1 | /* $Id: HMSVMR0.cpp 68434 2017-08-17 08:28:18Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM SVM (AMD-V) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2013-2016 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_HM
|
---|
23 | #include <iprt/asm-amd64-x86.h>
|
---|
24 | #include <iprt/thread.h>
|
---|
25 |
|
---|
26 | #include <VBox/vmm/pdmapi.h>
|
---|
27 | #include <VBox/vmm/dbgf.h>
|
---|
28 | #include <VBox/vmm/iem.h>
|
---|
29 | #include <VBox/vmm/iom.h>
|
---|
30 | #include <VBox/vmm/tm.h>
|
---|
31 | #include <VBox/vmm/gim.h>
|
---|
32 | #include <VBox/vmm/apic.h>
|
---|
33 | #include "HMInternal.h"
|
---|
34 | #include <VBox/vmm/vm.h>
|
---|
35 | #include "HMSVMR0.h"
|
---|
36 | #include "dtrace/VBoxVMM.h"
|
---|
37 |
|
---|
38 | #define HMSVM_USE_IEM_EVENT_REFLECTION
|
---|
39 | #ifdef DEBUG_ramshankar
|
---|
40 | # define HMSVM_SYNC_FULL_GUEST_STATE
|
---|
41 | # define HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
42 | # define HMSVM_ALWAYS_TRAP_PF
|
---|
43 | # define HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
44 | #endif
|
---|
45 |
|
---|
46 |
|
---|
47 | /*********************************************************************************************************************************
|
---|
48 | * Defined Constants And Macros *
|
---|
49 | *********************************************************************************************************************************/
|
---|
50 | #ifdef VBOX_WITH_STATISTICS
|
---|
51 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
52 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
|
---|
53 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
54 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
|
---|
55 | else \
|
---|
56 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
57 | } while (0)
|
---|
58 | #else
|
---|
59 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
60 | #endif
|
---|
61 |
|
---|
62 | /** If we decide to use a function table approach this can be useful to
|
---|
63 | * switch to a "static DECLCALLBACK(int)". */
|
---|
64 | #define HMSVM_EXIT_DECL static int
|
---|
65 |
|
---|
66 | /** Macro for checking and returning from the using function for
|
---|
67 | * \#VMEXIT intercepts that maybe caused during delivering of another
|
---|
68 | * event in the guest. */
|
---|
69 | #define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
|
---|
70 | do \
|
---|
71 | { \
|
---|
72 | int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
|
---|
73 | if (RT_LIKELY(rc == VINF_SUCCESS)) { /* likely */ } \
|
---|
74 | else if (rc == VINF_HM_DOUBLE_FAULT) \
|
---|
75 | return VINF_SUCCESS; \
|
---|
76 | else \
|
---|
77 | return rc; \
|
---|
78 | } while (0)
|
---|
79 |
|
---|
80 | /** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
|
---|
81 | * instruction that exited. */
|
---|
82 | #define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
|
---|
83 | do { \
|
---|
84 | if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
|
---|
85 | (a_rc) = VINF_EM_DBG_STEPPED; \
|
---|
86 | } while (0)
|
---|
87 |
|
---|
88 | /** Assert that preemption is disabled or covered by thread-context hooks. */
|
---|
89 | #define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
90 | || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
91 |
|
---|
92 | /** Assert that we haven't migrated CPUs when thread-context hooks are not
|
---|
93 | * used. */
|
---|
94 | #define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
95 | || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
|
---|
96 | ("Illegal migration! Entered on CPU %u Current %u\n", \
|
---|
97 | pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
|
---|
98 |
|
---|
99 | /**
|
---|
100 | * Exception bitmap mask for all contributory exceptions.
|
---|
101 | *
|
---|
102 | * Page fault is deliberately excluded here as it's conditional as to whether
|
---|
103 | * it's contributory or benign. Page faults are handled separately.
|
---|
104 | */
|
---|
105 | #define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
|
---|
106 | | RT_BIT(X86_XCPT_DE))
|
---|
107 |
|
---|
108 | /**
|
---|
109 | * Mandatory/unconditional guest control intercepts.
|
---|
110 | */
|
---|
111 | #define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
|
---|
112 | | SVM_CTRL_INTERCEPT_NMI \
|
---|
113 | | SVM_CTRL_INTERCEPT_INIT \
|
---|
114 | | SVM_CTRL_INTERCEPT_RDPMC \
|
---|
115 | | SVM_CTRL_INTERCEPT_CPUID \
|
---|
116 | | SVM_CTRL_INTERCEPT_RSM \
|
---|
117 | | SVM_CTRL_INTERCEPT_HLT \
|
---|
118 | | SVM_CTRL_INTERCEPT_IOIO_PROT \
|
---|
119 | | SVM_CTRL_INTERCEPT_MSR_PROT \
|
---|
120 | | SVM_CTRL_INTERCEPT_INVLPGA \
|
---|
121 | | SVM_CTRL_INTERCEPT_SHUTDOWN \
|
---|
122 | | SVM_CTRL_INTERCEPT_FERR_FREEZE \
|
---|
123 | | SVM_CTRL_INTERCEPT_VMRUN \
|
---|
124 | | SVM_CTRL_INTERCEPT_VMMCALL \
|
---|
125 | | SVM_CTRL_INTERCEPT_VMLOAD \
|
---|
126 | | SVM_CTRL_INTERCEPT_VMSAVE \
|
---|
127 | | SVM_CTRL_INTERCEPT_STGI \
|
---|
128 | | SVM_CTRL_INTERCEPT_CLGI \
|
---|
129 | | SVM_CTRL_INTERCEPT_SKINIT \
|
---|
130 | | SVM_CTRL_INTERCEPT_WBINVD \
|
---|
131 | | SVM_CTRL_INTERCEPT_MONITOR \
|
---|
132 | | SVM_CTRL_INTERCEPT_MWAIT \
|
---|
133 | | SVM_CTRL_INTERCEPT_XSETBV)
|
---|
134 |
|
---|
135 | /**
|
---|
136 | * Mandatory/unconditional nested-guest control intercepts.
|
---|
137 | */
|
---|
138 | #define HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS ( HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS \
|
---|
139 | | SVM_CTRL_INTERCEPT_SMI)
|
---|
140 |
|
---|
141 | /** @name VMCB Clean Bits.
|
---|
142 | *
|
---|
143 | * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
|
---|
144 | * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
|
---|
145 | * memory.
|
---|
146 | *
|
---|
147 | * @{ */
|
---|
148 | /** All intercepts vectors, TSC offset, PAUSE filter counter. */
|
---|
149 | #define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
|
---|
150 | /** I/O permission bitmap, MSR permission bitmap. */
|
---|
151 | #define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
|
---|
152 | /** ASID. */
|
---|
153 | #define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
|
---|
154 | /** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
|
---|
155 | V_INTR_VECTOR. */
|
---|
156 | #define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
|
---|
157 | /** Nested Paging: Nested CR3 (nCR3), PAT. */
|
---|
158 | #define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
|
---|
159 | /** Control registers (CR0, CR3, CR4, EFER). */
|
---|
160 | #define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
|
---|
161 | /** Debug registers (DR6, DR7). */
|
---|
162 | #define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
|
---|
163 | /** GDT, IDT limit and base. */
|
---|
164 | #define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
|
---|
165 | /** Segment register: CS, SS, DS, ES limit and base. */
|
---|
166 | #define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
|
---|
167 | /** CR2.*/
|
---|
168 | #define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
|
---|
169 | /** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
|
---|
170 | #define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
|
---|
171 | /** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
|
---|
172 | PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
|
---|
173 | #define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
|
---|
174 | /** Mask of all valid VMCB Clean bits. */
|
---|
175 | #define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
|
---|
176 | | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
|
---|
177 | | HMSVM_VMCB_CLEAN_ASID \
|
---|
178 | | HMSVM_VMCB_CLEAN_TPR \
|
---|
179 | | HMSVM_VMCB_CLEAN_NP \
|
---|
180 | | HMSVM_VMCB_CLEAN_CRX_EFER \
|
---|
181 | | HMSVM_VMCB_CLEAN_DRX \
|
---|
182 | | HMSVM_VMCB_CLEAN_DT \
|
---|
183 | | HMSVM_VMCB_CLEAN_SEG \
|
---|
184 | | HMSVM_VMCB_CLEAN_CR2 \
|
---|
185 | | HMSVM_VMCB_CLEAN_LBR \
|
---|
186 | | HMSVM_VMCB_CLEAN_AVIC)
|
---|
187 | /** @} */
|
---|
188 |
|
---|
189 | /** @name SVM transient.
|
---|
190 | *
|
---|
191 | * A state structure for holding miscellaneous information across AMD-V
|
---|
192 | * VMRUN/\#VMEXIT operation, restored after the transition.
|
---|
193 | *
|
---|
194 | * @{ */
|
---|
195 | typedef struct SVMTRANSIENT
|
---|
196 | {
|
---|
197 | /** The host's rflags/eflags. */
|
---|
198 | RTCCUINTREG fEFlags;
|
---|
199 | #if HC_ARCH_BITS == 32
|
---|
200 | uint32_t u32Alignment0;
|
---|
201 | #endif
|
---|
202 |
|
---|
203 | /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
|
---|
204 | uint64_t u64ExitCode;
|
---|
205 | /** The guest's TPR value used for TPR shadowing. */
|
---|
206 | uint8_t u8GuestTpr;
|
---|
207 | /** Alignment. */
|
---|
208 | uint8_t abAlignment0[7];
|
---|
209 |
|
---|
210 | /** Whether the guest FPU state was active at the time of \#VMEXIT. */
|
---|
211 | bool fWasGuestFPUStateActive;
|
---|
212 | /** Whether the guest debug state was active at the time of \#VMEXIT. */
|
---|
213 | bool fWasGuestDebugStateActive;
|
---|
214 | /** Whether the hyper debug state was active at the time of \#VMEXIT. */
|
---|
215 | bool fWasHyperDebugStateActive;
|
---|
216 | /** Whether the TSC offset mode needs to be updated. */
|
---|
217 | bool fUpdateTscOffsetting;
|
---|
218 | /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
|
---|
219 | bool fRestoreTscAuxMsr;
|
---|
220 | /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
|
---|
221 | * contributary exception or a page-fault. */
|
---|
222 | bool fVectoringDoublePF;
|
---|
223 | /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
|
---|
224 | * external interrupt or NMI. */
|
---|
225 | bool fVectoringPF;
|
---|
226 | } SVMTRANSIENT, *PSVMTRANSIENT;
|
---|
227 | AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
|
---|
228 | AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
|
---|
229 | /** @} */
|
---|
230 |
|
---|
231 | /**
|
---|
232 | * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
|
---|
233 | */
|
---|
234 | typedef enum SVMMSREXITREAD
|
---|
235 | {
|
---|
236 | /** Reading this MSR causes a \#VMEXIT. */
|
---|
237 | SVMMSREXIT_INTERCEPT_READ = 0xb,
|
---|
238 | /** Reading this MSR does not cause a \#VMEXIT. */
|
---|
239 | SVMMSREXIT_PASSTHRU_READ
|
---|
240 | } SVMMSREXITREAD;
|
---|
241 |
|
---|
242 | /**
|
---|
243 | * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
|
---|
244 | */
|
---|
245 | typedef enum SVMMSREXITWRITE
|
---|
246 | {
|
---|
247 | /** Writing to this MSR causes a \#VMEXIT. */
|
---|
248 | SVMMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
249 | /** Writing to this MSR does not cause a \#VMEXIT. */
|
---|
250 | SVMMSREXIT_PASSTHRU_WRITE
|
---|
251 | } SVMMSREXITWRITE;
|
---|
252 |
|
---|
253 | /**
|
---|
254 | * SVM \#VMEXIT handler.
|
---|
255 | *
|
---|
256 | * @returns VBox status code.
|
---|
257 | * @param pVCpu The cross context virtual CPU structure.
|
---|
258 | * @param pMixedCtx Pointer to the guest-CPU context.
|
---|
259 | * @param pSvmTransient Pointer to the SVM-transient structure.
|
---|
260 | */
|
---|
261 | typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
|
---|
262 |
|
---|
263 |
|
---|
264 | /*********************************************************************************************************************************
|
---|
265 | * Internal Functions *
|
---|
266 | *********************************************************************************************************************************/
|
---|
267 | static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
|
---|
268 | SVMMSREXITWRITE enmWrite);
|
---|
269 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
|
---|
270 | static void hmR0SvmLeave(PVMCPU pVCpu);
|
---|
271 |
|
---|
272 | /** @name \#VMEXIT handlers.
|
---|
273 | * @{
|
---|
274 | */
|
---|
275 | static FNSVMEXITHANDLER hmR0SvmExitIntr;
|
---|
276 | static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
|
---|
277 | static FNSVMEXITHANDLER hmR0SvmExitInvd;
|
---|
278 | static FNSVMEXITHANDLER hmR0SvmExitCpuid;
|
---|
279 | static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
|
---|
280 | static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
|
---|
281 | static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
|
---|
282 | static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
|
---|
283 | static FNSVMEXITHANDLER hmR0SvmExitHlt;
|
---|
284 | static FNSVMEXITHANDLER hmR0SvmExitMonitor;
|
---|
285 | static FNSVMEXITHANDLER hmR0SvmExitMwait;
|
---|
286 | static FNSVMEXITHANDLER hmR0SvmExitShutdown;
|
---|
287 | static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
|
---|
288 | static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
|
---|
289 | static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
|
---|
290 | static FNSVMEXITHANDLER hmR0SvmExitSetPendingXcptUD;
|
---|
291 | static FNSVMEXITHANDLER hmR0SvmExitMsr;
|
---|
292 | static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
|
---|
293 | static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
|
---|
294 | static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
|
---|
295 | static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
|
---|
296 | static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
|
---|
297 | static FNSVMEXITHANDLER hmR0SvmExitVIntr;
|
---|
298 | static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
|
---|
299 | static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
|
---|
300 | static FNSVMEXITHANDLER hmR0SvmExitPause;
|
---|
301 | static FNSVMEXITHANDLER hmR0SvmExitIret;
|
---|
302 | static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
|
---|
303 | static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
|
---|
304 | static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
|
---|
305 | static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
|
---|
306 | static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
|
---|
307 | static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
|
---|
308 | static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
|
---|
309 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
310 | static FNSVMEXITHANDLER hmR0SvmExitClgi;
|
---|
311 | static FNSVMEXITHANDLER hmR0SvmExitStgi;
|
---|
312 | static FNSVMEXITHANDLER hmR0SvmExitVmload;
|
---|
313 | static FNSVMEXITHANDLER hmR0SvmExitVmsave;
|
---|
314 | static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
|
---|
315 | static FNSVMEXITHANDLER hmR0SvmExitVmrun;
|
---|
316 | static FNSVMEXITHANDLER hmR0SvmNestedExitIret;
|
---|
317 | static FNSVMEXITHANDLER hmR0SvmNestedExitVIntr;
|
---|
318 | #endif
|
---|
319 | /** @} */
|
---|
320 |
|
---|
321 | static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
|
---|
322 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
323 | static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
|
---|
324 | static int hmR0SvmExecVmexit(PVMCPU pVCpu, PCPUMCTX pCtx);
|
---|
325 | #endif
|
---|
326 |
|
---|
327 | /*********************************************************************************************************************************
|
---|
328 | * Global Variables *
|
---|
329 | *********************************************************************************************************************************/
|
---|
330 | /** Ring-0 memory object for the IO bitmap. */
|
---|
331 | RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
332 | /** Physical address of the IO bitmap. */
|
---|
333 | RTHCPHYS g_HCPhysIOBitmap = 0;
|
---|
334 | /** Pointer to the IO bitmap. */
|
---|
335 | R0PTRTYPE(void *) g_pvIOBitmap = NULL;
|
---|
336 |
|
---|
337 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
338 | /** Ring-0 memory object for the nested-guest MSRPM bitmap. */
|
---|
339 | RTR0MEMOBJ g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
340 | /** Physical address of the nested-guest MSRPM bitmap. */
|
---|
341 | RTHCPHYS g_HCPhysNstGstMsrBitmap = 0;
|
---|
342 | /** Pointer to the nested-guest MSRPM bitmap. */
|
---|
343 | R0PTRTYPE(void *) g_pvNstGstMsrBitmap = NULL;
|
---|
344 | #endif
|
---|
345 |
|
---|
346 | /**
|
---|
347 | * Sets up and activates AMD-V on the current CPU.
|
---|
348 | *
|
---|
349 | * @returns VBox status code.
|
---|
350 | * @param pCpu Pointer to the CPU info struct.
|
---|
351 | * @param pVM The cross context VM structure. Can be
|
---|
352 | * NULL after a resume!
|
---|
353 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
354 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
355 | * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
|
---|
356 | * @param pvArg Unused on AMD-V.
|
---|
357 | */
|
---|
358 | VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
|
---|
359 | void *pvArg)
|
---|
360 | {
|
---|
361 | Assert(!fEnabledByHost);
|
---|
362 | Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
|
---|
363 | Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
|
---|
364 | Assert(pvCpuPage); NOREF(pvCpuPage);
|
---|
365 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
366 |
|
---|
367 | NOREF(pvArg);
|
---|
368 | NOREF(fEnabledByHost);
|
---|
369 |
|
---|
370 | /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
|
---|
371 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
372 |
|
---|
373 | /*
|
---|
374 | * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
|
---|
375 | */
|
---|
376 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
377 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
378 | {
|
---|
379 | /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
|
---|
380 | if ( pVM
|
---|
381 | && pVM->hm.s.svm.fIgnoreInUseError)
|
---|
382 | {
|
---|
383 | pCpu->fIgnoreAMDVInUseError = true;
|
---|
384 | }
|
---|
385 |
|
---|
386 | if (!pCpu->fIgnoreAMDVInUseError)
|
---|
387 | {
|
---|
388 | ASMSetFlags(fEFlags);
|
---|
389 | return VERR_SVM_IN_USE;
|
---|
390 | }
|
---|
391 | }
|
---|
392 |
|
---|
393 | /* Turn on AMD-V in the EFER MSR. */
|
---|
394 | ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
|
---|
395 |
|
---|
396 | /* Write the physical page address where the CPU will store the host state while executing the VM. */
|
---|
397 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
|
---|
398 |
|
---|
399 | /* Restore interrupts. */
|
---|
400 | ASMSetFlags(fEFlags);
|
---|
401 |
|
---|
402 | /*
|
---|
403 | * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
|
---|
404 | * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
|
---|
405 | * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
|
---|
406 | * to flush the TLB with before using a new ASID.
|
---|
407 | */
|
---|
408 | pCpu->fFlushAsidBeforeUse = true;
|
---|
409 |
|
---|
410 | /*
|
---|
411 | * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
|
---|
412 | */
|
---|
413 | ++pCpu->cTlbFlushes;
|
---|
414 |
|
---|
415 | return VINF_SUCCESS;
|
---|
416 | }
|
---|
417 |
|
---|
418 |
|
---|
419 | /**
|
---|
420 | * Deactivates AMD-V on the current CPU.
|
---|
421 | *
|
---|
422 | * @returns VBox status code.
|
---|
423 | * @param pCpu Pointer to the CPU info struct.
|
---|
424 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
425 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
426 | */
|
---|
427 | VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
428 | {
|
---|
429 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
430 | AssertReturn( HCPhysCpuPage
|
---|
431 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
432 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
433 | NOREF(pCpu);
|
---|
434 |
|
---|
435 | /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
|
---|
436 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
437 |
|
---|
438 | /* Turn off AMD-V in the EFER MSR. */
|
---|
439 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
440 | ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
|
---|
441 |
|
---|
442 | /* Invalidate host state physical address. */
|
---|
443 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
|
---|
444 |
|
---|
445 | /* Restore interrupts. */
|
---|
446 | ASMSetFlags(fEFlags);
|
---|
447 |
|
---|
448 | return VINF_SUCCESS;
|
---|
449 | }
|
---|
450 |
|
---|
451 |
|
---|
452 | /**
|
---|
453 | * Does global AMD-V initialization (called during module initialization).
|
---|
454 | *
|
---|
455 | * @returns VBox status code.
|
---|
456 | */
|
---|
457 | VMMR0DECL(int) SVMR0GlobalInit(void)
|
---|
458 | {
|
---|
459 | /*
|
---|
460 | * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
|
---|
461 | * once globally here instead of per-VM.
|
---|
462 | */
|
---|
463 | Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
|
---|
464 | int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
|
---|
465 | if (RT_FAILURE(rc))
|
---|
466 | return rc;
|
---|
467 |
|
---|
468 | g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
|
---|
469 | g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
|
---|
470 |
|
---|
471 | /* Set all bits to intercept all IO accesses. */
|
---|
472 | ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
|
---|
473 |
|
---|
474 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
475 | /*
|
---|
476 | * Allocate 8 KB for the MSR permission bitmap for the nested-guest.
|
---|
477 | */
|
---|
478 | Assert(g_hMemObjNstGstMsrBitmap == NIL_RTR0MEMOBJ);
|
---|
479 | rc = RTR0MemObjAllocCont(&g_hMemObjNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
|
---|
480 | if (RT_FAILURE(rc))
|
---|
481 | return rc;
|
---|
482 |
|
---|
483 | g_pvNstGstMsrBitmap = RTR0MemObjAddress(g_hMemObjNstGstMsrBitmap);
|
---|
484 | g_HCPhysNstGstMsrBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjNstGstMsrBitmap, 0 /* iPage */);
|
---|
485 |
|
---|
486 | /* Set all bits to intercept all MSR accesses. */
|
---|
487 | ASMMemFill32(g_pvNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
|
---|
488 | #endif
|
---|
489 |
|
---|
490 | return VINF_SUCCESS;
|
---|
491 | }
|
---|
492 |
|
---|
493 |
|
---|
494 | /**
|
---|
495 | * Does global AMD-V termination (called during module termination).
|
---|
496 | */
|
---|
497 | VMMR0DECL(void) SVMR0GlobalTerm(void)
|
---|
498 | {
|
---|
499 | if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
|
---|
500 | {
|
---|
501 | RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
|
---|
502 | g_pvIOBitmap = NULL;
|
---|
503 | g_HCPhysIOBitmap = 0;
|
---|
504 | g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
505 | }
|
---|
506 |
|
---|
507 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
508 | if (g_hMemObjNstGstMsrBitmap != NIL_RTR0MEMOBJ)
|
---|
509 | {
|
---|
510 | RTR0MemObjFree(g_hMemObjNstGstMsrBitmap, true /* fFreeMappings */);
|
---|
511 | g_pvNstGstMsrBitmap = NULL;
|
---|
512 | g_HCPhysNstGstMsrBitmap = 0;
|
---|
513 | g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
514 | }
|
---|
515 | #endif
|
---|
516 | }
|
---|
517 |
|
---|
518 |
|
---|
519 | /**
|
---|
520 | * Frees any allocated per-VCPU structures for a VM.
|
---|
521 | *
|
---|
522 | * @param pVM The cross context VM structure.
|
---|
523 | */
|
---|
524 | DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
|
---|
525 | {
|
---|
526 | for (uint32_t i = 0; i < pVM->cCpus; i++)
|
---|
527 | {
|
---|
528 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
529 | AssertPtr(pVCpu);
|
---|
530 |
|
---|
531 | if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
|
---|
532 | {
|
---|
533 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
|
---|
534 | pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
|
---|
535 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
536 | }
|
---|
537 |
|
---|
538 | if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
|
---|
539 | {
|
---|
540 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
|
---|
541 | pVCpu->hm.s.svm.pVmcb = NULL;
|
---|
542 | pVCpu->hm.s.svm.HCPhysVmcb = 0;
|
---|
543 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
544 | }
|
---|
545 |
|
---|
546 | if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
|
---|
547 | {
|
---|
548 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
|
---|
549 | pVCpu->hm.s.svm.pvMsrBitmap = NULL;
|
---|
550 | pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
|
---|
551 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
552 | }
|
---|
553 | }
|
---|
554 | }
|
---|
555 |
|
---|
556 |
|
---|
557 | /**
|
---|
558 | * Does per-VM AMD-V initialization.
|
---|
559 | *
|
---|
560 | * @returns VBox status code.
|
---|
561 | * @param pVM The cross context VM structure.
|
---|
562 | */
|
---|
563 | VMMR0DECL(int) SVMR0InitVM(PVM pVM)
|
---|
564 | {
|
---|
565 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
566 |
|
---|
567 | /*
|
---|
568 | * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
|
---|
569 | */
|
---|
570 | uint32_t u32Family;
|
---|
571 | uint32_t u32Model;
|
---|
572 | uint32_t u32Stepping;
|
---|
573 | if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
|
---|
574 | {
|
---|
575 | Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
|
---|
576 | pVM->hm.s.svm.fAlwaysFlushTLB = true;
|
---|
577 | }
|
---|
578 |
|
---|
579 | /*
|
---|
580 | * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
|
---|
581 | */
|
---|
582 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
583 | {
|
---|
584 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
585 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
586 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
587 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
588 | }
|
---|
589 |
|
---|
590 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
591 | {
|
---|
592 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
593 |
|
---|
594 | /*
|
---|
595 | * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
|
---|
596 | * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
|
---|
597 | */
|
---|
598 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
|
---|
599 | if (RT_FAILURE(rc))
|
---|
600 | goto failure_cleanup;
|
---|
601 |
|
---|
602 | void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
|
---|
603 | pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
|
---|
604 | Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
|
---|
605 | ASMMemZeroPage(pvVmcbHost);
|
---|
606 |
|
---|
607 | /*
|
---|
608 | * Allocate one page for the guest-state VMCB.
|
---|
609 | */
|
---|
610 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
|
---|
611 | if (RT_FAILURE(rc))
|
---|
612 | goto failure_cleanup;
|
---|
613 |
|
---|
614 | pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
|
---|
615 | pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
|
---|
616 | Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
|
---|
617 | ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
|
---|
618 |
|
---|
619 | /*
|
---|
620 | * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
|
---|
621 | * SVM to not require one.
|
---|
622 | */
|
---|
623 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
|
---|
624 | false /* fExecutable */);
|
---|
625 | if (RT_FAILURE(rc))
|
---|
626 | goto failure_cleanup;
|
---|
627 |
|
---|
628 | pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
|
---|
629 | pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
|
---|
630 | /* Set all bits to intercept all MSR accesses (changed later on). */
|
---|
631 | ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
|
---|
632 | }
|
---|
633 |
|
---|
634 | return VINF_SUCCESS;
|
---|
635 |
|
---|
636 | failure_cleanup:
|
---|
637 | hmR0SvmFreeStructs(pVM);
|
---|
638 | return rc;
|
---|
639 | }
|
---|
640 |
|
---|
641 |
|
---|
642 | /**
|
---|
643 | * Does per-VM AMD-V termination.
|
---|
644 | *
|
---|
645 | * @returns VBox status code.
|
---|
646 | * @param pVM The cross context VM structure.
|
---|
647 | */
|
---|
648 | VMMR0DECL(int) SVMR0TermVM(PVM pVM)
|
---|
649 | {
|
---|
650 | hmR0SvmFreeStructs(pVM);
|
---|
651 | return VINF_SUCCESS;
|
---|
652 | }
|
---|
653 |
|
---|
654 |
|
---|
655 | /**
|
---|
656 | * Sets the permission bits for the specified MSR in the MSRPM.
|
---|
657 | *
|
---|
658 | * @param pVmcb Pointer to the VM control block.
|
---|
659 | * @param pbMsrBitmap Pointer to the MSR bitmap.
|
---|
660 | * @param uMsr The MSR for which the access permissions are being set.
|
---|
661 | * @param enmRead MSR read permissions.
|
---|
662 | * @param enmWrite MSR write permissions.
|
---|
663 | */
|
---|
664 | static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
|
---|
665 | SVMMSREXITWRITE enmWrite)
|
---|
666 | {
|
---|
667 | uint16_t offMsrpm;
|
---|
668 | uint32_t uMsrpmBit;
|
---|
669 | int rc = HMSvmGetMsrpmOffsetAndBit(uMsr, &offMsrpm, &uMsrpmBit);
|
---|
670 | AssertRC(rc);
|
---|
671 |
|
---|
672 | Assert(uMsrpmBit < 0x3fff);
|
---|
673 | Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
|
---|
674 |
|
---|
675 | pbMsrBitmap += offMsrpm;
|
---|
676 | if (enmRead == SVMMSREXIT_INTERCEPT_READ)
|
---|
677 | ASMBitSet(pbMsrBitmap, uMsrpmBit);
|
---|
678 | else
|
---|
679 | ASMBitClear(pbMsrBitmap, uMsrpmBit);
|
---|
680 |
|
---|
681 | if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
|
---|
682 | ASMBitSet(pbMsrBitmap, uMsrpmBit + 1);
|
---|
683 | else
|
---|
684 | ASMBitClear(pbMsrBitmap, uMsrpmBit + 1);
|
---|
685 |
|
---|
686 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
687 | }
|
---|
688 |
|
---|
689 |
|
---|
690 | /**
|
---|
691 | * Sets up AMD-V for the specified VM.
|
---|
692 | * This function is only called once per-VM during initalization.
|
---|
693 | *
|
---|
694 | * @returns VBox status code.
|
---|
695 | * @param pVM The cross context VM structure.
|
---|
696 | */
|
---|
697 | VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
|
---|
698 | {
|
---|
699 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
700 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
701 | Assert(pVM->hm.s.svm.fSupported);
|
---|
702 |
|
---|
703 | bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
|
---|
704 | bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
|
---|
705 | bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter && pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
706 |
|
---|
707 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
708 | {
|
---|
709 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
710 | PSVMVMCB pVmcb = pVM->aCpus[i].hm.s.svm.pVmcb;
|
---|
711 |
|
---|
712 | AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
|
---|
713 |
|
---|
714 | /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
|
---|
715 | Assert(!pVCpu->hm.s.idxExitHistoryFree);
|
---|
716 | HMCPU_EXIT_HISTORY_RESET(pVCpu);
|
---|
717 |
|
---|
718 | /* Always trap #AC for reasons of security. */
|
---|
719 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
|
---|
720 |
|
---|
721 | /* Always trap #DB for reasons of security. */
|
---|
722 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
|
---|
723 |
|
---|
724 | /* Trap exceptions unconditionally (debug purposes). */
|
---|
725 | #ifdef HMSVM_ALWAYS_TRAP_PF
|
---|
726 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
|
---|
727 | #endif
|
---|
728 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
729 | /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
|
---|
730 | pVmcb->ctrl.u32InterceptXcpt |= 0
|
---|
731 | | RT_BIT(X86_XCPT_BP)
|
---|
732 | | RT_BIT(X86_XCPT_DE)
|
---|
733 | | RT_BIT(X86_XCPT_NM)
|
---|
734 | | RT_BIT(X86_XCPT_UD)
|
---|
735 | | RT_BIT(X86_XCPT_NP)
|
---|
736 | | RT_BIT(X86_XCPT_SS)
|
---|
737 | | RT_BIT(X86_XCPT_GP)
|
---|
738 | | RT_BIT(X86_XCPT_PF)
|
---|
739 | | RT_BIT(X86_XCPT_MF)
|
---|
740 | ;
|
---|
741 | #endif
|
---|
742 |
|
---|
743 | /* Set up unconditional intercepts and conditions. */
|
---|
744 | pVmcb->ctrl.u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
|
---|
745 |
|
---|
746 | /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
|
---|
747 | pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
|
---|
748 |
|
---|
749 | /* CR0, CR4 writes must be intercepted for the same reasons as above. */
|
---|
750 | pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
|
---|
751 |
|
---|
752 | /* Intercept all DRx reads and writes by default. Changed later on. */
|
---|
753 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
754 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
755 |
|
---|
756 | /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
|
---|
757 | pVmcb->ctrl.IntCtrl.n.u1VIntrMasking = 1;
|
---|
758 |
|
---|
759 | /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
|
---|
760 | and we currently deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
|
---|
761 | pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
|
---|
762 |
|
---|
763 | /* Set IO and MSR bitmap permission bitmap physical addresses. */
|
---|
764 | pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
765 | pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
|
---|
766 |
|
---|
767 | /* No LBR virtualization. */
|
---|
768 | pVmcb->ctrl.u64LBRVirt = 0;
|
---|
769 |
|
---|
770 | /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
|
---|
771 | pVmcb->ctrl.u64VmcbCleanBits = 0;
|
---|
772 |
|
---|
773 | /* The host ASID MBZ, for the guest start with 1. */
|
---|
774 | pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
|
---|
775 |
|
---|
776 | /*
|
---|
777 | * Setup the PAT MSR (applicable for Nested Paging only).
|
---|
778 | * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
|
---|
779 | * so choose type 6 for all PAT slots.
|
---|
780 | */
|
---|
781 | pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
|
---|
782 |
|
---|
783 | /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
|
---|
784 | pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
|
---|
785 |
|
---|
786 | /* Without Nested Paging, we need additionally intercepts. */
|
---|
787 | if (!pVM->hm.s.fNestedPaging)
|
---|
788 | {
|
---|
789 | /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
|
---|
790 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
|
---|
791 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
|
---|
792 |
|
---|
793 | /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
|
---|
794 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
|
---|
795 | | SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
796 |
|
---|
797 | /* Page faults must be intercepted to implement shadow paging. */
|
---|
798 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
|
---|
799 | }
|
---|
800 |
|
---|
801 | #ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
802 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
803 | #endif
|
---|
804 |
|
---|
805 | /* Apply the exceptions intercepts needed by the GIM provider. */
|
---|
806 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
807 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
|
---|
808 |
|
---|
809 | /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
|
---|
810 | if (fUsePauseFilter)
|
---|
811 | {
|
---|
812 | pVmcb->ctrl.u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
|
---|
813 | if (fPauseFilterThreshold)
|
---|
814 | pVmcb->ctrl.u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
815 | }
|
---|
816 |
|
---|
817 | /*
|
---|
818 | * The following MSRs are saved/restored automatically during the world-switch.
|
---|
819 | * Don't intercept guest read/write accesses to these MSRs.
|
---|
820 | */
|
---|
821 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
822 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
823 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
824 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
825 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
826 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
827 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
828 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
829 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
830 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
831 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
832 | }
|
---|
833 |
|
---|
834 | return VINF_SUCCESS;
|
---|
835 | }
|
---|
836 |
|
---|
837 |
|
---|
838 | /**
|
---|
839 | * Invalidates a guest page by guest virtual address.
|
---|
840 | *
|
---|
841 | * @returns VBox status code.
|
---|
842 | * @param pVM The cross context VM structure.
|
---|
843 | * @param pVCpu The cross context virtual CPU structure.
|
---|
844 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
845 | */
|
---|
846 | VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
|
---|
847 | {
|
---|
848 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
849 | Assert(pVM->hm.s.svm.fSupported);
|
---|
850 |
|
---|
851 | bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
852 |
|
---|
853 | /* Skip it if a TLB flush is already pending. */
|
---|
854 | if (!fFlushPending)
|
---|
855 | {
|
---|
856 | Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
|
---|
857 |
|
---|
858 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
859 | AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
|
---|
860 |
|
---|
861 | #if HC_ARCH_BITS == 32
|
---|
862 | /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
|
---|
863 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
864 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
865 | else
|
---|
866 | #endif
|
---|
867 | {
|
---|
868 | SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
|
---|
869 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
870 | }
|
---|
871 | }
|
---|
872 | return VINF_SUCCESS;
|
---|
873 | }
|
---|
874 |
|
---|
875 |
|
---|
876 | /**
|
---|
877 | * Flushes the appropriate tagged-TLB entries.
|
---|
878 | *
|
---|
879 | * @param pVCpu The cross context virtual CPU structure.
|
---|
880 | * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
|
---|
881 | * @param pVmcb Pointer to the VM control block.
|
---|
882 | */
|
---|
883 | static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
|
---|
884 | {
|
---|
885 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
886 | PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
|
---|
887 |
|
---|
888 | /*
|
---|
889 | * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
|
---|
890 | * This can happen both for start & resume due to long jumps back to ring-3.
|
---|
891 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
|
---|
892 | * so we cannot reuse the ASIDs without flushing.
|
---|
893 | */
|
---|
894 | bool fNewAsid = false;
|
---|
895 | Assert(pCpu->idCpu != NIL_RTCPUID);
|
---|
896 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
897 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
898 | {
|
---|
899 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
900 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
901 | fNewAsid = true;
|
---|
902 | }
|
---|
903 |
|
---|
904 | /* Set TLB flush state as checked until we return from the world switch. */
|
---|
905 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
|
---|
906 |
|
---|
907 | /* Check for explicit TLB flushes. */
|
---|
908 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
909 | {
|
---|
910 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
911 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
912 | }
|
---|
913 |
|
---|
914 | /*
|
---|
915 | * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
|
---|
916 | * This Host CPU requirement takes precedence.
|
---|
917 | */
|
---|
918 | if (pVM->hm.s.svm.fAlwaysFlushTLB)
|
---|
919 | {
|
---|
920 | pCpu->uCurrentAsid = 1;
|
---|
921 | pVCpu->hm.s.uCurrentAsid = 1;
|
---|
922 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
923 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
924 |
|
---|
925 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
926 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
927 |
|
---|
928 | /* Keep track of last CPU ID even when flushing all the time. */
|
---|
929 | if (fNewAsid)
|
---|
930 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
931 | }
|
---|
932 | else
|
---|
933 | {
|
---|
934 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
935 | /*
|
---|
936 | * Only if the nested hypervisor says it does not need to flush anything in the TLB,
|
---|
937 | * can we possibly apply it on the host. Otherwise, the nested-guest TLB flush setting
|
---|
938 | * should be used and then the host settings be added on top.
|
---|
939 | */
|
---|
940 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
941 | {
|
---|
942 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
943 | if (pVmcbNstGstCache->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
|
---|
944 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
|
---|
945 | else
|
---|
946 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = pVmcbNstGstCache->TLBCtrl.n.u8TLBFlush;
|
---|
947 | }
|
---|
948 | #else
|
---|
949 | RT_NOREF(pCtx);
|
---|
950 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
|
---|
951 | #endif
|
---|
952 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
953 | {
|
---|
954 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
955 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
956 |
|
---|
957 | if (fNewAsid)
|
---|
958 | {
|
---|
959 | ++pCpu->uCurrentAsid;
|
---|
960 | bool fHitASIDLimit = false;
|
---|
961 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
962 | {
|
---|
963 | pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
|
---|
964 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
|
---|
965 | fHitASIDLimit = true;
|
---|
966 |
|
---|
967 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
968 | {
|
---|
969 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
970 | pCpu->fFlushAsidBeforeUse = true;
|
---|
971 | }
|
---|
972 | else
|
---|
973 | {
|
---|
974 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
975 | pCpu->fFlushAsidBeforeUse = false;
|
---|
976 | }
|
---|
977 | }
|
---|
978 |
|
---|
979 | if ( !fHitASIDLimit
|
---|
980 | && pCpu->fFlushAsidBeforeUse)
|
---|
981 | {
|
---|
982 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
983 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
984 | else
|
---|
985 | {
|
---|
986 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
987 | pCpu->fFlushAsidBeforeUse = false;
|
---|
988 | }
|
---|
989 | }
|
---|
990 |
|
---|
991 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
992 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
993 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
994 | }
|
---|
995 | else
|
---|
996 | {
|
---|
997 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
998 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
999 | else
|
---|
1000 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
1004 | }
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | /* Update VMCB with the ASID. */
|
---|
1008 | if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
|
---|
1009 | {
|
---|
1010 | pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
|
---|
1011 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1015 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx) || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING);
|
---|
1016 | #endif
|
---|
1017 |
|
---|
1018 | AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
|
---|
1019 | ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
|
---|
1020 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
1021 | ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
1022 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1023 | ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
|
---|
1024 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1025 | ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
1026 |
|
---|
1027 | #ifdef VBOX_WITH_STATISTICS
|
---|
1028 | if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
|
---|
1029 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
1030 | else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
|
---|
1031 | || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
1032 | {
|
---|
1033 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
1034 | }
|
---|
1035 | else
|
---|
1036 | {
|
---|
1037 | Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
|
---|
1038 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
|
---|
1039 | }
|
---|
1040 | #endif
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 |
|
---|
1044 | /** @name 64-bit guest on 32-bit host OS helper functions.
|
---|
1045 | *
|
---|
1046 | * The host CPU is still 64-bit capable but the host OS is running in 32-bit
|
---|
1047 | * mode (code segment, paging). These wrappers/helpers perform the necessary
|
---|
1048 | * bits for the 32->64 switcher.
|
---|
1049 | *
|
---|
1050 | * @{ */
|
---|
1051 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
1052 | /**
|
---|
1053 | * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
|
---|
1054 | *
|
---|
1055 | * @returns VBox status code.
|
---|
1056 | * @param HCPhysVmcbHost Physical address of host VMCB.
|
---|
1057 | * @param HCPhysVmcb Physical address of the VMCB.
|
---|
1058 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1059 | * @param pVM The cross context VM structure.
|
---|
1060 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1061 | */
|
---|
1062 | DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
|
---|
1063 | {
|
---|
1064 | uint32_t aParam[8];
|
---|
1065 | aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
|
---|
1066 | aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
|
---|
1067 | aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
|
---|
1068 | aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
|
---|
1069 | aParam[4] = VM_RC_ADDR(pVM, pVM);
|
---|
1070 | aParam[5] = 0;
|
---|
1071 | aParam[6] = VM_RC_ADDR(pVM, pVCpu);
|
---|
1072 | aParam[7] = 0;
|
---|
1073 |
|
---|
1074 | return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
|
---|
1075 | }
|
---|
1076 |
|
---|
1077 |
|
---|
1078 | /**
|
---|
1079 | * Executes the specified VMRUN handler in 64-bit mode.
|
---|
1080 | *
|
---|
1081 | * @returns VBox status code.
|
---|
1082 | * @param pVM The cross context VM structure.
|
---|
1083 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1084 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1085 | * @param enmOp The operation to perform.
|
---|
1086 | * @param cParams Number of parameters.
|
---|
1087 | * @param paParam Array of 32-bit parameters.
|
---|
1088 | */
|
---|
1089 | VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
|
---|
1090 | uint32_t cParams, uint32_t *paParam)
|
---|
1091 | {
|
---|
1092 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
1093 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
1094 |
|
---|
1095 | NOREF(pCtx);
|
---|
1096 |
|
---|
1097 | /* Disable interrupts. */
|
---|
1098 | RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
|
---|
1099 |
|
---|
1100 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
1101 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
1102 | CPUMR0SetLApic(pVCpu, idHostCpu);
|
---|
1103 | #endif
|
---|
1104 |
|
---|
1105 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
1106 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
1107 | for (int i = (int)cParams - 1; i >= 0; i--)
|
---|
1108 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
1109 |
|
---|
1110 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
1111 | /* Call the switcher. */
|
---|
1112 | int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
|
---|
1113 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
1114 |
|
---|
1115 | /* Restore interrupts. */
|
---|
1116 | ASMSetFlags(uOldEFlags);
|
---|
1117 | return rc;
|
---|
1118 | }
|
---|
1119 |
|
---|
1120 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
|
---|
1121 | /** @} */
|
---|
1122 |
|
---|
1123 |
|
---|
1124 | /**
|
---|
1125 | * Adds an exception to the intercept exception bitmap in the VMCB and updates
|
---|
1126 | * the corresponding VMCB Clean bit.
|
---|
1127 | *
|
---|
1128 | * @param pVmcb Pointer to the VM control block.
|
---|
1129 | * @param u32Xcpt The value of the exception (X86_XCPT_*).
|
---|
1130 | */
|
---|
1131 | DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
|
---|
1132 | {
|
---|
1133 | if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt)))
|
---|
1134 | {
|
---|
1135 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(u32Xcpt);
|
---|
1136 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1137 | }
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 |
|
---|
1141 | /**
|
---|
1142 | * Removes an exception from the intercept-exception bitmap in the VMCB and
|
---|
1143 | * updates the corresponding VMCB Clean bit.
|
---|
1144 | *
|
---|
1145 | * @param pVmcb Pointer to the VM control block.
|
---|
1146 | * @param u32Xcpt The value of the exception (X86_XCPT_*).
|
---|
1147 | */
|
---|
1148 | DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
|
---|
1149 | {
|
---|
1150 | Assert(u32Xcpt != X86_XCPT_DB);
|
---|
1151 | Assert(u32Xcpt != X86_XCPT_AC);
|
---|
1152 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
1153 | if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt))
|
---|
1154 | {
|
---|
1155 | pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(u32Xcpt);
|
---|
1156 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1157 | }
|
---|
1158 | #endif
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 |
|
---|
1162 | /**
|
---|
1163 | * Loads the guest CR0 control register into the guest-state area in the VMCB.
|
---|
1164 | * Although the guest CR0 is a separate field in the VMCB we have to consider
|
---|
1165 | * the FPU state itself which is shared between the host and the guest.
|
---|
1166 | *
|
---|
1167 | * @returns VBox status code.
|
---|
1168 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1169 | * @param pVmcb Pointer to the VM control block.
|
---|
1170 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1171 | *
|
---|
1172 | * @remarks No-long-jump zone!!!
|
---|
1173 | */
|
---|
1174 | static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1175 | {
|
---|
1176 | uint64_t u64GuestCR0 = pCtx->cr0;
|
---|
1177 |
|
---|
1178 | /* Always enable caching. */
|
---|
1179 | u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
---|
1180 |
|
---|
1181 | /*
|
---|
1182 | * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
|
---|
1183 | */
|
---|
1184 | if (!pVmcb->ctrl.NestedPaging.n.u1NestedPaging)
|
---|
1185 | {
|
---|
1186 | u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
|
---|
1187 | u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
|
---|
1188 | }
|
---|
1189 |
|
---|
1190 | /*
|
---|
1191 | * Guest FPU bits.
|
---|
1192 | */
|
---|
1193 | bool fInterceptNM = false;
|
---|
1194 | bool fInterceptMF = false;
|
---|
1195 | u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
|
---|
1196 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
1197 | {
|
---|
1198 | /* Catch floating point exceptions if we need to report them to the guest in a different way. */
|
---|
1199 | if (!(pCtx->cr0 & X86_CR0_NE))
|
---|
1200 | {
|
---|
1201 | Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
|
---|
1202 | fInterceptMF = true;
|
---|
1203 | }
|
---|
1204 | }
|
---|
1205 | else
|
---|
1206 | {
|
---|
1207 | fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
|
---|
1208 | u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
|
---|
1209 | | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | /*
|
---|
1213 | * Update the exception intercept bitmap.
|
---|
1214 | */
|
---|
1215 | if (fInterceptNM)
|
---|
1216 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
|
---|
1217 | else
|
---|
1218 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
|
---|
1219 |
|
---|
1220 | if (fInterceptMF)
|
---|
1221 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
|
---|
1222 | else
|
---|
1223 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
|
---|
1224 |
|
---|
1225 | pVmcb->guest.u64CR0 = u64GuestCR0;
|
---|
1226 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 |
|
---|
1230 | /**
|
---|
1231 | * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
|
---|
1232 | *
|
---|
1233 | * @returns VBox status code.
|
---|
1234 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1235 | * @param pVmcb Pointer to the VM control block.
|
---|
1236 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1237 | *
|
---|
1238 | * @remarks No-long-jump zone!!!
|
---|
1239 | */
|
---|
1240 | static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1241 | {
|
---|
1242 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1243 |
|
---|
1244 | /*
|
---|
1245 | * Guest CR2.
|
---|
1246 | */
|
---|
1247 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
|
---|
1248 | {
|
---|
1249 | pVmcb->guest.u64CR2 = pCtx->cr2;
|
---|
1250 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
|
---|
1251 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
1252 | }
|
---|
1253 |
|
---|
1254 | /*
|
---|
1255 | * Guest CR3.
|
---|
1256 | */
|
---|
1257 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
|
---|
1258 | {
|
---|
1259 | if (pVM->hm.s.fNestedPaging)
|
---|
1260 | {
|
---|
1261 | PGMMODE enmShwPagingMode;
|
---|
1262 | #if HC_ARCH_BITS == 32
|
---|
1263 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1264 | enmShwPagingMode = PGMMODE_AMD64_NX;
|
---|
1265 | else
|
---|
1266 | #endif
|
---|
1267 | enmShwPagingMode = PGMGetHostMode(pVM);
|
---|
1268 |
|
---|
1269 | pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
|
---|
1270 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1271 | Assert(pVmcb->ctrl.u64NestedPagingCR3);
|
---|
1272 | pVmcb->guest.u64CR3 = pCtx->cr3;
|
---|
1273 | }
|
---|
1274 | else
|
---|
1275 | pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
|
---|
1276 |
|
---|
1277 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1278 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
1279 | }
|
---|
1280 |
|
---|
1281 | /*
|
---|
1282 | * Guest CR4.
|
---|
1283 | * ASSUMES this is done everytime we get in from ring-3! (XCR0)
|
---|
1284 | */
|
---|
1285 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
|
---|
1286 | {
|
---|
1287 | uint64_t u64GuestCR4 = pCtx->cr4;
|
---|
1288 | if (!pVM->hm.s.fNestedPaging)
|
---|
1289 | {
|
---|
1290 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
1291 | {
|
---|
1292 | case PGMMODE_REAL:
|
---|
1293 | case PGMMODE_PROTECTED: /* Protected mode, no paging. */
|
---|
1294 | AssertFailed();
|
---|
1295 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1296 |
|
---|
1297 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
1298 | u64GuestCR4 &= ~X86_CR4_PAE;
|
---|
1299 | break;
|
---|
1300 |
|
---|
1301 | case PGMMODE_PAE: /* PAE paging. */
|
---|
1302 | case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
|
---|
1303 | /** Must use PAE paging as we could use physical memory > 4 GB */
|
---|
1304 | u64GuestCR4 |= X86_CR4_PAE;
|
---|
1305 | break;
|
---|
1306 |
|
---|
1307 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
1308 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
1309 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1310 | break;
|
---|
1311 | #else
|
---|
1312 | AssertFailed();
|
---|
1313 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1314 | #endif
|
---|
1315 |
|
---|
1316 | default: /* shut up gcc */
|
---|
1317 | AssertFailed();
|
---|
1318 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1319 | }
|
---|
1320 | }
|
---|
1321 |
|
---|
1322 | pVmcb->guest.u64CR4 = u64GuestCR4;
|
---|
1323 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1324 |
|
---|
1325 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
|
---|
1326 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
1327 |
|
---|
1328 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
1329 | }
|
---|
1330 |
|
---|
1331 | return VINF_SUCCESS;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 |
|
---|
1335 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1336 | /**
|
---|
1337 | * Loads the nested-guest control registers (CR2, CR3, CR4) into the VMCB.
|
---|
1338 | *
|
---|
1339 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1340 | * @param pVmcbNstGst Pointer to the nested-guest VM control block.
|
---|
1341 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1342 | *
|
---|
1343 | * @remarks No-long-jump zone!!!
|
---|
1344 | */
|
---|
1345 | static void hmR0SvmLoadGuestControlRegsNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst, PCPUMCTX pCtx)
|
---|
1346 | {
|
---|
1347 | /*
|
---|
1348 | * Guest CR0.
|
---|
1349 | */
|
---|
1350 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
|
---|
1351 | {
|
---|
1352 | pVmcbNstGst->guest.u64CR0 = pCtx->cr0;
|
---|
1353 | pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1354 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
1355 | }
|
---|
1356 |
|
---|
1357 | /*
|
---|
1358 | * Guest CR2.
|
---|
1359 | */
|
---|
1360 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
|
---|
1361 | {
|
---|
1362 | pVmcbNstGst->guest.u64CR2 = pCtx->cr2;
|
---|
1363 | pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
|
---|
1364 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 | /*
|
---|
1368 | * Guest CR3.
|
---|
1369 | */
|
---|
1370 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
|
---|
1371 | {
|
---|
1372 | Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmNestedPaging);
|
---|
1373 | int rc = PGMPhysGCPhys2HCPhys(pVCpu->CTX_SUFF(pVM), pCtx->cr3, &pVmcbNstGst->guest.u64CR3);
|
---|
1374 | AssertRC(rc);
|
---|
1375 | pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1376 | Log4(("hmR0SvmLoadGuestControlRegsNested: CR3=%#RX64 to HC phys CR3=%#RHp\n", pCtx->cr3, pVmcbNstGst->guest.u64CR3));
|
---|
1377 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
1378 | }
|
---|
1379 |
|
---|
1380 | /*
|
---|
1381 | * Guest CR4.
|
---|
1382 | * ASSUMES this is done everytime we get in from ring-3! (XCR0)
|
---|
1383 | */
|
---|
1384 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
|
---|
1385 | {
|
---|
1386 | Assert(!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmNestedPaging);
|
---|
1387 | pVmcbNstGst->guest.u64CR4 = pCtx->cr4;
|
---|
1388 | pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1389 |
|
---|
1390 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+nested-guest XCR0. */
|
---|
1391 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
1392 |
|
---|
1393 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
1394 | }
|
---|
1395 | }
|
---|
1396 | #endif
|
---|
1397 |
|
---|
1398 |
|
---|
1399 | /**
|
---|
1400 | * Loads the guest segment registers into the VMCB.
|
---|
1401 | *
|
---|
1402 | * @returns VBox status code.
|
---|
1403 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1404 | * @param pVmcb Pointer to the VM control block.
|
---|
1405 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1406 | *
|
---|
1407 | * @remarks No-long-jump zone!!!
|
---|
1408 | */
|
---|
1409 | static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1410 | {
|
---|
1411 | /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
|
---|
1412 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
|
---|
1413 | {
|
---|
1414 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
|
---|
1415 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
|
---|
1416 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
|
---|
1417 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
|
---|
1418 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
|
---|
1419 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
|
---|
1420 |
|
---|
1421 | pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
|
---|
1422 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
|
---|
1423 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
|
---|
1424 | }
|
---|
1425 |
|
---|
1426 | /* Guest TR. */
|
---|
1427 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
|
---|
1428 | {
|
---|
1429 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
|
---|
1430 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 | /* Guest LDTR. */
|
---|
1434 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
|
---|
1435 | {
|
---|
1436 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
|
---|
1437 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
|
---|
1438 | }
|
---|
1439 |
|
---|
1440 | /* Guest GDTR. */
|
---|
1441 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
|
---|
1442 | {
|
---|
1443 | pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
|
---|
1444 | pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
|
---|
1445 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1446 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | /* Guest IDTR. */
|
---|
1450 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
|
---|
1451 | {
|
---|
1452 | pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
|
---|
1453 | pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
|
---|
1454 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1455 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
|
---|
1456 | }
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 |
|
---|
1460 | /**
|
---|
1461 | * Loads the guest MSRs into the VMCB.
|
---|
1462 | *
|
---|
1463 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1464 | * @param pVmcb Pointer to the VM control block.
|
---|
1465 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1466 | *
|
---|
1467 | * @remarks No-long-jump zone!!!
|
---|
1468 | */
|
---|
1469 | static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1470 | {
|
---|
1471 | /* Guest Sysenter MSRs. */
|
---|
1472 | pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
|
---|
1473 | pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
|
---|
1474 | pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
|
---|
1475 |
|
---|
1476 | /*
|
---|
1477 | * Guest EFER MSR.
|
---|
1478 | * AMD-V requires guest EFER.SVME to be set. Weird.
|
---|
1479 | * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
|
---|
1480 | */
|
---|
1481 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
|
---|
1482 | {
|
---|
1483 | pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
|
---|
1484 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1485 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
|
---|
1486 | }
|
---|
1487 |
|
---|
1488 | /* 64-bit MSRs. */
|
---|
1489 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1490 | {
|
---|
1491 | pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
|
---|
1492 | pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
|
---|
1493 | }
|
---|
1494 | else
|
---|
1495 | {
|
---|
1496 | /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
|
---|
1497 | if (pCtx->msrEFER & MSR_K6_EFER_LME)
|
---|
1498 | {
|
---|
1499 | pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
|
---|
1500 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1501 | }
|
---|
1502 | }
|
---|
1503 |
|
---|
1504 | /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
|
---|
1505 | * be writable in 32-bit mode. Clarify with AMD spec. */
|
---|
1506 | pVmcb->guest.u64STAR = pCtx->msrSTAR;
|
---|
1507 | pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
|
---|
1508 | pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
|
---|
1509 | pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
|
---|
1510 | pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
|
---|
1511 | }
|
---|
1512 |
|
---|
1513 |
|
---|
1514 | /**
|
---|
1515 | * Loads the guest (or nested-guest) debug state into the VMCB and programs the
|
---|
1516 | * necessary intercepts accordingly.
|
---|
1517 | *
|
---|
1518 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1519 | * @param pVmcb Pointer to the VM control block.
|
---|
1520 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1521 | *
|
---|
1522 | * @remarks No-long-jump zone!!!
|
---|
1523 | * @remarks Requires EFLAGS to be up-to-date in the VMCB!
|
---|
1524 | */
|
---|
1525 | static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1526 | {
|
---|
1527 | Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK);
|
---|
1528 | Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
|
---|
1529 | Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
|
---|
1530 | Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
|
---|
1531 |
|
---|
1532 | bool fInterceptMovDRx = false;
|
---|
1533 |
|
---|
1534 | /*
|
---|
1535 | * Anyone single stepping on the host side? If so, we'll have to use the
|
---|
1536 | * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
|
---|
1537 | * the VMM level like the VT-x implementations does.
|
---|
1538 | */
|
---|
1539 | bool const fStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
1540 | if (fStepping)
|
---|
1541 | {
|
---|
1542 | pVCpu->hm.s.fClearTrapFlag = true;
|
---|
1543 | pVmcb->guest.u64RFlags |= X86_EFL_TF;
|
---|
1544 | fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
|
---|
1545 | }
|
---|
1546 | else
|
---|
1547 | Assert(!DBGFIsStepping(pVCpu));
|
---|
1548 |
|
---|
1549 | if ( fStepping
|
---|
1550 | || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
1551 | {
|
---|
1552 | /*
|
---|
1553 | * Use the combined guest and host DRx values found in the hypervisor
|
---|
1554 | * register set because the debugger has breakpoints active or someone
|
---|
1555 | * is single stepping on the host side.
|
---|
1556 | *
|
---|
1557 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
1558 | */
|
---|
1559 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1560 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
1561 | && !CPUMIsHyperDebugStateActivePending(pVCpu))
|
---|
1562 | {
|
---|
1563 | CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
|
---|
1564 | Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
1565 | Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
1566 | }
|
---|
1567 | else
|
---|
1568 | #endif
|
---|
1569 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
1570 | {
|
---|
1571 | CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
|
---|
1572 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1573 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 | /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
|
---|
1577 | if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
|
---|
1578 | || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
|
---|
1579 | {
|
---|
1580 | pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
|
---|
1581 | pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
|
---|
1582 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1583 | pVCpu->hm.s.fUsingHyperDR7 = true;
|
---|
1584 | }
|
---|
1585 |
|
---|
1586 | /** @todo If we cared, we could optimize to allow the guest to read registers
|
---|
1587 | * with the same values. */
|
---|
1588 | fInterceptMovDRx = true;
|
---|
1589 | Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
|
---|
1590 | }
|
---|
1591 | else
|
---|
1592 | {
|
---|
1593 | /*
|
---|
1594 | * Update DR6, DR7 with the guest values if necessary.
|
---|
1595 | */
|
---|
1596 | if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
|
---|
1597 | || pVmcb->guest.u64DR6 != pCtx->dr[6])
|
---|
1598 | {
|
---|
1599 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
1600 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
1601 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1602 | pVCpu->hm.s.fUsingHyperDR7 = false;
|
---|
1603 | }
|
---|
1604 |
|
---|
1605 | /*
|
---|
1606 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
1607 | * executing guest code so they'll trigger at the right time.
|
---|
1608 | */
|
---|
1609 | if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
|
---|
1610 | {
|
---|
1611 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1612 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
1613 | && !CPUMIsGuestDebugStateActivePending(pVCpu))
|
---|
1614 | {
|
---|
1615 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
1616 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1617 | Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
1618 | Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
1619 | }
|
---|
1620 | else
|
---|
1621 | #endif
|
---|
1622 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1623 | {
|
---|
1624 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
1625 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1626 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1627 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1628 | }
|
---|
1629 | Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
|
---|
1630 | }
|
---|
1631 | /*
|
---|
1632 | * If no debugging enabled, we'll lazy load DR0-3. We don't need to
|
---|
1633 | * intercept #DB as DR6 is updated in the VMCB.
|
---|
1634 | *
|
---|
1635 | * Note! If we cared and dared, we could skip intercepting \#DB here.
|
---|
1636 | * However, \#DB shouldn't be performance critical, so we'll play safe
|
---|
1637 | * and keep the code similar to the VT-x code and always intercept it.
|
---|
1638 | */
|
---|
1639 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1640 | else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
|
---|
1641 | && !CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1642 | #else
|
---|
1643 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1644 | #endif
|
---|
1645 | {
|
---|
1646 | fInterceptMovDRx = true;
|
---|
1647 | }
|
---|
1648 | }
|
---|
1649 |
|
---|
1650 | Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
|
---|
1651 | if (fInterceptMovDRx)
|
---|
1652 | {
|
---|
1653 | if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
|
---|
1654 | || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
|
---|
1655 | {
|
---|
1656 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
1657 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
1658 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1659 | }
|
---|
1660 | }
|
---|
1661 | else
|
---|
1662 | {
|
---|
1663 | if ( pVmcb->ctrl.u16InterceptRdDRx
|
---|
1664 | || pVmcb->ctrl.u16InterceptWrDRx)
|
---|
1665 | {
|
---|
1666 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
1667 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
1668 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1669 | }
|
---|
1670 | }
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 |
|
---|
1674 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1675 | /**
|
---|
1676 | * Loads the nested-guest APIC state (currently just the TPR).
|
---|
1677 | *
|
---|
1678 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1679 | * @param pVmcbNstGst Pointer to the nested-guest VM control block.
|
---|
1680 | */
|
---|
1681 | static void hmR0SvmLoadGuestApicStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
|
---|
1682 | {
|
---|
1683 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
|
---|
1684 | {
|
---|
1685 | /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
|
---|
1686 | pVmcbNstGst->ctrl.IntCtrl.n.u1VIntrMasking = 1;
|
---|
1687 | pVCpu->hm.s.svm.fSyncVTpr = false;
|
---|
1688 | pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_TPR;
|
---|
1689 |
|
---|
1690 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
1691 | }
|
---|
1692 | }
|
---|
1693 | #endif
|
---|
1694 |
|
---|
1695 | /**
|
---|
1696 | * Loads the guest APIC state (currently just the TPR).
|
---|
1697 | *
|
---|
1698 | * @returns VBox status code.
|
---|
1699 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1700 | * @param pVmcb Pointer to the VM control block.
|
---|
1701 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1702 | */
|
---|
1703 | static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1704 | {
|
---|
1705 | if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
|
---|
1706 | return VINF_SUCCESS;
|
---|
1707 |
|
---|
1708 | int rc = VINF_SUCCESS;
|
---|
1709 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1710 | if ( PDMHasApic(pVM)
|
---|
1711 | && APICIsEnabled(pVCpu))
|
---|
1712 | {
|
---|
1713 | bool fPendingIntr;
|
---|
1714 | uint8_t u8Tpr;
|
---|
1715 | rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
|
---|
1716 | AssertRCReturn(rc, rc);
|
---|
1717 |
|
---|
1718 | /* Assume that we need to trap all TPR accesses and thus need not check on
|
---|
1719 | every #VMEXIT if we should update the TPR. */
|
---|
1720 | Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
|
---|
1721 | pVCpu->hm.s.svm.fSyncVTpr = false;
|
---|
1722 |
|
---|
1723 | /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
|
---|
1724 | if (pVM->hm.s.fTPRPatchingActive)
|
---|
1725 | {
|
---|
1726 | pCtx->msrLSTAR = u8Tpr;
|
---|
1727 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
1728 |
|
---|
1729 | /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
|
---|
1730 | if (fPendingIntr)
|
---|
1731 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
1732 | else
|
---|
1733 | {
|
---|
1734 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1735 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
1736 | }
|
---|
1737 | }
|
---|
1738 | else
|
---|
1739 | {
|
---|
1740 | /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
|
---|
1741 | pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
|
---|
1742 |
|
---|
1743 | /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
|
---|
1744 | if (fPendingIntr)
|
---|
1745 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
|
---|
1746 | else
|
---|
1747 | {
|
---|
1748 | pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
|
---|
1749 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
1750 | }
|
---|
1751 |
|
---|
1752 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
|
---|
1753 | }
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
1757 | return rc;
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 |
|
---|
1761 | /**
|
---|
1762 | * Loads the exception interrupts required for guest (or nested-guest) execution in
|
---|
1763 | * the VMCB.
|
---|
1764 | *
|
---|
1765 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1766 | * @param pVmcb Pointer to the VM control block.
|
---|
1767 | */
|
---|
1768 | static void hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
|
---|
1769 | {
|
---|
1770 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
|
---|
1771 | {
|
---|
1772 | /* Trap #UD for GIM provider (e.g. for hypercalls). */
|
---|
1773 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
1774 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
|
---|
1775 | else
|
---|
1776 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_UD);
|
---|
1777 |
|
---|
1778 | /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
|
---|
1779 | if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
1780 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_BP);
|
---|
1781 | else
|
---|
1782 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_BP);
|
---|
1783 |
|
---|
1784 | /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
|
---|
1785 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
|
---|
1786 | }
|
---|
1787 | }
|
---|
1788 |
|
---|
1789 |
|
---|
1790 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1791 | /**
|
---|
1792 | * Loads the intercepts required for nested-guest execution in the VMCB.
|
---|
1793 | *
|
---|
1794 | * This merges the guest and nested-guest intercepts in a way that if the outer
|
---|
1795 | * guest intercepts an exception we need to intercept it in the nested-guest as
|
---|
1796 | * well and handle it accordingly.
|
---|
1797 | *
|
---|
1798 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1799 | * @param pVmcb Pointer to the VM control block.
|
---|
1800 | * @param pVmcbNstGst Pointer to the nested-guest VM control block.
|
---|
1801 | */
|
---|
1802 | static void hmR0SvmLoadGuestXcptInterceptsNested(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMVMCB pVmcbNstGst)
|
---|
1803 | {
|
---|
1804 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
|
---|
1805 | {
|
---|
1806 | hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb);
|
---|
1807 |
|
---|
1808 | pVmcbNstGst->ctrl.u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
|
---|
1809 | pVmcbNstGst->ctrl.u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
|
---|
1810 |
|
---|
1811 | /** @todo Figure out debugging with nested-guests, till then just intercept
|
---|
1812 | * all DR[0-15] accesses. */
|
---|
1813 | pVmcbNstGst->ctrl.u16InterceptRdDRx |= 0xffff;
|
---|
1814 | pVmcbNstGst->ctrl.u16InterceptWrDRx |= 0xffff;
|
---|
1815 |
|
---|
1816 | pVmcbNstGst->ctrl.u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
|
---|
1817 | pVmcbNstGst->ctrl.u64InterceptCtrl |= pVmcb->ctrl.u64InterceptCtrl
|
---|
1818 | | HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS;
|
---|
1819 |
|
---|
1820 | Assert( (pVmcbNstGst->ctrl.u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
|
---|
1821 | == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
|
---|
1822 |
|
---|
1823 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS));
|
---|
1824 | }
|
---|
1825 | }
|
---|
1826 | #endif
|
---|
1827 |
|
---|
1828 |
|
---|
1829 | /**
|
---|
1830 | * Sets up the appropriate function to run guest code.
|
---|
1831 | *
|
---|
1832 | * @returns VBox status code.
|
---|
1833 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1834 | *
|
---|
1835 | * @remarks No-long-jump zone!!!
|
---|
1836 | */
|
---|
1837 | static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu)
|
---|
1838 | {
|
---|
1839 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
1840 | {
|
---|
1841 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1842 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1843 | #endif
|
---|
1844 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
1845 | #if HC_ARCH_BITS == 32
|
---|
1846 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
1847 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
|
---|
1848 | #else
|
---|
1849 | /* 64-bit host or hybrid host. */
|
---|
1850 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
|
---|
1851 | #endif
|
---|
1852 | }
|
---|
1853 | else
|
---|
1854 | {
|
---|
1855 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
1856 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
|
---|
1857 | }
|
---|
1858 | return VINF_SUCCESS;
|
---|
1859 | }
|
---|
1860 |
|
---|
1861 |
|
---|
1862 | /**
|
---|
1863 | * Enters the AMD-V session.
|
---|
1864 | *
|
---|
1865 | * @returns VBox status code.
|
---|
1866 | * @param pVM The cross context VM structure.
|
---|
1867 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1868 | * @param pCpu Pointer to the CPU info struct.
|
---|
1869 | */
|
---|
1870 | VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
1871 | {
|
---|
1872 | AssertPtr(pVM);
|
---|
1873 | AssertPtr(pVCpu);
|
---|
1874 | Assert(pVM->hm.s.svm.fSupported);
|
---|
1875 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1876 | NOREF(pVM); NOREF(pCpu);
|
---|
1877 |
|
---|
1878 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
1879 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
1880 |
|
---|
1881 | pVCpu->hm.s.fLeaveDone = false;
|
---|
1882 | return VINF_SUCCESS;
|
---|
1883 | }
|
---|
1884 |
|
---|
1885 |
|
---|
1886 | /**
|
---|
1887 | * Thread-context callback for AMD-V.
|
---|
1888 | *
|
---|
1889 | * @param enmEvent The thread-context event.
|
---|
1890 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1891 | * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
|
---|
1892 | * @thread EMT(pVCpu)
|
---|
1893 | */
|
---|
1894 | VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
|
---|
1895 | {
|
---|
1896 | NOREF(fGlobalInit);
|
---|
1897 |
|
---|
1898 | switch (enmEvent)
|
---|
1899 | {
|
---|
1900 | case RTTHREADCTXEVENT_OUT:
|
---|
1901 | {
|
---|
1902 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1903 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
1904 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
1905 |
|
---|
1906 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
1907 | VMMRZCallRing3Disable(pVCpu);
|
---|
1908 |
|
---|
1909 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
1910 | {
|
---|
1911 | hmR0SvmLeave(pVCpu);
|
---|
1912 | pVCpu->hm.s.fLeaveDone = true;
|
---|
1913 | }
|
---|
1914 |
|
---|
1915 | /* Leave HM context, takes care of local init (term). */
|
---|
1916 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
1917 | AssertRC(rc); NOREF(rc);
|
---|
1918 |
|
---|
1919 | /* Restore longjmp state. */
|
---|
1920 | VMMRZCallRing3Enable(pVCpu);
|
---|
1921 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
|
---|
1922 | break;
|
---|
1923 | }
|
---|
1924 |
|
---|
1925 | case RTTHREADCTXEVENT_IN:
|
---|
1926 | {
|
---|
1927 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1928 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
1929 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
1930 |
|
---|
1931 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
1932 | VMMRZCallRing3Disable(pVCpu);
|
---|
1933 |
|
---|
1934 | /*
|
---|
1935 | * Initialize the bare minimum state required for HM. This takes care of
|
---|
1936 | * initializing AMD-V if necessary (onlined CPUs, local init etc.)
|
---|
1937 | */
|
---|
1938 | int rc = HMR0EnterCpu(pVCpu);
|
---|
1939 | AssertRC(rc); NOREF(rc);
|
---|
1940 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
1941 |
|
---|
1942 | pVCpu->hm.s.fLeaveDone = false;
|
---|
1943 |
|
---|
1944 | /* Restore longjmp state. */
|
---|
1945 | VMMRZCallRing3Enable(pVCpu);
|
---|
1946 | break;
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | default:
|
---|
1950 | break;
|
---|
1951 | }
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 |
|
---|
1955 | /**
|
---|
1956 | * Saves the host state.
|
---|
1957 | *
|
---|
1958 | * @returns VBox status code.
|
---|
1959 | * @param pVM The cross context VM structure.
|
---|
1960 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1961 | *
|
---|
1962 | * @remarks No-long-jump zone!!!
|
---|
1963 | */
|
---|
1964 | VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
1965 | {
|
---|
1966 | NOREF(pVM);
|
---|
1967 | NOREF(pVCpu);
|
---|
1968 | /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
|
---|
1969 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
|
---|
1970 | return VINF_SUCCESS;
|
---|
1971 | }
|
---|
1972 |
|
---|
1973 |
|
---|
1974 | /**
|
---|
1975 | * Loads the guest state into the VMCB.
|
---|
1976 | *
|
---|
1977 | * The CPU state will be loaded from these fields on every successful VM-entry.
|
---|
1978 | * Also sets up the appropriate VMRUN function to execute guest code based on
|
---|
1979 | * the guest CPU mode.
|
---|
1980 | *
|
---|
1981 | * @returns VBox status code.
|
---|
1982 | * @param pVM The cross context VM structure.
|
---|
1983 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1984 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1985 | *
|
---|
1986 | * @remarks No-long-jump zone!!!
|
---|
1987 | */
|
---|
1988 | static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1989 | {
|
---|
1990 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
1991 | AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
|
---|
1992 |
|
---|
1993 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
1994 |
|
---|
1995 | int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
|
---|
1996 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1997 |
|
---|
1998 | hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
|
---|
1999 | hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
|
---|
2000 |
|
---|
2001 | pVmcb->guest.u64RIP = pCtx->rip;
|
---|
2002 | pVmcb->guest.u64RSP = pCtx->rsp;
|
---|
2003 | pVmcb->guest.u64RFlags = pCtx->eflags.u32;
|
---|
2004 | pVmcb->guest.u64RAX = pCtx->rax;
|
---|
2005 |
|
---|
2006 | rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
|
---|
2007 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
2008 |
|
---|
2009 | hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb);
|
---|
2010 |
|
---|
2011 | rc = hmR0SvmSetupVMRunHandler(pVCpu);
|
---|
2012 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
2013 |
|
---|
2014 | /* Clear any unused and reserved bits. */
|
---|
2015 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
|
---|
2016 | | HM_CHANGED_GUEST_RSP
|
---|
2017 | | HM_CHANGED_GUEST_RFLAGS
|
---|
2018 | | HM_CHANGED_GUEST_SYSENTER_CS_MSR
|
---|
2019 | | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
|
---|
2020 | | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
|
---|
2021 | | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
|
---|
2022 | | HM_CHANGED_SVM_NESTED_GUEST
|
---|
2023 | | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
|
---|
2024 | | HM_CHANGED_SVM_RESERVED2
|
---|
2025 | | HM_CHANGED_SVM_RESERVED3);
|
---|
2026 |
|
---|
2027 | /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
|
---|
2028 | AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
|
---|
2029 | || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
2030 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
2031 |
|
---|
2032 | Log4(("hmR0SvmLoadGuestState: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 CR4=%#RX32\n", pCtx->cs.Sel, pCtx->rip,
|
---|
2033 | pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4));
|
---|
2034 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
2035 | return rc;
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 |
|
---|
2039 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2040 | /**
|
---|
2041 | * Caches the nested-guest VMCB fields before we modify them for execution using
|
---|
2042 | * hardware-assisted SVM.
|
---|
2043 | *
|
---|
2044 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2045 | *
|
---|
2046 | * @sa HMSvmNstGstVmExitNotify.
|
---|
2047 | */
|
---|
2048 | static void hmR0SvmVmRunCacheVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2049 | {
|
---|
2050 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2051 | PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2052 | PCSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
|
---|
2053 | PSVMNESTEDVMCBCACHE pNstGstVmcbCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
2054 |
|
---|
2055 | pNstGstVmcbCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
|
---|
2056 | pNstGstVmcbCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
|
---|
2057 | pNstGstVmcbCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
|
---|
2058 | pNstGstVmcbCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
|
---|
2059 | pNstGstVmcbCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
|
---|
2060 | pNstGstVmcbCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
|
---|
2061 | pNstGstVmcbCache->u64CR3 = pVmcbNstGstState->u64CR3;
|
---|
2062 | pNstGstVmcbCache->u64IOPMPhysAddr = pVmcbNstGstCtrl->u64IOPMPhysAddr;
|
---|
2063 | pNstGstVmcbCache->u64MSRPMPhysAddr = pVmcbNstGstCtrl->u64MSRPMPhysAddr;
|
---|
2064 | pNstGstVmcbCache->u64VmcbCleanBits = pVmcbNstGstCtrl->u64VmcbCleanBits;
|
---|
2065 | pNstGstVmcbCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
|
---|
2066 | pNstGstVmcbCache->TLBCtrl = pVmcbNstGstCtrl->TLBCtrl;
|
---|
2067 | pNstGstVmcbCache->fValid = true;
|
---|
2068 | }
|
---|
2069 |
|
---|
2070 |
|
---|
2071 | /**
|
---|
2072 | * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
|
---|
2073 | *
|
---|
2074 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2075 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2076 | */
|
---|
2077 | static void hmR0SvmVmRunSetupVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2078 | {
|
---|
2079 | RT_NOREF(pVCpu);
|
---|
2080 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2081 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2082 |
|
---|
2083 | /*
|
---|
2084 | * First cache the nested-guest VMCB fields we may potentially modify.
|
---|
2085 | */
|
---|
2086 | hmR0SvmVmRunCacheVmcb(pVCpu, pCtx);
|
---|
2087 |
|
---|
2088 | /*
|
---|
2089 | * The IOPM of the nested-guest can be ignored because the the guest always
|
---|
2090 | * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
|
---|
2091 | * into the nested-guest one and swap it back on the #VMEXIT.
|
---|
2092 | */
|
---|
2093 | pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
2094 |
|
---|
2095 | /*
|
---|
2096 | * Load the host-physical address into the MSRPM rather than the nested-guest
|
---|
2097 | * physical address (currently we trap all MSRs in the nested-guest).
|
---|
2098 | */
|
---|
2099 | pVmcbNstGstCtrl->u64MSRPMPhysAddr = g_HCPhysNstGstMsrBitmap;
|
---|
2100 | }
|
---|
2101 |
|
---|
2102 |
|
---|
2103 | /**
|
---|
2104 | * Sets up the nested-guest for hardware-assisted SVM execution.
|
---|
2105 | *
|
---|
2106 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2107 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2108 | *
|
---|
2109 | * @remarks This must be called only after the guest exceptions are up to date as
|
---|
2110 | * otherwise we risk overwriting the guest exceptions with the nested-guest
|
---|
2111 | * exceptions.
|
---|
2112 | */
|
---|
2113 | static void hmR0SvmLoadGuestVmcbNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2114 | {
|
---|
2115 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_NESTED_GUEST))
|
---|
2116 | {
|
---|
2117 | hmR0SvmVmRunSetupVmcb(pVCpu, pCtx);
|
---|
2118 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_NESTED_GUEST);
|
---|
2119 | }
|
---|
2120 | }
|
---|
2121 |
|
---|
2122 |
|
---|
2123 | /**
|
---|
2124 | * Loads the nested-guest state into the VMCB.
|
---|
2125 | *
|
---|
2126 | * @returns VBox status code.
|
---|
2127 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2128 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2129 | *
|
---|
2130 | * @remarks No-long-jump zone!!!
|
---|
2131 | */
|
---|
2132 | static int hmR0SvmLoadGuestStateNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2133 | {
|
---|
2134 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
2135 |
|
---|
2136 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2137 | Assert(pVmcbNstGst);
|
---|
2138 |
|
---|
2139 | /*
|
---|
2140 | * If we just emulated VMRUN, the VMCB is already in-sync with the guest-CPU context.
|
---|
2141 | */
|
---|
2142 | if (!pVCpu->hm.s.svm.NstGstVmcbCache.fVmrunEmulatedInR0)
|
---|
2143 | {
|
---|
2144 | /* First, we need to setup the nested-guest VMCB for hardware-assisted SVM execution. */
|
---|
2145 | hmR0SvmLoadGuestVmcbNested(pVCpu, pCtx);
|
---|
2146 |
|
---|
2147 | hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcbNstGst, pCtx);
|
---|
2148 | hmR0SvmLoadGuestMsrs(pVCpu, pVmcbNstGst, pCtx);
|
---|
2149 |
|
---|
2150 | pVmcbNstGst->guest.u64RIP = pCtx->rip;
|
---|
2151 | pVmcbNstGst->guest.u64RSP = pCtx->rsp;
|
---|
2152 | pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
|
---|
2153 | pVmcbNstGst->guest.u64RAX = pCtx->rax;
|
---|
2154 | }
|
---|
2155 |
|
---|
2156 | hmR0SvmLoadGuestControlRegsNested(pVCpu, pVmcbNstGst, pCtx);
|
---|
2157 | hmR0SvmLoadGuestApicStateNested(pVCpu, pVmcbNstGst);
|
---|
2158 |
|
---|
2159 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
2160 | hmR0SvmLoadGuestXcptInterceptsNested(pVCpu, pVmcb, pVmcbNstGst);
|
---|
2161 |
|
---|
2162 | int rc = hmR0SvmSetupVMRunHandler(pVCpu);
|
---|
2163 | AssertRCReturn(rc, rc);
|
---|
2164 |
|
---|
2165 | /* Clear any unused and reserved bits. */
|
---|
2166 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
|
---|
2167 | | HM_CHANGED_GUEST_RSP
|
---|
2168 | | HM_CHANGED_GUEST_RFLAGS
|
---|
2169 | | HM_CHANGED_GUEST_SYSENTER_CS_MSR
|
---|
2170 | | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
|
---|
2171 | | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
|
---|
2172 | | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
|
---|
2173 | | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
|
---|
2174 | | HM_CHANGED_SVM_RESERVED2
|
---|
2175 | | HM_CHANGED_SVM_RESERVED3);
|
---|
2176 |
|
---|
2177 | /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
|
---|
2178 | AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
|
---|
2179 | || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
2180 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
2181 |
|
---|
2182 | Log4(("hmR0SvmLoadGuestStateNested: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 CR4=%#RX32\n", pCtx->cs.Sel, pCtx->rip,
|
---|
2183 | pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4));
|
---|
2184 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
2185 | return rc;
|
---|
2186 | }
|
---|
2187 | #endif
|
---|
2188 |
|
---|
2189 |
|
---|
2190 | /**
|
---|
2191 | * Loads the state shared between the host and guest or nested-guest into the
|
---|
2192 | * VMCB.
|
---|
2193 | *
|
---|
2194 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2195 | * @param pVmcb Pointer to the VM control block.
|
---|
2196 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2197 | *
|
---|
2198 | * @remarks No-long-jump zone!!!
|
---|
2199 | */
|
---|
2200 | static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
2201 | {
|
---|
2202 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2203 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2204 |
|
---|
2205 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
|
---|
2206 | {
|
---|
2207 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2208 | /* We use nested-guest CR0 unmodified, hence nothing to do here. */
|
---|
2209 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
2210 | hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
|
---|
2211 | else
|
---|
2212 | Assert(pVmcb->guest.u64CR0 == pCtx->cr0);
|
---|
2213 | #else
|
---|
2214 | hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
|
---|
2215 | #endif
|
---|
2216 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
2217 | }
|
---|
2218 |
|
---|
2219 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
|
---|
2220 | {
|
---|
2221 | hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
|
---|
2222 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
2223 | }
|
---|
2224 |
|
---|
2225 | /* Unused on AMD-V. */
|
---|
2226 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
|
---|
2227 |
|
---|
2228 | AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
2229 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
2230 | }
|
---|
2231 |
|
---|
2232 |
|
---|
2233 | /**
|
---|
2234 | * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU context.
|
---|
2235 | *
|
---|
2236 | * Currently there is no residual state left in the CPU that is not updated in the
|
---|
2237 | * VMCB.
|
---|
2238 | *
|
---|
2239 | * @returns VBox status code.
|
---|
2240 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2241 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2242 | * out-of-sync. Make sure to update the required fields
|
---|
2243 | * before using them.
|
---|
2244 | * @param pVmcb Pointer to the VM control block.
|
---|
2245 | */
|
---|
2246 | static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PCSVMVMCB pVmcb)
|
---|
2247 | {
|
---|
2248 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2249 |
|
---|
2250 | pMixedCtx->rip = pVmcb->guest.u64RIP;
|
---|
2251 | pMixedCtx->rsp = pVmcb->guest.u64RSP;
|
---|
2252 | pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
|
---|
2253 | pMixedCtx->rax = pVmcb->guest.u64RAX;
|
---|
2254 |
|
---|
2255 | /*
|
---|
2256 | * Guest interrupt shadow.
|
---|
2257 | */
|
---|
2258 | if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
|
---|
2259 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
2260 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
2261 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
2262 |
|
---|
2263 | /*
|
---|
2264 | * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
|
---|
2265 | */
|
---|
2266 | pMixedCtx->cr2 = pVmcb->guest.u64CR2;
|
---|
2267 |
|
---|
2268 | #ifdef VBOX_WITH_NESTED_GUEST
|
---|
2269 | /*
|
---|
2270 | * The nested hypervisor might not be intercepting these control registers,
|
---|
2271 | */
|
---|
2272 | if (CPUMIsGuestInNestedHwVirtMode(pMixedCtx))
|
---|
2273 | {
|
---|
2274 | pMixedCtx->cr3 = pVmcb->guest.u64CR3;
|
---|
2275 | pMixedCtx->cr4 = pVmcb->guest.u64CR4;
|
---|
2276 | pMixedCtx->cr0 = pVmcb->guest.u64CR0;
|
---|
2277 | }
|
---|
2278 | #endif
|
---|
2279 |
|
---|
2280 | /*
|
---|
2281 | * Guest MSRs.
|
---|
2282 | */
|
---|
2283 | pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
|
---|
2284 | pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
|
---|
2285 | pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
|
---|
2286 | pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
|
---|
2287 | pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
|
---|
2288 | pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
|
---|
2289 | pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
|
---|
2290 | pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
|
---|
2291 |
|
---|
2292 | /*
|
---|
2293 | * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
|
---|
2294 | */
|
---|
2295 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, CS, cs);
|
---|
2296 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, SS, ss);
|
---|
2297 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, DS, ds);
|
---|
2298 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, ES, es);
|
---|
2299 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, FS, fs);
|
---|
2300 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, GS, gs);
|
---|
2301 |
|
---|
2302 | /*
|
---|
2303 | * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
|
---|
2304 | * register (yet).
|
---|
2305 | */
|
---|
2306 | /** @todo SELM might need to be fixed as it too should not care about the
|
---|
2307 | * granularity bit. See @bugref{6785}. */
|
---|
2308 | if ( !pMixedCtx->cs.Attr.n.u1Granularity
|
---|
2309 | && pMixedCtx->cs.Attr.n.u1Present
|
---|
2310 | && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
|
---|
2311 | {
|
---|
2312 | Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
|
---|
2313 | pMixedCtx->cs.Attr.n.u1Granularity = 1;
|
---|
2314 | }
|
---|
2315 |
|
---|
2316 | #ifdef VBOX_STRICT
|
---|
2317 | # define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
|
---|
2318 | AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
|
---|
2319 | || ( pMixedCtx->reg.Attr.n.u1Granularity \
|
---|
2320 | ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
|
---|
2321 | : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
|
---|
2322 | ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
|
---|
2323 | pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
|
---|
2324 |
|
---|
2325 | HMSVM_ASSERT_SEG_GRANULARITY(cs);
|
---|
2326 | HMSVM_ASSERT_SEG_GRANULARITY(ss);
|
---|
2327 | HMSVM_ASSERT_SEG_GRANULARITY(ds);
|
---|
2328 | HMSVM_ASSERT_SEG_GRANULARITY(es);
|
---|
2329 | HMSVM_ASSERT_SEG_GRANULARITY(fs);
|
---|
2330 | HMSVM_ASSERT_SEG_GRANULARITY(gs);
|
---|
2331 |
|
---|
2332 | # undef HMSVM_ASSERT_SEL_GRANULARITY
|
---|
2333 | #endif
|
---|
2334 |
|
---|
2335 | /*
|
---|
2336 | * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
|
---|
2337 | * and thus it's possible that when the CPL changes during guest execution that the SS DPL
|
---|
2338 | * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
|
---|
2339 | * See AMD spec. 15.5.1 "Basic operation".
|
---|
2340 | */
|
---|
2341 | Assert(!(pVmcb->guest.u8CPL & ~0x3));
|
---|
2342 | pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
|
---|
2343 |
|
---|
2344 | /*
|
---|
2345 | * Guest TR.
|
---|
2346 | * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
|
---|
2347 | * between Intel and AMD. See @bugref{6208#c39}.
|
---|
2348 | * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
|
---|
2349 | */
|
---|
2350 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, TR, tr);
|
---|
2351 | if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
2352 | {
|
---|
2353 | if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2354 | || CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
2355 | pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
2356 | else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
|
---|
2357 | pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
|
---|
2358 | }
|
---|
2359 |
|
---|
2360 | /*
|
---|
2361 | * Guest Descriptor-Table registers.
|
---|
2362 | */
|
---|
2363 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, LDTR, ldtr);
|
---|
2364 | pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
|
---|
2365 | pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
|
---|
2366 |
|
---|
2367 | pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
|
---|
2368 | pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
|
---|
2369 |
|
---|
2370 | /*
|
---|
2371 | * Guest Debug registers.
|
---|
2372 | */
|
---|
2373 | if (!pVCpu->hm.s.fUsingHyperDR7)
|
---|
2374 | {
|
---|
2375 | pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
|
---|
2376 | pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
|
---|
2377 | }
|
---|
2378 | else
|
---|
2379 | {
|
---|
2380 | Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
|
---|
2381 | CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
|
---|
2382 | }
|
---|
2383 |
|
---|
2384 | /*
|
---|
2385 | * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
|
---|
2386 | * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
|
---|
2387 | */
|
---|
2388 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2389 | Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pMixedCtx) || !pVmcb->ctrl.NestedPaging.n.u1NestedPaging);
|
---|
2390 | #endif
|
---|
2391 | if ( pVmcb->ctrl.NestedPaging.n.u1NestedPaging
|
---|
2392 | && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
|
---|
2393 | {
|
---|
2394 | CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
2395 | PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
2396 | }
|
---|
2397 | }
|
---|
2398 |
|
---|
2399 |
|
---|
2400 | /**
|
---|
2401 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
2402 | * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
|
---|
2403 | *
|
---|
2404 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2405 | *
|
---|
2406 | * @remarks No-long-jmp zone!!!
|
---|
2407 | */
|
---|
2408 | static void hmR0SvmLeave(PVMCPU pVCpu)
|
---|
2409 | {
|
---|
2410 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2411 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2412 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
2413 |
|
---|
2414 | /*
|
---|
2415 | * !!! IMPORTANT !!!
|
---|
2416 | * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
|
---|
2417 | */
|
---|
2418 |
|
---|
2419 | /* Restore host FPU state if necessary and resync on next R0 reentry .*/
|
---|
2420 | if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
|
---|
2421 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
2422 |
|
---|
2423 | /*
|
---|
2424 | * Restore host debug registers if necessary and resync on next R0 reentry.
|
---|
2425 | */
|
---|
2426 | #ifdef VBOX_STRICT
|
---|
2427 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
2428 | {
|
---|
2429 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
2430 | Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
|
---|
2431 | Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
|
---|
2432 | }
|
---|
2433 | #endif
|
---|
2434 | if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
|
---|
2435 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
2436 |
|
---|
2437 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
2438 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
2439 |
|
---|
2440 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
2441 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
|
---|
2442 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
|
---|
2443 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
|
---|
2444 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
2445 |
|
---|
2446 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
2447 | }
|
---|
2448 |
|
---|
2449 |
|
---|
2450 | /**
|
---|
2451 | * Leaves the AMD-V session.
|
---|
2452 | *
|
---|
2453 | * @returns VBox status code.
|
---|
2454 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2455 | */
|
---|
2456 | static int hmR0SvmLeaveSession(PVMCPU pVCpu)
|
---|
2457 | {
|
---|
2458 | HM_DISABLE_PREEMPT();
|
---|
2459 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2460 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2461 |
|
---|
2462 | /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
|
---|
2463 | and done this from the SVMR0ThreadCtxCallback(). */
|
---|
2464 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
2465 | {
|
---|
2466 | hmR0SvmLeave(pVCpu);
|
---|
2467 | pVCpu->hm.s.fLeaveDone = true;
|
---|
2468 | }
|
---|
2469 |
|
---|
2470 | /*
|
---|
2471 | * !!! IMPORTANT !!!
|
---|
2472 | * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
|
---|
2473 | */
|
---|
2474 |
|
---|
2475 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
2476 | /* Deregister hook now that we've left HM context before re-enabling preemption. */
|
---|
2477 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
2478 |
|
---|
2479 | /* Leave HM context. This takes care of local init (term). */
|
---|
2480 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
2481 |
|
---|
2482 | HM_RESTORE_PREEMPT();
|
---|
2483 | return rc;
|
---|
2484 | }
|
---|
2485 |
|
---|
2486 |
|
---|
2487 | /**
|
---|
2488 | * Does the necessary state syncing before doing a longjmp to ring-3.
|
---|
2489 | *
|
---|
2490 | * @returns VBox status code.
|
---|
2491 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2492 | *
|
---|
2493 | * @remarks No-long-jmp zone!!!
|
---|
2494 | */
|
---|
2495 | static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
|
---|
2496 | {
|
---|
2497 | return hmR0SvmLeaveSession(pVCpu);
|
---|
2498 | }
|
---|
2499 |
|
---|
2500 |
|
---|
2501 | /**
|
---|
2502 | * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
|
---|
2503 | * any remaining host state) before we longjump to ring-3 and possibly get
|
---|
2504 | * preempted.
|
---|
2505 | *
|
---|
2506 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2507 | * @param enmOperation The operation causing the ring-3 longjump.
|
---|
2508 | * @param pvUser The user argument (pointer to the possibly
|
---|
2509 | * out-of-date guest-CPU context).
|
---|
2510 | */
|
---|
2511 | static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
|
---|
2512 | {
|
---|
2513 | RT_NOREF_PV(pvUser);
|
---|
2514 |
|
---|
2515 | if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
|
---|
2516 | {
|
---|
2517 | /*
|
---|
2518 | * !!! IMPORTANT !!!
|
---|
2519 | * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
|
---|
2520 | * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
|
---|
2521 | */
|
---|
2522 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
2523 | VMMRZCallRing3Disable(pVCpu);
|
---|
2524 | HM_DISABLE_PREEMPT();
|
---|
2525 |
|
---|
2526 | /* Restore host FPU state if necessary and resync on next R0 reentry. */
|
---|
2527 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
2528 |
|
---|
2529 | /* Restore host debug registers if necessary and resync on next R0 reentry. */
|
---|
2530 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
|
---|
2531 |
|
---|
2532 | /* Deregister the hook now that we've left HM context before re-enabling preemption. */
|
---|
2533 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
2534 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
2535 |
|
---|
2536 | /* Leave HM context. This takes care of local init (term). */
|
---|
2537 | HMR0LeaveCpu(pVCpu);
|
---|
2538 |
|
---|
2539 | HM_RESTORE_PREEMPT();
|
---|
2540 | return VINF_SUCCESS;
|
---|
2541 | }
|
---|
2542 |
|
---|
2543 | Assert(pVCpu);
|
---|
2544 | Assert(pvUser);
|
---|
2545 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2546 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
2547 |
|
---|
2548 | VMMRZCallRing3Disable(pVCpu);
|
---|
2549 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
2550 |
|
---|
2551 | Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
|
---|
2552 | int rc = hmR0SvmLongJmpToRing3(pVCpu);
|
---|
2553 | AssertRCReturn(rc, rc);
|
---|
2554 |
|
---|
2555 | VMMRZCallRing3Enable(pVCpu);
|
---|
2556 | return VINF_SUCCESS;
|
---|
2557 | }
|
---|
2558 |
|
---|
2559 |
|
---|
2560 | /**
|
---|
2561 | * Take necessary actions before going back to ring-3.
|
---|
2562 | *
|
---|
2563 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
2564 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
2565 | * to ring-3, this is voluntary.
|
---|
2566 | *
|
---|
2567 | * @returns VBox status code.
|
---|
2568 | * @param pVM The cross context VM structure.
|
---|
2569 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2570 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2571 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
2572 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
2573 | */
|
---|
2574 | static int hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
|
---|
2575 | {
|
---|
2576 | Assert(pVM);
|
---|
2577 | Assert(pVCpu);
|
---|
2578 | Assert(pCtx);
|
---|
2579 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
2580 |
|
---|
2581 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
2582 | VMMRZCallRing3Disable(pVCpu);
|
---|
2583 | Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
|
---|
2584 |
|
---|
2585 | /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
|
---|
2586 | if (pVCpu->hm.s.Event.fPending)
|
---|
2587 | {
|
---|
2588 | hmR0SvmPendingEventToTrpmTrap(pVCpu);
|
---|
2589 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
2590 | }
|
---|
2591 |
|
---|
2592 | /* Sync. the necessary state for going back to ring-3. */
|
---|
2593 | hmR0SvmLeaveSession(pVCpu);
|
---|
2594 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
2595 |
|
---|
2596 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
2597 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
2598 | | CPUM_CHANGED_LDTR
|
---|
2599 | | CPUM_CHANGED_GDTR
|
---|
2600 | | CPUM_CHANGED_IDTR
|
---|
2601 | | CPUM_CHANGED_TR
|
---|
2602 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2603 | if ( pVM->hm.s.fNestedPaging
|
---|
2604 | && CPUMIsGuestPagingEnabledEx(pCtx))
|
---|
2605 | {
|
---|
2606 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
2607 | }
|
---|
2608 |
|
---|
2609 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2610 | pVCpu->hm.s.svm.NstGstVmcbCache.fVmrunEmulatedInR0 = false;
|
---|
2611 | #endif
|
---|
2612 |
|
---|
2613 | /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
|
---|
2614 | if (rcExit != VINF_EM_RAW_INTERRUPT)
|
---|
2615 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
2616 |
|
---|
2617 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
2618 |
|
---|
2619 | /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
|
---|
2620 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
2621 | VMMRZCallRing3Enable(pVCpu);
|
---|
2622 |
|
---|
2623 | /*
|
---|
2624 | * If we're emulating an instruction, we shouldn't have any TRPM traps pending
|
---|
2625 | * and if we're injecting an event we should have a TRPM trap pending.
|
---|
2626 | */
|
---|
2627 | AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
|
---|
2628 | pVCpu->hm.s.u32HMError = rcExit,
|
---|
2629 | VERR_SVM_IPE_5);
|
---|
2630 | AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
|
---|
2631 | pVCpu->hm.s.u32HMError = rcExit,
|
---|
2632 | VERR_SVM_IPE_4);
|
---|
2633 |
|
---|
2634 | return rcExit;
|
---|
2635 | }
|
---|
2636 |
|
---|
2637 |
|
---|
2638 | /**
|
---|
2639 | * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
|
---|
2640 | * intercepts.
|
---|
2641 | *
|
---|
2642 | * @param pVM The cross context VM structure.
|
---|
2643 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2644 | * @param pVmcb Pointer to the VM control block.
|
---|
2645 | *
|
---|
2646 | * @remarks No-long-jump zone!!!
|
---|
2647 | */
|
---|
2648 | static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu, PSVMVMCB pVmcb)
|
---|
2649 | {
|
---|
2650 | bool fParavirtTsc;
|
---|
2651 | bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
|
---|
2652 | if (fCanUseRealTsc)
|
---|
2653 | {
|
---|
2654 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSC;
|
---|
2655 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSCP;
|
---|
2656 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
2657 | }
|
---|
2658 | else
|
---|
2659 | {
|
---|
2660 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSC;
|
---|
2661 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSCP;
|
---|
2662 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
2663 | }
|
---|
2664 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2665 |
|
---|
2666 | /** @todo later optimize this to be done elsewhere and not before every
|
---|
2667 | * VM-entry. */
|
---|
2668 | if (fParavirtTsc)
|
---|
2669 | {
|
---|
2670 | /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
|
---|
2671 | information before every VM-entry, hence disable it for performance sake. */
|
---|
2672 | #if 0
|
---|
2673 | int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
|
---|
2674 | AssertRC(rc);
|
---|
2675 | #endif
|
---|
2676 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
|
---|
2677 | }
|
---|
2678 | }
|
---|
2679 |
|
---|
2680 |
|
---|
2681 | /**
|
---|
2682 | * Sets an event as a pending event to be injected into the guest.
|
---|
2683 | *
|
---|
2684 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2685 | * @param pEvent Pointer to the SVM event.
|
---|
2686 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
2687 | * page-fault.
|
---|
2688 | *
|
---|
2689 | * @remarks Statistics counter assumes this is a guest event being reflected to
|
---|
2690 | * the guest i.e. 'StatInjectPendingReflect' is incremented always.
|
---|
2691 | */
|
---|
2692 | DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
|
---|
2693 | {
|
---|
2694 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
2695 | Assert(pEvent->n.u1Valid);
|
---|
2696 |
|
---|
2697 | pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
|
---|
2698 | pVCpu->hm.s.Event.fPending = true;
|
---|
2699 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
2700 |
|
---|
2701 | Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
|
---|
2702 | pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
2703 | }
|
---|
2704 |
|
---|
2705 |
|
---|
2706 | /**
|
---|
2707 | * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
|
---|
2708 | *
|
---|
2709 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2710 | */
|
---|
2711 | DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
|
---|
2712 | {
|
---|
2713 | SVMEVENT Event;
|
---|
2714 | Event.u = 0;
|
---|
2715 | Event.n.u1Valid = 1;
|
---|
2716 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2717 | Event.n.u8Vector = X86_XCPT_UD;
|
---|
2718 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
2719 | }
|
---|
2720 |
|
---|
2721 |
|
---|
2722 | /**
|
---|
2723 | * Sets a debug (\#DB) exception as pending-for-injection into the VM.
|
---|
2724 | *
|
---|
2725 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2726 | */
|
---|
2727 | DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
|
---|
2728 | {
|
---|
2729 | SVMEVENT Event;
|
---|
2730 | Event.u = 0;
|
---|
2731 | Event.n.u1Valid = 1;
|
---|
2732 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2733 | Event.n.u8Vector = X86_XCPT_DB;
|
---|
2734 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
2735 | }
|
---|
2736 |
|
---|
2737 |
|
---|
2738 | /**
|
---|
2739 | * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
|
---|
2740 | *
|
---|
2741 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2742 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2743 | * @param u32ErrCode The error-code for the page-fault.
|
---|
2744 | * @param uFaultAddress The page fault address (CR2).
|
---|
2745 | *
|
---|
2746 | * @remarks This updates the guest CR2 with @a uFaultAddress!
|
---|
2747 | */
|
---|
2748 | DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
|
---|
2749 | {
|
---|
2750 | SVMEVENT Event;
|
---|
2751 | Event.u = 0;
|
---|
2752 | Event.n.u1Valid = 1;
|
---|
2753 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2754 | Event.n.u8Vector = X86_XCPT_PF;
|
---|
2755 | Event.n.u1ErrorCodeValid = 1;
|
---|
2756 | Event.n.u32ErrorCode = u32ErrCode;
|
---|
2757 |
|
---|
2758 | /* Update CR2 of the guest. */
|
---|
2759 | if (pCtx->cr2 != uFaultAddress)
|
---|
2760 | {
|
---|
2761 | pCtx->cr2 = uFaultAddress;
|
---|
2762 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
2763 | }
|
---|
2764 |
|
---|
2765 | hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
|
---|
2766 | }
|
---|
2767 |
|
---|
2768 |
|
---|
2769 | /**
|
---|
2770 | * Sets a device-not-available (\#NM) exception as pending-for-injection into
|
---|
2771 | * the VM.
|
---|
2772 | *
|
---|
2773 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2774 | */
|
---|
2775 | DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
|
---|
2776 | {
|
---|
2777 | SVMEVENT Event;
|
---|
2778 | Event.u = 0;
|
---|
2779 | Event.n.u1Valid = 1;
|
---|
2780 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2781 | Event.n.u8Vector = X86_XCPT_NM;
|
---|
2782 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
2783 | }
|
---|
2784 |
|
---|
2785 |
|
---|
2786 | /**
|
---|
2787 | * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
|
---|
2788 | *
|
---|
2789 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2790 | */
|
---|
2791 | DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
|
---|
2792 | {
|
---|
2793 | SVMEVENT Event;
|
---|
2794 | Event.u = 0;
|
---|
2795 | Event.n.u1Valid = 1;
|
---|
2796 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2797 | Event.n.u8Vector = X86_XCPT_MF;
|
---|
2798 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
2799 | }
|
---|
2800 |
|
---|
2801 |
|
---|
2802 | /**
|
---|
2803 | * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
|
---|
2804 | *
|
---|
2805 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2806 | */
|
---|
2807 | DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
|
---|
2808 | {
|
---|
2809 | SVMEVENT Event;
|
---|
2810 | Event.u = 0;
|
---|
2811 | Event.n.u1Valid = 1;
|
---|
2812 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2813 | Event.n.u8Vector = X86_XCPT_DF;
|
---|
2814 | Event.n.u1ErrorCodeValid = 1;
|
---|
2815 | Event.n.u32ErrorCode = 0;
|
---|
2816 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 |
|
---|
2820 | /**
|
---|
2821 | * Injects an event into the guest upon VMRUN by updating the relevant field
|
---|
2822 | * in the VMCB.
|
---|
2823 | *
|
---|
2824 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2825 | * @param pVmcb Pointer to the guest VM control block.
|
---|
2826 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2827 | * @param pEvent Pointer to the event.
|
---|
2828 | *
|
---|
2829 | * @remarks No-long-jump zone!!!
|
---|
2830 | * @remarks Requires CR0!
|
---|
2831 | */
|
---|
2832 | DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
|
---|
2833 | {
|
---|
2834 | NOREF(pVCpu); NOREF(pCtx);
|
---|
2835 |
|
---|
2836 | pVmcb->ctrl.EventInject.u = pEvent->u;
|
---|
2837 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
|
---|
2838 |
|
---|
2839 | Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
|
---|
2840 | pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
2841 | }
|
---|
2842 |
|
---|
2843 |
|
---|
2844 |
|
---|
2845 | /**
|
---|
2846 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
2847 | * entering from ring-3 (not longjmp returns).
|
---|
2848 | *
|
---|
2849 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2850 | */
|
---|
2851 | static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
|
---|
2852 | {
|
---|
2853 | Assert(TRPMHasTrap(pVCpu));
|
---|
2854 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
2855 |
|
---|
2856 | uint8_t uVector;
|
---|
2857 | TRPMEVENT enmTrpmEvent;
|
---|
2858 | RTGCUINT uErrCode;
|
---|
2859 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
2860 | uint8_t cbInstr;
|
---|
2861 |
|
---|
2862 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
|
---|
2863 | AssertRC(rc);
|
---|
2864 |
|
---|
2865 | SVMEVENT Event;
|
---|
2866 | Event.u = 0;
|
---|
2867 | Event.n.u1Valid = 1;
|
---|
2868 | Event.n.u8Vector = uVector;
|
---|
2869 |
|
---|
2870 | /* Refer AMD spec. 15.20 "Event Injection" for the format. */
|
---|
2871 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
2872 | {
|
---|
2873 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2874 | switch (uVector)
|
---|
2875 | {
|
---|
2876 | case X86_XCPT_NMI:
|
---|
2877 | {
|
---|
2878 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
2879 | break;
|
---|
2880 | }
|
---|
2881 |
|
---|
2882 | case X86_XCPT_PF:
|
---|
2883 | case X86_XCPT_DF:
|
---|
2884 | case X86_XCPT_TS:
|
---|
2885 | case X86_XCPT_NP:
|
---|
2886 | case X86_XCPT_SS:
|
---|
2887 | case X86_XCPT_GP:
|
---|
2888 | case X86_XCPT_AC:
|
---|
2889 | {
|
---|
2890 | Event.n.u1ErrorCodeValid = 1;
|
---|
2891 | Event.n.u32ErrorCode = uErrCode;
|
---|
2892 | break;
|
---|
2893 | }
|
---|
2894 | }
|
---|
2895 | }
|
---|
2896 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
2897 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
2898 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
2899 | Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
|
---|
2900 | else
|
---|
2901 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
2902 |
|
---|
2903 | rc = TRPMResetTrap(pVCpu);
|
---|
2904 | AssertRC(rc);
|
---|
2905 |
|
---|
2906 | Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
|
---|
2907 | !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
|
---|
2908 |
|
---|
2909 | hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
|
---|
2910 | }
|
---|
2911 |
|
---|
2912 |
|
---|
2913 | /**
|
---|
2914 | * Converts any pending SVM event into a TRPM trap. Typically used when leaving
|
---|
2915 | * AMD-V to execute any instruction.
|
---|
2916 | *
|
---|
2917 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2918 | */
|
---|
2919 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
|
---|
2920 | {
|
---|
2921 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
2922 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
2923 |
|
---|
2924 | SVMEVENT Event;
|
---|
2925 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
2926 |
|
---|
2927 | uint8_t uVector = Event.n.u8Vector;
|
---|
2928 | uint8_t uVectorType = Event.n.u3Type;
|
---|
2929 | TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
|
---|
2930 |
|
---|
2931 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
|
---|
2932 |
|
---|
2933 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
2934 | AssertRC(rc);
|
---|
2935 |
|
---|
2936 | if (Event.n.u1ErrorCodeValid)
|
---|
2937 | TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
|
---|
2938 |
|
---|
2939 | if ( uVectorType == SVM_EVENT_EXCEPTION
|
---|
2940 | && uVector == X86_XCPT_PF)
|
---|
2941 | {
|
---|
2942 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
2943 | Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
|
---|
2944 | }
|
---|
2945 | else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
|
---|
2946 | {
|
---|
2947 | AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
|
---|
2948 | || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
|
---|
2949 | ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
|
---|
2950 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
2951 | }
|
---|
2952 | pVCpu->hm.s.Event.fPending = false;
|
---|
2953 | }
|
---|
2954 |
|
---|
2955 |
|
---|
2956 | /**
|
---|
2957 | * Checks if the guest (or nested-guest) has an interrupt shadow active right
|
---|
2958 | * now.
|
---|
2959 | *
|
---|
2960 | * @returns true if the interrupt shadow is active, false otherwise.
|
---|
2961 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2962 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2963 | *
|
---|
2964 | * @remarks No-long-jump zone!!!
|
---|
2965 | * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
|
---|
2966 | */
|
---|
2967 | DECLINLINE(bool) hmR0SvmIsIntrShadowActive(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2968 | {
|
---|
2969 | /*
|
---|
2970 | * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
|
---|
2971 | * inhibit interrupts or clear any existing interrupt-inhibition.
|
---|
2972 | */
|
---|
2973 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
2974 | {
|
---|
2975 | if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
2976 | {
|
---|
2977 | /*
|
---|
2978 | * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
|
---|
2979 | * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
|
---|
2980 | */
|
---|
2981 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
2982 | return false;
|
---|
2983 | }
|
---|
2984 | return true;
|
---|
2985 | }
|
---|
2986 | return false;
|
---|
2987 | }
|
---|
2988 |
|
---|
2989 |
|
---|
2990 | /**
|
---|
2991 | * Sets the virtual interrupt intercept control in the VMCB which
|
---|
2992 | * instructs AMD-V to cause a \#VMEXIT as soon as the guest is in a state to
|
---|
2993 | * receive interrupts.
|
---|
2994 | *
|
---|
2995 | * @param pVmcb Pointer to the VM control block.
|
---|
2996 | */
|
---|
2997 | DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
|
---|
2998 | {
|
---|
2999 | if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
|
---|
3000 | {
|
---|
3001 | pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1; /* A virtual interrupt is pending. */
|
---|
3002 | pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0; /* Vector not necessary as we #VMEXIT for delivering the interrupt. */
|
---|
3003 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VINTR;
|
---|
3004 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
|
---|
3005 |
|
---|
3006 | Log4(("Setting VINTR intercept\n"));
|
---|
3007 | }
|
---|
3008 | }
|
---|
3009 |
|
---|
3010 |
|
---|
3011 | #if 0
|
---|
3012 | /**
|
---|
3013 | * Clears the virtual interrupt intercept control in the VMCB as
|
---|
3014 | * we are figured the guest is unable process any interrupts
|
---|
3015 | * at this point of time.
|
---|
3016 | *
|
---|
3017 | * @param pVmcb Pointer to the VM control block.
|
---|
3018 | */
|
---|
3019 | DECLINLINE(void) hmR0SvmClearVirtIntrIntercept(PSVMVMCB pVmcb)
|
---|
3020 | {
|
---|
3021 | if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
|
---|
3022 | {
|
---|
3023 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
|
---|
3024 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
3025 | Log4(("Clearing VINTR intercept\n"));
|
---|
3026 | }
|
---|
3027 | }
|
---|
3028 | #endif
|
---|
3029 |
|
---|
3030 |
|
---|
3031 | /**
|
---|
3032 | * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
|
---|
3033 | * \#VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
|
---|
3034 | * virtual NMIs.
|
---|
3035 | *
|
---|
3036 | * @param pVmcb Pointer to the VM control block.
|
---|
3037 | */
|
---|
3038 | DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
|
---|
3039 | {
|
---|
3040 | if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET))
|
---|
3041 | {
|
---|
3042 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_IRET;
|
---|
3043 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
3044 |
|
---|
3045 | Log4(("Setting IRET intercept\n"));
|
---|
3046 | }
|
---|
3047 | }
|
---|
3048 |
|
---|
3049 |
|
---|
3050 | /**
|
---|
3051 | * Clears the IRET intercept control in the VMCB.
|
---|
3052 | *
|
---|
3053 | * @param pVmcb Pointer to the VM control block.
|
---|
3054 | */
|
---|
3055 | DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
|
---|
3056 | {
|
---|
3057 | if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
|
---|
3058 | {
|
---|
3059 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_IRET;
|
---|
3060 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
3061 |
|
---|
3062 | Log4(("Clearing IRET intercept\n"));
|
---|
3063 | }
|
---|
3064 | }
|
---|
3065 |
|
---|
3066 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3067 | /**
|
---|
3068 | * Evaluates the event to be delivered to the nested-guest and sets it as the
|
---|
3069 | * pending event.
|
---|
3070 | *
|
---|
3071 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3072 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3073 | */
|
---|
3074 | static void hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3075 | {
|
---|
3076 | Log4Func(("\n"));
|
---|
3077 |
|
---|
3078 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3079 | Assert(pCtx->hwvirt.svm.fGif);
|
---|
3080 |
|
---|
3081 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
3082 |
|
---|
3083 | SVMEVENT Event;
|
---|
3084 | Event.u = 0;
|
---|
3085 | bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
|
---|
3086 |
|
---|
3087 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
3088 | /*
|
---|
3089 | * Check if the nested-guest can receive NMIs.
|
---|
3090 | * NMIs are higher priority than regular interrupts.
|
---|
3091 | */
|
---|
3092 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI))
|
---|
3093 | {
|
---|
3094 | bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3095 | if (fBlockNmi)
|
---|
3096 | hmR0SvmSetIretIntercept(pVmcbNstGst);
|
---|
3097 | else if (fIntShadow)
|
---|
3098 | {
|
---|
3099 | /** @todo Figure this out, how we shall manage virt. intercept if the
|
---|
3100 | * nested-guest already has one set and/or if we really need it? */
|
---|
3101 | #if 0
|
---|
3102 | hmR0SvmSetVirtIntrIntercept(pVmcbNstGst);
|
---|
3103 | #endif
|
---|
3104 | }
|
---|
3105 | else
|
---|
3106 | {
|
---|
3107 | Log4(("Pending NMI\n"));
|
---|
3108 |
|
---|
3109 | Event.n.u1Valid = 1;
|
---|
3110 | Event.n.u8Vector = X86_XCPT_NMI;
|
---|
3111 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
3112 |
|
---|
3113 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3114 | hmR0SvmSetIretIntercept(pVmcbNstGst);
|
---|
3115 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3116 | return;
|
---|
3117 | }
|
---|
3118 | }
|
---|
3119 |
|
---|
3120 | /*
|
---|
3121 | * Check if the nested-guest can receive external interrupts (PIC/APIC).
|
---|
3122 | */
|
---|
3123 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
3124 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
3125 | {
|
---|
3126 | /* Note: it is critical we call CPUMCanSvmNstGstTakePhysIntr -before- modifying the nested-guests's V_INTR_MASKING
|
---|
3127 | bit, currently it gets modified in hmR0SvmLoadGuestApicStateNested. */
|
---|
3128 | bool const fIntEnabled = CPUMCanSvmNstGstTakePhysIntr(pCtx);
|
---|
3129 | if ( fIntEnabled
|
---|
3130 | && !fIntShadow)
|
---|
3131 | {
|
---|
3132 | uint8_t u8Interrupt;
|
---|
3133 | int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
3134 | if (RT_SUCCESS(rc))
|
---|
3135 | {
|
---|
3136 | Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
|
---|
3137 |
|
---|
3138 | Event.n.u1Valid = 1;
|
---|
3139 | Event.n.u8Vector = u8Interrupt;
|
---|
3140 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3141 |
|
---|
3142 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3143 | }
|
---|
3144 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
3145 | {
|
---|
3146 | /*
|
---|
3147 | * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
|
---|
3148 | * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
|
---|
3149 | * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
|
---|
3150 | */
|
---|
3151 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
3152 | }
|
---|
3153 | else
|
---|
3154 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
3155 | }
|
---|
3156 | else
|
---|
3157 | {
|
---|
3158 | /** @todo Figure this out, how we shall manage virt. intercept if the
|
---|
3159 | * nested-guest already has one set and/or if we really need it? */
|
---|
3160 | #if 0
|
---|
3161 | hmR0SvmSetVirtIntrIntercept(pVmcbNstGst);
|
---|
3162 | #endif
|
---|
3163 | }
|
---|
3164 | }
|
---|
3165 | /*
|
---|
3166 | * Check if the nested-guest can receive virtual interrupts.
|
---|
3167 | */
|
---|
3168 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
|
---|
3169 | {
|
---|
3170 | bool const fIntEnabled = CPUMCanSvmNstGstTakeVirtIntr(pCtx);
|
---|
3171 | if (fIntEnabled)
|
---|
3172 | {
|
---|
3173 | uint8_t const u8Interrupt = CPUMGetSvmNstGstInterrupt(pCtx);
|
---|
3174 | Log4(("Injecting virtual interrupt u8Interrupt=%#x\n", u8Interrupt));
|
---|
3175 |
|
---|
3176 | Event.n.u1Valid = 1;
|
---|
3177 | Event.n.u8Vector = u8Interrupt;
|
---|
3178 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3179 |
|
---|
3180 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
|
---|
3181 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3182 | }
|
---|
3183 | }
|
---|
3184 | }
|
---|
3185 | #endif
|
---|
3186 |
|
---|
3187 | /**
|
---|
3188 | * Evaluates the event to be delivered to the guest and sets it as the pending
|
---|
3189 | * event.
|
---|
3190 | *
|
---|
3191 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3192 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3193 | */
|
---|
3194 | static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3195 | {
|
---|
3196 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3197 | Log4Func(("\n"));
|
---|
3198 |
|
---|
3199 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3200 | bool const fGif = pCtx->hwvirt.svm.fGif;
|
---|
3201 | #else
|
---|
3202 | bool const fGif = true;
|
---|
3203 | #endif
|
---|
3204 | /*
|
---|
3205 | * If the global interrupt flag (GIF) isn't set, even NMIs and other events are blocked.
|
---|
3206 | * See AMD spec. Table 15-10. "Effect of the GIF on Interrupt Handling".
|
---|
3207 | */
|
---|
3208 | if (fGif)
|
---|
3209 | {
|
---|
3210 | bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
|
---|
3211 | bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
3212 | bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3213 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
3214 |
|
---|
3215 | SVMEVENT Event;
|
---|
3216 | Event.u = 0;
|
---|
3217 |
|
---|
3218 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
3219 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
|
---|
3220 | {
|
---|
3221 | if (fBlockNmi)
|
---|
3222 | hmR0SvmSetIretIntercept(pVmcb);
|
---|
3223 | else if (fIntShadow)
|
---|
3224 | hmR0SvmSetVirtIntrIntercept(pVmcb);
|
---|
3225 | else
|
---|
3226 | {
|
---|
3227 | Log4(("Pending NMI\n"));
|
---|
3228 |
|
---|
3229 | Event.n.u1Valid = 1;
|
---|
3230 | Event.n.u8Vector = X86_XCPT_NMI;
|
---|
3231 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
3232 |
|
---|
3233 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3234 | hmR0SvmSetIretIntercept(pVmcb);
|
---|
3235 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3236 | return;
|
---|
3237 | }
|
---|
3238 | }
|
---|
3239 | else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
3240 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
3241 | {
|
---|
3242 | /*
|
---|
3243 | * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
|
---|
3244 | * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
|
---|
3245 | */
|
---|
3246 | if ( !fBlockInt
|
---|
3247 | && !fIntShadow)
|
---|
3248 | {
|
---|
3249 | uint8_t u8Interrupt;
|
---|
3250 | int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
3251 | if (RT_SUCCESS(rc))
|
---|
3252 | {
|
---|
3253 | Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
|
---|
3254 |
|
---|
3255 | Event.n.u1Valid = 1;
|
---|
3256 | Event.n.u8Vector = u8Interrupt;
|
---|
3257 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3258 |
|
---|
3259 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3260 | }
|
---|
3261 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
3262 | {
|
---|
3263 | /*
|
---|
3264 | * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
|
---|
3265 | * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
|
---|
3266 | * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
|
---|
3267 | */
|
---|
3268 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
3269 | }
|
---|
3270 | else
|
---|
3271 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
3272 | }
|
---|
3273 | else
|
---|
3274 | hmR0SvmSetVirtIntrIntercept(pVmcb);
|
---|
3275 | }
|
---|
3276 | }
|
---|
3277 | }
|
---|
3278 |
|
---|
3279 |
|
---|
3280 | /**
|
---|
3281 | * Injects any pending events into the guest or nested-guest.
|
---|
3282 | *
|
---|
3283 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3284 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3285 | * @param pVmcb Pointer to the VM control block.
|
---|
3286 | */
|
---|
3287 | static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
|
---|
3288 | {
|
---|
3289 | Assert(!TRPMHasTrap(pVCpu));
|
---|
3290 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3291 |
|
---|
3292 | bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
|
---|
3293 |
|
---|
3294 | /*
|
---|
3295 | * When executing the nested-guest, we avoid assertions on whether the
|
---|
3296 | * event injection is valid purely based on EFLAGS, as V_INTR_MASKING
|
---|
3297 | * affects the interpretation of interruptibility (see CPUMCanSvmNstGstTakePhysIntr).
|
---|
3298 | */
|
---|
3299 | #ifndef VBOX_WITH_NESTED_HWVIRT
|
---|
3300 | bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
3301 | #endif
|
---|
3302 |
|
---|
3303 | if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
|
---|
3304 | {
|
---|
3305 | SVMEVENT Event;
|
---|
3306 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3307 | Assert(Event.n.u1Valid);
|
---|
3308 |
|
---|
3309 | #ifndef VBOX_WITH_NESTED_HWVIRT
|
---|
3310 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
3311 | {
|
---|
3312 | Assert(!fBlockInt);
|
---|
3313 | Assert(!fIntShadow);
|
---|
3314 | }
|
---|
3315 | else if (Event.n.u3Type == SVM_EVENT_NMI)
|
---|
3316 | Assert(!fIntShadow);
|
---|
3317 | NOREF(fBlockInt);
|
---|
3318 | #endif
|
---|
3319 |
|
---|
3320 | Log4(("Injecting pending HM event\n"));
|
---|
3321 | hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
|
---|
3322 | pVCpu->hm.s.Event.fPending = false;
|
---|
3323 |
|
---|
3324 | #ifdef VBOX_WITH_STATISTICS
|
---|
3325 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
3326 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
3327 | else
|
---|
3328 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
3329 | #endif
|
---|
3330 | }
|
---|
3331 |
|
---|
3332 | /*
|
---|
3333 | * Update the guest interrupt shadow in the guest or nested-guest VMCB.
|
---|
3334 | *
|
---|
3335 | * For nested-guests: We need to update it too for the scenario where IEM executes
|
---|
3336 | * the nested-guest but execution later continues here with an interrupt shadow active.
|
---|
3337 | */
|
---|
3338 | pVmcb->ctrl.u64IntShadow = !!fIntShadow;
|
---|
3339 | }
|
---|
3340 |
|
---|
3341 |
|
---|
3342 | /**
|
---|
3343 | * Reports world-switch error and dumps some useful debug info.
|
---|
3344 | *
|
---|
3345 | * @param pVM The cross context VM structure.
|
---|
3346 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3347 | * @param rcVMRun The return code from VMRUN (or
|
---|
3348 | * VERR_SVM_INVALID_GUEST_STATE for invalid
|
---|
3349 | * guest-state).
|
---|
3350 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3351 | */
|
---|
3352 | static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
|
---|
3353 | {
|
---|
3354 | NOREF(pCtx);
|
---|
3355 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
3356 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
3357 |
|
---|
3358 | if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
|
---|
3359 | {
|
---|
3360 | hmR0DumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
|
---|
3361 | #ifdef VBOX_STRICT
|
---|
3362 | Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
|
---|
3363 | Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
|
---|
3364 | Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
|
---|
3365 | Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
|
---|
3366 | Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
|
---|
3367 | Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
|
---|
3368 | Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
|
---|
3369 | Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
|
---|
3370 | Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
|
---|
3371 | Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
|
---|
3372 |
|
---|
3373 | Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
|
---|
3374 | Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
|
---|
3375 | Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
|
---|
3376 |
|
---|
3377 | Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
|
---|
3378 | Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
|
---|
3379 | Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
|
---|
3380 | Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
|
---|
3381 | Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
|
---|
3382 | Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
|
---|
3383 | Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
|
---|
3384 | Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
|
---|
3385 | Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
|
---|
3386 | Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
|
---|
3387 |
|
---|
3388 | Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
|
---|
3389 | Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
|
---|
3390 | Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
|
---|
3391 | Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
|
---|
3392 | Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
3393 | Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
|
---|
3394 | Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
|
---|
3395 | Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
|
---|
3396 | Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
|
---|
3397 | Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
3398 | Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
|
---|
3399 | Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
|
---|
3400 | Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
|
---|
3401 | Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
|
---|
3402 | Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
|
---|
3403 | Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
|
---|
3404 | Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
|
---|
3405 |
|
---|
3406 | Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
|
---|
3407 | Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
|
---|
3408 |
|
---|
3409 | Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
|
---|
3410 | Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
|
---|
3411 | Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
|
---|
3412 | Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
|
---|
3413 | Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
|
---|
3414 | Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
|
---|
3415 | Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
|
---|
3416 | Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
|
---|
3417 | Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
|
---|
3418 | Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
|
---|
3419 | Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
|
---|
3420 | Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
|
---|
3421 | Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
|
---|
3422 | Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
|
---|
3423 | Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
|
---|
3424 | Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
|
---|
3425 | Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
|
---|
3426 | Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
|
---|
3427 | Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
|
---|
3428 | Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
|
---|
3429 |
|
---|
3430 | Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
|
---|
3431 | Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
|
---|
3432 |
|
---|
3433 | Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
|
---|
3434 | Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
|
---|
3435 | Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
|
---|
3436 | Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
|
---|
3437 |
|
---|
3438 | Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
|
---|
3439 | Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
|
---|
3440 |
|
---|
3441 | Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
|
---|
3442 | Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
|
---|
3443 | Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
|
---|
3444 | Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
|
---|
3445 |
|
---|
3446 | Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
|
---|
3447 | Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
|
---|
3448 | Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
|
---|
3449 | Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
|
---|
3450 | Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
|
---|
3451 | Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
|
---|
3452 | Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
|
---|
3453 |
|
---|
3454 | Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
|
---|
3455 | Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
|
---|
3456 | Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
|
---|
3457 | Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
|
---|
3458 |
|
---|
3459 | Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
|
---|
3460 | Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
|
---|
3461 | Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
|
---|
3462 |
|
---|
3463 | Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
|
---|
3464 | Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
|
---|
3465 | Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
|
---|
3466 | Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
|
---|
3467 | Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
|
---|
3468 | Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
|
---|
3469 | Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
|
---|
3470 | Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
|
---|
3471 | Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
|
---|
3472 | Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
|
---|
3473 | Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
|
---|
3474 | Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
|
---|
3475 | #endif /* VBOX_STRICT */
|
---|
3476 | }
|
---|
3477 | else
|
---|
3478 | Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
|
---|
3479 |
|
---|
3480 | NOREF(pVmcb);
|
---|
3481 | }
|
---|
3482 |
|
---|
3483 |
|
---|
3484 | /**
|
---|
3485 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
3486 | * ring-3 for one reason or another.
|
---|
3487 | *
|
---|
3488 | * @returns VBox status code (information status code included).
|
---|
3489 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
3490 | * ring-3.
|
---|
3491 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
3492 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
3493 | * interrupts)
|
---|
3494 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
3495 | * all EMTs to be in ring-3.
|
---|
3496 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
3497 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
3498 | * to the EM loop.
|
---|
3499 | *
|
---|
3500 | * @param pVM The cross context VM structure.
|
---|
3501 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3502 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3503 | */
|
---|
3504 | static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3505 | {
|
---|
3506 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3507 |
|
---|
3508 | /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
|
---|
3509 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
3510 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
3511 |
|
---|
3512 | /* Update pending interrupts into the APIC's IRR. */
|
---|
3513 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
3514 | APICUpdatePendingInterrupts(pVCpu);
|
---|
3515 |
|
---|
3516 | if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
|
---|
3517 | ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
3518 | || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
|
---|
3519 | ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
3520 | {
|
---|
3521 | /* Pending PGM C3 sync. */
|
---|
3522 | if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
3523 | {
|
---|
3524 | int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
3525 | if (rc != VINF_SUCCESS)
|
---|
3526 | {
|
---|
3527 | Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
3528 | return rc;
|
---|
3529 | }
|
---|
3530 | }
|
---|
3531 |
|
---|
3532 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
3533 | /* -XXX- what was that about single stepping? */
|
---|
3534 | if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
3535 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
3536 | {
|
---|
3537 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
3538 | int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
|
---|
3539 | Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
3540 | return rc;
|
---|
3541 | }
|
---|
3542 |
|
---|
3543 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
3544 | if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
|
---|
3545 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
|
---|
3546 | {
|
---|
3547 | Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
|
---|
3548 | return VINF_EM_PENDING_REQUEST;
|
---|
3549 | }
|
---|
3550 |
|
---|
3551 | /* Pending PGM pool flushes. */
|
---|
3552 | if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
3553 | {
|
---|
3554 | Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
|
---|
3555 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
3556 | }
|
---|
3557 |
|
---|
3558 | /* Pending DMA requests. */
|
---|
3559 | if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
|
---|
3560 | {
|
---|
3561 | Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
|
---|
3562 | return VINF_EM_RAW_TO_R3;
|
---|
3563 | }
|
---|
3564 | }
|
---|
3565 |
|
---|
3566 | return VINF_SUCCESS;
|
---|
3567 | }
|
---|
3568 |
|
---|
3569 |
|
---|
3570 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3571 | /**
|
---|
3572 | * Does the preparations before executing nested-guest code in AMD-V.
|
---|
3573 | *
|
---|
3574 | * @returns VBox status code (informational status codes included).
|
---|
3575 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
3576 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
3577 | *
|
---|
3578 | * @param pVM The cross context VM structure.
|
---|
3579 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3580 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3581 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3582 | *
|
---|
3583 | * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
|
---|
3584 | * @sa hmR0SvmPreRunGuest.
|
---|
3585 | */
|
---|
3586 | static int hmR0SvmPreRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3587 | {
|
---|
3588 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
3589 |
|
---|
3590 | #ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
|
---|
3591 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
3592 | {
|
---|
3593 | Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
3594 | return VINF_EM_RESCHEDULE_REM;
|
---|
3595 | }
|
---|
3596 | #endif
|
---|
3597 |
|
---|
3598 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
3599 | int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
|
---|
3600 | if (rc != VINF_SUCCESS)
|
---|
3601 | return rc;
|
---|
3602 |
|
---|
3603 | if (TRPMHasTrap(pVCpu))
|
---|
3604 | hmR0SvmTrpmTrapToPendingEvent(pVCpu);
|
---|
3605 | else if (!pVCpu->hm.s.Event.fPending)
|
---|
3606 | hmR0SvmEvaluatePendingEventNested(pVCpu, pCtx);
|
---|
3607 |
|
---|
3608 | /*
|
---|
3609 | * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
|
---|
3610 | * Just do it in software, see @bugref{8411}.
|
---|
3611 | * NB: If we could continue a task switch exit we wouldn't need to do this.
|
---|
3612 | */
|
---|
3613 | if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
|
---|
3614 | && pVCpu->hm.s.Event.fPending
|
---|
3615 | && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
|
---|
3616 | {
|
---|
3617 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
3618 | }
|
---|
3619 |
|
---|
3620 | /*
|
---|
3621 | * Load the nested-guest state. We can optimize this later to be avoided when VMRUN is
|
---|
3622 | * just emulated in hmR0SvmExecVmrun since the VMCB is already setup by the nested-hypervisor,
|
---|
3623 | * We currently do this because we may pre-maturely return to ring-3 before executing the
|
---|
3624 | * nested-guest and doing it here is simpler.
|
---|
3625 | */
|
---|
3626 | rc = hmR0SvmLoadGuestStateNested(pVCpu, pCtx);
|
---|
3627 | AssertRCReturn(rc, rc);
|
---|
3628 | /** @todo Get new STAM counter for this? */
|
---|
3629 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
|
---|
3630 |
|
---|
3631 | /*
|
---|
3632 | * No longjmps to ring-3 from this point on!!!
|
---|
3633 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
3634 | * This also disables flushing of the R0-logger instance (if any).
|
---|
3635 | */
|
---|
3636 | VMMRZCallRing3Disable(pVCpu);
|
---|
3637 |
|
---|
3638 | /*
|
---|
3639 | * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
|
---|
3640 | * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
|
---|
3641 | *
|
---|
3642 | * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
|
---|
3643 | * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
|
---|
3644 | *
|
---|
3645 | * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
|
---|
3646 | * executing guest code.
|
---|
3647 | */
|
---|
3648 | pSvmTransient->fEFlags = ASMIntDisableFlags();
|
---|
3649 | if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
3650 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
3651 | {
|
---|
3652 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
3653 | VMMRZCallRing3Enable(pVCpu);
|
---|
3654 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
3655 | return VINF_EM_RAW_TO_R3;
|
---|
3656 | }
|
---|
3657 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
3658 | {
|
---|
3659 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
3660 | VMMRZCallRing3Enable(pVCpu);
|
---|
3661 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
3662 | return VINF_EM_RAW_INTERRUPT;
|
---|
3663 | }
|
---|
3664 |
|
---|
3665 | /*
|
---|
3666 | * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
|
---|
3667 | * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
|
---|
3668 | * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
|
---|
3669 | *
|
---|
3670 | * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
|
---|
3671 | * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
|
---|
3672 | */
|
---|
3673 | if (pVCpu->hm.s.Event.fPending)
|
---|
3674 | {
|
---|
3675 | SVMEVENT Event;
|
---|
3676 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3677 | if ( Event.n.u1Valid
|
---|
3678 | && Event.n.u3Type == SVM_EVENT_NMI
|
---|
3679 | && Event.n.u8Vector == X86_XCPT_NMI
|
---|
3680 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
3681 | {
|
---|
3682 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3683 | }
|
---|
3684 | }
|
---|
3685 |
|
---|
3686 | return VINF_SUCCESS;
|
---|
3687 | }
|
---|
3688 | #endif
|
---|
3689 |
|
---|
3690 |
|
---|
3691 | /**
|
---|
3692 | * Does the preparations before executing guest code in AMD-V.
|
---|
3693 | *
|
---|
3694 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
3695 | * recompiler. We must be cautious what we do here regarding committing
|
---|
3696 | * guest-state information into the VMCB assuming we assuredly execute the guest
|
---|
3697 | * in AMD-V. If we fall back to the recompiler after updating the VMCB and
|
---|
3698 | * clearing the common-state (TRPM/forceflags), we must undo those changes so
|
---|
3699 | * that the recompiler can (and should) use them when it resumes guest
|
---|
3700 | * execution. Otherwise such operations must be done when we can no longer
|
---|
3701 | * exit to ring-3.
|
---|
3702 | *
|
---|
3703 | * @returns VBox status code (informational status codes included).
|
---|
3704 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
3705 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
3706 | *
|
---|
3707 | * @param pVM The cross context VM structure.
|
---|
3708 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3709 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3710 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3711 | */
|
---|
3712 | static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3713 | {
|
---|
3714 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
3715 | Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
3716 |
|
---|
3717 | #if defined(VBOX_WITH_NESTED_HWVIRT) && defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM)
|
---|
3718 |
|
---|
3719 | /* IEM only for executing nested guest, we shouldn't get here. */
|
---|
3720 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
3721 | {
|
---|
3722 | Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
3723 | return VINF_EM_RESCHEDULE_REM;
|
---|
3724 | }
|
---|
3725 | #endif
|
---|
3726 |
|
---|
3727 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
3728 | int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
|
---|
3729 | if (rc != VINF_SUCCESS)
|
---|
3730 | return rc;
|
---|
3731 |
|
---|
3732 | if (TRPMHasTrap(pVCpu))
|
---|
3733 | hmR0SvmTrpmTrapToPendingEvent(pVCpu);
|
---|
3734 | else if (!pVCpu->hm.s.Event.fPending)
|
---|
3735 | hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
|
---|
3736 |
|
---|
3737 | /*
|
---|
3738 | * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
|
---|
3739 | * Just do it in software, see @bugref{8411}.
|
---|
3740 | * NB: If we could continue a task switch exit we wouldn't need to do this.
|
---|
3741 | */
|
---|
3742 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
|
---|
3743 | if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
|
---|
3744 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
3745 |
|
---|
3746 | #ifdef HMSVM_SYNC_FULL_GUEST_STATE
|
---|
3747 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
3748 | #endif
|
---|
3749 |
|
---|
3750 | /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
|
---|
3751 | rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
|
---|
3752 | AssertRCReturn(rc, rc);
|
---|
3753 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
|
---|
3754 |
|
---|
3755 | /*
|
---|
3756 | * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
|
---|
3757 | * so we can update it on the way back if the guest changed the TPR.
|
---|
3758 | */
|
---|
3759 | if (pVCpu->hm.s.svm.fSyncVTpr)
|
---|
3760 | {
|
---|
3761 | if (pVM->hm.s.fTPRPatchingActive)
|
---|
3762 | pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
|
---|
3763 | else
|
---|
3764 | {
|
---|
3765 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
3766 | pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
|
---|
3767 | }
|
---|
3768 | }
|
---|
3769 |
|
---|
3770 | /*
|
---|
3771 | * No longjmps to ring-3 from this point on!!!
|
---|
3772 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
3773 | * This also disables flushing of the R0-logger instance (if any).
|
---|
3774 | */
|
---|
3775 | VMMRZCallRing3Disable(pVCpu);
|
---|
3776 |
|
---|
3777 | /*
|
---|
3778 | * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
|
---|
3779 | * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
|
---|
3780 | *
|
---|
3781 | * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
|
---|
3782 | * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
|
---|
3783 | *
|
---|
3784 | * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
|
---|
3785 | * executing guest code.
|
---|
3786 | */
|
---|
3787 | pSvmTransient->fEFlags = ASMIntDisableFlags();
|
---|
3788 | if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
3789 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
3790 | {
|
---|
3791 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
3792 | VMMRZCallRing3Enable(pVCpu);
|
---|
3793 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
3794 | return VINF_EM_RAW_TO_R3;
|
---|
3795 | }
|
---|
3796 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
3797 | {
|
---|
3798 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
3799 | VMMRZCallRing3Enable(pVCpu);
|
---|
3800 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
3801 | return VINF_EM_RAW_INTERRUPT;
|
---|
3802 | }
|
---|
3803 |
|
---|
3804 | /*
|
---|
3805 | * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
|
---|
3806 | * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
|
---|
3807 | * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
|
---|
3808 | *
|
---|
3809 | * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
|
---|
3810 | * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
|
---|
3811 | */
|
---|
3812 | if (pVCpu->hm.s.Event.fPending)
|
---|
3813 | {
|
---|
3814 | SVMEVENT Event;
|
---|
3815 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3816 | if ( Event.n.u1Valid
|
---|
3817 | && Event.n.u3Type == SVM_EVENT_NMI
|
---|
3818 | && Event.n.u8Vector == X86_XCPT_NMI
|
---|
3819 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
3820 | {
|
---|
3821 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3822 | }
|
---|
3823 | }
|
---|
3824 |
|
---|
3825 | return VINF_SUCCESS;
|
---|
3826 | }
|
---|
3827 |
|
---|
3828 |
|
---|
3829 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3830 | /**
|
---|
3831 | * Prepares to run nested-guest code in AMD-V and we've committed to doing so. This
|
---|
3832 | * means there is no backing out to ring-3 or anywhere else at this point.
|
---|
3833 | *
|
---|
3834 | * @param pVM The cross context VM structure.
|
---|
3835 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3836 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3837 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3838 | *
|
---|
3839 | * @remarks Called with preemption disabled.
|
---|
3840 | * @remarks No-long-jump zone!!!
|
---|
3841 | */
|
---|
3842 | static void hmR0SvmPreRunGuestCommittedNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3843 | {
|
---|
3844 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3845 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
3846 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3847 |
|
---|
3848 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
3849 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
|
---|
3850 |
|
---|
3851 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
3852 | hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcbNstGst);
|
---|
3853 |
|
---|
3854 | if ( pVCpu->hm.s.fPreloadGuestFpu
|
---|
3855 | && !CPUMIsGuestFPUStateActive(pVCpu))
|
---|
3856 | {
|
---|
3857 | CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
|
---|
3858 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
3859 | }
|
---|
3860 |
|
---|
3861 | /* Load the state shared between host and nested-guest (FPU, debug). */
|
---|
3862 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
|
---|
3863 | hmR0SvmLoadSharedState(pVCpu, pVmcbNstGst, pCtx);
|
---|
3864 |
|
---|
3865 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
|
---|
3866 | AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
3867 |
|
---|
3868 | /* Setup TSC offsetting. */
|
---|
3869 | RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
|
---|
3870 | if ( pSvmTransient->fUpdateTscOffsetting
|
---|
3871 | || idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
3872 | {
|
---|
3873 | hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pVmcbNstGst);
|
---|
3874 | pSvmTransient->fUpdateTscOffsetting = false;
|
---|
3875 | }
|
---|
3876 |
|
---|
3877 | /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
|
---|
3878 | if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
3879 | pVmcbNstGst->ctrl.u64VmcbCleanBits = 0;
|
---|
3880 |
|
---|
3881 | /* Store status of the shared guest-host state at the time of VMRUN. */
|
---|
3882 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
3883 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
3884 | {
|
---|
3885 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
|
---|
3886 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
|
---|
3887 | }
|
---|
3888 | else
|
---|
3889 | #endif
|
---|
3890 | {
|
---|
3891 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
3892 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
3893 | }
|
---|
3894 | pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
|
---|
3895 |
|
---|
3896 | /* The TLB flushing would've already been setup by the nested-hypervisor. */
|
---|
3897 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
3898 | hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcbNstGst);
|
---|
3899 | Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
|
---|
3900 |
|
---|
3901 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
3902 |
|
---|
3903 | TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
3904 | to start executing. */
|
---|
3905 |
|
---|
3906 | /*
|
---|
3907 | * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
|
---|
3908 | * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
|
---|
3909 | *
|
---|
3910 | * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
|
---|
3911 | */
|
---|
3912 | uint8_t *pbMsrBitmap = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
|
---|
3913 | if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
|
---|
3914 | && !(pVmcbNstGst->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
3915 | {
|
---|
3916 | hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
3917 | pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
3918 | uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
|
---|
3919 | if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
|
---|
3920 | ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
|
---|
3921 | pSvmTransient->fRestoreTscAuxMsr = true;
|
---|
3922 | }
|
---|
3923 | else
|
---|
3924 | {
|
---|
3925 | hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
3926 | pSvmTransient->fRestoreTscAuxMsr = false;
|
---|
3927 | }
|
---|
3928 |
|
---|
3929 | /*
|
---|
3930 | * If VMCB Clean bits isn't supported by the CPU or exposed by the guest,
|
---|
3931 | * mark all state-bits as dirty indicating to the CPU to re-load from VMCB.
|
---|
3932 | */
|
---|
3933 | if ( !(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
|
---|
3934 | || !(pVM->cpum.ro.GuestFeatures.fSvmVmcbClean))
|
---|
3935 | pVmcbNstGst->ctrl.u64VmcbCleanBits = 0;
|
---|
3936 | }
|
---|
3937 | #endif
|
---|
3938 |
|
---|
3939 |
|
---|
3940 | /**
|
---|
3941 | * Prepares to run guest code in AMD-V and we've committed to doing so. This
|
---|
3942 | * means there is no backing out to ring-3 or anywhere else at this
|
---|
3943 | * point.
|
---|
3944 | *
|
---|
3945 | * @param pVM The cross context VM structure.
|
---|
3946 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3947 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3948 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3949 | *
|
---|
3950 | * @remarks Called with preemption disabled.
|
---|
3951 | * @remarks No-long-jump zone!!!
|
---|
3952 | */
|
---|
3953 | static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3954 | {
|
---|
3955 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3956 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
3957 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3958 |
|
---|
3959 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
3960 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
|
---|
3961 |
|
---|
3962 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
3963 | hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcb);
|
---|
3964 |
|
---|
3965 | if ( pVCpu->hm.s.fPreloadGuestFpu
|
---|
3966 | && !CPUMIsGuestFPUStateActive(pVCpu))
|
---|
3967 | {
|
---|
3968 | CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
|
---|
3969 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
3970 | }
|
---|
3971 |
|
---|
3972 | /* Load the state shared between host and guest (FPU, debug). */
|
---|
3973 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
|
---|
3974 | hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
|
---|
3975 |
|
---|
3976 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
|
---|
3977 | AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
3978 |
|
---|
3979 | /* Setup TSC offsetting. */
|
---|
3980 | RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
|
---|
3981 | if ( pSvmTransient->fUpdateTscOffsetting
|
---|
3982 | || idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
3983 | {
|
---|
3984 | hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pVmcb);
|
---|
3985 | pSvmTransient->fUpdateTscOffsetting = false;
|
---|
3986 | }
|
---|
3987 |
|
---|
3988 | /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
|
---|
3989 | if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
3990 | pVmcb->ctrl.u64VmcbCleanBits = 0;
|
---|
3991 |
|
---|
3992 | /* Store status of the shared guest-host state at the time of VMRUN. */
|
---|
3993 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
3994 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
3995 | {
|
---|
3996 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
|
---|
3997 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
|
---|
3998 | }
|
---|
3999 | else
|
---|
4000 | #endif
|
---|
4001 | {
|
---|
4002 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
4003 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
4004 | }
|
---|
4005 | pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
|
---|
4006 |
|
---|
4007 | /* Flush the appropriate tagged-TLB entries. */
|
---|
4008 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
4009 | hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcb);
|
---|
4010 | Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
|
---|
4011 |
|
---|
4012 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
4013 |
|
---|
4014 | TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
4015 | to start executing. */
|
---|
4016 |
|
---|
4017 | /*
|
---|
4018 | * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
|
---|
4019 | * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
|
---|
4020 | *
|
---|
4021 | * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
|
---|
4022 | */
|
---|
4023 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
4024 | if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
|
---|
4025 | && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
4026 | {
|
---|
4027 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
4028 | pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
4029 | uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
|
---|
4030 | if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
|
---|
4031 | ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
|
---|
4032 | pSvmTransient->fRestoreTscAuxMsr = true;
|
---|
4033 | }
|
---|
4034 | else
|
---|
4035 | {
|
---|
4036 | hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
4037 | pSvmTransient->fRestoreTscAuxMsr = false;
|
---|
4038 | }
|
---|
4039 |
|
---|
4040 | /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
|
---|
4041 | if (!(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
|
---|
4042 | pVmcb->ctrl.u64VmcbCleanBits = 0;
|
---|
4043 | }
|
---|
4044 |
|
---|
4045 |
|
---|
4046 | /**
|
---|
4047 | * Wrapper for running the guest code in AMD-V.
|
---|
4048 | *
|
---|
4049 | * @returns VBox strict status code.
|
---|
4050 | * @param pVM The cross context VM structure.
|
---|
4051 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4052 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4053 | *
|
---|
4054 | * @remarks No-long-jump zone!!!
|
---|
4055 | */
|
---|
4056 | DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4057 | {
|
---|
4058 | /*
|
---|
4059 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
4060 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
4061 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
4062 | */
|
---|
4063 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
4064 | return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
|
---|
4065 | pVCpu->hm.s.svm.pfnVMRun);
|
---|
4066 | #else
|
---|
4067 | return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
|
---|
4068 | #endif
|
---|
4069 | }
|
---|
4070 |
|
---|
4071 |
|
---|
4072 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4073 | /**
|
---|
4074 | * Wrapper for running the nested-guest code in AMD-V.
|
---|
4075 | *
|
---|
4076 | * @returns VBox strict status code.
|
---|
4077 | * @param pVM The cross context VM structure.
|
---|
4078 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4079 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4080 | *
|
---|
4081 | * @remarks No-long-jump zone!!!
|
---|
4082 | */
|
---|
4083 | DECLINLINE(int) hmR0SvmRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4084 | {
|
---|
4085 | /*
|
---|
4086 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
4087 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
4088 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
4089 | */
|
---|
4090 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
4091 | return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
|
---|
4092 | pVCpu->hm.s.svm.pfnVMRun);
|
---|
4093 | #else
|
---|
4094 | return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
|
---|
4095 | #endif
|
---|
4096 | }
|
---|
4097 |
|
---|
4098 |
|
---|
4099 | /**
|
---|
4100 | * Performs some essential restoration of state after running nested-guest code in
|
---|
4101 | * AMD-V.
|
---|
4102 | *
|
---|
4103 | * @param pVM The cross context VM structure.
|
---|
4104 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4105 | * @param pMixedCtx Pointer to the nested-guest-CPU context. The data maybe
|
---|
4106 | * out-of-sync. Make sure to update the required fields
|
---|
4107 | * before using them.
|
---|
4108 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4109 | * @param rcVMRun Return code of VMRUN.
|
---|
4110 | *
|
---|
4111 | * @remarks Called with interrupts disabled.
|
---|
4112 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
4113 | * unconditionally when it is safe to do so.
|
---|
4114 | */
|
---|
4115 | static void hmR0SvmPostRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
|
---|
4116 | {
|
---|
4117 | RT_NOREF(pVM);
|
---|
4118 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4119 |
|
---|
4120 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
4121 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
4122 |
|
---|
4123 | /* TSC read must be done early for maximum accuracy. */
|
---|
4124 | PSVMVMCB pVmcbNstGst = pMixedCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
4125 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
4126 | if (!(pVmcbNstGstCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
|
---|
4127 | TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcbNstGstCtrl->u64TSCOffset);
|
---|
4128 |
|
---|
4129 | if (pSvmTransient->fRestoreTscAuxMsr)
|
---|
4130 | {
|
---|
4131 | uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
4132 | CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
|
---|
4133 | if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
|
---|
4134 | ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
|
---|
4135 | }
|
---|
4136 |
|
---|
4137 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
|
---|
4138 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
4139 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
4140 |
|
---|
4141 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
4142 | ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
|
---|
4143 | VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
|
---|
4144 |
|
---|
4145 | /* Mark the VMCB-state cache as unmodified by VMM. */
|
---|
4146 | pVmcbNstGstCtrl->u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL;
|
---|
4147 |
|
---|
4148 | /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
|
---|
4149 | if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
|
---|
4150 | {
|
---|
4151 | Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
|
---|
4152 | return;
|
---|
4153 | }
|
---|
4154 |
|
---|
4155 | pSvmTransient->u64ExitCode = pVmcbNstGstCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
|
---|
4156 | HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcbNstGstCtrl->u64ExitCode);/* Update the #VMEXIT history array. */
|
---|
4157 | pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
4158 | pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
4159 |
|
---|
4160 | Assert(!pVCpu->hm.s.svm.fSyncVTpr);
|
---|
4161 | hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcbNstGst); /* Save the nested-guest state from the VMCB to the
|
---|
4162 | guest-CPU context. */
|
---|
4163 | }
|
---|
4164 | #endif
|
---|
4165 |
|
---|
4166 | /**
|
---|
4167 | * Performs some essential restoration of state after running guest code in
|
---|
4168 | * AMD-V.
|
---|
4169 | *
|
---|
4170 | * @param pVM The cross context VM structure.
|
---|
4171 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4172 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
4173 | * out-of-sync. Make sure to update the required fields
|
---|
4174 | * before using them.
|
---|
4175 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4176 | * @param rcVMRun Return code of VMRUN.
|
---|
4177 | *
|
---|
4178 | * @remarks Called with interrupts disabled.
|
---|
4179 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
4180 | * unconditionally when it is safe to do so.
|
---|
4181 | */
|
---|
4182 | static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
|
---|
4183 | {
|
---|
4184 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4185 |
|
---|
4186 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
4187 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
4188 |
|
---|
4189 | PSVMVMCB pVmcb =pVCpu->hm.s.svm.pVmcb;
|
---|
4190 | pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
|
---|
4191 |
|
---|
4192 | /* TSC read must be done early for maximum accuracy. */
|
---|
4193 | if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
|
---|
4194 | TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
|
---|
4195 |
|
---|
4196 | if (pSvmTransient->fRestoreTscAuxMsr)
|
---|
4197 | {
|
---|
4198 | uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
4199 | CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
|
---|
4200 | if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
|
---|
4201 | ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
|
---|
4202 | }
|
---|
4203 |
|
---|
4204 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
|
---|
4205 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
4206 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
4207 |
|
---|
4208 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
4209 | ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
|
---|
4210 | VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
|
---|
4211 |
|
---|
4212 | /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
|
---|
4213 | if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
|
---|
4214 | {
|
---|
4215 | Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
|
---|
4216 | return;
|
---|
4217 | }
|
---|
4218 |
|
---|
4219 | pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
|
---|
4220 | HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
|
---|
4221 | pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
4222 | pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
4223 |
|
---|
4224 | hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcb); /* Save the guest state from the VMCB to the guest-CPU context. */
|
---|
4225 |
|
---|
4226 | if (RT_LIKELY(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID))
|
---|
4227 | {
|
---|
4228 | if (pVCpu->hm.s.svm.fSyncVTpr)
|
---|
4229 | {
|
---|
4230 | /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
|
---|
4231 | if ( pVM->hm.s.fTPRPatchingActive
|
---|
4232 | && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
4233 | {
|
---|
4234 | int rc = APICSetTpr(pVCpu, pMixedCtx->msrLSTAR & 0xff);
|
---|
4235 | AssertRC(rc);
|
---|
4236 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
4237 | }
|
---|
4238 | else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
|
---|
4239 | {
|
---|
4240 | int rc = APICSetTpr(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
|
---|
4241 | AssertRC(rc);
|
---|
4242 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
4243 | }
|
---|
4244 | }
|
---|
4245 | }
|
---|
4246 | }
|
---|
4247 |
|
---|
4248 |
|
---|
4249 | /**
|
---|
4250 | * Runs the guest code using AMD-V.
|
---|
4251 | *
|
---|
4252 | * @returns VBox status code.
|
---|
4253 | * @param pVM The cross context VM structure.
|
---|
4254 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4255 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4256 | * @param pcLoops Pointer to the number of executed loops.
|
---|
4257 | */
|
---|
4258 | static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
|
---|
4259 | {
|
---|
4260 | uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
|
---|
4261 | Assert(pcLoops);
|
---|
4262 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
4263 |
|
---|
4264 | SVMTRANSIENT SvmTransient;
|
---|
4265 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4266 |
|
---|
4267 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
4268 | for (;;)
|
---|
4269 | {
|
---|
4270 | Assert(!HMR0SuspendPending());
|
---|
4271 | HMSVM_ASSERT_CPU_SAFE();
|
---|
4272 |
|
---|
4273 | /* Preparatory work for running guest code, this may force us to return
|
---|
4274 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4275 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4276 | rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4277 | if (rc != VINF_SUCCESS)
|
---|
4278 | break;
|
---|
4279 |
|
---|
4280 | /*
|
---|
4281 | * No longjmps to ring-3 from this point on!!!
|
---|
4282 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4283 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4284 | */
|
---|
4285 | hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4286 | rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
|
---|
4287 |
|
---|
4288 | /* Restore any residual host-state and save any bits shared between host
|
---|
4289 | and guest into the guest-CPU state. Re-enables interrupts! */
|
---|
4290 | hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
|
---|
4291 |
|
---|
4292 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
4293 | || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
4294 | {
|
---|
4295 | if (rc == VINF_SUCCESS)
|
---|
4296 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
4297 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
4298 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
|
---|
4299 | break;
|
---|
4300 | }
|
---|
4301 |
|
---|
4302 | /* Handle the #VMEXIT. */
|
---|
4303 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4304 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
4305 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
|
---|
4306 | rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
|
---|
4307 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
4308 | if (rc != VINF_SUCCESS)
|
---|
4309 | break;
|
---|
4310 | if (++(*pcLoops) >= cMaxResumeLoops)
|
---|
4311 | {
|
---|
4312 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4313 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4314 | break;
|
---|
4315 | }
|
---|
4316 | }
|
---|
4317 |
|
---|
4318 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4319 | return rc;
|
---|
4320 | }
|
---|
4321 |
|
---|
4322 |
|
---|
4323 | /**
|
---|
4324 | * Runs the guest code using AMD-V in single step mode.
|
---|
4325 | *
|
---|
4326 | * @returns VBox status code.
|
---|
4327 | * @param pVM The cross context VM structure.
|
---|
4328 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4329 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4330 | * @param pcLoops Pointer to the number of executed loops.
|
---|
4331 | */
|
---|
4332 | static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
|
---|
4333 | {
|
---|
4334 | uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
|
---|
4335 | Assert(pcLoops);
|
---|
4336 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
4337 |
|
---|
4338 | SVMTRANSIENT SvmTransient;
|
---|
4339 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4340 |
|
---|
4341 | uint16_t uCsStart = pCtx->cs.Sel;
|
---|
4342 | uint64_t uRipStart = pCtx->rip;
|
---|
4343 |
|
---|
4344 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
4345 | for (;;)
|
---|
4346 | {
|
---|
4347 | Assert(!HMR0SuspendPending());
|
---|
4348 | AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
|
---|
4349 | ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
|
---|
4350 | (unsigned)RTMpCpuId(), *pcLoops));
|
---|
4351 |
|
---|
4352 | /* Preparatory work for running guest code, this may force us to return
|
---|
4353 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4354 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4355 | rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4356 | if (rc != VINF_SUCCESS)
|
---|
4357 | break;
|
---|
4358 |
|
---|
4359 | /*
|
---|
4360 | * No longjmps to ring-3 from this point on!!!
|
---|
4361 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4362 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4363 | */
|
---|
4364 | VMMRZCallRing3Disable(pVCpu);
|
---|
4365 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
4366 | hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4367 |
|
---|
4368 | rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
|
---|
4369 |
|
---|
4370 | /*
|
---|
4371 | * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
|
---|
4372 | * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
|
---|
4373 | */
|
---|
4374 | hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
|
---|
4375 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
4376 | || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
4377 | {
|
---|
4378 | if (rc == VINF_SUCCESS)
|
---|
4379 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
4380 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
4381 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
|
---|
4382 | return rc;
|
---|
4383 | }
|
---|
4384 |
|
---|
4385 | /* Handle the #VMEXIT. */
|
---|
4386 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4387 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
4388 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
|
---|
4389 | rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
|
---|
4390 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
4391 | if (rc != VINF_SUCCESS)
|
---|
4392 | break;
|
---|
4393 | if (++(*pcLoops) >= cMaxResumeLoops)
|
---|
4394 | {
|
---|
4395 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4396 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4397 | break;
|
---|
4398 | }
|
---|
4399 |
|
---|
4400 | /*
|
---|
4401 | * Did the RIP change, if so, consider it a single step.
|
---|
4402 | * Otherwise, make sure one of the TFs gets set.
|
---|
4403 | */
|
---|
4404 | if ( pCtx->rip != uRipStart
|
---|
4405 | || pCtx->cs.Sel != uCsStart)
|
---|
4406 | {
|
---|
4407 | rc = VINF_EM_DBG_STEPPED;
|
---|
4408 | break;
|
---|
4409 | }
|
---|
4410 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
4411 | }
|
---|
4412 |
|
---|
4413 | /*
|
---|
4414 | * Clear the X86_EFL_TF if necessary.
|
---|
4415 | */
|
---|
4416 | if (pVCpu->hm.s.fClearTrapFlag)
|
---|
4417 | {
|
---|
4418 | pVCpu->hm.s.fClearTrapFlag = false;
|
---|
4419 | pCtx->eflags.Bits.u1TF = 0;
|
---|
4420 | }
|
---|
4421 |
|
---|
4422 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4423 | return rc;
|
---|
4424 | }
|
---|
4425 |
|
---|
4426 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4427 | /**
|
---|
4428 | * Runs the nested-guest code using AMD-V.
|
---|
4429 | *
|
---|
4430 | * @returns VBox status code.
|
---|
4431 | * @param pVM The cross context VM structure.
|
---|
4432 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4433 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4434 | * @param pcLoops Pointer to the number of executed loops. If we're switching
|
---|
4435 | * from the guest-code execution loop to this nested-guest
|
---|
4436 | * execution loop pass the remainder value, else pass 0.
|
---|
4437 | */
|
---|
4438 | static int hmR0SvmRunGuestCodeNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
|
---|
4439 | {
|
---|
4440 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
4441 | Assert(pcLoops);
|
---|
4442 | Assert(*pcLoops <= pVM->hm.s.cMaxResumeLoops);
|
---|
4443 |
|
---|
4444 | SVMTRANSIENT SvmTransient;
|
---|
4445 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4446 |
|
---|
4447 | int rc = VERR_INTERNAL_ERROR_4;
|
---|
4448 | for (;;)
|
---|
4449 | {
|
---|
4450 | Assert(!HMR0SuspendPending());
|
---|
4451 | HMSVM_ASSERT_CPU_SAFE();
|
---|
4452 |
|
---|
4453 | /* Preparatory work for running nested-guest code, this may force us to return
|
---|
4454 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4455 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4456 | rc = hmR0SvmPreRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4457 | if (rc != VINF_SUCCESS)
|
---|
4458 | break;
|
---|
4459 |
|
---|
4460 | /*
|
---|
4461 | * No longjmps to ring-3 from this point on!!!
|
---|
4462 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4463 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4464 | */
|
---|
4465 | hmR0SvmPreRunGuestCommittedNested(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4466 |
|
---|
4467 | rc = hmR0SvmRunGuestNested(pVM, pVCpu, pCtx);
|
---|
4468 |
|
---|
4469 | /* Restore any residual host-state and save any bits shared between host
|
---|
4470 | and guest into the guest-CPU state. Re-enables interrupts! */
|
---|
4471 | hmR0SvmPostRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient, rc);
|
---|
4472 |
|
---|
4473 | /** @todo This needs some work... we probably should cause a \#VMEXIT on
|
---|
4474 | * SVM_EXIT_INVALID and handle rc != VINF_SUCCESS differently. */
|
---|
4475 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
4476 | || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
4477 | {
|
---|
4478 | if (rc == VINF_SUCCESS)
|
---|
4479 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
4480 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
4481 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
|
---|
4482 | break;
|
---|
4483 | }
|
---|
4484 |
|
---|
4485 | /* Handle the #VMEXIT. */
|
---|
4486 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4487 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
4488 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
|
---|
4489 | rc = hmR0SvmHandleExitNested(pVCpu, pCtx, &SvmTransient);
|
---|
4490 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
4491 | if (rc != VINF_SUCCESS)
|
---|
4492 | break;
|
---|
4493 | if (++(*pcLoops) >= pVM->hm.s.cMaxResumeLoops)
|
---|
4494 | {
|
---|
4495 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4496 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4497 | break;
|
---|
4498 | }
|
---|
4499 |
|
---|
4500 | /** @todo handle single-stepping */
|
---|
4501 | }
|
---|
4502 |
|
---|
4503 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4504 | return rc;
|
---|
4505 | }
|
---|
4506 | #endif
|
---|
4507 |
|
---|
4508 |
|
---|
4509 | /**
|
---|
4510 | * Runs the guest code using AMD-V.
|
---|
4511 | *
|
---|
4512 | * @returns Strict VBox status code.
|
---|
4513 | * @param pVM The cross context VM structure.
|
---|
4514 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4515 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4516 | */
|
---|
4517 | VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4518 | {
|
---|
4519 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4520 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
4521 | VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
|
---|
4522 |
|
---|
4523 | uint32_t cLoops = 0;
|
---|
4524 | int rc;
|
---|
4525 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4526 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
4527 | #endif
|
---|
4528 | {
|
---|
4529 | if (!pVCpu->hm.s.fSingleInstruction)
|
---|
4530 | rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx, &cLoops);
|
---|
4531 | else
|
---|
4532 | rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx, &cLoops);
|
---|
4533 | }
|
---|
4534 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4535 | else
|
---|
4536 | {
|
---|
4537 | rc = VINF_SVM_VMRUN;
|
---|
4538 | }
|
---|
4539 |
|
---|
4540 | /* Re-check the nested-guest condition here as we may be transitioning from the normal
|
---|
4541 | execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
|
---|
4542 | if (rc == VINF_SVM_VMRUN)
|
---|
4543 | {
|
---|
4544 | rc = hmR0SvmRunGuestCodeNested(pVM, pVCpu, pCtx, &cLoops);
|
---|
4545 | if (rc == VINF_SVM_VMEXIT)
|
---|
4546 | rc = VINF_SUCCESS;
|
---|
4547 | }
|
---|
4548 | #endif
|
---|
4549 |
|
---|
4550 | /* Fixup error codes. */
|
---|
4551 | if (rc == VERR_EM_INTERPRETER)
|
---|
4552 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
4553 | else if (rc == VINF_EM_RESET)
|
---|
4554 | rc = VINF_EM_TRIPLE_FAULT;
|
---|
4555 |
|
---|
4556 | /* Prepare to return to ring-3. This will remove longjmp notifications. */
|
---|
4557 | rc = hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
|
---|
4558 | Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
|
---|
4559 | return rc;
|
---|
4560 | }
|
---|
4561 |
|
---|
4562 |
|
---|
4563 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4564 | /**
|
---|
4565 | * Determines whether an IOIO intercept is active for the nested-guest or not.
|
---|
4566 | *
|
---|
4567 | * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
|
---|
4568 | * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
|
---|
4569 | */
|
---|
4570 | static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
|
---|
4571 | {
|
---|
4572 | const uint16_t u16Port = pIoExitInfo->n.u16Port;
|
---|
4573 | const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
|
---|
4574 | const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
|
---|
4575 | const uint8_t cAddrSizeBits = (pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) << 4;
|
---|
4576 | const uint8_t iEffSeg = pIoExitInfo->n.u3SEG;
|
---|
4577 | const bool fRep = pIoExitInfo->n.u1REP;
|
---|
4578 | const bool fStrIo = pIoExitInfo->n.u1STR;
|
---|
4579 |
|
---|
4580 | return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
|
---|
4581 | NULL /* pIoExitInfo */);
|
---|
4582 | }
|
---|
4583 |
|
---|
4584 |
|
---|
4585 | /**
|
---|
4586 | * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
|
---|
4587 | * SVM_EXIT_INVALID).
|
---|
4588 | *
|
---|
4589 | * @returns VBox status code (informational status codes included).
|
---|
4590 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4591 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4592 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4593 | */
|
---|
4594 | static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4595 | {
|
---|
4596 | Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
|
---|
4597 | Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
|
---|
4598 |
|
---|
4599 | #define HM_SVM_HANDLE_XCPT_EXIT_NESTED(a_uXcpt, a_XcptExitFn) \
|
---|
4600 | do \
|
---|
4601 | { \
|
---|
4602 | if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(a_uXcpt)) \
|
---|
4603 | return hmR0SvmExecVmexit(pVCpu, pCtx); \
|
---|
4604 | return a_XcptExitFn(pVCpu, pCtx, pSvmTransient); \
|
---|
4605 | } while (0) \
|
---|
4606 |
|
---|
4607 | /*
|
---|
4608 | * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected
|
---|
4609 | * by the nested-guest. If it isn't, it should be handled by the (outer) guest.
|
---|
4610 | */
|
---|
4611 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
4612 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
4613 | PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
4614 | switch (pSvmTransient->u64ExitCode)
|
---|
4615 | {
|
---|
4616 | case SVM_EXIT_CPUID:
|
---|
4617 | {
|
---|
4618 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_CPUID)
|
---|
4619 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4620 | return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
|
---|
4621 | }
|
---|
4622 |
|
---|
4623 | case SVM_EXIT_RDTSC:
|
---|
4624 | {
|
---|
4625 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC)
|
---|
4626 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4627 | return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
|
---|
4628 | }
|
---|
4629 |
|
---|
4630 | case SVM_EXIT_RDTSCP:
|
---|
4631 | {
|
---|
4632 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP)
|
---|
4633 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4634 | return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
|
---|
4635 | }
|
---|
4636 |
|
---|
4637 |
|
---|
4638 | case SVM_EXIT_MONITOR:
|
---|
4639 | {
|
---|
4640 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_MONITOR)
|
---|
4641 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4642 | return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
|
---|
4643 | }
|
---|
4644 |
|
---|
4645 | case SVM_EXIT_MWAIT:
|
---|
4646 | {
|
---|
4647 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_MWAIT)
|
---|
4648 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4649 | return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
|
---|
4650 | }
|
---|
4651 |
|
---|
4652 | case SVM_EXIT_HLT:
|
---|
4653 | {
|
---|
4654 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_HLT)
|
---|
4655 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4656 | return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
|
---|
4657 | }
|
---|
4658 |
|
---|
4659 | case SVM_EXIT_MSR:
|
---|
4660 | {
|
---|
4661 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_MSR_PROT)
|
---|
4662 | {
|
---|
4663 | uint32_t const idMsr = pCtx->ecx;
|
---|
4664 | uint16_t offMsrpm;
|
---|
4665 | uint32_t uMsrpmBit;
|
---|
4666 | int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
|
---|
4667 | if (RT_SUCCESS(rc))
|
---|
4668 | {
|
---|
4669 | void const *pvMsrBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
|
---|
4670 | bool const fInterceptRead = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit);
|
---|
4671 | bool const fInterceptWrite = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit + 1);
|
---|
4672 |
|
---|
4673 | if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
|
---|
4674 | || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
|
---|
4675 | {
|
---|
4676 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4677 | }
|
---|
4678 | }
|
---|
4679 | else
|
---|
4680 | {
|
---|
4681 | /*
|
---|
4682 | * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
|
---|
4683 | * See AMD-V spec. "15.11 MSR Intercepts".
|
---|
4684 | */
|
---|
4685 | Assert(rc == VERR_OUT_OF_RANGE);
|
---|
4686 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4687 | }
|
---|
4688 | }
|
---|
4689 | return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
|
---|
4690 | }
|
---|
4691 |
|
---|
4692 | case SVM_EXIT_IOIO:
|
---|
4693 | {
|
---|
4694 | /*
|
---|
4695 | * Figure out if the IO port access is intercepted by the nested-guest.
|
---|
4696 | */
|
---|
4697 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_IOIO_PROT)
|
---|
4698 | {
|
---|
4699 | void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
|
---|
4700 | SVMIOIOEXITINFO IoExitInfo;
|
---|
4701 | IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
|
---|
4702 | bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
|
---|
4703 | if (fIntercept)
|
---|
4704 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4705 | }
|
---|
4706 | return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
|
---|
4707 | }
|
---|
4708 |
|
---|
4709 | case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
|
---|
4710 | {
|
---|
4711 | Assert(!pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging);
|
---|
4712 | if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_PF))
|
---|
4713 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4714 |
|
---|
4715 | /* If the nested-guest isn't for intercepting #PFs, simply forward the #PF to the guest. */
|
---|
4716 | uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
|
---|
4717 | RTGCUINTPTR const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
|
---|
4718 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
4719 | return VINF_SUCCESS;
|
---|
4720 | }
|
---|
4721 |
|
---|
4722 | case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
|
---|
4723 | HM_SVM_HANDLE_XCPT_EXIT_NESTED(X86_XCPT_NM, hmR0SvmExitXcptNM);
|
---|
4724 |
|
---|
4725 | case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
|
---|
4726 | HM_SVM_HANDLE_XCPT_EXIT_NESTED(X86_XCPT_UD, hmR0SvmExitXcptUD);
|
---|
4727 |
|
---|
4728 | case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
|
---|
4729 | HM_SVM_HANDLE_XCPT_EXIT_NESTED(X86_XCPT_MF, hmR0SvmExitXcptMF);
|
---|
4730 |
|
---|
4731 | case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
|
---|
4732 | HM_SVM_HANDLE_XCPT_EXIT_NESTED(X86_XCPT_DB, hmR0SvmExitXcptDB);
|
---|
4733 |
|
---|
4734 | case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
|
---|
4735 | HM_SVM_HANDLE_XCPT_EXIT_NESTED(X86_XCPT_AC, hmR0SvmExitXcptAC);
|
---|
4736 |
|
---|
4737 | case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
|
---|
4738 | HM_SVM_HANDLE_XCPT_EXIT_NESTED(X86_XCPT_BP, hmR0SvmExitXcptBP);
|
---|
4739 |
|
---|
4740 | case SVM_EXIT_READ_CR0:
|
---|
4741 | case SVM_EXIT_READ_CR3:
|
---|
4742 | case SVM_EXIT_READ_CR4:
|
---|
4743 | {
|
---|
4744 | if (pVmcbNstGstCache->u16InterceptRdCRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0)))
|
---|
4745 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4746 | return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
|
---|
4747 | }
|
---|
4748 |
|
---|
4749 | case SVM_EXIT_WRITE_CR0:
|
---|
4750 | case SVM_EXIT_WRITE_CR3:
|
---|
4751 | case SVM_EXIT_WRITE_CR4:
|
---|
4752 | case SVM_EXIT_WRITE_CR8:
|
---|
4753 | {
|
---|
4754 | if (pVmcbNstGstCache->u16InterceptWrCRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)))
|
---|
4755 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4756 | return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
|
---|
4757 | }
|
---|
4758 |
|
---|
4759 | case SVM_EXIT_PAUSE:
|
---|
4760 | {
|
---|
4761 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_PAUSE)
|
---|
4762 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4763 | return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
|
---|
4764 | }
|
---|
4765 |
|
---|
4766 | case SVM_EXIT_VINTR:
|
---|
4767 | {
|
---|
4768 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
|
---|
4769 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4770 | return hmR0SvmNestedExitVIntr(pVCpu, pCtx, pSvmTransient);
|
---|
4771 | }
|
---|
4772 |
|
---|
4773 | case SVM_EXIT_INTR:
|
---|
4774 | {
|
---|
4775 | /* We shouldn't direct physical interrupts to the nested-guest. */
|
---|
4776 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
4777 | }
|
---|
4778 |
|
---|
4779 | case SVM_EXIT_FERR_FREEZE:
|
---|
4780 | {
|
---|
4781 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_FERR_FREEZE)
|
---|
4782 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4783 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
4784 | }
|
---|
4785 |
|
---|
4786 | case SVM_EXIT_NMI:
|
---|
4787 | {
|
---|
4788 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_NMI)
|
---|
4789 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4790 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
4791 | }
|
---|
4792 |
|
---|
4793 | case SVM_EXIT_INVLPG:
|
---|
4794 | {
|
---|
4795 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INVLPG)
|
---|
4796 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4797 | return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
|
---|
4798 | }
|
---|
4799 |
|
---|
4800 | case SVM_EXIT_WBINVD:
|
---|
4801 | {
|
---|
4802 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_WBINVD)
|
---|
4803 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4804 | return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
|
---|
4805 | }
|
---|
4806 |
|
---|
4807 | case SVM_EXIT_INVD:
|
---|
4808 | {
|
---|
4809 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INVD)
|
---|
4810 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4811 | return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
|
---|
4812 | }
|
---|
4813 |
|
---|
4814 | case SVM_EXIT_RDPMC:
|
---|
4815 | {
|
---|
4816 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDPMC)
|
---|
4817 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4818 | return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
|
---|
4819 | }
|
---|
4820 |
|
---|
4821 | default:
|
---|
4822 | {
|
---|
4823 | switch (pSvmTransient->u64ExitCode)
|
---|
4824 | {
|
---|
4825 | case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
|
---|
4826 | case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
|
---|
4827 | case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
|
---|
4828 | case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
|
---|
4829 | {
|
---|
4830 | if (pVmcbNstGstCache->u16InterceptRdDRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_READ_DR0)))
|
---|
4831 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4832 | return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
4833 | }
|
---|
4834 |
|
---|
4835 | case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
|
---|
4836 | case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
|
---|
4837 | case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
|
---|
4838 | case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
|
---|
4839 | {
|
---|
4840 | if (pVmcbNstGstCache->u16InterceptWrDRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_DR0)))
|
---|
4841 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4842 | return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
|
---|
4843 | }
|
---|
4844 |
|
---|
4845 | /* The exceptions not handled here are already handled individually above (as they occur more frequently). */
|
---|
4846 | case SVM_EXIT_EXCEPTION_0: /*case SVM_EXIT_EXCEPTION_1:*/ case SVM_EXIT_EXCEPTION_2:
|
---|
4847 | /*case SVM_EXIT_EXCEPTION_3:*/ case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5:
|
---|
4848 | /*case SVM_EXIT_EXCEPTION_6:*/ /*case SVM_EXIT_EXCEPTION_7:*/ case SVM_EXIT_EXCEPTION_8:
|
---|
4849 | case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
|
---|
4850 | case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: /*case SVM_EXIT_EXCEPTION_14:*/
|
---|
4851 | case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: /*case SVM_EXIT_EXCEPTION_17:*/
|
---|
4852 | case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_20:
|
---|
4853 | case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
|
---|
4854 | case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26:
|
---|
4855 | case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29:
|
---|
4856 | case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
|
---|
4857 | {
|
---|
4858 | if (pVmcbNstGstCache->u32InterceptXcpt & (1U << (uint32_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0)))
|
---|
4859 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4860 | /** @todo Write hmR0SvmExitXcptGeneric! */
|
---|
4861 | return VERR_NOT_IMPLEMENTED;
|
---|
4862 | }
|
---|
4863 |
|
---|
4864 | case SVM_EXIT_XSETBV:
|
---|
4865 | {
|
---|
4866 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_XSETBV)
|
---|
4867 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4868 | return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
|
---|
4869 | }
|
---|
4870 |
|
---|
4871 | case SVM_EXIT_TASK_SWITCH:
|
---|
4872 | {
|
---|
4873 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_TASK_SWITCH)
|
---|
4874 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4875 | return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
|
---|
4876 | }
|
---|
4877 |
|
---|
4878 | case SVM_EXIT_IRET:
|
---|
4879 | {
|
---|
4880 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
|
---|
4881 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4882 | return hmR0SvmNestedExitIret(pVCpu, pCtx, pSvmTransient);
|
---|
4883 | }
|
---|
4884 |
|
---|
4885 | case SVM_EXIT_SHUTDOWN:
|
---|
4886 | {
|
---|
4887 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_SHUTDOWN)
|
---|
4888 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4889 | return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
|
---|
4890 | }
|
---|
4891 |
|
---|
4892 | case SVM_EXIT_SMI:
|
---|
4893 | {
|
---|
4894 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_SMI)
|
---|
4895 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4896 | return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
|
---|
4897 | }
|
---|
4898 |
|
---|
4899 | case SVM_EXIT_INIT:
|
---|
4900 | {
|
---|
4901 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INIT)
|
---|
4902 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4903 | return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
|
---|
4904 | }
|
---|
4905 |
|
---|
4906 | case SVM_EXIT_VMMCALL:
|
---|
4907 | {
|
---|
4908 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMMCALL)
|
---|
4909 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4910 | return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
|
---|
4911 | }
|
---|
4912 |
|
---|
4913 | case SVM_EXIT_CLGI:
|
---|
4914 | {
|
---|
4915 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_CLGI)
|
---|
4916 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4917 | return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
|
---|
4918 | }
|
---|
4919 |
|
---|
4920 | case SVM_EXIT_STGI:
|
---|
4921 | {
|
---|
4922 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_STGI)
|
---|
4923 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4924 | return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
|
---|
4925 | }
|
---|
4926 |
|
---|
4927 | case SVM_EXIT_VMLOAD:
|
---|
4928 | {
|
---|
4929 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMLOAD)
|
---|
4930 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4931 | return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
|
---|
4932 | }
|
---|
4933 |
|
---|
4934 | case SVM_EXIT_VMSAVE:
|
---|
4935 | {
|
---|
4936 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMSAVE)
|
---|
4937 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4938 | return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
|
---|
4939 | }
|
---|
4940 |
|
---|
4941 | case SVM_EXIT_INVLPGA:
|
---|
4942 | {
|
---|
4943 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INVLPGA)
|
---|
4944 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4945 | return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
|
---|
4946 | }
|
---|
4947 |
|
---|
4948 | case SVM_EXIT_VMRUN:
|
---|
4949 | {
|
---|
4950 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMRUN)
|
---|
4951 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4952 | return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
|
---|
4953 | }
|
---|
4954 |
|
---|
4955 | case SVM_EXIT_RSM:
|
---|
4956 | {
|
---|
4957 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RSM)
|
---|
4958 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4959 | return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
4960 | }
|
---|
4961 |
|
---|
4962 | case SVM_EXIT_SKINIT:
|
---|
4963 | {
|
---|
4964 | if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_SKINIT)
|
---|
4965 | hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
4966 | return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
4967 | }
|
---|
4968 |
|
---|
4969 | case SVM_EXIT_NPF:
|
---|
4970 | {
|
---|
4971 | /* We don't yet support nested-paging for nested-guests, so this should never really happen. */
|
---|
4972 | Assert(!pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging);
|
---|
4973 | return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
|
---|
4974 | }
|
---|
4975 |
|
---|
4976 | default:
|
---|
4977 | {
|
---|
4978 | AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
|
---|
4979 | pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
|
---|
4980 | return VERR_SVM_UNKNOWN_EXIT;
|
---|
4981 | }
|
---|
4982 | }
|
---|
4983 | }
|
---|
4984 | }
|
---|
4985 | /* not reached */
|
---|
4986 |
|
---|
4987 | #undef HM_SVM_HANDLE_XCPT_EXIT_NESTED
|
---|
4988 | }
|
---|
4989 | #endif
|
---|
4990 |
|
---|
4991 |
|
---|
4992 | /**
|
---|
4993 | * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
|
---|
4994 | *
|
---|
4995 | * @returns VBox status code (informational status codes included).
|
---|
4996 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4997 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4998 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4999 | */
|
---|
5000 | static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5001 | {
|
---|
5002 | Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
|
---|
5003 | Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
|
---|
5004 |
|
---|
5005 | /*
|
---|
5006 | * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
|
---|
5007 | * normal workloads (for some definition of "normal").
|
---|
5008 | */
|
---|
5009 | uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
|
---|
5010 | switch (pSvmTransient->u64ExitCode)
|
---|
5011 | {
|
---|
5012 | case SVM_EXIT_NPF:
|
---|
5013 | return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
|
---|
5014 |
|
---|
5015 | case SVM_EXIT_IOIO:
|
---|
5016 | return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
|
---|
5017 |
|
---|
5018 | case SVM_EXIT_RDTSC:
|
---|
5019 | return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
|
---|
5020 |
|
---|
5021 | case SVM_EXIT_RDTSCP:
|
---|
5022 | return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
|
---|
5023 |
|
---|
5024 | case SVM_EXIT_CPUID:
|
---|
5025 | return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
|
---|
5026 |
|
---|
5027 | case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
|
---|
5028 | return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
|
---|
5029 |
|
---|
5030 | case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
|
---|
5031 | return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
|
---|
5032 |
|
---|
5033 | case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
|
---|
5034 | return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
5035 |
|
---|
5036 | case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
|
---|
5037 | return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
|
---|
5038 |
|
---|
5039 | case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
|
---|
5040 | return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
|
---|
5041 |
|
---|
5042 | case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
|
---|
5043 | return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
|
---|
5044 |
|
---|
5045 | case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
|
---|
5046 | return hmR0SvmExitXcptBP(pVCpu, pCtx, pSvmTransient);
|
---|
5047 |
|
---|
5048 | case SVM_EXIT_MONITOR:
|
---|
5049 | return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
|
---|
5050 |
|
---|
5051 | case SVM_EXIT_MWAIT:
|
---|
5052 | return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
|
---|
5053 |
|
---|
5054 | case SVM_EXIT_HLT:
|
---|
5055 | return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
|
---|
5056 |
|
---|
5057 | case SVM_EXIT_READ_CR0:
|
---|
5058 | case SVM_EXIT_READ_CR3:
|
---|
5059 | case SVM_EXIT_READ_CR4:
|
---|
5060 | return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
|
---|
5061 |
|
---|
5062 | case SVM_EXIT_WRITE_CR0:
|
---|
5063 | case SVM_EXIT_WRITE_CR3:
|
---|
5064 | case SVM_EXIT_WRITE_CR4:
|
---|
5065 | case SVM_EXIT_WRITE_CR8:
|
---|
5066 | return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
|
---|
5067 |
|
---|
5068 | case SVM_EXIT_PAUSE:
|
---|
5069 | return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
|
---|
5070 |
|
---|
5071 | case SVM_EXIT_VMMCALL:
|
---|
5072 | return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
|
---|
5073 |
|
---|
5074 | case SVM_EXIT_VINTR:
|
---|
5075 | return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
|
---|
5076 |
|
---|
5077 | case SVM_EXIT_INTR:
|
---|
5078 | case SVM_EXIT_FERR_FREEZE:
|
---|
5079 | case SVM_EXIT_NMI:
|
---|
5080 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
5081 |
|
---|
5082 | case SVM_EXIT_MSR:
|
---|
5083 | return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
|
---|
5084 |
|
---|
5085 | case SVM_EXIT_INVLPG:
|
---|
5086 | return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
|
---|
5087 |
|
---|
5088 | case SVM_EXIT_WBINVD:
|
---|
5089 | return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
|
---|
5090 |
|
---|
5091 | case SVM_EXIT_INVD:
|
---|
5092 | return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
|
---|
5093 |
|
---|
5094 | case SVM_EXIT_RDPMC:
|
---|
5095 | return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
|
---|
5096 |
|
---|
5097 | default:
|
---|
5098 | {
|
---|
5099 | switch (pSvmTransient->u64ExitCode)
|
---|
5100 | {
|
---|
5101 | case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
|
---|
5102 | case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
|
---|
5103 | case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
|
---|
5104 | case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
|
---|
5105 | return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
5106 |
|
---|
5107 | case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
|
---|
5108 | case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
|
---|
5109 | case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
|
---|
5110 | case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
|
---|
5111 | return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
|
---|
5112 |
|
---|
5113 | case SVM_EXIT_XSETBV:
|
---|
5114 | return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
|
---|
5115 |
|
---|
5116 | case SVM_EXIT_TASK_SWITCH:
|
---|
5117 | return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
|
---|
5118 |
|
---|
5119 | case SVM_EXIT_IRET:
|
---|
5120 | return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
|
---|
5121 |
|
---|
5122 | case SVM_EXIT_SHUTDOWN:
|
---|
5123 | return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
|
---|
5124 |
|
---|
5125 | case SVM_EXIT_SMI:
|
---|
5126 | case SVM_EXIT_INIT:
|
---|
5127 | {
|
---|
5128 | /*
|
---|
5129 | * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
|
---|
5130 | * If it ever does, we want to know about it so log the exit code and bail.
|
---|
5131 | */
|
---|
5132 | return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
|
---|
5133 | }
|
---|
5134 |
|
---|
5135 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
5136 | case SVM_EXIT_CLGI: return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
|
---|
5137 | case SVM_EXIT_STGI: return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
|
---|
5138 | case SVM_EXIT_VMLOAD: return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
|
---|
5139 | case SVM_EXIT_VMSAVE: return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
|
---|
5140 | case SVM_EXIT_INVLPGA: return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
|
---|
5141 | case SVM_EXIT_VMRUN: return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
|
---|
5142 | #else
|
---|
5143 | case SVM_EXIT_CLGI:
|
---|
5144 | case SVM_EXIT_STGI:
|
---|
5145 | case SVM_EXIT_VMLOAD:
|
---|
5146 | case SVM_EXIT_VMSAVE:
|
---|
5147 | case SVM_EXIT_INVLPGA:
|
---|
5148 | case SVM_EXIT_VMRUN:
|
---|
5149 | #endif
|
---|
5150 | case SVM_EXIT_RSM:
|
---|
5151 | case SVM_EXIT_SKINIT:
|
---|
5152 | return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
5153 |
|
---|
5154 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
5155 | case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
|
---|
5156 | /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
|
---|
5157 | case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
|
---|
5158 | /* SVM_EXIT_EXCEPTION_3: */ /* X86_XCPT_BP - Handled above. */
|
---|
5159 | case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
|
---|
5160 | case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
|
---|
5161 | /* SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
|
---|
5162 | /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
|
---|
5163 | case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
|
---|
5164 | case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
|
---|
5165 | case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_TS */
|
---|
5166 | case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_NP */
|
---|
5167 | case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_SS */
|
---|
5168 | case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_GP */
|
---|
5169 | /* SVM_EXIT_EXCEPTION_14: */ /* X86_XCPT_PF - Handled above. */
|
---|
5170 | case SVM_EXIT_EXCEPTION_15: /* Reserved. */
|
---|
5171 | /* SVM_EXIT_EXCEPTION_16: */ /* X86_XCPT_MF - Handled above. */
|
---|
5172 | /* SVM_EXIT_EXCEPTION_17: */ /* X86_XCPT_AC - Handled above. */
|
---|
5173 | case SVM_EXIT_EXCEPTION_18: /* X86_XCPT_MC */
|
---|
5174 | case SVM_EXIT_EXCEPTION_19: /* X86_XCPT_XF */
|
---|
5175 | case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22:
|
---|
5176 | case SVM_EXIT_EXCEPTION_23: case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25:
|
---|
5177 | case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28:
|
---|
5178 | case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
|
---|
5179 | {
|
---|
5180 | /** @todo r=ramshankar; We should be doing
|
---|
5181 | * HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY here! */
|
---|
5182 |
|
---|
5183 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
5184 | SVMEVENT Event;
|
---|
5185 | Event.u = 0;
|
---|
5186 | Event.n.u1Valid = 1;
|
---|
5187 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
5188 | Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
|
---|
5189 |
|
---|
5190 | switch (Event.n.u8Vector)
|
---|
5191 | {
|
---|
5192 | case X86_XCPT_DE:
|
---|
5193 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
|
---|
5194 | break;
|
---|
5195 |
|
---|
5196 | case X86_XCPT_NP:
|
---|
5197 | Event.n.u1ErrorCodeValid = 1;
|
---|
5198 | Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
5199 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
|
---|
5200 | break;
|
---|
5201 |
|
---|
5202 | case X86_XCPT_SS:
|
---|
5203 | Event.n.u1ErrorCodeValid = 1;
|
---|
5204 | Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
5205 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
|
---|
5206 | break;
|
---|
5207 |
|
---|
5208 | case X86_XCPT_GP:
|
---|
5209 | Event.n.u1ErrorCodeValid = 1;
|
---|
5210 | Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
5211 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
|
---|
5212 | break;
|
---|
5213 |
|
---|
5214 | default:
|
---|
5215 | AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
|
---|
5216 | pVCpu->hm.s.u32HMError = Event.n.u8Vector;
|
---|
5217 | return VERR_SVM_UNEXPECTED_XCPT_EXIT;
|
---|
5218 | }
|
---|
5219 |
|
---|
5220 | Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
|
---|
5221 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
5222 | return VINF_SUCCESS;
|
---|
5223 | }
|
---|
5224 | #endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
|
---|
5225 |
|
---|
5226 | default:
|
---|
5227 | {
|
---|
5228 | AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
|
---|
5229 | pVCpu->hm.s.u32HMError = u32ExitCode;
|
---|
5230 | return VERR_SVM_UNKNOWN_EXIT;
|
---|
5231 | }
|
---|
5232 | }
|
---|
5233 | }
|
---|
5234 | }
|
---|
5235 | /* not reached */
|
---|
5236 | }
|
---|
5237 |
|
---|
5238 |
|
---|
5239 | #ifdef DEBUG
|
---|
5240 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
5241 | # define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
5242 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
5243 |
|
---|
5244 | # define HMSVM_ASSERT_PREEMPT_CPUID() \
|
---|
5245 | do \
|
---|
5246 | { \
|
---|
5247 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
5248 | AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
5249 | } while (0)
|
---|
5250 |
|
---|
5251 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
|
---|
5252 | do { \
|
---|
5253 | AssertPtr(pVCpu); \
|
---|
5254 | AssertPtr(pCtx); \
|
---|
5255 | AssertPtr(pSvmTransient); \
|
---|
5256 | Assert(ASMIntAreEnabled()); \
|
---|
5257 | HMSVM_ASSERT_PREEMPT_SAFE(); \
|
---|
5258 | HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
5259 | Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
|
---|
5260 | HMSVM_ASSERT_PREEMPT_SAFE(); \
|
---|
5261 | if (VMMR0IsLogFlushDisabled(pVCpu)) \
|
---|
5262 | HMSVM_ASSERT_PREEMPT_CPUID(); \
|
---|
5263 | } while (0)
|
---|
5264 | #else /* Release builds */
|
---|
5265 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
|
---|
5266 | #endif
|
---|
5267 |
|
---|
5268 |
|
---|
5269 | /**
|
---|
5270 | * Worker for hmR0SvmInterpretInvlpg().
|
---|
5271 | *
|
---|
5272 | * @return VBox status code.
|
---|
5273 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5274 | * @param pCpu Pointer to the disassembler state.
|
---|
5275 | * @param pCtx The guest CPU context.
|
---|
5276 | */
|
---|
5277 | static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
|
---|
5278 | {
|
---|
5279 | DISQPVPARAMVAL Param1;
|
---|
5280 | RTGCPTR GCPtrPage;
|
---|
5281 |
|
---|
5282 | int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
|
---|
5283 | if (RT_FAILURE(rc))
|
---|
5284 | return VERR_EM_INTERPRETER;
|
---|
5285 |
|
---|
5286 | if ( Param1.type == DISQPV_TYPE_IMMEDIATE
|
---|
5287 | || Param1.type == DISQPV_TYPE_ADDRESS)
|
---|
5288 | {
|
---|
5289 | if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
|
---|
5290 | return VERR_EM_INTERPRETER;
|
---|
5291 |
|
---|
5292 | GCPtrPage = Param1.val.val64;
|
---|
5293 | VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
|
---|
5294 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
5295 | }
|
---|
5296 | else
|
---|
5297 | {
|
---|
5298 | Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
|
---|
5299 | rc = VERR_EM_INTERPRETER;
|
---|
5300 | }
|
---|
5301 |
|
---|
5302 | return rc;
|
---|
5303 | }
|
---|
5304 |
|
---|
5305 |
|
---|
5306 | /**
|
---|
5307 | * Interprets INVLPG.
|
---|
5308 | *
|
---|
5309 | * @returns VBox status code.
|
---|
5310 | * @retval VINF_* Scheduling instructions.
|
---|
5311 | * @retval VERR_EM_INTERPRETER Something we can't cope with.
|
---|
5312 | * @retval VERR_* Fatal errors.
|
---|
5313 | *
|
---|
5314 | * @param pVM The cross context VM structure.
|
---|
5315 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5316 | * @param pCtx The guest CPU context.
|
---|
5317 | *
|
---|
5318 | * @remarks Updates the RIP if the instruction was executed successfully.
|
---|
5319 | */
|
---|
5320 | static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
5321 | {
|
---|
5322 | /* Only allow 32 & 64 bit code. */
|
---|
5323 | if (CPUMGetGuestCodeBits(pVCpu) != 16)
|
---|
5324 | {
|
---|
5325 | PDISSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
5326 | int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
|
---|
5327 | if ( RT_SUCCESS(rc)
|
---|
5328 | && pDis->pCurInstr->uOpcode == OP_INVLPG)
|
---|
5329 | {
|
---|
5330 | rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
|
---|
5331 | if (RT_SUCCESS(rc))
|
---|
5332 | pCtx->rip += pDis->cbInstr;
|
---|
5333 | return rc;
|
---|
5334 | }
|
---|
5335 | else
|
---|
5336 | Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
|
---|
5337 | }
|
---|
5338 | return VERR_EM_INTERPRETER;
|
---|
5339 | }
|
---|
5340 |
|
---|
5341 |
|
---|
5342 | #ifdef HMSVM_USE_IEM_EVENT_REFLECTION
|
---|
5343 | /**
|
---|
5344 | * Gets the IEM exception flags for the specified SVM event.
|
---|
5345 | *
|
---|
5346 | * @returns The IEM exception flags.
|
---|
5347 | * @param pEvent Pointer to the SVM event.
|
---|
5348 | *
|
---|
5349 | * @remarks This function currently only constructs flags required for
|
---|
5350 | * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
|
---|
5351 | * and CR2 aspects of an exception are not included).
|
---|
5352 | */
|
---|
5353 | static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
|
---|
5354 | {
|
---|
5355 | uint8_t const uEventType = pEvent->n.u3Type;
|
---|
5356 | uint32_t fIemXcptFlags;
|
---|
5357 | switch (uEventType)
|
---|
5358 | {
|
---|
5359 | case SVM_EVENT_EXCEPTION:
|
---|
5360 | /*
|
---|
5361 | * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
|
---|
5362 | * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
|
---|
5363 | */
|
---|
5364 | if (pEvent->n.u8Vector == X86_XCPT_BP)
|
---|
5365 | {
|
---|
5366 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
|
---|
5367 | break;
|
---|
5368 | }
|
---|
5369 | if (pEvent->n.u8Vector == X86_XCPT_OF)
|
---|
5370 | {
|
---|
5371 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
|
---|
5372 | break;
|
---|
5373 | }
|
---|
5374 | /** @todo How do we distinguish ICEBP \#DB from the regular one? */
|
---|
5375 | /* fall thru */
|
---|
5376 | case SVM_EVENT_NMI:
|
---|
5377 | fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
5378 | break;
|
---|
5379 |
|
---|
5380 | case SVM_EVENT_EXTERNAL_IRQ:
|
---|
5381 | fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
5382 | break;
|
---|
5383 |
|
---|
5384 | case SVM_EVENT_SOFTWARE_INT:
|
---|
5385 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
5386 | break;
|
---|
5387 |
|
---|
5388 | default:
|
---|
5389 | fIemXcptFlags = 0;
|
---|
5390 | AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
|
---|
5391 | break;
|
---|
5392 | }
|
---|
5393 | return fIemXcptFlags;
|
---|
5394 | }
|
---|
5395 |
|
---|
5396 | #else
|
---|
5397 | /**
|
---|
5398 | * Determines if an exception is a contributory exception.
|
---|
5399 | *
|
---|
5400 | * Contributory exceptions are ones which can cause double-faults unless the
|
---|
5401 | * original exception was a benign exception. Page-fault is intentionally not
|
---|
5402 | * included here as it's a conditional contributory exception.
|
---|
5403 | *
|
---|
5404 | * @returns true if the exception is contributory, false otherwise.
|
---|
5405 | * @param uVector The exception vector.
|
---|
5406 | */
|
---|
5407 | DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
|
---|
5408 | {
|
---|
5409 | switch (uVector)
|
---|
5410 | {
|
---|
5411 | case X86_XCPT_GP:
|
---|
5412 | case X86_XCPT_SS:
|
---|
5413 | case X86_XCPT_NP:
|
---|
5414 | case X86_XCPT_TS:
|
---|
5415 | case X86_XCPT_DE:
|
---|
5416 | return true;
|
---|
5417 | default:
|
---|
5418 | break;
|
---|
5419 | }
|
---|
5420 | return false;
|
---|
5421 | }
|
---|
5422 | #endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
|
---|
5423 |
|
---|
5424 |
|
---|
5425 | /**
|
---|
5426 | * Handle a condition that occurred while delivering an event through the guest
|
---|
5427 | * IDT.
|
---|
5428 | *
|
---|
5429 | * @returns VBox status code (informational error codes included).
|
---|
5430 | * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
|
---|
5431 | * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
|
---|
5432 | * continue execution of the guest which will delivery the \#DF.
|
---|
5433 | * @retval VINF_EM_RESET if we detected a triple-fault condition.
|
---|
5434 | * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
|
---|
5435 | *
|
---|
5436 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5437 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5438 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
5439 | *
|
---|
5440 | * @remarks No-long-jump zone!!!
|
---|
5441 | */
|
---|
5442 | static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5443 | {
|
---|
5444 | int rc = VINF_SUCCESS;
|
---|
5445 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
5446 |
|
---|
5447 | Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
|
---|
5448 | pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
|
---|
5449 | pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
5450 |
|
---|
5451 | /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
|
---|
5452 | * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
|
---|
5453 | if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
|
---|
5454 | {
|
---|
5455 | #ifdef HMSVM_USE_IEM_EVENT_REFLECTION
|
---|
5456 | IEMXCPTRAISE enmRaise;
|
---|
5457 | IEMXCPTRAISEINFO fRaiseInfo;
|
---|
5458 | bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31;
|
---|
5459 | uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
|
---|
5460 | if (fExitIsHwXcpt)
|
---|
5461 | {
|
---|
5462 | uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
|
---|
5463 | uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
|
---|
5464 | uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
5465 | enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
|
---|
5466 | }
|
---|
5467 | else
|
---|
5468 | {
|
---|
5469 | /*
|
---|
5470 | * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF) then we
|
---|
5471 | * end up here.
|
---|
5472 | *
|
---|
5473 | * If the event was:
|
---|
5474 | * - a software interrupt, we can re-execute the instruction which will regenerate
|
---|
5475 | * the event.
|
---|
5476 | * - an NMI, we need to clear NMI blocking and re-inject the NMI.
|
---|
5477 | * - a hardware exception or external interrupt, we re-inject it.
|
---|
5478 | */
|
---|
5479 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
5480 | if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
|
---|
5481 | enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
|
---|
5482 | else
|
---|
5483 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
5484 | }
|
---|
5485 |
|
---|
5486 | switch (enmRaise)
|
---|
5487 | {
|
---|
5488 | case IEMXCPTRAISE_CURRENT_XCPT:
|
---|
5489 | case IEMXCPTRAISE_PREV_EVENT:
|
---|
5490 | {
|
---|
5491 | /* For software interrupts, we shall re-execute the instruction. */
|
---|
5492 | if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
|
---|
5493 | {
|
---|
5494 | RTGCUINTPTR GCPtrFaultAddress = 0;
|
---|
5495 |
|
---|
5496 | /* If we are re-injecting an NMI, clear NMI blocking. */
|
---|
5497 | if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
|
---|
5498 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
5499 |
|
---|
5500 | /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
|
---|
5501 | if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
|
---|
5502 | pSvmTransient->fVectoringPF = true;
|
---|
5503 | else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
|
---|
5504 | && uIdtVector == X86_XCPT_PF)
|
---|
5505 | {
|
---|
5506 | /*
|
---|
5507 | * If the previous exception was a #PF, we need to recover the CR2 value.
|
---|
5508 | * This can't happen with shadow paging.
|
---|
5509 | */
|
---|
5510 | GCPtrFaultAddress = pCtx->cr2;
|
---|
5511 | }
|
---|
5512 |
|
---|
5513 | /*
|
---|
5514 | * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
|
---|
5515 | * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
|
---|
5516 | */
|
---|
5517 | Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
|
---|
5518 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
5519 | hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
|
---|
5520 |
|
---|
5521 | Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
|
---|
5522 | pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
|
---|
5523 | pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
|
---|
5524 | }
|
---|
5525 | break;
|
---|
5526 | }
|
---|
5527 |
|
---|
5528 | case IEMXCPTRAISE_REEXEC_INSTR:
|
---|
5529 | {
|
---|
5530 | Assert(rc == VINF_SUCCESS);
|
---|
5531 | break;
|
---|
5532 | }
|
---|
5533 |
|
---|
5534 | case IEMXCPTRAISE_DOUBLE_FAULT:
|
---|
5535 | {
|
---|
5536 | /*
|
---|
5537 | * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
|
---|
5538 | * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
|
---|
5539 | */
|
---|
5540 | if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
|
---|
5541 | {
|
---|
5542 | pSvmTransient->fVectoringDoublePF = true;
|
---|
5543 | Assert(rc == VINF_SUCCESS);
|
---|
5544 | }
|
---|
5545 | else
|
---|
5546 | {
|
---|
5547 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
5548 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
5549 | rc = VINF_HM_DOUBLE_FAULT;
|
---|
5550 | }
|
---|
5551 | break;
|
---|
5552 | }
|
---|
5553 |
|
---|
5554 | case IEMXCPTRAISE_TRIPLE_FAULT:
|
---|
5555 | {
|
---|
5556 | rc = VINF_EM_RESET;
|
---|
5557 | break;
|
---|
5558 | }
|
---|
5559 |
|
---|
5560 | case IEMXCPTRAISE_CPU_HANG:
|
---|
5561 | {
|
---|
5562 | rc = VERR_EM_GUEST_CPU_HANG;
|
---|
5563 | break;
|
---|
5564 | }
|
---|
5565 |
|
---|
5566 | default:
|
---|
5567 | {
|
---|
5568 | AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
5569 | rc = VERR_SVM_IPE_2;
|
---|
5570 | break;
|
---|
5571 | }
|
---|
5572 | }
|
---|
5573 | #else
|
---|
5574 | uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
|
---|
5575 |
|
---|
5576 | typedef enum
|
---|
5577 | {
|
---|
5578 | SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
|
---|
5579 | SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
|
---|
5580 | SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
|
---|
5581 | SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
|
---|
5582 | SVMREFLECTXCPT_NONE /* Nothing to reflect. */
|
---|
5583 | } SVMREFLECTXCPT;
|
---|
5584 |
|
---|
5585 | SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
|
---|
5586 | bool fReflectingNmi = false;
|
---|
5587 | if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
|
---|
5588 | {
|
---|
5589 | if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
|
---|
5590 | {
|
---|
5591 | uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
|
---|
5592 |
|
---|
5593 | #ifdef VBOX_STRICT
|
---|
5594 | if ( hmR0SvmIsContributoryXcpt(uIdtVector)
|
---|
5595 | && uExitVector == X86_XCPT_PF)
|
---|
5596 | {
|
---|
5597 | Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
|
---|
5598 | }
|
---|
5599 | #endif
|
---|
5600 |
|
---|
5601 | if ( uIdtVector == X86_XCPT_BP
|
---|
5602 | || uIdtVector == X86_XCPT_OF)
|
---|
5603 | {
|
---|
5604 | /* Ignore INT3/INTO, just re-execute. See @bugref{8357}. */
|
---|
5605 | }
|
---|
5606 | else if ( uExitVector == X86_XCPT_PF
|
---|
5607 | && uIdtVector == X86_XCPT_PF)
|
---|
5608 | {
|
---|
5609 | pSvmTransient->fVectoringDoublePF = true;
|
---|
5610 | Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
|
---|
5611 | }
|
---|
5612 | else if ( uExitVector == X86_XCPT_AC
|
---|
5613 | && uIdtVector == X86_XCPT_AC)
|
---|
5614 | {
|
---|
5615 | enmReflect = SVMREFLECTXCPT_HANG;
|
---|
5616 | Log4(("IDT: Nested #AC - Bad guest\n"));
|
---|
5617 | }
|
---|
5618 | else if ( (pVmcb->ctrl.u32InterceptXcpt & HMSVM_CONTRIBUTORY_XCPT_MASK)
|
---|
5619 | && hmR0SvmIsContributoryXcpt(uExitVector)
|
---|
5620 | && ( hmR0SvmIsContributoryXcpt(uIdtVector)
|
---|
5621 | || uIdtVector == X86_XCPT_PF))
|
---|
5622 | {
|
---|
5623 | enmReflect = SVMREFLECTXCPT_DF;
|
---|
5624 | Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
|
---|
5625 | uIdtVector, uExitVector));
|
---|
5626 | }
|
---|
5627 | else if (uIdtVector == X86_XCPT_DF)
|
---|
5628 | {
|
---|
5629 | enmReflect = SVMREFLECTXCPT_TF;
|
---|
5630 | Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
|
---|
5631 | pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
|
---|
5632 | }
|
---|
5633 | else
|
---|
5634 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
5635 | }
|
---|
5636 | else
|
---|
5637 | {
|
---|
5638 | /*
|
---|
5639 | * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
|
---|
5640 | * exception to the guest after handling the #VMEXIT.
|
---|
5641 | */
|
---|
5642 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
5643 | }
|
---|
5644 | }
|
---|
5645 | else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
|
---|
5646 | || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
|
---|
5647 | {
|
---|
5648 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
5649 | fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
|
---|
5650 |
|
---|
5651 | if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
|
---|
5652 | {
|
---|
5653 | uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
|
---|
5654 | if (uExitVector == X86_XCPT_PF)
|
---|
5655 | {
|
---|
5656 | pSvmTransient->fVectoringPF = true;
|
---|
5657 | Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
|
---|
5658 | }
|
---|
5659 | }
|
---|
5660 | }
|
---|
5661 | /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
|
---|
5662 |
|
---|
5663 | switch (enmReflect)
|
---|
5664 | {
|
---|
5665 | case SVMREFLECTXCPT_XCPT:
|
---|
5666 | {
|
---|
5667 | /* If we are re-injecting the NMI, clear NMI blocking. */
|
---|
5668 | if (fReflectingNmi)
|
---|
5669 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
5670 |
|
---|
5671 | Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
|
---|
5672 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
5673 | hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
|
---|
5674 |
|
---|
5675 | /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
|
---|
5676 | Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
|
---|
5677 | !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
5678 | break;
|
---|
5679 | }
|
---|
5680 |
|
---|
5681 | case SVMREFLECTXCPT_DF:
|
---|
5682 | {
|
---|
5683 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
5684 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
5685 | rc = VINF_HM_DOUBLE_FAULT;
|
---|
5686 | break;
|
---|
5687 | }
|
---|
5688 |
|
---|
5689 | case SVMREFLECTXCPT_TF:
|
---|
5690 | {
|
---|
5691 | rc = VINF_EM_RESET;
|
---|
5692 | break;
|
---|
5693 | }
|
---|
5694 |
|
---|
5695 | case SVMREFLECTXCPT_HANG:
|
---|
5696 | {
|
---|
5697 | rc = VERR_EM_GUEST_CPU_HANG;
|
---|
5698 | break;
|
---|
5699 | }
|
---|
5700 |
|
---|
5701 | default:
|
---|
5702 | Assert(rc == VINF_SUCCESS);
|
---|
5703 | break;
|
---|
5704 | }
|
---|
5705 | #endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
|
---|
5706 | }
|
---|
5707 | Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
|
---|
5708 | NOREF(pCtx);
|
---|
5709 | return rc;
|
---|
5710 | }
|
---|
5711 |
|
---|
5712 |
|
---|
5713 | /**
|
---|
5714 | * Updates interrupt shadow for the current RIP.
|
---|
5715 | */
|
---|
5716 | #define HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx) \
|
---|
5717 | do { \
|
---|
5718 | /* Update interrupt shadow. */ \
|
---|
5719 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) \
|
---|
5720 | && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) \
|
---|
5721 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); \
|
---|
5722 | } while (0)
|
---|
5723 |
|
---|
5724 |
|
---|
5725 | /**
|
---|
5726 | * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
|
---|
5727 | * supported, otherwise advances the RIP by the number of bytes specified in
|
---|
5728 | * @a cb.
|
---|
5729 | *
|
---|
5730 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5731 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5732 | * @param cb RIP increment value in bytes.
|
---|
5733 | *
|
---|
5734 | * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
|
---|
5735 | * when NRIP_SAVE is supported by the CPU, otherwise use
|
---|
5736 | * hmR0SvmAdvanceRipDumb!
|
---|
5737 | */
|
---|
5738 | DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
|
---|
5739 | {
|
---|
5740 | if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
5741 | {
|
---|
5742 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
5743 | Assert(pVmcb->ctrl.u64NextRIP);
|
---|
5744 | AssertRelease(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb); /* temporary, remove later */
|
---|
5745 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
5746 | }
|
---|
5747 | else
|
---|
5748 | pCtx->rip += cb;
|
---|
5749 |
|
---|
5750 | HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
|
---|
5751 | }
|
---|
5752 |
|
---|
5753 |
|
---|
5754 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
5755 | /**
|
---|
5756 | * Gets the length of the current instruction if the CPU supports the NRIP_SAVE
|
---|
5757 | * feature. Otherwise, returns the value in @a cbLikely.
|
---|
5758 | *
|
---|
5759 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5760 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5761 | * @param cbLikely The likely instruction length.
|
---|
5762 | */
|
---|
5763 | DECLINLINE(uint8_t) hmR0SvmGetInstrLengthHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbLikely)
|
---|
5764 | {
|
---|
5765 | Assert(cbLikely <= 15); /* See Intel spec. 2.3.11 "AVX Instruction Length" */
|
---|
5766 | if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
5767 | {
|
---|
5768 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
5769 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
5770 | Assert(cbInstr == cbLikely);
|
---|
5771 | return cbInstr;
|
---|
5772 | }
|
---|
5773 | return cbLikely;
|
---|
5774 | }
|
---|
5775 | #endif
|
---|
5776 |
|
---|
5777 |
|
---|
5778 | /**
|
---|
5779 | * Advances the guest RIP by the number of bytes specified in @a cb. This does
|
---|
5780 | * not make use of any hardware features to determine the instruction length.
|
---|
5781 | *
|
---|
5782 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5783 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5784 | * @param cb RIP increment value in bytes.
|
---|
5785 | */
|
---|
5786 | DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
|
---|
5787 | {
|
---|
5788 | pCtx->rip += cb;
|
---|
5789 | HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
|
---|
5790 | }
|
---|
5791 | #undef HMSVM_UPDATE_INTR_SHADOW
|
---|
5792 |
|
---|
5793 |
|
---|
5794 | #if defined(VBOX_WITH_NESTED_HWVIRT) && !defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM)
|
---|
5795 | /**
|
---|
5796 | * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and HM internals.
|
---|
5797 | *
|
---|
5798 | * @returns VBox status code.
|
---|
5799 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5800 | * @param pCtx The guest-CPU context.
|
---|
5801 | */
|
---|
5802 | static int hmR0SvmNstGstWorldSwitch(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
5803 | {
|
---|
5804 | /** @todo What about informing PGM about CR0.WP? */
|
---|
5805 | PGMFlushTLB(pVCpu, pCtx->cr3, true /* fGlobal */);
|
---|
5806 |
|
---|
5807 | /* Inform CPUM (recompiler), can later be removed. */
|
---|
5808 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
|
---|
5809 |
|
---|
5810 | /*
|
---|
5811 | * Inform PGM about paging mode changes.
|
---|
5812 | * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet.
|
---|
5813 | */
|
---|
5814 | return PGMChangeMode(pVCpu, pCtx->cr0 | X86_CR0_PE, pCtx->cr4, pCtx->msrEFER);
|
---|
5815 | }
|
---|
5816 |
|
---|
5817 |
|
---|
5818 | /**
|
---|
5819 | * Performs a \#VMEXIT when the VMRUN was emulating using hmR0SvmExecVmrun and
|
---|
5820 | * optionally went ahead with hardware-assisted SVM execution.
|
---|
5821 | *
|
---|
5822 | * @returns VBox status code.
|
---|
5823 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5824 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5825 | */
|
---|
5826 | static int hmR0SvmExecVmexit(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
5827 | {
|
---|
5828 | /*
|
---|
5829 | * Restore the modifications we did to the nested-guest VMCB in order
|
---|
5830 | * to executing the nested-guesting using hardware-assisted SVM.
|
---|
5831 | */
|
---|
5832 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
5833 | HMSvmNstGstVmExitNotify(pVCpu, pVmcbNstGst);
|
---|
5834 |
|
---|
5835 | Log4(("hmR0SvmExecVmexit: uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pVmcbNstGst->ctrl.u64ExitCode,
|
---|
5836 | pVmcbNstGst->ctrl.u64ExitInfo1, pVmcbNstGst->ctrl.u64ExitInfo2));
|
---|
5837 |
|
---|
5838 | /*
|
---|
5839 | * Write the nested-guest VMCB back to guest memory.
|
---|
5840 | */
|
---|
5841 | RTGCPHYS const GCPhysVmcb = pCtx->hwvirt.svm.GCPhysVmcb;
|
---|
5842 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb, pVmcbNstGst, sizeof(*pVmcbNstGst));
|
---|
5843 |
|
---|
5844 | /*
|
---|
5845 | * Clear our cache of the nested-guest VMCB controls.
|
---|
5846 | */
|
---|
5847 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
5848 | memset(pVmcbNstGstCtrl, 0, sizeof(*pVmcbNstGstCtrl));
|
---|
5849 | Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
5850 |
|
---|
5851 | /*
|
---|
5852 | * Disable the global interrupt flag to not cause any interrupts or NMIs
|
---|
5853 | * in the guest.
|
---|
5854 | */
|
---|
5855 | pCtx->hwvirt.svm.fGif = 0;
|
---|
5856 |
|
---|
5857 | /*
|
---|
5858 | * Restore the guest's "host" state.
|
---|
5859 | */
|
---|
5860 | CPUMSvmVmExitRestoreHostState(pCtx);
|
---|
5861 |
|
---|
5862 | /*
|
---|
5863 | * Restore the guest's force-flags.
|
---|
5864 | */
|
---|
5865 | if (pCtx->hwvirt.fLocalForcedActions)
|
---|
5866 | {
|
---|
5867 | VMCPU_FF_SET(pVCpu, pCtx->hwvirt.fLocalForcedActions);
|
---|
5868 | pCtx->hwvirt.fLocalForcedActions = 0;
|
---|
5869 | }
|
---|
5870 |
|
---|
5871 | /*
|
---|
5872 | * Make sure if VMRUN happens outside this SVM R0 code, we don't skip setting
|
---|
5873 | * things up that are required for executing the nested-guest using hardware-assisted SVM.
|
---|
5874 | */
|
---|
5875 | pVCpu->hm.s.svm.NstGstVmcbCache.fVmrunEmulatedInR0 = false;
|
---|
5876 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
5877 |
|
---|
5878 | if (RT_SUCCESS(rc))
|
---|
5879 | {
|
---|
5880 | rc = hmR0SvmNstGstWorldSwitch(pVCpu, pCtx);
|
---|
5881 | if (rc == VINF_SUCCESS)
|
---|
5882 | rc = VINF_SVM_VMEXIT;
|
---|
5883 |
|
---|
5884 | Log4(("hmR0SvmExecVmexit: #VMEXIT success! rc=%d\n", rc));
|
---|
5885 | }
|
---|
5886 | else
|
---|
5887 | Log(("hmR0SvmExecVmexit: Failed to write guest-VMCB at %#RGp, rc=%d\n", GCPhysVmcb, rc));
|
---|
5888 |
|
---|
5889 | return rc;
|
---|
5890 | }
|
---|
5891 |
|
---|
5892 |
|
---|
5893 | /**
|
---|
5894 | * Setup the nested-guest for hardware-assisted SVM execution.
|
---|
5895 | *
|
---|
5896 | * @returns VBox status code.
|
---|
5897 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5898 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5899 | * @param GCPhysVmcb The nested-guest physical address of its VMCB.
|
---|
5900 | * @param cbInstr Length of the VMRUN instruction in bytes.
|
---|
5901 | */
|
---|
5902 | static int hmR0SvmExecVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPHYS GCPhysVmcb, uint8_t cbInstr)
|
---|
5903 | {
|
---|
5904 | Assert(CPUMGetGuestCPL(pVCpu) == 0);
|
---|
5905 | Assert(!pVCpu->hm.s.svm.NstGstVmcbCache.fVmrunEmulatedInR0);
|
---|
5906 |
|
---|
5907 | /*
|
---|
5908 | * Cache the physical address of the VMCB for #VMEXIT exceptions.
|
---|
5909 | */
|
---|
5910 | pCtx->hwvirt.svm.GCPhysVmcb = GCPhysVmcb;
|
---|
5911 |
|
---|
5912 | /*
|
---|
5913 | * Save the "host" (guest-state) so that when we do a #VMEXIT we can restore the guest-state.
|
---|
5914 | *
|
---|
5915 | * The real host-state shall be saved/restored by the physical CPU once it executes VMRUN
|
---|
5916 | * with the nested-guest VMCB.
|
---|
5917 | */
|
---|
5918 | CPUMSvmVmRunSaveHostState(pCtx, cbInstr);
|
---|
5919 |
|
---|
5920 | /*
|
---|
5921 | * Read the nested-guest VMCB state.
|
---|
5922 | */
|
---|
5923 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5924 | int rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pVmcb), GCPhysVmcb, sizeof(SVMVMCB));
|
---|
5925 | if (RT_SUCCESS(rc))
|
---|
5926 | {
|
---|
5927 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
5928 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
5929 | PSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
|
---|
5930 |
|
---|
5931 | /*
|
---|
5932 | * Validate nested-guest state and controls.
|
---|
5933 | * The rest shall be done by the physical CPU.
|
---|
5934 | */
|
---|
5935 | /* VMRUN must always be intercepted. */
|
---|
5936 | if (!CPUMIsGuestSvmCtrlInterceptSet(pCtx, SVM_CTRL_INTERCEPT_VMRUN))
|
---|
5937 | {
|
---|
5938 | Log(("hmR0SvmExecVmrun: VMRUN instruction not intercepted -> #VMEXIT\n"));
|
---|
5939 | pVmcbNstGstCtrl->u64ExitCode = SVM_EXIT_INVALID;
|
---|
5940 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
5941 | }
|
---|
5942 |
|
---|
5943 | /* Nested paging. */
|
---|
5944 | if ( pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging
|
---|
5945 | && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging)
|
---|
5946 | {
|
---|
5947 | Log(("hmR0SvmExecVmrun: Nested paging not supported -> #VMEXIT\n"));
|
---|
5948 | pVmcbNstGstCtrl->u64ExitCode = SVM_EXIT_INVALID;
|
---|
5949 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
5950 | }
|
---|
5951 | /** @todo When implementing nested-paging for the nested-guest don't forget to
|
---|
5952 | * adjust/check PAT MSR. */
|
---|
5953 |
|
---|
5954 | /* AVIC. */
|
---|
5955 | if ( pVmcbNstGstCtrl->IntCtrl.n.u1AvicEnable
|
---|
5956 | && !pVM->cpum.ro.GuestFeatures.fSvmAvic)
|
---|
5957 | {
|
---|
5958 | Log(("hmR0SvmExecVmrun: AVIC not supported -> #VMEXIT\n"));
|
---|
5959 | pVmcbNstGstCtrl->u64ExitCode = SVM_EXIT_INVALID;
|
---|
5960 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
5961 | }
|
---|
5962 |
|
---|
5963 | /* Last branch record (LBR) virtualization. */
|
---|
5964 | if ( (pVmcbNstGstCtrl->u64LBRVirt & SVM_LBR_VIRT_ENABLE)
|
---|
5965 | && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt)
|
---|
5966 | {
|
---|
5967 | Log(("hmR0SvmExecVmrun: LBR virtualization not supported -> #VMEXIT\n"));
|
---|
5968 | pVmcbNstGstCtrl->u64ExitCode = SVM_EXIT_INVALID;
|
---|
5969 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
5970 | }
|
---|
5971 |
|
---|
5972 | /*
|
---|
5973 | * MSR permission bitmap (MSRPM).
|
---|
5974 | */
|
---|
5975 | RTGCPHYS const GCPhysMsrBitmap = pVmcbNstGstCtrl->u64MSRPMPhysAddr;
|
---|
5976 | Assert(pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap));
|
---|
5977 | rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap,
|
---|
5978 | SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE);
|
---|
5979 | if (RT_FAILURE(rc))
|
---|
5980 | {
|
---|
5981 | Log(("hmR0SvmExecVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc));
|
---|
5982 | pVmcbNstGstCtrl->u64ExitCode = SVM_EXIT_INVALID;
|
---|
5983 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
5984 | }
|
---|
5985 |
|
---|
5986 | /*
|
---|
5987 | * IO permission bitmap (IOPM).
|
---|
5988 | */
|
---|
5989 | RTGCPHYS const GCPhysIOBitmap = pVmcbNstGstCtrl->u64MSRPMPhysAddr;
|
---|
5990 | rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap,
|
---|
5991 | SVM_IOPM_PAGES * X86_PAGE_4K_SIZE);
|
---|
5992 | if (RT_FAILURE(rc))
|
---|
5993 | {
|
---|
5994 | Log(("hmR0SvmExecVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc));
|
---|
5995 | pVmcbNstGstCtrl->u64ExitCode = SVM_EXIT_INVALID;
|
---|
5996 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
5997 | }
|
---|
5998 |
|
---|
5999 | /*
|
---|
6000 | * EFER MSR.
|
---|
6001 | */
|
---|
6002 | uint64_t uValidEfer;
|
---|
6003 | rc = CPUMQueryValidatedGuestEfer(pVM, pVmcbNstGstState->u64CR0, pVmcbNstGstState->u64EFER, pVmcbNstGstState->u64EFER,
|
---|
6004 | &uValidEfer);
|
---|
6005 | if (RT_FAILURE(rc))
|
---|
6006 | {
|
---|
6007 | Log(("hmR0SvmExecVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGstState->u64EFER));
|
---|
6008 | pVmcbNstGstCtrl->u64ExitCode = SVM_EXIT_INVALID;
|
---|
6009 | return hmR0SvmExecVmexit(pVCpu, pCtx);
|
---|
6010 | }
|
---|
6011 | bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME);
|
---|
6012 | bool const fPaging = RT_BOOL(pVmcbNstGstState->u64CR0 & X86_CR0_PG);
|
---|
6013 | bool const fLongModeWithPaging = fLongModeEnabled && fPaging;
|
---|
6014 | /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0) and update it. */
|
---|
6015 | if (fLongModeWithPaging)
|
---|
6016 | uValidEfer |= MSR_K6_EFER_LMA;
|
---|
6017 |
|
---|
6018 | /*
|
---|
6019 | * Check for pending virtual interrupts.
|
---|
6020 | */
|
---|
6021 | if (pVmcbNstGstCtrl->IntCtrl.n.u1VIrqPending)
|
---|
6022 | VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
|
---|
6023 | else
|
---|
6024 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST));
|
---|
6025 |
|
---|
6026 | /*
|
---|
6027 | * Preserve the required force-flags.
|
---|
6028 | *
|
---|
6029 | * We only preserve the force-flags that would affect the execution of the
|
---|
6030 | * nested-guest (or the guest).
|
---|
6031 | *
|
---|
6032 | * - VMCPU_FF_INHIBIT_INTERRUPTS need -not- be preserved as it's for a single
|
---|
6033 | * instruction which is this VMRUN instruction itself.
|
---|
6034 | *
|
---|
6035 | * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the
|
---|
6036 | * execution of a subsequent IRET instruction in the guest.
|
---|
6037 | *
|
---|
6038 | * - The remaining FFs (e.g. timers) can stay in place so that we will be
|
---|
6039 | * able to generate interrupts that should cause #VMEXITs for the
|
---|
6040 | * nested-guest.
|
---|
6041 | */
|
---|
6042 | pCtx->hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS;
|
---|
6043 |
|
---|
6044 | /*
|
---|
6045 | * Interrupt shadow.
|
---|
6046 | */
|
---|
6047 | if (pVmcbNstGstCtrl->u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
|
---|
6048 | {
|
---|
6049 | LogFlow(("hmR0SvmExecVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGstState->u64RIP));
|
---|
6050 | /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */
|
---|
6051 | EMSetInhibitInterruptsPC(pVCpu, pVmcbNstGstState->u64RIP);
|
---|
6052 | }
|
---|
6053 |
|
---|
6054 | /*
|
---|
6055 | * Load the guest-CPU state.
|
---|
6056 | * Skip CPL adjustments (will be done by the hardware).
|
---|
6057 | */
|
---|
6058 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGstState, ES, es);
|
---|
6059 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGstState, CS, cs);
|
---|
6060 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGstState, SS, ss);
|
---|
6061 | HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbNstGstState, DS, ds);
|
---|
6062 | pCtx->gdtr.cbGdt = pVmcbNstGstState->GDTR.u32Limit;
|
---|
6063 | pCtx->gdtr.pGdt = pVmcbNstGstState->GDTR.u64Base;
|
---|
6064 | pCtx->idtr.cbIdt = pVmcbNstGstState->IDTR.u32Limit;
|
---|
6065 | pCtx->idtr.pIdt = pVmcbNstGstState->IDTR.u64Base;
|
---|
6066 | pCtx->cr0 = pVmcbNstGstState->u64CR0;
|
---|
6067 | pCtx->cr4 = pVmcbNstGstState->u64CR4;
|
---|
6068 | pCtx->cr3 = pVmcbNstGstState->u64CR3;
|
---|
6069 | pCtx->cr2 = pVmcbNstGstState->u64CR2;
|
---|
6070 | pCtx->dr[6] = pVmcbNstGstState->u64DR6;
|
---|
6071 | pCtx->dr[7] = pVmcbNstGstState->u64DR7;
|
---|
6072 | pCtx->rflags.u64 = pVmcbNstGstState->u64RFlags;
|
---|
6073 | pCtx->rax = pVmcbNstGstState->u64RAX;
|
---|
6074 | pCtx->rsp = pVmcbNstGstState->u64RSP;
|
---|
6075 | pCtx->rip = pVmcbNstGstState->u64RIP;
|
---|
6076 | pCtx->msrEFER = uValidEfer;
|
---|
6077 |
|
---|
6078 | /* Mask DR6, DR7 bits mandatory set/clear bits. */
|
---|
6079 | pCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
|
---|
6080 | pCtx->dr[6] |= X86_DR6_RA1_MASK;
|
---|
6081 | pCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
|
---|
6082 | pCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
6083 |
|
---|
6084 | /*
|
---|
6085 | * Set up the nested-guest for executing it using hardware-assisted SVM.
|
---|
6086 | */
|
---|
6087 | hmR0SvmVmRunSetupVmcb(pVCpu, pCtx);
|
---|
6088 |
|
---|
6089 | /*
|
---|
6090 | * VMRUN loads a subset of the guest-CPU state (see above) and nothing else. Ensure
|
---|
6091 | * hmR0SvmLoadGuestStateNested doesn't need to load anything back to the VMCB cache
|
---|
6092 | * as we go straight into executing the nested-guest.
|
---|
6093 | *
|
---|
6094 | * If we fall back to ring-3 we would have to re-load things from the guest-CPU
|
---|
6095 | * state into the VMCB as we are unsure what state we're in (e.g., VMRUN ends up
|
---|
6096 | * getting executed in IEM along with a handful of nested-guest instructions and
|
---|
6097 | * we have to continue executing the nested-guest in R0 since IEM doesn't know
|
---|
6098 | * about this VMCB cache which is in HM).
|
---|
6099 | */
|
---|
6100 | PSVMNESTEDVMCBCACHE pNstGstVmcbCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
6101 | pNstGstVmcbCache->fVmrunEmulatedInR0 = true;
|
---|
6102 |
|
---|
6103 | /*
|
---|
6104 | * We flag a CR3 change to ensure loading the host-physical address of CR3 into
|
---|
6105 | * the nested-guest VMCB in hmR0SvmLoadGuestControlRegsNested.
|
---|
6106 | */
|
---|
6107 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
6108 | HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE | HM_CHANGED_GUEST_CR3);
|
---|
6109 |
|
---|
6110 | /*
|
---|
6111 | * Clear global interrupt flags to allow interrupts and NMIs in the guest.
|
---|
6112 | */
|
---|
6113 | pCtx->hwvirt.svm.fGif = 1;
|
---|
6114 |
|
---|
6115 | Log4(("hmR0SvmExecVmrun: CR0=%#RX32 CR3=%#RX64 CR4=%#RX32\n", pCtx->cr0, pCtx->cr3, pCtx->cr4));
|
---|
6116 | return hmR0SvmNstGstWorldSwitch(pVCpu, pCtx);
|
---|
6117 | }
|
---|
6118 |
|
---|
6119 | return rc;
|
---|
6120 | }
|
---|
6121 | #endif /* VBOX_WITH_NESTED_HWVIRT && !VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM */
|
---|
6122 |
|
---|
6123 |
|
---|
6124 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
6125 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
6126 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
6127 |
|
---|
6128 | /** @name \#VMEXIT handlers.
|
---|
6129 | * @{
|
---|
6130 | */
|
---|
6131 |
|
---|
6132 | /**
|
---|
6133 | * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
|
---|
6134 | * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
|
---|
6135 | */
|
---|
6136 | HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6137 | {
|
---|
6138 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6139 |
|
---|
6140 | if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
|
---|
6141 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
|
---|
6142 | else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
|
---|
6143 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
|
---|
6144 |
|
---|
6145 | /*
|
---|
6146 | * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
|
---|
6147 | * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
|
---|
6148 | * interrupt it is until the host actually take the interrupt.
|
---|
6149 | *
|
---|
6150 | * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
|
---|
6151 | * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
|
---|
6152 | */
|
---|
6153 | return VINF_EM_RAW_INTERRUPT;
|
---|
6154 | }
|
---|
6155 |
|
---|
6156 |
|
---|
6157 | /**
|
---|
6158 | * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
|
---|
6159 | */
|
---|
6160 | HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6161 | {
|
---|
6162 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6163 |
|
---|
6164 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6165 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
|
---|
6166 | int rc = VINF_SUCCESS;
|
---|
6167 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6168 | return rc;
|
---|
6169 | }
|
---|
6170 |
|
---|
6171 |
|
---|
6172 | /**
|
---|
6173 | * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
|
---|
6174 | */
|
---|
6175 | HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6176 | {
|
---|
6177 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6178 |
|
---|
6179 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6180 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
|
---|
6181 | int rc = VINF_SUCCESS;
|
---|
6182 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6183 | return rc;
|
---|
6184 | }
|
---|
6185 |
|
---|
6186 |
|
---|
6187 | /**
|
---|
6188 | * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
|
---|
6189 | */
|
---|
6190 | HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6191 | {
|
---|
6192 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6193 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6194 | int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6195 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6196 | {
|
---|
6197 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6198 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6199 | }
|
---|
6200 | else
|
---|
6201 | {
|
---|
6202 | AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
6203 | rc = VERR_EM_INTERPRETER;
|
---|
6204 | }
|
---|
6205 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
|
---|
6206 | return rc;
|
---|
6207 | }
|
---|
6208 |
|
---|
6209 |
|
---|
6210 | /**
|
---|
6211 | * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
|
---|
6212 | */
|
---|
6213 | HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6214 | {
|
---|
6215 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6216 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6217 | int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6218 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6219 | {
|
---|
6220 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
6221 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6222 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6223 | }
|
---|
6224 | else
|
---|
6225 | {
|
---|
6226 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
|
---|
6227 | rc = VERR_EM_INTERPRETER;
|
---|
6228 | }
|
---|
6229 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
6230 | return rc;
|
---|
6231 | }
|
---|
6232 |
|
---|
6233 |
|
---|
6234 | /**
|
---|
6235 | * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
|
---|
6236 | */
|
---|
6237 | HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6238 | {
|
---|
6239 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6240 | int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
|
---|
6241 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6242 | {
|
---|
6243 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
6244 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
6245 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6246 | }
|
---|
6247 | else
|
---|
6248 | {
|
---|
6249 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
|
---|
6250 | rc = VERR_EM_INTERPRETER;
|
---|
6251 | }
|
---|
6252 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
|
---|
6253 | return rc;
|
---|
6254 | }
|
---|
6255 |
|
---|
6256 |
|
---|
6257 | /**
|
---|
6258 | * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
|
---|
6259 | */
|
---|
6260 | HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6261 | {
|
---|
6262 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6263 | int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6264 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6265 | {
|
---|
6266 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6267 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6268 | }
|
---|
6269 | else
|
---|
6270 | {
|
---|
6271 | AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
6272 | rc = VERR_EM_INTERPRETER;
|
---|
6273 | }
|
---|
6274 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
|
---|
6275 | return rc;
|
---|
6276 | }
|
---|
6277 |
|
---|
6278 |
|
---|
6279 | /**
|
---|
6280 | * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
|
---|
6281 | */
|
---|
6282 | HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6283 | {
|
---|
6284 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6285 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6286 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
6287 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
|
---|
6288 |
|
---|
6289 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
|
---|
6290 | {
|
---|
6291 | Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
|
---|
6292 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6293 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
6294 | RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
|
---|
6295 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
|
---|
6296 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6297 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
6298 | }
|
---|
6299 |
|
---|
6300 | int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
|
---|
6301 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
6302 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6303 | return rc;
|
---|
6304 | }
|
---|
6305 |
|
---|
6306 |
|
---|
6307 | /**
|
---|
6308 | * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
|
---|
6309 | */
|
---|
6310 | HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6311 | {
|
---|
6312 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6313 |
|
---|
6314 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 1);
|
---|
6315 | int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
|
---|
6316 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6317 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
6318 | if (rc != VINF_SUCCESS)
|
---|
6319 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
|
---|
6320 | return rc;
|
---|
6321 | }
|
---|
6322 |
|
---|
6323 |
|
---|
6324 | /**
|
---|
6325 | * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
|
---|
6326 | */
|
---|
6327 | HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6328 | {
|
---|
6329 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6330 | int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6331 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6332 | {
|
---|
6333 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
6334 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6335 | }
|
---|
6336 | else
|
---|
6337 | {
|
---|
6338 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
|
---|
6339 | rc = VERR_EM_INTERPRETER;
|
---|
6340 | }
|
---|
6341 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
|
---|
6342 | return rc;
|
---|
6343 | }
|
---|
6344 |
|
---|
6345 |
|
---|
6346 | /**
|
---|
6347 | * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
|
---|
6348 | */
|
---|
6349 | HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6350 | {
|
---|
6351 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6352 | VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6353 | int rc = VBOXSTRICTRC_VAL(rc2);
|
---|
6354 | if ( rc == VINF_EM_HALT
|
---|
6355 | || rc == VINF_SUCCESS)
|
---|
6356 | {
|
---|
6357 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
6358 |
|
---|
6359 | if ( rc == VINF_EM_HALT
|
---|
6360 | && EMMonitorWaitShouldContinue(pVCpu, pCtx))
|
---|
6361 | {
|
---|
6362 | rc = VINF_SUCCESS;
|
---|
6363 | }
|
---|
6364 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6365 | }
|
---|
6366 | else
|
---|
6367 | {
|
---|
6368 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
|
---|
6369 | rc = VERR_EM_INTERPRETER;
|
---|
6370 | }
|
---|
6371 | AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
|
---|
6372 | ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
|
---|
6373 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
|
---|
6374 | return rc;
|
---|
6375 | }
|
---|
6376 |
|
---|
6377 |
|
---|
6378 | /**
|
---|
6379 | * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
|
---|
6380 | * \#VMEXIT.
|
---|
6381 | */
|
---|
6382 | HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6383 | {
|
---|
6384 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6385 | return VINF_EM_RESET;
|
---|
6386 | }
|
---|
6387 |
|
---|
6388 |
|
---|
6389 | /**
|
---|
6390 | * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
|
---|
6391 | */
|
---|
6392 | HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6393 | {
|
---|
6394 | RT_NOREF(pCtx);
|
---|
6395 | AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64\n", pSvmTransient->u64ExitCode));
|
---|
6396 | pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
|
---|
6397 | return VERR_SVM_UNEXPECTED_EXIT;
|
---|
6398 | }
|
---|
6399 |
|
---|
6400 |
|
---|
6401 | /**
|
---|
6402 | * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
|
---|
6403 | */
|
---|
6404 | HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6405 | {
|
---|
6406 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6407 |
|
---|
6408 | Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
6409 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
|
---|
6410 |
|
---|
6411 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6412 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
|
---|
6413 | {
|
---|
6414 | Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
|
---|
6415 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6416 | bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
|
---|
6417 | if (fMovCRx)
|
---|
6418 | {
|
---|
6419 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
6420 | uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
|
---|
6421 | uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
|
---|
6422 | VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
|
---|
6423 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6424 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
6425 | }
|
---|
6426 | /* else: SMSW instruction, fall back below to IEM for this. */
|
---|
6427 | }
|
---|
6428 |
|
---|
6429 | VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
6430 | int rc = VBOXSTRICTRC_VAL(rc2);
|
---|
6431 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
|
---|
6432 | ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
6433 | Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
|
---|
6434 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6435 | return rc;
|
---|
6436 | }
|
---|
6437 |
|
---|
6438 |
|
---|
6439 | /**
|
---|
6440 | * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
|
---|
6441 | */
|
---|
6442 | HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6443 | {
|
---|
6444 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6445 |
|
---|
6446 | uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0;
|
---|
6447 | Assert(iCrReg <= 15);
|
---|
6448 |
|
---|
6449 | VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
|
---|
6450 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6451 | bool fDecodedInstr = false;
|
---|
6452 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
|
---|
6453 | {
|
---|
6454 | Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
|
---|
6455 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6456 | bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
|
---|
6457 | if (fMovCRx)
|
---|
6458 | {
|
---|
6459 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
6460 | uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
|
---|
6461 | rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
|
---|
6462 | fDecodedInstr = true;
|
---|
6463 | }
|
---|
6464 | /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
|
---|
6465 | }
|
---|
6466 |
|
---|
6467 | if (!fDecodedInstr)
|
---|
6468 | {
|
---|
6469 | rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
|
---|
6470 | if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
|
---|
6471 | || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
|
---|
6472 | rcStrict = VERR_EM_INTERPRETER;
|
---|
6473 | }
|
---|
6474 |
|
---|
6475 | if (rcStrict == VINF_SUCCESS)
|
---|
6476 | {
|
---|
6477 | switch (iCrReg)
|
---|
6478 | {
|
---|
6479 | case 0: /* CR0. */
|
---|
6480 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
6481 | break;
|
---|
6482 |
|
---|
6483 | case 3: /* CR3. */
|
---|
6484 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
6485 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
6486 | break;
|
---|
6487 |
|
---|
6488 | case 4: /* CR4. */
|
---|
6489 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
6490 | break;
|
---|
6491 |
|
---|
6492 | case 8: /* CR8 (TPR). */
|
---|
6493 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
6494 | break;
|
---|
6495 |
|
---|
6496 | default:
|
---|
6497 | AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
|
---|
6498 | pSvmTransient->u64ExitCode, iCrReg));
|
---|
6499 | break;
|
---|
6500 | }
|
---|
6501 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6502 | }
|
---|
6503 | else
|
---|
6504 | Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
|
---|
6505 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
6506 | }
|
---|
6507 |
|
---|
6508 |
|
---|
6509 | /**
|
---|
6510 | * \#VMEXIT handler for instructions that result in a \#UD exception delivered
|
---|
6511 | * to the guest.
|
---|
6512 | */
|
---|
6513 | HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6514 | {
|
---|
6515 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6516 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
6517 | return VINF_SUCCESS;
|
---|
6518 | }
|
---|
6519 |
|
---|
6520 |
|
---|
6521 | /**
|
---|
6522 | * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
|
---|
6523 | * \#VMEXIT.
|
---|
6524 | */
|
---|
6525 | HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6526 | {
|
---|
6527 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6528 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6529 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6530 |
|
---|
6531 | int rc;
|
---|
6532 | if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
|
---|
6533 | {
|
---|
6534 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
|
---|
6535 |
|
---|
6536 | /* Handle TPR patching; intercepted LSTAR write. */
|
---|
6537 | if ( pVM->hm.s.fTPRPatchingActive
|
---|
6538 | && pCtx->ecx == MSR_K8_LSTAR)
|
---|
6539 | {
|
---|
6540 | if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
6541 | {
|
---|
6542 | /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
|
---|
6543 | int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
|
---|
6544 | AssertRC(rc2);
|
---|
6545 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
6546 | }
|
---|
6547 | rc = VINF_SUCCESS;
|
---|
6548 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6549 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6550 | return rc;
|
---|
6551 | }
|
---|
6552 |
|
---|
6553 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
6554 | {
|
---|
6555 | rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6556 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6557 | {
|
---|
6558 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
6559 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6560 | }
|
---|
6561 | else
|
---|
6562 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6563 | || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
|
---|
6564 | }
|
---|
6565 | else
|
---|
6566 | {
|
---|
6567 | rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
|
---|
6568 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6569 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
|
---|
6570 | else
|
---|
6571 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6572 | || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
6573 | }
|
---|
6574 |
|
---|
6575 | if (rc == VINF_SUCCESS)
|
---|
6576 | {
|
---|
6577 | /* If this is an X2APIC WRMSR access, update the APIC state as well. */
|
---|
6578 | if ( pCtx->ecx >= MSR_IA32_X2APIC_START
|
---|
6579 | && pCtx->ecx <= MSR_IA32_X2APIC_END)
|
---|
6580 | {
|
---|
6581 | /*
|
---|
6582 | * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
|
---|
6583 | * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
|
---|
6584 | * EMInterpretWrmsr() changes it.
|
---|
6585 | */
|
---|
6586 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
6587 | }
|
---|
6588 | else if (pCtx->ecx == MSR_K6_EFER)
|
---|
6589 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
|
---|
6590 | else if (pCtx->ecx == MSR_IA32_TSC)
|
---|
6591 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
6592 | }
|
---|
6593 | }
|
---|
6594 | else
|
---|
6595 | {
|
---|
6596 | /* MSR Read access. */
|
---|
6597 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
|
---|
6598 | Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
|
---|
6599 |
|
---|
6600 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
6601 | {
|
---|
6602 | rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6603 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6604 | {
|
---|
6605 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
6606 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6607 | }
|
---|
6608 | else
|
---|
6609 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6610 | || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
|
---|
6611 | }
|
---|
6612 | else
|
---|
6613 | {
|
---|
6614 | rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
|
---|
6615 | if (RT_UNLIKELY(rc != VINF_SUCCESS))
|
---|
6616 | {
|
---|
6617 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6618 | || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
6619 | }
|
---|
6620 | /* RIP updated by EMInterpretInstruction(). */
|
---|
6621 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6622 | }
|
---|
6623 | }
|
---|
6624 |
|
---|
6625 | /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
|
---|
6626 | return rc;
|
---|
6627 | }
|
---|
6628 |
|
---|
6629 |
|
---|
6630 | /**
|
---|
6631 | * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
|
---|
6632 | */
|
---|
6633 | HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6634 | {
|
---|
6635 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6636 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
6637 |
|
---|
6638 | /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
|
---|
6639 | if (pSvmTransient->fWasGuestDebugStateActive)
|
---|
6640 | {
|
---|
6641 | AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
|
---|
6642 | pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
|
---|
6643 | return VERR_SVM_UNEXPECTED_EXIT;
|
---|
6644 | }
|
---|
6645 |
|
---|
6646 | /*
|
---|
6647 | * Lazy DR0-3 loading.
|
---|
6648 | */
|
---|
6649 | if (!pSvmTransient->fWasHyperDebugStateActive)
|
---|
6650 | {
|
---|
6651 | Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
|
---|
6652 | Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
|
---|
6653 |
|
---|
6654 | /* Don't intercept DRx read and writes. */
|
---|
6655 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6656 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
6657 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
6658 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
6659 |
|
---|
6660 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
6661 | VMMRZCallRing3Disable(pVCpu);
|
---|
6662 | HM_DISABLE_PREEMPT();
|
---|
6663 |
|
---|
6664 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
6665 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
6666 | Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
|
---|
6667 |
|
---|
6668 | HM_RESTORE_PREEMPT();
|
---|
6669 | VMMRZCallRing3Enable(pVCpu);
|
---|
6670 |
|
---|
6671 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
|
---|
6672 | return VINF_SUCCESS;
|
---|
6673 | }
|
---|
6674 |
|
---|
6675 | /*
|
---|
6676 | * Interpret the read/writing of DRx.
|
---|
6677 | */
|
---|
6678 | /** @todo Decode assist. */
|
---|
6679 | VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
6680 | Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
|
---|
6681 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6682 | {
|
---|
6683 | /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
|
---|
6684 | /** @todo CPUM should set this flag! */
|
---|
6685 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
6686 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6687 | }
|
---|
6688 | else
|
---|
6689 | Assert(rc == VERR_EM_INTERPRETER);
|
---|
6690 | return VBOXSTRICTRC_TODO(rc);
|
---|
6691 | }
|
---|
6692 |
|
---|
6693 |
|
---|
6694 | /**
|
---|
6695 | * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
|
---|
6696 | */
|
---|
6697 | HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6698 | {
|
---|
6699 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6700 | /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
|
---|
6701 | int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
6702 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
6703 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
6704 | return rc;
|
---|
6705 | }
|
---|
6706 |
|
---|
6707 |
|
---|
6708 | /**
|
---|
6709 | * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
|
---|
6710 | */
|
---|
6711 | HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6712 | {
|
---|
6713 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6714 |
|
---|
6715 | /** @todo decode assists... */
|
---|
6716 | VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
|
---|
6717 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
6718 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
6719 |
|
---|
6720 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
6721 | Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
|
---|
6722 | pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6723 |
|
---|
6724 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6725 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
6726 | }
|
---|
6727 |
|
---|
6728 |
|
---|
6729 | /**
|
---|
6730 | * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
|
---|
6731 | */
|
---|
6732 | HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6733 | {
|
---|
6734 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6735 |
|
---|
6736 | /* I/O operation lookup arrays. */
|
---|
6737 | static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
|
---|
6738 | static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
|
---|
6739 | the result (in AL/AX/EAX). */
|
---|
6740 | Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
6741 |
|
---|
6742 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6743 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6744 |
|
---|
6745 | /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
|
---|
6746 | SVMIOIOEXITINFO IoExitInfo;
|
---|
6747 | IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
|
---|
6748 | uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
|
---|
6749 | uint32_t cbValue = s_aIOSize[uIOWidth];
|
---|
6750 | uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
|
---|
6751 |
|
---|
6752 | if (RT_UNLIKELY(!cbValue))
|
---|
6753 | {
|
---|
6754 | AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
|
---|
6755 | return VERR_EM_INTERPRETER;
|
---|
6756 | }
|
---|
6757 |
|
---|
6758 | VBOXSTRICTRC rcStrict;
|
---|
6759 | bool fUpdateRipAlready = false;
|
---|
6760 | if (IoExitInfo.n.u1STR)
|
---|
6761 | {
|
---|
6762 | #ifdef VBOX_WITH_2ND_IEM_STEP
|
---|
6763 | /* INS/OUTS - I/O String instruction. */
|
---|
6764 | /** @todo Huh? why can't we use the segment prefix information given by AMD-V
|
---|
6765 | * in EXITINFO1? Investigate once this thing is up and running. */
|
---|
6766 | Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
|
---|
6767 | IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
|
---|
6768 | AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
|
---|
6769 | static IEMMODE const s_aenmAddrMode[8] =
|
---|
6770 | {
|
---|
6771 | (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
|
---|
6772 | };
|
---|
6773 | IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
|
---|
6774 | if (enmAddrMode != (IEMMODE)-1)
|
---|
6775 | {
|
---|
6776 | uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
|
---|
6777 | if (cbInstr <= 15 && cbInstr >= 1)
|
---|
6778 | {
|
---|
6779 | Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
|
---|
6780 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
6781 | {
|
---|
6782 | /* Don't know exactly how to detect whether u3SEG is valid, currently
|
---|
6783 | only enabling it for Bulldozer and later with NRIP. OS/2 broke on
|
---|
6784 | 2384 Opterons when only checking NRIP. */
|
---|
6785 | if ( (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
6786 | && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
|
---|
6787 | {
|
---|
6788 | AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
|
---|
6789 | ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
|
---|
6790 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
|
---|
6791 | IoExitInfo.n.u3SEG, true /*fIoChecked*/);
|
---|
6792 | }
|
---|
6793 | else if (cbInstr == 1U + IoExitInfo.n.u1REP)
|
---|
6794 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
|
---|
6795 | X86_SREG_DS, true /*fIoChecked*/);
|
---|
6796 | else
|
---|
6797 | rcStrict = IEMExecOne(pVCpu);
|
---|
6798 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
6799 | }
|
---|
6800 | else
|
---|
6801 | {
|
---|
6802 | AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
|
---|
6803 | rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
|
---|
6804 | true /*fIoChecked*/);
|
---|
6805 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
6806 | }
|
---|
6807 | }
|
---|
6808 | else
|
---|
6809 | {
|
---|
6810 | AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
|
---|
6811 | rcStrict = IEMExecOne(pVCpu);
|
---|
6812 | }
|
---|
6813 | }
|
---|
6814 | else
|
---|
6815 | {
|
---|
6816 | AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
|
---|
6817 | rcStrict = IEMExecOne(pVCpu);
|
---|
6818 | }
|
---|
6819 | fUpdateRipAlready = true;
|
---|
6820 |
|
---|
6821 | #else
|
---|
6822 | /* INS/OUTS - I/O String instruction. */
|
---|
6823 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
6824 |
|
---|
6825 | /** @todo Huh? why can't we use the segment prefix information given by AMD-V
|
---|
6826 | * in EXITINFO1? Investigate once this thing is up and running. */
|
---|
6827 |
|
---|
6828 | rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
|
---|
6829 | if (rcStrict == VINF_SUCCESS)
|
---|
6830 | {
|
---|
6831 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
6832 | {
|
---|
6833 | rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
6834 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
6835 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
6836 | }
|
---|
6837 | else
|
---|
6838 | {
|
---|
6839 | rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
6840 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
6841 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
6842 | }
|
---|
6843 | }
|
---|
6844 | else
|
---|
6845 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
6846 | #endif
|
---|
6847 | }
|
---|
6848 | else
|
---|
6849 | {
|
---|
6850 | /* IN/OUT - I/O instruction. */
|
---|
6851 | Assert(!IoExitInfo.n.u1REP);
|
---|
6852 |
|
---|
6853 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
6854 | {
|
---|
6855 | rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
|
---|
6856 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
|
---|
6857 | }
|
---|
6858 | else
|
---|
6859 | {
|
---|
6860 | uint32_t u32Val = 0;
|
---|
6861 | rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
|
---|
6862 | if (IOM_SUCCESS(rcStrict))
|
---|
6863 | {
|
---|
6864 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
6865 | /** @todo r=bird: 32-bit op size should clear high bits of rax! */
|
---|
6866 | pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
|
---|
6867 | }
|
---|
6868 | else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
6869 | HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
|
---|
6870 |
|
---|
6871 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
|
---|
6872 | }
|
---|
6873 | }
|
---|
6874 |
|
---|
6875 | if (IOM_SUCCESS(rcStrict))
|
---|
6876 | {
|
---|
6877 | /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
|
---|
6878 | if (!fUpdateRipAlready)
|
---|
6879 | pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
|
---|
6880 |
|
---|
6881 | /*
|
---|
6882 | * If any I/O breakpoints are armed, we need to check if one triggered
|
---|
6883 | * and take appropriate action.
|
---|
6884 | * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
|
---|
6885 | */
|
---|
6886 | /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
|
---|
6887 | * execution engines about whether hyper BPs and such are pending. */
|
---|
6888 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
6889 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
6890 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
6891 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
6892 | || DBGFBpIsHwIoArmed(pVM)))
|
---|
6893 | {
|
---|
6894 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
6895 | VMMRZCallRing3Disable(pVCpu);
|
---|
6896 | HM_DISABLE_PREEMPT();
|
---|
6897 |
|
---|
6898 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
|
---|
6899 | CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
|
---|
6900 |
|
---|
6901 | VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
|
---|
6902 | if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
|
---|
6903 | {
|
---|
6904 | /* Raise #DB. */
|
---|
6905 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
6906 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
6907 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
6908 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
6909 | }
|
---|
6910 | /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
|
---|
6911 | however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
|
---|
6912 | else if ( rcStrict2 != VINF_SUCCESS
|
---|
6913 | && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
|
---|
6914 | rcStrict = rcStrict2;
|
---|
6915 | AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
|
---|
6916 |
|
---|
6917 | HM_RESTORE_PREEMPT();
|
---|
6918 | VMMRZCallRing3Enable(pVCpu);
|
---|
6919 | }
|
---|
6920 |
|
---|
6921 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6922 | }
|
---|
6923 |
|
---|
6924 | #ifdef VBOX_STRICT
|
---|
6925 | if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
6926 | Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
|
---|
6927 | else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
|
---|
6928 | Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
|
---|
6929 | else
|
---|
6930 | {
|
---|
6931 | /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
|
---|
6932 | * statuses, that the VMM device and some others may return. See
|
---|
6933 | * IOM_SUCCESS() for guidance. */
|
---|
6934 | AssertMsg( RT_FAILURE(rcStrict)
|
---|
6935 | || rcStrict == VINF_SUCCESS
|
---|
6936 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
6937 | || rcStrict == VINF_EM_DBG_BREAKPOINT
|
---|
6938 | || rcStrict == VINF_EM_RAW_GUEST_TRAP
|
---|
6939 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
6940 | || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6941 | }
|
---|
6942 | #endif
|
---|
6943 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
6944 | }
|
---|
6945 |
|
---|
6946 |
|
---|
6947 | /**
|
---|
6948 | * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
|
---|
6949 | */
|
---|
6950 | HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6951 | {
|
---|
6952 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6953 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6954 | Assert(pVM->hm.s.fNestedPaging);
|
---|
6955 |
|
---|
6956 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
6957 |
|
---|
6958 | /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
|
---|
6959 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6960 | uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
6961 | RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
|
---|
6962 |
|
---|
6963 | Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
|
---|
6964 |
|
---|
6965 | #ifdef VBOX_HM_WITH_GUEST_PATCHING
|
---|
6966 | /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
|
---|
6967 | if ( pVM->hm.s.fTprPatchingAllowed
|
---|
6968 | && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
|
---|
6969 | && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
|
---|
6970 | || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
|
---|
6971 | && !CPUMIsGuestInLongModeEx(pCtx)
|
---|
6972 | && !CPUMGetGuestCPL(pVCpu)
|
---|
6973 | && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
|
---|
6974 | {
|
---|
6975 | RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
6976 | GCPhysApicBase &= PAGE_BASE_GC_MASK;
|
---|
6977 |
|
---|
6978 | if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
|
---|
6979 | {
|
---|
6980 | /* Only attempt to patch the instruction once. */
|
---|
6981 | PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
|
---|
6982 | if (!pPatch)
|
---|
6983 | return VINF_EM_HM_PATCH_TPR_INSTR;
|
---|
6984 | }
|
---|
6985 | }
|
---|
6986 | #endif
|
---|
6987 |
|
---|
6988 | /*
|
---|
6989 | * Determine the nested paging mode.
|
---|
6990 | */
|
---|
6991 | PGMMODE enmNestedPagingMode;
|
---|
6992 | #if HC_ARCH_BITS == 32
|
---|
6993 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
6994 | enmNestedPagingMode = PGMMODE_AMD64_NX;
|
---|
6995 | else
|
---|
6996 | #endif
|
---|
6997 | enmNestedPagingMode = PGMGetHostMode(pVM);
|
---|
6998 |
|
---|
6999 | /*
|
---|
7000 | * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
|
---|
7001 | */
|
---|
7002 | int rc;
|
---|
7003 | Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
|
---|
7004 | if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
|
---|
7005 | {
|
---|
7006 | /* If event delivery causes an MMIO #NPF, go back to instruction emulation as
|
---|
7007 | otherwise injecting the original pending event would most likely cause the same MMIO #NPF. */
|
---|
7008 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
7009 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7010 |
|
---|
7011 | VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
|
---|
7012 | u32ErrCode);
|
---|
7013 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
7014 |
|
---|
7015 | /*
|
---|
7016 | * If we succeed, resume guest execution.
|
---|
7017 | * If we fail in interpreting the instruction because we couldn't get the guest physical address
|
---|
7018 | * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
|
---|
7019 | * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
|
---|
7020 | * weird case. See @bugref{6043}.
|
---|
7021 | */
|
---|
7022 | if ( rc == VINF_SUCCESS
|
---|
7023 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
7024 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
7025 | {
|
---|
7026 | /* Successfully handled MMIO operation. */
|
---|
7027 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
7028 | rc = VINF_SUCCESS;
|
---|
7029 | }
|
---|
7030 | return rc;
|
---|
7031 | }
|
---|
7032 |
|
---|
7033 | TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
|
---|
7034 | rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
|
---|
7035 | TRPMResetTrap(pVCpu);
|
---|
7036 |
|
---|
7037 | Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
|
---|
7038 |
|
---|
7039 | /*
|
---|
7040 | * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
|
---|
7041 | */
|
---|
7042 | if ( rc == VINF_SUCCESS
|
---|
7043 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
7044 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
7045 | {
|
---|
7046 | /* We've successfully synced our shadow page tables. */
|
---|
7047 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
7048 | rc = VINF_SUCCESS;
|
---|
7049 | }
|
---|
7050 |
|
---|
7051 | return rc;
|
---|
7052 | }
|
---|
7053 |
|
---|
7054 |
|
---|
7055 | /**
|
---|
7056 | * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
|
---|
7057 | * \#VMEXIT.
|
---|
7058 | */
|
---|
7059 | HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7060 | {
|
---|
7061 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7062 |
|
---|
7063 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7064 | pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 0; /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
|
---|
7065 | pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0;
|
---|
7066 |
|
---|
7067 | /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive interrupts/NMIs, it is now ready. */
|
---|
7068 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
|
---|
7069 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
|
---|
7070 |
|
---|
7071 | /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
|
---|
7072 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
|
---|
7073 | return VINF_SUCCESS;
|
---|
7074 | }
|
---|
7075 |
|
---|
7076 |
|
---|
7077 | /**
|
---|
7078 | * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
|
---|
7079 | * \#VMEXIT.
|
---|
7080 | */
|
---|
7081 | HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7082 | {
|
---|
7083 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7084 |
|
---|
7085 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7086 |
|
---|
7087 | #ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
7088 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
7089 | #endif
|
---|
7090 |
|
---|
7091 | /* Check if this task-switch occurred while delivering an event through the guest IDT. */
|
---|
7092 | if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
|
---|
7093 | {
|
---|
7094 | /*
|
---|
7095 | * AMD-V provides us with the exception which caused the TS; we collect
|
---|
7096 | * the information in the call to hmR0SvmCheckExitDueToEventDelivery.
|
---|
7097 | */
|
---|
7098 | Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
|
---|
7099 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
7100 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7101 | }
|
---|
7102 |
|
---|
7103 | /** @todo Emulate task switch someday, currently just going back to ring-3 for
|
---|
7104 | * emulation. */
|
---|
7105 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
7106 | return VERR_EM_INTERPRETER;
|
---|
7107 | }
|
---|
7108 |
|
---|
7109 |
|
---|
7110 | /**
|
---|
7111 | * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
|
---|
7112 | */
|
---|
7113 | HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7114 | {
|
---|
7115 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7116 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
|
---|
7117 |
|
---|
7118 | bool fRipUpdated;
|
---|
7119 | VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fRipUpdated);
|
---|
7120 | if (RT_SUCCESS(rcStrict))
|
---|
7121 | {
|
---|
7122 | /* Only update the RIP if we're continuing guest execution and not
|
---|
7123 | in the case of say VINF_GIM_R3_HYPERCALL. */
|
---|
7124 | if ( rcStrict == VINF_SUCCESS
|
---|
7125 | && !fRipUpdated)
|
---|
7126 | {
|
---|
7127 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3 /* cbInstr */);
|
---|
7128 | }
|
---|
7129 |
|
---|
7130 | /* If the hypercall or TPR patching changes anything other than guest's general-purpose registers,
|
---|
7131 | we would need to reload the guest changed bits here before VM-entry. */
|
---|
7132 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7133 | }
|
---|
7134 |
|
---|
7135 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
7136 | return VINF_SUCCESS;
|
---|
7137 | }
|
---|
7138 |
|
---|
7139 |
|
---|
7140 | /**
|
---|
7141 | * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
|
---|
7142 | */
|
---|
7143 | HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7144 | {
|
---|
7145 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7146 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
|
---|
7147 | return VINF_EM_RAW_INTERRUPT;
|
---|
7148 | }
|
---|
7149 |
|
---|
7150 |
|
---|
7151 | /**
|
---|
7152 | * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
|
---|
7153 | */
|
---|
7154 | HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7155 | {
|
---|
7156 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7157 |
|
---|
7158 | /* Clear NMI blocking. */
|
---|
7159 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
7160 |
|
---|
7161 | /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
|
---|
7162 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7163 | hmR0SvmClearIretIntercept(pVmcb);
|
---|
7164 |
|
---|
7165 | /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
|
---|
7166 | return VINF_SUCCESS;
|
---|
7167 | }
|
---|
7168 |
|
---|
7169 |
|
---|
7170 | /**
|
---|
7171 | * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_14).
|
---|
7172 | * Conditional \#VMEXIT.
|
---|
7173 | */
|
---|
7174 | HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7175 | {
|
---|
7176 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7177 |
|
---|
7178 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7179 |
|
---|
7180 | /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
|
---|
7181 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7182 | uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
7183 | RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
|
---|
7184 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7185 |
|
---|
7186 | #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
|
---|
7187 | if (pVM->hm.s.fNestedPaging)
|
---|
7188 | {
|
---|
7189 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
7190 | if (!pSvmTransient->fVectoringDoublePF)
|
---|
7191 | {
|
---|
7192 | /* A genuine guest #PF, reflect it to the guest. */
|
---|
7193 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
7194 | Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
|
---|
7195 | uFaultAddress, u32ErrCode));
|
---|
7196 | }
|
---|
7197 | else
|
---|
7198 | {
|
---|
7199 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
7200 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
7201 | Log4(("Pending #DF due to vectoring #PF. NP\n"));
|
---|
7202 | }
|
---|
7203 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
7204 | return VINF_SUCCESS;
|
---|
7205 | }
|
---|
7206 | #endif
|
---|
7207 |
|
---|
7208 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
7209 |
|
---|
7210 | #ifdef VBOX_HM_WITH_GUEST_PATCHING
|
---|
7211 | /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
|
---|
7212 | if ( pVM->hm.s.fTprPatchingAllowed
|
---|
7213 | && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
|
---|
7214 | && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
|
---|
7215 | && !CPUMIsGuestInLongModeEx(pCtx)
|
---|
7216 | && !CPUMGetGuestCPL(pVCpu)
|
---|
7217 | && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
|
---|
7218 | {
|
---|
7219 | RTGCPHYS GCPhysApicBase;
|
---|
7220 | GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
7221 | GCPhysApicBase &= PAGE_BASE_GC_MASK;
|
---|
7222 |
|
---|
7223 | /* Check if the page at the fault-address is the APIC base. */
|
---|
7224 | RTGCPHYS GCPhysPage;
|
---|
7225 | int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
|
---|
7226 | if ( rc2 == VINF_SUCCESS
|
---|
7227 | && GCPhysPage == GCPhysApicBase)
|
---|
7228 | {
|
---|
7229 | /* Only attempt to patch the instruction once. */
|
---|
7230 | PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
|
---|
7231 | if (!pPatch)
|
---|
7232 | return VINF_EM_HM_PATCH_TPR_INSTR;
|
---|
7233 | }
|
---|
7234 | }
|
---|
7235 | #endif
|
---|
7236 |
|
---|
7237 | Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
|
---|
7238 | pCtx->rip, u32ErrCode, pCtx->cr3));
|
---|
7239 |
|
---|
7240 | /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
|
---|
7241 | of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
|
---|
7242 | if (pSvmTransient->fVectoringPF)
|
---|
7243 | {
|
---|
7244 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
7245 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7246 | }
|
---|
7247 |
|
---|
7248 | TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
|
---|
7249 | int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
|
---|
7250 |
|
---|
7251 | Log4(("#PF rc=%Rrc\n", rc));
|
---|
7252 |
|
---|
7253 | if (rc == VINF_SUCCESS)
|
---|
7254 | {
|
---|
7255 | /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
|
---|
7256 | TRPMResetTrap(pVCpu);
|
---|
7257 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
7258 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
7259 | return rc;
|
---|
7260 | }
|
---|
7261 | else if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
7262 | {
|
---|
7263 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
7264 |
|
---|
7265 | if (!pSvmTransient->fVectoringDoublePF)
|
---|
7266 | {
|
---|
7267 | /* It's a guest page fault and needs to be reflected to the guest. */
|
---|
7268 | u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
|
---|
7269 | TRPMResetTrap(pVCpu);
|
---|
7270 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
7271 | }
|
---|
7272 | else
|
---|
7273 | {
|
---|
7274 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
7275 | TRPMResetTrap(pVCpu);
|
---|
7276 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
7277 | Log4(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
7278 | }
|
---|
7279 |
|
---|
7280 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
7281 | return VINF_SUCCESS;
|
---|
7282 | }
|
---|
7283 |
|
---|
7284 | TRPMResetTrap(pVCpu);
|
---|
7285 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
|
---|
7286 | return rc;
|
---|
7287 | }
|
---|
7288 |
|
---|
7289 |
|
---|
7290 | /**
|
---|
7291 | * \#VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
|
---|
7292 | * Conditional \#VMEXIT.
|
---|
7293 | */
|
---|
7294 | HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7295 | {
|
---|
7296 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7297 |
|
---|
7298 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
7299 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7300 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
|
---|
7301 |
|
---|
7302 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
7303 | VMMRZCallRing3Disable(pVCpu);
|
---|
7304 | HM_DISABLE_PREEMPT();
|
---|
7305 |
|
---|
7306 | int rc;
|
---|
7307 | /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
|
---|
7308 | if (pSvmTransient->fWasGuestFPUStateActive)
|
---|
7309 | {
|
---|
7310 | rc = VINF_EM_RAW_GUEST_TRAP;
|
---|
7311 | Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
|
---|
7312 | }
|
---|
7313 | else
|
---|
7314 | {
|
---|
7315 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
7316 | Assert(!pSvmTransient->fWasGuestFPUStateActive);
|
---|
7317 | #endif
|
---|
7318 | rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu); /* (No need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
|
---|
7319 | Assert( rc == VINF_EM_RAW_GUEST_TRAP
|
---|
7320 | || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
|
---|
7321 | }
|
---|
7322 |
|
---|
7323 | HM_RESTORE_PREEMPT();
|
---|
7324 | VMMRZCallRing3Enable(pVCpu);
|
---|
7325 |
|
---|
7326 | if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
7327 | {
|
---|
7328 | /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
|
---|
7329 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
7330 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
|
---|
7331 | pVCpu->hm.s.fPreloadGuestFpu = true;
|
---|
7332 | }
|
---|
7333 | else
|
---|
7334 | {
|
---|
7335 | /* Forward #NM to the guest. */
|
---|
7336 | Assert(rc == VINF_EM_RAW_GUEST_TRAP);
|
---|
7337 | hmR0SvmSetPendingXcptNM(pVCpu);
|
---|
7338 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
|
---|
7339 | }
|
---|
7340 | return VINF_SUCCESS;
|
---|
7341 | }
|
---|
7342 |
|
---|
7343 |
|
---|
7344 | /**
|
---|
7345 | * \#VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6).
|
---|
7346 | * Conditional \#VMEXIT.
|
---|
7347 | */
|
---|
7348 | HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7349 | {
|
---|
7350 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7351 |
|
---|
7352 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
7353 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7354 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
|
---|
7355 |
|
---|
7356 | int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
|
---|
7357 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
7358 | {
|
---|
7359 | uint8_t cbInstr = 0;
|
---|
7360 | VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, pCtx, NULL /* pDis */, &cbInstr);
|
---|
7361 | if (rcStrict == VINF_SUCCESS)
|
---|
7362 | {
|
---|
7363 | /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
|
---|
7364 | hmR0SvmAdvanceRipDumb(pVCpu, pCtx, cbInstr);
|
---|
7365 | rc = VINF_SUCCESS;
|
---|
7366 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
7367 | }
|
---|
7368 | else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
|
---|
7369 | rc = VINF_SUCCESS;
|
---|
7370 | else if (rcStrict == VINF_GIM_R3_HYPERCALL)
|
---|
7371 | rc = VINF_GIM_R3_HYPERCALL;
|
---|
7372 | else
|
---|
7373 | Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7374 | }
|
---|
7375 |
|
---|
7376 | /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
|
---|
7377 | if (RT_FAILURE(rc))
|
---|
7378 | {
|
---|
7379 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
7380 | rc = VINF_SUCCESS;
|
---|
7381 | }
|
---|
7382 |
|
---|
7383 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
|
---|
7384 | return rc;
|
---|
7385 | }
|
---|
7386 |
|
---|
7387 |
|
---|
7388 | /**
|
---|
7389 | * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_16).
|
---|
7390 | * Conditional \#VMEXIT.
|
---|
7391 | */
|
---|
7392 | HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7393 | {
|
---|
7394 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7395 |
|
---|
7396 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
7397 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7398 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
|
---|
7399 |
|
---|
7400 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
|
---|
7401 |
|
---|
7402 | if (!(pCtx->cr0 & X86_CR0_NE))
|
---|
7403 | {
|
---|
7404 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7405 | PDISSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
7406 | unsigned cbOp;
|
---|
7407 | int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
|
---|
7408 | if (RT_SUCCESS(rc))
|
---|
7409 | {
|
---|
7410 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
7411 | rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
|
---|
7412 | if (RT_SUCCESS(rc))
|
---|
7413 | pCtx->rip += cbOp;
|
---|
7414 | }
|
---|
7415 | else
|
---|
7416 | Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
|
---|
7417 | return rc;
|
---|
7418 | }
|
---|
7419 |
|
---|
7420 | hmR0SvmSetPendingXcptMF(pVCpu);
|
---|
7421 | return VINF_SUCCESS;
|
---|
7422 | }
|
---|
7423 |
|
---|
7424 |
|
---|
7425 | /**
|
---|
7426 | * \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
|
---|
7427 | * \#VMEXIT.
|
---|
7428 | */
|
---|
7429 | HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7430 | {
|
---|
7431 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7432 |
|
---|
7433 | /* If this #DB is the result of delivering an event, go back to the interpreter. */
|
---|
7434 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7435 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
7436 | {
|
---|
7437 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
7438 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7439 | }
|
---|
7440 |
|
---|
7441 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
|
---|
7442 |
|
---|
7443 | /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
|
---|
7444 | DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
|
---|
7445 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7446 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7447 | int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
|
---|
7448 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
7449 | {
|
---|
7450 | Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
|
---|
7451 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
7452 | CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
|
---|
7453 |
|
---|
7454 | /* Reflect the exception back to the guest. */
|
---|
7455 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
7456 | rc = VINF_SUCCESS;
|
---|
7457 | }
|
---|
7458 |
|
---|
7459 | /*
|
---|
7460 | * Update DR6.
|
---|
7461 | */
|
---|
7462 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
7463 | {
|
---|
7464 | Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
|
---|
7465 | pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
|
---|
7466 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
7467 | }
|
---|
7468 | else
|
---|
7469 | {
|
---|
7470 | AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
|
---|
7471 | Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
|
---|
7472 | }
|
---|
7473 |
|
---|
7474 | return rc;
|
---|
7475 | }
|
---|
7476 |
|
---|
7477 |
|
---|
7478 | /**
|
---|
7479 | * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_EXCEPTION_17).
|
---|
7480 | * Conditional \#VMEXIT.
|
---|
7481 | */
|
---|
7482 | HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7483 | {
|
---|
7484 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7485 |
|
---|
7486 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7487 |
|
---|
7488 | SVMEVENT Event;
|
---|
7489 | Event.u = 0;
|
---|
7490 | Event.n.u1Valid = 1;
|
---|
7491 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
7492 | Event.n.u8Vector = X86_XCPT_AC;
|
---|
7493 | Event.n.u1ErrorCodeValid = 1;
|
---|
7494 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
7495 | return VINF_SUCCESS;
|
---|
7496 | }
|
---|
7497 |
|
---|
7498 |
|
---|
7499 | /**
|
---|
7500 | * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
|
---|
7501 | * Conditional \#VMEXIT.
|
---|
7502 | */
|
---|
7503 | HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7504 | {
|
---|
7505 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7506 |
|
---|
7507 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7508 |
|
---|
7509 | int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
7510 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
7511 | {
|
---|
7512 | SVMEVENT Event;
|
---|
7513 | Event.u = 0;
|
---|
7514 | Event.n.u1Valid = 1;
|
---|
7515 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
7516 | Event.n.u8Vector = X86_XCPT_BP;
|
---|
7517 | Event.n.u1ErrorCodeValid = 0;
|
---|
7518 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
7519 | }
|
---|
7520 |
|
---|
7521 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
|
---|
7522 | return rc;
|
---|
7523 | }
|
---|
7524 |
|
---|
7525 |
|
---|
7526 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
7527 | /**
|
---|
7528 | * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
|
---|
7529 | */
|
---|
7530 | HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7531 | {
|
---|
7532 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7533 | /** @todo Stat. */
|
---|
7534 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClgi); */
|
---|
7535 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7536 | VBOXSTRICTRC rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
|
---|
7537 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7538 | }
|
---|
7539 |
|
---|
7540 |
|
---|
7541 | /**
|
---|
7542 | * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
|
---|
7543 | */
|
---|
7544 | HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7545 | {
|
---|
7546 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7547 | /** @todo Stat. */
|
---|
7548 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitStgi); */
|
---|
7549 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7550 | VBOXSTRICTRC rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
|
---|
7551 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7552 | }
|
---|
7553 |
|
---|
7554 |
|
---|
7555 | /**
|
---|
7556 | * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
|
---|
7557 | */
|
---|
7558 | HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7559 | {
|
---|
7560 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7561 | /** @todo Stat. */
|
---|
7562 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmload); */
|
---|
7563 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7564 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
|
---|
7565 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7566 | }
|
---|
7567 |
|
---|
7568 |
|
---|
7569 | /**
|
---|
7570 | * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
|
---|
7571 | */
|
---|
7572 | HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7573 | {
|
---|
7574 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7575 | /** @todo Stat. */
|
---|
7576 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmsave); */
|
---|
7577 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7578 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
|
---|
7579 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7580 | }
|
---|
7581 |
|
---|
7582 |
|
---|
7583 | /**
|
---|
7584 | * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
|
---|
7585 | */
|
---|
7586 | HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7587 | {
|
---|
7588 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7589 | /** @todo Stat. */
|
---|
7590 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpga); */
|
---|
7591 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7592 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
|
---|
7593 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7594 | }
|
---|
7595 |
|
---|
7596 |
|
---|
7597 | /**
|
---|
7598 | * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
|
---|
7599 | */
|
---|
7600 | HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7601 | {
|
---|
7602 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7603 | /** @todo Stat. */
|
---|
7604 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmrun); */
|
---|
7605 | VBOXSTRICTRC rcStrict;
|
---|
7606 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7607 | #if defined(VBOX_WITH_NESTED_HWVIRT) && defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM)
|
---|
7608 | rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
|
---|
7609 | #else
|
---|
7610 | rcStrict = hmR0SvmExecVmrun(pVCpu, pCtx, pCtx->rax, cbInstr);
|
---|
7611 | if (rcStrict == VINF_SUCCESS)
|
---|
7612 | rcStrict = VINF_SVM_VMRUN;
|
---|
7613 | #endif
|
---|
7614 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7615 | }
|
---|
7616 |
|
---|
7617 | /**
|
---|
7618 | * Nested-guest \#VMEXIT handler for IRET (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
|
---|
7619 | */
|
---|
7620 | HMSVM_EXIT_DECL hmR0SvmNestedExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7621 | {
|
---|
7622 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7623 |
|
---|
7624 | /* Clear NMI blocking. */
|
---|
7625 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
7626 |
|
---|
7627 | /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
|
---|
7628 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
7629 | hmR0SvmClearIretIntercept(pVmcbNstGst);
|
---|
7630 |
|
---|
7631 | /* Deliver the pending NMI via hmR0SvmEvaluatePendingEventNested() and resume guest execution. */
|
---|
7632 | return VINF_SUCCESS;
|
---|
7633 | }
|
---|
7634 |
|
---|
7635 |
|
---|
7636 | /**
|
---|
7637 | * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
|
---|
7638 | * \#VMEXIT.
|
---|
7639 | */
|
---|
7640 | HMSVM_EXIT_DECL hmR0SvmNestedExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7641 | {
|
---|
7642 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7643 |
|
---|
7644 | /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
|
---|
7645 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
7646 | pVmcbNstGst->ctrl.IntCtrl.n.u1VIrqPending = 0;
|
---|
7647 | pVmcbNstGst->ctrl.IntCtrl.n.u8VIntrVector = 0;
|
---|
7648 |
|
---|
7649 | /* Indicate that we no longer need to #VMEXIT when the nested-guest is ready to receive interrupts/NMIs, it is now ready. */
|
---|
7650 | pVmcbNstGst->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
|
---|
7651 | pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
|
---|
7652 |
|
---|
7653 | /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEventNested() and resume guest execution. */
|
---|
7654 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
|
---|
7655 | return VINF_SUCCESS;
|
---|
7656 | }
|
---|
7657 |
|
---|
7658 | #endif /* VBOX_WITH_NESTED_HWVIRT */
|
---|
7659 |
|
---|
7660 |
|
---|
7661 | /** @} */
|
---|
7662 |
|
---|