VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 69786

Last change on this file since 69786 was 69786, checked in by vboxsync, 7 years ago

VMM/HMSVMR0: Nested Hw.virt: Fix lazy loading debug registers unintentionally while executing the nested-guest.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 292.0 KB
Line 
1/* $Id: HMSVMR0.cpp 69786 2017-11-21 06:49:59Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/asm-amd64-x86.h>
24#include <iprt/thread.h>
25
26#include <VBox/vmm/pdmapi.h>
27#include <VBox/vmm/dbgf.h>
28#include <VBox/vmm/iem.h>
29#include <VBox/vmm/iom.h>
30#include <VBox/vmm/tm.h>
31#include <VBox/vmm/gim.h>
32#include <VBox/vmm/apic.h>
33#include "HMInternal.h"
34#include <VBox/vmm/vm.h>
35#include "HMSVMR0.h"
36#include "dtrace/VBoxVMM.h"
37
38#define HMSVM_USE_IEM_EVENT_REFLECTION
39#ifdef DEBUG_ramshankar
40# define HMSVM_SYNC_FULL_GUEST_STATE
41# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
42# define HMSVM_ALWAYS_TRAP_PF
43# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
44#endif
45
46
47/*********************************************************************************************************************************
48* Defined Constants And Macros *
49*********************************************************************************************************************************/
50#ifdef VBOX_WITH_STATISTICS
51# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
52 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
53 if ((u64ExitCode) == SVM_EXIT_NPF) \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
55 else \
56 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
57 } while (0)
58#else
59# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
60#endif
61
62/** If we decide to use a function table approach this can be useful to
63 * switch to a "static DECLCALLBACK(int)". */
64#define HMSVM_EXIT_DECL static int
65
66/** Macro for checking and returning from the using function for
67 * \#VMEXIT intercepts that maybe caused during delivering of another
68 * event in the guest. */
69#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
70 do \
71 { \
72 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
73 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* likely */ } \
74 else if (rc == VINF_HM_DOUBLE_FAULT) \
75 return VINF_SUCCESS; \
76 else \
77 return rc; \
78 } while (0)
79
80/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
81 * instruction that exited. */
82#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
83 do { \
84 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
85 (a_rc) = VINF_EM_DBG_STEPPED; \
86 } while (0)
87
88/** Assert that preemption is disabled or covered by thread-context hooks. */
89#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
90 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
91
92/** Assert that we haven't migrated CPUs when thread-context hooks are not
93 * used. */
94#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
95 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
96 ("Illegal migration! Entered on CPU %u Current %u\n", \
97 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
98
99/**
100 * Exception bitmap mask for all contributory exceptions.
101 *
102 * Page fault is deliberately excluded here as it's conditional as to whether
103 * it's contributory or benign. Page faults are handled separately.
104 */
105#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
106 | RT_BIT(X86_XCPT_DE))
107
108/**
109 * Mandatory/unconditional guest control intercepts.
110 */
111#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
112 | SVM_CTRL_INTERCEPT_NMI \
113 | SVM_CTRL_INTERCEPT_INIT \
114 | SVM_CTRL_INTERCEPT_RDPMC \
115 | SVM_CTRL_INTERCEPT_CPUID \
116 | SVM_CTRL_INTERCEPT_RSM \
117 | SVM_CTRL_INTERCEPT_HLT \
118 | SVM_CTRL_INTERCEPT_IOIO_PROT \
119 | SVM_CTRL_INTERCEPT_MSR_PROT \
120 | SVM_CTRL_INTERCEPT_INVLPGA \
121 | SVM_CTRL_INTERCEPT_SHUTDOWN \
122 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
123 | SVM_CTRL_INTERCEPT_VMRUN \
124 | SVM_CTRL_INTERCEPT_VMMCALL \
125 | SVM_CTRL_INTERCEPT_VMLOAD \
126 | SVM_CTRL_INTERCEPT_VMSAVE \
127 | SVM_CTRL_INTERCEPT_STGI \
128 | SVM_CTRL_INTERCEPT_CLGI \
129 | SVM_CTRL_INTERCEPT_SKINIT \
130 | SVM_CTRL_INTERCEPT_WBINVD \
131 | SVM_CTRL_INTERCEPT_MONITOR \
132 | SVM_CTRL_INTERCEPT_MWAIT \
133 | SVM_CTRL_INTERCEPT_XSETBV)
134
135/**
136 * Mandatory/unconditional nested-guest control intercepts.
137 */
138#define HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS ( HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS \
139 | SVM_CTRL_INTERCEPT_SMI)
140
141/** @name VMCB Clean Bits.
142 *
143 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
144 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
145 * memory.
146 *
147 * @{ */
148/** All intercepts vectors, TSC offset, PAUSE filter counter. */
149#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
150/** I/O permission bitmap, MSR permission bitmap. */
151#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
152/** ASID. */
153#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
154/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
155V_INTR_VECTOR. */
156#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
157/** Nested Paging: Nested CR3 (nCR3), PAT. */
158#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
159/** Control registers (CR0, CR3, CR4, EFER). */
160#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
161/** Debug registers (DR6, DR7). */
162#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
163/** GDT, IDT limit and base. */
164#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
165/** Segment register: CS, SS, DS, ES limit and base. */
166#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
167/** CR2.*/
168#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
169/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
170#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
171/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
172PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
173#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
174/** Mask of all valid VMCB Clean bits. */
175#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
176 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
177 | HMSVM_VMCB_CLEAN_ASID \
178 | HMSVM_VMCB_CLEAN_TPR \
179 | HMSVM_VMCB_CLEAN_NP \
180 | HMSVM_VMCB_CLEAN_CRX_EFER \
181 | HMSVM_VMCB_CLEAN_DRX \
182 | HMSVM_VMCB_CLEAN_DT \
183 | HMSVM_VMCB_CLEAN_SEG \
184 | HMSVM_VMCB_CLEAN_CR2 \
185 | HMSVM_VMCB_CLEAN_LBR \
186 | HMSVM_VMCB_CLEAN_AVIC)
187/** @} */
188
189/** @name SVM transient.
190 *
191 * A state structure for holding miscellaneous information across AMD-V
192 * VMRUN/\#VMEXIT operation, restored after the transition.
193 *
194 * @{ */
195typedef struct SVMTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG fEFlags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202
203 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
204 uint64_t u64ExitCode;
205 /** The guest's TPR value used for TPR shadowing. */
206 uint8_t u8GuestTpr;
207 /** Alignment. */
208 uint8_t abAlignment0[7];
209
210 /** Whether the guest FPU state was active at the time of \#VMEXIT. */
211 bool fWasGuestFPUStateActive;
212 /** Whether the guest debug state was active at the time of \#VMEXIT. */
213 bool fWasGuestDebugStateActive;
214 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
215 bool fWasHyperDebugStateActive;
216 /** Whether the TSC offset mode needs to be updated. */
217 bool fUpdateTscOffsetting;
218 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
219 bool fRestoreTscAuxMsr;
220 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
221 * contributary exception or a page-fault. */
222 bool fVectoringDoublePF;
223 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
224 * external interrupt or NMI. */
225 bool fVectoringPF;
226} SVMTRANSIENT, *PSVMTRANSIENT;
227AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
228AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
229/** @} */
230
231/**
232 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
233 */
234typedef enum SVMMSREXITREAD
235{
236 /** Reading this MSR causes a \#VMEXIT. */
237 SVMMSREXIT_INTERCEPT_READ = 0xb,
238 /** Reading this MSR does not cause a \#VMEXIT. */
239 SVMMSREXIT_PASSTHRU_READ
240} SVMMSREXITREAD;
241
242/**
243 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
244 */
245typedef enum SVMMSREXITWRITE
246{
247 /** Writing to this MSR causes a \#VMEXIT. */
248 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
249 /** Writing to this MSR does not cause a \#VMEXIT. */
250 SVMMSREXIT_PASSTHRU_WRITE
251} SVMMSREXITWRITE;
252
253/**
254 * SVM \#VMEXIT handler.
255 *
256 * @returns VBox status code.
257 * @param pVCpu The cross context virtual CPU structure.
258 * @param pMixedCtx Pointer to the guest-CPU context.
259 * @param pSvmTransient Pointer to the SVM-transient structure.
260 */
261typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
262
263
264/*********************************************************************************************************************************
265* Internal Functions *
266*********************************************************************************************************************************/
267static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
268 SVMMSREXITWRITE enmWrite);
269static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
270static void hmR0SvmLeave(PVMCPU pVCpu);
271
272/** @name \#VMEXIT handlers.
273 * @{
274 */
275static FNSVMEXITHANDLER hmR0SvmExitIntr;
276static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
277static FNSVMEXITHANDLER hmR0SvmExitInvd;
278static FNSVMEXITHANDLER hmR0SvmExitCpuid;
279static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
280static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
281static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
282static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
283static FNSVMEXITHANDLER hmR0SvmExitHlt;
284static FNSVMEXITHANDLER hmR0SvmExitMonitor;
285static FNSVMEXITHANDLER hmR0SvmExitMwait;
286static FNSVMEXITHANDLER hmR0SvmExitShutdown;
287static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
288static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
289static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
290static FNSVMEXITHANDLER hmR0SvmExitMsr;
291static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
292static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
293static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
294static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
295static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
296static FNSVMEXITHANDLER hmR0SvmExitVIntr;
297static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
298static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
299static FNSVMEXITHANDLER hmR0SvmExitPause;
300static FNSVMEXITHANDLER hmR0SvmExitIret;
301static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
302static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
303static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
304static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
305static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
306static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
307static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
308#ifdef VBOX_WITH_NESTED_HWVIRT
309static FNSVMEXITHANDLER hmR0SvmExitXcptPFNested;
310static FNSVMEXITHANDLER hmR0SvmExitClgi;
311static FNSVMEXITHANDLER hmR0SvmExitStgi;
312static FNSVMEXITHANDLER hmR0SvmExitVmload;
313static FNSVMEXITHANDLER hmR0SvmExitVmsave;
314static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
315static FNSVMEXITHANDLER hmR0SvmExitVmrun;
316static FNSVMEXITHANDLER hmR0SvmNestedExitIret;
317static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
318static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
319#endif
320/** @} */
321
322static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
323#ifdef VBOX_WITH_NESTED_HWVIRT
324static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
325#endif
326
327
328/*********************************************************************************************************************************
329* Global Variables *
330*********************************************************************************************************************************/
331/** Ring-0 memory object for the IO bitmap. */
332RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
333/** Physical address of the IO bitmap. */
334RTHCPHYS g_HCPhysIOBitmap = 0;
335/** Pointer to the IO bitmap. */
336R0PTRTYPE(void *) g_pvIOBitmap = NULL;
337
338#ifdef VBOX_WITH_NESTED_HWVIRT
339/** Ring-0 memory object for the nested-guest MSRPM bitmap. */
340RTR0MEMOBJ g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
341/** Physical address of the nested-guest MSRPM bitmap. */
342RTHCPHYS g_HCPhysNstGstMsrBitmap = 0;
343/** Pointer to the nested-guest MSRPM bitmap. */
344R0PTRTYPE(void *) g_pvNstGstMsrBitmap = NULL;
345#endif
346
347/**
348 * Sets up and activates AMD-V on the current CPU.
349 *
350 * @returns VBox status code.
351 * @param pCpu Pointer to the CPU info struct.
352 * @param pVM The cross context VM structure. Can be
353 * NULL after a resume!
354 * @param pvCpuPage Pointer to the global CPU page.
355 * @param HCPhysCpuPage Physical address of the global CPU page.
356 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
357 * @param pvArg Unused on AMD-V.
358 */
359VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
360 void *pvArg)
361{
362 Assert(!fEnabledByHost);
363 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
364 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
365 Assert(pvCpuPage); NOREF(pvCpuPage);
366 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
367
368 NOREF(pvArg);
369 NOREF(fEnabledByHost);
370
371 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
372 RTCCUINTREG fEFlags = ASMIntDisableFlags();
373
374 /*
375 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
376 */
377 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
378 if (u64HostEfer & MSR_K6_EFER_SVME)
379 {
380 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
381 if ( pVM
382 && pVM->hm.s.svm.fIgnoreInUseError)
383 {
384 pCpu->fIgnoreAMDVInUseError = true;
385 }
386
387 if (!pCpu->fIgnoreAMDVInUseError)
388 {
389 ASMSetFlags(fEFlags);
390 return VERR_SVM_IN_USE;
391 }
392 }
393
394 /* Turn on AMD-V in the EFER MSR. */
395 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
396
397 /* Write the physical page address where the CPU will store the host state while executing the VM. */
398 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
399
400 /* Restore interrupts. */
401 ASMSetFlags(fEFlags);
402
403 /*
404 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
405 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
406 * upon VMRUN). Therefore, flag that we need to flush the TLB entirely with before executing any
407 * guest code.
408 */
409 pCpu->fFlushAsidBeforeUse = true;
410
411 /*
412 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
413 */
414 ++pCpu->cTlbFlushes;
415
416 return VINF_SUCCESS;
417}
418
419
420/**
421 * Deactivates AMD-V on the current CPU.
422 *
423 * @returns VBox status code.
424 * @param pCpu Pointer to the CPU info struct.
425 * @param pvCpuPage Pointer to the global CPU page.
426 * @param HCPhysCpuPage Physical address of the global CPU page.
427 */
428VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
429{
430 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
431 AssertReturn( HCPhysCpuPage
432 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
433 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
434 NOREF(pCpu);
435
436 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
437 RTCCUINTREG fEFlags = ASMIntDisableFlags();
438
439 /* Turn off AMD-V in the EFER MSR. */
440 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
441 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
442
443 /* Invalidate host state physical address. */
444 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
445
446 /* Restore interrupts. */
447 ASMSetFlags(fEFlags);
448
449 return VINF_SUCCESS;
450}
451
452
453/**
454 * Does global AMD-V initialization (called during module initialization).
455 *
456 * @returns VBox status code.
457 */
458VMMR0DECL(int) SVMR0GlobalInit(void)
459{
460 /*
461 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
462 * once globally here instead of per-VM.
463 */
464 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
465 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
466 if (RT_FAILURE(rc))
467 return rc;
468
469 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
470 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
471
472 /* Set all bits to intercept all IO accesses. */
473 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
474
475#ifdef VBOX_WITH_NESTED_HWVIRT
476 /*
477 * Allocate 8 KB for the MSR permission bitmap for the nested-guest.
478 */
479 Assert(g_hMemObjNstGstMsrBitmap == NIL_RTR0MEMOBJ);
480 rc = RTR0MemObjAllocCont(&g_hMemObjNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
481 if (RT_FAILURE(rc))
482 return rc;
483
484 g_pvNstGstMsrBitmap = RTR0MemObjAddress(g_hMemObjNstGstMsrBitmap);
485 g_HCPhysNstGstMsrBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjNstGstMsrBitmap, 0 /* iPage */);
486
487 /* Set all bits to intercept all MSR accesses. */
488 ASMMemFill32(g_pvNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
489#endif
490
491 return VINF_SUCCESS;
492}
493
494
495/**
496 * Does global AMD-V termination (called during module termination).
497 */
498VMMR0DECL(void) SVMR0GlobalTerm(void)
499{
500 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
501 {
502 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
503 g_pvIOBitmap = NULL;
504 g_HCPhysIOBitmap = 0;
505 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
506 }
507
508#ifdef VBOX_WITH_NESTED_HWVIRT
509 if (g_hMemObjNstGstMsrBitmap != NIL_RTR0MEMOBJ)
510 {
511 RTR0MemObjFree(g_hMemObjNstGstMsrBitmap, true /* fFreeMappings */);
512 g_pvNstGstMsrBitmap = NULL;
513 g_HCPhysNstGstMsrBitmap = 0;
514 g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
515 }
516#endif
517}
518
519
520/**
521 * Frees any allocated per-VCPU structures for a VM.
522 *
523 * @param pVM The cross context VM structure.
524 */
525DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
526{
527 for (uint32_t i = 0; i < pVM->cCpus; i++)
528 {
529 PVMCPU pVCpu = &pVM->aCpus[i];
530 AssertPtr(pVCpu);
531
532 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
533 {
534 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
535 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
536 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
537 }
538
539 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
540 {
541 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
542 pVCpu->hm.s.svm.pVmcb = NULL;
543 pVCpu->hm.s.svm.HCPhysVmcb = 0;
544 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
545 }
546
547 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
548 {
549 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
550 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
551 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
552 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
553 }
554 }
555}
556
557
558/**
559 * Does per-VM AMD-V initialization.
560 *
561 * @returns VBox status code.
562 * @param pVM The cross context VM structure.
563 */
564VMMR0DECL(int) SVMR0InitVM(PVM pVM)
565{
566 int rc = VERR_INTERNAL_ERROR_5;
567
568 /*
569 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
570 */
571 uint32_t u32Family;
572 uint32_t u32Model;
573 uint32_t u32Stepping;
574 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
575 {
576 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
577 pVM->hm.s.svm.fAlwaysFlushTLB = true;
578 }
579
580 /*
581 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
582 */
583 for (VMCPUID i = 0; i < pVM->cCpus; i++)
584 {
585 PVMCPU pVCpu = &pVM->aCpus[i];
586 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
587 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
588 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
589 }
590
591 for (VMCPUID i = 0; i < pVM->cCpus; i++)
592 {
593 PVMCPU pVCpu = &pVM->aCpus[i];
594
595 /*
596 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
597 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
598 */
599 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
600 if (RT_FAILURE(rc))
601 goto failure_cleanup;
602
603 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
604 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
605 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
606 ASMMemZeroPage(pvVmcbHost);
607
608 /*
609 * Allocate one page for the guest-state VMCB.
610 */
611 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
612 if (RT_FAILURE(rc))
613 goto failure_cleanup;
614
615 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
616 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
617 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
618 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
619
620 /*
621 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
622 * SVM to not require one.
623 */
624 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
625 false /* fExecutable */);
626 if (RT_FAILURE(rc))
627 goto failure_cleanup;
628
629 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
630 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
631 /* Set all bits to intercept all MSR accesses (changed later on). */
632 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
633 }
634
635 return VINF_SUCCESS;
636
637failure_cleanup:
638 hmR0SvmFreeStructs(pVM);
639 return rc;
640}
641
642
643/**
644 * Does per-VM AMD-V termination.
645 *
646 * @returns VBox status code.
647 * @param pVM The cross context VM structure.
648 */
649VMMR0DECL(int) SVMR0TermVM(PVM pVM)
650{
651 hmR0SvmFreeStructs(pVM);
652 return VINF_SUCCESS;
653}
654
655
656/**
657 * Sets the permission bits for the specified MSR in the MSRPM.
658 *
659 * @param pVmcb Pointer to the VM control block.
660 * @param pbMsrBitmap Pointer to the MSR bitmap.
661 * @param uMsr The MSR for which the access permissions are being set.
662 * @param enmRead MSR read permissions.
663 * @param enmWrite MSR write permissions.
664 */
665static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
666 SVMMSREXITWRITE enmWrite)
667{
668 uint16_t offMsrpm;
669 uint32_t uMsrpmBit;
670 int rc = HMSvmGetMsrpmOffsetAndBit(uMsr, &offMsrpm, &uMsrpmBit);
671 AssertRC(rc);
672
673 Assert(uMsrpmBit < 0x3fff);
674 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
675
676 pbMsrBitmap += offMsrpm;
677 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
678 ASMBitSet(pbMsrBitmap, uMsrpmBit);
679 else
680 ASMBitClear(pbMsrBitmap, uMsrpmBit);
681
682 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
683 ASMBitSet(pbMsrBitmap, uMsrpmBit + 1);
684 else
685 ASMBitClear(pbMsrBitmap, uMsrpmBit + 1);
686
687 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
688}
689
690
691/**
692 * Sets up AMD-V for the specified VM.
693 * This function is only called once per-VM during initalization.
694 *
695 * @returns VBox status code.
696 * @param pVM The cross context VM structure.
697 */
698VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
699{
700 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
701 AssertReturn(pVM, VERR_INVALID_PARAMETER);
702 Assert(pVM->hm.s.svm.fSupported);
703
704 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
705 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
706 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter && pVM->hm.s.svm.cPauseFilterThresholdTicks;
707
708 for (VMCPUID i = 0; i < pVM->cCpus; i++)
709 {
710 PVMCPU pVCpu = &pVM->aCpus[i];
711 PSVMVMCB pVmcb = pVM->aCpus[i].hm.s.svm.pVmcb;
712
713 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
714
715 /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
716 Assert(!pVCpu->hm.s.idxExitHistoryFree);
717 HMCPU_EXIT_HISTORY_RESET(pVCpu);
718
719 /* Always trap #AC for reasons of security. */
720 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
721
722 /* Always trap #DB for reasons of security. */
723 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
724
725 /* Trap exceptions unconditionally (debug purposes). */
726#ifdef HMSVM_ALWAYS_TRAP_PF
727 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
728#endif
729#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
730 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
731 pVmcb->ctrl.u32InterceptXcpt |= 0
732 | RT_BIT(X86_XCPT_BP)
733 | RT_BIT(X86_XCPT_DE)
734 | RT_BIT(X86_XCPT_NM)
735 | RT_BIT(X86_XCPT_UD)
736 | RT_BIT(X86_XCPT_NP)
737 | RT_BIT(X86_XCPT_SS)
738 | RT_BIT(X86_XCPT_GP)
739 | RT_BIT(X86_XCPT_PF)
740 | RT_BIT(X86_XCPT_MF)
741 ;
742#endif
743
744 /* Set up unconditional intercepts and conditions. */
745 pVmcb->ctrl.u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
746
747 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
748 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
749
750 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
751 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
752
753 /* Intercept all DRx reads and writes by default. Changed later on. */
754 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
755 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
756
757 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
758 pVmcb->ctrl.IntCtrl.n.u1VIntrMasking = 1;
759
760 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
761 and we currently deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
762 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
763
764 /* Set IO and MSR bitmap permission bitmap physical addresses. */
765 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
766 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
767
768 /* No LBR virtualization. */
769 pVmcb->ctrl.u64LBRVirt = 0;
770
771 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
772 pVmcb->ctrl.u64VmcbCleanBits = 0;
773
774 /* The host ASID MBZ, for the guest start with 1. */
775 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
776
777 /*
778 * Setup the PAT MSR (applicable for Nested Paging only).
779 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
780 * so choose type 6 for all PAT slots.
781 */
782 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
783
784 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
785 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
786
787 /* Without Nested Paging, we need additionally intercepts. */
788 if (!pVM->hm.s.fNestedPaging)
789 {
790 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
791 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
792 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
793
794 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
795 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
796 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
797
798 /* Page faults must be intercepted to implement shadow paging. */
799 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
800 }
801
802#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
803 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
804#endif
805
806 /* Apply the exceptions intercepts needed by the GIM provider. */
807 if (pVCpu->hm.s.fGIMTrapXcptUD)
808 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
809
810 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
811 if (fUsePauseFilter)
812 {
813 pVmcb->ctrl.u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
814 if (fPauseFilterThreshold)
815 pVmcb->ctrl.u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
816 }
817
818 /*
819 * The following MSRs are saved/restored automatically during the world-switch.
820 * Don't intercept guest read/write accesses to these MSRs.
821 */
822 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
823 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
824 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
825 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
826 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
827 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
828 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
829 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
830 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
831 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
832 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
833 }
834
835 return VINF_SUCCESS;
836}
837
838
839/**
840 * Invalidates a guest page by guest virtual address.
841 *
842 * @returns VBox status code.
843 * @param pVM The cross context VM structure.
844 * @param pVCpu The cross context virtual CPU structure.
845 * @param GCVirt Guest virtual address of the page to invalidate.
846 */
847VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
848{
849 AssertReturn(pVM, VERR_INVALID_PARAMETER);
850 Assert(pVM->hm.s.svm.fSupported);
851
852 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
853
854 /* Skip it if a TLB flush is already pending. */
855 if (!fFlushPending)
856 {
857 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
858
859 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
860 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
861
862#if HC_ARCH_BITS == 32
863 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
864 if (CPUMIsGuestInLongMode(pVCpu))
865 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
866 else
867#endif
868 {
869 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
870 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
871 }
872 }
873 return VINF_SUCCESS;
874}
875
876
877/**
878 * Flushes the appropriate tagged-TLB entries.
879 *
880 * @param pVCpu The cross context virtual CPU structure.
881 * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
882 * @param pVmcb Pointer to the VM control block.
883 */
884static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
885{
886 PVM pVM = pVCpu->CTX_SUFF(pVM);
887 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
888
889 /*
890 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
891 * This can happen both for start & resume due to long jumps back to ring-3.
892 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
893 * so we cannot reuse the ASIDs without flushing.
894 */
895 bool fNewAsid = false;
896 Assert(pCpu->idCpu != NIL_RTCPUID);
897 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
898 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
899 {
900 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
901 pVCpu->hm.s.fForceTLBFlush = true;
902 fNewAsid = true;
903 }
904
905#ifdef VBOX_WITH_NESTED_HWVIRT
906 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
907 fNewAsid = true;
908#else
909 RT_NOREF(pCtx);
910#endif
911
912 /* Set TLB flush state as checked until we return from the world switch. */
913 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
914
915 /* Check for explicit TLB flushes. */
916 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
917 {
918 pVCpu->hm.s.fForceTLBFlush = true;
919 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
920 }
921
922 /*
923 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
924 * This Host CPU requirement takes precedence.
925 */
926 if (pVM->hm.s.svm.fAlwaysFlushTLB)
927 {
928 pCpu->uCurrentAsid = 1;
929 pVCpu->hm.s.uCurrentAsid = 1;
930 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
931 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
932
933 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
934 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
935
936 /* Keep track of last CPU ID even when flushing all the time. */
937 if (fNewAsid)
938 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
939 }
940 else
941 {
942 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
943 if (pVCpu->hm.s.fForceTLBFlush)
944 {
945 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
946 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
947
948 if (fNewAsid)
949 {
950 ++pCpu->uCurrentAsid;
951
952 bool fHitASIDLimit = false;
953 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
954 {
955 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
956 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
957 fHitASIDLimit = true;
958 }
959
960 if ( fHitASIDLimit
961 || pCpu->fFlushAsidBeforeUse)
962 {
963 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
964 pCpu->fFlushAsidBeforeUse = false;
965 }
966
967 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
968 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
969 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
970 }
971 else
972 {
973 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
974 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
975 else
976 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
977 }
978
979 pVCpu->hm.s.fForceTLBFlush = false;
980 }
981 }
982
983 /* Update VMCB with the ASID. */
984 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
985 {
986 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
987 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
988 }
989
990 AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
991 ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
992 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
993 ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
994 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
995 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
996 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
997 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
998
999#ifdef VBOX_WITH_STATISTICS
1000 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1001 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1002 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1003 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1004 {
1005 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1006 }
1007 else
1008 {
1009 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1010 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1011 }
1012#endif
1013}
1014
1015
1016/** @name 64-bit guest on 32-bit host OS helper functions.
1017 *
1018 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1019 * mode (code segment, paging). These wrappers/helpers perform the necessary
1020 * bits for the 32->64 switcher.
1021 *
1022 * @{ */
1023#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1024/**
1025 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1026 *
1027 * @returns VBox status code.
1028 * @param HCPhysVmcbHost Physical address of host VMCB.
1029 * @param HCPhysVmcb Physical address of the VMCB.
1030 * @param pCtx Pointer to the guest-CPU context.
1031 * @param pVM The cross context VM structure.
1032 * @param pVCpu The cross context virtual CPU structure.
1033 */
1034DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1035{
1036 uint32_t aParam[8];
1037 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1038 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1039 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1040 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1041 aParam[4] = VM_RC_ADDR(pVM, pVM);
1042 aParam[5] = 0;
1043 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1044 aParam[7] = 0;
1045
1046 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1047}
1048
1049
1050/**
1051 * Executes the specified VMRUN handler in 64-bit mode.
1052 *
1053 * @returns VBox status code.
1054 * @param pVM The cross context VM structure.
1055 * @param pVCpu The cross context virtual CPU structure.
1056 * @param pCtx Pointer to the guest-CPU context.
1057 * @param enmOp The operation to perform.
1058 * @param cParams Number of parameters.
1059 * @param paParam Array of 32-bit parameters.
1060 */
1061VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
1062 uint32_t cParams, uint32_t *paParam)
1063{
1064 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1065 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1066
1067 NOREF(pCtx);
1068
1069 /* Disable interrupts. */
1070 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
1071
1072#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1073 RTCPUID idHostCpu = RTMpCpuId();
1074 CPUMR0SetLApic(pVCpu, idHostCpu);
1075#endif
1076
1077 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1078 CPUMSetHyperEIP(pVCpu, enmOp);
1079 for (int i = (int)cParams - 1; i >= 0; i--)
1080 CPUMPushHyper(pVCpu, paParam[i]);
1081
1082 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1083 /* Call the switcher. */
1084 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1085 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1086
1087 /* Restore interrupts. */
1088 ASMSetFlags(uOldEFlags);
1089 return rc;
1090}
1091
1092#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1093/** @} */
1094
1095
1096/**
1097 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1098 * the corresponding VMCB Clean bit.
1099 *
1100 * @param pVmcb Pointer to the VM control block.
1101 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1102 */
1103DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1104{
1105 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt)))
1106 {
1107 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(u32Xcpt);
1108 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1109 }
1110}
1111
1112
1113/**
1114 * Removes an exception from the intercept-exception bitmap in the VMCB and
1115 * updates the corresponding VMCB Clean bit.
1116 *
1117 * @param pVmcb Pointer to the VM control block.
1118 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1119 */
1120DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1121{
1122 Assert(u32Xcpt != X86_XCPT_DB);
1123 Assert(u32Xcpt != X86_XCPT_AC);
1124#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1125 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt))
1126 {
1127 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(u32Xcpt);
1128 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1129 }
1130#endif
1131}
1132
1133
1134/**
1135 * Loads the guest CR0 control register into the guest-state area in the VMCB.
1136 * Although the guest CR0 is a separate field in the VMCB we have to consider
1137 * the FPU state itself which is shared between the host and the guest.
1138 *
1139 * @returns VBox status code.
1140 * @param pVCpu The cross context virtual CPU structure.
1141 * @param pVmcb Pointer to the VM control block.
1142 * @param pCtx Pointer to the guest-CPU context.
1143 *
1144 * @remarks No-long-jump zone!!!
1145 */
1146static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1147{
1148 uint64_t u64GuestCR0 = pCtx->cr0;
1149
1150 /* Always enable caching. */
1151 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1152
1153 /*
1154 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1155 */
1156 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1157 {
1158 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1159 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1160 }
1161
1162 /*
1163 * Guest FPU bits.
1164 */
1165 bool fInterceptNM = false;
1166 bool fInterceptMF = false;
1167 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1168 if (CPUMIsGuestFPUStateActive(pVCpu))
1169 {
1170 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1171 if (!(pCtx->cr0 & X86_CR0_NE))
1172 {
1173 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1174 fInterceptMF = true;
1175 }
1176 }
1177 else
1178 {
1179 fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
1180 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1181 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1182 }
1183
1184 /*
1185 * Update the exception intercept bitmap.
1186 */
1187 if (fInterceptNM)
1188 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1189 else
1190 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1191
1192 if (fInterceptMF)
1193 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1194 else
1195 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1196
1197 pVmcb->guest.u64CR0 = u64GuestCR0;
1198 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1199}
1200
1201
1202/**
1203 * Loads the guest/nested-guest control registers (CR2, CR3, CR4) into the VMCB.
1204 *
1205 * @returns VBox status code.
1206 * @param pVCpu The cross context virtual CPU structure.
1207 * @param pVmcb Pointer to the VM control block.
1208 * @param pCtx Pointer to the guest-CPU context.
1209 *
1210 * @remarks No-long-jump zone!!!
1211 */
1212static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1213{
1214 PVM pVM = pVCpu->CTX_SUFF(pVM);
1215
1216 /*
1217 * Guest CR2.
1218 */
1219 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
1220 {
1221 pVmcb->guest.u64CR2 = pCtx->cr2;
1222 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1223 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
1224 }
1225
1226 /*
1227 * Guest CR3.
1228 */
1229 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
1230 {
1231 if (pVM->hm.s.fNestedPaging)
1232 {
1233 PGMMODE enmShwPagingMode;
1234#if HC_ARCH_BITS == 32
1235 if (CPUMIsGuestInLongModeEx(pCtx))
1236 enmShwPagingMode = PGMMODE_AMD64_NX;
1237 else
1238#endif
1239 enmShwPagingMode = PGMGetHostMode(pVM);
1240
1241 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1242 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1243 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1244 pVmcb->guest.u64CR3 = pCtx->cr3;
1245 }
1246 else
1247 {
1248 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1249 Log4(("hmR0SvmLoadGuestControlRegs: CR3=%#RX64 (HyperCR3=%#RX64)\n", pCtx->cr3, pVmcb->guest.u64CR3));
1250 }
1251
1252 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1253 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
1254 }
1255
1256 /*
1257 * Guest CR4.
1258 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
1259 */
1260 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
1261 {
1262 uint64_t u64GuestCR4 = pCtx->cr4;
1263 Assert(RT_HI_U32(u64GuestCR4) == 0);
1264 if (!pVM->hm.s.fNestedPaging)
1265 {
1266 switch (pVCpu->hm.s.enmShadowMode)
1267 {
1268 case PGMMODE_REAL:
1269 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1270 AssertFailed();
1271 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1272
1273 case PGMMODE_32_BIT: /* 32-bit paging. */
1274 u64GuestCR4 &= ~X86_CR4_PAE;
1275 break;
1276
1277 case PGMMODE_PAE: /* PAE paging. */
1278 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1279 /** Must use PAE paging as we could use physical memory > 4 GB */
1280 u64GuestCR4 |= X86_CR4_PAE;
1281 break;
1282
1283 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1284 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1285#ifdef VBOX_ENABLE_64_BITS_GUESTS
1286 break;
1287#else
1288 AssertFailed();
1289 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1290#endif
1291
1292 default: /* shut up gcc */
1293 AssertFailed();
1294 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1295 }
1296 }
1297
1298 pVmcb->guest.u64CR4 = u64GuestCR4;
1299 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1300
1301 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1302 pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1303
1304 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
1305 }
1306
1307 return VINF_SUCCESS;
1308}
1309
1310
1311#ifdef VBOX_WITH_NESTED_HWVIRT
1312/**
1313 * Loads the nested-guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1314 *
1315 * @returns VBox status code.
1316 * @param pVCpu The cross context virtual CPU structure.
1317 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1318 * @param pCtx Pointer to the guest-CPU context.
1319 *
1320 * @remarks No-long-jump zone!!!
1321 */
1322static int hmR0SvmLoadGuestControlRegsNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst, PCPUMCTX pCtx)
1323{
1324 /*
1325 * Guest CR0.
1326 */
1327 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1328 {
1329 pVmcbNstGst->guest.u64CR0 = pCtx->cr0;
1330 pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1331 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
1332 }
1333
1334 return hmR0SvmLoadGuestControlRegs(pVCpu, pVmcbNstGst, pCtx);
1335}
1336#endif
1337
1338
1339/**
1340 * Loads the guest segment registers into the VMCB.
1341 *
1342 * @returns VBox status code.
1343 * @param pVCpu The cross context virtual CPU structure.
1344 * @param pVmcb Pointer to the VM control block.
1345 * @param pCtx Pointer to the guest-CPU context.
1346 *
1347 * @remarks No-long-jump zone!!!
1348 */
1349static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1350{
1351 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1352 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
1353 {
1354 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1355 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1356 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1357 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1358 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1359 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1360
1361 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1362 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1363 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
1364 }
1365
1366 /* Guest TR. */
1367 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
1368 {
1369 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1370 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
1371 }
1372
1373 /* Guest LDTR. */
1374 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
1375 {
1376 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1377 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
1378 }
1379
1380 /* Guest GDTR. */
1381 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
1382 {
1383 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1384 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1385 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1386 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
1387 }
1388
1389 /* Guest IDTR. */
1390 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
1391 {
1392 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1393 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1394 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1395 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
1396 }
1397}
1398
1399
1400/**
1401 * Loads the guest MSRs into the VMCB.
1402 *
1403 * @param pVCpu The cross context virtual CPU structure.
1404 * @param pVmcb Pointer to the VM control block.
1405 * @param pCtx Pointer to the guest-CPU context.
1406 *
1407 * @remarks No-long-jump zone!!!
1408 */
1409static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1410{
1411 /* Guest Sysenter MSRs. */
1412 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1413 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1414 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1415
1416 /*
1417 * Guest EFER MSR.
1418 * AMD-V requires guest EFER.SVME to be set. Weird.
1419 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1420 */
1421 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
1422 {
1423 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1424 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1425 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
1426 }
1427
1428 /* 64-bit MSRs. */
1429 if (CPUMIsGuestInLongModeEx(pCtx))
1430 {
1431 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1432 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1433 }
1434 else
1435 {
1436 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1437 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1438 {
1439 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1440 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1441 }
1442 }
1443
1444 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1445 * be writable in 32-bit mode. Clarify with AMD spec. */
1446 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1447 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1448 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1449 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1450 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1451}
1452
1453
1454/**
1455 * Loads the guest (or nested-guest) debug state into the VMCB and programs the
1456 * necessary intercepts accordingly.
1457 *
1458 * @param pVCpu The cross context virtual CPU structure.
1459 * @param pVmcb Pointer to the VM control block.
1460 * @param pCtx Pointer to the guest-CPU context.
1461 *
1462 * @remarks No-long-jump zone!!!
1463 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1464 */
1465static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1466{
1467 bool fInterceptMovDRx = false;
1468
1469 /*
1470 * Anyone single stepping on the host side? If so, we'll have to use the
1471 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1472 * the VMM level like the VT-x implementations does.
1473 */
1474 bool const fStepping = pVCpu->hm.s.fSingleInstruction;
1475 if (fStepping)
1476 {
1477 pVCpu->hm.s.fClearTrapFlag = true;
1478 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1479 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1480 }
1481 else
1482 Assert(!DBGFIsStepping(pVCpu));
1483
1484 if ( fStepping
1485 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1486 {
1487 /*
1488 * Use the combined guest and host DRx values found in the hypervisor
1489 * register set because the debugger has breakpoints active or someone
1490 * is single stepping on the host side.
1491 *
1492 * Note! DBGF expects a clean DR6 state before executing guest code.
1493 */
1494#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1495 if ( CPUMIsGuestInLongModeEx(pCtx)
1496 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1497 {
1498 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1499 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1500 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1501 }
1502 else
1503#endif
1504 if (!CPUMIsHyperDebugStateActive(pVCpu))
1505 {
1506 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1507 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1508 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1509 }
1510
1511 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1512 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1513 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1514 {
1515 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1516 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1517 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1518 pVCpu->hm.s.fUsingHyperDR7 = true;
1519 }
1520
1521 /** @todo If we cared, we could optimize to allow the guest to read registers
1522 * with the same values. */
1523 fInterceptMovDRx = true;
1524 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1525 }
1526 else
1527 {
1528 /*
1529 * Update DR6, DR7 with the guest values if necessary.
1530 */
1531 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1532 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1533 {
1534 pVmcb->guest.u64DR7 = pCtx->dr[7];
1535 pVmcb->guest.u64DR6 = pCtx->dr[6];
1536 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1537 pVCpu->hm.s.fUsingHyperDR7 = false;
1538 }
1539
1540 /*
1541 * If the guest has enabled debug registers, we need to load them prior to
1542 * executing guest code so they'll trigger at the right time.
1543 */
1544 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1545 {
1546#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1547 if ( CPUMIsGuestInLongModeEx(pCtx)
1548 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1549 {
1550 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1551 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1552 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1553 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1554 }
1555 else
1556#endif
1557 if (!CPUMIsGuestDebugStateActive(pVCpu))
1558 {
1559 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1560 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1561 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1562 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1563 }
1564 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1565 }
1566 /*
1567 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1568 * intercept #DB as DR6 is updated in the VMCB.
1569 *
1570 * Note! If we cared and dared, we could skip intercepting \#DB here.
1571 * However, \#DB shouldn't be performance critical, so we'll play safe
1572 * and keep the code similar to the VT-x code and always intercept it.
1573 */
1574#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1575 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
1576 && !CPUMIsGuestDebugStateActive(pVCpu))
1577#else
1578 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1579#endif
1580 {
1581 fInterceptMovDRx = true;
1582 }
1583 }
1584
1585 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
1586 if (fInterceptMovDRx)
1587 {
1588 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1589 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1590 {
1591 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1592 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1593 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1594 }
1595 }
1596 else
1597 {
1598 if ( pVmcb->ctrl.u16InterceptRdDRx
1599 || pVmcb->ctrl.u16InterceptWrDRx)
1600 {
1601 pVmcb->ctrl.u16InterceptRdDRx = 0;
1602 pVmcb->ctrl.u16InterceptWrDRx = 0;
1603 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1604 }
1605 }
1606 Log4(("hmR0SvmLoadSharedDebugState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
1607}
1608
1609
1610#ifdef VBOX_WITH_NESTED_HWVIRT
1611/**
1612 * Loads the nested-guest APIC state (currently just the TPR).
1613 *
1614 * @param pVCpu The cross context virtual CPU structure.
1615 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1616 */
1617static void hmR0SvmLoadGuestApicStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
1618{
1619 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1620 {
1621 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
1622 pVmcbNstGst->ctrl.IntCtrl.n.u1VIntrMasking = 1;
1623 pVCpu->hm.s.svm.fSyncVTpr = false;
1624 pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_TPR;
1625
1626 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1627 }
1628}
1629#endif
1630
1631/**
1632 * Loads the guest APIC state (currently just the TPR).
1633 *
1634 * @returns VBox status code.
1635 * @param pVCpu The cross context virtual CPU structure.
1636 * @param pVmcb Pointer to the VM control block.
1637 * @param pCtx Pointer to the guest-CPU context.
1638 */
1639static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1640{
1641 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1642 return VINF_SUCCESS;
1643
1644 int rc = VINF_SUCCESS;
1645 PVM pVM = pVCpu->CTX_SUFF(pVM);
1646 if ( PDMHasApic(pVM)
1647 && APICIsEnabled(pVCpu))
1648 {
1649 bool fPendingIntr;
1650 uint8_t u8Tpr;
1651 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1652 AssertRCReturn(rc, rc);
1653
1654 /* Assume that we need to trap all TPR accesses and thus need not check on
1655 every #VMEXIT if we should update the TPR. */
1656 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
1657 pVCpu->hm.s.svm.fSyncVTpr = false;
1658
1659 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1660 if (pVM->hm.s.fTPRPatchingActive)
1661 {
1662 pCtx->msrLSTAR = u8Tpr;
1663 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1664
1665 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1666 if (fPendingIntr)
1667 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1668 else
1669 {
1670 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1671 pVCpu->hm.s.svm.fSyncVTpr = true;
1672 }
1673 }
1674 else
1675 {
1676 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1677 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1678
1679 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1680 if (fPendingIntr)
1681 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1682 else
1683 {
1684 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1685 pVCpu->hm.s.svm.fSyncVTpr = true;
1686 }
1687
1688 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1689 }
1690 }
1691
1692 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1693 return rc;
1694}
1695
1696
1697/**
1698 * Loads the exception interrupts required for guest (or nested-guest) execution in
1699 * the VMCB.
1700 *
1701 * @param pVCpu The cross context virtual CPU structure.
1702 * @param pVmcb Pointer to the VM control block.
1703 */
1704static void hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
1705{
1706 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1707 {
1708 /* Trap #UD for GIM provider (e.g. for hypercalls). */
1709 if (pVCpu->hm.s.fGIMTrapXcptUD)
1710 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
1711 else
1712 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_UD);
1713
1714 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
1715 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
1716 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_BP);
1717 else
1718 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_BP);
1719
1720 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
1721 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
1722 }
1723}
1724
1725
1726#ifdef VBOX_WITH_NESTED_HWVIRT
1727/**
1728 * Loads the intercepts required for nested-guest execution in the VMCB.
1729 *
1730 * This merges the guest and nested-guest intercepts in a way that if the outer
1731 * guest intercepts an exception we need to intercept it in the nested-guest as
1732 * well and handle it accordingly.
1733 *
1734 * @param pVCpu The cross context virtual CPU structure.
1735 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1736 */
1737static void hmR0SvmLoadGuestXcptInterceptsNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
1738{
1739 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1740 {
1741 /* First, load the guest intercepts into the guest VMCB. */
1742 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
1743 hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb);
1744
1745 /* Next, merge the intercepts into the nested-guest VMCB. */
1746 pVmcbNstGst->ctrl.u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
1747 pVmcbNstGst->ctrl.u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
1748
1749 /*
1750 * CR3, CR4 reads and writes are intercepted as we modify them before
1751 * hardware-assisted SVM execution. In addition, PGM needs to be up to date
1752 * on paging mode changes in the nested-guest.
1753 *
1754 * CR0 writes are intercepted in case of paging mode changes. CR0 reads are not
1755 * intercepted as we currently don't modify CR0 while executing the nested-guest.
1756 */
1757 pVmcbNstGst->ctrl.u16InterceptRdCRx |= RT_BIT(4) | RT_BIT(3);
1758 pVmcbNstGst->ctrl.u16InterceptWrCRx |= RT_BIT(4) | RT_BIT(3) | RT_BIT(0);
1759
1760 /** @todo Figure out debugging with nested-guests, till then just intercept
1761 * all DR[0-15] accesses. */
1762 pVmcbNstGst->ctrl.u16InterceptRdDRx |= 0xffff;
1763 pVmcbNstGst->ctrl.u16InterceptWrDRx |= 0xffff;
1764
1765 pVmcbNstGst->ctrl.u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
1766 pVmcbNstGst->ctrl.u64InterceptCtrl |= pVmcb->ctrl.u64InterceptCtrl
1767 | HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS;
1768 /*
1769 * Remove control intercepts that we don't need while executing the nested-guest.
1770 *
1771 * VMMCALL when not intercepted raises a \#UD exception in the guest. However,
1772 * other SVM instructions like VMSAVE when not intercept can cause havoc on the
1773 * host as they can write to any location in physical memory, hence they always
1774 * need to be intercepted (they are included in HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS).
1775 */
1776 Assert( (pVmcbNstGst->ctrl.u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
1777 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
1778 pVmcbNstGst->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VMMCALL;
1779
1780 /* Remove exception intercepts that we don't need while executing the nested-guest. */
1781 pVmcbNstGst->ctrl.u32InterceptXcpt &= ~RT_BIT(X86_XCPT_UD);
1782
1783 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS));
1784 }
1785}
1786#endif
1787
1788
1789/**
1790 * Sets up the appropriate function to run guest code.
1791 *
1792 * @returns VBox status code.
1793 * @param pVCpu The cross context virtual CPU structure.
1794 *
1795 * @remarks No-long-jump zone!!!
1796 */
1797static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu)
1798{
1799 if (CPUMIsGuestInLongMode(pVCpu))
1800 {
1801#ifndef VBOX_ENABLE_64_BITS_GUESTS
1802 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1803#endif
1804 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1805#if HC_ARCH_BITS == 32
1806 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1807 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1808#else
1809 /* 64-bit host or hybrid host. */
1810 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1811#endif
1812 }
1813 else
1814 {
1815 /* Guest is not in long mode, use the 32-bit handler. */
1816 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1817 }
1818 return VINF_SUCCESS;
1819}
1820
1821
1822/**
1823 * Enters the AMD-V session.
1824 *
1825 * @returns VBox status code.
1826 * @param pVM The cross context VM structure.
1827 * @param pVCpu The cross context virtual CPU structure.
1828 * @param pCpu Pointer to the CPU info struct.
1829 */
1830VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1831{
1832 AssertPtr(pVM);
1833 AssertPtr(pVCpu);
1834 Assert(pVM->hm.s.svm.fSupported);
1835 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1836 NOREF(pVM); NOREF(pCpu);
1837
1838 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1839 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1840
1841 pVCpu->hm.s.fLeaveDone = false;
1842 return VINF_SUCCESS;
1843}
1844
1845
1846/**
1847 * Thread-context callback for AMD-V.
1848 *
1849 * @param enmEvent The thread-context event.
1850 * @param pVCpu The cross context virtual CPU structure.
1851 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1852 * @thread EMT(pVCpu)
1853 */
1854VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1855{
1856 NOREF(fGlobalInit);
1857
1858 switch (enmEvent)
1859 {
1860 case RTTHREADCTXEVENT_OUT:
1861 {
1862 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1863 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1864 VMCPU_ASSERT_EMT(pVCpu);
1865
1866 /* No longjmps (log-flush, locks) in this fragile context. */
1867 VMMRZCallRing3Disable(pVCpu);
1868
1869 if (!pVCpu->hm.s.fLeaveDone)
1870 {
1871 hmR0SvmLeave(pVCpu);
1872 pVCpu->hm.s.fLeaveDone = true;
1873 }
1874
1875 /* Leave HM context, takes care of local init (term). */
1876 int rc = HMR0LeaveCpu(pVCpu);
1877 AssertRC(rc); NOREF(rc);
1878
1879 /* Restore longjmp state. */
1880 VMMRZCallRing3Enable(pVCpu);
1881 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
1882 break;
1883 }
1884
1885 case RTTHREADCTXEVENT_IN:
1886 {
1887 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1888 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1889 VMCPU_ASSERT_EMT(pVCpu);
1890
1891 /* No longjmps (log-flush, locks) in this fragile context. */
1892 VMMRZCallRing3Disable(pVCpu);
1893
1894 /*
1895 * Initialize the bare minimum state required for HM. This takes care of
1896 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1897 */
1898 int rc = HMR0EnterCpu(pVCpu);
1899 AssertRC(rc); NOREF(rc);
1900 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1901
1902 pVCpu->hm.s.fLeaveDone = false;
1903
1904 /* Restore longjmp state. */
1905 VMMRZCallRing3Enable(pVCpu);
1906 break;
1907 }
1908
1909 default:
1910 break;
1911 }
1912}
1913
1914
1915/**
1916 * Saves the host state.
1917 *
1918 * @returns VBox status code.
1919 * @param pVM The cross context VM structure.
1920 * @param pVCpu The cross context virtual CPU structure.
1921 *
1922 * @remarks No-long-jump zone!!!
1923 */
1924VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1925{
1926 NOREF(pVM);
1927 NOREF(pVCpu);
1928 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1929 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
1930 return VINF_SUCCESS;
1931}
1932
1933
1934/**
1935 * Loads the guest state into the VMCB.
1936 *
1937 * The CPU state will be loaded from these fields on every successful VM-entry.
1938 * Also sets up the appropriate VMRUN function to execute guest code based on
1939 * the guest CPU mode.
1940 *
1941 * @returns VBox status code.
1942 * @param pVM The cross context VM structure.
1943 * @param pVCpu The cross context virtual CPU structure.
1944 * @param pCtx Pointer to the guest-CPU context.
1945 *
1946 * @remarks No-long-jump zone!!!
1947 */
1948static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1949{
1950 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
1951 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1952
1953 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1954
1955 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1956 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1957
1958 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1959 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1960
1961 pVmcb->guest.u64RIP = pCtx->rip;
1962 pVmcb->guest.u64RSP = pCtx->rsp;
1963 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1964 pVmcb->guest.u64RAX = pCtx->rax;
1965
1966 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1967 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1968
1969 hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb);
1970
1971 rc = hmR0SvmSetupVMRunHandler(pVCpu);
1972 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1973
1974 /* Clear any unused and reserved bits. */
1975 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1976 | HM_CHANGED_GUEST_RSP
1977 | HM_CHANGED_GUEST_RFLAGS
1978 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1979 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1980 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1981 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
1982 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1983 | HM_CHANGED_SVM_RESERVED2
1984 | HM_CHANGED_SVM_RESERVED3
1985 | HM_CHANGED_SVM_RESERVED4);
1986
1987 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
1988 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
1989 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
1990 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
1991
1992 Log4(("hmR0SvmLoadGuestState: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 CR4=%#RX32\n", pCtx->cs.Sel, pCtx->rip,
1993 pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4));
1994 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1995 return rc;
1996}
1997
1998
1999#ifdef VBOX_WITH_NESTED_HWVIRT
2000/**
2001 * Caches the nested-guest VMCB fields before we modify them for execution using
2002 * hardware-assisted SVM.
2003 *
2004 * @returns true if the VMCB was previously already cached, false otherwise.
2005 * @param pCtx Pointer to the guest-CPU context.
2006 *
2007 * @sa HMSvmNstGstVmExitNotify.
2008 */
2009static bool hmR0SvmVmRunCacheVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
2010{
2011 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2012 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2013 PCSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
2014 PSVMNESTEDVMCBCACHE pNstGstVmcbCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2015
2016 /*
2017 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2018 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2019 *
2020 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2021 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2022 */
2023 bool const fWasCached = pCtx->hwvirt.svm.fHMCachedVmcb;
2024 if (!fWasCached)
2025 {
2026 pNstGstVmcbCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2027 pNstGstVmcbCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2028 pNstGstVmcbCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2029 pNstGstVmcbCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2030 pNstGstVmcbCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2031 pNstGstVmcbCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2032 pNstGstVmcbCache->u64CR3 = pVmcbNstGstState->u64CR3;
2033 pNstGstVmcbCache->u64CR4 = pVmcbNstGstState->u64CR4;
2034 pNstGstVmcbCache->u64EFER = pVmcbNstGstState->u64EFER;
2035 pNstGstVmcbCache->u64IOPMPhysAddr = pVmcbNstGstCtrl->u64IOPMPhysAddr;
2036 pNstGstVmcbCache->u64MSRPMPhysAddr = pVmcbNstGstCtrl->u64MSRPMPhysAddr;
2037 pNstGstVmcbCache->u64VmcbCleanBits = pVmcbNstGstCtrl->u64VmcbCleanBits;
2038 pNstGstVmcbCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2039 pNstGstVmcbCache->TLBCtrl = pVmcbNstGstCtrl->TLBCtrl;
2040 pNstGstVmcbCache->NestedPagingCtrl = pVmcbNstGstCtrl->NestedPaging;
2041 pCtx->hwvirt.svm.fHMCachedVmcb = true;
2042 Log4(("hmR0SvmVmRunCacheVmcb: Cached VMCB fields\n"));
2043 }
2044
2045 return fWasCached;
2046}
2047
2048
2049/**
2050 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2051 *
2052 * @param pVCpu The cross context virtual CPU structure.
2053 * @param pCtx Pointer to the guest-CPU context.
2054 */
2055static void hmR0SvmVmRunSetupVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
2056{
2057 RT_NOREF(pVCpu);
2058 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2059 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2060
2061 /*
2062 * First cache the nested-guest VMCB fields we may potentially modify.
2063 */
2064 bool const fVmcbCached = hmR0SvmVmRunCacheVmcb(pVCpu, pCtx);
2065 if (!fVmcbCached)
2066 {
2067 /*
2068 * The IOPM of the nested-guest can be ignored because the the guest always
2069 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2070 * into the nested-guest one and swap it back on the #VMEXIT.
2071 */
2072 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2073
2074 /*
2075 * Load the host-physical address into the MSRPM rather than the nested-guest
2076 * physical address (currently we trap all MSRs in the nested-guest).
2077 */
2078 pVmcbNstGstCtrl->u64MSRPMPhysAddr = g_HCPhysNstGstMsrBitmap;
2079
2080 /*
2081 * Use the same nested-paging as the "outer" guest. We can't dynamically
2082 * switch off nested-paging suddenly while executing a VM (see assertion at the
2083 * end of Trap0eHandler in PGMAllBth.h).
2084 */
2085 pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2086 }
2087 else
2088 {
2089 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2090 Assert(pVmcbNstGstCtrl->u64MSRPMPhysAddr = g_HCPhysNstGstMsrBitmap);
2091 Assert(pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2092 }
2093}
2094
2095
2096/**
2097 * Loads the nested-guest state into the VMCB.
2098 *
2099 * @returns VBox status code.
2100 * @param pVCpu The cross context virtual CPU structure.
2101 * @param pCtx Pointer to the guest-CPU context.
2102 *
2103 * @remarks No-long-jump zone!!!
2104 */
2105static int hmR0SvmLoadGuestStateNested(PVMCPU pVCpu, PCPUMCTX pCtx)
2106{
2107 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
2108
2109 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2110 Assert(pVmcbNstGst);
2111
2112 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcbNstGst, pCtx);
2113 hmR0SvmLoadGuestMsrs(pVCpu, pVmcbNstGst, pCtx);
2114
2115 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2116 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2117 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2118 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2119
2120 int rc = hmR0SvmLoadGuestControlRegsNested(pVCpu, pVmcbNstGst, pCtx);
2121 AssertRCReturn(rc, rc);
2122
2123 hmR0SvmLoadGuestApicStateNested(pVCpu, pVmcbNstGst);
2124 hmR0SvmLoadGuestXcptInterceptsNested(pVCpu, pVmcbNstGst);
2125
2126 rc = hmR0SvmSetupVMRunHandler(pVCpu);
2127 AssertRCReturn(rc, rc);
2128
2129 /* Clear any unused and reserved bits. */
2130 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
2131 | HM_CHANGED_GUEST_RSP
2132 | HM_CHANGED_GUEST_RFLAGS
2133 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
2134 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
2135 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
2136 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
2137 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
2138 | HM_CHANGED_SVM_RESERVED2
2139 | HM_CHANGED_SVM_RESERVED3
2140 | HM_CHANGED_SVM_RESERVED4);
2141
2142 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
2143 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
2144 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
2145 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2146
2147 Log4(("hmR0SvmLoadGuestStateNested: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 (HyperCR3=%#RX64) CR4=%#RX32 rc=%d\n",
2148 pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pVmcbNstGst->guest.u64CR3, pCtx->cr4, rc));
2149 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
2150 return rc;
2151}
2152#endif
2153
2154
2155/**
2156 * Loads the state shared between the host and guest or nested-guest into the
2157 * VMCB.
2158 *
2159 * @param pVCpu The cross context virtual CPU structure.
2160 * @param pVmcb Pointer to the VM control block.
2161 * @param pCtx Pointer to the guest-CPU context.
2162 *
2163 * @remarks No-long-jump zone!!!
2164 */
2165static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
2166{
2167 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2168 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2169
2170 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
2171 {
2172#ifdef VBOX_WITH_NESTED_HWVIRT
2173 /* We use nested-guest CR0 unmodified, hence nothing to do here. */
2174 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2175 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
2176 else
2177 Assert(pVmcb->guest.u64CR0 == pCtx->cr0);
2178#else
2179 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
2180#endif
2181 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
2182 }
2183
2184 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
2185 {
2186 /* We use nested-guest CR0 unmodified, hence nothing to do here. */
2187 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2188 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
2189 else
2190 {
2191 pVmcb->guest.u64DR6 = pCtx->dr[6];
2192 pVmcb->guest.u64DR7 = pCtx->dr[7];
2193 Log4(("hmR0SvmLoadSharedState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2194 }
2195
2196 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
2197 }
2198
2199 /* Unused on AMD-V. */
2200 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
2201
2202 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
2203 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2204}
2205
2206
2207/**
2208 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU context.
2209 *
2210 * Currently there is no residual state left in the CPU that is not updated in the
2211 * VMCB.
2212 *
2213 * @returns VBox status code.
2214 * @param pVCpu The cross context virtual CPU structure.
2215 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2216 * out-of-sync. Make sure to update the required fields
2217 * before using them.
2218 * @param pVmcb Pointer to the VM control block.
2219 */
2220static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PCSVMVMCB pVmcb)
2221{
2222 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2223
2224 pMixedCtx->rip = pVmcb->guest.u64RIP;
2225 pMixedCtx->rsp = pVmcb->guest.u64RSP;
2226 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
2227 pMixedCtx->rax = pVmcb->guest.u64RAX;
2228
2229 /*
2230 * Guest interrupt shadow.
2231 */
2232 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
2233 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
2234 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2235 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2236
2237 /*
2238 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
2239 */
2240 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
2241
2242#ifdef VBOX_WITH_NESTED_GUEST
2243 /*
2244 * The nested hypervisor might not be intercepting these control registers,
2245 */
2246 if (CPUMIsGuestInNestedHwVirtMode(pMixedCtx))
2247 {
2248 pMixedCtx->cr4 = pVmcb->guest.u64CR4;
2249 pMixedCtx->cr0 = pVmcb->guest.u64CR0;
2250 }
2251#endif
2252
2253 /*
2254 * Guest MSRs.
2255 */
2256 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
2257 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
2258 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
2259 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
2260 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
2261 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
2262 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
2263 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
2264
2265 /*
2266 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
2267 */
2268 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, CS, cs);
2269 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, SS, ss);
2270 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, DS, ds);
2271 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, ES, es);
2272 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, FS, fs);
2273 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, GS, gs);
2274
2275 /*
2276 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
2277 * register (yet).
2278 */
2279 /** @todo SELM might need to be fixed as it too should not care about the
2280 * granularity bit. See @bugref{6785}. */
2281 if ( !pMixedCtx->cs.Attr.n.u1Granularity
2282 && pMixedCtx->cs.Attr.n.u1Present
2283 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
2284 {
2285 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
2286 pMixedCtx->cs.Attr.n.u1Granularity = 1;
2287 }
2288
2289#ifdef VBOX_STRICT
2290# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
2291 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
2292 || ( pMixedCtx->reg.Attr.n.u1Granularity \
2293 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
2294 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
2295 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
2296 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
2297
2298 HMSVM_ASSERT_SEG_GRANULARITY(cs);
2299 HMSVM_ASSERT_SEG_GRANULARITY(ss);
2300 HMSVM_ASSERT_SEG_GRANULARITY(ds);
2301 HMSVM_ASSERT_SEG_GRANULARITY(es);
2302 HMSVM_ASSERT_SEG_GRANULARITY(fs);
2303 HMSVM_ASSERT_SEG_GRANULARITY(gs);
2304
2305# undef HMSVM_ASSERT_SEL_GRANULARITY
2306#endif
2307
2308 /*
2309 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
2310 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
2311 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
2312 * See AMD spec. 15.5.1 "Basic operation".
2313 */
2314 Assert(!(pVmcb->guest.u8CPL & ~0x3));
2315 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
2316
2317 /*
2318 * Guest TR.
2319 * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
2320 * between Intel and AMD. See @bugref{6208#c39}.
2321 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2322 */
2323 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, TR, tr);
2324 if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2325 {
2326 if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2327 || CPUMIsGuestInLongModeEx(pMixedCtx))
2328 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2329 else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2330 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2331 }
2332
2333 /*
2334 * Guest Descriptor-Table registers.
2335 */
2336 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, LDTR, ldtr);
2337 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
2338 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
2339
2340 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
2341 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
2342
2343 /*
2344 * Guest Debug registers.
2345 */
2346 if (!pVCpu->hm.s.fUsingHyperDR7)
2347 {
2348 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
2349 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
2350 }
2351 else
2352 {
2353 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
2354 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
2355 }
2356
2357 /*
2358 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
2359 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
2360 */
2361 if ( pVmcb->ctrl.NestedPaging.n.u1NestedPaging
2362 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
2363 {
2364 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
2365 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
2366 }
2367}
2368
2369
2370/**
2371 * Does the necessary state syncing before returning to ring-3 for any reason
2372 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2373 *
2374 * @param pVCpu The cross context virtual CPU structure.
2375 *
2376 * @remarks No-long-jmp zone!!!
2377 */
2378static void hmR0SvmLeave(PVMCPU pVCpu)
2379{
2380 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2381 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2382 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2383
2384 /*
2385 * !!! IMPORTANT !!!
2386 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2387 */
2388
2389 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2390 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
2391 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
2392
2393 /*
2394 * Restore host debug registers if necessary and resync on next R0 reentry.
2395 */
2396#ifdef VBOX_STRICT
2397 if (CPUMIsHyperDebugStateActive(pVCpu))
2398 {
2399 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2400 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2401 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2402 }
2403#endif
2404 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
2405 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
2406
2407 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2408 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2409
2410 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2411 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
2412 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
2413 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
2414 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2415
2416 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2417}
2418
2419
2420/**
2421 * Leaves the AMD-V session.
2422 *
2423 * @returns VBox status code.
2424 * @param pVCpu The cross context virtual CPU structure.
2425 */
2426static int hmR0SvmLeaveSession(PVMCPU pVCpu)
2427{
2428 HM_DISABLE_PREEMPT();
2429 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2430 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2431
2432 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
2433 and done this from the SVMR0ThreadCtxCallback(). */
2434 if (!pVCpu->hm.s.fLeaveDone)
2435 {
2436 hmR0SvmLeave(pVCpu);
2437 pVCpu->hm.s.fLeaveDone = true;
2438 }
2439
2440 /*
2441 * !!! IMPORTANT !!!
2442 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2443 */
2444
2445 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2446 /* Deregister hook now that we've left HM context before re-enabling preemption. */
2447 VMMR0ThreadCtxHookDisable(pVCpu);
2448
2449 /* Leave HM context. This takes care of local init (term). */
2450 int rc = HMR0LeaveCpu(pVCpu);
2451
2452 HM_RESTORE_PREEMPT();
2453 return rc;
2454}
2455
2456
2457/**
2458 * Does the necessary state syncing before doing a longjmp to ring-3.
2459 *
2460 * @returns VBox status code.
2461 * @param pVCpu The cross context virtual CPU structure.
2462 *
2463 * @remarks No-long-jmp zone!!!
2464 */
2465static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
2466{
2467 return hmR0SvmLeaveSession(pVCpu);
2468}
2469
2470
2471/**
2472 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2473 * any remaining host state) before we longjump to ring-3 and possibly get
2474 * preempted.
2475 *
2476 * @param pVCpu The cross context virtual CPU structure.
2477 * @param enmOperation The operation causing the ring-3 longjump.
2478 * @param pvUser The user argument (pointer to the possibly
2479 * out-of-date guest-CPU context).
2480 */
2481static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2482{
2483 RT_NOREF_PV(pvUser);
2484
2485 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
2486 {
2487 /*
2488 * !!! IMPORTANT !!!
2489 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
2490 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
2491 */
2492 VMMRZCallRing3RemoveNotification(pVCpu);
2493 VMMRZCallRing3Disable(pVCpu);
2494 HM_DISABLE_PREEMPT();
2495
2496 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2497 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2498
2499 /* Restore host debug registers if necessary and resync on next R0 reentry. */
2500 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2501
2502 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
2503 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2504 VMMR0ThreadCtxHookDisable(pVCpu);
2505
2506 /* Leave HM context. This takes care of local init (term). */
2507 HMR0LeaveCpu(pVCpu);
2508
2509 HM_RESTORE_PREEMPT();
2510 return VINF_SUCCESS;
2511 }
2512
2513 Assert(pVCpu);
2514 Assert(pvUser);
2515 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2516 HMSVM_ASSERT_PREEMPT_SAFE();
2517
2518 VMMRZCallRing3Disable(pVCpu);
2519 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2520
2521 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2522 int rc = hmR0SvmLongJmpToRing3(pVCpu);
2523 AssertRCReturn(rc, rc);
2524
2525 VMMRZCallRing3Enable(pVCpu);
2526 return VINF_SUCCESS;
2527}
2528
2529
2530/**
2531 * Take necessary actions before going back to ring-3.
2532 *
2533 * An action requires us to go back to ring-3. This function does the necessary
2534 * steps before we can safely return to ring-3. This is not the same as longjmps
2535 * to ring-3, this is voluntary.
2536 *
2537 * @returns VBox status code.
2538 * @param pVM The cross context VM structure.
2539 * @param pVCpu The cross context virtual CPU structure.
2540 * @param pCtx Pointer to the guest-CPU context.
2541 * @param rcExit The reason for exiting to ring-3. Can be
2542 * VINF_VMM_UNKNOWN_RING3_CALL.
2543 */
2544static int hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2545{
2546 Assert(pVM);
2547 Assert(pVCpu);
2548 Assert(pCtx);
2549 HMSVM_ASSERT_PREEMPT_SAFE();
2550
2551 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2552 VMMRZCallRing3Disable(pVCpu);
2553 Log4(("hmR0SvmExitToRing3: VCPU[%u]: rcExit=%d LocalFF=%#RX32 GlobalFF=%#RX32\n", pVCpu->idCpu, rcExit,
2554 pVCpu->fLocalForcedActions, pVM->fGlobalForcedActions));
2555
2556 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2557 if (pVCpu->hm.s.Event.fPending)
2558 {
2559 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2560 Assert(!pVCpu->hm.s.Event.fPending);
2561 }
2562
2563 /* Sync. the necessary state for going back to ring-3. */
2564 hmR0SvmLeaveSession(pVCpu);
2565 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2566
2567 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2568 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2569 | CPUM_CHANGED_LDTR
2570 | CPUM_CHANGED_GDTR
2571 | CPUM_CHANGED_IDTR
2572 | CPUM_CHANGED_TR
2573 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2574 if ( pVM->hm.s.fNestedPaging
2575 && CPUMIsGuestPagingEnabledEx(pCtx))
2576 {
2577 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2578 }
2579
2580 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
2581 if (rcExit != VINF_EM_RAW_INTERRUPT)
2582 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2583
2584#ifdef VBOX_WITH_NESTED_HWVIRT
2585 /*
2586 * We may inspect the nested-guest VMCB state in ring-3 (e.g. for injecting interrupts)
2587 * and thus we need to restore any modifications we may have made to it here if we're
2588 * still executing the nested-guest.
2589 */
2590 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2591 HMSvmNstGstVmExitNotify(pVCpu, pCtx);
2592#endif
2593
2594 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2595
2596 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
2597 VMMRZCallRing3RemoveNotification(pVCpu);
2598 VMMRZCallRing3Enable(pVCpu);
2599
2600 /*
2601 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
2602 * and if we're injecting an event we should have a TRPM trap pending.
2603 */
2604 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
2605 pVCpu->hm.s.u32HMError = rcExit,
2606 VERR_SVM_IPE_5);
2607 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
2608 pVCpu->hm.s.u32HMError = rcExit,
2609 VERR_SVM_IPE_4);
2610
2611 return rcExit;
2612}
2613
2614
2615/**
2616 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2617 * intercepts.
2618 *
2619 * @param pVM The cross context VM structure.
2620 * @param pVCpu The cross context virtual CPU structure.
2621 * @param pVmcb Pointer to the VM control block.
2622 *
2623 * @remarks No-long-jump zone!!!
2624 */
2625static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu, PSVMVMCB pVmcb)
2626{
2627 bool fParavirtTsc;
2628 bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
2629 if (fCanUseRealTsc)
2630 {
2631 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSC;
2632 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSCP;
2633 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2634 }
2635 else
2636 {
2637 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSC;
2638 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSCP;
2639 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2640 }
2641 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2642
2643 /** @todo later optimize this to be done elsewhere and not before every
2644 * VM-entry. */
2645 if (fParavirtTsc)
2646 {
2647 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
2648 information before every VM-entry, hence disable it for performance sake. */
2649#if 0
2650 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
2651 AssertRC(rc);
2652#endif
2653 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
2654 }
2655}
2656
2657
2658/**
2659 * Sets an event as a pending event to be injected into the guest.
2660 *
2661 * @param pVCpu The cross context virtual CPU structure.
2662 * @param pEvent Pointer to the SVM event.
2663 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2664 * page-fault.
2665 *
2666 * @remarks Statistics counter assumes this is a guest event being reflected to
2667 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2668 */
2669DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2670{
2671 Assert(!pVCpu->hm.s.Event.fPending);
2672 Assert(pEvent->n.u1Valid);
2673
2674 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
2675 pVCpu->hm.s.Event.fPending = true;
2676 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2677
2678 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2679 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2680}
2681
2682
2683/**
2684 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
2685 *
2686 * @param pVCpu The cross context virtual CPU structure.
2687 */
2688DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
2689{
2690 SVMEVENT Event;
2691 Event.u = 0;
2692 Event.n.u1Valid = 1;
2693 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2694 Event.n.u8Vector = X86_XCPT_UD;
2695 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2696}
2697
2698
2699/**
2700 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
2701 *
2702 * @param pVCpu The cross context virtual CPU structure.
2703 */
2704DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
2705{
2706 SVMEVENT Event;
2707 Event.u = 0;
2708 Event.n.u1Valid = 1;
2709 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2710 Event.n.u8Vector = X86_XCPT_DB;
2711 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2712}
2713
2714
2715/**
2716 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
2717 *
2718 * @param pVCpu The cross context virtual CPU structure.
2719 * @param pCtx Pointer to the guest-CPU context.
2720 * @param u32ErrCode The error-code for the page-fault.
2721 * @param uFaultAddress The page fault address (CR2).
2722 *
2723 * @remarks This updates the guest CR2 with @a uFaultAddress!
2724 */
2725DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
2726{
2727 SVMEVENT Event;
2728 Event.u = 0;
2729 Event.n.u1Valid = 1;
2730 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2731 Event.n.u8Vector = X86_XCPT_PF;
2732 Event.n.u1ErrorCodeValid = 1;
2733 Event.n.u32ErrorCode = u32ErrCode;
2734
2735 /* Update CR2 of the guest. */
2736 if (pCtx->cr2 != uFaultAddress)
2737 {
2738 pCtx->cr2 = uFaultAddress;
2739 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
2740 }
2741
2742 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
2743}
2744
2745
2746/**
2747 * Sets a device-not-available (\#NM) exception as pending-for-injection into
2748 * the VM.
2749 *
2750 * @param pVCpu The cross context virtual CPU structure.
2751 */
2752DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
2753{
2754 SVMEVENT Event;
2755 Event.u = 0;
2756 Event.n.u1Valid = 1;
2757 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2758 Event.n.u8Vector = X86_XCPT_NM;
2759 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2760}
2761
2762
2763/**
2764 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
2765 *
2766 * @param pVCpu The cross context virtual CPU structure.
2767 */
2768DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
2769{
2770 SVMEVENT Event;
2771 Event.u = 0;
2772 Event.n.u1Valid = 1;
2773 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2774 Event.n.u8Vector = X86_XCPT_MF;
2775 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2776}
2777
2778
2779/**
2780 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
2781 *
2782 * @param pVCpu The cross context virtual CPU structure.
2783 */
2784DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
2785{
2786 SVMEVENT Event;
2787 Event.u = 0;
2788 Event.n.u1Valid = 1;
2789 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2790 Event.n.u8Vector = X86_XCPT_DF;
2791 Event.n.u1ErrorCodeValid = 1;
2792 Event.n.u32ErrorCode = 0;
2793 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2794}
2795
2796
2797/**
2798 * Injects an event into the guest upon VMRUN by updating the relevant field
2799 * in the VMCB.
2800 *
2801 * @param pVCpu The cross context virtual CPU structure.
2802 * @param pVmcb Pointer to the guest VM control block.
2803 * @param pCtx Pointer to the guest-CPU context.
2804 * @param pEvent Pointer to the event.
2805 *
2806 * @remarks No-long-jump zone!!!
2807 * @remarks Requires CR0!
2808 */
2809DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2810{
2811 NOREF(pVCpu); NOREF(pCtx);
2812
2813 pVmcb->ctrl.EventInject.u = pEvent->u;
2814 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2815
2816 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2817 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2818}
2819
2820
2821
2822/**
2823 * Converts any TRPM trap into a pending HM event. This is typically used when
2824 * entering from ring-3 (not longjmp returns).
2825 *
2826 * @param pVCpu The cross context virtual CPU structure.
2827 */
2828static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2829{
2830 Assert(TRPMHasTrap(pVCpu));
2831 Assert(!pVCpu->hm.s.Event.fPending);
2832
2833 uint8_t uVector;
2834 TRPMEVENT enmTrpmEvent;
2835 RTGCUINT uErrCode;
2836 RTGCUINTPTR GCPtrFaultAddress;
2837 uint8_t cbInstr;
2838
2839 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2840 AssertRC(rc);
2841
2842 SVMEVENT Event;
2843 Event.u = 0;
2844 Event.n.u1Valid = 1;
2845 Event.n.u8Vector = uVector;
2846
2847 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2848 if (enmTrpmEvent == TRPM_TRAP)
2849 {
2850 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2851 switch (uVector)
2852 {
2853 case X86_XCPT_NMI:
2854 {
2855 Event.n.u3Type = SVM_EVENT_NMI;
2856 break;
2857 }
2858
2859 case X86_XCPT_PF:
2860 case X86_XCPT_DF:
2861 case X86_XCPT_TS:
2862 case X86_XCPT_NP:
2863 case X86_XCPT_SS:
2864 case X86_XCPT_GP:
2865 case X86_XCPT_AC:
2866 {
2867 Event.n.u1ErrorCodeValid = 1;
2868 Event.n.u32ErrorCode = uErrCode;
2869 break;
2870 }
2871 }
2872 }
2873 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2874 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2875 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2876 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2877 else
2878 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2879
2880 rc = TRPMResetTrap(pVCpu);
2881 AssertRC(rc);
2882
2883 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2884 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2885
2886 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2887}
2888
2889
2890/**
2891 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2892 * AMD-V to execute any instruction.
2893 *
2894 * @param pVCpu The cross context virtual CPU structure.
2895 */
2896static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2897{
2898 Assert(pVCpu->hm.s.Event.fPending);
2899 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2900
2901 SVMEVENT Event;
2902 Event.u = pVCpu->hm.s.Event.u64IntInfo;
2903
2904 uint8_t uVector = Event.n.u8Vector;
2905 uint8_t uVectorType = Event.n.u3Type;
2906 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
2907
2908 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2909
2910 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2911 AssertRC(rc);
2912
2913 if (Event.n.u1ErrorCodeValid)
2914 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2915
2916 if ( uVectorType == SVM_EVENT_EXCEPTION
2917 && uVector == X86_XCPT_PF)
2918 {
2919 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2920 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2921 }
2922 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2923 {
2924 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2925 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2926 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2927 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2928 }
2929 pVCpu->hm.s.Event.fPending = false;
2930}
2931
2932
2933/**
2934 * Checks if the guest (or nested-guest) has an interrupt shadow active right
2935 * now.
2936 *
2937 * @returns true if the interrupt shadow is active, false otherwise.
2938 * @param pVCpu The cross context virtual CPU structure.
2939 * @param pCtx Pointer to the guest-CPU context.
2940 *
2941 * @remarks No-long-jump zone!!!
2942 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2943 */
2944DECLINLINE(bool) hmR0SvmIsIntrShadowActive(PVMCPU pVCpu, PCPUMCTX pCtx)
2945{
2946 /*
2947 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2948 * inhibit interrupts or clear any existing interrupt-inhibition.
2949 */
2950 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2951 {
2952 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2953 {
2954 /*
2955 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2956 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2957 */
2958 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2959 return false;
2960 }
2961 return true;
2962 }
2963 return false;
2964}
2965
2966
2967/**
2968 * Sets the virtual interrupt intercept control in the VMCB which
2969 * instructs AMD-V to cause a \#VMEXIT as soon as the guest is in a state to
2970 * receive interrupts.
2971 *
2972 * @param pVmcb Pointer to the VM control block.
2973 */
2974DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2975{
2976 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
2977 {
2978 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1; /* A virtual interrupt is pending. */
2979 pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0; /* Vector not necessary as we #VMEXIT for delivering the interrupt. */
2980 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VINTR;
2981 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2982
2983 Log4(("Setting VINTR intercept\n"));
2984 }
2985}
2986
2987
2988#if 0
2989/**
2990 * Clears the virtual interrupt intercept control in the VMCB as
2991 * we are figured the guest is unable process any interrupts
2992 * at this point of time.
2993 *
2994 * @param pVmcb Pointer to the VM control block.
2995 */
2996DECLINLINE(void) hmR0SvmClearVirtIntrIntercept(PSVMVMCB pVmcb)
2997{
2998 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
2999 {
3000 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
3001 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
3002 Log4(("Clearing VINTR intercept\n"));
3003 }
3004}
3005#endif
3006
3007
3008/**
3009 * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
3010 * \#VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
3011 * virtual NMIs.
3012 *
3013 * @param pVmcb Pointer to the VM control block.
3014 */
3015DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
3016{
3017 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET))
3018 {
3019 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_IRET;
3020 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
3021
3022 Log4(("Setting IRET intercept\n"));
3023 }
3024}
3025
3026
3027/**
3028 * Clears the IRET intercept control in the VMCB.
3029 *
3030 * @param pVmcb Pointer to the VM control block.
3031 */
3032DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
3033{
3034 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
3035 {
3036 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_IRET;
3037 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
3038
3039 Log4(("Clearing IRET intercept\n"));
3040 }
3041}
3042
3043#ifdef VBOX_WITH_NESTED_HWVIRT
3044/**
3045 * Checks whether the SVM nested-guest is in a state to receive physical (APIC)
3046 * interrupts.
3047 *
3048 * @returns true if it's ready, false otherwise.
3049 * @param pCtx The guest-CPU context.
3050 *
3051 * @remarks This function looks at the VMCB cache rather than directly at the
3052 * nested-guest VMCB which may have been suitably modified for executing
3053 * using hardware-assisted SVM.
3054 */
3055static bool hmR0SvmCanNstGstTakePhysIntr(PVMCPU pVCpu, PCCPUMCTX pCtx)
3056{
3057 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
3058 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3059 X86EFLAGS fEFlags;
3060 if (pVmcbNstGstCache->fVIntrMasking)
3061 fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
3062 else
3063 fEFlags.u = pCtx->eflags.u;
3064
3065 return fEFlags.Bits.u1IF;
3066}
3067
3068
3069/**
3070 * Evaluates the event to be delivered to the nested-guest and sets it as the
3071 * pending event.
3072 *
3073 * @returns VBox strict status code.
3074 * @param pVCpu The cross context virtual CPU structure.
3075 * @param pCtx Pointer to the guest-CPU context.
3076 */
3077static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu, PCPUMCTX pCtx)
3078{
3079 Log4Func(("\n"));
3080
3081 Assert(!pVCpu->hm.s.Event.fPending);
3082
3083 bool const fGif = pCtx->hwvirt.svm.fGif;
3084 if (fGif)
3085 {
3086 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
3087
3088 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3089
3090 /*
3091 * Check if the nested-guest can receive NMIs.
3092 * NMIs are higher priority than regular interrupts.
3093 */
3094 /** @todo SMI. SMIs take priority over NMIs. */
3095 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI))
3096 {
3097 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3098 if (fBlockNmi)
3099 hmR0SvmSetIretIntercept(pVmcbNstGst);
3100 else if (fIntShadow)
3101 {
3102 /** @todo Figure this out, how we shall manage virt. intercept if the
3103 * nested-guest already has one set and/or if we really need it? */
3104 //hmR0SvmSetVirtIntrIntercept(pVmcbNstGst);
3105 }
3106 else
3107 {
3108 Log4(("Pending NMI\n"));
3109
3110 SVMEVENT Event;
3111 Event.u = 0;
3112 Event.n.u1Valid = 1;
3113 Event.n.u8Vector = X86_XCPT_NMI;
3114 Event.n.u3Type = SVM_EVENT_NMI;
3115
3116 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3117 hmR0SvmSetIretIntercept(pVmcbNstGst);
3118 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3119 return VINF_SUCCESS;
3120 }
3121 }
3122
3123 /*
3124 * Check if the nested-guest can receive external interrupts (generated by
3125 * the guest's PIC/APIC).
3126 *
3127 * External intercepts from the physical CPU are -always- intercepted when
3128 * executing using hardware-assisted SVM, see HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS.
3129 *
3130 * External interrupts that are generated for the outer guest may be intercepted
3131 * depending on how the nested-guest VMCB was programmed by guest software.
3132 *
3133 * Physical interrupts always take priority over virtual interrupts,
3134 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3135 */
3136 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3137 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
3138 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3139 && !fIntShadow
3140 && !pVCpu->hm.s.fSingleInstruction
3141 && hmR0SvmCanNstGstTakePhysIntr(pVCpu, pCtx))
3142 {
3143 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INTR)
3144 {
3145 Log4(("Intercepting external interrupt -> #VMEXIT\n"));
3146 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3147 }
3148
3149 uint8_t u8Interrupt;
3150 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3151 if (RT_SUCCESS(rc))
3152 {
3153 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
3154
3155 SVMEVENT Event;
3156 Event.u = 0;
3157 Event.n.u1Valid = 1;
3158 Event.n.u8Vector = u8Interrupt;
3159 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3160
3161 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3162 }
3163 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3164 {
3165 /*
3166 * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
3167 * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
3168 * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
3169 */
3170 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3171 }
3172 else
3173 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3174 }
3175
3176 /*
3177 * Check if the nested-guest can receive virtual (injected by VMRUN) interrupts.
3178 * We can safely call CPUMCanSvmNstGstTakeVirtIntr here as we don't cache/modify any
3179 * nested-guest VMCB interrupt control fields besides V_INTR_MASKING, see hmR0SvmVmRunCacheVmcb.
3180 */
3181 if ( (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
3182 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)
3183 && CPUMCanSvmNstGstTakeVirtIntr(pCtx))
3184 {
3185 Log4(("Intercepting virtual interrupt -> #VMEXIT\n"));
3186 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_VINTR, 0, 0);
3187 }
3188 }
3189
3190 return VINF_SUCCESS;
3191}
3192#endif
3193
3194/**
3195 * Evaluates the event to be delivered to the guest and sets it as the pending
3196 * event.
3197 *
3198 * @param pVCpu The cross context virtual CPU structure.
3199 * @param pCtx Pointer to the guest-CPU context.
3200 */
3201static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
3202{
3203 Assert(!pVCpu->hm.s.Event.fPending);
3204
3205#ifdef VBOX_WITH_NESTED_HWVIRT
3206 bool const fGif = pCtx->hwvirt.svm.fGif;
3207#else
3208 bool const fGif = true;
3209#endif
3210 Log4Func(("fGif=%RTbool\n", fGif));
3211
3212 /*
3213 * If the global interrupt flag (GIF) isn't set, even NMIs and other events are blocked.
3214 * See AMD spec. Table 15-10. "Effect of the GIF on Interrupt Handling".
3215 */
3216 if (fGif)
3217 {
3218 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3219 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3220 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3221 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3222
3223 Log4Func(("fGif=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool APIC/PIC_Pending=%RTbool\n", fGif, fBlockInt, fIntShadow,
3224 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
3225
3226 /** @todo SMI. SMIs take priority over NMIs. */
3227 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
3228 {
3229 if (fBlockNmi)
3230 hmR0SvmSetIretIntercept(pVmcb);
3231 else if (fIntShadow)
3232 hmR0SvmSetVirtIntrIntercept(pVmcb);
3233 else
3234 {
3235 Log4(("Pending NMI\n"));
3236
3237 SVMEVENT Event;
3238 Event.u = 0;
3239 Event.n.u1Valid = 1;
3240 Event.n.u8Vector = X86_XCPT_NMI;
3241 Event.n.u3Type = SVM_EVENT_NMI;
3242
3243 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3244 hmR0SvmSetIretIntercept(pVmcb);
3245 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3246 return;
3247 }
3248 }
3249 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3250 && !pVCpu->hm.s.fSingleInstruction)
3251 {
3252 /*
3253 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
3254 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
3255 */
3256 if ( !fBlockInt
3257 && !fIntShadow)
3258 {
3259 uint8_t u8Interrupt;
3260 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3261 if (RT_SUCCESS(rc))
3262 {
3263 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
3264
3265 SVMEVENT Event;
3266 Event.u = 0;
3267 Event.n.u1Valid = 1;
3268 Event.n.u8Vector = u8Interrupt;
3269 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3270
3271 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3272 }
3273 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3274 {
3275 /*
3276 * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
3277 * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
3278 * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
3279 */
3280 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3281 }
3282 else
3283 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3284 }
3285 else
3286 hmR0SvmSetVirtIntrIntercept(pVmcb);
3287 }
3288 }
3289}
3290
3291
3292/**
3293 * Injects any pending events into the guest or nested-guest.
3294 *
3295 * @param pVCpu The cross context virtual CPU structure.
3296 * @param pCtx Pointer to the guest-CPU context.
3297 * @param pVmcb Pointer to the VM control block.
3298 */
3299static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
3300{
3301 Assert(!TRPMHasTrap(pVCpu));
3302 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3303
3304 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3305
3306 /*
3307 * When executing the nested-guest, we avoid assertions on whether the
3308 * event injection is valid purely based on EFLAGS, as V_INTR_MASKING
3309 * affects the interpretation of interruptibility (see CPUMCanSvmNstGstTakePhysIntr).
3310 */
3311#ifndef VBOX_WITH_NESTED_HWVIRT
3312 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3313#endif
3314
3315 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
3316 {
3317 SVMEVENT Event;
3318 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3319 Assert(Event.n.u1Valid);
3320
3321#ifndef VBOX_WITH_NESTED_HWVIRT
3322 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3323 {
3324 Assert(!fBlockInt);
3325 Assert(!fIntShadow);
3326 }
3327 else if (Event.n.u3Type == SVM_EVENT_NMI)
3328 Assert(!fIntShadow);
3329 NOREF(fBlockInt);
3330#else
3331 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3332#endif
3333
3334 Log4(("Injecting pending HM event\n"));
3335 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
3336 pVCpu->hm.s.Event.fPending = false;
3337
3338#ifdef VBOX_WITH_STATISTICS
3339 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3340 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3341 else
3342 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3343#endif
3344 }
3345
3346 /*
3347 * Update the guest interrupt shadow in the guest or nested-guest VMCB.
3348 *
3349 * For nested-guests: We need to update it too for the scenario where IEM executes
3350 * the nested-guest but execution later continues here with an interrupt shadow active.
3351 */
3352 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
3353}
3354
3355
3356/**
3357 * Reports world-switch error and dumps some useful debug info.
3358 *
3359 * @param pVM The cross context VM structure.
3360 * @param pVCpu The cross context virtual CPU structure.
3361 * @param rcVMRun The return code from VMRUN (or
3362 * VERR_SVM_INVALID_GUEST_STATE for invalid
3363 * guest-state).
3364 * @param pCtx Pointer to the guest-CPU context.
3365 */
3366static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
3367{
3368 NOREF(pCtx);
3369 HMSVM_ASSERT_PREEMPT_SAFE();
3370 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3371
3372 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3373 {
3374 hmR0DumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
3375#ifdef VBOX_STRICT
3376 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
3377 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3378 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3379 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3380 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3381 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3382 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3383 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3384 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3385 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3386
3387 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3388 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3389 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3390
3391 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3392 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3393 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
3394 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3395 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3396 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3397 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3398 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3399 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3400 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3401
3402 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
3403 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3404 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3405 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3406 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3407 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3408 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3409 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3410 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3411 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3412 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
3413 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3414 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3415 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3416 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3417 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3418 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3419
3420 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3421 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
3422
3423 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3424 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3425 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3426 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3427 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3428 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3429 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3430 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3431 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3432 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3433 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3434 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3435 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3436 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3437 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3438 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3439 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3440 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3441 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3442 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3443
3444 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3445 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3446
3447 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3448 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3449 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3450 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3451
3452 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3453 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3454
3455 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3456 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3457 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3458 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3459
3460 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3461 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3462 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3463 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3464 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3465 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3466 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3467
3468 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3469 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3470 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3471 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3472
3473 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3474 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3475 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3476
3477 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3478 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3479 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3480 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3481 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3482 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3483 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
3484 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3485 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3486 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3487 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3488 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3489#endif /* VBOX_STRICT */
3490 }
3491 else
3492 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
3493
3494 NOREF(pVmcb);
3495}
3496
3497
3498/**
3499 * Check per-VM and per-VCPU force flag actions that require us to go back to
3500 * ring-3 for one reason or another.
3501 *
3502 * @returns VBox status code (information status code included).
3503 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3504 * ring-3.
3505 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3506 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3507 * interrupts)
3508 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3509 * all EMTs to be in ring-3.
3510 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3511 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3512 * to the EM loop.
3513 *
3514 * @param pVM The cross context VM structure.
3515 * @param pVCpu The cross context virtual CPU structure.
3516 * @param pCtx Pointer to the guest-CPU context.
3517 */
3518static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3519{
3520 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3521
3522 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
3523 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
3524 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
3525
3526 /* Update pending interrupts into the APIC's IRR. */
3527 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3528 APICUpdatePendingInterrupts(pVCpu);
3529
3530 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
3531 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3532 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
3533 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3534 {
3535 /* Pending PGM C3 sync. */
3536 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
3537 {
3538 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3539 if (rc != VINF_SUCCESS)
3540 {
3541 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
3542 return rc;
3543 }
3544 }
3545
3546 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
3547 /* -XXX- what was that about single stepping? */
3548 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
3549 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3550 {
3551 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3552 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
3553 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
3554 return rc;
3555 }
3556
3557 /* Pending VM request packets, such as hardware interrupts. */
3558 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
3559 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
3560 {
3561 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
3562 return VINF_EM_PENDING_REQUEST;
3563 }
3564
3565 /* Pending PGM pool flushes. */
3566 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
3567 {
3568 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
3569 return VINF_PGM_POOL_FLUSH_PENDING;
3570 }
3571
3572 /* Pending DMA requests. */
3573 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
3574 {
3575 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
3576 return VINF_EM_RAW_TO_R3;
3577 }
3578 }
3579
3580 return VINF_SUCCESS;
3581}
3582
3583
3584#ifdef VBOX_WITH_NESTED_HWVIRT
3585/**
3586 * Does the preparations before executing nested-guest code in AMD-V.
3587 *
3588 * @returns VBox status code (informational status codes included).
3589 * @retval VINF_SUCCESS if we can proceed with running the guest.
3590 * @retval VINF_* scheduling changes, we have to go back to ring-3.
3591 *
3592 * @param pVM The cross context VM structure.
3593 * @param pVCpu The cross context virtual CPU structure.
3594 * @param pCtx Pointer to the guest-CPU context.
3595 * @param pSvmTransient Pointer to the SVM transient structure.
3596 *
3597 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
3598 * @sa hmR0SvmPreRunGuest.
3599 */
3600static int hmR0SvmPreRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3601{
3602 HMSVM_ASSERT_PREEMPT_SAFE();
3603
3604 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3605 {
3606#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
3607 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
3608 return VINF_EM_RESCHEDULE_REM;
3609#endif
3610 }
3611 else
3612 return VINF_SVM_VMEXIT;
3613
3614 /* Check force flag actions that might require us to go back to ring-3. */
3615 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
3616 if (rc != VINF_SUCCESS)
3617 return rc;
3618
3619 hmR0SvmVmRunSetupVmcb(pVCpu, pCtx);
3620
3621 if (TRPMHasTrap(pVCpu))
3622 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
3623 else if (!pVCpu->hm.s.Event.fPending)
3624 {
3625 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu, pCtx);
3626 if (rcStrict != VINF_SUCCESS)
3627 return VBOXSTRICTRC_VAL(rcStrict);
3628 }
3629
3630 /*
3631 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
3632 * Just do it in software, see @bugref{8411}.
3633 * NB: If we could continue a task switch exit we wouldn't need to do this.
3634 */
3635 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
3636 && pVCpu->hm.s.Event.fPending
3637 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
3638 {
3639 return VINF_EM_RAW_INJECT_TRPM_EVENT;
3640 }
3641
3642 /*
3643 * Load the nested-guest state.
3644 */
3645 rc = hmR0SvmLoadGuestStateNested(pVCpu, pCtx);
3646 AssertRCReturn(rc, rc);
3647 /** @todo Get new STAM counter for this? */
3648 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
3649
3650 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
3651
3652 /*
3653 * No longjmps to ring-3 from this point on!!!
3654 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3655 * This also disables flushing of the R0-logger instance (if any).
3656 */
3657 VMMRZCallRing3Disable(pVCpu);
3658
3659 /*
3660 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
3661 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
3662 *
3663 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
3664 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
3665 *
3666 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
3667 * executing guest code.
3668 */
3669 pSvmTransient->fEFlags = ASMIntDisableFlags();
3670 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
3671 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3672 {
3673 ASMSetFlags(pSvmTransient->fEFlags);
3674 VMMRZCallRing3Enable(pVCpu);
3675 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3676 return VINF_EM_RAW_TO_R3;
3677 }
3678 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3679 {
3680 ASMSetFlags(pSvmTransient->fEFlags);
3681 VMMRZCallRing3Enable(pVCpu);
3682 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
3683 return VINF_EM_RAW_INTERRUPT;
3684 }
3685
3686 /*
3687 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
3688 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
3689 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
3690 *
3691 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
3692 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
3693 */
3694 if (pVCpu->hm.s.Event.fPending)
3695 {
3696 SVMEVENT Event;
3697 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3698 if ( Event.n.u1Valid
3699 && Event.n.u3Type == SVM_EVENT_NMI
3700 && Event.n.u8Vector == X86_XCPT_NMI
3701 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
3702 {
3703 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3704 }
3705 }
3706
3707 return VINF_SUCCESS;
3708}
3709#endif
3710
3711
3712/**
3713 * Does the preparations before executing guest code in AMD-V.
3714 *
3715 * This may cause longjmps to ring-3 and may even result in rescheduling to the
3716 * recompiler. We must be cautious what we do here regarding committing
3717 * guest-state information into the VMCB assuming we assuredly execute the guest
3718 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
3719 * clearing the common-state (TRPM/forceflags), we must undo those changes so
3720 * that the recompiler can (and should) use them when it resumes guest
3721 * execution. Otherwise such operations must be done when we can no longer
3722 * exit to ring-3.
3723 *
3724 * @returns VBox status code (informational status codes included).
3725 * @retval VINF_SUCCESS if we can proceed with running the guest.
3726 * @retval VINF_* scheduling changes, we have to go back to ring-3.
3727 *
3728 * @param pVM The cross context VM structure.
3729 * @param pVCpu The cross context virtual CPU structure.
3730 * @param pCtx Pointer to the guest-CPU context.
3731 * @param pSvmTransient Pointer to the SVM transient structure.
3732 */
3733static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3734{
3735 HMSVM_ASSERT_PREEMPT_SAFE();
3736 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
3737
3738#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
3739 /* IEM only for executing nested guest, we shouldn't get here. */
3740 /** @todo Make this into an assertion since HMR3CanExecuteGuest already checks
3741 * for it? */
3742 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3743 {
3744 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
3745 return VINF_EM_RESCHEDULE_REM;
3746 }
3747#endif
3748
3749 /* Check force flag actions that might require us to go back to ring-3. */
3750 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
3751 if (rc != VINF_SUCCESS)
3752 return rc;
3753
3754 if (TRPMHasTrap(pVCpu))
3755 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
3756 else if (!pVCpu->hm.s.Event.fPending)
3757 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
3758
3759 /*
3760 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
3761 * Just do it in software, see @bugref{8411}.
3762 * NB: If we could continue a task switch exit we wouldn't need to do this.
3763 */
3764 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
3765 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
3766 return VINF_EM_RAW_INJECT_TRPM_EVENT;
3767
3768#ifdef HMSVM_SYNC_FULL_GUEST_STATE
3769 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3770#endif
3771
3772 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
3773 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
3774 AssertRCReturn(rc, rc);
3775 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
3776
3777 /*
3778 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
3779 * so we can update it on the way back if the guest changed the TPR.
3780 */
3781 if (pVCpu->hm.s.svm.fSyncVTpr)
3782 {
3783 if (pVM->hm.s.fTPRPatchingActive)
3784 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
3785 else
3786 {
3787 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3788 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
3789 }
3790 }
3791
3792 /*
3793 * No longjmps to ring-3 from this point on!!!
3794 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3795 * This also disables flushing of the R0-logger instance (if any).
3796 */
3797 VMMRZCallRing3Disable(pVCpu);
3798
3799 /*
3800 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
3801 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
3802 *
3803 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
3804 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
3805 *
3806 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
3807 * executing guest code.
3808 */
3809 pSvmTransient->fEFlags = ASMIntDisableFlags();
3810 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
3811 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3812 {
3813 ASMSetFlags(pSvmTransient->fEFlags);
3814 VMMRZCallRing3Enable(pVCpu);
3815 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3816 return VINF_EM_RAW_TO_R3;
3817 }
3818 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3819 {
3820 ASMSetFlags(pSvmTransient->fEFlags);
3821 VMMRZCallRing3Enable(pVCpu);
3822 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
3823 return VINF_EM_RAW_INTERRUPT;
3824 }
3825
3826 /*
3827 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
3828 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
3829 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
3830 *
3831 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
3832 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
3833 */
3834 if (pVCpu->hm.s.Event.fPending)
3835 {
3836 SVMEVENT Event;
3837 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3838 if ( Event.n.u1Valid
3839 && Event.n.u3Type == SVM_EVENT_NMI
3840 && Event.n.u8Vector == X86_XCPT_NMI
3841 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
3842 {
3843 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3844 }
3845 }
3846
3847 return VINF_SUCCESS;
3848}
3849
3850
3851#ifdef VBOX_WITH_NESTED_HWVIRT
3852/**
3853 * Prepares to run nested-guest code in AMD-V and we've committed to doing so. This
3854 * means there is no backing out to ring-3 or anywhere else at this point.
3855 *
3856 * @param pVM The cross context VM structure.
3857 * @param pVCpu The cross context virtual CPU structure.
3858 * @param pCtx Pointer to the guest-CPU context.
3859 * @param pSvmTransient Pointer to the SVM transient structure.
3860 *
3861 * @remarks Called with preemption disabled.
3862 * @remarks No-long-jump zone!!!
3863 */
3864static void hmR0SvmPreRunGuestCommittedNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3865{
3866 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3867 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3868 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3869
3870 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3871 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
3872
3873 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
3874 hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcbNstGst);
3875
3876 if ( pVCpu->hm.s.fPreloadGuestFpu
3877 && !CPUMIsGuestFPUStateActive(pVCpu))
3878 {
3879 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
3880 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
3881 }
3882
3883 /* Load the state shared between host and nested-guest (FPU, debug). */
3884 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
3885 hmR0SvmLoadSharedState(pVCpu, pVmcbNstGst, pCtx);
3886
3887 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
3888 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
3889
3890 /* Setup TSC offsetting. */
3891 RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
3892 if ( pSvmTransient->fUpdateTscOffsetting
3893 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
3894 {
3895 hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pVmcbNstGst);
3896 pSvmTransient->fUpdateTscOffsetting = false;
3897 }
3898
3899 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
3900 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
3901 pVmcbNstGst->ctrl.u64VmcbCleanBits = 0;
3902
3903 /* Store status of the shared guest-host state at the time of VMRUN. */
3904#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
3905 if (CPUMIsGuestInLongModeEx(pCtx))
3906 {
3907 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
3908 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
3909 }
3910 else
3911#endif
3912 {
3913 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
3914 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
3915 }
3916 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
3917
3918 /* The TLB flushing would've already been setup by the nested-hypervisor. */
3919 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
3920 hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcbNstGst);
3921 Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
3922
3923 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
3924
3925 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
3926 to start executing. */
3927
3928 /*
3929 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
3930 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
3931 *
3932 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
3933 */
3934 uint8_t *pbMsrBitmap = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
3935 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
3936 && !(pVmcbNstGst->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
3937 {
3938 hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
3939 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
3940 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
3941 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
3942 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
3943 pSvmTransient->fRestoreTscAuxMsr = true;
3944 }
3945 else
3946 {
3947 hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
3948 pSvmTransient->fRestoreTscAuxMsr = false;
3949 }
3950
3951 /*
3952 * If VMCB Clean bits isn't supported by the CPU or exposed by the guest,
3953 * mark all state-bits as dirty indicating to the CPU to re-load from VMCB.
3954 */
3955 if ( !(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
3956 || !(pVM->cpum.ro.GuestFeatures.fSvmVmcbClean))
3957 pVmcbNstGst->ctrl.u64VmcbCleanBits = 0;
3958}
3959#endif
3960
3961
3962/**
3963 * Prepares to run guest code in AMD-V and we've committed to doing so. This
3964 * means there is no backing out to ring-3 or anywhere else at this
3965 * point.
3966 *
3967 * @param pVM The cross context VM structure.
3968 * @param pVCpu The cross context virtual CPU structure.
3969 * @param pCtx Pointer to the guest-CPU context.
3970 * @param pSvmTransient Pointer to the SVM transient structure.
3971 *
3972 * @remarks Called with preemption disabled.
3973 * @remarks No-long-jump zone!!!
3974 */
3975static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3976{
3977 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3978 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3979 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3980
3981 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3982 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
3983
3984 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3985 hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcb);
3986
3987 if ( pVCpu->hm.s.fPreloadGuestFpu
3988 && !CPUMIsGuestFPUStateActive(pVCpu))
3989 {
3990 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
3991 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
3992 }
3993
3994 /* Load the state shared between host and guest (FPU, debug). */
3995 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
3996 hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
3997
3998 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
3999 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
4000
4001 /* Setup TSC offsetting. */
4002 RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
4003 if ( pSvmTransient->fUpdateTscOffsetting
4004 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
4005 {
4006 hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pVmcb);
4007 pSvmTransient->fUpdateTscOffsetting = false;
4008 }
4009
4010 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4011 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
4012 pVmcb->ctrl.u64VmcbCleanBits = 0;
4013
4014 /* Store status of the shared guest-host state at the time of VMRUN. */
4015#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4016 if (CPUMIsGuestInLongModeEx(pCtx))
4017 {
4018 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4019 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4020 }
4021 else
4022#endif
4023 {
4024 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4025 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4026 }
4027 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
4028
4029 /* Flush the appropriate tagged-TLB entries. */
4030 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4031 hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcb);
4032 Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
4033
4034 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4035
4036 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4037 to start executing. */
4038
4039 /*
4040 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
4041 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
4042 *
4043 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4044 */
4045 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4046 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
4047 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4048 {
4049 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4050 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4051 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
4052 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
4053 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
4054 pSvmTransient->fRestoreTscAuxMsr = true;
4055 }
4056 else
4057 {
4058 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4059 pSvmTransient->fRestoreTscAuxMsr = false;
4060 }
4061
4062 /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
4063 if (!(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
4064 pVmcb->ctrl.u64VmcbCleanBits = 0;
4065}
4066
4067
4068/**
4069 * Wrapper for running the guest code in AMD-V.
4070 *
4071 * @returns VBox strict status code.
4072 * @param pVM The cross context VM structure.
4073 * @param pVCpu The cross context virtual CPU structure.
4074 * @param pCtx Pointer to the guest-CPU context.
4075 *
4076 * @remarks No-long-jump zone!!!
4077 */
4078DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4079{
4080 /*
4081 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4082 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4083 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4084 */
4085#ifdef VBOX_WITH_KERNEL_USING_XMM
4086 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
4087 pVCpu->hm.s.svm.pfnVMRun);
4088#else
4089 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
4090#endif
4091}
4092
4093
4094#ifdef VBOX_WITH_NESTED_HWVIRT
4095/**
4096 * Wrapper for running the nested-guest code in AMD-V.
4097 *
4098 * @returns VBox strict status code.
4099 * @param pVM The cross context VM structure.
4100 * @param pVCpu The cross context virtual CPU structure.
4101 * @param pCtx Pointer to the guest-CPU context.
4102 *
4103 * @remarks No-long-jump zone!!!
4104 */
4105DECLINLINE(int) hmR0SvmRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4106{
4107 /*
4108 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4109 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4110 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4111 */
4112#ifdef VBOX_WITH_KERNEL_USING_XMM
4113 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
4114 pVCpu->hm.s.svm.pfnVMRun);
4115#else
4116 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
4117#endif
4118}
4119
4120
4121/**
4122 * Performs some essential restoration of state after running nested-guest code in
4123 * AMD-V.
4124 *
4125 * @param pVM The cross context VM structure.
4126 * @param pVCpu The cross context virtual CPU structure.
4127 * @param pMixedCtx Pointer to the nested-guest-CPU context. The data maybe
4128 * out-of-sync. Make sure to update the required fields
4129 * before using them.
4130 * @param pSvmTransient Pointer to the SVM transient structure.
4131 * @param rcVMRun Return code of VMRUN.
4132 *
4133 * @remarks Called with interrupts disabled.
4134 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4135 * unconditionally when it is safe to do so.
4136 */
4137static void hmR0SvmPostRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4138{
4139 RT_NOREF(pVM);
4140 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4141
4142 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4143 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4144
4145 /* TSC read must be done early for maximum accuracy. */
4146 PSVMVMCB pVmcbNstGst = pMixedCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4147 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4148 if (!(pVmcbNstGstCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4149 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcbNstGstCtrl->u64TSCOffset);
4150
4151 if (pSvmTransient->fRestoreTscAuxMsr)
4152 {
4153 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4154 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4155 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4156 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4157 }
4158
4159 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
4160 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4161 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4162
4163 Assert(!(ASMGetFlags() & X86_EFL_IF));
4164 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4165 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4166
4167 /* Mark the VMCB-state cache as unmodified by VMM. */
4168 pVmcbNstGstCtrl->u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL;
4169
4170 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4171 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4172 {
4173 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4174 return;
4175 }
4176
4177 pSvmTransient->u64ExitCode = pVmcbNstGstCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4178 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcbNstGstCtrl->u64ExitCode);/* Update the #VMEXIT history array. */
4179 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4180 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4181
4182 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
4183 hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcbNstGst); /* Save the nested-guest state from the VMCB to the
4184 guest-CPU context. */
4185
4186 HMSvmNstGstVmExitNotify(pVCpu, pMixedCtx); /* Restore modified VMCB fields for now, see @bugref{7243#c52} .*/
4187}
4188#endif
4189
4190/**
4191 * Performs some essential restoration of state after running guest code in
4192 * AMD-V.
4193 *
4194 * @param pVM The cross context VM structure.
4195 * @param pVCpu The cross context virtual CPU structure.
4196 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4197 * out-of-sync. Make sure to update the required fields
4198 * before using them.
4199 * @param pSvmTransient Pointer to the SVM transient structure.
4200 * @param rcVMRun Return code of VMRUN.
4201 *
4202 * @remarks Called with interrupts disabled.
4203 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4204 * unconditionally when it is safe to do so.
4205 */
4206static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4207{
4208 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4209
4210 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4211 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4212
4213 PSVMVMCB pVmcb =pVCpu->hm.s.svm.pVmcb;
4214 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4215
4216 /* TSC read must be done early for maximum accuracy. */
4217 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4218 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
4219
4220 if (pSvmTransient->fRestoreTscAuxMsr)
4221 {
4222 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4223 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4224 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4225 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4226 }
4227
4228 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
4229 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4230 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4231
4232 Assert(!(ASMGetFlags() & X86_EFL_IF));
4233 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4234 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4235
4236 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4237 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4238 {
4239 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4240 return;
4241 }
4242
4243 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
4244 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
4245 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4246 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4247
4248 hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcb); /* Save the guest state from the VMCB to the guest-CPU context. */
4249
4250 if (RT_LIKELY(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID))
4251 {
4252 if (pVCpu->hm.s.svm.fSyncVTpr)
4253 {
4254 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4255 if ( pVM->hm.s.fTPRPatchingActive
4256 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4257 {
4258 int rc = APICSetTpr(pVCpu, pMixedCtx->msrLSTAR & 0xff);
4259 AssertRC(rc);
4260 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4261 }
4262 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
4263 {
4264 int rc = APICSetTpr(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
4265 AssertRC(rc);
4266 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4267 }
4268 }
4269 }
4270}
4271
4272
4273/**
4274 * Runs the guest code using AMD-V.
4275 *
4276 * @returns VBox status code.
4277 * @param pVM The cross context VM structure.
4278 * @param pVCpu The cross context virtual CPU structure.
4279 * @param pCtx Pointer to the guest-CPU context.
4280 * @param pcLoops Pointer to the number of executed loops.
4281 */
4282static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4283{
4284 uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
4285 Assert(pcLoops);
4286 Assert(*pcLoops <= cMaxResumeLoops);
4287
4288 SVMTRANSIENT SvmTransient;
4289 SvmTransient.fUpdateTscOffsetting = true;
4290
4291 int rc = VERR_INTERNAL_ERROR_5;
4292 for (;;)
4293 {
4294 Assert(!HMR0SuspendPending());
4295 HMSVM_ASSERT_CPU_SAFE();
4296
4297 /* Preparatory work for running guest code, this may force us to return
4298 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4299 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4300 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
4301 if (rc != VINF_SUCCESS)
4302 break;
4303
4304 /*
4305 * No longjmps to ring-3 from this point on!!!
4306 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4307 * This also disables flushing of the R0-logger instance (if any).
4308 */
4309 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
4310 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
4311
4312 /* Restore any residual host-state and save any bits shared between host
4313 and guest into the guest-CPU state. Re-enables interrupts! */
4314 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
4315
4316 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4317 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4318 {
4319 if (rc == VINF_SUCCESS)
4320 rc = VERR_SVM_INVALID_GUEST_STATE;
4321 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4322 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4323 break;
4324 }
4325
4326 /* Handle the #VMEXIT. */
4327 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4328 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4329 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4330 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
4331 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4332 if (rc != VINF_SUCCESS)
4333 break;
4334 if (++(*pcLoops) >= cMaxResumeLoops)
4335 {
4336 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4337 rc = VINF_EM_RAW_INTERRUPT;
4338 break;
4339 }
4340 }
4341
4342 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4343 return rc;
4344}
4345
4346
4347/**
4348 * Runs the guest code using AMD-V in single step mode.
4349 *
4350 * @returns VBox status code.
4351 * @param pVM The cross context VM structure.
4352 * @param pVCpu The cross context virtual CPU structure.
4353 * @param pCtx Pointer to the guest-CPU context.
4354 * @param pcLoops Pointer to the number of executed loops.
4355 */
4356static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4357{
4358 uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
4359 Assert(pcLoops);
4360 Assert(*pcLoops <= cMaxResumeLoops);
4361
4362 SVMTRANSIENT SvmTransient;
4363 SvmTransient.fUpdateTscOffsetting = true;
4364
4365 uint16_t uCsStart = pCtx->cs.Sel;
4366 uint64_t uRipStart = pCtx->rip;
4367
4368 int rc = VERR_INTERNAL_ERROR_5;
4369 for (;;)
4370 {
4371 Assert(!HMR0SuspendPending());
4372 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4373 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4374 (unsigned)RTMpCpuId(), *pcLoops));
4375
4376 /* Preparatory work for running guest code, this may force us to return
4377 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4378 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4379 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
4380 if (rc != VINF_SUCCESS)
4381 break;
4382
4383 /*
4384 * No longjmps to ring-3 from this point on!!!
4385 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4386 * This also disables flushing of the R0-logger instance (if any).
4387 */
4388 VMMRZCallRing3Disable(pVCpu);
4389 VMMRZCallRing3RemoveNotification(pVCpu);
4390 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
4391
4392 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
4393
4394 /*
4395 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
4396 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
4397 */
4398 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
4399 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4400 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4401 {
4402 if (rc == VINF_SUCCESS)
4403 rc = VERR_SVM_INVALID_GUEST_STATE;
4404 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4405 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4406 return rc;
4407 }
4408
4409 /* Handle the #VMEXIT. */
4410 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4411 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4412 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4413 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
4414 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4415 if (rc != VINF_SUCCESS)
4416 break;
4417 if (++(*pcLoops) >= cMaxResumeLoops)
4418 {
4419 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4420 rc = VINF_EM_RAW_INTERRUPT;
4421 break;
4422 }
4423
4424 /*
4425 * Did the RIP change, if so, consider it a single step.
4426 * Otherwise, make sure one of the TFs gets set.
4427 */
4428 if ( pCtx->rip != uRipStart
4429 || pCtx->cs.Sel != uCsStart)
4430 {
4431 rc = VINF_EM_DBG_STEPPED;
4432 break;
4433 }
4434 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4435 }
4436
4437 /*
4438 * Clear the X86_EFL_TF if necessary.
4439 */
4440 if (pVCpu->hm.s.fClearTrapFlag)
4441 {
4442 pVCpu->hm.s.fClearTrapFlag = false;
4443 pCtx->eflags.Bits.u1TF = 0;
4444 }
4445
4446 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4447 return rc;
4448}
4449
4450#ifdef VBOX_WITH_NESTED_HWVIRT
4451/**
4452 * Runs the nested-guest code using AMD-V.
4453 *
4454 * @returns VBox status code.
4455 * @param pVM The cross context VM structure.
4456 * @param pVCpu The cross context virtual CPU structure.
4457 * @param pCtx Pointer to the guest-CPU context.
4458 * @param pcLoops Pointer to the number of executed loops. If we're switching
4459 * from the guest-code execution loop to this nested-guest
4460 * execution loop pass the remainder value, else pass 0.
4461 */
4462static int hmR0SvmRunGuestCodeNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4463{
4464 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4465 Assert(pcLoops);
4466 Assert(*pcLoops <= pVM->hm.s.cMaxResumeLoops);
4467
4468 SVMTRANSIENT SvmTransient;
4469 SvmTransient.fUpdateTscOffsetting = true;
4470
4471 int rc = VERR_INTERNAL_ERROR_4;
4472 for (;;)
4473 {
4474 Assert(!HMR0SuspendPending());
4475 HMSVM_ASSERT_CPU_SAFE();
4476
4477 /* Preparatory work for running nested-guest code, this may force us to return
4478 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4479 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4480 rc = hmR0SvmPreRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient);
4481 if (rc != VINF_SUCCESS)
4482 break;
4483
4484 /*
4485 * No longjmps to ring-3 from this point on!!!
4486 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4487 * This also disables flushing of the R0-logger instance (if any).
4488 */
4489 hmR0SvmPreRunGuestCommittedNested(pVM, pVCpu, pCtx, &SvmTransient);
4490
4491 rc = hmR0SvmRunGuestNested(pVM, pVCpu, pCtx);
4492
4493 /* Restore any residual host-state and save any bits shared between host
4494 and guest into the guest-CPU state. Re-enables interrupts! */
4495 hmR0SvmPostRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient, rc);
4496
4497 /** @todo This needs some work... we probably should cause a \#VMEXIT on
4498 * SVM_EXIT_INVALID and handle rc != VINF_SUCCESS differently. */
4499 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4500 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4501 {
4502 if (rc == VINF_SUCCESS)
4503 rc = VERR_SVM_INVALID_GUEST_STATE;
4504 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4505 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4506 break;
4507 }
4508
4509 /* Handle the #VMEXIT. */
4510 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4511 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4512 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4513 rc = hmR0SvmHandleExitNested(pVCpu, pCtx, &SvmTransient);
4514 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4515 if (rc != VINF_SUCCESS)
4516 break;
4517 if (++(*pcLoops) >= pVM->hm.s.cMaxResumeLoops)
4518 {
4519 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4520 rc = VINF_EM_RAW_INTERRUPT;
4521 break;
4522 }
4523
4524 /** @todo handle single-stepping */
4525 }
4526
4527 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4528 return rc;
4529}
4530#endif
4531
4532
4533/**
4534 * Runs the guest code using AMD-V.
4535 *
4536 * @returns Strict VBox status code.
4537 * @param pVM The cross context VM structure.
4538 * @param pVCpu The cross context virtual CPU structure.
4539 * @param pCtx Pointer to the guest-CPU context.
4540 */
4541VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4542{
4543 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4544 HMSVM_ASSERT_PREEMPT_SAFE();
4545 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
4546
4547 uint32_t cLoops = 0;
4548 int rc;
4549#ifdef VBOX_WITH_NESTED_HWVIRT
4550 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4551#endif
4552 {
4553 if (!pVCpu->hm.s.fSingleInstruction)
4554 rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx, &cLoops);
4555 else
4556 rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx, &cLoops);
4557 }
4558#ifdef VBOX_WITH_NESTED_HWVIRT
4559 else
4560 {
4561 rc = VINF_SVM_VMRUN;
4562 }
4563
4564 /* Re-check the nested-guest condition here as we may be transitioning from the normal
4565 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
4566 if (rc == VINF_SVM_VMRUN)
4567 {
4568 rc = hmR0SvmRunGuestCodeNested(pVM, pVCpu, pCtx, &cLoops);
4569 if (rc == VINF_SVM_VMEXIT)
4570 rc = VINF_SUCCESS;
4571 }
4572#endif
4573
4574 /* Fixup error codes. */
4575 if (rc == VERR_EM_INTERPRETER)
4576 rc = VINF_EM_RAW_EMULATE_INSTR;
4577 else if (rc == VINF_EM_RESET)
4578 rc = VINF_EM_TRIPLE_FAULT;
4579
4580 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4581 rc = hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
4582 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
4583 return rc;
4584}
4585
4586
4587#ifdef VBOX_WITH_NESTED_HWVIRT
4588/**
4589 * Determines whether an IOIO intercept is active for the nested-guest or not.
4590 *
4591 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4592 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4593 */
4594static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4595{
4596 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4597 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4598 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4599 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4600 const uint8_t iEffSeg = pIoExitInfo->n.u3SEG;
4601 const bool fRep = pIoExitInfo->n.u1REP;
4602 const bool fStrIo = pIoExitInfo->n.u1STR;
4603
4604 return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4605 NULL /* pIoExitInfo */);
4606}
4607
4608
4609/**
4610 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4611 * SVM_EXIT_INVALID).
4612 *
4613 * @returns VBox status code (informational status codes included).
4614 * @param pVCpu The cross context virtual CPU structure.
4615 * @param pCtx Pointer to the guest-CPU context.
4616 * @param pSvmTransient Pointer to the SVM transient structure.
4617 */
4618static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4619{
4620 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4621 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4622
4623#define HM_SVM_RET_VMEXIT_NESTED(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4624 do \
4625 { \
4626 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2)); \
4627 } while (0) \
4628
4629 /*
4630 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected
4631 * by the nested-guest. If it isn't, it should be handled by the (outer) guest.
4632 */
4633 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4634 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4635 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
4636 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4637 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4638 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4639
4640 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4641 switch (uExitCode)
4642 {
4643 case SVM_EXIT_CPUID:
4644 {
4645 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_CPUID)
4646 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4647 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
4648 }
4649
4650 case SVM_EXIT_RDTSC:
4651 {
4652 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC)
4653 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4654 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
4655 }
4656
4657 case SVM_EXIT_RDTSCP:
4658 {
4659 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP)
4660 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4661 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
4662 }
4663
4664
4665 case SVM_EXIT_MONITOR:
4666 {
4667 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_MONITOR)
4668 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4669 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
4670 }
4671
4672 case SVM_EXIT_MWAIT:
4673 {
4674 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_MWAIT)
4675 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4676 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
4677 }
4678
4679 case SVM_EXIT_HLT:
4680 {
4681 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_HLT)
4682 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4683 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
4684 }
4685
4686 case SVM_EXIT_MSR:
4687 {
4688 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_MSR_PROT)
4689 {
4690 uint32_t const idMsr = pCtx->ecx;
4691 uint16_t offMsrpm;
4692 uint32_t uMsrpmBit;
4693 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4694 if (RT_SUCCESS(rc))
4695 {
4696 void const *pvMsrBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4697 bool const fInterceptRead = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit);
4698 bool const fInterceptWrite = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit + 1);
4699
4700 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4701 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4702 {
4703 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4704 }
4705 }
4706 else
4707 {
4708 /*
4709 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4710 * See AMD-V spec. "15.11 MSR Intercepts".
4711 */
4712 Assert(rc == VERR_OUT_OF_RANGE);
4713 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4714 }
4715 }
4716 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
4717 }
4718
4719 case SVM_EXIT_IOIO:
4720 {
4721 /*
4722 * Figure out if the IO port access is intercepted by the nested-guest.
4723 */
4724 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_IOIO_PROT)
4725 {
4726 void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
4727 SVMIOIOEXITINFO IoExitInfo;
4728 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4729 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
4730 if (fIntercept)
4731 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4732 }
4733 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
4734 }
4735
4736 case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
4737 {
4738 PVM pVM = pVCpu->CTX_SUFF(pVM);
4739 if (pVM->hm.s.fNestedPaging)
4740 {
4741 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4742 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4743
4744 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4745 if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_PF))
4746 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4747
4748 /* If the nested-guest is not intercepting #PFs, forward the #PF to the nested-guest. */
4749 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4750 return VINF_SUCCESS;
4751 }
4752 return hmR0SvmExitXcptPFNested(pVCpu, pCtx,pSvmTransient);
4753 }
4754
4755 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
4756 {
4757 if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_NM))
4758 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4759 hmR0SvmSetPendingXcptNM(pVCpu);
4760 return VINF_SUCCESS;
4761 }
4762
4763 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
4764 {
4765 if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_UD))
4766 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4767 hmR0SvmSetPendingXcptUD(pVCpu);
4768 return VINF_SUCCESS;
4769 }
4770
4771 case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
4772 {
4773 if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_MF))
4774 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4775 hmR0SvmSetPendingXcptMF(pVCpu);
4776 return VINF_SUCCESS;
4777 }
4778
4779 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
4780 {
4781 if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_DB))
4782 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4783 return hmR0SvmNestedExitXcptDB(pVCpu, pCtx, pSvmTransient);
4784 }
4785
4786 case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
4787 {
4788 if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_AC))
4789 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4790 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
4791 }
4792
4793 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
4794 {
4795 if (pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(X86_XCPT_BP))
4796 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4797 return hmR0SvmNestedExitXcptBP(pVCpu, pCtx, pSvmTransient);
4798 }
4799
4800 case SVM_EXIT_READ_CR0:
4801 case SVM_EXIT_READ_CR3:
4802 case SVM_EXIT_READ_CR4:
4803 {
4804 if (pVmcbNstGstCache->u16InterceptRdCRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0)))
4805 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4806 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
4807 }
4808
4809 case SVM_EXIT_WRITE_CR0:
4810 case SVM_EXIT_WRITE_CR3:
4811 case SVM_EXIT_WRITE_CR4:
4812 case SVM_EXIT_WRITE_CR8: /** @todo Shouldn't writes to CR8 go to V_TPR instead since we run with V_INTR_MASKING set?? */
4813 {
4814 Log4(("hmR0SvmHandleExitNested: Write CRx: u16InterceptWrCRx=%#x u64ExitCode=%#RX64 %#x\n",
4815 pVmcbNstGstCache->u16InterceptWrCRx, pSvmTransient->u64ExitCode,
4816 (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0))));
4817 if (pVmcbNstGstCache->u16InterceptWrCRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)))
4818 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4819 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
4820 }
4821
4822 case SVM_EXIT_PAUSE:
4823 {
4824 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_PAUSE)
4825 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4826 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
4827 }
4828
4829 case SVM_EXIT_VINTR:
4830 {
4831 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
4832 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4833 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
4834 }
4835
4836 case SVM_EXIT_INTR:
4837 {
4838 /* We shouldn't direct physical interrupts to the nested-guest. */
4839 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
4840 }
4841
4842 case SVM_EXIT_FERR_FREEZE:
4843 {
4844 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_FERR_FREEZE)
4845 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4846 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
4847 }
4848
4849 case SVM_EXIT_NMI:
4850 {
4851 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_NMI)
4852 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4853 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
4854 }
4855
4856 case SVM_EXIT_INVLPG:
4857 {
4858 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INVLPG)
4859 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4860 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
4861 }
4862
4863 case SVM_EXIT_WBINVD:
4864 {
4865 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_WBINVD)
4866 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4867 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
4868 }
4869
4870 case SVM_EXIT_INVD:
4871 {
4872 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INVD)
4873 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4874 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
4875 }
4876
4877 case SVM_EXIT_RDPMC:
4878 {
4879 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDPMC)
4880 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4881 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
4882 }
4883
4884 default:
4885 {
4886 switch (pSvmTransient->u64ExitCode)
4887 {
4888 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
4889 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
4890 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
4891 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
4892 {
4893 if (pVmcbNstGstCache->u16InterceptRdDRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_READ_DR0)))
4894 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4895 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4896 }
4897
4898 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
4899 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
4900 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
4901 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
4902 {
4903 if (pVmcbNstGstCache->u16InterceptWrDRx & (1U << (uint16_t)(pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_DR0)))
4904 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4905 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
4906 }
4907
4908 /* The exceptions not handled here are already handled individually above (as they occur more frequently). */
4909 case SVM_EXIT_EXCEPTION_0: /*case SVM_EXIT_EXCEPTION_1:*/ case SVM_EXIT_EXCEPTION_2:
4910 /*case SVM_EXIT_EXCEPTION_3:*/ case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5:
4911 /*case SVM_EXIT_EXCEPTION_6:*/ /*case SVM_EXIT_EXCEPTION_7:*/ case SVM_EXIT_EXCEPTION_8:
4912 case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
4913 case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: /*case SVM_EXIT_EXCEPTION_14:*/
4914 case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: /*case SVM_EXIT_EXCEPTION_17:*/
4915 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_20:
4916 case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
4917 case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26:
4918 case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29:
4919 case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
4920 {
4921 if (pVmcbNstGstCache->u32InterceptXcpt & (1U << (uint32_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0)))
4922 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4923 /** @todo Write hmR0SvmExitXcptGeneric! */
4924 return VERR_NOT_IMPLEMENTED;
4925 }
4926
4927 case SVM_EXIT_XSETBV:
4928 {
4929 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_XSETBV)
4930 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4931 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
4932 }
4933
4934 case SVM_EXIT_TASK_SWITCH:
4935 {
4936 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_TASK_SWITCH)
4937 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4938 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
4939 }
4940
4941 case SVM_EXIT_IRET:
4942 {
4943 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
4944 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4945 return hmR0SvmNestedExitIret(pVCpu, pCtx, pSvmTransient);
4946 }
4947
4948 case SVM_EXIT_SHUTDOWN:
4949 {
4950 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_SHUTDOWN)
4951 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4952 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
4953 }
4954
4955 case SVM_EXIT_SMI:
4956 {
4957 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_SMI)
4958 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4959 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
4960 }
4961
4962 case SVM_EXIT_INIT:
4963 {
4964 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INIT)
4965 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4966 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
4967 }
4968
4969 case SVM_EXIT_VMMCALL:
4970 {
4971 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMMCALL)
4972 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4973 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
4974 }
4975
4976 case SVM_EXIT_CLGI:
4977 {
4978 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_CLGI)
4979 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4980 return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
4981 }
4982
4983 case SVM_EXIT_STGI:
4984 {
4985 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_STGI)
4986 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4987 return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
4988 }
4989
4990 case SVM_EXIT_VMLOAD:
4991 {
4992 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMLOAD)
4993 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4994 return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
4995 }
4996
4997 case SVM_EXIT_VMSAVE:
4998 {
4999 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMSAVE)
5000 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5001 return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
5002 }
5003
5004 case SVM_EXIT_INVLPGA:
5005 {
5006 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INVLPGA)
5007 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5008 return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
5009 }
5010
5011 case SVM_EXIT_VMRUN:
5012 {
5013 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VMRUN)
5014 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5015 return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
5016 }
5017
5018 case SVM_EXIT_RSM:
5019 {
5020 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RSM)
5021 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5022 hmR0SvmSetPendingXcptUD(pVCpu);
5023 return VINF_SUCCESS;
5024 }
5025
5026 case SVM_EXIT_SKINIT:
5027 {
5028 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_SKINIT)
5029 HM_SVM_RET_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5030 hmR0SvmSetPendingXcptUD(pVCpu);
5031 return VINF_SUCCESS;
5032 }
5033
5034 case SVM_EXIT_NPF:
5035 {
5036 /* We don't yet support nested-paging for nested-guests, so this should never really happen. */
5037 Assert(!pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging);
5038 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5039 }
5040
5041 default:
5042 {
5043 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5044 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5045 return VERR_SVM_UNKNOWN_EXIT;
5046 }
5047 }
5048 }
5049 }
5050 /* not reached */
5051
5052#undef HM_SVM_RET_VMEXIT_NESTED
5053}
5054#endif
5055
5056
5057/**
5058 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5059 *
5060 * @returns VBox status code (informational status codes included).
5061 * @param pVCpu The cross context virtual CPU structure.
5062 * @param pCtx Pointer to the guest-CPU context.
5063 * @param pSvmTransient Pointer to the SVM transient structure.
5064 */
5065static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5066{
5067 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5068 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5069
5070 /*
5071 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
5072 * normal workloads (for some definition of "normal").
5073 */
5074 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
5075 switch (pSvmTransient->u64ExitCode)
5076 {
5077 case SVM_EXIT_NPF:
5078 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
5079
5080 case SVM_EXIT_IOIO:
5081 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
5082
5083 case SVM_EXIT_RDTSC:
5084 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
5085
5086 case SVM_EXIT_RDTSCP:
5087 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
5088
5089 case SVM_EXIT_CPUID:
5090 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
5091
5092 case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
5093 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
5094
5095 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
5096 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
5097
5098 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
5099 return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
5100
5101 case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
5102 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
5103
5104 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
5105 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
5106
5107 case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
5108 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
5109
5110 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
5111 return hmR0SvmExitXcptBP(pVCpu, pCtx, pSvmTransient);
5112
5113 case SVM_EXIT_MONITOR:
5114 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
5115
5116 case SVM_EXIT_MWAIT:
5117 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
5118
5119 case SVM_EXIT_HLT:
5120 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
5121
5122 case SVM_EXIT_READ_CR0:
5123 case SVM_EXIT_READ_CR3:
5124 case SVM_EXIT_READ_CR4:
5125 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
5126
5127 case SVM_EXIT_WRITE_CR0:
5128 case SVM_EXIT_WRITE_CR3:
5129 case SVM_EXIT_WRITE_CR4:
5130 case SVM_EXIT_WRITE_CR8:
5131 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
5132
5133 case SVM_EXIT_PAUSE:
5134 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
5135
5136 case SVM_EXIT_VMMCALL:
5137 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
5138
5139 case SVM_EXIT_VINTR:
5140 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
5141
5142 case SVM_EXIT_INTR:
5143 case SVM_EXIT_FERR_FREEZE:
5144 case SVM_EXIT_NMI:
5145 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
5146
5147 case SVM_EXIT_MSR:
5148 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
5149
5150 case SVM_EXIT_INVLPG:
5151 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
5152
5153 case SVM_EXIT_WBINVD:
5154 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
5155
5156 case SVM_EXIT_INVD:
5157 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
5158
5159 case SVM_EXIT_RDPMC:
5160 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
5161
5162 default:
5163 {
5164 switch (pSvmTransient->u64ExitCode)
5165 {
5166 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5167 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5168 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5169 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5170 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
5171
5172 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5173 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5174 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5175 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5176 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
5177
5178 case SVM_EXIT_XSETBV:
5179 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
5180
5181 case SVM_EXIT_TASK_SWITCH:
5182 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
5183
5184 case SVM_EXIT_IRET:
5185 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
5186
5187 case SVM_EXIT_SHUTDOWN:
5188 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
5189
5190 case SVM_EXIT_SMI:
5191 case SVM_EXIT_INIT:
5192 {
5193 /*
5194 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5195 * If it ever does, we want to know about it so log the exit code and bail.
5196 */
5197 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5198 }
5199
5200#ifdef VBOX_WITH_NESTED_HWVIRT
5201 case SVM_EXIT_CLGI: return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
5202 case SVM_EXIT_STGI: return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
5203 case SVM_EXIT_VMLOAD: return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
5204 case SVM_EXIT_VMSAVE: return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
5205 case SVM_EXIT_INVLPGA: return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
5206 case SVM_EXIT_VMRUN: return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
5207#else
5208 case SVM_EXIT_CLGI:
5209 case SVM_EXIT_STGI:
5210 case SVM_EXIT_VMLOAD:
5211 case SVM_EXIT_VMSAVE:
5212 case SVM_EXIT_INVLPGA:
5213 case SVM_EXIT_VMRUN:
5214#endif
5215 case SVM_EXIT_RSM:
5216 case SVM_EXIT_SKINIT:
5217 {
5218 hmR0SvmSetPendingXcptUD(pVCpu);
5219 return VINF_SUCCESS;
5220 }
5221
5222#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5223 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
5224 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
5225 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
5226 /* SVM_EXIT_EXCEPTION_3: */ /* X86_XCPT_BP - Handled above. */
5227 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
5228 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
5229 /* SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
5230 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
5231 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
5232 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
5233 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_TS */
5234 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_NP */
5235 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_SS */
5236 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_GP */
5237 /* SVM_EXIT_EXCEPTION_14: */ /* X86_XCPT_PF - Handled above. */
5238 case SVM_EXIT_EXCEPTION_15: /* Reserved. */
5239 /* SVM_EXIT_EXCEPTION_16: */ /* X86_XCPT_MF - Handled above. */
5240 /* SVM_EXIT_EXCEPTION_17: */ /* X86_XCPT_AC - Handled above. */
5241 case SVM_EXIT_EXCEPTION_18: /* X86_XCPT_MC */
5242 case SVM_EXIT_EXCEPTION_19: /* X86_XCPT_XF */
5243 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22:
5244 case SVM_EXIT_EXCEPTION_23: case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25:
5245 case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28:
5246 case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
5247 {
5248 /** @todo r=ramshankar; We should be doing
5249 * HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY here! */
5250
5251 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
5252 SVMEVENT Event;
5253 Event.u = 0;
5254 Event.n.u1Valid = 1;
5255 Event.n.u3Type = SVM_EVENT_EXCEPTION;
5256 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
5257
5258 switch (Event.n.u8Vector)
5259 {
5260 case X86_XCPT_DE:
5261 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
5262 break;
5263
5264 case X86_XCPT_NP:
5265 Event.n.u1ErrorCodeValid = 1;
5266 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
5267 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
5268 break;
5269
5270 case X86_XCPT_SS:
5271 Event.n.u1ErrorCodeValid = 1;
5272 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
5273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
5274 break;
5275
5276 case X86_XCPT_GP:
5277 Event.n.u1ErrorCodeValid = 1;
5278 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
5279 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
5280 break;
5281
5282 default:
5283 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
5284 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
5285 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
5286 }
5287
5288 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
5289 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
5290 return VINF_SUCCESS;
5291 }
5292#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5293
5294 default:
5295 {
5296 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
5297 pVCpu->hm.s.u32HMError = u32ExitCode;
5298 return VERR_SVM_UNKNOWN_EXIT;
5299 }
5300 }
5301 }
5302 }
5303 /* not reached */
5304}
5305
5306
5307#ifdef DEBUG
5308/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5309# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5310 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5311
5312# define HMSVM_ASSERT_PREEMPT_CPUID() \
5313 do \
5314 { \
5315 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5316 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5317 } while (0)
5318
5319# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
5320 do { \
5321 AssertPtr(pVCpu); \
5322 AssertPtr(pCtx); \
5323 AssertPtr(pSvmTransient); \
5324 Assert(ASMIntAreEnabled()); \
5325 HMSVM_ASSERT_PREEMPT_SAFE(); \
5326 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5327 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
5328 HMSVM_ASSERT_PREEMPT_SAFE(); \
5329 if (VMMR0IsLogFlushDisabled(pVCpu)) \
5330 HMSVM_ASSERT_PREEMPT_CPUID(); \
5331 } while (0)
5332#else /* Release builds */
5333# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
5334#endif
5335
5336
5337/**
5338 * Worker for hmR0SvmInterpretInvlpg().
5339 *
5340 * @return VBox status code.
5341 * @param pVCpu The cross context virtual CPU structure.
5342 * @param pCpu Pointer to the disassembler state.
5343 * @param pCtx The guest CPU context.
5344 */
5345static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
5346{
5347 DISQPVPARAMVAL Param1;
5348 RTGCPTR GCPtrPage;
5349
5350 int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
5351 if (RT_FAILURE(rc))
5352 return VERR_EM_INTERPRETER;
5353
5354 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
5355 || Param1.type == DISQPV_TYPE_ADDRESS)
5356 {
5357 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
5358 return VERR_EM_INTERPRETER;
5359
5360 GCPtrPage = Param1.val.val64;
5361 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
5362 rc = VBOXSTRICTRC_VAL(rc2);
5363 }
5364 else
5365 {
5366 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
5367 rc = VERR_EM_INTERPRETER;
5368 }
5369
5370 return rc;
5371}
5372
5373
5374/**
5375 * Interprets INVLPG.
5376 *
5377 * @returns VBox status code.
5378 * @retval VINF_* Scheduling instructions.
5379 * @retval VERR_EM_INTERPRETER Something we can't cope with.
5380 * @retval VERR_* Fatal errors.
5381 *
5382 * @param pVM The cross context VM structure.
5383 * @param pVCpu The cross context virtual CPU structure.
5384 * @param pCtx The guest CPU context.
5385 *
5386 * @remarks Updates the RIP if the instruction was executed successfully.
5387 */
5388static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5389{
5390 /* Only allow 32 & 64 bit code. */
5391 if (CPUMGetGuestCodeBits(pVCpu) != 16)
5392 {
5393 PDISSTATE pDis = &pVCpu->hm.s.DisState;
5394 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
5395 if ( RT_SUCCESS(rc)
5396 && pDis->pCurInstr->uOpcode == OP_INVLPG)
5397 {
5398 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
5399 if (RT_SUCCESS(rc))
5400 pCtx->rip += pDis->cbInstr;
5401 return rc;
5402 }
5403 else
5404 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
5405 }
5406 return VERR_EM_INTERPRETER;
5407}
5408
5409
5410#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
5411/**
5412 * Gets the IEM exception flags for the specified SVM event.
5413 *
5414 * @returns The IEM exception flags.
5415 * @param pEvent Pointer to the SVM event.
5416 *
5417 * @remarks This function currently only constructs flags required for
5418 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5419 * and CR2 aspects of an exception are not included).
5420 */
5421static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5422{
5423 uint8_t const uEventType = pEvent->n.u3Type;
5424 uint32_t fIemXcptFlags;
5425 switch (uEventType)
5426 {
5427 case SVM_EVENT_EXCEPTION:
5428 /*
5429 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5430 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5431 */
5432 if (pEvent->n.u8Vector == X86_XCPT_BP)
5433 {
5434 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5435 break;
5436 }
5437 if (pEvent->n.u8Vector == X86_XCPT_OF)
5438 {
5439 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5440 break;
5441 }
5442 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5443 RT_FALL_THRU();
5444 case SVM_EVENT_NMI:
5445 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5446 break;
5447
5448 case SVM_EVENT_EXTERNAL_IRQ:
5449 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5450 break;
5451
5452 case SVM_EVENT_SOFTWARE_INT:
5453 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5454 break;
5455
5456 default:
5457 fIemXcptFlags = 0;
5458 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5459 break;
5460 }
5461 return fIemXcptFlags;
5462}
5463
5464#else
5465/**
5466 * Determines if an exception is a contributory exception.
5467 *
5468 * Contributory exceptions are ones which can cause double-faults unless the
5469 * original exception was a benign exception. Page-fault is intentionally not
5470 * included here as it's a conditional contributory exception.
5471 *
5472 * @returns true if the exception is contributory, false otherwise.
5473 * @param uVector The exception vector.
5474 */
5475DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
5476{
5477 switch (uVector)
5478 {
5479 case X86_XCPT_GP:
5480 case X86_XCPT_SS:
5481 case X86_XCPT_NP:
5482 case X86_XCPT_TS:
5483 case X86_XCPT_DE:
5484 return true;
5485 default:
5486 break;
5487 }
5488 return false;
5489}
5490#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
5491
5492
5493/**
5494 * Handle a condition that occurred while delivering an event through the guest
5495 * IDT.
5496 *
5497 * @returns VBox status code (informational error codes included).
5498 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5499 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5500 * continue execution of the guest which will delivery the \#DF.
5501 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5502 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5503 *
5504 * @param pVCpu The cross context virtual CPU structure.
5505 * @param pCtx Pointer to the guest-CPU context.
5506 * @param pSvmTransient Pointer to the SVM transient structure.
5507 *
5508 * @remarks No-long-jump zone!!!
5509 */
5510static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5511{
5512 int rc = VINF_SUCCESS;
5513 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
5514
5515 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5516 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5517 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5518
5519 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
5520 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
5521 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5522 {
5523#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
5524 IEMXCPTRAISE enmRaise;
5525 IEMXCPTRAISEINFO fRaiseInfo;
5526 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31;
5527 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5528 if (fExitIsHwXcpt)
5529 {
5530 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
5531 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5532 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5533 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5534 }
5535 else
5536 {
5537 /*
5538 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF) then we
5539 * end up here.
5540 *
5541 * If the event was:
5542 * - a software interrupt, we can re-execute the instruction which will regenerate
5543 * the event.
5544 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5545 * - a hardware exception or external interrupt, we re-inject it.
5546 */
5547 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5548 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5549 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5550 else
5551 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5552 }
5553
5554 switch (enmRaise)
5555 {
5556 case IEMXCPTRAISE_CURRENT_XCPT:
5557 case IEMXCPTRAISE_PREV_EVENT:
5558 {
5559 /* For software interrupts, we shall re-execute the instruction. */
5560 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5561 {
5562 RTGCUINTPTR GCPtrFaultAddress = 0;
5563
5564 /* If we are re-injecting an NMI, clear NMI blocking. */
5565 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5566 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5567
5568 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5569 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5570 pSvmTransient->fVectoringPF = true;
5571 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5572 && uIdtVector == X86_XCPT_PF)
5573 {
5574 /*
5575 * If the previous exception was a #PF, we need to recover the CR2 value.
5576 * This can't happen with shadow paging.
5577 */
5578 GCPtrFaultAddress = pCtx->cr2;
5579 }
5580
5581 /*
5582 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5583 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5584 */
5585 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5586 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5587 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5588
5589 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5590 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5591 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5592 }
5593 break;
5594 }
5595
5596 case IEMXCPTRAISE_REEXEC_INSTR:
5597 {
5598 Assert(rc == VINF_SUCCESS);
5599 break;
5600 }
5601
5602 case IEMXCPTRAISE_DOUBLE_FAULT:
5603 {
5604 /*
5605 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
5606 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
5607 */
5608 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5609 {
5610 pSvmTransient->fVectoringDoublePF = true;
5611 Assert(rc == VINF_SUCCESS);
5612 }
5613 else
5614 {
5615 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5616 hmR0SvmSetPendingXcptDF(pVCpu);
5617 rc = VINF_HM_DOUBLE_FAULT;
5618 }
5619 break;
5620 }
5621
5622 case IEMXCPTRAISE_TRIPLE_FAULT:
5623 {
5624 rc = VINF_EM_RESET;
5625 break;
5626 }
5627
5628 case IEMXCPTRAISE_CPU_HANG:
5629 {
5630 rc = VERR_EM_GUEST_CPU_HANG;
5631 break;
5632 }
5633
5634 default:
5635 {
5636 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
5637 rc = VERR_SVM_IPE_2;
5638 break;
5639 }
5640 }
5641#else
5642 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5643
5644 typedef enum
5645 {
5646 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5647 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5648 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5649 SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
5650 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
5651 } SVMREFLECTXCPT;
5652
5653 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
5654 bool fReflectingNmi = false;
5655 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
5656 {
5657 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
5658 {
5659 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
5660
5661#ifdef VBOX_STRICT
5662 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
5663 && uExitVector == X86_XCPT_PF)
5664 {
5665 Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
5666 }
5667#endif
5668
5669 if ( uIdtVector == X86_XCPT_BP
5670 || uIdtVector == X86_XCPT_OF)
5671 {
5672 /* Ignore INT3/INTO, just re-execute. See @bugref{8357}. */
5673 }
5674 else if ( uExitVector == X86_XCPT_PF
5675 && uIdtVector == X86_XCPT_PF)
5676 {
5677 pSvmTransient->fVectoringDoublePF = true;
5678 Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
5679 }
5680 else if ( uExitVector == X86_XCPT_AC
5681 && uIdtVector == X86_XCPT_AC)
5682 {
5683 enmReflect = SVMREFLECTXCPT_HANG;
5684 Log4(("IDT: Nested #AC - Bad guest\n"));
5685 }
5686 else if ( (pVmcb->ctrl.u32InterceptXcpt & HMSVM_CONTRIBUTORY_XCPT_MASK)
5687 && hmR0SvmIsContributoryXcpt(uExitVector)
5688 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
5689 || uIdtVector == X86_XCPT_PF))
5690 {
5691 enmReflect = SVMREFLECTXCPT_DF;
5692 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
5693 uIdtVector, uExitVector));
5694 }
5695 else if (uIdtVector == X86_XCPT_DF)
5696 {
5697 enmReflect = SVMREFLECTXCPT_TF;
5698 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
5699 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5700 }
5701 else
5702 enmReflect = SVMREFLECTXCPT_XCPT;
5703 }
5704 else
5705 {
5706 /*
5707 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
5708 * exception to the guest after handling the #VMEXIT.
5709 */
5710 enmReflect = SVMREFLECTXCPT_XCPT;
5711 }
5712 }
5713 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
5714 || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5715 {
5716 enmReflect = SVMREFLECTXCPT_XCPT;
5717 fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
5718
5719 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
5720 {
5721 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
5722 if (uExitVector == X86_XCPT_PF)
5723 {
5724 pSvmTransient->fVectoringPF = true;
5725 Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
5726 }
5727 }
5728 }
5729 /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
5730
5731 switch (enmReflect)
5732 {
5733 case SVMREFLECTXCPT_XCPT:
5734 {
5735 /* If we are re-injecting the NMI, clear NMI blocking. */
5736 if (fReflectingNmi)
5737 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5738
5739 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5740 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5741 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
5742
5743 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
5744 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
5745 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
5746 break;
5747 }
5748
5749 case SVMREFLECTXCPT_DF:
5750 {
5751 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5752 hmR0SvmSetPendingXcptDF(pVCpu);
5753 rc = VINF_HM_DOUBLE_FAULT;
5754 break;
5755 }
5756
5757 case SVMREFLECTXCPT_TF:
5758 {
5759 rc = VINF_EM_RESET;
5760 break;
5761 }
5762
5763 case SVMREFLECTXCPT_HANG:
5764 {
5765 rc = VERR_EM_GUEST_CPU_HANG;
5766 break;
5767 }
5768
5769 default:
5770 Assert(rc == VINF_SUCCESS);
5771 break;
5772 }
5773#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
5774 }
5775 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
5776 NOREF(pCtx);
5777 return rc;
5778}
5779
5780
5781/**
5782 * Updates interrupt shadow for the current RIP.
5783 */
5784#define HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx) \
5785 do { \
5786 /* Update interrupt shadow. */ \
5787 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) \
5788 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) \
5789 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); \
5790 } while (0)
5791
5792
5793/**
5794 * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
5795 * supported, otherwise advances the RIP by the number of bytes specified in
5796 * @a cb.
5797 *
5798 * @param pVCpu The cross context virtual CPU structure.
5799 * @param pCtx Pointer to the guest-CPU context.
5800 * @param cb RIP increment value in bytes.
5801 *
5802 * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
5803 * when NRIP_SAVE is supported by the CPU, otherwise use
5804 * hmR0SvmAdvanceRipDumb!
5805 */
5806DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
5807{
5808 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
5809 {
5810 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
5811 Assert(pVmcb->ctrl.u64NextRIP);
5812 AssertRelease(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb); /* temporary, remove later */
5813 pCtx->rip = pVmcb->ctrl.u64NextRIP;
5814 }
5815 else
5816 pCtx->rip += cb;
5817
5818 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
5819}
5820
5821
5822#ifdef VBOX_WITH_NESTED_HWVIRT
5823/**
5824 * Gets the length of the current instruction if the CPU supports the NRIP_SAVE
5825 * feature. Otherwise, returns the value in @a cbLikely.
5826 *
5827 * @param pVCpu The cross context virtual CPU structure.
5828 * @param pCtx Pointer to the guest-CPU context.
5829 * @param cbLikely The likely instruction length.
5830 */
5831DECLINLINE(uint8_t) hmR0SvmGetInstrLengthHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbLikely)
5832{
5833 Assert(cbLikely <= 15); /* See Intel spec. 2.3.11 "AVX Instruction Length" */
5834 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
5835 {
5836 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
5837 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
5838 Assert(cbInstr == cbLikely);
5839 return cbInstr;
5840 }
5841 return cbLikely;
5842}
5843#endif
5844
5845
5846/**
5847 * Advances the guest RIP by the number of bytes specified in @a cb. This does
5848 * not make use of any hardware features to determine the instruction length.
5849 *
5850 * @param pVCpu The cross context virtual CPU structure.
5851 * @param pCtx Pointer to the guest-CPU context.
5852 * @param cb RIP increment value in bytes.
5853 */
5854DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
5855{
5856 pCtx->rip += cb;
5857 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
5858}
5859#undef HMSVM_UPDATE_INTR_SHADOW
5860
5861
5862/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5863/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
5864/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5865
5866/** @name \#VMEXIT handlers.
5867 * @{
5868 */
5869
5870/**
5871 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
5872 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
5873 */
5874HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5875{
5876 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5877
5878 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
5879 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
5880 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
5881 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
5882
5883 /*
5884 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
5885 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
5886 * interrupt it is until the host actually take the interrupt.
5887 *
5888 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
5889 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
5890 */
5891 return VINF_EM_RAW_INTERRUPT;
5892}
5893
5894
5895/**
5896 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
5897 */
5898HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5899{
5900 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5901
5902 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
5903 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
5904 int rc = VINF_SUCCESS;
5905 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5906 return rc;
5907}
5908
5909
5910/**
5911 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
5912 */
5913HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5914{
5915 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5916
5917 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
5918 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
5919 int rc = VINF_SUCCESS;
5920 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5921 return rc;
5922}
5923
5924
5925/**
5926 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
5927 */
5928HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5929{
5930 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5931 PVM pVM = pVCpu->CTX_SUFF(pVM);
5932 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
5933 if (RT_LIKELY(rc == VINF_SUCCESS))
5934 {
5935 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
5936 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5937 }
5938 else
5939 {
5940 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
5941 rc = VERR_EM_INTERPRETER;
5942 }
5943 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
5944 return rc;
5945}
5946
5947
5948/**
5949 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
5950 */
5951HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5952{
5953 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5954 PVM pVM = pVCpu->CTX_SUFF(pVM);
5955 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
5956 if (RT_LIKELY(rc == VINF_SUCCESS))
5957 {
5958 pSvmTransient->fUpdateTscOffsetting = true;
5959 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
5960 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5961 }
5962 else
5963 {
5964 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
5965 rc = VERR_EM_INTERPRETER;
5966 }
5967 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
5968 return rc;
5969}
5970
5971
5972/**
5973 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
5974 */
5975HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5976{
5977 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5978 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
5979 if (RT_LIKELY(rc == VINF_SUCCESS))
5980 {
5981 pSvmTransient->fUpdateTscOffsetting = true;
5982 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
5983 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5984 }
5985 else
5986 {
5987 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
5988 rc = VERR_EM_INTERPRETER;
5989 }
5990 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
5991 return rc;
5992}
5993
5994
5995/**
5996 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
5997 */
5998HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5999{
6000 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6001 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6002 if (RT_LIKELY(rc == VINF_SUCCESS))
6003 {
6004 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6005 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6006 }
6007 else
6008 {
6009 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
6010 rc = VERR_EM_INTERPRETER;
6011 }
6012 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
6013 return rc;
6014}
6015
6016
6017/**
6018 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6019 */
6020HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6021{
6022 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6023 PVM pVM = pVCpu->CTX_SUFF(pVM);
6024 Assert(!pVM->hm.s.fNestedPaging);
6025 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
6026
6027 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
6028 {
6029 Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
6030 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6031 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6032 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6033 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6034 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6035 return VBOXSTRICTRC_VAL(rcStrict);
6036 }
6037
6038 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
6039 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
6040 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6041 return rc;
6042}
6043
6044
6045/**
6046 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6047 */
6048HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6049{
6050 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6051
6052 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 1);
6053 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6054 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6055 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6056 if (rc != VINF_SUCCESS)
6057 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6058 return rc;
6059}
6060
6061
6062/**
6063 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6064 */
6065HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6066{
6067 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6068 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6069 if (RT_LIKELY(rc == VINF_SUCCESS))
6070 {
6071 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6072 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6073 }
6074 else
6075 {
6076 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
6077 rc = VERR_EM_INTERPRETER;
6078 }
6079 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6080 return rc;
6081}
6082
6083
6084/**
6085 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6086 */
6087HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6088{
6089 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6090 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6091 int rc = VBOXSTRICTRC_VAL(rc2);
6092 if ( rc == VINF_EM_HALT
6093 || rc == VINF_SUCCESS)
6094 {
6095 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6096
6097 if ( rc == VINF_EM_HALT
6098 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
6099 {
6100 rc = VINF_SUCCESS;
6101 }
6102 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6103 }
6104 else
6105 {
6106 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
6107 rc = VERR_EM_INTERPRETER;
6108 }
6109 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
6110 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
6111 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6112 return rc;
6113}
6114
6115
6116/**
6117 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6118 * \#VMEXIT.
6119 */
6120HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6121{
6122 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6123 return VINF_EM_RESET;
6124}
6125
6126
6127/**
6128 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6129 */
6130HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6131{
6132 RT_NOREF(pCtx);
6133 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64\n", pSvmTransient->u64ExitCode));
6134 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6135 return VERR_SVM_UNEXPECTED_EXIT;
6136}
6137
6138
6139/**
6140 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6141 */
6142HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6143{
6144 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6145
6146 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6147 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
6148
6149 PVM pVM = pVCpu->CTX_SUFF(pVM);
6150 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
6151 {
6152 Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
6153 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6154 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6155 if (fMovCRx)
6156 {
6157 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6158 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6159 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6160 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6161 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6162 return VBOXSTRICTRC_VAL(rcStrict);
6163 }
6164 /* else: SMSW instruction, fall back below to IEM for this. */
6165 }
6166
6167 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6168 int rc = VBOXSTRICTRC_VAL(rc2);
6169 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
6170 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
6171 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6172 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6173 return rc;
6174}
6175
6176
6177/**
6178 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6179 */
6180HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6181{
6182 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6183
6184 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0;
6185 Assert(iCrReg <= 15);
6186
6187 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6188 PVM pVM = pVCpu->CTX_SUFF(pVM);
6189 bool fDecodedInstr = false;
6190 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
6191 {
6192 Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
6193 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6194 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6195 if (fMovCRx)
6196 {
6197 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6198 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6199 Log4(("hmR0SvmExitWriteCRx: Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6200 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6201 fDecodedInstr = true;
6202 }
6203 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6204 }
6205
6206 if (!fDecodedInstr)
6207 {
6208 Log4(("hmR0SvmExitWriteCRx: iCrReg=%#x\n", iCrReg));
6209 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
6210 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6211 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6212 rcStrict = VERR_EM_INTERPRETER;
6213 }
6214
6215 if (rcStrict == VINF_SUCCESS)
6216 {
6217 switch (iCrReg)
6218 {
6219 case 0: /* CR0. */
6220 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
6221 break;
6222
6223 case 3: /* CR3. */
6224 Assert(!pVM->hm.s.fNestedPaging);
6225 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
6226 break;
6227
6228 case 4: /* CR4. */
6229 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
6230 break;
6231
6232 case 8: /* CR8 (TPR). */
6233 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6234 break;
6235
6236 default:
6237 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6238 pSvmTransient->u64ExitCode, iCrReg));
6239 break;
6240 }
6241 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6242 }
6243 else
6244 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
6245 return VBOXSTRICTRC_TODO(rcStrict);
6246}
6247
6248
6249/**
6250 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6251 * \#VMEXIT.
6252 */
6253HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6254{
6255 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6256 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6257 PVM pVM = pVCpu->CTX_SUFF(pVM);
6258
6259 int rc;
6260 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
6261 {
6262 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6263 Log4(("MSR Write: idMsr=%#RX32\n", pCtx->ecx));
6264
6265 /* Handle TPR patching; intercepted LSTAR write. */
6266 if ( pVM->hm.s.fTPRPatchingActive
6267 && pCtx->ecx == MSR_K8_LSTAR)
6268 {
6269 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6270 {
6271 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6272 int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6273 AssertRC(rc2);
6274 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6275 }
6276 rc = VINF_SUCCESS;
6277 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6278 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6279 return rc;
6280 }
6281
6282 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
6283 {
6284 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6285 if (RT_LIKELY(rc == VINF_SUCCESS))
6286 {
6287 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6288 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6289 }
6290 else
6291 AssertMsg( rc == VERR_EM_INTERPRETER
6292 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
6293 }
6294 else
6295 {
6296 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
6297 if (RT_LIKELY(rc == VINF_SUCCESS))
6298 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
6299 else
6300 AssertMsg( rc == VERR_EM_INTERPRETER
6301 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
6302 }
6303
6304 if (rc == VINF_SUCCESS)
6305 {
6306 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
6307 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
6308 && pCtx->ecx <= MSR_IA32_X2APIC_END)
6309 {
6310 /*
6311 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
6312 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
6313 * EMInterpretWrmsr() changes it.
6314 */
6315 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6316 }
6317 else if (pCtx->ecx == MSR_K6_EFER)
6318 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
6319 else if (pCtx->ecx == MSR_IA32_TSC)
6320 pSvmTransient->fUpdateTscOffsetting = true;
6321 }
6322 }
6323 else
6324 {
6325 /* MSR Read access. */
6326 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6327 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
6328 Log4(("MSR Read: idMsr=%#RX32\n", pCtx->ecx));
6329
6330 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
6331 {
6332 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6333 if (RT_LIKELY(rc == VINF_SUCCESS))
6334 {
6335 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6336 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6337 }
6338 else
6339 AssertMsg( rc == VERR_EM_INTERPRETER
6340 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
6341 }
6342 else
6343 {
6344 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
6345 if (RT_UNLIKELY(rc != VINF_SUCCESS))
6346 {
6347 AssertMsg( rc == VERR_EM_INTERPRETER
6348 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
6349 }
6350 /* RIP updated by EMInterpretInstruction(). */
6351 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6352 }
6353 }
6354
6355 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
6356 return rc;
6357}
6358
6359
6360/**
6361 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6362 */
6363HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6364{
6365 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6366 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6367
6368 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6369 if (pSvmTransient->fWasGuestDebugStateActive)
6370 {
6371 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6372 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6373 return VERR_SVM_UNEXPECTED_EXIT;
6374 }
6375
6376 /*
6377 * Lazy DR0-3 loading.
6378 */
6379 if ( !pSvmTransient->fWasHyperDebugStateActive
6380#ifdef VBOX_WITH_NESTED_HWVIRT
6381 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) /** @todo implement single-stepping when executing a nested-guest. */
6382#endif
6383 {
6384 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6385 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6386
6387 /* Don't intercept DRx read and writes. */
6388 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6389 pVmcb->ctrl.u16InterceptRdDRx = 0;
6390 pVmcb->ctrl.u16InterceptWrDRx = 0;
6391 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6392
6393 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6394 VMMRZCallRing3Disable(pVCpu);
6395 HM_DISABLE_PREEMPT();
6396
6397 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6398 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6399 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6400
6401 HM_RESTORE_PREEMPT();
6402 VMMRZCallRing3Enable(pVCpu);
6403
6404 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6405 return VINF_SUCCESS;
6406 }
6407
6408 /*
6409 * Interpret the read/writing of DRx.
6410 */
6411 /** @todo Decode assist. */
6412 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6413 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6414 if (RT_LIKELY(rc == VINF_SUCCESS))
6415 {
6416 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6417 /** @todo CPUM should set this flag! */
6418 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
6419 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6420 }
6421 else
6422 Assert(rc == VERR_EM_INTERPRETER);
6423 return VBOXSTRICTRC_TODO(rc);
6424}
6425
6426
6427/**
6428 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6429 */
6430HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6431{
6432 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6433 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6434 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
6435 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6436 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6437 return rc;
6438}
6439
6440
6441/**
6442 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6443 */
6444HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6445{
6446 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6447
6448 /** @todo decode assists... */
6449 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6450 if (rcStrict == VINF_IEM_RAISED_XCPT)
6451 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6452
6453 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6454 Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
6455 pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
6456
6457 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6458 return VBOXSTRICTRC_TODO(rcStrict);
6459}
6460
6461
6462/**
6463 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6464 */
6465HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6466{
6467 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6468
6469 /* I/O operation lookup arrays. */
6470 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6471 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6472 the result (in AL/AX/EAX). */
6473 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6474
6475 PVM pVM = pVCpu->CTX_SUFF(pVM);
6476 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6477
6478 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6479 SVMIOIOEXITINFO IoExitInfo;
6480 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6481 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6482 uint32_t cbValue = s_aIOSize[uIOWidth];
6483 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6484
6485 if (RT_UNLIKELY(!cbValue))
6486 {
6487 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6488 return VERR_EM_INTERPRETER;
6489 }
6490
6491 VBOXSTRICTRC rcStrict;
6492 bool fUpdateRipAlready = false;
6493 if (IoExitInfo.n.u1STR)
6494 {
6495#ifdef VBOX_WITH_2ND_IEM_STEP
6496 /* INS/OUTS - I/O String instruction. */
6497 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6498 * in EXITINFO1? Investigate once this thing is up and running. */
6499 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6500 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6501 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6502 static IEMMODE const s_aenmAddrMode[8] =
6503 {
6504 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6505 };
6506 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6507 if (enmAddrMode != (IEMMODE)-1)
6508 {
6509 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6510 if (cbInstr <= 15 && cbInstr >= 1)
6511 {
6512 Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
6513 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6514 {
6515 /* Don't know exactly how to detect whether u3SEG is valid, currently
6516 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6517 2384 Opterons when only checking NRIP. */
6518 if ( (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
6519 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6520 {
6521 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
6522 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
6523 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6524 IoExitInfo.n.u3SEG, true /*fIoChecked*/);
6525 }
6526 else if (cbInstr == 1U + IoExitInfo.n.u1REP)
6527 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6528 X86_SREG_DS, true /*fIoChecked*/);
6529 else
6530 rcStrict = IEMExecOne(pVCpu);
6531 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6532 }
6533 else
6534 {
6535 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
6536 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6537 true /*fIoChecked*/);
6538 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6539 }
6540 }
6541 else
6542 {
6543 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6544 rcStrict = IEMExecOne(pVCpu);
6545 }
6546 }
6547 else
6548 {
6549 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6550 rcStrict = IEMExecOne(pVCpu);
6551 }
6552 fUpdateRipAlready = true;
6553
6554#else
6555 /* INS/OUTS - I/O String instruction. */
6556 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6557
6558 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6559 * in EXITINFO1? Investigate once this thing is up and running. */
6560
6561 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
6562 if (rcStrict == VINF_SUCCESS)
6563 {
6564 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6565 {
6566 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
6567 (DISCPUMODE)pDis->uAddrMode, cbValue);
6568 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6569 }
6570 else
6571 {
6572 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
6573 (DISCPUMODE)pDis->uAddrMode, cbValue);
6574 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6575 }
6576 }
6577 else
6578 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
6579#endif
6580 }
6581 else
6582 {
6583 /* IN/OUT - I/O instruction. */
6584 Assert(!IoExitInfo.n.u1REP);
6585
6586 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6587 {
6588 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6589 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6590 }
6591 else
6592 {
6593 uint32_t u32Val = 0;
6594 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6595 if (IOM_SUCCESS(rcStrict))
6596 {
6597 /* Save result of I/O IN instr. in AL/AX/EAX. */
6598 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6599 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6600 }
6601 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
6602 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
6603
6604 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6605 }
6606 }
6607
6608 if (IOM_SUCCESS(rcStrict))
6609 {
6610 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6611 if (!fUpdateRipAlready)
6612 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6613
6614 /*
6615 * If any I/O breakpoints are armed, we need to check if one triggered
6616 * and take appropriate action.
6617 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6618 */
6619 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6620 * execution engines about whether hyper BPs and such are pending. */
6621 uint32_t const uDr7 = pCtx->dr[7];
6622 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6623 && X86_DR7_ANY_RW_IO(uDr7)
6624 && (pCtx->cr4 & X86_CR4_DE))
6625 || DBGFBpIsHwIoArmed(pVM)))
6626 {
6627 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6628 VMMRZCallRing3Disable(pVCpu);
6629 HM_DISABLE_PREEMPT();
6630
6631 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6632 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6633
6634 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
6635 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6636 {
6637 /* Raise #DB. */
6638 pVmcb->guest.u64DR6 = pCtx->dr[6];
6639 pVmcb->guest.u64DR7 = pCtx->dr[7];
6640 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6641 hmR0SvmSetPendingXcptDB(pVCpu);
6642 }
6643 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6644 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6645 else if ( rcStrict2 != VINF_SUCCESS
6646 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6647 rcStrict = rcStrict2;
6648 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6649
6650 HM_RESTORE_PREEMPT();
6651 VMMRZCallRing3Enable(pVCpu);
6652 }
6653
6654 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6655 }
6656
6657#ifdef VBOX_STRICT
6658 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
6659 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6660 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
6661 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6662 else
6663 {
6664 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6665 * statuses, that the VMM device and some others may return. See
6666 * IOM_SUCCESS() for guidance. */
6667 AssertMsg( RT_FAILURE(rcStrict)
6668 || rcStrict == VINF_SUCCESS
6669 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6670 || rcStrict == VINF_EM_DBG_BREAKPOINT
6671 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6672 || rcStrict == VINF_EM_RAW_TO_R3
6673 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
6674 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6675 }
6676#endif
6677 return VBOXSTRICTRC_TODO(rcStrict);
6678}
6679
6680
6681/**
6682 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6683 */
6684HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6685{
6686 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6687 PVM pVM = pVCpu->CTX_SUFF(pVM);
6688 Assert(pVM->hm.s.fNestedPaging);
6689
6690 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
6691
6692 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
6693 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6694 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
6695 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
6696
6697 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
6698
6699#ifdef VBOX_HM_WITH_GUEST_PATCHING
6700 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
6701 if ( pVM->hm.s.fTprPatchingAllowed
6702 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
6703 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
6704 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
6705 && !CPUMIsGuestInLongModeEx(pCtx)
6706 && !CPUMGetGuestCPL(pVCpu)
6707 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6708 {
6709 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6710 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6711
6712 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
6713 {
6714 /* Only attempt to patch the instruction once. */
6715 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6716 if (!pPatch)
6717 return VINF_EM_HM_PATCH_TPR_INSTR;
6718 }
6719 }
6720#endif
6721
6722 /*
6723 * Determine the nested paging mode.
6724 */
6725 PGMMODE enmNestedPagingMode;
6726#if HC_ARCH_BITS == 32
6727 if (CPUMIsGuestInLongModeEx(pCtx))
6728 enmNestedPagingMode = PGMMODE_AMD64_NX;
6729 else
6730#endif
6731 enmNestedPagingMode = PGMGetHostMode(pVM);
6732
6733 /*
6734 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
6735 */
6736 int rc;
6737 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
6738 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
6739 {
6740 /* If event delivery causes an MMIO #NPF, go back to instruction emulation as
6741 otherwise injecting the original pending event would most likely cause the same MMIO #NPF. */
6742 if (pVCpu->hm.s.Event.fPending)
6743 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6744
6745 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
6746 u32ErrCode);
6747 rc = VBOXSTRICTRC_VAL(rc2);
6748
6749 /*
6750 * If we succeed, resume guest execution.
6751 * If we fail in interpreting the instruction because we couldn't get the guest physical address
6752 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
6753 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
6754 * weird case. See @bugref{6043}.
6755 */
6756 if ( rc == VINF_SUCCESS
6757 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6758 || rc == VERR_PAGE_NOT_PRESENT)
6759 {
6760 /* Successfully handled MMIO operation. */
6761 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6762 rc = VINF_SUCCESS;
6763 }
6764 return rc;
6765 }
6766
6767 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
6768 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
6769 TRPMResetTrap(pVCpu);
6770
6771 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
6772
6773 /*
6774 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
6775 */
6776 if ( rc == VINF_SUCCESS
6777 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6778 || rc == VERR_PAGE_NOT_PRESENT)
6779 {
6780 /* We've successfully synced our shadow page tables. */
6781 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6782 rc = VINF_SUCCESS;
6783 }
6784
6785 return rc;
6786}
6787
6788
6789/**
6790 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
6791 * \#VMEXIT.
6792 */
6793HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6794{
6795 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6796
6797 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6798 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 0; /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
6799 pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0;
6800
6801 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive interrupts/NMIs, it is now ready. */
6802 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
6803 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
6804
6805 /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6806 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
6807 return VINF_SUCCESS;
6808}
6809
6810
6811/**
6812 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
6813 * \#VMEXIT.
6814 */
6815HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6816{
6817 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6818
6819 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
6820
6821#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
6822 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6823#endif
6824
6825 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
6826 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
6827 {
6828 /*
6829 * AMD-V provides us with the exception which caused the TS; we collect
6830 * the information in the call to hmR0SvmCheckExitDueToEventDelivery.
6831 */
6832 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
6833 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
6834 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6835 }
6836
6837 /** @todo Emulate task switch someday, currently just going back to ring-3 for
6838 * emulation. */
6839 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
6840 return VERR_EM_INTERPRETER;
6841}
6842
6843
6844/**
6845 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
6846 */
6847HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6848{
6849 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6850 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
6851
6852 bool fRipUpdated;
6853 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fRipUpdated);
6854 if (RT_SUCCESS(rcStrict))
6855 {
6856 /* Only update the RIP if we're continuing guest execution and not
6857 in the case of say VINF_GIM_R3_HYPERCALL. */
6858 if ( rcStrict == VINF_SUCCESS
6859 && !fRipUpdated)
6860 {
6861 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3 /* cbInstr */);
6862 }
6863
6864 /* If the hypercall or TPR patching changes anything other than guest's general-purpose registers,
6865 we would need to reload the guest changed bits here before VM-entry. */
6866 return VBOXSTRICTRC_VAL(rcStrict);
6867 }
6868
6869 hmR0SvmSetPendingXcptUD(pVCpu);
6870 return VINF_SUCCESS;
6871}
6872
6873
6874/**
6875 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
6876 */
6877HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6878{
6879 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6880 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
6881 return VINF_EM_RAW_INTERRUPT;
6882}
6883
6884
6885/**
6886 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
6887 */
6888HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6889{
6890 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6891
6892 /* Clear NMI blocking. */
6893 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6894
6895 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
6896 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6897 hmR0SvmClearIretIntercept(pVmcb);
6898
6899 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6900 return VINF_SUCCESS;
6901}
6902
6903
6904/**
6905 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_14).
6906 * Conditional \#VMEXIT.
6907 */
6908HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6909{
6910 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6911
6912 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
6913
6914 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
6915 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6916 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
6917 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
6918 PVM pVM = pVCpu->CTX_SUFF(pVM);
6919
6920#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
6921 if (pVM->hm.s.fNestedPaging)
6922 {
6923 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
6924 if (!pSvmTransient->fVectoringDoublePF)
6925 {
6926 /* A genuine guest #PF, reflect it to the guest. */
6927 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
6928 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
6929 uFaultAddress, u32ErrCode));
6930 }
6931 else
6932 {
6933 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
6934 hmR0SvmSetPendingXcptDF(pVCpu);
6935 Log4(("Pending #DF due to vectoring #PF. NP\n"));
6936 }
6937 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
6938 return VINF_SUCCESS;
6939 }
6940#endif
6941
6942 Assert(!pVM->hm.s.fNestedPaging);
6943
6944#ifdef VBOX_HM_WITH_GUEST_PATCHING
6945 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
6946 if ( pVM->hm.s.fTprPatchingAllowed
6947 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
6948 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
6949 && !CPUMIsGuestInLongModeEx(pCtx)
6950 && !CPUMGetGuestCPL(pVCpu)
6951 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6952 {
6953 RTGCPHYS GCPhysApicBase;
6954 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6955 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6956
6957 /* Check if the page at the fault-address is the APIC base. */
6958 RTGCPHYS GCPhysPage;
6959 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
6960 if ( rc2 == VINF_SUCCESS
6961 && GCPhysPage == GCPhysApicBase)
6962 {
6963 /* Only attempt to patch the instruction once. */
6964 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6965 if (!pPatch)
6966 return VINF_EM_HM_PATCH_TPR_INSTR;
6967 }
6968 }
6969#endif
6970
6971 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
6972 pCtx->rip, u32ErrCode, pCtx->cr3));
6973
6974 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
6975 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
6976 if (pSvmTransient->fVectoringPF)
6977 {
6978 Assert(pVCpu->hm.s.Event.fPending);
6979 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6980 }
6981
6982 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
6983 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
6984
6985 Log4(("#PF rc=%Rrc\n", rc));
6986
6987 if (rc == VINF_SUCCESS)
6988 {
6989 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
6990 TRPMResetTrap(pVCpu);
6991 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6992 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6993 return rc;
6994 }
6995 else if (rc == VINF_EM_RAW_GUEST_TRAP)
6996 {
6997 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
6998
6999 if (!pSvmTransient->fVectoringDoublePF)
7000 {
7001 /* It's a guest page fault and needs to be reflected to the guest. */
7002 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7003 TRPMResetTrap(pVCpu);
7004 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7005 }
7006 else
7007 {
7008 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7009 TRPMResetTrap(pVCpu);
7010 hmR0SvmSetPendingXcptDF(pVCpu);
7011 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
7012 }
7013
7014 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7015 return VINF_SUCCESS;
7016 }
7017
7018 TRPMResetTrap(pVCpu);
7019 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7020 return rc;
7021}
7022
7023
7024/**
7025 * \#VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
7026 * Conditional \#VMEXIT.
7027 */
7028HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7029{
7030 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7031
7032 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7033 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7034 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7035
7036 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7037 VMMRZCallRing3Disable(pVCpu);
7038 HM_DISABLE_PREEMPT();
7039
7040 int rc;
7041 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
7042 if (pSvmTransient->fWasGuestFPUStateActive)
7043 {
7044 rc = VINF_EM_RAW_GUEST_TRAP;
7045 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
7046 }
7047 else
7048 {
7049#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
7050 Assert(!pSvmTransient->fWasGuestFPUStateActive);
7051#endif
7052 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu); /* (No need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
7053 Assert( rc == VINF_EM_RAW_GUEST_TRAP
7054 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
7055 }
7056
7057 HM_RESTORE_PREEMPT();
7058 VMMRZCallRing3Enable(pVCpu);
7059
7060 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
7061 {
7062 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
7063 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7064 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
7065 pVCpu->hm.s.fPreloadGuestFpu = true;
7066 }
7067 else
7068 {
7069 /* Forward #NM to the guest. */
7070 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
7071 hmR0SvmSetPendingXcptNM(pVCpu);
7072 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
7073 }
7074 return VINF_SUCCESS;
7075}
7076
7077
7078/**
7079 * \#VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6).
7080 * Conditional \#VMEXIT.
7081 */
7082HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7083{
7084 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7085
7086 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7087 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7088 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7089
7090 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7091 if (pVCpu->hm.s.fGIMTrapXcptUD)
7092 {
7093 uint8_t cbInstr = 0;
7094 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, pCtx, NULL /* pDis */, &cbInstr);
7095 if (rcStrict == VINF_SUCCESS)
7096 {
7097 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7098 hmR0SvmAdvanceRipDumb(pVCpu, pCtx, cbInstr);
7099 rc = VINF_SUCCESS;
7100 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7101 }
7102 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7103 rc = VINF_SUCCESS;
7104 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7105 rc = VINF_GIM_R3_HYPERCALL;
7106 else
7107 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7108 }
7109
7110 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7111 if (RT_FAILURE(rc))
7112 {
7113 hmR0SvmSetPendingXcptUD(pVCpu);
7114 rc = VINF_SUCCESS;
7115 }
7116
7117 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7118 return rc;
7119}
7120
7121
7122/**
7123 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_16).
7124 * Conditional \#VMEXIT.
7125 */
7126HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7127{
7128 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7129
7130 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7131 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7132 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7133
7134 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7135
7136 if (!(pCtx->cr0 & X86_CR0_NE))
7137 {
7138 PVM pVM = pVCpu->CTX_SUFF(pVM);
7139 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7140 unsigned cbOp;
7141 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
7142 if (RT_SUCCESS(rc))
7143 {
7144 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7145 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
7146 if (RT_SUCCESS(rc))
7147 pCtx->rip += cbOp;
7148 }
7149 else
7150 Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7151 return rc;
7152 }
7153
7154 hmR0SvmSetPendingXcptMF(pVCpu);
7155 return VINF_SUCCESS;
7156}
7157
7158
7159/**
7160 * \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
7161 * \#VMEXIT.
7162 */
7163HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7164{
7165 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7166
7167 /* If this #DB is the result of delivering an event, go back to the interpreter. */
7168 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7169 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7170 {
7171 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7172 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7173 }
7174
7175 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7176
7177 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
7178 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
7179 PVM pVM = pVCpu->CTX_SUFF(pVM);
7180 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7181 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7182 if (rc == VINF_EM_RAW_GUEST_TRAP)
7183 {
7184 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7185 if (CPUMIsHyperDebugStateActive(pVCpu))
7186 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7187
7188 /* Reflect the exception back to the guest. */
7189 hmR0SvmSetPendingXcptDB(pVCpu);
7190 rc = VINF_SUCCESS;
7191 }
7192
7193 /*
7194 * Update DR6.
7195 */
7196 if (CPUMIsHyperDebugStateActive(pVCpu))
7197 {
7198 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7199 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7200 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7201 }
7202 else
7203 {
7204 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7205 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7206 }
7207
7208 return rc;
7209}
7210
7211
7212/**
7213 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_EXCEPTION_17).
7214 * Conditional \#VMEXIT.
7215 */
7216HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7217{
7218 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7219
7220 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7221 * shutdown VMEXIT. */
7222 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7223
7224 SVMEVENT Event;
7225 Event.u = 0;
7226 Event.n.u1Valid = 1;
7227 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7228 Event.n.u8Vector = X86_XCPT_AC;
7229 Event.n.u1ErrorCodeValid = 1;
7230 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7231 return VINF_SUCCESS;
7232}
7233
7234
7235/**
7236 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
7237 * Conditional \#VMEXIT.
7238 */
7239HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7240{
7241 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7242
7243 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7244
7245 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7246 if (rc == VINF_EM_RAW_GUEST_TRAP)
7247 {
7248 SVMEVENT Event;
7249 Event.u = 0;
7250 Event.n.u1Valid = 1;
7251 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7252 Event.n.u8Vector = X86_XCPT_BP;
7253 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7254 }
7255
7256 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7257 return rc;
7258}
7259
7260
7261#ifdef VBOX_WITH_NESTED_HWVIRT
7262/**
7263 * \#VMEXIT handler for #PF occuring while in nested-guest execution
7264 * (SVM_EXIT_EXCEPTION_14). Conditional \#VMEXIT.
7265 */
7266HMSVM_EXIT_DECL hmR0SvmExitXcptPFNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7267{
7268 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7269
7270 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7271
7272 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7273 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7274 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
7275 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7276
7277 Log4(("#PFNested: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode=%#RX32 CR3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7278 pCtx->rip, u32ErrCode, pCtx->cr3));
7279
7280 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
7281 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
7282 if (pSvmTransient->fVectoringPF)
7283 {
7284 Assert(pVCpu->hm.s.Event.fPending);
7285 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7286 }
7287
7288 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7289
7290 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
7291 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7292
7293 Log4(("#PFNested: rc=%Rrc\n", rc));
7294
7295 if (rc == VINF_SUCCESS)
7296 {
7297 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7298 TRPMResetTrap(pVCpu);
7299 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7300 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7301 return rc;
7302 }
7303
7304 if (rc == VINF_EM_RAW_GUEST_TRAP)
7305 {
7306 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7307
7308 if (!pSvmTransient->fVectoringDoublePF)
7309 {
7310 /* It's a nested-guest page fault and needs to be reflected to the nested-guest. */
7311 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7312 TRPMResetTrap(pVCpu);
7313 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7314 }
7315 else
7316 {
7317 /* A nested-guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7318 TRPMResetTrap(pVCpu);
7319 hmR0SvmSetPendingXcptDF(pVCpu);
7320 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
7321 }
7322
7323 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7324 return VINF_SUCCESS;
7325 }
7326
7327 TRPMResetTrap(pVCpu);
7328 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7329 return rc;
7330}
7331
7332
7333/**
7334 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7335 */
7336HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7337{
7338 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7339
7340 /** @todo Stat. */
7341 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClgi); */
7342 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7343 VBOXSTRICTRC rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7344 return VBOXSTRICTRC_VAL(rcStrict);
7345}
7346
7347
7348/**
7349 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7350 */
7351HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7352{
7353 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7354
7355 /** @todo Stat. */
7356 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitStgi); */
7357 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7358 VBOXSTRICTRC rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7359 return VBOXSTRICTRC_VAL(rcStrict);
7360}
7361
7362
7363/**
7364 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7365 */
7366HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7367{
7368 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7369
7370 /** @todo Stat. */
7371 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmload); */
7372 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7373 VBOXSTRICTRC rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7374 if (rcStrict == VINF_SUCCESS)
7375 {
7376 /* We skip flagging changes made to LSTAR, STAR, SFMASK and other MSRs as they are always re-loaded. */
7377 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
7378 | HM_CHANGED_GUEST_TR
7379 | HM_CHANGED_GUEST_LDTR);
7380 }
7381 return VBOXSTRICTRC_VAL(rcStrict);
7382}
7383
7384
7385/**
7386 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7387 */
7388HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7389{
7390 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7391
7392 /** @todo Stat. */
7393 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmsave); */
7394 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7395 VBOXSTRICTRC rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7396 return VBOXSTRICTRC_VAL(rcStrict);
7397}
7398
7399
7400/**
7401 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7402 */
7403HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7404{
7405 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7406 /** @todo Stat. */
7407 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpga); */
7408 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7409 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7410 return VBOXSTRICTRC_VAL(rcStrict);
7411}
7412
7413
7414/**
7415 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7416 */
7417HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7418{
7419 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7420 /** @todo Stat. */
7421 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmrun); */
7422#if 0
7423 VBOXSTRICTRC rcStrict;
7424 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7425 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7426 Log4(("IEMExecDecodedVmrun: returned %d\n", VBOXSTRICTRC_VAL(rcStrict)));
7427 if (rcStrict == VINF_SUCCESS)
7428 {
7429 rcStrict = VINF_SVM_VMRUN;
7430 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7431 }
7432 return VBOXSTRICTRC_VAL(rcStrict);
7433#endif
7434 return VERR_EM_INTERPRETER;
7435}
7436
7437
7438/**
7439 * Nested-guest \#VMEXIT handler for IRET (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7440 */
7441HMSVM_EXIT_DECL hmR0SvmNestedExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7442{
7443 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7444
7445 /* Clear NMI blocking. */
7446 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7447
7448 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7449 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
7450 hmR0SvmClearIretIntercept(pVmcbNstGst);
7451
7452 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEventNested() and resume guest execution. */
7453 return VINF_SUCCESS;
7454}
7455
7456
7457/**
7458 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1).
7459 * Unconditional \#VMEXIT.
7460 */
7461HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7462{
7463 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7464
7465 /* If this #DB is the result of delivering an event, go back to the interpreter. */
7466 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7467 * shutdown VMEXIT. */
7468 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7469 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7470 {
7471 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7472 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7473 }
7474
7475 hmR0SvmSetPendingXcptDB(pVCpu);
7476 return VINF_SUCCESS;
7477}
7478
7479
7480/**
7481 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
7482 * Conditional \#VMEXIT.
7483 */
7484HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7485{
7486 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7487
7488 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7489 * shutdown VMEXIT. */
7490 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7491
7492 SVMEVENT Event;
7493 Event.u = 0;
7494 Event.n.u1Valid = 1;
7495 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7496 Event.n.u8Vector = X86_XCPT_BP;
7497 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7498 return VINF_SUCCESS;
7499}
7500
7501#endif /* VBOX_WITH_NESTED_HWVIRT */
7502
7503
7504/** @} */
7505
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette