
433 * @returns VBox status code.
434 */
435VMMR0DECL(int) SVMR0GlobalInit(void)
436{
437 /*
438 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
439 * once globally here instead of per-VM.
440 */
441 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
442 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
443 if (RT_FAILURE(rc))
444 return rc;
445
446 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
447 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
448
449 /* Set all bits to intercept all IO accesses. */
450 ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
451 return VINF_SUCCESS;
452}
453
454
455/**
456 * Does global AMD-V termination (called during module termination).
457 */
458VMMR0DECL(void) SVMR0GlobalTerm(void)
459{
460 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
461 {
462 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
463 g_pvIOBitmap = NULL;
464 g_HCPhysIOBitmap = 0;
465 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
466 }
467}
468
469
470/**
471 * Frees any allocated per-VCPU structures for a VM.
472 *
473 * @param pVM The cross context VM structure.
474 */
475DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
476{
477 for (uint32_t i = 0; i < pVM->cCpus; i++)
478 {
479 PVMCPU pVCpu = &pVM->aCpus[i];
480 AssertPtr(pVCpu);
481
482 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
483 {
484 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
485 pVCpu->hm.s.svm.pvVmcbHost = 0;
486 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
487 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
488 }
489
490 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
491 {
492 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
493 pVCpu->hm.s.svm.pvVmcb = 0;
494 pVCpu->hm.s.svm.HCPhysVmcb = 0;
495 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
496 }
497
498 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
499 {
500 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
501 pVCpu->hm.s.svm.pvMsrBitmap = 0;
502 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
503 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
504 }
505 }
506}
507
508
509/**
510 * Does per-VM AMD-V initialization.
511 *
512 * @returns VBox status code.
513 * @param pVM The cross context VM structure.
514 */
515VMMR0DECL(int) SVMR0InitVM(PVM pVM)
516{
517 int rc = VERR_INTERNAL_ERROR_5;
518
519 /*
520 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
521 */
522 uint32_t u32Family;
523 uint32_t u32Model;
524 uint32_t u32Stepping;
525 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
526 {
527 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
528 pVM->hm.s.svm.fAlwaysFlushTLB = true;
529 }
530
531 /*
532 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
533 */
534 for (VMCPUID i = 0; i < pVM->cCpus; i++)
535 {
536 PVMCPU pVCpu = &pVM->aCpus[i];
537 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
538 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
539 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
540 }
541
542 for (VMCPUID i = 0; i < pVM->cCpus; i++)
543 {
544 PVMCPU pVCpu = &pVM->aCpus[i];
545
546 /*
547 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
548 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
549 */
550 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
551 if (RT_FAILURE(rc))
552 goto failure_cleanup;
553
554 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
555 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
556 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
557 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
558
559 /*
560 * Allocate one page for the guest-state VMCB.
561 */
562 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
563 if (RT_FAILURE(rc))
564 goto failure_cleanup;
565
566 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
567 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
568 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
569 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
570
571 /*
572 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
573 * SVM to not require one.
574 */
575 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
576 if (RT_FAILURE(rc))
577 goto failure_cleanup;
578
579 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
580 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
581 /* Set all bits to intercept all MSR accesses (changed later on). */
582 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, UINT32_C(0xffffffff));
583 }
584
585 return VINF_SUCCESS;
586
587failure_cleanup:
588 hmR0SvmFreeStructs(pVM);
589 return rc;
590}
591
592
593/**
594 * Does per-VM AMD-V termination.
595 *
596 * @returns VBox status code.
597 * @param pVM The cross context VM structure.
598 */
599VMMR0DECL(int) SVMR0TermVM(PVM pVM)
600{
601 hmR0SvmFreeStructs(pVM);
602 return VINF_SUCCESS;
603}
604
605
606/**
607 * Sets the permission bits for the specified MSR in the MSRPM.
608 *
609 * @param pVCpu The cross context virtual CPU structure.
610 * @param uMsr The MSR for which the access permissions are being set.
611 * @param enmRead MSR read permissions.
612 * @param enmWrite MSR write permissions.
613 */
614static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
615{
616 unsigned uBit;
617 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
618
619 /*
620 * Layout:
621 * Byte offset MSR range
622 * 0x000 - 0x7ff 0x00000000 - 0x00001fff
623 * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
624 * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
625 * 0x1800 - 0x1fff Reserved
626 */
627 if (uMsr <= 0x00001FFF)
628 {
629 /* Pentium-compatible MSRs. */
630 uBit = uMsr * 2;
631 }
632 else if ( uMsr >= 0xC0000000
633 && uMsr <= 0xC0001FFF)
634 {
635 /* AMD Sixth Generation x86 Processor MSRs. */
636 uBit = (uMsr - 0xC0000000) * 2;
637 pbMsrBitmap += 0x800;
638 }
639 else if ( uMsr >= 0xC0010000
640 && uMsr <= 0xC0011FFF)
641 {
642 /* AMD Seventh and Eighth Generation Processor MSRs. */
643 uBit = (uMsr - 0xC0001000) * 2;
644 pbMsrBitmap += 0x1000;
645 }
646 else
647 {
648 AssertFailed();
649 return;
650 }
651
652 Assert(uBit < 0x3fff /* 16 * 1024 - 1 */);
653 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
654 ASMBitSet(pbMsrBitmap, uBit);
655 else
656 ASMBitClear(pbMsrBitmap, uBit);
657
658 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
659 ASMBitSet(pbMsrBitmap, uBit + 1);
660 else
661 ASMBitClear(pbMsrBitmap, uBit + 1);
662
663 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
664 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
665}
666
667
668/**
669 * Sets up AMD-V for the specified VM.
670 * This function is only called once per-VM during initalization.
671 *
672 * @returns VBox status code.
673 * @param pVM The cross context VM structure.
674 */
675VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
676{
677 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
678 AssertReturn(pVM, VERR_INVALID_PARAMETER);
679 Assert(pVM->hm.s.svm.fSupported);
680
681 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
682 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
683 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter && pVM->hm.s.svm.cPauseFilterThresholdTicks;
684
685 for (VMCPUID i = 0; i < pVM->cCpus; i++)
686 {
687 PVMCPU pVCpu = &pVM->aCpus[i];
688 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
689
690 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
691
692 /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
693 Assert(!pVCpu->hm.s.idxExitHistoryFree);
694 HMCPU_EXIT_HISTORY_RESET(pVCpu);
695
696 /* Always trap #AC for reasons of security. */
697 pVmcb->ctrl.u32InterceptException |= RT_BIT_32(X86_XCPT_AC);
698
699 /* Always trap #DB for reasons of security. */
700 pVmcb->ctrl.u32InterceptException |= RT_BIT_32(X86_XCPT_DB);
701
702 /* Trap exceptions unconditionally (debug purposes). */
703#ifdef HMSVM_ALWAYS_TRAP_PF
704 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
705#endif
706#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
707 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
708 pVmcb->ctrl.u32InterceptException |= 0
709 | RT_BIT(X86_XCPT_BP)
710 | RT_BIT(X86_XCPT_DE)
711 | RT_BIT(X86_XCPT_NM)
712 | RT_BIT(X86_XCPT_UD)
713 | RT_BIT(X86_XCPT_NP)
714 | RT_BIT(X86_XCPT_SS)
715 | RT_BIT(X86_XCPT_GP)
716 | RT_BIT(X86_XCPT_PF)
717 | RT_BIT(X86_XCPT_MF)
718 ;
719#endif
720
721 /* Set up unconditional intercepts and conditions. */
722 pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a #VMEXIT. */
723 | SVM_CTRL1_INTERCEPT_NMI /* Non-maskable interrupts causes a #VMEXIT. */
724 | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a #VMEXIT. */
725 | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a #VMEXIT. */
726 | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a #VMEXIT. */
727 | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a #VMEXIT. */
728 | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a #VMEXIT. */
729 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO #VMEXITs. */
730 | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a #VMEXIT.*/
731 | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a #VMEXIT. */
732 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a #VMEXIT. */
733 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
734
735 pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a #VMEXIT. */
736 | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a #VMEXIT. */
737 | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a #VMEXIT. */
738 | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a #VMEXIT. */
739 | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a #VMEXIT. */
740 | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a #VMEXIT. */
741 | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a #VMEXIT. */
742 | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a #VMEXIT. */
743 | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a #VMEXIT. */
744 | SVM_CTRL2_INTERCEPT_MWAIT /* MWAIT causes a #VMEXIT. */
745 | SVM_CTRL2_INTERCEPT_XSETBV; /* XSETBV causes a #VMEXIT. */
746
747 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
748 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
749
750 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
751 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
752
753 /* Intercept all DRx reads and writes by default. Changed later on. */
754 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
755 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
756
757 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
758 pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
759
760 /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
761 deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
762 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
763
764 /* Set IO and MSR bitmap permission bitmap physical addresses. */
765 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
766 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
767
768 /* No LBR virtualization. */
769 pVmcb->ctrl.u64LBRVirt = 0;
770
771 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
772 pVmcb->ctrl.u64VmcbCleanBits = 0;
773
774 /* The host ASID MBZ, for the guest start with 1. */
775 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
776
777 /*
778 * Setup the PAT MSR (applicable for Nested Paging only).
779 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
780 * so choose type 6 for all PAT slots.
781 */
782 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
783
784 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
785 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
786
787 /* Without Nested Paging, we need additionally intercepts. */
788 if (!pVM->hm.s.fNestedPaging)
789 {
790 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
791 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
792 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
793
794 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
795 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
796 | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
797
798 /* Page faults must be intercepted to implement shadow paging. */
799 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
800 }
801
802#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
803 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_TASK_SWITCH;
804#endif
805
806 /* Apply the exceptions intercepts needed by the GIM provider. */
807 if (pVCpu->hm.s.fGIMTrapXcptUD)
808 pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_UD);
809
810 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
811 if (fUsePauseFilter)
812 {
813 pVmcb->ctrl.u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
814 if (fPauseFilterThreshold)
815 pVmcb->ctrl.u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
816 }
817
818 /*
819 * The following MSRs are saved/restored automatically during the world-switch.
820 * Don't intercept guest read/write accesses to these MSRs.
821 */
822 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
823 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
824 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
825 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
826 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
827 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
828 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
829 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
830 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
831 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
832 }
833
834 return VINF_SUCCESS;
835}
836
837
838/**
839 * Invalidates a guest page by guest virtual address.
840 *
841 * @returns VBox status code.
842 * @param pVM The cross context VM structure.
843 * @param pVCpu The cross context virtual CPU structure.
844 * @param GCVirt Guest virtual address of the page to invalidate.
845 */
846VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
847{
848 AssertReturn(pVM, VERR_INVALID_PARAMETER);
849 Assert(pVM->hm.s.svm.fSupported);
850
851 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
852
853 /* Skip it if a TLB flush is already pending. */
854 if (!fFlushPending)
855 {
856 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
857
858 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
859 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
860
861#if HC_ARCH_BITS == 32
862 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
863 if (CPUMIsGuestInLongMode(pVCpu))
864 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
865 else
866#endif
867 {
868 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
869 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
870 }
871 }
872 return VINF_SUCCESS;
873}
874
875
876/**
877 * Flushes the appropriate tagged-TLB entries.
878 *
879 * @param pVCpu The cross context virtual CPU structure.
880 */
881static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
882{
883 PVM pVM = pVCpu->CTX_SUFF(pVM);
884 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
885 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
886
887 /*
888 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
889 * This can happen both for start & resume due to long jumps back to ring-3.
890 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
891 * so we cannot reuse the ASIDs without flushing.
892 */
893 bool fNewAsid = false;
894 Assert(pCpu->idCpu != NIL_RTCPUID);
895 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
896 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
897 {
898 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
899 pVCpu->hm.s.fForceTLBFlush = true;
900 fNewAsid = true;
901 }
902
903 /* Set TLB flush state as checked until we return from the world switch. */
904 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
905
906 /* Check for explicit TLB flushes. */
907 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
908 {
909 pVCpu->hm.s.fForceTLBFlush = true;
910 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
911 }
912
913 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
914
915 if (pVM->hm.s.svm.fAlwaysFlushTLB)
916 {
917 /*
918 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
919 */
920 pCpu->uCurrentAsid = 1;
921 pVCpu->hm.s.uCurrentAsid = 1;
922 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
923 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
924
925 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
926 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
927 }
928 else if (pVCpu->hm.s.fForceTLBFlush)
929 {
930 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
931 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
932
933 if (fNewAsid)
934 {
935 ++pCpu->uCurrentAsid;
936 bool fHitASIDLimit = false;
937 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
938 {
939 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
940 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
941 fHitASIDLimit = true;
942
943 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
944 {
945 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
946 pCpu->fFlushAsidBeforeUse = true;
947 }
948 else
949 {
950 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
951 pCpu->fFlushAsidBeforeUse = false;
952 }
953 }
954
955 if ( !fHitASIDLimit
956 && pCpu->fFlushAsidBeforeUse)
957 {
958 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
959 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
960 else
961 {
962 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
963 pCpu->fFlushAsidBeforeUse = false;
964 }
965 }
966
967 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
968 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
969 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
970 }
971 else
972 {
973 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
974 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
975 else
976 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
977 }
978
979 pVCpu->hm.s.fForceTLBFlush = false;
980 }
981
982 /* Update VMCB with the ASID. */
983 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
984 {
985 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
986 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
987 }
988
989 AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
990 ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
991 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
992 ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
993 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
994 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
995 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
996 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
997
998#ifdef VBOX_WITH_STATISTICS
999 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1000 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1001 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1002 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1003 {
1004 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1005 }
1006 else
1007 {
1008 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1009 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1010 }
1011#endif
1012}
1013
1014
1015/** @name 64-bit guest on 32-bit host OS helper functions.
1016 *
1017 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1018 * mode (code segment, paging). These wrappers/helpers perform the necessary
1019 * bits for the 32->64 switcher.
1020 *
1021 * @{ */
1022#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1023/**
1024 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1025 *
1026 * @returns VBox status code.
1027 * @param HCPhysVmcbHost Physical address of host VMCB.
1028 * @param HCPhysVmcb Physical address of the VMCB.
1029 * @param pCtx Pointer to the guest-CPU context.
1030 * @param pVM The cross context VM structure.
1031 * @param pVCpu The cross context virtual CPU structure.
1032 */
1033DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1034{
1035 uint32_t aParam[8];
1036 aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1037 aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
1038 aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1039 aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
1040 aParam[4] = VM_RC_ADDR(pVM, pVM);
1041 aParam[5] = 0;
1042 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1043 aParam[7] = 0;
1044
1045 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1046}
1047
1048
1049/**
1050 * Executes the specified VMRUN handler in 64-bit mode.
1051 *
1052 * @returns VBox status code.
1053 * @param pVM The cross context VM structure.
1054 * @param pVCpu The cross context virtual CPU structure.
1055 * @param pCtx Pointer to the guest-CPU context.
1056 * @param enmOp The operation to perform.
1057 * @param cParams Number of parameters.
1058 * @param paParam Array of 32-bit parameters.
1059 */
1060VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
1061 uint32_t cParams, uint32_t *paParam)
1062{
1063 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1064 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1065
1066 NOREF(pCtx);
1067
1068 /* Disable interrupts. */
1069 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
1070
1071#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1072 RTCPUID idHostCpu = RTMpCpuId();
1073 CPUMR0SetLApic(pVCpu, idHostCpu);
1074#endif
1075
1076 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1077 CPUMSetHyperEIP(pVCpu, enmOp);
1078 for (int i = (int)cParams - 1; i >= 0; i--)
1079 CPUMPushHyper(pVCpu, paParam[i]);
1080
1081 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1082 /* Call the switcher. */
1083 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1084 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1085
1086 /* Restore interrupts. */
1087 ASMSetFlags(uOldEFlags);
1088 return rc;
1089}
1090
1091#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1092/** @} */
1093
1094
1095/**
1096 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1097 * the corresponding VMCB Clean bit.
1098 *
1099 * @param pVmcb Pointer to the VM control block.
1100 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1101 */
1102DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1103{
1104 if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
1105 {
1106 pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
1107 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1108 }
1109}
1110
1111
1112/**
1113 * Removes an exception from the intercept-exception bitmap in the VMCB and
1114 * updates the corresponding VMCB Clean bit.
1115 *
1116 * @param pVmcb Pointer to the VM control block.
1117 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1118 */
1119DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1120{
1121 Assert(u32Xcpt != X86_XCPT_DB);
1122 Assert(u32Xcpt != X86_XCPT_AC);
1123#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1124 if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
1125 {
1126 pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
1127 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1128 }
1129#endif
1130}
1131
1132
1133/**
1134 * Loads the guest CR0 control register into the guest-state area in the VMCB.
1135 * Although the guest CR0 is a separate field in the VMCB we have to consider
1136 * the FPU state itself which is shared between the host and the guest.
1137 *
1138 * @returns VBox status code.
1139 * @param pVCpu The cross context virtual CPU structure.
1140 * @param pVmcb Pointer to the VM control block.
1141 * @param pCtx Pointer to the guest-CPU context.
1142 *
1143 * @remarks No-long-jump zone!!!
1144 */
1145static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1146{
1147 /*
1148 * Guest CR0.
1149 */
1150 PVM pVM = pVCpu->CTX_SUFF(pVM);
1151 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1152 {
1153 uint64_t u64GuestCR0 = pCtx->cr0;
1154
1155 /* Always enable caching. */
1156 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1157
1158 /*
1159 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1160 */
1161 if (!pVM->hm.s.fNestedPaging)
1162 {
1163 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1164 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1165 }
1166
1167 /*
1168 * Guest FPU bits.
1169 */
1170 bool fInterceptNM = false;
1171 bool fInterceptMF = false;
1172 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1173 if (CPUMIsGuestFPUStateActive(pVCpu))
1174 {
1175 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1176 if (!(pCtx->cr0 & X86_CR0_NE))
1177 {
1178 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1179 fInterceptMF = true;
1180 }
1181 }
1182 else
1183 {
1184 fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
1185 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1186 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1187 }
1188
1189 /*
1190 * Update the exception intercept bitmap.
1191 */
1192 if (fInterceptNM)
1193 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1194 else
1195 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1196
1197 if (fInterceptMF)
1198 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1199 else
1200 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1201
1202 pVmcb->guest.u64CR0 = u64GuestCR0;
1203 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1204 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
1205 }
1206}
1207
1208
1209/**
1210 * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
1211 *
1212 * @returns VBox status code.
1213 * @param pVCpu The cross context virtual CPU structure.
1214 * @param pVmcb Pointer to the VM control block.
1215 * @param pCtx Pointer to the guest-CPU context.
1216 *
1217 * @remarks No-long-jump zone!!!
1218 */
1219static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1220{
1221 PVM pVM = pVCpu->CTX_SUFF(pVM);
1222
1223 /*
1224 * Guest CR2.
1225 */
1226 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
1227 {
1228 pVmcb->guest.u64CR2 = pCtx->cr2;
1229 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1230 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
1231 }
1232
1233 /*
1234 * Guest CR3.
1235 */
1236 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
1237 {
1238 if (pVM->hm.s.fNestedPaging)
1239 {
1240 PGMMODE enmShwPagingMode;
1241#if HC_ARCH_BITS == 32
1242 if (CPUMIsGuestInLongModeEx(pCtx))
1243 enmShwPagingMode = PGMMODE_AMD64_NX;
1244 else
1245#endif
1246 enmShwPagingMode = PGMGetHostMode(pVM);
1247
1248 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1249 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1250 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1251 pVmcb->guest.u64CR3 = pCtx->cr3;
1252 }
1253 else
1254 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1255
1256 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1257 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
1258 }
1259
1260 /*
1261 * Guest CR4.
1262 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
1263 */
1264 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
1265 {
1266 uint64_t u64GuestCR4 = pCtx->cr4;
1267 if (!pVM->hm.s.fNestedPaging)
1268 {
1269 switch (pVCpu->hm.s.enmShadowMode)
1270 {
1271 case PGMMODE_REAL:
1272 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1273 AssertFailed();
1274 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1275
1276 case PGMMODE_32_BIT: /* 32-bit paging. */
1277 u64GuestCR4 &= ~X86_CR4_PAE;
1278 break;
1279
1280 case PGMMODE_PAE: /* PAE paging. */
1281 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1282 /** Must use PAE paging as we could use physical memory > 4 GB */
1283 u64GuestCR4 |= X86_CR4_PAE;
1284 break;
1285
1286 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1287 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1288#ifdef VBOX_ENABLE_64_BITS_GUESTS
1289 break;
1290#else
1291 AssertFailed();
1292 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1293#endif
1294
1295 default: /* shut up gcc */
1296 AssertFailed();
1297 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1298 }
1299 }
1300
1301 pVmcb->guest.u64CR4 = u64GuestCR4;
1302 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1303
1304 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1305 pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1306
1307 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
1308 }
1309
1310 return VINF_SUCCESS;
1311}
1312
1313
1314/**
1315 * Loads the guest segment registers into the VMCB.
1316 *
1317 * @returns VBox status code.
1318 * @param pVCpu The cross context virtual CPU structure.
1319 * @param pVmcb Pointer to the VM control block.
1320 * @param pCtx Pointer to the guest-CPU context.
1321 *
1322 * @remarks No-long-jump zone!!!
1323 */
1324static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1325{
1326 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1327 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
1328 {
1329 HMSVM_LOAD_SEG_REG(CS, cs);
1330 HMSVM_LOAD_SEG_REG(SS, ss);
1331 HMSVM_LOAD_SEG_REG(DS, ds);
1332 HMSVM_LOAD_SEG_REG(ES, es);
1333 HMSVM_LOAD_SEG_REG(FS, fs);
1334 HMSVM_LOAD_SEG_REG(GS, gs);
1335
1336 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1337 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1338 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
1339 }
1340
1341 /* Guest TR. */
1342 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
1343 {
1344 HMSVM_LOAD_SEG_REG(TR, tr);
1345 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
1346 }
1347
1348 /* Guest LDTR. */
1349 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
1350 {
1351 HMSVM_LOAD_SEG_REG(LDTR, ldtr);
1352 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
1353 }
1354
1355 /* Guest GDTR. */
1356 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
1357 {
1358 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1359 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1360 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1361 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
1362 }
1363
1364 /* Guest IDTR. */
1365 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
1366 {
1367 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1368 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1369 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1370 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
1371 }
1372}
1373
1374
1375/**
1376 * Loads the guest MSRs into the VMCB.
1377 *
1378 * @param pVCpu The cross context virtual CPU structure.
1379 * @param pVmcb Pointer to the VM control block.
1380 * @param pCtx Pointer to the guest-CPU context.
1381 *
1382 * @remarks No-long-jump zone!!!
1383 */
1384static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1385{
1386 /* Guest Sysenter MSRs. */
1387 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1388 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1389 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1390
1391 /*
1392 * Guest EFER MSR.
1393 * AMD-V requires guest EFER.SVME to be set. Weird.
1394 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1395 */
1396 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
1397 {
1398 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1399 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1400 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
1401 }
1402
1403 /* 64-bit MSRs. */
1404 if (CPUMIsGuestInLongModeEx(pCtx))
1405 {
1406 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1407 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1408 }
1409 else
1410 {
1411 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1412 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1413 {
1414 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1415 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1416 }
1417 }
1418
1419
1420 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1421 * be writable in 32-bit mode. Clarify with AMD spec. */
1422 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1423 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1424 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1425 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1426 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1427}
1428
1429
1430/**
1431 * Loads the guest state into the VMCB and programs the necessary intercepts
1432 * accordingly.
1433 *
1434 * @param pVCpu The cross context virtual CPU structure.
1435 * @param pVmcb Pointer to the VM control block.
1436 * @param pCtx Pointer to the guest-CPU context.
1437 *
1438 * @remarks No-long-jump zone!!!
1439 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1440 */
1441static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1442{
1443 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
1444 return;
1445 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1446 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1447
1448 bool fInterceptMovDRx = false;
1449
1450 /*
1451 * Anyone single stepping on the host side? If so, we'll have to use the
1452 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1453 * the VMM level like the VT-x implementations does.
1454 */
1455 bool const fStepping = pVCpu->hm.s.fSingleInstruction;
1456 if (fStepping)
1457 {
1458 pVCpu->hm.s.fClearTrapFlag = true;
1459 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1460 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1461 }
1462 else
1463 Assert(!DBGFIsStepping(pVCpu));
1464
1465 if ( fStepping
1466 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1467 {
1468 /*
1469 * Use the combined guest and host DRx values found in the hypervisor
1470 * register set because the debugger has breakpoints active or someone
1471 * is single stepping on the host side.
1472 *
1473 * Note! DBGF expects a clean DR6 state before executing guest code.
1474 */
1475#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1476 if ( CPUMIsGuestInLongModeEx(pCtx)
1477 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1478 {
1479 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1480 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1481 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1482 }
1483 else
1484#endif
1485 if (!CPUMIsHyperDebugStateActive(pVCpu))
1486 {
1487 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1488 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1489 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1490 }
1491
1492 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1493 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1494 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1495 {
1496 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1497 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1498 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1499 pVCpu->hm.s.fUsingHyperDR7 = true;
1500 }
1501
1502 /** @todo If we cared, we could optimize to allow the guest to read registers
1503 * with the same values. */
1504 fInterceptMovDRx = true;
1505 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1506 }
1507 else
1508 {
1509 /*
1510 * Update DR6, DR7 with the guest values if necessary.
1511 */
1512 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1513 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1514 {
1515 pVmcb->guest.u64DR7 = pCtx->dr[7];
1516 pVmcb->guest.u64DR6 = pCtx->dr[6];
1517 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1518 pVCpu->hm.s.fUsingHyperDR7 = false;
1519 }
1520
1521 /*
1522 * If the guest has enabled debug registers, we need to load them prior to
1523 * executing guest code so they'll trigger at the right time.
1524 */
1525 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1526 {
1527#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1528 if ( CPUMIsGuestInLongModeEx(pCtx)
1529 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1530 {
1531 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1532 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1533 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1534 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1535 }
1536 else
1537#endif
1538 if (!CPUMIsGuestDebugStateActive(pVCpu))
1539 {
1540 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1541 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1542 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1543 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1544 }
1545 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1546 }
1547 /*
1548 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1549 * intercept #DB as DR6 is updated in the VMCB.
1550 *
1551 * Note! If we cared and dared, we could skip intercepting \#DB here.
1552 * However, \#DB shouldn't be performance critical, so we'll play safe
1553 * and keep the code similar to the VT-x code and always intercept it.
1554 */
1555#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1556 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
1557 && !CPUMIsGuestDebugStateActive(pVCpu))
1558#else
1559 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1560#endif
1561 {
1562 fInterceptMovDRx = true;
1563 }
1564 }
1565
1566 Assert(pVmcb->ctrl.u32InterceptException & RT_BIT_32(X86_XCPT_DB));
1567 if (fInterceptMovDRx)
1568 {
1569 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1570 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1571 {
1572 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1573 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1574 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1575 }
1576 }
1577 else
1578 {
1579 if ( pVmcb->ctrl.u16InterceptRdDRx
1580 || pVmcb->ctrl.u16InterceptWrDRx)
1581 {
1582 pVmcb->ctrl.u16InterceptRdDRx = 0;
1583 pVmcb->ctrl.u16InterceptWrDRx = 0;
1584 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1585 }
1586 }
1587
1588 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
1589}
1590
1591
1592/**
1593 * Loads the guest APIC state (currently just the TPR).
1594 *
1595 * @returns VBox status code.
1596 * @param pVCpu The cross context virtual CPU structure.
1597 * @param pVmcb Pointer to the VM control block.
1598 * @param pCtx Pointer to the guest-CPU context.
1599 */
1600static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1601{
1602 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1603 return VINF_SUCCESS;
1604
1605 bool fPendingIntr;
1606 uint8_t u8Tpr;
1607 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1608 AssertRCReturn(rc, rc);
1609
1610 /* Assume that we need to trap all TPR accesses and thus need not check on
1611 every #VMEXIT if we should update the TPR. */
1612 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
1613 pVCpu->hm.s.svm.fSyncVTpr = false;
1614
1615 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1616 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
1617 {
1618 pCtx->msrLSTAR = u8Tpr;
1619
1620 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1621 if (fPendingIntr)
1622 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1623 else
1624 {
1625 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1626 pVCpu->hm.s.svm.fSyncVTpr = true;
1627 }
1628 }
1629 else
1630 {
1631 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1632 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1633
1634 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1635 if (fPendingIntr)
1636 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1637 else
1638 {
1639 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1640 pVCpu->hm.s.svm.fSyncVTpr = true;
1641 }
1642
1643 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1644 }
1645
1646 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1647 return rc;
1648}
1649
1650
1651/**
1652 * Loads the exception interrupts required for guest execution in the VMCB.
1653 *
1654 * @returns VBox status code.
1655 * @param pVCpu The cross context virtual CPU structure.
1656 * @param pVmcb Pointer to the VM control block.
1657 * @param pCtx Pointer to the guest-CPU context.
1658 */
1659static int hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1660{
1661 int rc = VINF_SUCCESS;
1662 NOREF(pCtx);
1663 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1664 {
1665 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
1666 if (pVCpu->hm.s.fGIMTrapXcptUD)
1667 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
1668 else
1669 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_UD);
1670 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
1671 }
1672 return rc;
1673}
1674
1675
1676/**
1677 * Sets up the appropriate function to run guest code.
1678 *
1679 * @returns VBox status code.
1680 * @param pVCpu The cross context virtual CPU structure.
1681 * @param pCtx Pointer to the guest-CPU context.
1682 *
1683 * @remarks No-long-jump zone!!!
1684 */
1685static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1686{
1687 if (CPUMIsGuestInLongModeEx(pCtx))
1688 {
1689#ifndef VBOX_ENABLE_64_BITS_GUESTS
1690 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1691#endif
1692 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1693#if HC_ARCH_BITS == 32
1694 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1695 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1696#else
1697 /* 64-bit host or hybrid host. */
1698 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1699#endif
1700 }
1701 else
1702 {
1703 /* Guest is not in long mode, use the 32-bit handler. */
1704 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1705 }
1706 return VINF_SUCCESS;
1707}
1708
1709
1710/**
1711 * Enters the AMD-V session.
1712 *
1713 * @returns VBox status code.
1714 * @param pVM The cross context VM structure.
1715 * @param pVCpu The cross context virtual CPU structure.
1716 * @param pCpu Pointer to the CPU info struct.
1717 */
1718VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1719{
1720 AssertPtr(pVM);
1721 AssertPtr(pVCpu);
1722 Assert(pVM->hm.s.svm.fSupported);
1723 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1724 NOREF(pVM); NOREF(pCpu);
1725
1726 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1727 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1728
1729 pVCpu->hm.s.fLeaveDone = false;
1730 return VINF_SUCCESS;
1731}
1732
1733
1734/**
1735 * Thread-context callback for AMD-V.
1736 *
1737 * @param enmEvent The thread-context event.
1738 * @param pVCpu The cross context virtual CPU structure.
1739 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1740 * @thread EMT(pVCpu)
1741 */
1742VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1743{
1744 NOREF(fGlobalInit);
1745
1746 switch (enmEvent)
1747 {
1748 case RTTHREADCTXEVENT_OUT:
1749 {
1750 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1751 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1752 VMCPU_ASSERT_EMT(pVCpu);
1753
1754 PVM pVM = pVCpu->CTX_SUFF(pVM);
1755 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1756
1757 /* No longjmps (log-flush, locks) in this fragile context. */
1758 VMMRZCallRing3Disable(pVCpu);
1759
1760 if (!pVCpu->hm.s.fLeaveDone)
1761 {
1762 hmR0SvmLeave(pVM, pVCpu, pCtx);
1763 pVCpu->hm.s.fLeaveDone = true;
1764 }
1765
1766 /* Leave HM context, takes care of local init (term). */
1767 int rc = HMR0LeaveCpu(pVCpu);
1768 AssertRC(rc); NOREF(rc);
1769
1770 /* Restore longjmp state. */
1771 VMMRZCallRing3Enable(pVCpu);
1772 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
1773 break;
1774 }
1775
1776 case RTTHREADCTXEVENT_IN:
1777 {
1778 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1779 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1780 VMCPU_ASSERT_EMT(pVCpu);
1781
1782 /* No longjmps (log-flush, locks) in this fragile context. */
1783 VMMRZCallRing3Disable(pVCpu);
1784
1785 /*
1786 * Initialize the bare minimum state required for HM. This takes care of
1787 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1788 */
1789 int rc = HMR0EnterCpu(pVCpu);
1790 AssertRC(rc); NOREF(rc);
1791 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1792
1793 pVCpu->hm.s.fLeaveDone = false;
1794
1795 /* Restore longjmp state. */
1796 VMMRZCallRing3Enable(pVCpu);
1797 break;
1798 }
1799
1800 default:
1801 break;
1802 }
1803}
1804
1805
1806/**
1807 * Saves the host state.
1808 *
1809 * @returns VBox status code.
1810 * @param pVM The cross context VM structure.
1811 * @param pVCpu The cross context virtual CPU structure.
1812 *
1813 * @remarks No-long-jump zone!!!
1814 */
1815VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1816{
1817 NOREF(pVM);
1818 NOREF(pVCpu);
1819 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1820 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
1821 return VINF_SUCCESS;
1822}
1823
1824
1825/**
1826 * Loads the guest state into the VMCB.
1827 *
1828 * The CPU state will be loaded from these fields on every successful VM-entry.
1829 * Also sets up the appropriate VMRUN function to execute guest code based on
1830 * the guest CPU mode.
1831 *
1832 * @returns VBox status code.
1833 * @param pVM The cross context VM structure.
1834 * @param pVCpu The cross context virtual CPU structure.
1835 * @param pCtx Pointer to the guest-CPU context.
1836 *
1837 * @remarks No-long-jump zone!!!
1838 */
1839static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1840{
1841 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1842 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1843
1844 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1845
1846 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1847 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1848
1849 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1850 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1851
1852 pVmcb->guest.u64RIP = pCtx->rip;
1853 pVmcb->guest.u64RSP = pCtx->rsp;
1854 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1855 pVmcb->guest.u64RAX = pCtx->rax;
1856
1857 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1858 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1859
1860 rc = hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
1861 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1862
1863 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1864 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1865
1866 /* Clear any unused and reserved bits. */
1867 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1868 | HM_CHANGED_GUEST_RSP
1869 | HM_CHANGED_GUEST_RFLAGS
1870 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1871 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1872 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1873 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
1874 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1875 | HM_CHANGED_SVM_RESERVED2
1876 | HM_CHANGED_SVM_RESERVED3
1877 | HM_CHANGED_SVM_RESERVED4);
1878
1879 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
1880 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
1881 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
1882 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
1883
1884 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss.Sel, pCtx->rsp));
1885 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1886 return rc;
1887}
1888
1889
1890/**
1891 * Loads the state shared between the host and guest into the
1892 * VMCB.
1893 *
1894 * @param pVCpu The cross context virtual CPU structure.
1895 * @param pVmcb Pointer to the VM control block.
1896 * @param pCtx Pointer to the guest-CPU context.
1897 *
1898 * @remarks No-long-jump zone!!!
1899 */
1900static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1901{
1902 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1903 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1904
1905 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1906 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
1907
1908 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
1909 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
1910
1911 /* Unused on AMD-V. */
1912 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
1913
1914 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
1915 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
1916}
1917
1918
1919/**
1920 * Saves the entire guest state from the VMCB into the
1921 * guest-CPU context. Currently there is no residual state left in the CPU that
1922 * is not updated in the VMCB.
1923 *
1924 * @returns VBox status code.
1925 * @param pVCpu The cross context virtual CPU structure.
1926 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1927 * out-of-sync. Make sure to update the required fields
1928 * before using them.
1929 */
1930static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1931{
1932 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1933
1934 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1935
1936 pMixedCtx->rip = pVmcb->guest.u64RIP;
1937 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1938 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1939 pMixedCtx->rax = pVmcb->guest.u64RAX;
1940
1941 /*
1942 * Guest interrupt shadow.
1943 */
1944 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1945 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1946 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1947 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1948
1949 /*
1950 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1951 */
1952 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1953
1954 /*
1955 * Guest MSRs.
1956 */
1957 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1958 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1959 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1960 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1961 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1962 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1963 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1964 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1965
1966 /*
1967 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1968 */
1969 HMSVM_SAVE_SEG_REG(CS, cs);
1970 HMSVM_SAVE_SEG_REG(SS, ss);
1971 HMSVM_SAVE_SEG_REG(DS, ds);
1972 HMSVM_SAVE_SEG_REG(ES, es);
1973 HMSVM_SAVE_SEG_REG(FS, fs);
1974 HMSVM_SAVE_SEG_REG(GS, gs);
1975
1976 /*
1977 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1978 * register (yet).
1979 */
1980 /** @todo SELM might need to be fixed as it too should not care about the
1981 * granularity bit. See @bugref{6785}. */
1982 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1983 && pMixedCtx->cs.Attr.n.u1Present
1984 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1985 {
1986 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1987 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1988 }
1989
1990#ifdef VBOX_STRICT
1991# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1992 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1993 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1994 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1995 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1996 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1997 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1998
1999 HMSVM_ASSERT_SEG_GRANULARITY(cs);
2000 HMSVM_ASSERT_SEG_GRANULARITY(ss);
2001 HMSVM_ASSERT_SEG_GRANULARITY(ds);
2002 HMSVM_ASSERT_SEG_GRANULARITY(es);
2003 HMSVM_ASSERT_SEG_GRANULARITY(fs);
2004 HMSVM_ASSERT_SEG_GRANULARITY(gs);
2005
2006# undef HMSVM_ASSERT_SEL_GRANULARITY
2007#endif
2008
2009 /*
2010 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
2011 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
2012 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
2013 * See AMD spec. 15.5.1 "Basic operation".
2014 */
2015 Assert(!(pVmcb->guest.u8CPL & ~0x3));
2016 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
2017
2018 /*
2019 * Guest TR.
2020 * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
2021 * between Intel and AMD. See @bugref{6208#c39}.
2022 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2023 */
2024 HMSVM_SAVE_SEG_REG(TR, tr);
2025 if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2026 {
2027 if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2028 || CPUMIsGuestInLongModeEx(pMixedCtx))
2029 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2030 else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2031 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2032 }
2033
2034 /*
2035 * Guest Descriptor-Table registers.
2036 */
2037 HMSVM_SAVE_SEG_REG(LDTR, ldtr);
2038 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
2039 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
2040
2041 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
2042 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
2043
2044 /*
2045 * Guest Debug registers.
2046 */
2047 if (!pVCpu->hm.s.fUsingHyperDR7)
2048 {
2049 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
2050 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
2051 }
2052 else
2053 {
2054 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
2055 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
2056 }
2057
2058 /*
2059 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
2060 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
2061 */
2062 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
2063 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
2064 {
2065 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
2066 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
2067 }
2068}
2069
2070
2071/**
2072 * Does the necessary state syncing before returning to ring-3 for any reason
2073 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2074 *
2075 * @param pVM The cross context VM structure.
2076 * @param pVCpu The cross context virtual CPU structure.
2077 * @param pCtx Pointer to the guest-CPU context.
2078 *
2079 * @remarks No-long-jmp zone!!!
2080 */
2081static void hmR0SvmLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2082{
2083 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2084 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2085 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2086
2087 /*
2088 * !!! IMPORTANT !!!
2089 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2090 */
2091
2092 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2093 if (CPUMIsGuestFPUStateActive(pVCpu))
2094 {
2095 CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
2096 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2097 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
2098 }
2099
2100 /*
2101 * Restore host debug registers if necessary and resync on next R0 reentry.
2102 */
2103#ifdef VBOX_STRICT
2104 if (CPUMIsHyperDebugStateActive(pVCpu))
2105 {
2106 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2107 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2108 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2109 }
2110#endif
2111 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
2112 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
2113
2114 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2115 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2116
2117 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2118 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
2119 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
2120 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
2121 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2122
2123 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2124}
2125
2126
2127/**
2128 * Leaves the AMD-V session.
2129 *
2130 * @returns VBox status code.
2131 * @param pVM The cross context VM structure.
2132 * @param pVCpu The cross context virtual CPU structure.
2133 * @param pCtx Pointer to the guest-CPU context.
2134 */
2135static int hmR0SvmLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2136{
2137 HM_DISABLE_PREEMPT();
2138 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2139 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2140
2141 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
2142 and done this from the SVMR0ThreadCtxCallback(). */
2143 if (!pVCpu->hm.s.fLeaveDone)
2144 {
2145 hmR0SvmLeave(pVM, pVCpu, pCtx);
2146 pVCpu->hm.s.fLeaveDone = true;
2147 }
2148
2149 /*
2150 * !!! IMPORTANT !!!
2151 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2152 */
2153
2154 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2155 /* Deregister hook now that we've left HM context before re-enabling preemption. */
2156 VMMR0ThreadCtxHookDisable(pVCpu);
2157
2158 /* Leave HM context. This takes care of local init (term). */
2159 int rc = HMR0LeaveCpu(pVCpu);
2160
2161 HM_RESTORE_PREEMPT();
2162 return rc;
2163}
2164
2165
2166/**
2167 * Does the necessary state syncing before doing a longjmp to ring-3.
2168 *
2169 * @returns VBox status code.
2170 * @param pVM The cross context VM structure.
2171 * @param pVCpu The cross context virtual CPU structure.
2172 * @param pCtx Pointer to the guest-CPU context.
2173 *
2174 * @remarks No-long-jmp zone!!!
2175 */
2176static int hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2177{
2178 return hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2179}
2180
2181
2182/**
2183 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2184 * any remaining host state) before we longjump to ring-3 and possibly get
2185 * preempted.
2186 *
2187 * @param pVCpu The cross context virtual CPU structure.
2188 * @param enmOperation The operation causing the ring-3 longjump.
2189 * @param pvUser The user argument (pointer to the possibly
2190 * out-of-date guest-CPU context).
2191 */
2192static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2193{
2194 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
2195 {
2196 /*
2197 * !!! IMPORTANT !!!
2198 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
2199 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
2200 */
2201 VMMRZCallRing3RemoveNotification(pVCpu);
2202 VMMRZCallRing3Disable(pVCpu);
2203 HM_DISABLE_PREEMPT();
2204
2205 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2206 if (CPUMIsGuestFPUStateActive(pVCpu))
2207 CPUMR0SaveGuestFPU(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2208
2209 /* Restore host debug registers if necessary and resync on next R0 reentry. */
2210 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2211
2212 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
2213 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2214 VMMR0ThreadCtxHookDisable(pVCpu);
2215
2216 /* Leave HM context. This takes care of local init (term). */
2217 HMR0LeaveCpu(pVCpu);
2218
2219 HM_RESTORE_PREEMPT();
2220 return VINF_SUCCESS;
2221 }
2222
2223 Assert(pVCpu);
2224 Assert(pvUser);
2225 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2226 HMSVM_ASSERT_PREEMPT_SAFE();
2227
2228 VMMRZCallRing3Disable(pVCpu);
2229 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2230
2231 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2232 int rc = hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
2233 AssertRCReturn(rc, rc);
2234
2235 VMMRZCallRing3Enable(pVCpu);
2236 return VINF_SUCCESS;
2237}
2238
2239
2240/**
2241 * Take necessary actions before going back to ring-3.
2242 *
2243 * An action requires us to go back to ring-3. This function does the necessary
2244 * steps before we can safely return to ring-3. This is not the same as longjmps
2245 * to ring-3, this is voluntary.
2246 *
2247 * @param pVM The cross context VM structure.
2248 * @param pVCpu The cross context virtual CPU structure.
2249 * @param pCtx Pointer to the guest-CPU context.
2250 * @param rcExit The reason for exiting to ring-3. Can be
2251 * VINF_VMM_UNKNOWN_RING3_CALL.
2252 */
2253static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2254{
2255 Assert(pVM);
2256 Assert(pVCpu);
2257 Assert(pCtx);
2258 HMSVM_ASSERT_PREEMPT_SAFE();
2259
2260 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2261 VMMRZCallRing3Disable(pVCpu);
2262 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2263
2264 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2265 if (pVCpu->hm.s.Event.fPending)
2266 {
2267 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2268 Assert(!pVCpu->hm.s.Event.fPending);
2269 }
2270
2271 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
2272 and if we're injecting an event we should have a TRPM trap pending. */
2273 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("rcExit=%Rrc\n", rcExit));
2274 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("rcExit=%Rrc\n", rcExit));
2275
2276 /* Sync. the necessary state for going back to ring-3. */
2277 hmR0SvmLeaveSession(pVM, pVCpu, pCtx);
2278 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2279
2280 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2281 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2282 | CPUM_CHANGED_LDTR
2283 | CPUM_CHANGED_GDTR
2284 | CPUM_CHANGED_IDTR
2285 | CPUM_CHANGED_TR
2286 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2287 if ( pVM->hm.s.fNestedPaging
2288 && CPUMIsGuestPagingEnabledEx(pCtx))
2289 {
2290 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2291 }
2292
2293 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
2294 if (rcExit != VINF_EM_RAW_INTERRUPT)
2295 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2296
2297 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2298
2299 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
2300 VMMRZCallRing3RemoveNotification(pVCpu);
2301 VMMRZCallRing3Enable(pVCpu);
2302}
2303
2304
2305/**
2306 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2307 * intercepts.
2308 *
2309 * @param pVM The cross context VM structure.
2310 * @param pVCpu The cross context virtual CPU structure.
2311 *
2312 * @remarks No-long-jump zone!!!
2313 */
2314static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu)
2315{
2316 bool fParavirtTsc;
2317 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2318 bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
2319 if (fCanUseRealTsc)
2320 {
2321 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
2322 pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
2323 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2324 }
2325 else
2326 {
2327 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
2328 pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
2329 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2330 }
2331 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2332
2333 /** @todo later optimize this to be done elsewhere and not before every
2334 * VM-entry. */
2335 if (fParavirtTsc)
2336 {
2337 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
2338 information before every VM-entry, hence disable it for performance sake. */
2339#if 0
2340 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
2341 AssertRC(rc);
2342#endif
2343 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
2344 }
2345}
2346
2347
2348/**
2349 * Sets an event as a pending event to be injected into the guest.
2350 *
2351 * @param pVCpu The cross context virtual CPU structure.
2352 * @param pEvent Pointer to the SVM event.
2353 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2354 * page-fault.
2355 *
2356 * @remarks Statistics counter assumes this is a guest event being reflected to
2357 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2358 */
2359DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2360{
2361 Assert(!pVCpu->hm.s.Event.fPending);
2362 Assert(pEvent->n.u1Valid);
2363
2364 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
2365 pVCpu->hm.s.Event.fPending = true;
2366 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2367
2368 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2369 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2370
2371 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
2372}
2373
2374
2375/**
2376 * Injects an event into the guest upon VMRUN by updating the relevant field
2377 * in the VMCB.
2378 *
2379 * @param pVCpu The cross context virtual CPU structure.
2380 * @param pVmcb Pointer to the guest VM control block.
2381 * @param pCtx Pointer to the guest-CPU context.
2382 * @param pEvent Pointer to the event.
2383 *
2384 * @remarks No-long-jump zone!!!
2385 * @remarks Requires CR0!
2386 */
2387DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2388{
2389 NOREF(pVCpu); NOREF(pCtx);
2390
2391 pVmcb->ctrl.EventInject.u = pEvent->u;
2392 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2393
2394 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2395 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2396}
2397
2398
2399
2400/**
2401 * Converts any TRPM trap into a pending HM event. This is typically used when
2402 * entering from ring-3 (not longjmp returns).
2403 *
2404 * @param pVCpu The cross context virtual CPU structure.
2405 */
2406static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2407{
2408 Assert(TRPMHasTrap(pVCpu));
2409 Assert(!pVCpu->hm.s.Event.fPending);
2410
2411 uint8_t uVector;
2412 TRPMEVENT enmTrpmEvent;
2413 RTGCUINT uErrCode;
2414 RTGCUINTPTR GCPtrFaultAddress;
2415 uint8_t cbInstr;
2416
2417 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2418 AssertRC(rc);
2419
2420 SVMEVENT Event;
2421 Event.u = 0;
2422 Event.n.u1Valid = 1;
2423 Event.n.u8Vector = uVector;
2424
2425 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2426 if (enmTrpmEvent == TRPM_TRAP)
2427 {
2428 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2429 switch (uVector)
2430 {
2431 case X86_XCPT_NMI:
2432 {
2433 Event.n.u3Type = SVM_EVENT_NMI;
2434 break;
2435 }
2436
2437 case X86_XCPT_PF:
2438 case X86_XCPT_DF:
2439 case X86_XCPT_TS:
2440 case X86_XCPT_NP:
2441 case X86_XCPT_SS:
2442 case X86_XCPT_GP:
2443 case X86_XCPT_AC:
2444 {
2445 Event.n.u1ErrorCodeValid = 1;
2446 Event.n.u32ErrorCode = uErrCode;
2447 break;
2448 }
2449 }
2450 }
2451 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2452 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2453 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2454 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2455 else
2456 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2457
2458 rc = TRPMResetTrap(pVCpu);
2459 AssertRC(rc);
2460
2461 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2462 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2463
2464 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2465 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
2466}
2467
2468
2469/**
2470 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2471 * AMD-V to execute any instruction.
2472 *
2473 * @param pVCpu The cross context virtual CPU structure.
2474 */
2475static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2476{
2477 Assert(pVCpu->hm.s.Event.fPending);
2478 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2479
2480 SVMEVENT Event;
2481 Event.u = pVCpu->hm.s.Event.u64IntInfo;
2482
2483 uint8_t uVector = Event.n.u8Vector;
2484 uint8_t uVectorType = Event.n.u3Type;
2485
2486 TRPMEVENT enmTrapType;
2487 switch (uVectorType)
2488 {
2489 case SVM_EVENT_EXTERNAL_IRQ:
2490 enmTrapType = TRPM_HARDWARE_INT;
2491 break;
2492 case SVM_EVENT_SOFTWARE_INT:
2493 enmTrapType = TRPM_SOFTWARE_INT;
2494 break;
2495 case SVM_EVENT_EXCEPTION:
2496 case SVM_EVENT_NMI:
2497 enmTrapType = TRPM_TRAP;
2498 break;
2499 default:
2500 AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
2501 enmTrapType = TRPM_32BIT_HACK;
2502 break;
2503 }
2504
2505 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2506
2507 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2508 AssertRC(rc);
2509
2510 if (Event.n.u1ErrorCodeValid)
2511 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2512
2513 if ( uVectorType == SVM_EVENT_EXCEPTION
2514 && uVector == X86_XCPT_PF)
2515 {
2516 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2517 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2518 }
2519 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2520 {
2521 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2522 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2523 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2524 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2525 }
2526 pVCpu->hm.s.Event.fPending = false;
2527}
2528
2529
2530/**
2531 * Gets the guest's interrupt-shadow.
2532 *
2533 * @returns The guest's interrupt-shadow.
2534 * @param pVCpu The cross context virtual CPU structure.
2535 * @param pCtx Pointer to the guest-CPU context.
2536 *
2537 * @remarks No-long-jump zone!!!
2538 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2539 */
2540DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2541{
2542 /*
2543 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2544 * inhibit interrupts or clear any existing interrupt-inhibition.
2545 */
2546 uint32_t uIntrState = 0;
2547 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2548 {
2549 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2550 {
2551 /*
2552 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2553 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2554 */
2555 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2556 }
2557 else
2558 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2559 }
2560 return uIntrState;
2561}
2562
2563
2564/**
2565 * Sets the virtual interrupt intercept control in the VMCB which
2566 * instructs AMD-V to cause a \#VMEXIT as soon as the guest is in a state to
2567 * receive interrupts.
2568 *
2569 * @param pVmcb Pointer to the VM control block.
2570 */
2571DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2572{
2573 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
2574 {
2575 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
2576 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
2577 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
2578 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2579
2580 Log4(("Setting VINTR intercept\n"));
2581 }
2582}
2583
2584
2585/**
2586 * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
2587 * \#VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
2588 * virtual NMIs.
2589 *
2590 * @param pVmcb Pointer to the VM control block.
2591 */
2592DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
2593{
2594 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_IRET))
2595 {
2596 pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_IRET;
2597 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
2598
2599 Log4(("Setting IRET intercept\n"));
2600 }
2601}
2602
2603
2604/**
2605 * Clears the IRET intercept control in the VMCB.
2606 *
2607 * @param pVmcb Pointer to the VM control block.
2608 */
2609DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
2610{
2611 if (pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_IRET)
2612 {
2613 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_IRET;
2614 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
2615
2616 Log4(("Clearing IRET intercept\n"));
2617 }
2618}
2619
2620
2621/**
2622 * Evaluates the event to be delivered to the guest and sets it as the pending
2623 * event.
2624 *
2625 * @param pVCpu The cross context virtual CPU structure.
2626 * @param pCtx Pointer to the guest-CPU context.
2627 */
2628static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2629{
2630 Assert(!pVCpu->hm.s.Event.fPending);
2631 Log4Func(("\n"));
2632
2633 bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
2634 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2635 bool const fBlockNmi = RT_BOOL(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
2636 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2637
2638 SVMEVENT Event;
2639 Event.u = 0;
2640 /** @todo SMI. SMIs take priority over NMIs. */
2641 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2642 {
2643 if (fBlockNmi)
2644 hmR0SvmSetIretIntercept(pVmcb);
2645 else if (fIntShadow)
2646 hmR0SvmSetVirtIntrIntercept(pVmcb);
2647 else
2648 {
2649 Log4(("Pending NMI\n"));
2650
2651 Event.n.u1Valid = 1;
2652 Event.n.u8Vector = X86_XCPT_NMI;
2653 Event.n.u3Type = SVM_EVENT_NMI;
2654
2655 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2656 hmR0SvmSetIretIntercept(pVmcb);
2657 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2658 }
2659 }
2660 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
2661 {
2662 /*
2663 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
2664 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
2665 * evaluated here and not set as pending, solely based on the force-flags.
2666 */
2667 if ( !fBlockInt
2668 && !fIntShadow)
2669 {
2670 uint8_t u8Interrupt;
2671 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2672 if (rc == VINF_SUCCESS)
2673 {
2674 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2675
2676 Event.n.u1Valid = 1;
2677 Event.n.u8Vector = u8Interrupt;
2678 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2679
2680 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2681 }
2682 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
2683 {
2684 /*
2685 * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
2686 * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
2687 * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
2688 */
2689 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
2690 }
2691 else
2692 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2693 }
2694 else
2695 hmR0SvmSetVirtIntrIntercept(pVmcb);
2696 }
2697}
2698
2699
2700/**
2701 * Injects any pending events into the guest if the guest is in a state to
2702 * receive them.
2703 *
2704 * @param pVCpu The cross context virtual CPU structure.
2705 * @param pCtx Pointer to the guest-CPU context.
2706 */
2707static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2708{
2709 Assert(!TRPMHasTrap(pVCpu));
2710 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2711
2712 bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
2713 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2714 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2715
2716 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2717 {
2718 SVMEVENT Event;
2719 Event.u = pVCpu->hm.s.Event.u64IntInfo;
2720 Assert(Event.n.u1Valid);
2721#ifdef VBOX_STRICT
2722 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2723 {
2724 Assert(!fBlockInt);
2725 Assert(!fIntShadow);
2726 }
2727 else if (Event.n.u3Type == SVM_EVENT_NMI)
2728 Assert(!fIntShadow);
2729#endif
2730
2731 Log4(("Injecting pending HM event.\n"));
2732 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2733 pVCpu->hm.s.Event.fPending = false;
2734
2735#ifdef VBOX_WITH_STATISTICS
2736 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2737 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2738 else
2739 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2740#endif
2741 }
2742
2743 /* Update the guest interrupt shadow in the VMCB. */
2744 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2745 NOREF(fBlockInt);
2746}
2747
2748
2749/**
2750 * Reports world-switch error and dumps some useful debug info.
2751 *
2752 * @param pVM The cross context VM structure.
2753 * @param pVCpu The cross context virtual CPU structure.
2754 * @param rcVMRun The return code from VMRUN (or
2755 * VERR_SVM_INVALID_GUEST_STATE for invalid
2756 * guest-state).
2757 * @param pCtx Pointer to the guest-CPU context.
2758 */
2759static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2760{
2761 NOREF(pCtx);
2762 HMSVM_ASSERT_PREEMPT_SAFE();
2763 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2764
2765 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2766 {
2767 HMDumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
2768#ifdef VBOX_STRICT
2769 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2770 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2771 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2772 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2773 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2774 Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
2775 Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
2776 Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
2777 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2778 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2779 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2780
2781 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2782 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2783 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2784
2785 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2786 Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
2787 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2788 Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
2789 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2790 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2791 Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
2792 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2793 Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
2794 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2795
2796 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2797 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2798 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2799 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2800 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2801 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2802 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2803 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2804 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2805 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2806 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2807 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2808 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2809 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2810 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2811 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2812 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2813
2814 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2815 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2816
2817 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2818 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2819 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2820 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2821 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2822 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2823 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2824 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2825 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2826 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2827 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2828 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2829 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2830 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2831 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2832 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2833 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2834 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2835 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2836 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2837
2838 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2839 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2840
2841 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2842 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2843 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2844 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2845
2846 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2847 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2848
2849 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2850 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2851 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2852 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2853
2854 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2855 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2856 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2857 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2858 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2859 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2860 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2861
2862 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2863 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2864 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2865 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2866
2867 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2868 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2869 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2870
2871 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2872 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2873 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2874 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2875 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2876 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2877 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2878 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2879 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2880 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2881 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2882 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2883#endif /* VBOX_STRICT */
2884 }
2885 else
2886 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2887
2888 NOREF(pVmcb);
2889}
2890
2891
2892/**
2893 * Check per-VM and per-VCPU force flag actions that require us to go back to
2894 * ring-3 for one reason or another.
2895 *
2896 * @returns VBox status code (information status code included).
2897 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2898 * ring-3.
2899 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2900 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2901 * interrupts)
2902 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2903 * all EMTs to be in ring-3.
2904 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2905 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2906 * to the EM loop.
2907 *
2908 * @param pVM The cross context VM structure.
2909 * @param pVCpu The cross context virtual CPU structure.
2910 * @param pCtx Pointer to the guest-CPU context.
2911 */
2912static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2913{
2914 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2915
2916 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2917 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2918 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2919
2920 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2921 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2922 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2923 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2924 {
2925 /* Pending PGM C3 sync. */
2926 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2927 {
2928 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2929 if (rc != VINF_SUCCESS)
2930 {
2931 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2932 return rc;
2933 }
2934 }
2935
2936 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2937 /* -XXX- what was that about single stepping? */
2938 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2939 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2940 {
2941 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2942 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2943 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2944 return rc;
2945 }
2946
2947 /* Pending VM request packets, such as hardware interrupts. */
2948 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2949 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2950 {
2951 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2952 return VINF_EM_PENDING_REQUEST;
2953 }
2954
2955 /* Pending PGM pool flushes. */
2956 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2957 {
2958 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2959 return VINF_PGM_POOL_FLUSH_PENDING;
2960 }
2961
2962 /* Pending DMA requests. */
2963 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2964 {
2965 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2966 return VINF_EM_RAW_TO_R3;
2967 }
2968 }
2969
2970 return VINF_SUCCESS;
2971}
2972
2973
2974/**
2975 * Does the preparations before executing guest code in AMD-V.
2976 *
2977 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2978 * recompiler. We must be cautious what we do here regarding committing
2979 * guest-state information into the the VMCB assuming we assuredly execute the
2980 * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
2981 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2982 * that the recompiler can (and should) use them when it resumes guest
2983 * execution. Otherwise such operations must be done when we can no longer
2984 * exit to ring-3.
2985 *
2986 * @returns VBox status code (informational status codes included).
2987 * @retval VINF_SUCCESS if we can proceed with running the guest.
2988 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2989 *
2990 * @param pVM The cross context VM structure.
2991 * @param pVCpu The cross context virtual CPU structure.
2992 * @param pCtx Pointer to the guest-CPU context.
2993 * @param pSvmTransient Pointer to the SVM transient structure.
2994 */
2995static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2996{
2997 HMSVM_ASSERT_PREEMPT_SAFE();
2998
2999 /* Check force flag actions that might require us to go back to ring-3. */
3000 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
3001 if (rc != VINF_SUCCESS)
3002 return rc;
3003
3004 if (TRPMHasTrap(pVCpu))
3005 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
3006 else if (!pVCpu->hm.s.Event.fPending)
3007 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
3008
3009#ifdef HMSVM_SYNC_FULL_GUEST_STATE
3010 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3011#endif
3012
3013 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
3014 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
3015 AssertRCReturn(rc, rc);
3016 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
3017
3018 /*
3019 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
3020 * so we can update it on the way back if the guest changed the TPR.
3021 */
3022 if (pVCpu->hm.s.svm.fSyncVTpr)
3023 {
3024 if (pVM->hm.s.fTPRPatchingActive)
3025 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
3026 else
3027 {
3028 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3029 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
3030 }
3031 }
3032
3033 /*
3034 * No longjmps to ring-3 from this point on!!!
3035 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3036 * This also disables flushing of the R0-logger instance (if any).
3037 */
3038 VMMRZCallRing3Disable(pVCpu);
3039
3040 /*
3041 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
3042 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
3043 *
3044 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
3045 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
3046 *
3047 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
3048 * executing guest code.
3049 */
3050 pSvmTransient->fEFlags = ASMIntDisableFlags();
3051 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
3052 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3053 {
3054 ASMSetFlags(pSvmTransient->fEFlags);
3055 VMMRZCallRing3Enable(pVCpu);
3056 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3057 return VINF_EM_RAW_TO_R3;
3058 }
3059 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3060 {
3061 ASMSetFlags(pSvmTransient->fEFlags);
3062 VMMRZCallRing3Enable(pVCpu);
3063 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
3064 return VINF_EM_RAW_INTERRUPT;
3065 }
3066
3067 /*
3068 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
3069 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
3070 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
3071 *
3072 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
3073 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
3074 */
3075 if (pVCpu->hm.s.Event.fPending)
3076 {
3077 SVMEVENT Event;
3078 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3079 if ( Event.n.u1Valid
3080 && Event.n.u3Type == SVM_EVENT_NMI
3081 && Event.n.u8Vector == X86_XCPT_NMI
3082 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
3083 {
3084 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3085 }
3086 }
3087
3088 return VINF_SUCCESS;
3089}
3090
3091
3092/**
3093 * Prepares to run guest code in AMD-V and we've committed to doing so. This
3094 * means there is no backing out to ring-3 or anywhere else at this
3095 * point.
3096 *
3097 * @param pVM The cross context VM structure.
3098 * @param pVCpu The cross context virtual CPU structure.
3099 * @param pCtx Pointer to the guest-CPU context.
3100 * @param pSvmTransient Pointer to the SVM transient structure.
3101 *
3102 * @remarks Called with preemption disabled.
3103 * @remarks No-long-jump zone!!!
3104 */
3105static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3106{
3107 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3108 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3109 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3110
3111 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3112 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
3113
3114 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
3115
3116 if ( pVCpu->hm.s.fPreloadGuestFpu
3117 && !CPUMIsGuestFPUStateActive(pVCpu))
3118 {
3119 CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
3120 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
3121 }
3122
3123 /* Load the state shared between host and guest (FPU, debug). */
3124 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3125 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
3126 hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
3127 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
3128 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
3129
3130 /* Setup TSC offsetting. */
3131 RTCPUID idCurrentCpu = HMR0GetCurrentCpu()->idCpu;
3132 if ( pSvmTransient->fUpdateTscOffsetting
3133 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
3134 {
3135 hmR0SvmUpdateTscOffsetting(pVM, pVCpu);
3136 pSvmTransient->fUpdateTscOffsetting = false;
3137 }
3138
3139 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
3140 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
3141 pVmcb->ctrl.u64VmcbCleanBits = 0;
3142
3143 /* Store status of the shared guest-host state at the time of VMRUN. */
3144#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
3145 if (CPUMIsGuestInLongModeEx(pCtx))
3146 {
3147 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
3148 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
3149 }
3150 else
3151#endif
3152 {
3153 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
3154 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
3155 }
3156 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
3157
3158 /* Flush the appropriate tagged-TLB entries. */
3159 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
3160 hmR0SvmFlushTaggedTlb(pVCpu);
3161 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
3162
3163 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
3164
3165 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
3166 to start executing. */
3167
3168 /*
3169 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
3170 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
3171 *
3172 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
3173 */
3174 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
3175 && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
3176 {
3177 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
3178 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
3179 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
3180 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
3181 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
3182 pSvmTransient->fRestoreTscAuxMsr = true;
3183 }
3184 else
3185 {
3186 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
3187 pSvmTransient->fRestoreTscAuxMsr = false;
3188 }
3189
3190 /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
3191 if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
3192 pVmcb->ctrl.u64VmcbCleanBits = 0;
3193}
3194
3195
3196/**
3197 * Wrapper for running the guest code in AMD-V.
3198 *
3199 * @returns VBox strict status code.
3200 * @param pVM The cross context VM structure.
3201 * @param pVCpu The cross context virtual CPU structure.
3202 * @param pCtx Pointer to the guest-CPU context.
3203 *
3204 * @remarks No-long-jump zone!!!
3205 */
3206DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3207{
3208 /*
3209 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
3210 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
3211 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
3212 */
3213#ifdef VBOX_WITH_KERNEL_USING_XMM
3214 return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
3215 pVCpu->hm.s.svm.pfnVMRun);
3216#else
3217 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
3218#endif
3219}
3220
3221
3222/**
3223 * Performs some essential restoration of state after running guest code in
3224 * AMD-V.
3225 *
3226 * @param pVM The cross context VM structure.
3227 * @param pVCpu The cross context virtual CPU structure.
3228 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
3229 * out-of-sync. Make sure to update the required fields
3230 * before using them.
3231 * @param pSvmTransient Pointer to the SVM transient structure.
3232 * @param rcVMRun Return code of VMRUN.
3233 *
3234 * @remarks Called with interrupts disabled.
3235 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
3236 * unconditionally when it is safe to do so.
3237 */
3238static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
3239{
3240 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3241
3242 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
3243 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
3244
3245 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3246 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
3247
3248 if (pSvmTransient->fRestoreTscAuxMsr)
3249 {
3250 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
3251 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
3252 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
3253 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
3254 }
3255
3256 if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
3257 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
3258
3259 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
3260 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
3261 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3262
3263 Assert(!(ASMGetFlags() & X86_EFL_IF));
3264 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
3265 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
3266
3267 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
3268 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
3269 {
3270 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
3271 return;
3272 }
3273
3274 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
3275 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
3276 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
3277 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
3278
3279 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
3280
3281 if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
3282 {
3283 if (pVCpu->hm.s.svm.fSyncVTpr)
3284 {
3285 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
3286 if ( pVM->hm.s.fTPRPatchingActive
3287 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
3288 {
3289 int rc = PDMApicSetTPR(pVCpu, pMixedCtx->msrLSTAR & 0xff);
3290 AssertRC(rc);
3291 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
3292 }
3293 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
3294 {
3295 int rc = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
3296 AssertRC(rc);
3297 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
3298 }
3299 }
3300 }
3301}
3302
3303
3304/**
3305 * Runs the guest code using AMD-V.
3306 *
3307 * @returns VBox status code.
3308 * @param pVM The cross context VM structure.
3309 * @param pVCpu The cross context virtual CPU structure.
3310 * @param pCtx Pointer to the guest-CPU context.
3311 */
3312static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3313{
3314 SVMTRANSIENT SvmTransient;
3315 SvmTransient.fUpdateTscOffsetting = true;
3316 uint32_t cLoops = 0;
3317 int rc = VERR_INTERNAL_ERROR_5;
3318
3319 for (;; cLoops++)
3320 {
3321 Assert(!HMR0SuspendPending());
3322 HMSVM_ASSERT_CPU_SAFE();
3323
3324 /* Preparatory work for running guest code, this may force us to return
3325 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
3326 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3327 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3328 if (rc != VINF_SUCCESS)
3329 break;
3330
3331 /*
3332 * No longjmps to ring-3 from this point on!!!
3333 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3334 * This also disables flushing of the R0-logger instance (if any).
3335 */
3336 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3337 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3338
3339 /* Restore any residual host-state and save any bits shared between host
3340 and guest into the guest-CPU state. Re-enables interrupts! */
3341 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3342
3343 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3344 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3345 {
3346 if (rc == VINF_SUCCESS)
3347 rc = VERR_SVM_INVALID_GUEST_STATE;
3348 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3349 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3350 break;
3351 }
3352
3353 /* Handle the #VMEXIT. */
3354 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3355 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3356 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
3357 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3358 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3359 if (rc != VINF_SUCCESS)
3360 break;
3361 if (cLoops > pVM->hm.s.cMaxResumeLoops)
3362 {
3363 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
3364 rc = VINF_EM_RAW_INTERRUPT;
3365 break;
3366 }
3367 }
3368
3369 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3370 return rc;
3371}
3372
3373
3374/**
3375 * Runs the guest code using AMD-V in single step mode.
3376 *
3377 * @returns VBox status code.
3378 * @param pVM The cross context VM structure.
3379 * @param pVCpu The cross context virtual CPU structure.
3380 * @param pCtx Pointer to the guest-CPU context.
3381 */
3382static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3383{
3384 SVMTRANSIENT SvmTransient;
3385 SvmTransient.fUpdateTscOffsetting = true;
3386 uint32_t cLoops = 0;
3387 int rc = VERR_INTERNAL_ERROR_5;
3388 uint16_t uCsStart = pCtx->cs.Sel;
3389 uint64_t uRipStart = pCtx->rip;
3390
3391 for (;; cLoops++)
3392 {
3393 Assert(!HMR0SuspendPending());
3394 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
3395 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
3396 (unsigned)RTMpCpuId(), cLoops));
3397
3398 /* Preparatory work for running guest code, this may force us to return
3399 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
3400 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3401 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3402 if (rc != VINF_SUCCESS)
3403 break;
3404
3405 /*
3406 * No longjmps to ring-3 from this point on!!!
3407 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3408 * This also disables flushing of the R0-logger instance (if any).
3409 */
3410 VMMRZCallRing3Disable(pVCpu);
3411 VMMRZCallRing3RemoveNotification(pVCpu);
3412 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3413
3414 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3415
3416 /*
3417 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
3418 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
3419 */
3420 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3421 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3422 || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3423 {
3424 if (rc == VINF_SUCCESS)
3425 rc = VERR_SVM_INVALID_GUEST_STATE;
3426 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3427 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3428 return rc;
3429 }
3430
3431 /* Handle the #VMEXIT. */
3432 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3433 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3434 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
3435 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3436 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3437 if (rc != VINF_SUCCESS)
3438 break;
3439 if (cLoops > pVM->hm.s.cMaxResumeLoops)
3440 {
3441 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
3442 rc = VINF_EM_RAW_INTERRUPT;
3443 break;
3444 }
3445
3446 /*
3447 * Did the RIP change, if so, consider it a single step.
3448 * Otherwise, make sure one of the TFs gets set.
3449 */
3450 if ( pCtx->rip != uRipStart
3451 || pCtx->cs.Sel != uCsStart)
3452 {
3453 rc = VINF_EM_DBG_STEPPED;
3454 break;
3455 }
3456 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
3457 }
3458
3459 /*
3460 * Clear the X86_EFL_TF if necessary.
3461 */
3462 if (pVCpu->hm.s.fClearTrapFlag)
3463 {
3464 pVCpu->hm.s.fClearTrapFlag = false;
3465 pCtx->eflags.Bits.u1TF = 0;
3466 }
3467
3468 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3469 return rc;
3470}
3471
3472
3473/**
3474 * Runs the guest code using AMD-V.
3475 *
3476 * @returns Strict VBox status code.
3477 * @param pVM The cross context VM structure.
3478 * @param pVCpu The cross context virtual CPU structure.
3479 * @param pCtx Pointer to the guest-CPU context.
3480 */
3481VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3482{
3483 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3484 HMSVM_ASSERT_PREEMPT_SAFE();
3485 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
3486
3487 int rc;
3488 if (!pVCpu->hm.s.fSingleInstruction)
3489 rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx);
3490 else
3491 rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx);
3492
3493 if (rc == VERR_EM_INTERPRETER)
3494 rc = VINF_EM_RAW_EMULATE_INSTR;
3495 else if (rc == VINF_EM_RESET)
3496 rc = VINF_EM_TRIPLE_FAULT;
3497
3498 /* Prepare to return to ring-3. This will remove longjmp notifications. */
3499 hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3500 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
3501 return rc;
3502}
3503
3504
3505/**
3506 * Handles a \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3507 *
3508 * @returns VBox status code (informational status codes included).
3509 * @param pVCpu The cross context virtual CPU structure.
3510 * @param pCtx Pointer to the guest-CPU context.
3511 * @param pSvmTransient Pointer to the SVM transient structure.
3512 */
3513DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3514{
3515 Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
3516 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3517
3518 /*
3519 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
3520 * normal workloads (for some definition of "normal").
3521 */
3522 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3523 switch (pSvmTransient->u64ExitCode)
3524 {
3525 case SVM_EXIT_NPF:
3526 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3527
3528 case SVM_EXIT_IOIO:
3529 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3530
3531 case SVM_EXIT_RDTSC:
3532 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3533
3534 case SVM_EXIT_RDTSCP:
3535 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3536
3537 case SVM_EXIT_CPUID:
3538 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3539
3540 case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
3541 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3542
3543 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3544 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3545
3546 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3547 return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
3548
3549 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
3550 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3551
3552 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3553 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3554
3555 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
3556 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
3557
3558 case SVM_EXIT_MONITOR:
3559 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3560
3561 case SVM_EXIT_MWAIT:
3562 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3563
3564 case SVM_EXIT_HLT:
3565 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3566
3567 case SVM_EXIT_READ_CR0:
3568 case SVM_EXIT_READ_CR3:
3569 case SVM_EXIT_READ_CR4:
3570 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3571
3572 case SVM_EXIT_WRITE_CR0:
3573 case SVM_EXIT_WRITE_CR3:
3574 case SVM_EXIT_WRITE_CR4:
3575 case SVM_EXIT_WRITE_CR8:
3576 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3577
3578 case SVM_EXIT_PAUSE:
3579 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
3580
3581 case SVM_EXIT_VMMCALL:
3582 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3583
3584 case SVM_EXIT_VINTR:
3585 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3586
3587 case SVM_EXIT_INTR:
3588 case SVM_EXIT_FERR_FREEZE:
3589 case SVM_EXIT_NMI:
3590 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3591
3592 case SVM_EXIT_MSR:
3593 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3594
3595 case SVM_EXIT_INVLPG:
3596 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3597
3598 case SVM_EXIT_WBINVD:
3599 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3600
3601 case SVM_EXIT_INVD:
3602 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3603
3604 case SVM_EXIT_RDPMC:
3605 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3606
3607 default:
3608 {
3609 switch (pSvmTransient->u64ExitCode)
3610 {
3611 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3612 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3613 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3614 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3615 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3616
3617 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3618 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3619 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3620 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3621 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3622
3623 case SVM_EXIT_XSETBV:
3624 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
3625
3626 case SVM_EXIT_TASK_SWITCH:
3627 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3628
3629 case SVM_EXIT_IRET:
3630 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
3631
3632 case SVM_EXIT_SHUTDOWN:
3633 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3634
3635 case SVM_EXIT_SMI:
3636 case SVM_EXIT_INIT:
3637 {
3638 /*
3639 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3640 * we want to know about it so log the exit code and bail.
3641 */
3642 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3643 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3644 return VERR_SVM_UNEXPECTED_EXIT;
3645 }
3646
3647 case SVM_EXIT_INVLPGA:
3648 case SVM_EXIT_RSM:
3649 case SVM_EXIT_VMRUN:
3650 case SVM_EXIT_VMLOAD:
3651 case SVM_EXIT_VMSAVE:
3652 case SVM_EXIT_STGI:
3653 case SVM_EXIT_CLGI:
3654 case SVM_EXIT_SKINIT:
3655 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3656
3657#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3658 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3659 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3660 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3661 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3662 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3663 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3664 /* case SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
3665 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3666 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3667 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3668 case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
3669 case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
3670 case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
3671 case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
3672 /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
3673 /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
3674 /* SVM_EXIT_EXCEPTION_11: */ /* X86_XCPT_AC - Handled above. */
3675 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
3676 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
3677 case SVM_EXIT_EXCEPTION_F: /* Reserved */
3678 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
3679 case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
3680 case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
3681 case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
3682 {
3683 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3684 SVMEVENT Event;
3685 Event.u = 0;
3686 Event.n.u1Valid = 1;
3687 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3688 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3689
3690 switch (Event.n.u8Vector)
3691 {
3692 case X86_XCPT_DE:
3693 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3694 break;
3695
3696 case X86_XCPT_BP:
3697 /** Saves the wrong EIP on the stack (pointing to the int3) instead of the
3698 * next instruction. */
3699 /** @todo Investigate this later. */
3700 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3701 break;
3702
3703 case X86_XCPT_NP:
3704 Event.n.u1ErrorCodeValid = 1;
3705 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3706 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3707 break;
3708
3709 case X86_XCPT_SS:
3710 Event.n.u1ErrorCodeValid = 1;
3711 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3712 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3713 break;
3714
3715 case X86_XCPT_GP:
3716 Event.n.u1ErrorCodeValid = 1;
3717 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3718 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3719 break;
3720
3721 default:
3722 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3723 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3724 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3725 }
3726
3727 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3728 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3729 return VINF_SUCCESS;
3730 }
3731#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3732
3733 default:
3734 {
3735 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3736 pVCpu->hm.s.u32HMError = u32ExitCode;
3737 return VERR_SVM_UNKNOWN_EXIT;
3738 }
3739 }
3740 }
3741 }
3742 return VERR_INTERNAL_ERROR_5; /* Should never happen. */
3743}
3744
3745
3746#ifdef DEBUG
3747/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3748# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3749 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3750
3751# define HMSVM_ASSERT_PREEMPT_CPUID() \
3752 do \
3753 { \
3754 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3755 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3756 } while (0)
3757
3758# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3759 do { \
3760 AssertPtr(pVCpu); \
3761 AssertPtr(pCtx); \
3762 AssertPtr(pSvmTransient); \
3763 Assert(ASMIntAreEnabled()); \
3764 HMSVM_ASSERT_PREEMPT_SAFE(); \
3765 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3766 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3767 HMSVM_ASSERT_PREEMPT_SAFE(); \
3768 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3769 HMSVM_ASSERT_PREEMPT_CPUID(); \
3770 } while (0)
3771#else /* Release builds */
3772# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
3773#endif
3774
3775
3776/**
3777 * Worker for hmR0SvmInterpretInvlpg().
3778 *
3779 * @return VBox status code.
3780 * @param pVCpu The cross context virtual CPU structure.
3781 * @param pCpu Pointer to the disassembler state.
3782 * @param pCtx The guest CPU context.
3783 */
3784static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
3785{
3786 DISQPVPARAMVAL Param1;
3787 RTGCPTR GCPtrPage;
3788
3789 int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3790 if (RT_FAILURE(rc))
3791 return VERR_EM_INTERPRETER;
3792
3793 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3794 || Param1.type == DISQPV_TYPE_ADDRESS)
3795 {
3796 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3797 return VERR_EM_INTERPRETER;
3798
3799 GCPtrPage = Param1.val.val64;
3800 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
3801 rc = VBOXSTRICTRC_VAL(rc2);
3802 }
3803 else
3804 {
3805 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3806 rc = VERR_EM_INTERPRETER;
3807 }
3808
3809 return rc;
3810}
3811
3812
3813/**
3814 * Interprets INVLPG.
3815 *
3816 * @returns VBox status code.
3817 * @retval VINF_* Scheduling instructions.
3818 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3819 * @retval VERR_* Fatal errors.
3820 *
3821 * @param pVM The cross context VM structure.
3822 * @param pVCpu The cross context virtual CPU structure.
3823 * @param pCtx The guest CPU context.
3824 *
3825 * @remarks Updates the RIP if the instruction was executed successfully.
3826 */
3827static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3828{
3829 /* Only allow 32 & 64 bit code. */
3830 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3831 {
3832 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3833 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3834 if ( RT_SUCCESS(rc)
3835 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3836 {
3837 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
3838 if (RT_SUCCESS(rc))
3839 pCtx->rip += pDis->cbInstr;
3840 return rc;
3841 }
3842 else
3843 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3844 }
3845 return VERR_EM_INTERPRETER;
3846}
3847
3848
3849/**
3850 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3851 *
3852 * @param pVCpu The cross context virtual CPU structure.
3853 */
3854DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3855{
3856 SVMEVENT Event;
3857 Event.u = 0;
3858 Event.n.u1Valid = 1;
3859 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3860 Event.n.u8Vector = X86_XCPT_UD;
3861 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3862}
3863
3864
3865/**
3866 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3867 *
3868 * @param pVCpu The cross context virtual CPU structure.
3869 */
3870DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3871{
3872 SVMEVENT Event;
3873 Event.u = 0;
3874 Event.n.u1Valid = 1;
3875 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3876 Event.n.u8Vector = X86_XCPT_DB;
3877 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3878}
3879
3880
3881/**
3882 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3883 *
3884 * @param pVCpu The cross context virtual CPU structure.
3885 * @param pCtx Pointer to the guest-CPU context.
3886 * @param u32ErrCode The error-code for the page-fault.
3887 * @param uFaultAddress The page fault address (CR2).
3888 *
3889 * @remarks This updates the guest CR2 with @a uFaultAddress!
3890 */
3891DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3892{
3893 SVMEVENT Event;
3894 Event.u = 0;
3895 Event.n.u1Valid = 1;
3896 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3897 Event.n.u8Vector = X86_XCPT_PF;
3898 Event.n.u1ErrorCodeValid = 1;
3899 Event.n.u32ErrorCode = u32ErrCode;
3900
3901 /* Update CR2 of the guest. */
3902 if (pCtx->cr2 != uFaultAddress)
3903 {
3904 pCtx->cr2 = uFaultAddress;
3905 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
3906 }
3907
3908 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3909}
3910
3911
3912/**
3913 * Sets a device-not-available (\#NM) exception as pending-for-injection into
3914 * the VM.
3915 *
3916 * @param pVCpu The cross context virtual CPU structure.
3917 */
3918DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3919{
3920 SVMEVENT Event;
3921 Event.u = 0;
3922 Event.n.u1Valid = 1;
3923 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3924 Event.n.u8Vector = X86_XCPT_NM;
3925 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3926}
3927
3928
3929/**
3930 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3931 *
3932 * @param pVCpu The cross context virtual CPU structure.
3933 */
3934DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3935{
3936 SVMEVENT Event;
3937 Event.u = 0;
3938 Event.n.u1Valid = 1;
3939 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3940 Event.n.u8Vector = X86_XCPT_MF;
3941 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3942}
3943
3944
3945/**
3946 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3947 *
3948 * @param pVCpu The cross context virtual CPU structure.
3949 */
3950DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3951{
3952 SVMEVENT Event;
3953 Event.u = 0;
3954 Event.n.u1Valid = 1;
3955 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3956 Event.n.u8Vector = X86_XCPT_DF;
3957 Event.n.u1ErrorCodeValid = 1;
3958 Event.n.u32ErrorCode = 0;
3959 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3960}
3961
3962
3963/**
3964 * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
3965 * guests. This simply looks up the patch record at EIP and does the required.
3966 *
3967 * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
3968 * like how we want it to be (e.g. not followed by shr 4 as is usually done for
3969 * TPR). See hmR3ReplaceTprInstr() for the details.
3970 *
3971 * @returns VBox status code.
3972 * @retval VINF_SUCCESS if the access was handled successfully.
3973 * @retval VERR_NOT_FOUND if no patch record for this RIP could be found.
3974 * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE if the found patch type is invalid.
3975 *
3976 * @param pVM The cross context VM structure.
3977 * @param pVCpu The cross context virtual CPU structure.
3978 * @param pCtx Pointer to the guest-CPU context.
3979 */
3980static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3981{
3982 Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
3983
3984 /*
3985 * We do this in a loop as we increment the RIP after a successful emulation
3986 * and the new RIP may be a patched instruction which needs emulation as well.
3987 */
3988 bool fPatchFound = false;
3989 for (;;)
3990 {
3991 bool fPending;
3992 uint8_t u8Tpr;
3993
3994 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3995 if (!pPatch)
3996 break;
3997
3998 fPatchFound = true;
3999 switch (pPatch->enmType)
4000 {
4001 case HMTPRINSTR_READ:
4002 {
4003 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
4004 AssertRC(rc);
4005
4006 rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
4007 AssertRC(rc);
4008 pCtx->rip += pPatch->cbOp;
4009 break;
4010 }
4011
4012 case HMTPRINSTR_WRITE_REG:
4013 case HMTPRINSTR_WRITE_IMM:
4014 {
4015 if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
4016 {
4017 uint32_t u32Val;
4018 int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
4019 AssertRC(rc);
4020 u8Tpr = u32Val;
4021 }
4022 else
4023 u8Tpr = (uint8_t)pPatch->uSrcOperand;
4024
4025 int rc2 = PDMApicSetTPR(pVCpu, u8Tpr);
4026 AssertRC(rc2);
4027 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4028
4029 pCtx->rip += pPatch->cbOp;
4030 break;
4031 }
4032
4033 default:
4034 AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
4035 pVCpu->hm.s.u32HMError = pPatch->enmType;
4036 return VERR_SVM_UNEXPECTED_PATCH_TYPE;
4037 }
4038 }
4039
4040 if (fPatchFound)
4041 return VINF_SUCCESS;
4042 return VERR_NOT_FOUND;
4043}
4044
4045
4046/**
4047 * Determines if an exception is a contributory exception.
4048 *
4049 * Contributory exceptions are ones which can cause double-faults unless the
4050 * original exception was a benign exception. Page-fault is intentionally not
4051 * included here as it's a conditional contributory exception.
4052 *
4053 * @returns true if the exception is contributory, false otherwise.
4054 * @param uVector The exception vector.
4055 */
4056DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
4057{
4058 switch (uVector)
4059 {
4060 case X86_XCPT_GP:
4061 case X86_XCPT_SS:
4062 case X86_XCPT_NP:
4063 case X86_XCPT_TS:
4064 case X86_XCPT_DE:
4065 return true;
4066 default:
4067 break;
4068 }
4069 return false;
4070}
4071
4072
4073/**
4074 * Handle a condition that occurred while delivering an event through the guest
4075 * IDT.
4076 *
4077 * @returns VBox status code (informational error codes included).
4078 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
4079 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
4080 * continue execution of the guest which will delivery the \#DF.
4081 * @retval VINF_EM_RESET if we detected a triple-fault condition.
4082 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
4083 *
4084 * @param pVCpu The cross context virtual CPU structure.
4085 * @param pCtx Pointer to the guest-CPU context.
4086 * @param pSvmTransient Pointer to the SVM transient structure.
4087 *
4088 * @remarks No-long-jump zone!!!
4089 */
4090static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4091{
4092 int rc = VINF_SUCCESS;
4093 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4094
4095 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
4096 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
4097 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
4098 {
4099 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
4100
4101 typedef enum
4102 {
4103 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
4104 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
4105 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
4106 SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
4107 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
4108 } SVMREFLECTXCPT;
4109
4110 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
4111 bool fReflectingNmi = false;
4112 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
4113 {
4114 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
4115 {
4116 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
4117
4118#ifdef VBOX_STRICT
4119 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
4120 && uExitVector == X86_XCPT_PF)
4121 {
4122 Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
4123 }
4124#endif
4125 if ( uExitVector == X86_XCPT_PF
4126 && uIdtVector == X86_XCPT_PF)
4127 {
4128 pSvmTransient->fVectoringDoublePF = true;
4129 Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
4130 }
4131 else if ( uExitVector == X86_XCPT_AC
4132 && uIdtVector == X86_XCPT_AC)
4133 {
4134 enmReflect = SVMREFLECTXCPT_HANG;
4135 Log4(("IDT: Nested #AC - Bad guest\n"));
4136 }
4137 else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
4138 && hmR0SvmIsContributoryXcpt(uExitVector)
4139 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
4140 || uIdtVector == X86_XCPT_PF))
4141 {
4142 enmReflect = SVMREFLECTXCPT_DF;
4143 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
4144 uIdtVector, uExitVector));
4145 }
4146 else if (uIdtVector == X86_XCPT_DF)
4147 {
4148 enmReflect = SVMREFLECTXCPT_TF;
4149 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
4150 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
4151 }
4152 else
4153 enmReflect = SVMREFLECTXCPT_XCPT;
4154 }
4155 else
4156 {
4157 /*
4158 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
4159 * exception to the guest after handling the #VMEXIT.
4160 */
4161 enmReflect = SVMREFLECTXCPT_XCPT;
4162 }
4163 }
4164 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
4165 || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
4166 {
4167 enmReflect = SVMREFLECTXCPT_XCPT;
4168 fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
4169
4170 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
4171 {
4172 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
4173 if (uExitVector == X86_XCPT_PF)
4174 {
4175 pSvmTransient->fVectoringPF = true;
4176 Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
4177 }
4178 }
4179 }
4180 /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
4181
4182 switch (enmReflect)
4183 {
4184 case SVMREFLECTXCPT_XCPT:
4185 {
4186 /* If we are re-injecting the NMI, clear NMI blocking. */
4187 if (fReflectingNmi)
4188 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
4189
4190 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
4191 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
4192
4193 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
4194 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
4195 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4196 break;
4197 }
4198
4199 case SVMREFLECTXCPT_DF:
4200 {
4201 hmR0SvmSetPendingXcptDF(pVCpu);
4202 rc = VINF_HM_DOUBLE_FAULT;
4203 break;
4204 }
4205
4206 case SVMREFLECTXCPT_TF:
4207 {
4208 rc = VINF_EM_RESET;
4209 break;
4210 }
4211
4212 case SVMREFLECTXCPT_HANG:
4213 {
4214 rc = VERR_EM_GUEST_CPU_HANG;
4215 break;
4216 }
4217
4218 default:
4219 Assert(rc == VINF_SUCCESS);
4220 break;
4221 }
4222 }
4223 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
4224 NOREF(pCtx);
4225 return rc;
4226}
4227
4228
4229/**
4230 * Advances the guest RIP in the if the NRIP_SAVE feature is supported by the
4231 * CPU, otherwise advances the RIP by @a cb bytes.
4232 *
4233 * @param pVCpu The cross context virtual CPU structure.
4234 * @param pCtx Pointer to the guest-CPU context.
4235 * @param cb RIP increment value in bytes.
4236 *
4237 * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
4238 * when NRIP_SAVE is supported by the CPU!
4239 */
4240DECLINLINE(void) hmR0SvmUpdateRip(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
4241{
4242 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4243 {
4244 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4245 Assert(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb);
4246 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4247 }
4248 else
4249 pCtx->rip += cb;
4250}
4251
4252
4253/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
4254/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
4255/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
4256
4257/** @name \#VMEXIT handlers.
4258 * @{
4259 */
4260
4261/**
4262 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
4263 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
4264 */
4265HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4266{
4267 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4268
4269 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
4270 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
4271 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
4272 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
4273
4274 /*
4275 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
4276 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
4277 * interrupt it is until the host actually take the interrupt.
4278 *
4279 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
4280 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
4281 */
4282 return VINF_EM_RAW_INTERRUPT;
4283}
4284
4285
4286/**
4287 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
4288 */
4289HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4290{
4291 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4292
4293 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4294 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
4295 int rc = VINF_SUCCESS;
4296 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4297 return rc;
4298}
4299
4300
4301/**
4302 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
4303 */
4304HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4305{
4306 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4307
4308 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4309 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
4310 int rc = VINF_SUCCESS;
4311 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4312 return rc;
4313}
4314
4315
4316/**
4317 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
4318 */
4319HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4320{
4321 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4322 PVM pVM = pVCpu->CTX_SUFF(pVM);
4323 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4324 if (RT_LIKELY(rc == VINF_SUCCESS))
4325 {
4326 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4327 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4328 }
4329 else
4330 {
4331 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
4332 rc = VERR_EM_INTERPRETER;
4333 }
4334 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
4335 return rc;
4336}
4337
4338
4339/**
4340 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
4341 */
4342HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4343{
4344 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4345 PVM pVM = pVCpu->CTX_SUFF(pVM);
4346 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4347 if (RT_LIKELY(rc == VINF_SUCCESS))
4348 {
4349 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4350 pSvmTransient->fUpdateTscOffsetting = true;
4351
4352 /* Single step check. */
4353 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4354 }
4355 else
4356 {
4357 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
4358 rc = VERR_EM_INTERPRETER;
4359 }
4360 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
4361 return rc;
4362}
4363
4364
4365/**
4366 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
4367 */
4368HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4369{
4370 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4371 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4372 if (RT_LIKELY(rc == VINF_SUCCESS))
4373 {
4374 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
4375 pSvmTransient->fUpdateTscOffsetting = true;
4376 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4377 }
4378 else
4379 {
4380 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
4381 rc = VERR_EM_INTERPRETER;
4382 }
4383 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
4384 return rc;
4385}
4386
4387
4388/**
4389 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
4390 */
4391HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4392{
4393 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4394 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4395 if (RT_LIKELY(rc == VINF_SUCCESS))
4396 {
4397 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4398 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4399 }
4400 else
4401 {
4402 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
4403 rc = VERR_EM_INTERPRETER;
4404 }
4405 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
4406 return rc;
4407}
4408
4409
4410/**
4411 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
4412 */
4413HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4414{
4415 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4416 PVM pVM = pVCpu->CTX_SUFF(pVM);
4417 Assert(!pVM->hm.s.fNestedPaging);
4418
4419 /** @todo Decode Assist. */
4420 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
4421 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
4422 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
4423 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4424 return rc;
4425}
4426
4427
4428/**
4429 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
4430 */
4431HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4432{
4433 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4434
4435 hmR0SvmUpdateRip(pVCpu, pCtx, 1);
4436 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
4437 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4438 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
4439 if (rc != VINF_SUCCESS)
4440 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
4441 return rc;
4442}
4443
4444
4445/**
4446 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
4447 */
4448HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4449{
4450 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4451 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4452 if (RT_LIKELY(rc == VINF_SUCCESS))
4453 {
4454 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
4455 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4456 }
4457 else
4458 {
4459 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
4460 rc = VERR_EM_INTERPRETER;
4461 }
4462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
4463 return rc;
4464}
4465
4466
4467/**
4468 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
4469 */
4470HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4471{
4472 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4473 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4474 int rc = VBOXSTRICTRC_VAL(rc2);
4475 if ( rc == VINF_EM_HALT
4476 || rc == VINF_SUCCESS)
4477 {
4478 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
4479
4480 if ( rc == VINF_EM_HALT
4481 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
4482 {
4483 rc = VINF_SUCCESS;
4484 }
4485 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4486 }
4487 else
4488 {
4489 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
4490 rc = VERR_EM_INTERPRETER;
4491 }
4492 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
4493 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
4494 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
4495 return rc;
4496}
4497
4498
4499/**
4500 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
4501 * \#VMEXIT.
4502 */
4503HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4504{
4505 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4506 return VINF_EM_RESET;
4507}
4508
4509
4510/**
4511 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
4512 */
4513HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4514{
4515 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4516
4517 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4518
4519 /** @todo Decode Assist. */
4520 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4521 int rc = VBOXSTRICTRC_VAL(rc2);
4522 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
4523 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
4524 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
4525 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
4526 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4527 return rc;
4528}
4529
4530
4531/**
4532 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
4533 */
4534HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4535{
4536 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4537
4538 /** @todo Decode Assist. */
4539 VBOXSTRICTRC rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
4540 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
4541 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
4542 rcStrict = VERR_EM_INTERPRETER;
4543 if (rcStrict == VINF_SUCCESS)
4544 {
4545 /* RIP has been updated by EMInterpretInstruction(). */
4546 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
4547 switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
4548 {
4549 case 0: /* CR0. */
4550 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
4551 break;
4552
4553 case 3: /* CR3. */
4554 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
4555 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
4556 break;
4557
4558 case 4: /* CR4. */
4559 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
4560 break;
4561
4562 case 8: /* CR8 (TPR). */
4563 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4564 break;
4565
4566 default:
4567 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
4568 pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
4569 break;
4570 }
4571 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4572 }
4573 else
4574 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
4575 return VBOXSTRICTRC_TODO(rcStrict);
4576}
4577
4578
4579/**
4580 * \#VMEXIT handler for instructions that result in a \#UD exception delivered
4581 * to the guest.
4582 */
4583HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4584{
4585 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4586 hmR0SvmSetPendingXcptUD(pVCpu);
4587 return VINF_SUCCESS;
4588}
4589
4590
4591/**
4592 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
4593 * \#VMEXIT.
4594 */
4595HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4596{
4597 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4598 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4599 PVM pVM = pVCpu->CTX_SUFF(pVM);
4600
4601 int rc;
4602 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4603 {
4604 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4605
4606 /* Handle TPR patching; intercepted LSTAR write. */
4607 if ( pVM->hm.s.fTPRPatchingActive
4608 && pCtx->ecx == MSR_K8_LSTAR)
4609 {
4610 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4611 {
4612 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4613 int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4614 AssertRC(rc2);
4615 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4616 }
4617 hmR0SvmUpdateRip(pVCpu, pCtx, 2);
4618 rc = VINF_SUCCESS;
4619 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4620 return rc;
4621 }
4622
4623 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4624 {
4625 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4626 if (RT_LIKELY(rc == VINF_SUCCESS))
4627 {
4628 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4629 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4630 }
4631 else
4632 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4633 }
4634 else
4635 {
4636 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4637 if (RT_LIKELY(rc == VINF_SUCCESS))
4638 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
4639 else
4640 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4641 }
4642
4643 if (rc == VINF_SUCCESS)
4644 {
4645 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4646 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4647 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4648 {
4649 /*
4650 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4651 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4652 * EMInterpretWrmsr() changes it.
4653 */
4654 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4655 }
4656 else if (pCtx->ecx == MSR_K6_EFER)
4657 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4658 else if (pCtx->ecx == MSR_IA32_TSC)
4659 pSvmTransient->fUpdateTscOffsetting = true;
4660 }
4661 }
4662 else
4663 {
4664 /* MSR Read access. */
4665 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4666 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4667
4668 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4669 {
4670 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4671 if (RT_LIKELY(rc == VINF_SUCCESS))
4672 {
4673 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4674 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4675 }
4676 else
4677 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4678 }
4679 else
4680 {
4681 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4682 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4683 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4684 /* RIP updated by EMInterpretInstruction(). */
4685 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4686 }
4687 }
4688
4689 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4690 return rc;
4691}
4692
4693
4694/**
4695 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
4696 */
4697HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4698{
4699 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4700 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4701
4702 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
4703 if (pSvmTransient->fWasGuestDebugStateActive)
4704 {
4705 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
4706 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
4707 return VERR_SVM_UNEXPECTED_EXIT;
4708 }
4709
4710 /*
4711 * Lazy DR0-3 loading.
4712 */
4713 if (!pSvmTransient->fWasHyperDebugStateActive)
4714 {
4715 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4716 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4717
4718 /* Don't intercept DRx read and writes. */
4719 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4720 pVmcb->ctrl.u16InterceptRdDRx = 0;
4721 pVmcb->ctrl.u16InterceptWrDRx = 0;
4722 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4723
4724 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
4725 VMMRZCallRing3Disable(pVCpu);
4726 HM_DISABLE_PREEMPT();
4727
4728 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4729 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4730 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
4731
4732 HM_RESTORE_PREEMPT();
4733 VMMRZCallRing3Enable(pVCpu);
4734
4735 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4736 return VINF_SUCCESS;
4737 }
4738
4739 /*
4740 * Interpret the read/writing of DRx.
4741 */
4742 /** @todo Decode assist. */
4743 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4744 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4745 if (RT_LIKELY(rc == VINF_SUCCESS))
4746 {
4747 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4748 /** @todo CPUM should set this flag! */
4749 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
4750 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4751 }
4752 else
4753 Assert(rc == VERR_EM_INTERPRETER);
4754 return VBOXSTRICTRC_TODO(rc);
4755}
4756
4757
4758/**
4759 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
4760 */
4761HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4762{
4763 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4764 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4765 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4766 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4767 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4768 return rc;
4769}
4770
4771
4772/**
4773 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
4774 */
4775HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4776{
4777 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4778
4779 /** @todo decode assists... */
4780 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
4781 if (rcStrict == VINF_IEM_RAISED_XCPT)
4782 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
4783
4784 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4785 Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
4786 pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
4787
4788 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4789 return VBOXSTRICTRC_TODO(rcStrict);
4790}
4791
4792
4793/**
4794 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
4795 */
4796HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4797{
4798 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4799
4800 /* I/O operation lookup arrays. */
4801 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
4802 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
4803 the result (in AL/AX/EAX). */
4804 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4805
4806 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4807 PVM pVM = pVCpu->CTX_SUFF(pVM);
4808
4809 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
4810 SVMIOIOEXIT IoExitInfo;
4811 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
4812 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
4813 uint32_t cbValue = s_aIOSize[uIOWidth];
4814 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
4815
4816 if (RT_UNLIKELY(!cbValue))
4817 {
4818 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
4819 return VERR_EM_INTERPRETER;
4820 }
4821
4822 VBOXSTRICTRC rcStrict;
4823 bool fUpdateRipAlready = false;
4824 if (IoExitInfo.n.u1STR)
4825 {
4826#ifdef VBOX_WITH_2ND_IEM_STEP
4827 /* INS/OUTS - I/O String instruction. */
4828 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4829 * in EXITINFO1? Investigate once this thing is up and running. */
4830 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
4831 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
4832 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
4833 static IEMMODE const s_aenmAddrMode[8] =
4834 {
4835 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
4836 };
4837 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
4838 if (enmAddrMode != (IEMMODE)-1)
4839 {
4840 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
4841 if (cbInstr <= 15 && cbInstr >= 1)
4842 {
4843 Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
4844 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4845 {
4846 /* Don't know exactly how to detect whether u3SEG is valid, currently
4847 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
4848 2384 Opterons when only checking NRIP. */
4849 if ( (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4850 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
4851 {
4852 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
4853 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
4854 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
4855 IoExitInfo.n.u3SEG);
4856 }
4857 else if (cbInstr == 1U + IoExitInfo.n.u1REP)
4858 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
4859 X86_SREG_DS);
4860 else
4861 rcStrict = IEMExecOne(pVCpu);
4862 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4863 }
4864 else
4865 {
4866 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
4867 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr);
4868 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4869 }
4870 }
4871 else
4872 {
4873 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
4874 rcStrict = IEMExecOne(pVCpu);
4875 }
4876 }
4877 else
4878 {
4879 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
4880 rcStrict = IEMExecOne(pVCpu);
4881 }
4882 fUpdateRipAlready = true;
4883
4884#else
4885 /* INS/OUTS - I/O String instruction. */
4886 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4887
4888 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
4889 * in EXITINFO1? Investigate once this thing is up and running. */
4890
4891 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4892 if (rcStrict == VINF_SUCCESS)
4893 {
4894 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4895 {
4896 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4897 (DISCPUMODE)pDis->uAddrMode, cbValue);
4898 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4899 }
4900 else
4901 {
4902 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
4903 (DISCPUMODE)pDis->uAddrMode, cbValue);
4904 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4905 }
4906 }
4907 else
4908 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
4909#endif
4910 }
4911 else
4912 {
4913 /* IN/OUT - I/O instruction. */
4914 Assert(!IoExitInfo.n.u1REP);
4915
4916 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
4917 {
4918 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
4919 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4920 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4921
4922 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4923 }
4924 else
4925 {
4926 uint32_t u32Val = 0;
4927 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
4928 if (IOM_SUCCESS(rcStrict))
4929 {
4930 /* Save result of I/O IN instr. in AL/AX/EAX. */
4931 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
4932 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4933 }
4934 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4935 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
4936
4937 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4938 }
4939 }
4940
4941 if (IOM_SUCCESS(rcStrict))
4942 {
4943 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
4944 if (!fUpdateRipAlready)
4945 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
4946
4947 /*
4948 * If any I/O breakpoints are armed, we need to check if one triggered
4949 * and take appropriate action.
4950 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
4951 */
4952 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
4953 * execution engines about whether hyper BPs and such are pending. */
4954 uint32_t const uDr7 = pCtx->dr[7];
4955 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
4956 && X86_DR7_ANY_RW_IO(uDr7)
4957 && (pCtx->cr4 & X86_CR4_DE))
4958 || DBGFBpIsHwIoArmed(pVM)))
4959 {
4960 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
4961 VMMRZCallRing3Disable(pVCpu);
4962 HM_DISABLE_PREEMPT();
4963
4964 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4965 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
4966
4967 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
4968 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
4969 {
4970 /* Raise #DB. */
4971 pVmcb->guest.u64DR6 = pCtx->dr[6];
4972 pVmcb->guest.u64DR7 = pCtx->dr[7];
4973 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
4974 hmR0SvmSetPendingXcptDB(pVCpu);
4975 }
4976 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
4977 else if ( rcStrict2 != VINF_SUCCESS
4978 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
4979 rcStrict = rcStrict2;
4980
4981 HM_RESTORE_PREEMPT();
4982 VMMRZCallRing3Enable(pVCpu);
4983 }
4984
4985 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4986 }
4987
4988#ifdef VBOX_STRICT
4989 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
4990 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
4991 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
4992 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
4993 else
4994 {
4995 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
4996 * statuses, that the VMM device and some others may return. See
4997 * IOM_SUCCESS() for guidance. */
4998 AssertMsg( RT_FAILURE(rcStrict)
4999 || rcStrict == VINF_SUCCESS
5000 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
5001 || rcStrict == VINF_EM_DBG_BREAKPOINT
5002 || rcStrict == VINF_EM_RAW_GUEST_TRAP
5003 || rcStrict == VINF_EM_RAW_TO_R3
5004 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
5005 }
5006#endif
5007 return VBOXSTRICTRC_TODO(rcStrict);
5008}
5009
5010
5011/**
5012 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
5013 */
5014HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5015{
5016 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5017 PVM pVM = pVCpu->CTX_SUFF(pVM);
5018 Assert(pVM->hm.s.fNestedPaging);
5019
5020 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5021
5022 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
5023 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5024 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
5025 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
5026
5027 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
5028
5029#ifdef VBOX_HM_WITH_GUEST_PATCHING
5030 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
5031 if ( pVM->hm.s.fTprPatchingAllowed
5032 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == 0x80 /* TPR offset. */
5033 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
5034 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
5035 && !CPUMIsGuestInLongModeEx(pCtx)
5036 && !CPUMGetGuestCPL(pVCpu)
5037 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
5038 {
5039 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
5040 GCPhysApicBase &= PAGE_BASE_GC_MASK;
5041
5042 if (GCPhysFaultAddr == GCPhysApicBase + 0x80)
5043 {
5044 /* Only attempt to patch the instruction once. */
5045 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
5046 if (!pPatch)
5047 return VINF_EM_HM_PATCH_TPR_INSTR;
5048 }
5049 }
5050#endif
5051
5052 /*
5053 * Determine the nested paging mode.
5054 */
5055 PGMMODE enmNestedPagingMode;
5056#if HC_ARCH_BITS == 32
5057 if (CPUMIsGuestInLongModeEx(pCtx))
5058 enmNestedPagingMode = PGMMODE_AMD64_NX;
5059 else
5060#endif
5061 enmNestedPagingMode = PGMGetHostMode(pVM);
5062
5063 /*
5064 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
5065 */
5066 int rc;
5067 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
5068 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
5069 {
5070 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
5071 u32ErrCode);
5072 rc = VBOXSTRICTRC_VAL(rc2);
5073
5074 /*
5075 * If we succeed, resume guest execution.
5076 * If we fail in interpreting the instruction because we couldn't get the guest physical address
5077 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
5078 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
5079 * weird case. See @bugref{6043}.
5080 */
5081 if ( rc == VINF_SUCCESS
5082 || rc == VERR_PAGE_TABLE_NOT_PRESENT
5083 || rc == VERR_PAGE_NOT_PRESENT)
5084 {
5085 /* Successfully handled MMIO operation. */
5086 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
5087 rc = VINF_SUCCESS;
5088 }
5089 return rc;
5090 }
5091
5092 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
5093 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
5094 TRPMResetTrap(pVCpu);
5095
5096 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
5097
5098 /*
5099 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
5100 */
5101 if ( rc == VINF_SUCCESS
5102 || rc == VERR_PAGE_TABLE_NOT_PRESENT
5103 || rc == VERR_PAGE_NOT_PRESENT)
5104 {
5105 /* We've successfully synced our shadow page tables. */
5106 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
5107 rc = VINF_SUCCESS;
5108 }
5109
5110 return rc;
5111}
5112
5113
5114/**
5115 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
5116 * \#VMEXIT.
5117 */
5118HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5119{
5120 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5121
5122 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5123 pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
5124 pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
5125
5126 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive interrupts/NMIs, it is now ready. */
5127 pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_VINTR;
5128 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
5129
5130 /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
5131 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
5132 return VINF_SUCCESS;
5133}
5134
5135
5136/**
5137 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
5138 * \#VMEXIT.
5139 */
5140HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5141{
5142 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5143
5144#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
5145 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5146#endif
5147
5148 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
5149 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5150 if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP))
5151 && pVCpu->hm.s.Event.fPending) /** @todo fPending cannot be 'true', see hmR0SvmInjectPendingEvent(). See @bugref{7362}.*/
5152 {
5153 /*
5154 * AMD-V does not provide us with the original exception but we have it in u64IntInfo since we
5155 * injected the event during VM-entry.
5156 */
5157 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
5158 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
5159 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5160 }
5161
5162 /** @todo Emulate task switch someday, currently just going back to ring-3 for
5163 * emulation. */
5164 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
5165 return VERR_EM_INTERPRETER;
5166}
5167
5168
5169/**
5170 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
5171 */
5172HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5173{
5174 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5175 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
5176
5177 /* First check if this is a patched VMMCALL for mov TPR */
5178 int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
5179 if (rc == VINF_SUCCESS)
5180 {
5181 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5182 return VINF_SUCCESS;
5183 }
5184 else if (rc == VERR_NOT_FOUND)
5185 {
5186 if (pVCpu->hm.s.fHypercallsEnabled)
5187 {
5188 hmR0SvmUpdateRip(pVCpu, pCtx, 3);
5189
5190 /** @todo pre-increment RIP before hypercall will break when we have to implement
5191 * continuing hypercalls (e.g. Hyper-V). */
5192 rc = GIMHypercall(pVCpu, pCtx);
5193 /* If the hypercall changes anything other than guest general-purpose registers,
5194 we would need to reload the guest changed bits here before VM-entry. */
5195 return rc;
5196 }
5197 else
5198 Log4(("hmR0SvmExitVmmCall: Hypercalls not enabled\n"));
5199 }
5200
5201 hmR0SvmSetPendingXcptUD(pVCpu);
5202 return VINF_SUCCESS;
5203}
5204
5205
5206/**
5207 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
5208 */
5209HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5210{
5211 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5212 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
5213 return VINF_EM_RAW_INTERRUPT;
5214}
5215
5216
5217/**
5218 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
5219 */
5220HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5221{
5222 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5223
5224 /* Clear NMI blocking. */
5225 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5226
5227 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
5228 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5229 hmR0SvmClearIretIntercept(pVmcb);
5230
5231 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
5232 return VINF_SUCCESS;
5233}
5234
5235
5236/**
5237 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E).
5238 * Conditional \#VMEXIT.
5239 */
5240HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5241{
5242 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5243
5244 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5245
5246 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
5247 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5248 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
5249 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
5250 PVM pVM = pVCpu->CTX_SUFF(pVM);
5251
5252#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
5253 if (pVM->hm.s.fNestedPaging)
5254 {
5255 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
5256 if (!pSvmTransient->fVectoringDoublePF)
5257 {
5258 /* A genuine guest #PF, reflect it to the guest. */
5259 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
5260 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
5261 uFaultAddress, u32ErrCode));
5262 }
5263 else
5264 {
5265 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
5266 hmR0SvmSetPendingXcptDF(pVCpu);
5267 Log4(("Pending #DF due to vectoring #PF. NP\n"));
5268 }
5269 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
5270 return VINF_SUCCESS;
5271 }
5272#endif
5273
5274 Assert(!pVM->hm.s.fNestedPaging);
5275
5276#ifdef VBOX_HM_WITH_GUEST_PATCHING
5277 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
5278 if ( pVM->hm.s.fTprPatchingAllowed
5279 && (uFaultAddress & 0xfff) == 0x80 /* TPR offset. */
5280 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
5281 && !CPUMIsGuestInLongModeEx(pCtx)
5282 && !CPUMGetGuestCPL(pVCpu)
5283 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
5284 {
5285 RTGCPHYS GCPhysApicBase;
5286 GCPhysApicBase = pCtx->msrApicBase;
5287 GCPhysApicBase &= PAGE_BASE_GC_MASK;
5288
5289 /* Check if the page at the fault-address is the APIC base. */
5290 RTGCPHYS GCPhysPage;
5291 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
5292 if ( rc2 == VINF_SUCCESS
5293 && GCPhysPage == GCPhysApicBase)
5294 {
5295 /* Only attempt to patch the instruction once. */
5296 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
5297 if (!pPatch)
5298 return VINF_EM_HM_PATCH_TPR_INSTR;
5299 }
5300 }
5301#endif
5302
5303 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
5304 pCtx->rip, u32ErrCode, pCtx->cr3));
5305
5306 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
5307 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
5308 if (pSvmTransient->fVectoringPF)
5309 {
5310 Assert(pVCpu->hm.s.Event.fPending);
5311 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5312 }
5313
5314 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
5315 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
5316
5317 Log4(("#PF rc=%Rrc\n", rc));
5318
5319 if (rc == VINF_SUCCESS)
5320 {
5321 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
5322 TRPMResetTrap(pVCpu);
5323 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
5324 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
5325 return rc;
5326 }
5327 else if (rc == VINF_EM_RAW_GUEST_TRAP)
5328 {
5329 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
5330
5331 if (!pSvmTransient->fVectoringDoublePF)
5332 {
5333 /* It's a guest page fault and needs to be reflected to the guest. */
5334 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
5335 TRPMResetTrap(pVCpu);
5336 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
5337 }
5338 else
5339 {
5340 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
5341 TRPMResetTrap(pVCpu);
5342 hmR0SvmSetPendingXcptDF(pVCpu);
5343 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
5344 }
5345
5346 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
5347 return VINF_SUCCESS;
5348 }
5349
5350 TRPMResetTrap(pVCpu);
5351 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
5352 return rc;
5353}
5354
5355
5356/**
5357 * \#VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
5358 * Conditional \#VMEXIT.
5359 */
5360HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5361{
5362 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5363
5364 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5365
5366 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
5367 VMMRZCallRing3Disable(pVCpu);
5368 HM_DISABLE_PREEMPT();
5369
5370 int rc;
5371 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
5372 if (pSvmTransient->fWasGuestFPUStateActive)
5373 {
5374 rc = VINF_EM_RAW_GUEST_TRAP;
5375 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
5376 }
5377 else
5378 {
5379#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5380 Assert(!pSvmTransient->fWasGuestFPUStateActive);
5381#endif
5382 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
5383 Assert(rc == VINF_EM_RAW_GUEST_TRAP || (rc == VINF_SUCCESS && CPUMIsGuestFPUStateActive(pVCpu)));
5384 }
5385
5386 HM_RESTORE_PREEMPT();
5387 VMMRZCallRing3Enable(pVCpu);
5388
5389 if (rc == VINF_SUCCESS)
5390 {
5391 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
5392 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
5393 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
5394 pVCpu->hm.s.fPreloadGuestFpu = true;
5395 }
5396 else
5397 {
5398 /* Forward #NM to the guest. */
5399 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
5400 hmR0SvmSetPendingXcptNM(pVCpu);
5401 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
5402 }
5403 return VINF_SUCCESS;
5404}
5405
5406
5407/**
5408 * \#VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6). Conditional
5409 * \#VMEXIT.
5410 */
5411HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5412{
5413 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5414
5415 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5416
5417 if (pVCpu->hm.s.fGIMTrapXcptUD)
5418 GIMXcptUD(pVCpu, pCtx, NULL /* pDis */);
5419 else
5420 hmR0SvmSetPendingXcptUD(pVCpu);
5421
5422 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
5423 return VINF_SUCCESS;
5424}
5425
5426
5427/**
5428 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
5429 * Conditional \#VMEXIT.
5430 */
5431HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5432{
5433 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5434
5435 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5436
5437 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
5438
5439 if (!(pCtx->cr0 & X86_CR0_NE))
5440 {
5441 PVM pVM = pVCpu->CTX_SUFF(pVM);
5442 PDISSTATE pDis = &pVCpu->hm.s.DisState;
5443 unsigned cbOp;
5444 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
5445 if (RT_SUCCESS(rc))
5446 {
5447 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
5448 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
5449 if (RT_SUCCESS(rc))
5450 pCtx->rip += cbOp;
5451 }
5452 else
5453 Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
5454 return rc;
5455 }
5456
5457 hmR0SvmSetPendingXcptMF(pVCpu);
5458 return VINF_SUCCESS;
5459}
5460
5461
5462/**
5463 * \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
5464 * \#VMEXIT.
5465 */
5466HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5467{
5468 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5469
5470 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5471
5472 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
5473
5474 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
5475 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
5476 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5477 PVM pVM = pVCpu->CTX_SUFF(pVM);
5478 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
5479 if (rc == VINF_EM_RAW_GUEST_TRAP)
5480 {
5481 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
5482 if (CPUMIsHyperDebugStateActive(pVCpu))
5483 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
5484
5485 /* Reflect the exception back to the guest. */
5486 hmR0SvmSetPendingXcptDB(pVCpu);
5487 rc = VINF_SUCCESS;
5488 }
5489
5490 /*
5491 * Update DR6.
5492 */
5493 if (CPUMIsHyperDebugStateActive(pVCpu))
5494 {
5495 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
5496 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
5497 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
5498 }
5499 else
5500 {
5501 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
5502 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
5503 }
5504
5505 return rc;
5506}
5507
5508
5509/**
5510 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_EXCEPTION_11).
5511 * Conditional \#VMEXIT.
5512 */
5513HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5514{
5515 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5516
5517 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5518
5519 SVMEVENT Event;
5520 Event.u = 0;
5521 Event.n.u1Valid = 1;
5522 Event.n.u3Type = SVM_EVENT_EXCEPTION;
5523 Event.n.u8Vector = X86_XCPT_AC;
5524 Event.n.u1ErrorCodeValid = 1;
5525 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
5526 return VINF_SUCCESS;
5527}
5528
5529/** @} */
5530
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette