VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 70703

Last change on this file since 70703 was 70703, checked in by vboxsync, 7 years ago

VMM/HMSVMR0: Build fix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 306.2 KB
Line 
1/* $Id: HMSVMR0.cpp 70703 2018-01-23 11:19:47Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/gim.h>
33#include <VBox/vmm/apic.h>
34#include "HMInternal.h"
35#include <VBox/vmm/vm.h>
36#include "HMSVMR0.h"
37#include "dtrace/VBoxVMM.h"
38
39#define HMSVM_USE_IEM_EVENT_REFLECTION
40#ifdef DEBUG_ramshankar
41# define HMSVM_SYNC_FULL_GUEST_STATE
42# define HMSVM_SYNC_FULL_NESTED_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60#else
61# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
62#endif
63
64/** If we decide to use a function table approach this can be useful to
65 * switch to a "static DECLCALLBACK(int)". */
66#define HMSVM_EXIT_DECL static int
67
68/** Macro for checking and returning from the using function for
69 * \#VMEXIT intercepts that maybe caused during delivering of another
70 * event in the guest. */
71#ifdef VBOX_WITH_NESTED_HWVIRT
72# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
73 do \
74 { \
75 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
76 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
77 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
78 else if ( rc == VINF_EM_RESET \
79 && HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
80 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_SHUTDOWN, 0, 0)); \
81 else \
82 return rc; \
83 } while (0)
84#else
85# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
86 do \
87 { \
88 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
89 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
90 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
91 else \
92 return rc; \
93 } while (0)
94#endif
95
96/**
97 * Updates interrupt shadow for the current RIP.
98 */
99#define HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx) \
100 do { \
101 /* Update interrupt shadow. */ \
102 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) \
103 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) \
104 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); \
105 } while (0)
106
107/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
108 * instruction that exited. */
109#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
110 do { \
111 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
112 (a_rc) = VINF_EM_DBG_STEPPED; \
113 } while (0)
114
115/** Assert that preemption is disabled or covered by thread-context hooks. */
116#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
117 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
118
119/** Assert that we haven't migrated CPUs when thread-context hooks are not
120 * used. */
121#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
122 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
123 ("Illegal migration! Entered on CPU %u Current %u\n", \
124 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
125
126/** Assert that we're not executing a nested-guest. */
127#ifdef VBOX_WITH_NESTED_HWVIRT
128# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
129#else
130# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
131#endif
132
133/** Assert that we're executing a nested-guest. */
134#ifdef VBOX_WITH_NESTED_HWVIRT
135# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
136#else
137# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
138#endif
139
140/** Validate segment descriptor granularity bit. */
141#ifdef VBOX_STRICT
142# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
143 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
144 || ( pMixedCtx->reg.Attr.n.u1Granularity \
145 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
146 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
147 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
148 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
149#else
150# define HMSVM_ASSERT_SEG_GRANULARITY(reg) do { } while (0)
151#endif
152
153/**
154 * Exception bitmap mask for all contributory exceptions.
155 *
156 * Page fault is deliberately excluded here as it's conditional as to whether
157 * it's contributory or benign. Page faults are handled separately.
158 */
159#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
160 | RT_BIT(X86_XCPT_DE))
161
162/**
163 * Mandatory/unconditional guest control intercepts.
164 *
165 * SMIs can and do happen in normal operation. We need not intercept them
166 * while executing the guest or nested-guest.
167 */
168#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
169 | SVM_CTRL_INTERCEPT_NMI \
170 | SVM_CTRL_INTERCEPT_INIT \
171 | SVM_CTRL_INTERCEPT_RDPMC \
172 | SVM_CTRL_INTERCEPT_CPUID \
173 | SVM_CTRL_INTERCEPT_RSM \
174 | SVM_CTRL_INTERCEPT_HLT \
175 | SVM_CTRL_INTERCEPT_IOIO_PROT \
176 | SVM_CTRL_INTERCEPT_MSR_PROT \
177 | SVM_CTRL_INTERCEPT_INVLPGA \
178 | SVM_CTRL_INTERCEPT_SHUTDOWN \
179 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
180 | SVM_CTRL_INTERCEPT_VMRUN \
181 | SVM_CTRL_INTERCEPT_VMMCALL \
182 | SVM_CTRL_INTERCEPT_SKINIT \
183 | SVM_CTRL_INTERCEPT_WBINVD \
184 | SVM_CTRL_INTERCEPT_MONITOR \
185 | SVM_CTRL_INTERCEPT_MWAIT \
186 | SVM_CTRL_INTERCEPT_XSETBV)
187
188/** @name VMCB Clean Bits.
189 *
190 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
191 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
192 * memory.
193 *
194 * @{ */
195/** All intercepts vectors, TSC offset, PAUSE filter counter. */
196#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
197/** I/O permission bitmap, MSR permission bitmap. */
198#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
199/** ASID. */
200#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
201/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
202V_INTR_VECTOR. */
203#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
204/** Nested Paging: Nested CR3 (nCR3), PAT. */
205#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
206/** Control registers (CR0, CR3, CR4, EFER). */
207#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
208/** Debug registers (DR6, DR7). */
209#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
210/** GDT, IDT limit and base. */
211#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
212/** Segment register: CS, SS, DS, ES limit and base. */
213#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
214/** CR2.*/
215#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
216/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
217#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
218/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
219PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
220#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
221/** Mask of all valid VMCB Clean bits. */
222#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
223 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
224 | HMSVM_VMCB_CLEAN_ASID \
225 | HMSVM_VMCB_CLEAN_TPR \
226 | HMSVM_VMCB_CLEAN_NP \
227 | HMSVM_VMCB_CLEAN_CRX_EFER \
228 | HMSVM_VMCB_CLEAN_DRX \
229 | HMSVM_VMCB_CLEAN_DT \
230 | HMSVM_VMCB_CLEAN_SEG \
231 | HMSVM_VMCB_CLEAN_CR2 \
232 | HMSVM_VMCB_CLEAN_LBR \
233 | HMSVM_VMCB_CLEAN_AVIC)
234/** @} */
235
236/** @name SVM transient.
237 *
238 * A state structure for holding miscellaneous information across AMD-V
239 * VMRUN/\#VMEXIT operation, restored after the transition.
240 *
241 * @{ */
242typedef struct SVMTRANSIENT
243{
244 /** The host's rflags/eflags. */
245 RTCCUINTREG fEFlags;
246#if HC_ARCH_BITS == 32
247 uint32_t u32Alignment0;
248#endif
249
250 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
251 uint64_t u64ExitCode;
252 /** The guest's TPR value used for TPR shadowing. */
253 uint8_t u8GuestTpr;
254 /** Alignment. */
255 uint8_t abAlignment0[7];
256
257 /** Whether the guest FPU state was active at the time of \#VMEXIT. */
258 bool fWasGuestFPUStateActive;
259 /** Whether the guest debug state was active at the time of \#VMEXIT. */
260 bool fWasGuestDebugStateActive;
261 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
262 bool fWasHyperDebugStateActive;
263 /** Whether the TSC offset mode needs to be updated. */
264 bool fUpdateTscOffsetting;
265 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
266 bool fRestoreTscAuxMsr;
267 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
268 * contributary exception or a page-fault. */
269 bool fVectoringDoublePF;
270 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
271 * external interrupt or NMI. */
272 bool fVectoringPF;
273} SVMTRANSIENT, *PSVMTRANSIENT;
274AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
275AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
276/** @} */
277
278/**
279 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
280 */
281typedef enum SVMMSREXITREAD
282{
283 /** Reading this MSR causes a \#VMEXIT. */
284 SVMMSREXIT_INTERCEPT_READ = 0xb,
285 /** Reading this MSR does not cause a \#VMEXIT. */
286 SVMMSREXIT_PASSTHRU_READ
287} SVMMSREXITREAD;
288
289/**
290 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
291 */
292typedef enum SVMMSREXITWRITE
293{
294 /** Writing to this MSR causes a \#VMEXIT. */
295 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
296 /** Writing to this MSR does not cause a \#VMEXIT. */
297 SVMMSREXIT_PASSTHRU_WRITE
298} SVMMSREXITWRITE;
299
300/**
301 * SVM \#VMEXIT handler.
302 *
303 * @returns VBox status code.
304 * @param pVCpu The cross context virtual CPU structure.
305 * @param pMixedCtx Pointer to the guest-CPU context.
306 * @param pSvmTransient Pointer to the SVM-transient structure.
307 */
308typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
309
310
311/*********************************************************************************************************************************
312* Internal Functions *
313*********************************************************************************************************************************/
314static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
315 SVMMSREXITWRITE enmWrite);
316static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
317static void hmR0SvmLeave(PVMCPU pVCpu);
318
319/** @name \#VMEXIT handlers.
320 * @{
321 */
322static FNSVMEXITHANDLER hmR0SvmExitIntr;
323static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
324static FNSVMEXITHANDLER hmR0SvmExitInvd;
325static FNSVMEXITHANDLER hmR0SvmExitCpuid;
326static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
327static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
328static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
329static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
330static FNSVMEXITHANDLER hmR0SvmExitHlt;
331static FNSVMEXITHANDLER hmR0SvmExitMonitor;
332static FNSVMEXITHANDLER hmR0SvmExitMwait;
333static FNSVMEXITHANDLER hmR0SvmExitShutdown;
334static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
335static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
336static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
337static FNSVMEXITHANDLER hmR0SvmExitMsr;
338static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
339static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
340static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
341static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
342static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
343static FNSVMEXITHANDLER hmR0SvmExitVIntr;
344static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
345static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
346static FNSVMEXITHANDLER hmR0SvmExitPause;
347static FNSVMEXITHANDLER hmR0SvmExitIret;
348static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
349static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
350static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
351static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
352static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
353static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
354static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
355#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT)
356static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
357#endif
358#ifdef VBOX_WITH_NESTED_HWVIRT
359static FNSVMEXITHANDLER hmR0SvmExitXcptPFNested;
360static FNSVMEXITHANDLER hmR0SvmExitClgi;
361static FNSVMEXITHANDLER hmR0SvmExitStgi;
362static FNSVMEXITHANDLER hmR0SvmExitVmload;
363static FNSVMEXITHANDLER hmR0SvmExitVmsave;
364static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
365static FNSVMEXITHANDLER hmR0SvmExitVmrun;
366static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
367static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
368#endif
369/** @} */
370
371static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
372#ifdef VBOX_WITH_NESTED_HWVIRT
373static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
374#endif
375
376
377/*********************************************************************************************************************************
378* Global Variables *
379*********************************************************************************************************************************/
380/** Ring-0 memory object for the IO bitmap. */
381RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
382/** Physical address of the IO bitmap. */
383RTHCPHYS g_HCPhysIOBitmap = 0;
384/** Pointer to the IO bitmap. */
385R0PTRTYPE(void *) g_pvIOBitmap = NULL;
386
387#ifdef VBOX_WITH_NESTED_HWVIRT
388/** Ring-0 memory object for the nested-guest MSRPM bitmap. */
389RTR0MEMOBJ g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
390/** Physical address of the nested-guest MSRPM bitmap. */
391RTHCPHYS g_HCPhysNstGstMsrBitmap = 0;
392/** Pointer to the nested-guest MSRPM bitmap. */
393R0PTRTYPE(void *) g_pvNstGstMsrBitmap = NULL;
394#endif
395
396
397#ifdef VBOX_STRICT
398# define HMSVM_LOG_CS RT_BIT_32(0)
399# define HMSVM_LOG_SS RT_BIT_32(1)
400# define HMSVM_LOG_FS RT_BIT_32(2)
401# define HMSVM_LOG_GS RT_BIT_32(3)
402# define HMSVM_LOG_LBR RT_BIT_32(4)
403# define HMSVM_LOG_ALL ( HMSVM_LOG_CS \
404 | HMSVM_LOG_SS \
405 | HMSVM_LOG_FS \
406 | HMSVM_LOG_GS \
407 | HMSVM_LOG_LBR)
408
409/**
410 * Dumps CPU state and additional info. to the logger for diagnostics.
411 *
412 * @param pVCpu The cross context virtual CPU structure.
413 * @param pVmcb Pointer to the VM control block.
414 * @param pCtx Pointer to the guest-CPU context.
415 * @param pszPrefix Log prefix.
416 * @param fFlags Log flags, see HMSVM_LOG_XXX.
417 * @param uVerbose The verbosity level, currently unused.
418 */
419static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, PCPUMCTX pCtx, const char *pszPrefix, uint32_t fFlags,
420 uint8_t uVerbose)
421{
422 RT_NOREF(uVerbose);
423
424 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX32 cr0=%#RX32 cr3=%#RX32 cr4=%#RX32\n", pszPrefix, pCtx->cs.Sel, pCtx->rip,
425 pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4));
426 Log4(("%s: rsp=%#RX64 rbp=%#RX64 rdi=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp, pCtx->rdi));
427 if (fFlags & HMSVM_LOG_CS)
428 {
429 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
430 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
431 }
432 if (fFlags & HMSVM_LOG_SS)
433 {
434 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
435 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
436 }
437 if (fFlags & HMSVM_LOG_FS)
438 {
439 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
440 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
441 }
442 if (fFlags & HMSVM_LOG_GS)
443 {
444 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
445 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
446 }
447
448 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
449 if (fFlags & HMSVM_LOG_LBR)
450 {
451 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
452 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
453 }
454 NOREF(pVmcbGuest);
455}
456#endif
457
458
459/**
460 * Sets up and activates AMD-V on the current CPU.
461 *
462 * @returns VBox status code.
463 * @param pCpu Pointer to the CPU info struct.
464 * @param pVM The cross context VM structure. Can be
465 * NULL after a resume!
466 * @param pvCpuPage Pointer to the global CPU page.
467 * @param HCPhysCpuPage Physical address of the global CPU page.
468 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
469 * @param pvArg Unused on AMD-V.
470 */
471VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
472 void *pvArg)
473{
474 Assert(!fEnabledByHost);
475 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
476 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
477 Assert(pvCpuPage); NOREF(pvCpuPage);
478 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
479
480 NOREF(pvArg);
481 NOREF(fEnabledByHost);
482
483 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
484 RTCCUINTREG fEFlags = ASMIntDisableFlags();
485
486 /*
487 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
488 */
489 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
490 if (u64HostEfer & MSR_K6_EFER_SVME)
491 {
492 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
493 if ( pVM
494 && pVM->hm.s.svm.fIgnoreInUseError)
495 {
496 pCpu->fIgnoreAMDVInUseError = true;
497 }
498
499 if (!pCpu->fIgnoreAMDVInUseError)
500 {
501 ASMSetFlags(fEFlags);
502 return VERR_SVM_IN_USE;
503 }
504 }
505
506 /* Turn on AMD-V in the EFER MSR. */
507 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
508
509 /* Write the physical page address where the CPU will store the host state while executing the VM. */
510 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
511
512 /* Restore interrupts. */
513 ASMSetFlags(fEFlags);
514
515 /*
516 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
517 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
518 * upon VMRUN). Therefore, flag that we need to flush the TLB entirely with before executing any
519 * guest code.
520 */
521 pCpu->fFlushAsidBeforeUse = true;
522
523 /*
524 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
525 */
526 ++pCpu->cTlbFlushes;
527
528 return VINF_SUCCESS;
529}
530
531
532/**
533 * Deactivates AMD-V on the current CPU.
534 *
535 * @returns VBox status code.
536 * @param pCpu Pointer to the CPU info struct.
537 * @param pvCpuPage Pointer to the global CPU page.
538 * @param HCPhysCpuPage Physical address of the global CPU page.
539 */
540VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
541{
542 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
543 AssertReturn( HCPhysCpuPage
544 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
545 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
546 NOREF(pCpu);
547
548 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
549 RTCCUINTREG fEFlags = ASMIntDisableFlags();
550
551 /* Turn off AMD-V in the EFER MSR. */
552 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
553 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
554
555 /* Invalidate host state physical address. */
556 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
557
558 /* Restore interrupts. */
559 ASMSetFlags(fEFlags);
560
561 return VINF_SUCCESS;
562}
563
564
565/**
566 * Does global AMD-V initialization (called during module initialization).
567 *
568 * @returns VBox status code.
569 */
570VMMR0DECL(int) SVMR0GlobalInit(void)
571{
572 /*
573 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
574 * once globally here instead of per-VM.
575 */
576 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
577 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
578 if (RT_FAILURE(rc))
579 return rc;
580
581 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
582 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
583
584 /* Set all bits to intercept all IO accesses. */
585 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
586
587#ifdef VBOX_WITH_NESTED_HWVIRT
588 /*
589 * Allocate 8 KB for the MSR permission bitmap for the nested-guest.
590 */
591 Assert(g_hMemObjNstGstMsrBitmap == NIL_RTR0MEMOBJ);
592 rc = RTR0MemObjAllocCont(&g_hMemObjNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
593 if (RT_FAILURE(rc))
594 return rc;
595
596 g_pvNstGstMsrBitmap = RTR0MemObjAddress(g_hMemObjNstGstMsrBitmap);
597 g_HCPhysNstGstMsrBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjNstGstMsrBitmap, 0 /* iPage */);
598
599 /* Set all bits to intercept all MSR accesses. */
600 ASMMemFill32(g_pvNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
601#endif
602
603 return VINF_SUCCESS;
604}
605
606
607/**
608 * Does global AMD-V termination (called during module termination).
609 */
610VMMR0DECL(void) SVMR0GlobalTerm(void)
611{
612 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
613 {
614 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
615 g_pvIOBitmap = NULL;
616 g_HCPhysIOBitmap = 0;
617 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
618 }
619
620#ifdef VBOX_WITH_NESTED_HWVIRT
621 if (g_hMemObjNstGstMsrBitmap != NIL_RTR0MEMOBJ)
622 {
623 RTR0MemObjFree(g_hMemObjNstGstMsrBitmap, true /* fFreeMappings */);
624 g_pvNstGstMsrBitmap = NULL;
625 g_HCPhysNstGstMsrBitmap = 0;
626 g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
627 }
628#endif
629}
630
631
632/**
633 * Frees any allocated per-VCPU structures for a VM.
634 *
635 * @param pVM The cross context VM structure.
636 */
637DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
638{
639 for (uint32_t i = 0; i < pVM->cCpus; i++)
640 {
641 PVMCPU pVCpu = &pVM->aCpus[i];
642 AssertPtr(pVCpu);
643
644 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
645 {
646 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
647 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
648 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
649 }
650
651 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
652 {
653 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
654 pVCpu->hm.s.svm.pVmcb = NULL;
655 pVCpu->hm.s.svm.HCPhysVmcb = 0;
656 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
657 }
658
659 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
660 {
661 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
662 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
663 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
664 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
665 }
666 }
667}
668
669
670/**
671 * Does per-VM AMD-V initialization.
672 *
673 * @returns VBox status code.
674 * @param pVM The cross context VM structure.
675 */
676VMMR0DECL(int) SVMR0InitVM(PVM pVM)
677{
678 int rc = VERR_INTERNAL_ERROR_5;
679
680 /*
681 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
682 */
683 uint32_t u32Family;
684 uint32_t u32Model;
685 uint32_t u32Stepping;
686 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
687 {
688 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
689 pVM->hm.s.svm.fAlwaysFlushTLB = true;
690 }
691
692 /*
693 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
694 */
695 for (VMCPUID i = 0; i < pVM->cCpus; i++)
696 {
697 PVMCPU pVCpu = &pVM->aCpus[i];
698 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
699 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
700 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
701 }
702
703 for (VMCPUID i = 0; i < pVM->cCpus; i++)
704 {
705 PVMCPU pVCpu = &pVM->aCpus[i];
706
707 /*
708 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
709 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
710 */
711 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
712 if (RT_FAILURE(rc))
713 goto failure_cleanup;
714
715 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
716 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
717 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
718 ASMMemZeroPage(pvVmcbHost);
719
720 /*
721 * Allocate one page for the guest-state VMCB.
722 */
723 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
724 if (RT_FAILURE(rc))
725 goto failure_cleanup;
726
727 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
728 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
729 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
730 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
731
732 /*
733 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
734 * SVM to not require one.
735 */
736 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
737 false /* fExecutable */);
738 if (RT_FAILURE(rc))
739 goto failure_cleanup;
740
741 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
742 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
743 /* Set all bits to intercept all MSR accesses (changed later on). */
744 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
745 }
746
747 return VINF_SUCCESS;
748
749failure_cleanup:
750 hmR0SvmFreeStructs(pVM);
751 return rc;
752}
753
754
755/**
756 * Does per-VM AMD-V termination.
757 *
758 * @returns VBox status code.
759 * @param pVM The cross context VM structure.
760 */
761VMMR0DECL(int) SVMR0TermVM(PVM pVM)
762{
763 hmR0SvmFreeStructs(pVM);
764 return VINF_SUCCESS;
765}
766
767
768/**
769 * Returns whether the VMCB Clean Bits feature is supported.
770 *
771 * @return @c true if supported, @c false otherwise.
772 * @param pVCpu The cross context virtual CPU structure.
773 * @param pCtx Pointer to the guest-CPU context.
774 */
775DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu, PCPUMCTX pCtx)
776{
777 PVM pVM = pVCpu->CTX_SUFF(pVM);
778#ifdef VBOX_WITH_NESTED_HWVIRT
779 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
780 {
781 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
782 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
783 }
784#else
785 RT_NOREF(pCtx);
786#endif
787 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
788}
789
790
791/**
792 * Returns whether the decode assists feature is supported.
793 *
794 * @return @c true if supported, @c false otherwise.
795 * @param pVCpu The cross context virtual CPU structure.
796 * @param pCtx Pointer to the guest-CPU context.
797 */
798DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu, PCPUMCTX pCtx)
799{
800 PVM pVM = pVCpu->CTX_SUFF(pVM);
801#ifdef VBOX_WITH_NESTED_HWVIRT
802 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
803 {
804 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
805 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
806 }
807#else
808 RT_NOREF(pCtx);
809#endif
810 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
811}
812
813
814/**
815 * Returns whether the NRIP_SAVE feature is supported.
816 *
817 * @return @c true if supported, @c false otherwise.
818 * @param pVCpu The cross context virtual CPU structure.
819 * @param pCtx Pointer to the guest-CPU context.
820 */
821DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu, PCPUMCTX pCtx)
822{
823 PVM pVM = pVCpu->CTX_SUFF(pVM);
824#ifdef VBOX_WITH_NESTED_HWVIRT
825 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
826 {
827 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
828 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
829 }
830#else
831 RT_NOREF(pCtx);
832#endif
833 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
834}
835
836
837/**
838 * Sets the permission bits for the specified MSR in the MSRPM.
839 *
840 * @param pVmcb Pointer to the VM control block.
841 * @param pbMsrBitmap Pointer to the MSR bitmap.
842 * @param uMsr The MSR for which the access permissions are being set.
843 * @param enmRead MSR read permissions.
844 * @param enmWrite MSR write permissions.
845 */
846static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
847 SVMMSREXITWRITE enmWrite)
848{
849 uint16_t offMsrpm;
850 uint32_t uMsrpmBit;
851 int rc = HMSvmGetMsrpmOffsetAndBit(uMsr, &offMsrpm, &uMsrpmBit);
852 AssertRC(rc);
853
854 Assert(uMsrpmBit < 0x3fff);
855 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
856
857 pbMsrBitmap += offMsrpm;
858 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
859 ASMBitSet(pbMsrBitmap, uMsrpmBit);
860 else
861 ASMBitClear(pbMsrBitmap, uMsrpmBit);
862
863 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
864 ASMBitSet(pbMsrBitmap, uMsrpmBit + 1);
865 else
866 ASMBitClear(pbMsrBitmap, uMsrpmBit + 1);
867
868 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
869}
870
871
872/**
873 * Sets up AMD-V for the specified VM.
874 * This function is only called once per-VM during initalization.
875 *
876 * @returns VBox status code.
877 * @param pVM The cross context VM structure.
878 */
879VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
880{
881 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
882 AssertReturn(pVM, VERR_INVALID_PARAMETER);
883 Assert(pVM->hm.s.svm.fSupported);
884
885 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
886 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
887 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter && pVM->hm.s.svm.cPauseFilterThresholdTicks;
888
889 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
890 bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
891
892#ifdef VBOX_WITH_NESTED_HWVIRT
893 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
894 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
895
896 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
897 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
898#endif
899
900 for (VMCPUID i = 0; i < pVM->cCpus; i++)
901 {
902 PVMCPU pVCpu = &pVM->aCpus[i];
903 PSVMVMCB pVmcb = pVM->aCpus[i].hm.s.svm.pVmcb;
904
905 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
906
907 /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
908 Assert(!pVCpu->hm.s.idxExitHistoryFree);
909 HMCPU_EXIT_HISTORY_RESET(pVCpu);
910
911 /* Always trap #AC for reasons of security. */
912 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
913
914 /* Always trap #DB for reasons of security. */
915 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
916
917 /* Trap exceptions unconditionally (debug purposes). */
918#ifdef HMSVM_ALWAYS_TRAP_PF
919 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
920#endif
921#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
922 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
923 pVmcb->ctrl.u32InterceptXcpt |= 0
924 | RT_BIT(X86_XCPT_BP)
925 | RT_BIT(X86_XCPT_DE)
926 | RT_BIT(X86_XCPT_NM)
927 | RT_BIT(X86_XCPT_UD)
928 | RT_BIT(X86_XCPT_NP)
929 | RT_BIT(X86_XCPT_SS)
930 | RT_BIT(X86_XCPT_GP)
931 | RT_BIT(X86_XCPT_PF)
932 | RT_BIT(X86_XCPT_MF)
933 ;
934#endif
935
936 /* Set up unconditional intercepts and conditions. */
937 pVmcb->ctrl.u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
938
939 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
940 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
941
942 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
943 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
944
945 /* Intercept all DRx reads and writes by default. Changed later on. */
946 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
947 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
948
949 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
950 pVmcb->ctrl.IntCtrl.n.u1VIntrMasking = 1;
951
952 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
953 and we currently deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
954 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
955
956 /* Set IO and MSR bitmap permission bitmap physical addresses. */
957 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
958 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
959
960 /* LBR virtualization. */
961 if (fUseLbrVirt)
962 {
963 pVmcb->ctrl.LbrVirt.n.u1LbrVirt = fUseLbrVirt;
964 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
965 }
966 else
967 Assert(pVmcb->ctrl.LbrVirt.n.u1LbrVirt == 0);
968
969#ifdef VBOX_WITH_NESTED_HWVIRT
970 /* Virtualized VMSAVE/VMLOAD. */
971 pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
972 if (!fUseVirtVmsaveVmload)
973 {
974 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
975 | SVM_CTRL_INTERCEPT_VMLOAD;
976 }
977
978 /* Virtual GIF. */
979 pVmcb->ctrl.IntCtrl.n.u1VGifEnable = fUseVGif;
980 if (!fUseVGif)
981 {
982 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
983 | SVM_CTRL_INTERCEPT_STGI;
984 }
985#endif
986
987 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
988 Assert(pVmcb->ctrl.u32VmcbCleanBits == 0);
989
990 /* The host ASID MBZ, for the guest start with 1. */
991 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
992
993 /*
994 * Setup the PAT MSR (applicable for Nested Paging only).
995 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
996 * so choose type 6 for all PAT slots.
997 */
998 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
999
1000 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1001 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1002
1003 /* Without Nested Paging, we need additionally intercepts. */
1004 if (!pVM->hm.s.fNestedPaging)
1005 {
1006 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1007 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
1008 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
1009
1010 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1011 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1012 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1013
1014 /* Page faults must be intercepted to implement shadow paging. */
1015 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1016 }
1017
1018#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
1019 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
1020#endif
1021
1022 /* Apply the exceptions intercepts needed by the GIM provider. */
1023 if (pVCpu->hm.s.fGIMTrapXcptUD)
1024 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
1025
1026 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1027 if (fUsePauseFilter)
1028 {
1029 pVmcb->ctrl.u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1030 if (fPauseFilterThreshold)
1031 pVmcb->ctrl.u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1032 }
1033
1034 /*
1035 * The following MSRs are saved/restored automatically during the world-switch.
1036 * Don't intercept guest read/write accesses to these MSRs.
1037 */
1038 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1039 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1040 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1041 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1042 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1043 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1044 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1045 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1046 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1047 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1048 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1049 }
1050
1051 return VINF_SUCCESS;
1052}
1053
1054
1055/**
1056 * Gets a pointer to the currently active guest or nested-guest VMCB.
1057 *
1058 * @returns Pointer to the current context VMCB.
1059 * @param pVCpu The cross context virtual CPU structure.
1060 * @param pCtx Pointer to the guest-CPU context.
1061 */
1062DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
1063{
1064#ifdef VBOX_WITH_NESTED_HWVIRT
1065 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1066 return pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
1067#else
1068 RT_NOREF(pCtx);
1069#endif
1070 return pVCpu->hm.s.svm.pVmcb;
1071}
1072
1073
1074/**
1075 * Invalidates a guest page by guest virtual address.
1076 *
1077 * @returns VBox status code.
1078 * @param pVM The cross context VM structure.
1079 * @param pVCpu The cross context virtual CPU structure.
1080 * @param GCVirt Guest virtual address of the page to invalidate.
1081 */
1082VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1083{
1084 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1085 Assert(pVM->hm.s.svm.fSupported);
1086
1087 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1088
1089 /* Skip it if a TLB flush is already pending. */
1090 if (!fFlushPending)
1091 {
1092 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
1093
1094 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1095 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
1096 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1097
1098#if HC_ARCH_BITS == 32
1099 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
1100 if (CPUMIsGuestInLongMode(pVCpu))
1101 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1102 else
1103#endif
1104 {
1105 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1106 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1107 }
1108 }
1109 return VINF_SUCCESS;
1110}
1111
1112
1113/**
1114 * Flushes the appropriate tagged-TLB entries.
1115 *
1116 * @param pVCpu The cross context virtual CPU structure.
1117 * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
1118 * @param pVmcb Pointer to the VM control block.
1119 */
1120static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
1121{
1122#ifndef VBOX_WITH_NESTED_HWVIRT
1123 RT_NOREF(pCtx);
1124#endif
1125
1126 PVM pVM = pVCpu->CTX_SUFF(pVM);
1127 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1128
1129 /*
1130 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1131 * This can happen both for start & resume due to long jumps back to ring-3.
1132 *
1133 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no correlation
1134 * between it and the physical CPU.
1135 *
1136 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
1137 * so we cannot reuse the ASIDs without flushing.
1138 */
1139 bool fNewAsid = false;
1140 Assert(pCpu->idCpu != NIL_RTCPUID);
1141 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1142 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes
1143#ifdef VBOX_WITH_NESTED_HWVIRT
1144 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
1145#endif
1146 )
1147 {
1148 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1149 pVCpu->hm.s.fForceTLBFlush = true;
1150 fNewAsid = true;
1151 }
1152
1153 /* Set TLB flush state as checked until we return from the world switch. */
1154 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1155
1156 /* Check for explicit TLB flushes. */
1157 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1158 {
1159 pVCpu->hm.s.fForceTLBFlush = true;
1160 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1161 }
1162
1163 /*
1164 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1165 * This Host CPU requirement takes precedence.
1166 */
1167 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1168 {
1169 pCpu->uCurrentAsid = 1;
1170 pVCpu->hm.s.uCurrentAsid = 1;
1171 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1172 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1173
1174 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1175 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1176
1177 /* Keep track of last CPU ID even when flushing all the time. */
1178 if (fNewAsid)
1179 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1180 }
1181 else
1182 {
1183 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1184 if (pVCpu->hm.s.fForceTLBFlush)
1185 {
1186 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1187 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1188
1189 if (fNewAsid)
1190 {
1191 ++pCpu->uCurrentAsid;
1192
1193 bool fHitASIDLimit = false;
1194 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1195 {
1196 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1197 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1198 fHitASIDLimit = true;
1199 }
1200
1201 if ( fHitASIDLimit
1202 || pCpu->fFlushAsidBeforeUse)
1203 {
1204 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1205 pCpu->fFlushAsidBeforeUse = false;
1206 }
1207
1208 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1209 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1210 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1211 }
1212 else
1213 {
1214 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1215 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1216 else
1217 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1218 }
1219
1220 pVCpu->hm.s.fForceTLBFlush = false;
1221 }
1222 }
1223
1224 /* Update VMCB with the ASID. */
1225 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1226 {
1227 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1228 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1229 }
1230
1231 AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
1232 ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
1233 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1234 ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1235 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1236 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
1237 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1238 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1239
1240#ifdef VBOX_WITH_STATISTICS
1241 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1242 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1243 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1244 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1245 {
1246 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1247 }
1248 else
1249 {
1250 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1251 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1252 }
1253#endif
1254}
1255
1256
1257/** @name 64-bit guest on 32-bit host OS helper functions.
1258 *
1259 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1260 * mode (code segment, paging). These wrappers/helpers perform the necessary
1261 * bits for the 32->64 switcher.
1262 *
1263 * @{ */
1264#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1265/**
1266 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1267 *
1268 * @returns VBox status code.
1269 * @param HCPhysVmcbHost Physical address of host VMCB.
1270 * @param HCPhysVmcb Physical address of the VMCB.
1271 * @param pCtx Pointer to the guest-CPU context.
1272 * @param pVM The cross context VM structure.
1273 * @param pVCpu The cross context virtual CPU structure.
1274 */
1275DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1276{
1277 uint32_t aParam[8];
1278 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1279 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1280 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1281 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1282 aParam[4] = VM_RC_ADDR(pVM, pVM);
1283 aParam[5] = 0;
1284 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1285 aParam[7] = 0;
1286
1287 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1288}
1289
1290
1291/**
1292 * Executes the specified VMRUN handler in 64-bit mode.
1293 *
1294 * @returns VBox status code.
1295 * @param pVM The cross context VM structure.
1296 * @param pVCpu The cross context virtual CPU structure.
1297 * @param pCtx Pointer to the guest-CPU context.
1298 * @param enmOp The operation to perform.
1299 * @param cParams Number of parameters.
1300 * @param paParam Array of 32-bit parameters.
1301 */
1302VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
1303 uint32_t cParams, uint32_t *paParam)
1304{
1305 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1306 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1307
1308 NOREF(pCtx);
1309
1310 /* Disable interrupts. */
1311 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
1312
1313#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1314 RTCPUID idHostCpu = RTMpCpuId();
1315 CPUMR0SetLApic(pVCpu, idHostCpu);
1316#endif
1317
1318 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1319 CPUMSetHyperEIP(pVCpu, enmOp);
1320 for (int i = (int)cParams - 1; i >= 0; i--)
1321 CPUMPushHyper(pVCpu, paParam[i]);
1322
1323 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1324 /* Call the switcher. */
1325 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1326 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1327
1328 /* Restore interrupts. */
1329 ASMSetFlags(uOldEFlags);
1330 return rc;
1331}
1332
1333#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1334/** @} */
1335
1336
1337/**
1338 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1339 * the corresponding VMCB Clean bit.
1340 *
1341 * @param pVmcb Pointer to the VM control block.
1342 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1343 */
1344DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1345{
1346 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt)))
1347 {
1348 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(u32Xcpt);
1349 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1350 }
1351}
1352
1353
1354/**
1355 * Removes an exception from the intercept-exception bitmap in the VMCB and
1356 * updates the corresponding VMCB Clean bit.
1357 *
1358 * @param pVCpu The cross context virtual CPU structure.
1359 * @param pCtx Pointer to the guest-CPU context.
1360 * @param pVmcb Pointer to the VM control block.
1361 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1362 *
1363 * @remarks This takes into account if we're executing a nested-guest and only
1364 * removes the exception intercept if both the guest -and- nested-guest
1365 * are not intercepting it.
1366 */
1367DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb, uint32_t u32Xcpt)
1368{
1369 Assert(u32Xcpt != X86_XCPT_DB);
1370 Assert(u32Xcpt != X86_XCPT_AC);
1371#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1372 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt))
1373 {
1374 bool fRemoveXcpt = true;
1375#ifdef VBOX_WITH_NESTED_HWVIRT
1376 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1377 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1378 {
1379 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
1380 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
1381 fRemoveXcpt = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(u32Xcpt));
1382 }
1383#else
1384 RT_NOREF2(pVCpu, pCtx);
1385#endif
1386 if (fRemoveXcpt)
1387 {
1388 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(u32Xcpt);
1389 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1390 }
1391 }
1392#else
1393 RT_NOREF3(pVCpu, pCtx, pVmcb);
1394#endif
1395}
1396
1397
1398/**
1399 * Loads the guest (or nested-guest) CR0 control register into the guest-state
1400 * area in the VMCB.
1401 *
1402 * Although the guest CR0 is a separate field in the VMCB we have to consider
1403 * the FPU state itself which is shared between the host and the guest.
1404 *
1405 * @returns VBox status code.
1406 * @param pVCpu The cross context virtual CPU structure.
1407 * @param pVmcb Pointer to the VM control block.
1408 * @param pCtx Pointer to the guest-CPU context.
1409 *
1410 * @remarks No-long-jump zone!!!
1411 */
1412static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1413{
1414 uint64_t u64GuestCR0 = pCtx->cr0;
1415
1416 /* Always enable caching. */
1417 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1418
1419 /*
1420 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1421 */
1422 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1423 {
1424 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1425 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1426 }
1427
1428 /*
1429 * Guest FPU bits.
1430 */
1431 bool fInterceptNM = false;
1432 bool fInterceptMF = false;
1433 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1434 if (CPUMIsGuestFPUStateActive(pVCpu))
1435 {
1436 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1437 if (!(pCtx->cr0 & X86_CR0_NE))
1438 {
1439 Log4(("hmR0SvmLoadSharedCR0: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1440 fInterceptMF = true;
1441 }
1442 }
1443 else
1444 {
1445 fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
1446 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1447 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1448 }
1449
1450 /*
1451 * Update the exception intercept bitmap.
1452 */
1453 if (fInterceptNM)
1454 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1455 else
1456 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_NM);
1457
1458 if (fInterceptMF)
1459 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1460 else
1461 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_MF);
1462
1463 pVmcb->guest.u64CR0 = u64GuestCR0;
1464 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1465}
1466
1467
1468/**
1469 * Loads the guest/nested-guest control registers (CR2, CR3, CR4) into the VMCB.
1470 *
1471 * @returns VBox status code.
1472 * @param pVCpu The cross context virtual CPU structure.
1473 * @param pVmcb Pointer to the VM control block.
1474 * @param pCtx Pointer to the guest-CPU context.
1475 *
1476 * @remarks No-long-jump zone!!!
1477 */
1478static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1479{
1480 PVM pVM = pVCpu->CTX_SUFF(pVM);
1481
1482 /*
1483 * Guest CR2.
1484 */
1485 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
1486 {
1487 pVmcb->guest.u64CR2 = pCtx->cr2;
1488 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1489 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
1490 }
1491
1492 /*
1493 * Guest CR3.
1494 */
1495 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
1496 {
1497 if (pVM->hm.s.fNestedPaging)
1498 {
1499 PGMMODE enmShwPagingMode;
1500#if HC_ARCH_BITS == 32
1501 if (CPUMIsGuestInLongModeEx(pCtx))
1502 enmShwPagingMode = PGMMODE_AMD64_NX;
1503 else
1504#endif
1505 enmShwPagingMode = PGMGetHostMode(pVM);
1506
1507 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1508 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1509 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1510 pVmcb->guest.u64CR3 = pCtx->cr3;
1511 }
1512 else
1513 {
1514 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1515 Log4(("hmR0SvmLoadGuestControlRegs: CR3=%#RX64 (HyperCR3=%#RX64)\n", pCtx->cr3, pVmcb->guest.u64CR3));
1516 }
1517
1518 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1519 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
1520 }
1521
1522 /*
1523 * Guest CR4.
1524 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
1525 */
1526 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
1527 {
1528 uint64_t u64GuestCR4 = pCtx->cr4;
1529 Assert(RT_HI_U32(u64GuestCR4) == 0);
1530 if (!pVM->hm.s.fNestedPaging)
1531 {
1532 switch (pVCpu->hm.s.enmShadowMode)
1533 {
1534 case PGMMODE_REAL:
1535 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1536 AssertFailed();
1537 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1538
1539 case PGMMODE_32_BIT: /* 32-bit paging. */
1540 u64GuestCR4 &= ~X86_CR4_PAE;
1541 break;
1542
1543 case PGMMODE_PAE: /* PAE paging. */
1544 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1545 /** Must use PAE paging as we could use physical memory > 4 GB */
1546 u64GuestCR4 |= X86_CR4_PAE;
1547 break;
1548
1549 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1550 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1551#ifdef VBOX_ENABLE_64_BITS_GUESTS
1552 break;
1553#else
1554 AssertFailed();
1555 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1556#endif
1557
1558 default: /* shut up gcc */
1559 AssertFailed();
1560 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1561 }
1562 }
1563
1564 pVmcb->guest.u64CR4 = u64GuestCR4;
1565 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1566
1567 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1568 pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1569
1570 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
1571 }
1572
1573 return VINF_SUCCESS;
1574}
1575
1576
1577/**
1578 * Loads the guest (or nested-guest) segment registers into the VMCB.
1579 *
1580 * @returns VBox status code.
1581 * @param pVCpu The cross context virtual CPU structure.
1582 * @param pVmcb Pointer to the VM control block.
1583 * @param pCtx Pointer to the guest-CPU context.
1584 *
1585 * @remarks No-long-jump zone!!!
1586 */
1587static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1588{
1589 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1590 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
1591 {
1592 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1593 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1594 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1595 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1596 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1597 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1598
1599 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1600 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1601 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
1602 }
1603
1604 /* Guest TR. */
1605 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
1606 {
1607 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1608 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
1609 }
1610
1611 /* Guest LDTR. */
1612 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
1613 {
1614 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1615 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
1616 }
1617
1618 /* Guest GDTR. */
1619 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
1620 {
1621 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1622 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1623 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1624 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
1625 }
1626
1627 /* Guest IDTR. */
1628 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
1629 {
1630 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1631 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1632 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1633 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
1634 }
1635}
1636
1637
1638/**
1639 * Loads the guest (or nested-guest) MSRs into the VMCB.
1640 *
1641 * @param pVCpu The cross context virtual CPU structure.
1642 * @param pVmcb Pointer to the VM control block.
1643 * @param pCtx Pointer to the guest-CPU context.
1644 *
1645 * @remarks No-long-jump zone!!!
1646 */
1647static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1648{
1649 /* Guest Sysenter MSRs. */
1650 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1651 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1652 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1653
1654 /*
1655 * Guest EFER MSR.
1656 * AMD-V requires guest EFER.SVME to be set. Weird.
1657 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1658 */
1659 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
1660 {
1661 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1662 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1663 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
1664 }
1665
1666 /* 64-bit MSRs. */
1667 if (CPUMIsGuestInLongModeEx(pCtx))
1668 {
1669 /* Load these always as the guest may modify FS/GS base using MSRs in 64-bit mode which we don't intercept. */
1670 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1671 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1672 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1673 }
1674 else
1675 {
1676 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1677 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1678 {
1679 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1680 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1681 }
1682 }
1683
1684 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1685 * be writable in 32-bit mode. Clarify with AMD spec. */
1686 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1687 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1688 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1689 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1690 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1691}
1692
1693
1694/**
1695 * Loads the guest (or nested-guest) debug state into the VMCB and programs the
1696 * necessary intercepts accordingly.
1697 *
1698 * @param pVCpu The cross context virtual CPU structure.
1699 * @param pVmcb Pointer to the VM control block.
1700 * @param pCtx Pointer to the guest-CPU context.
1701 *
1702 * @remarks No-long-jump zone!!!
1703 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1704 */
1705static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1706{
1707 bool fInterceptMovDRx = false;
1708
1709 /*
1710 * Anyone single stepping on the host side? If so, we'll have to use the
1711 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1712 * the VMM level like the VT-x implementations does.
1713 */
1714 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1715 if (fStepping)
1716 {
1717 pVCpu->hm.s.fClearTrapFlag = true;
1718 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1719 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1720 }
1721
1722 if ( fStepping
1723 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1724 {
1725 /*
1726 * Use the combined guest and host DRx values found in the hypervisor
1727 * register set because the debugger has breakpoints active or someone
1728 * is single stepping on the host side.
1729 *
1730 * Note! DBGF expects a clean DR6 state before executing guest code.
1731 */
1732#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1733 if ( CPUMIsGuestInLongModeEx(pCtx)
1734 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1735 {
1736 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1737 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1738 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1739 }
1740 else
1741#endif
1742 if (!CPUMIsHyperDebugStateActive(pVCpu))
1743 {
1744 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1745 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1746 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1747 }
1748
1749 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1750 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1751 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1752 {
1753 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1754 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1755 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1756 pVCpu->hm.s.fUsingHyperDR7 = true;
1757 }
1758
1759 /** @todo If we cared, we could optimize to allow the guest to read registers
1760 * with the same values. */
1761 fInterceptMovDRx = true;
1762 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1763 }
1764 else
1765 {
1766 /*
1767 * Update DR6, DR7 with the guest values if necessary.
1768 */
1769 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1770 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1771 {
1772 pVmcb->guest.u64DR7 = pCtx->dr[7];
1773 pVmcb->guest.u64DR6 = pCtx->dr[6];
1774 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1775 pVCpu->hm.s.fUsingHyperDR7 = false;
1776 }
1777
1778 /*
1779 * If the guest has enabled debug registers, we need to load them prior to
1780 * executing guest code so they'll trigger at the right time.
1781 */
1782 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1783 {
1784#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1785 if ( CPUMIsGuestInLongModeEx(pCtx)
1786 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1787 {
1788 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1789 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1790 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1791 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1792 }
1793 else
1794#endif
1795 if (!CPUMIsGuestDebugStateActive(pVCpu))
1796 {
1797 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1798 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1799 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1800 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1801 }
1802 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1803 }
1804 /*
1805 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1806 * intercept #DB as DR6 is updated in the VMCB.
1807 *
1808 * Note! If we cared and dared, we could skip intercepting \#DB here.
1809 * However, \#DB shouldn't be performance critical, so we'll play safe
1810 * and keep the code similar to the VT-x code and always intercept it.
1811 */
1812#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1813 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
1814 && !CPUMIsGuestDebugStateActive(pVCpu))
1815#else
1816 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1817#endif
1818 {
1819 fInterceptMovDRx = true;
1820 }
1821 }
1822
1823 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
1824 if (fInterceptMovDRx)
1825 {
1826 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1827 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1828 {
1829 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1830 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1831 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1832 }
1833 }
1834 else
1835 {
1836 if ( pVmcb->ctrl.u16InterceptRdDRx
1837 || pVmcb->ctrl.u16InterceptWrDRx)
1838 {
1839 pVmcb->ctrl.u16InterceptRdDRx = 0;
1840 pVmcb->ctrl.u16InterceptWrDRx = 0;
1841 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1842 }
1843 }
1844 Log4(("hmR0SvmLoadSharedDebugState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
1845}
1846
1847
1848#ifdef VBOX_WITH_NESTED_HWVIRT
1849/**
1850 * Loads the nested-guest APIC state (currently just the TPR).
1851 *
1852 * @param pVCpu The cross context virtual CPU structure.
1853 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1854 */
1855static void hmR0SvmLoadGuestApicStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
1856{
1857 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1858 {
1859 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
1860 pVmcbNstGst->ctrl.IntCtrl.n.u1VIntrMasking = 1;
1861 pVCpu->hm.s.svm.fSyncVTpr = false;
1862 pVmcbNstGst->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_TPR;
1863
1864 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1865 }
1866}
1867#endif
1868
1869/**
1870 * Loads the guest APIC state (currently just the TPR).
1871 *
1872 * @returns VBox status code.
1873 * @param pVCpu The cross context virtual CPU structure.
1874 * @param pVmcb Pointer to the VM control block.
1875 * @param pCtx Pointer to the guest-CPU context.
1876 */
1877static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1878{
1879 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1880 return VINF_SUCCESS;
1881
1882 int rc = VINF_SUCCESS;
1883 PVM pVM = pVCpu->CTX_SUFF(pVM);
1884 if ( PDMHasApic(pVM)
1885 && APICIsEnabled(pVCpu))
1886 {
1887 bool fPendingIntr;
1888 uint8_t u8Tpr;
1889 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1890 AssertRCReturn(rc, rc);
1891
1892 /* Assume that we need to trap all TPR accesses and thus need not check on
1893 every #VMEXIT if we should update the TPR. */
1894 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
1895 pVCpu->hm.s.svm.fSyncVTpr = false;
1896
1897 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1898 if (pVM->hm.s.fTPRPatchingActive)
1899 {
1900 pCtx->msrLSTAR = u8Tpr;
1901 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1902
1903 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1904 if (fPendingIntr)
1905 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1906 else
1907 {
1908 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1909 pVCpu->hm.s.svm.fSyncVTpr = true;
1910 }
1911 }
1912 else
1913 {
1914 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1915 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1916
1917 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1918 if (fPendingIntr)
1919 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1920 else
1921 {
1922 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1923 pVCpu->hm.s.svm.fSyncVTpr = true;
1924 }
1925
1926 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1927 }
1928 }
1929
1930 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1931 return rc;
1932}
1933
1934
1935/**
1936 * Loads the exception interrupts required for guest (or nested-guest) execution in
1937 * the VMCB.
1938 *
1939 * @param pVCpu The cross context virtual CPU structure.
1940 * @param pVmcb Pointer to the VM control block.
1941 * @param pCtx Pointer to the guest-CPU context.
1942 */
1943static void hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1944{
1945 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1946 {
1947 /* Trap #UD for GIM provider (e.g. for hypercalls). */
1948 if (pVCpu->hm.s.fGIMTrapXcptUD)
1949 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
1950 else
1951 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_UD);
1952
1953 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
1954 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
1955 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_BP);
1956 else
1957 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_BP);
1958
1959 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
1960 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
1961 }
1962}
1963
1964
1965#ifdef VBOX_WITH_NESTED_HWVIRT
1966/**
1967 * Loads the intercepts required for nested-guest execution in the VMCB.
1968 *
1969 * This merges the guest and nested-guest intercepts in a way that if the outer
1970 * guest intercepts an exception we need to intercept it in the nested-guest as
1971 * well and handle it accordingly.
1972 *
1973 * @param pVCpu The cross context virtual CPU structure.
1974 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1975 * @param pCtx Pointer to the guest-CPU context.
1976 */
1977static void hmR0SvmLoadGuestXcptInterceptsNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst, PCPUMCTX pCtx)
1978{
1979 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1980 {
1981 /* First, load the guest intercepts into the guest VMCB. */
1982 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
1983 Assert(!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR));
1984 hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
1985
1986 /* Next, merge the intercepts into the nested-guest VMCB. */
1987 pVmcbNstGst->ctrl.u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
1988 pVmcbNstGst->ctrl.u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
1989
1990 /* Always intercept CR0, CR4 reads and writes as we alter them. */
1991 pVmcbNstGst->ctrl.u16InterceptRdCRx |= RT_BIT(0) | RT_BIT(4);
1992 pVmcbNstGst->ctrl.u16InterceptWrCRx |= RT_BIT(0) | RT_BIT(4);
1993
1994 /* Always intercept CR3 reads and writes without nested-paging as we load shadow page tables. */
1995 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1996 {
1997 pVmcbNstGst->ctrl.u16InterceptRdCRx |= RT_BIT(3);
1998 pVmcbNstGst->ctrl.u16InterceptWrCRx |= RT_BIT(3);
1999 }
2000
2001 /** @todo Figure out debugging with nested-guests, till then just intercept
2002 * all DR[0-15] accesses. */
2003 pVmcbNstGst->ctrl.u16InterceptRdDRx |= 0xffff;
2004 pVmcbNstGst->ctrl.u16InterceptWrDRx |= 0xffff;
2005
2006 pVmcbNstGst->ctrl.u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2007 pVmcbNstGst->ctrl.u64InterceptCtrl |= pVmcb->ctrl.u64InterceptCtrl
2008 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2009
2010 /*
2011 * Adjust control intercepts while executing the nested-guest that differ
2012 * from the outer guest intercepts.
2013 *
2014 * VMMCALL when not intercepted raises a \#UD exception in the guest. However,
2015 * other SVM instructions like VMSAVE when not intercept can cause havoc on the
2016 * host as they can write to any location in physical memory, hence they always
2017 * need to be intercepted (see below).
2018 */
2019 Assert( (pVmcbNstGst->ctrl.u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2020 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2021 pVmcbNstGst->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VMMCALL;
2022
2023 /*
2024 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2025 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2026 */
2027 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2028 {
2029 pVmcbNstGst->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2030 | SVM_CTRL_INTERCEPT_VMLOAD;
2031 }
2032
2033 /*
2034 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2035 * CLGI/STGI instructions executed by the nested-guest.
2036 */
2037 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2038 {
2039 pVmcbNstGst->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2040 | SVM_CTRL_INTERCEPT_STGI;
2041 }
2042
2043 /* Finally, update the VMCB clean bits. */
2044 pVmcbNstGst->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2045
2046 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS));
2047 }
2048}
2049#endif
2050
2051
2052/**
2053 * Sets up the appropriate function to run guest code.
2054 *
2055 * @returns VBox status code.
2056 * @param pVCpu The cross context virtual CPU structure.
2057 *
2058 * @remarks No-long-jump zone!!!
2059 */
2060static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu)
2061{
2062 if (CPUMIsGuestInLongMode(pVCpu))
2063 {
2064#ifndef VBOX_ENABLE_64_BITS_GUESTS
2065 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2066#endif
2067 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
2068#if HC_ARCH_BITS == 32
2069 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
2070 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
2071#else
2072 /* 64-bit host or hybrid host. */
2073 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
2074#endif
2075 }
2076 else
2077 {
2078 /* Guest is not in long mode, use the 32-bit handler. */
2079 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2080 }
2081 return VINF_SUCCESS;
2082}
2083
2084
2085/**
2086 * Enters the AMD-V session.
2087 *
2088 * @returns VBox status code.
2089 * @param pVM The cross context VM structure.
2090 * @param pVCpu The cross context virtual CPU structure.
2091 * @param pCpu Pointer to the CPU info struct.
2092 */
2093VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2094{
2095 AssertPtr(pVM);
2096 AssertPtr(pVCpu);
2097 Assert(pVM->hm.s.svm.fSupported);
2098 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2099 NOREF(pVM); NOREF(pCpu);
2100
2101 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2102 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
2103
2104 pVCpu->hm.s.fLeaveDone = false;
2105 return VINF_SUCCESS;
2106}
2107
2108
2109/**
2110 * Thread-context callback for AMD-V.
2111 *
2112 * @param enmEvent The thread-context event.
2113 * @param pVCpu The cross context virtual CPU structure.
2114 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2115 * @thread EMT(pVCpu)
2116 */
2117VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
2118{
2119 NOREF(fGlobalInit);
2120
2121 switch (enmEvent)
2122 {
2123 case RTTHREADCTXEVENT_OUT:
2124 {
2125 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2126 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2127 VMCPU_ASSERT_EMT(pVCpu);
2128
2129 /* No longjmps (log-flush, locks) in this fragile context. */
2130 VMMRZCallRing3Disable(pVCpu);
2131
2132 if (!pVCpu->hm.s.fLeaveDone)
2133 {
2134 hmR0SvmLeave(pVCpu);
2135 pVCpu->hm.s.fLeaveDone = true;
2136 }
2137
2138 /* Leave HM context, takes care of local init (term). */
2139 int rc = HMR0LeaveCpu(pVCpu);
2140 AssertRC(rc); NOREF(rc);
2141
2142 /* Restore longjmp state. */
2143 VMMRZCallRing3Enable(pVCpu);
2144 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2145 break;
2146 }
2147
2148 case RTTHREADCTXEVENT_IN:
2149 {
2150 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2151 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2152 VMCPU_ASSERT_EMT(pVCpu);
2153
2154 /* No longjmps (log-flush, locks) in this fragile context. */
2155 VMMRZCallRing3Disable(pVCpu);
2156
2157 /*
2158 * Initialize the bare minimum state required for HM. This takes care of
2159 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2160 */
2161 int rc = HMR0EnterCpu(pVCpu);
2162 AssertRC(rc); NOREF(rc);
2163 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
2164
2165 pVCpu->hm.s.fLeaveDone = false;
2166
2167 /* Restore longjmp state. */
2168 VMMRZCallRing3Enable(pVCpu);
2169 break;
2170 }
2171
2172 default:
2173 break;
2174 }
2175}
2176
2177
2178/**
2179 * Saves the host state.
2180 *
2181 * @returns VBox status code.
2182 * @param pVM The cross context VM structure.
2183 * @param pVCpu The cross context virtual CPU structure.
2184 *
2185 * @remarks No-long-jump zone!!!
2186 */
2187VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
2188{
2189 NOREF(pVM);
2190 NOREF(pVCpu);
2191 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2192 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
2193 return VINF_SUCCESS;
2194}
2195
2196
2197/**
2198 * Loads the guest state into the VMCB.
2199 *
2200 * The CPU state will be loaded from these fields on every successful VM-entry.
2201 * Also sets up the appropriate VMRUN function to execute guest code based on
2202 * the guest CPU mode.
2203 *
2204 * @returns VBox status code.
2205 * @param pVM The cross context VM structure.
2206 * @param pVCpu The cross context virtual CPU structure.
2207 * @param pCtx Pointer to the guest-CPU context.
2208 *
2209 * @remarks No-long-jump zone!!!
2210 */
2211static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2212{
2213 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2214
2215 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2216 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
2217
2218 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
2219
2220 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
2221 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
2222
2223 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
2224 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
2225
2226 pVmcb->guest.u64RIP = pCtx->rip;
2227 pVmcb->guest.u64RSP = pCtx->rsp;
2228 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2229 pVmcb->guest.u64RAX = pCtx->rax;
2230
2231#ifdef VBOX_WITH_NESTED_HWVIRT
2232 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable == 1)
2233 {
2234 Assert(pVM->hm.s.svm.fVGif);
2235 pVmcb->ctrl.IntCtrl.n.u1VGif = pCtx->hwvirt.svm.fGif;
2236 }
2237#endif
2238
2239 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
2240 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
2241
2242 hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
2243
2244 rc = hmR0SvmSetupVMRunHandler(pVCpu);
2245 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
2246
2247 /* Clear any unused and reserved bits. */
2248 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
2249 | HM_CHANGED_GUEST_RSP
2250 | HM_CHANGED_GUEST_RFLAGS
2251 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
2252 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
2253 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
2254 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
2255 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
2256 | HM_CHANGED_SVM_RESERVED2
2257 | HM_CHANGED_SVM_RESERVED3
2258 | HM_CHANGED_SVM_RESERVED4);
2259
2260 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
2261 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
2262 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
2263 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2264
2265 Log4(("hmR0SvmLoadGuestState: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 CR4=%#RX32 ESP=%#RX32 EBP=%#RX32\n",
2266 pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4, pCtx->esp, pCtx->ebp));
2267 Log4(("hmR0SvmLoadGuestState: SS={%04x base=%016RX64 limit=%08x flags=%08x}\n", pCtx->ss.Sel, pCtx->ss.u64Base,
2268 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
2269 Log4(("hmR0SvmLoadGuestState: FS={%04x base=%016RX64 limit=%08x flags=%08x}\n", pCtx->fs.Sel, pCtx->fs.u64Base,
2270 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
2271 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
2272 return rc;
2273}
2274
2275
2276#ifdef VBOX_WITH_NESTED_HWVIRT
2277/**
2278 * Caches the nested-guest VMCB fields before we modify them for execution using
2279 * hardware-assisted SVM.
2280 *
2281 * @returns true if the VMCB was previously already cached, false otherwise.
2282 * @param pCtx Pointer to the guest-CPU context.
2283 *
2284 * @sa HMSvmNstGstVmExitNotify.
2285 */
2286static bool hmR0SvmVmRunCacheVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
2287{
2288 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2289 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2290 PCSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
2291 PSVMNESTEDVMCBCACHE pNstGstVmcbCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2292
2293 /*
2294 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2295 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2296 *
2297 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2298 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2299 */
2300 bool const fWasCached = pCtx->hwvirt.svm.fHMCachedVmcb;
2301 if (!fWasCached)
2302 {
2303 pNstGstVmcbCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2304 pNstGstVmcbCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2305 pNstGstVmcbCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2306 pNstGstVmcbCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2307 pNstGstVmcbCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2308 pNstGstVmcbCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2309 pNstGstVmcbCache->u64CR0 = pVmcbNstGstState->u64CR0;
2310 pNstGstVmcbCache->u64CR3 = pVmcbNstGstState->u64CR3;
2311 pNstGstVmcbCache->u64CR4 = pVmcbNstGstState->u64CR4;
2312 pNstGstVmcbCache->u64EFER = pVmcbNstGstState->u64EFER;
2313 pNstGstVmcbCache->u64DBGCTL = pVmcbNstGstState->u64DBGCTL;
2314 pNstGstVmcbCache->u64IOPMPhysAddr = pVmcbNstGstCtrl->u64IOPMPhysAddr;
2315 pNstGstVmcbCache->u64MSRPMPhysAddr = pVmcbNstGstCtrl->u64MSRPMPhysAddr;
2316 pNstGstVmcbCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2317 pNstGstVmcbCache->u32VmcbCleanBits = pVmcbNstGstCtrl->u32VmcbCleanBits;
2318 pNstGstVmcbCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2319 pNstGstVmcbCache->TLBCtrl = pVmcbNstGstCtrl->TLBCtrl;
2320 pNstGstVmcbCache->u1NestedPaging = pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging;
2321 pNstGstVmcbCache->u1LbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2322 pCtx->hwvirt.svm.fHMCachedVmcb = true;
2323 Log4(("hmR0SvmVmRunCacheVmcb: Cached VMCB fields\n"));
2324 }
2325
2326 return fWasCached;
2327}
2328
2329
2330/**
2331 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2332 *
2333 * @param pVCpu The cross context virtual CPU structure.
2334 * @param pCtx Pointer to the guest-CPU context.
2335 */
2336static void hmR0SvmVmRunSetupVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
2337{
2338 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2339 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2340
2341 /*
2342 * First cache the nested-guest VMCB fields we may potentially modify.
2343 */
2344 bool const fVmcbCached = hmR0SvmVmRunCacheVmcb(pVCpu, pCtx);
2345 if (!fVmcbCached)
2346 {
2347 /*
2348 * The IOPM of the nested-guest can be ignored because the the guest always
2349 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2350 * into the nested-guest one and swap it back on the #VMEXIT.
2351 */
2352 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2353
2354 /*
2355 * Load the host-physical address into the MSRPM rather than the nested-guest
2356 * physical address (currently we trap all MSRs in the nested-guest).
2357 */
2358 pVmcbNstGstCtrl->u64MSRPMPhysAddr = g_HCPhysNstGstMsrBitmap;
2359
2360 /*
2361 * Use the same nested-paging as the "outer" guest. We can't dynamically
2362 * switch off nested-paging suddenly while executing a VM (see assertion at the
2363 * end of Trap0eHandler in PGMAllBth.h).
2364 */
2365 pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2366
2367 /* For now copy the LBR info. from outer guest VMCB. */
2368 /** @todo fix this later. */
2369 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2370 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2371 pVmcbNstGst->guest.u64DBGCTL = pVmcb->guest.u64DBGCTL;
2372 }
2373 else
2374 {
2375 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2376 Assert(pVmcbNstGstCtrl->u64MSRPMPhysAddr = g_HCPhysNstGstMsrBitmap);
2377 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2378 }
2379}
2380
2381
2382/**
2383 * Loads the nested-guest state into the VMCB.
2384 *
2385 * @returns VBox status code.
2386 * @param pVCpu The cross context virtual CPU structure.
2387 * @param pCtx Pointer to the guest-CPU context.
2388 *
2389 * @remarks No-long-jump zone!!!
2390 */
2391static int hmR0SvmLoadGuestStateNested(PVMCPU pVCpu, PCPUMCTX pCtx)
2392{
2393 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
2394
2395 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2396 Assert(pVmcbNstGst);
2397
2398 hmR0SvmVmRunSetupVmcb(pVCpu, pCtx);
2399
2400 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcbNstGst, pCtx);
2401 AssertRCReturn(rc, rc);
2402
2403 /*
2404 * We need to load the entire state (including FS, GS etc.) as we could be continuing
2405 * to execute the nested-guest at any point (not just immediately after VMRUN) and thus
2406 * the VMCB can possibly be out-of-sync with the actual nested-guest state if it was
2407 * executed in IEM.
2408 */
2409 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcbNstGst, pCtx);
2410 hmR0SvmLoadGuestMsrs(pVCpu, pVmcbNstGst, pCtx);
2411 hmR0SvmLoadGuestApicStateNested(pVCpu, pVmcbNstGst);
2412
2413 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2414 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2415 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2416 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2417
2418#ifdef VBOX_WITH_NESTED_HWVIRT
2419 Assert(pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable == 0); /* Nested VGIF not supported yet. */
2420#endif
2421
2422 hmR0SvmLoadGuestXcptInterceptsNested(pVCpu, pVmcbNstGst, pCtx);
2423
2424 rc = hmR0SvmSetupVMRunHandler(pVCpu);
2425 AssertRCReturn(rc, rc);
2426
2427 /* Clear any unused and reserved bits. */
2428 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
2429 | HM_CHANGED_GUEST_RSP
2430 | HM_CHANGED_GUEST_RFLAGS
2431 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
2432 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
2433 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
2434 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
2435 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
2436 | HM_CHANGED_SVM_RESERVED2
2437 | HM_CHANGED_SVM_RESERVED3
2438 | HM_CHANGED_SVM_RESERVED4);
2439
2440 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
2441 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
2442 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
2443 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2444
2445#ifdef VBOX_STRICT
2446 hmR0SvmLogState(pVCpu, pVmcbNstGst, pCtx, "hmR0SvmLoadGuestStateNested", HMSVM_LOG_ALL, 0 /* uVerbose */);
2447#endif
2448 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
2449 return rc;
2450}
2451#endif
2452
2453
2454/**
2455 * Loads the state shared between the host and guest or nested-guest into the
2456 * VMCB.
2457 *
2458 * @param pVCpu The cross context virtual CPU structure.
2459 * @param pVmcb Pointer to the VM control block.
2460 * @param pCtx Pointer to the guest-CPU context.
2461 *
2462 * @remarks No-long-jump zone!!!
2463 */
2464static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
2465{
2466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2467 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2468
2469 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
2470 {
2471 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
2472 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
2473 }
2474
2475 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
2476 {
2477 /** @todo Figure out stepping with nested-guest. */
2478 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2479 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
2480 else
2481 {
2482 pVmcb->guest.u64DR6 = pCtx->dr[6];
2483 pVmcb->guest.u64DR7 = pCtx->dr[7];
2484 Log4(("hmR0SvmLoadSharedState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2485 }
2486
2487 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
2488 }
2489
2490 /* Unused on AMD-V. */
2491 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
2492
2493 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
2494 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2495}
2496
2497
2498/**
2499 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
2500 * context.
2501 *
2502 * Currently there is no residual state left in the CPU that is not updated in the
2503 * VMCB.
2504 *
2505 * @returns VBox status code.
2506 * @param pVCpu The cross context virtual CPU structure.
2507 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2508 * out-of-sync. Make sure to update the required fields
2509 * before using them.
2510 * @param pVmcb Pointer to the VM control block.
2511 */
2512static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PCSVMVMCB pVmcb)
2513{
2514 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2515
2516 pMixedCtx->rip = pVmcb->guest.u64RIP;
2517 pMixedCtx->rsp = pVmcb->guest.u64RSP;
2518 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
2519 pMixedCtx->rax = pVmcb->guest.u64RAX;
2520
2521#ifdef VBOX_WITH_NESTED_HWVIRT
2522 /*
2523 * Guest Virtual GIF (Global Interrupt Flag).
2524 */
2525 if ( pVmcb->ctrl.IntCtrl.n.u1VGifEnable == 1
2526 && !CPUMIsGuestInSvmNestedHwVirtMode(pMixedCtx))
2527 {
2528 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fVGif);
2529 pMixedCtx->hwvirt.svm.fGif = pVmcb->ctrl.IntCtrl.n.u1VGif;
2530 }
2531#endif
2532
2533 /*
2534 * Guest interrupt shadow.
2535 */
2536 if (pVmcb->ctrl.IntShadow.n.u1IntShadow)
2537 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
2538 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2539 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2540
2541 /*
2542 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
2543 */
2544 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
2545
2546 /*
2547 * Guest MSRs.
2548 */
2549 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
2550 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
2551 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
2552 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
2553 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
2554 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
2555 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
2556 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
2557
2558 /*
2559 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
2560 */
2561 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, CS, cs);
2562 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, SS, ss);
2563 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, DS, ds);
2564 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, ES, es);
2565 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, FS, fs);
2566 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, GS, gs);
2567
2568 /*
2569 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
2570 * register (yet).
2571 */
2572 /** @todo SELM might need to be fixed as it too should not care about the
2573 * granularity bit. See @bugref{6785}. */
2574 if ( !pMixedCtx->cs.Attr.n.u1Granularity
2575 && pMixedCtx->cs.Attr.n.u1Present
2576 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
2577 {
2578 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
2579 pMixedCtx->cs.Attr.n.u1Granularity = 1;
2580 }
2581
2582 HMSVM_ASSERT_SEG_GRANULARITY(cs);
2583 HMSVM_ASSERT_SEG_GRANULARITY(ss);
2584 HMSVM_ASSERT_SEG_GRANULARITY(ds);
2585 HMSVM_ASSERT_SEG_GRANULARITY(es);
2586 HMSVM_ASSERT_SEG_GRANULARITY(fs);
2587 HMSVM_ASSERT_SEG_GRANULARITY(gs);
2588
2589 /*
2590 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
2591 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
2592 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
2593 * See AMD spec. 15.5.1 "Basic operation".
2594 */
2595 Assert(!(pVmcb->guest.u8CPL & ~0x3));
2596 uint8_t const uCpl = pVmcb->guest.u8CPL;
2597 if (pMixedCtx->ss.Attr.n.u2Dpl != uCpl)
2598 {
2599 Log4(("hmR0SvmSaveGuestState: CPL differs. SS.DPL=%u, CPL=%u, overwriting SS.DPL!\n", pMixedCtx->ss.Attr.n.u2Dpl, uCpl));
2600 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
2601 }
2602
2603 /*
2604 * Guest TR.
2605 * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
2606 * between Intel and AMD. See @bugref{6208#c39}.
2607 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2608 */
2609 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, TR, tr);
2610 if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2611 {
2612 if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2613 || CPUMIsGuestInLongModeEx(pMixedCtx))
2614 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2615 else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2616 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2617 }
2618
2619 /*
2620 * Guest Descriptor-Table registers (GDTR, IDTR, LDTR).
2621 */
2622 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, LDTR, ldtr);
2623 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
2624 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
2625
2626 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
2627 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
2628
2629 /*
2630 * Guest Debug registers.
2631 */
2632 if (!pVCpu->hm.s.fUsingHyperDR7)
2633 {
2634 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
2635 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
2636 }
2637 else
2638 {
2639 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
2640 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
2641 }
2642
2643 /*
2644 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
2645 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
2646 */
2647 if ( pVmcb->ctrl.NestedPaging.n.u1NestedPaging
2648 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
2649 {
2650 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
2651 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
2652 }
2653
2654#ifdef VBOX_STRICT
2655 if (CPUMIsGuestInSvmNestedHwVirtMode(pMixedCtx))
2656 hmR0SvmLogState(pVCpu, pVmcb, pMixedCtx, "hmR0SvmSaveGuestStateNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR, 0 /* uVerbose */);
2657#endif
2658}
2659
2660
2661/**
2662 * Does the necessary state syncing before returning to ring-3 for any reason
2663 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2664 *
2665 * @param pVCpu The cross context virtual CPU structure.
2666 *
2667 * @remarks No-long-jmp zone!!!
2668 */
2669static void hmR0SvmLeave(PVMCPU pVCpu)
2670{
2671 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2672 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2673 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2674
2675 /*
2676 * !!! IMPORTANT !!!
2677 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2678 */
2679
2680 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2681 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
2682 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0); /** @todo r=ramshankar: This shouldn't be necessary, it's set in HMR0EnterCpu. */
2683
2684 /*
2685 * Restore host debug registers if necessary and resync on next R0 reentry.
2686 */
2687#ifdef VBOX_STRICT
2688 if (CPUMIsHyperDebugStateActive(pVCpu))
2689 {
2690 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
2691 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2692 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2693 }
2694#endif
2695 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
2696 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);/** @todo r=ramshankar: This shouldn't be necessary, it's set in HMR0EnterCpu. */
2697
2698 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2699 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2700
2701 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2702 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
2703 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
2704 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
2705 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2706
2707 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2708}
2709
2710
2711/**
2712 * Leaves the AMD-V session.
2713 *
2714 * @returns VBox status code.
2715 * @param pVCpu The cross context virtual CPU structure.
2716 */
2717static int hmR0SvmLeaveSession(PVMCPU pVCpu)
2718{
2719 HM_DISABLE_PREEMPT();
2720 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2721 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2722
2723 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
2724 and done this from the SVMR0ThreadCtxCallback(). */
2725 if (!pVCpu->hm.s.fLeaveDone)
2726 {
2727 hmR0SvmLeave(pVCpu);
2728 pVCpu->hm.s.fLeaveDone = true;
2729 }
2730
2731 /*
2732 * !!! IMPORTANT !!!
2733 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2734 */
2735
2736 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2737 /* Deregister hook now that we've left HM context before re-enabling preemption. */
2738 VMMR0ThreadCtxHookDisable(pVCpu);
2739
2740 /* Leave HM context. This takes care of local init (term). */
2741 int rc = HMR0LeaveCpu(pVCpu);
2742
2743 HM_RESTORE_PREEMPT();
2744 return rc;
2745}
2746
2747
2748/**
2749 * Does the necessary state syncing before doing a longjmp to ring-3.
2750 *
2751 * @returns VBox status code.
2752 * @param pVCpu The cross context virtual CPU structure.
2753 *
2754 * @remarks No-long-jmp zone!!!
2755 */
2756static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
2757{
2758 return hmR0SvmLeaveSession(pVCpu);
2759}
2760
2761
2762/**
2763 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2764 * any remaining host state) before we longjump to ring-3 and possibly get
2765 * preempted.
2766 *
2767 * @param pVCpu The cross context virtual CPU structure.
2768 * @param enmOperation The operation causing the ring-3 longjump.
2769 * @param pvUser The user argument (pointer to the possibly
2770 * out-of-date guest-CPU context).
2771 */
2772static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2773{
2774 RT_NOREF_PV(pvUser);
2775
2776 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
2777 {
2778 /*
2779 * !!! IMPORTANT !!!
2780 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
2781 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
2782 */
2783 VMMRZCallRing3RemoveNotification(pVCpu);
2784 VMMRZCallRing3Disable(pVCpu);
2785 HM_DISABLE_PREEMPT();
2786
2787 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2788 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2789
2790 /* Restore host debug registers if necessary and resync on next R0 reentry. */
2791 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2792
2793 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
2794 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2795 VMMR0ThreadCtxHookDisable(pVCpu);
2796
2797 /* Leave HM context. This takes care of local init (term). */
2798 HMR0LeaveCpu(pVCpu);
2799
2800 HM_RESTORE_PREEMPT();
2801 return VINF_SUCCESS;
2802 }
2803
2804 Assert(pVCpu);
2805 Assert(pvUser);
2806 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2807 HMSVM_ASSERT_PREEMPT_SAFE();
2808
2809 VMMRZCallRing3Disable(pVCpu);
2810 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2811
2812 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2813 int rc = hmR0SvmLongJmpToRing3(pVCpu);
2814 AssertRCReturn(rc, rc);
2815
2816 VMMRZCallRing3Enable(pVCpu);
2817 return VINF_SUCCESS;
2818}
2819
2820
2821/**
2822 * Take necessary actions before going back to ring-3.
2823 *
2824 * An action requires us to go back to ring-3. This function does the necessary
2825 * steps before we can safely return to ring-3. This is not the same as longjmps
2826 * to ring-3, this is voluntary.
2827 *
2828 * @returns VBox status code.
2829 * @param pVM The cross context VM structure.
2830 * @param pVCpu The cross context virtual CPU structure.
2831 * @param pCtx Pointer to the guest-CPU context.
2832 * @param rcExit The reason for exiting to ring-3. Can be
2833 * VINF_VMM_UNKNOWN_RING3_CALL.
2834 */
2835static int hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2836{
2837 Assert(pVM);
2838 Assert(pVCpu);
2839 Assert(pCtx);
2840 HMSVM_ASSERT_PREEMPT_SAFE();
2841
2842 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2843 VMMRZCallRing3Disable(pVCpu);
2844 Log4(("hmR0SvmExitToRing3: VCPU[%u]: rcExit=%d LocalFF=%#RX32 GlobalFF=%#RX32\n", pVCpu->idCpu, rcExit,
2845 pVCpu->fLocalForcedActions, pVM->fGlobalForcedActions));
2846
2847 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2848 if (pVCpu->hm.s.Event.fPending)
2849 {
2850 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2851 Assert(!pVCpu->hm.s.Event.fPending);
2852 }
2853
2854 /* Sync. the necessary state for going back to ring-3. */
2855 hmR0SvmLeaveSession(pVCpu);
2856 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2857
2858 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2859 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2860 | CPUM_CHANGED_LDTR
2861 | CPUM_CHANGED_GDTR
2862 | CPUM_CHANGED_IDTR
2863 | CPUM_CHANGED_TR
2864 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2865 if ( pVM->hm.s.fNestedPaging
2866 && CPUMIsGuestPagingEnabledEx(pCtx))
2867 {
2868 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2869 }
2870
2871 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
2872 if (rcExit != VINF_EM_RAW_INTERRUPT)
2873 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2874
2875 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2876
2877 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
2878 VMMRZCallRing3RemoveNotification(pVCpu);
2879 VMMRZCallRing3Enable(pVCpu);
2880
2881 /*
2882 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
2883 * and if we're injecting an event we should have a TRPM trap pending.
2884 */
2885 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
2886 pVCpu->hm.s.u32HMError = rcExit,
2887 VERR_SVM_IPE_5);
2888 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
2889 pVCpu->hm.s.u32HMError = rcExit,
2890 VERR_SVM_IPE_4);
2891
2892 return rcExit;
2893}
2894
2895
2896#ifdef VBOX_WITH_NESTED_HWVIRT
2897/**
2898 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2899 * intercepts for the nested-guest.
2900 *
2901 * @param pVM The cross context VM structure.
2902 * @param pVCpu The cross context virtual CPU structure.
2903 * @param pCtx Pointer to the nested guest-CPU context.
2904 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2905 *
2906 * @remarks No-long-jump zone!!!
2907 */
2908static void hmR0SvmUpdateTscOffsettingNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcbNstGst)
2909{
2910 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
2911
2912 bool fParavirtTsc;
2913 uint64_t uTscOffset;
2914 bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
2915
2916 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2917 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2918
2919 /*
2920 * Only avoid intercepting if we determined the host TSC (++) is stable enough
2921 * to not intercept -and- the nested-hypervisor itself does not want to intercept it.
2922 */
2923 if ( fCanUseRealTsc
2924 && !(pVmcbNstGstCache->u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
2925 {
2926 pVmcbNstGstCtrl->u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSC;
2927 pVmcbNstGstCtrl->u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSCP;
2928 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2929 }
2930 else
2931 {
2932 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSC;
2933 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSCP;
2934 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2935 }
2936
2937 /* Apply the nested-guest VMCB's TSC offset over the guest one. */
2938 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
2939
2940 /* Update the nested-guest VMCB with the combined TSC offset (of guest and nested-guest). */
2941 pVmcbNstGstCtrl->u64TSCOffset = uTscOffset;
2942
2943 /* Finally update the VMCB clean bits since we touched the intercepts as well as the TSC offset. */
2944 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2945
2946 if (fParavirtTsc)
2947 {
2948 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
2949 information before every VM-entry, hence disable it for performance sake. */
2950 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
2951 }
2952}
2953#endif
2954
2955
2956/**
2957 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2958 * intercepts.
2959 *
2960 * @param pVM The cross context VM structure.
2961 * @param pVCpu The cross context virtual CPU structure.
2962 * @param pVmcb Pointer to the VM control block.
2963 *
2964 * @remarks No-long-jump zone!!!
2965 */
2966static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu, PSVMVMCB pVmcb)
2967{
2968 bool fParavirtTsc;
2969 bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
2970 if (fCanUseRealTsc)
2971 {
2972 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSC;
2973 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSCP;
2974 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2975 }
2976 else
2977 {
2978 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSC;
2979 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSCP;
2980 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2981 }
2982 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2983
2984 /** @todo later optimize this to be done elsewhere and not before every
2985 * VM-entry. */
2986 if (fParavirtTsc)
2987 {
2988 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
2989 information before every VM-entry, hence disable it for performance sake. */
2990#if 0
2991 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
2992 AssertRC(rc);
2993#endif
2994 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
2995 }
2996}
2997
2998
2999/**
3000 * Sets an event as a pending event to be injected into the guest.
3001 *
3002 * @param pVCpu The cross context virtual CPU structure.
3003 * @param pEvent Pointer to the SVM event.
3004 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3005 * page-fault.
3006 *
3007 * @remarks Statistics counter assumes this is a guest event being reflected to
3008 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3009 */
3010DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3011{
3012 Assert(!pVCpu->hm.s.Event.fPending);
3013 Assert(pEvent->n.u1Valid);
3014
3015 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3016 pVCpu->hm.s.Event.fPending = true;
3017 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3018
3019 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
3020 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3021}
3022
3023
3024/**
3025 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3026 *
3027 * @param pVCpu The cross context virtual CPU structure.
3028 */
3029DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3030{
3031 SVMEVENT Event;
3032 Event.u = 0;
3033 Event.n.u1Valid = 1;
3034 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3035 Event.n.u8Vector = X86_XCPT_UD;
3036 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3037}
3038
3039
3040/**
3041 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3042 *
3043 * @param pVCpu The cross context virtual CPU structure.
3044 */
3045DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3046{
3047 SVMEVENT Event;
3048 Event.u = 0;
3049 Event.n.u1Valid = 1;
3050 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3051 Event.n.u8Vector = X86_XCPT_DB;
3052 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3053}
3054
3055
3056/**
3057 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3058 *
3059 * @param pVCpu The cross context virtual CPU structure.
3060 * @param pCtx Pointer to the guest-CPU context.
3061 * @param u32ErrCode The error-code for the page-fault.
3062 * @param uFaultAddress The page fault address (CR2).
3063 *
3064 * @remarks This updates the guest CR2 with @a uFaultAddress!
3065 */
3066DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3067{
3068 SVMEVENT Event;
3069 Event.u = 0;
3070 Event.n.u1Valid = 1;
3071 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3072 Event.n.u8Vector = X86_XCPT_PF;
3073 Event.n.u1ErrorCodeValid = 1;
3074 Event.n.u32ErrorCode = u32ErrCode;
3075
3076 /* Update CR2 of the guest. */
3077 if (pCtx->cr2 != uFaultAddress)
3078 {
3079 pCtx->cr2 = uFaultAddress;
3080 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3081 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
3082 }
3083
3084 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3085}
3086
3087
3088/**
3089 * Sets a device-not-available (\#NM) exception as pending-for-injection into
3090 * the VM.
3091 *
3092 * @param pVCpu The cross context virtual CPU structure.
3093 */
3094DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3095{
3096 SVMEVENT Event;
3097 Event.u = 0;
3098 Event.n.u1Valid = 1;
3099 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3100 Event.n.u8Vector = X86_XCPT_NM;
3101 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3102}
3103
3104
3105/**
3106 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3107 *
3108 * @param pVCpu The cross context virtual CPU structure.
3109 */
3110DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3111{
3112 SVMEVENT Event;
3113 Event.u = 0;
3114 Event.n.u1Valid = 1;
3115 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3116 Event.n.u8Vector = X86_XCPT_MF;
3117 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3118}
3119
3120
3121/**
3122 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3123 *
3124 * @param pVCpu The cross context virtual CPU structure.
3125 */
3126DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3127{
3128 SVMEVENT Event;
3129 Event.u = 0;
3130 Event.n.u1Valid = 1;
3131 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3132 Event.n.u8Vector = X86_XCPT_DF;
3133 Event.n.u1ErrorCodeValid = 1;
3134 Event.n.u32ErrorCode = 0;
3135 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3136}
3137
3138
3139/**
3140 * Injects an event into the guest upon VMRUN by updating the relevant field
3141 * in the VMCB.
3142 *
3143 * @param pVCpu The cross context virtual CPU structure.
3144 * @param pVmcb Pointer to the guest VM control block.
3145 * @param pCtx Pointer to the guest-CPU context.
3146 * @param pEvent Pointer to the event.
3147 *
3148 * @remarks No-long-jump zone!!!
3149 * @remarks Requires CR0!
3150 */
3151DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
3152{
3153 NOREF(pVCpu); NOREF(pCtx);
3154
3155 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3156 pVmcb->ctrl.EventInject.u = pEvent->u;
3157 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3158
3159 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
3160 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3161}
3162
3163
3164
3165/**
3166 * Converts any TRPM trap into a pending HM event. This is typically used when
3167 * entering from ring-3 (not longjmp returns).
3168 *
3169 * @param pVCpu The cross context virtual CPU structure.
3170 */
3171static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
3172{
3173 Assert(TRPMHasTrap(pVCpu));
3174 Assert(!pVCpu->hm.s.Event.fPending);
3175
3176 uint8_t uVector;
3177 TRPMEVENT enmTrpmEvent;
3178 RTGCUINT uErrCode;
3179 RTGCUINTPTR GCPtrFaultAddress;
3180 uint8_t cbInstr;
3181
3182 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
3183 AssertRC(rc);
3184
3185 SVMEVENT Event;
3186 Event.u = 0;
3187 Event.n.u1Valid = 1;
3188 Event.n.u8Vector = uVector;
3189
3190 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3191 if (enmTrpmEvent == TRPM_TRAP)
3192 {
3193 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3194 switch (uVector)
3195 {
3196 case X86_XCPT_NMI:
3197 {
3198 Event.n.u3Type = SVM_EVENT_NMI;
3199 break;
3200 }
3201
3202 case X86_XCPT_PF:
3203 case X86_XCPT_DF:
3204 case X86_XCPT_TS:
3205 case X86_XCPT_NP:
3206 case X86_XCPT_SS:
3207 case X86_XCPT_GP:
3208 case X86_XCPT_AC:
3209 {
3210 Event.n.u1ErrorCodeValid = 1;
3211 Event.n.u32ErrorCode = uErrCode;
3212 break;
3213 }
3214 }
3215 }
3216 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3217 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3218 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3219 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3220 else
3221 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3222
3223 rc = TRPMResetTrap(pVCpu);
3224 AssertRC(rc);
3225
3226 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3227 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3228
3229 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3230}
3231
3232
3233/**
3234 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3235 * AMD-V to execute any instruction.
3236 *
3237 * @param pVCpu The cross context virtual CPU structure.
3238 */
3239static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3240{
3241 Assert(pVCpu->hm.s.Event.fPending);
3242 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3243
3244 SVMEVENT Event;
3245 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3246
3247 uint8_t uVector = Event.n.u8Vector;
3248 uint8_t uVectorType = Event.n.u3Type;
3249 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
3250
3251 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
3252
3253 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3254 AssertRC(rc);
3255
3256 if (Event.n.u1ErrorCodeValid)
3257 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3258
3259 if ( uVectorType == SVM_EVENT_EXCEPTION
3260 && uVector == X86_XCPT_PF)
3261 {
3262 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3263 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3264 }
3265 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
3266 {
3267 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
3268 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
3269 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
3270 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3271 }
3272 pVCpu->hm.s.Event.fPending = false;
3273}
3274
3275
3276/**
3277 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3278 * now.
3279 *
3280 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3281 * @param pVCpu The cross context virtual CPU structure.
3282 * @param pCtx Pointer to the guest-CPU context.
3283 *
3284 * @remarks No-long-jump zone!!!
3285 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3286 */
3287DECLINLINE(bool) hmR0SvmIsIntrShadowActive(PVMCPU pVCpu, PCPUMCTX pCtx)
3288{
3289 /*
3290 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
3291 * inhibit interrupts or clear any existing interrupt-inhibition.
3292 */
3293 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3294 {
3295 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
3296 {
3297 /*
3298 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3299 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
3300 */
3301 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3302 return false;
3303 }
3304 return true;
3305 }
3306 return false;
3307}
3308
3309
3310/**
3311 * Sets the virtual interrupt intercept control in the VMCB.
3312 *
3313 * @param pVmcb Pointer to the VM control block.
3314 */
3315DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
3316{
3317 /*
3318 * When AVIC isn't supported, indicate that a virtual interrupt is pending and to
3319 * cause a #VMEXIT when the guest is ready to accept interrupts. At #VMEXIT, we
3320 * then get the interrupt from the APIC (updating ISR at the right time) and
3321 * inject the interrupt.
3322 *
3323 * With AVIC is supported, we could make use of the asynchronously delivery without
3324 * #VMEXIT and we would be passing the AVIC page to SVM.
3325 */
3326 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3327 {
3328 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqPending == 0);
3329 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3330 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VINTR;
3331 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
3332 Log4(("Set VINTR intercept\n"));
3333 }
3334}
3335
3336
3337/**
3338 * Clears the virtual interrupt intercept control in the VMCB as
3339 * we are figured the guest is unable process any interrupts
3340 * at this point of time.
3341 *
3342 * @param pVmcb Pointer to the VM control block.
3343 */
3344DECLINLINE(void) hmR0SvmClearVirtIntrIntercept(PSVMVMCB pVmcb)
3345{
3346 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
3347 {
3348 Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqPending == 1);
3349 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 0;
3350 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
3351 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
3352 Log4(("Cleared VINTR intercept\n"));
3353 }
3354}
3355
3356
3357/**
3358 * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
3359 * \#VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
3360 * virtual NMIs.
3361 *
3362 * @param pVmcb Pointer to the VM control block.
3363 */
3364DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
3365{
3366 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET))
3367 {
3368 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_IRET;
3369 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3370
3371 Log4(("Setting IRET intercept\n"));
3372 }
3373}
3374
3375
3376/**
3377 * Clears the IRET intercept control in the VMCB.
3378 *
3379 * @param pVmcb Pointer to the VM control block.
3380 */
3381DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
3382{
3383 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
3384 {
3385 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_IRET;
3386 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
3387
3388 Log4(("Clearing IRET intercept\n"));
3389 }
3390}
3391
3392#ifdef VBOX_WITH_NESTED_HWVIRT
3393
3394
3395/**
3396 * Evaluates the event to be delivered to the nested-guest and sets it as the
3397 * pending event.
3398 *
3399 * @returns VBox strict status code.
3400 * @param pVCpu The cross context virtual CPU structure.
3401 * @param pCtx Pointer to the guest-CPU context.
3402 */
3403static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu, PCPUMCTX pCtx)
3404{
3405 Log4Func(("\n"));
3406
3407 Assert(!pVCpu->hm.s.Event.fPending);
3408
3409 bool const fGif = pCtx->hwvirt.svm.fGif;
3410 if (fGif)
3411 {
3412 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
3413
3414 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3415
3416 /*
3417 * Check if the nested-guest can receive NMIs.
3418 * NMIs are higher priority than regular interrupts.
3419 */
3420 /** @todo SMI. SMIs take priority over NMIs. */
3421 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI))
3422 {
3423 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3424 if (fBlockNmi)
3425 hmR0SvmSetIretIntercept(pVmcbNstGst);
3426 else if (fIntShadow)
3427 {
3428 /** @todo Figure this out, how we shall manage virt. intercept if the
3429 * nested-guest already has one set and/or if we really need it? */
3430 //hmR0SvmSetVirtIntrIntercept(pVmcbNstGst);
3431 }
3432 else
3433 {
3434 Log4(("Pending NMI\n"));
3435
3436 SVMEVENT Event;
3437 Event.u = 0;
3438 Event.n.u1Valid = 1;
3439 Event.n.u8Vector = X86_XCPT_NMI;
3440 Event.n.u3Type = SVM_EVENT_NMI;
3441
3442 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3443 hmR0SvmSetIretIntercept(pVmcbNstGst);
3444 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3445 return VINF_SUCCESS;
3446 }
3447 }
3448
3449 /*
3450 * Check if the nested-guest can receive external interrupts (generated by
3451 * the guest's PIC/APIC).
3452 *
3453 * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
3454 * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
3455 *
3456 * External interrupts that are generated for the outer guest may be intercepted
3457 * depending on how the nested-guest VMCB was programmed by guest software.
3458 *
3459 * Physical interrupts always take priority over virtual interrupts,
3460 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3461 */
3462 if (!fIntShadow)
3463 {
3464 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3465 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3466 && !pVCpu->hm.s.fSingleInstruction
3467 && CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx))
3468 {
3469 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INTR)
3470 {
3471 Log4(("Intercepting external interrupt -> #VMEXIT\n"));
3472 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3473 }
3474
3475 uint8_t u8Interrupt;
3476 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3477 if (RT_SUCCESS(rc))
3478 {
3479 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
3480
3481 SVMEVENT Event;
3482 Event.u = 0;
3483 Event.n.u1Valid = 1;
3484 Event.n.u8Vector = u8Interrupt;
3485 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3486
3487 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3488 }
3489 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3490 {
3491 /*
3492 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3493 * updated eventually when the TPR is written by the guest.
3494 */
3495 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3496 }
3497 else
3498 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3499 }
3500
3501 /*
3502 * Check if the nested-guest is intercepting virtual (using V_IRQ and related fields)
3503 * interrupt injection. The virtual interrupt injection itself, if any, will be done
3504 * by the physical CPU.
3505 */
3506#if 0
3507 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)
3508 && (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
3509 && CPUMCanSvmNstGstTakeVirtIntr(pCtx))
3510 {
3511 Log4(("Intercepting virtual interrupt -> #VMEXIT\n"));
3512 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_VINTR, 0, 0);
3513 }
3514#endif
3515 }
3516 }
3517
3518 return VINF_SUCCESS;
3519}
3520#endif
3521
3522
3523/**
3524 * Evaluates the event to be delivered to the guest and sets it as the pending
3525 * event.
3526 *
3527 * @param pVCpu The cross context virtual CPU structure.
3528 * @param pCtx Pointer to the guest-CPU context.
3529 *
3530 * @remarks Don't use this function when we are actively executing a
3531 * nested-guest, use hmR0SvmEvaluatePendingEventNested instead.
3532 */
3533static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
3534{
3535 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3536 Assert(!pVCpu->hm.s.Event.fPending);
3537
3538#ifdef VBOX_WITH_NESTED_HWVIRT
3539 bool const fGif = pCtx->hwvirt.svm.fGif;
3540#else
3541 bool const fGif = true;
3542#endif
3543 Log4Func(("fGif=%RTbool\n", fGif));
3544
3545 /*
3546 * If the global interrupt flag (GIF) isn't set, even NMIs and other events are blocked.
3547 * See AMD spec. Table 15-10. "Effect of the GIF on Interrupt Handling".
3548 */
3549 if (fGif)
3550 {
3551 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3552 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3553 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3554 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3555
3556 Log4Func(("fBlockInt=%RTbool fIntShadow=%RTbool APIC/PIC_Pending=%RTbool\n", fBlockInt, fIntShadow,
3557 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
3558
3559 /** @todo SMI. SMIs take priority over NMIs. */
3560 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
3561 {
3562 if (fBlockNmi)
3563 hmR0SvmSetIretIntercept(pVmcb);
3564 else if (fIntShadow)
3565 hmR0SvmSetVirtIntrIntercept(pVmcb);
3566 else
3567 {
3568 Log4(("Pending NMI\n"));
3569
3570 SVMEVENT Event;
3571 Event.u = 0;
3572 Event.n.u1Valid = 1;
3573 Event.n.u8Vector = X86_XCPT_NMI;
3574 Event.n.u3Type = SVM_EVENT_NMI;
3575
3576 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3577 hmR0SvmSetIretIntercept(pVmcb);
3578 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3579 return;
3580 }
3581 }
3582 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3583 && !pVCpu->hm.s.fSingleInstruction)
3584 {
3585 /*
3586 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
3587 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
3588 */
3589 if ( !fBlockInt
3590 && !fIntShadow)
3591 {
3592 uint8_t u8Interrupt;
3593 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3594 if (RT_SUCCESS(rc))
3595 {
3596 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
3597
3598 SVMEVENT Event;
3599 Event.u = 0;
3600 Event.n.u1Valid = 1;
3601 Event.n.u8Vector = u8Interrupt;
3602 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3603
3604 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3605 }
3606 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3607 {
3608 /*
3609 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3610 * updated eventually when the TPR is written by the guest.
3611 */
3612 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3613 }
3614 else
3615 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3616 }
3617 else
3618 hmR0SvmSetVirtIntrIntercept(pVmcb);
3619 }
3620 }
3621}
3622
3623
3624/**
3625 * Injects any pending events into the guest or nested-guest.
3626 *
3627 * @param pVCpu The cross context virtual CPU structure.
3628 * @param pCtx Pointer to the guest-CPU context.
3629 * @param pVmcb Pointer to the VM control block.
3630 */
3631static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
3632{
3633 Assert(!TRPMHasTrap(pVCpu));
3634 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3635
3636 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3637#ifdef VBOX_STRICT
3638 bool const fGif = pCtx->hwvirt.svm.fGif;
3639 bool fAllowInt = fGif;
3640 if (fGif)
3641 {
3642 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3643 fAllowInt = CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx);
3644 else
3645 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3646 }
3647#endif
3648
3649 if (pVCpu->hm.s.Event.fPending)
3650 {
3651 SVMEVENT Event;
3652 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3653 Assert(Event.n.u1Valid);
3654
3655 /*
3656 * Validate event injection pre-conditions.
3657 */
3658 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3659 {
3660 Assert(fAllowInt);
3661 Assert(!fIntShadow);
3662 }
3663 else if (Event.n.u3Type == SVM_EVENT_NMI)
3664 {
3665 Assert(fGif);
3666 Assert(!fIntShadow);
3667 }
3668
3669 /*
3670 * Inject it (update VMCB for injection by the hardware).
3671 */
3672 Log4(("Injecting pending HM event\n"));
3673 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
3674 pVCpu->hm.s.Event.fPending = false;
3675
3676 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3677 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3678 else
3679 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3680 }
3681 else
3682 {
3683#ifdef VBOX_WITH_NESTED_HWVIRT
3684 /*
3685 * If IEM emulated VMRUN and injected an event, it would not clear the EVENTINJ::Valid bit
3686 * as a physical CPU clears it in the VMCB as part of the #VMEXIT (if the AMD spec. is to
3687 * believed, real behavior might differ). Regardless, IEM does it only on #VMEXIT for now
3688 * and since we are continuing nested-guest execution using hardware-assisted SVM, we need
3689 * to clear this field otherwise we will inject the event twice, see @bugref{7243#78}.
3690 */
3691 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3692 pVmcb->ctrl.EventInject.n.u1Valid = 0;
3693#endif
3694 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
3695 }
3696
3697 /*
3698 * Update the guest interrupt shadow in the guest or nested-guest VMCB.
3699 *
3700 * For nested-guests: We need to update it too for the scenario where IEM executes
3701 * the nested-guest but execution later continues here with an interrupt shadow active.
3702 */
3703 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
3704}
3705
3706
3707/**
3708 * Reports world-switch error and dumps some useful debug info.
3709 *
3710 * @param pVM The cross context VM structure.
3711 * @param pVCpu The cross context virtual CPU structure.
3712 * @param rcVMRun The return code from VMRUN (or
3713 * VERR_SVM_INVALID_GUEST_STATE for invalid
3714 * guest-state).
3715 * @param pCtx Pointer to the guest-CPU context.
3716 */
3717static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
3718{
3719 NOREF(pCtx);
3720 HMSVM_ASSERT_PREEMPT_SAFE();
3721 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3722 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3723
3724 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3725 {
3726 hmR0DumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
3727#ifdef VBOX_STRICT
3728 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
3729 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3730 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3731 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3732 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3733 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3734 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3735 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3736 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3737 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3738
3739 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3740 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3741 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3742
3743 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3744 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3745 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
3746 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved0));
3747 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3748 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3749 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3750 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3751 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
3752 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved1));
3753 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3754 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3755
3756 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
3757 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
3758 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3759 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3760 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3761 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3762 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3763 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3764 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3765 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3766 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3767 Log4(("ctrl.NestedPaging.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPaging.n.u1NestedPaging));
3768 Log4(("ctrl.NestedPaging.u1Sev %#x\n", pVmcb->ctrl.NestedPaging.n.u1Sev));
3769 Log4(("ctrl.NestedPaging.u1SevEs %#x\n", pVmcb->ctrl.NestedPaging.n.u1SevEs));
3770 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3771 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3772 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3773 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3774 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3775 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3776
3777 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3778
3779 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
3780 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
3781
3782 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3783 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3784 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3785 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3786 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3787 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3788 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3789 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3790 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3791 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3792 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3793 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3794 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3795 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3796 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3797 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3798 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3799 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3800 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3801 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3802
3803 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3804 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3805
3806 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3807 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3808 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3809 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3810
3811 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3812 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3813
3814 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3815 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3816 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3817 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3818
3819 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3820 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3821 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3822 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3823 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3824 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3825 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3826
3827 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3828 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3829 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3830 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3831
3832 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3833 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3834 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3835
3836 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3837 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3838 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3839 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3840 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3841 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3842 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
3843 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3844 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3845 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3846 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3847 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3848#endif /* VBOX_STRICT */
3849 }
3850 else
3851 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
3852
3853 NOREF(pVmcb);
3854}
3855
3856
3857/**
3858 * Check per-VM and per-VCPU force flag actions that require us to go back to
3859 * ring-3 for one reason or another.
3860 *
3861 * @returns VBox status code (information status code included).
3862 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3863 * ring-3.
3864 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3865 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3866 * interrupts)
3867 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3868 * all EMTs to be in ring-3.
3869 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3870 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3871 * to the EM loop.
3872 *
3873 * @param pVM The cross context VM structure.
3874 * @param pVCpu The cross context virtual CPU structure.
3875 * @param pCtx Pointer to the guest-CPU context.
3876 */
3877static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3878{
3879 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3880
3881 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
3882 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
3883 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
3884
3885 /* Update pending interrupts into the APIC's IRR. */
3886 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3887 APICUpdatePendingInterrupts(pVCpu);
3888
3889 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
3890 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3891 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
3892 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3893 {
3894 /* Pending PGM C3 sync. */
3895 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
3896 {
3897 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3898 if (rc != VINF_SUCCESS)
3899 {
3900 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
3901 return rc;
3902 }
3903 }
3904
3905 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
3906 /* -XXX- what was that about single stepping? */
3907 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
3908 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3909 {
3910 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3911 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
3912 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
3913 return rc;
3914 }
3915
3916 /* Pending VM request packets, such as hardware interrupts. */
3917 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
3918 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
3919 {
3920 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
3921 return VINF_EM_PENDING_REQUEST;
3922 }
3923
3924 /* Pending PGM pool flushes. */
3925 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
3926 {
3927 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
3928 return VINF_PGM_POOL_FLUSH_PENDING;
3929 }
3930
3931 /* Pending DMA requests. */
3932 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
3933 {
3934 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
3935 return VINF_EM_RAW_TO_R3;
3936 }
3937 }
3938
3939 return VINF_SUCCESS;
3940}
3941
3942
3943#ifdef VBOX_WITH_NESTED_HWVIRT
3944/**
3945 * Does the preparations before executing nested-guest code in AMD-V.
3946 *
3947 * @returns VBox status code (informational status codes included).
3948 * @retval VINF_SUCCESS if we can proceed with running the guest.
3949 * @retval VINF_* scheduling changes, we have to go back to ring-3.
3950 *
3951 * @param pVM The cross context VM structure.
3952 * @param pVCpu The cross context virtual CPU structure.
3953 * @param pCtx Pointer to the guest-CPU context.
3954 * @param pSvmTransient Pointer to the SVM transient structure.
3955 *
3956 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
3957 * @sa hmR0SvmPreRunGuest.
3958 */
3959static int hmR0SvmPreRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3960{
3961 HMSVM_ASSERT_PREEMPT_SAFE();
3962
3963 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3964 {
3965#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
3966 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
3967 return VINF_EM_RESCHEDULE_REM;
3968#endif
3969 }
3970 else
3971 return VINF_SVM_VMEXIT;
3972
3973 /* Check force flag actions that might require us to go back to ring-3. */
3974 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
3975 if (rc != VINF_SUCCESS)
3976 return rc;
3977
3978 if (TRPMHasTrap(pVCpu))
3979 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
3980 else if (!pVCpu->hm.s.Event.fPending)
3981 {
3982 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu, pCtx);
3983 if (rcStrict != VINF_SUCCESS)
3984 return VBOXSTRICTRC_VAL(rcStrict);
3985 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3986 return VINF_SVM_VMEXIT;
3987 }
3988
3989 /*
3990 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
3991 * Just do it in software, see @bugref{8411}.
3992 * NB: If we could continue a task switch exit we wouldn't need to do this.
3993 */
3994 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
3995 && pVCpu->hm.s.Event.fPending
3996 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
3997 {
3998 return VINF_EM_RAW_INJECT_TRPM_EVENT;
3999 }
4000
4001#ifdef HMSVM_SYNC_FULL_NESTED_GUEST_STATE
4002 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
4003#endif
4004
4005 /*
4006 * Load the nested-guest state.
4007 */
4008 rc = hmR0SvmLoadGuestStateNested(pVCpu, pCtx);
4009 AssertRCReturn(rc, rc);
4010 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull); /** @todo Get new STAM counter for this? */
4011
4012 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware SVM. */
4013 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
4014
4015 /*
4016 * No longjmps to ring-3 from this point on!!!
4017 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4018 * This also disables flushing of the R0-logger instance (if any).
4019 */
4020 VMMRZCallRing3Disable(pVCpu);
4021
4022 /*
4023 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
4024 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
4025 *
4026 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
4027 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
4028 *
4029 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
4030 * executing guest code.
4031 */
4032 pSvmTransient->fEFlags = ASMIntDisableFlags();
4033 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4034 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4035 {
4036 ASMSetFlags(pSvmTransient->fEFlags);
4037 VMMRZCallRing3Enable(pVCpu);
4038 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4039 return VINF_EM_RAW_TO_R3;
4040 }
4041 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4042 {
4043 ASMSetFlags(pSvmTransient->fEFlags);
4044 VMMRZCallRing3Enable(pVCpu);
4045 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
4046 return VINF_EM_RAW_INTERRUPT;
4047 }
4048
4049 /*
4050 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
4051 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
4052 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
4053 *
4054 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
4055 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
4056 */
4057 if (pVCpu->hm.s.Event.fPending)
4058 {
4059 SVMEVENT Event;
4060 Event.u = pVCpu->hm.s.Event.u64IntInfo;
4061 if ( Event.n.u1Valid
4062 && Event.n.u3Type == SVM_EVENT_NMI
4063 && Event.n.u8Vector == X86_XCPT_NMI
4064 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4065 {
4066 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4067 }
4068 }
4069
4070 return VINF_SUCCESS;
4071}
4072#endif
4073
4074
4075/**
4076 * Does the preparations before executing guest code in AMD-V.
4077 *
4078 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4079 * recompiler. We must be cautious what we do here regarding committing
4080 * guest-state information into the VMCB assuming we assuredly execute the guest
4081 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4082 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4083 * that the recompiler can (and should) use them when it resumes guest
4084 * execution. Otherwise such operations must be done when we can no longer
4085 * exit to ring-3.
4086 *
4087 * @returns VBox status code (informational status codes included).
4088 * @retval VINF_SUCCESS if we can proceed with running the guest.
4089 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4090 *
4091 * @param pVM The cross context VM structure.
4092 * @param pVCpu The cross context virtual CPU structure.
4093 * @param pCtx Pointer to the guest-CPU context.
4094 * @param pSvmTransient Pointer to the SVM transient structure.
4095 */
4096static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4097{
4098 HMSVM_ASSERT_PREEMPT_SAFE();
4099 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
4100
4101 /* Check force flag actions that might require us to go back to ring-3. */
4102 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
4103 if (rc != VINF_SUCCESS)
4104 return rc;
4105
4106 if (TRPMHasTrap(pVCpu))
4107 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4108 else if (!pVCpu->hm.s.Event.fPending)
4109 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
4110
4111 /*
4112 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4113 * Just do it in software, see @bugref{8411}.
4114 * NB: If we could continue a task switch exit we wouldn't need to do this.
4115 */
4116 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
4117 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
4118 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4119
4120#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4121 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
4122#endif
4123
4124 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
4125 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
4126 AssertRCReturn(rc, rc);
4127 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
4128
4129 /*
4130 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
4131 * so we can update it on the way back if the guest changed the TPR.
4132 */
4133 if (pVCpu->hm.s.svm.fSyncVTpr)
4134 {
4135 if (pVM->hm.s.fTPRPatchingActive)
4136 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
4137 else
4138 {
4139 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4140 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4141 }
4142 }
4143
4144 /*
4145 * No longjmps to ring-3 from this point on!!!
4146 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4147 * This also disables flushing of the R0-logger instance (if any).
4148 */
4149 VMMRZCallRing3Disable(pVCpu);
4150
4151 /*
4152 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
4153 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
4154 *
4155 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
4156 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
4157 *
4158 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
4159 * executing guest code.
4160 */
4161 pSvmTransient->fEFlags = ASMIntDisableFlags();
4162 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4163 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4164 {
4165 ASMSetFlags(pSvmTransient->fEFlags);
4166 VMMRZCallRing3Enable(pVCpu);
4167 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4168 return VINF_EM_RAW_TO_R3;
4169 }
4170 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4171 {
4172 ASMSetFlags(pSvmTransient->fEFlags);
4173 VMMRZCallRing3Enable(pVCpu);
4174 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
4175 return VINF_EM_RAW_INTERRUPT;
4176 }
4177
4178 /*
4179 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
4180 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
4181 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
4182 *
4183 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
4184 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
4185 */
4186 if (pVCpu->hm.s.Event.fPending)
4187 {
4188 SVMEVENT Event;
4189 Event.u = pVCpu->hm.s.Event.u64IntInfo;
4190 if ( Event.n.u1Valid
4191 && Event.n.u3Type == SVM_EVENT_NMI
4192 && Event.n.u8Vector == X86_XCPT_NMI
4193 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4194 {
4195 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4196 }
4197 }
4198
4199 return VINF_SUCCESS;
4200}
4201
4202
4203#ifdef VBOX_WITH_NESTED_HWVIRT
4204/**
4205 * Prepares to run nested-guest code in AMD-V and we've committed to doing so. This
4206 * means there is no backing out to ring-3 or anywhere else at this point.
4207 *
4208 * @param pVM The cross context VM structure.
4209 * @param pVCpu The cross context virtual CPU structure.
4210 * @param pCtx Pointer to the guest-CPU context.
4211 * @param pSvmTransient Pointer to the SVM transient structure.
4212 *
4213 * @remarks Called with preemption disabled.
4214 * @remarks No-long-jump zone!!!
4215 */
4216static void hmR0SvmPreRunGuestCommittedNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4217{
4218 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4219 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4220 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4221 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4222
4223 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4224 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4225
4226 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4227 hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcbNstGst);
4228
4229 if ( pVCpu->hm.s.fPreloadGuestFpu
4230 && !CPUMIsGuestFPUStateActive(pVCpu))
4231 {
4232 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4233 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
4234 }
4235
4236 /* Load the state shared between host and nested-guest (FPU, debug). */
4237 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
4238 hmR0SvmLoadSharedState(pVCpu, pVmcbNstGst, pCtx);
4239
4240 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
4241 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
4242
4243 /* Setup TSC offsetting. */
4244 RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
4245 if ( pSvmTransient->fUpdateTscOffsetting
4246 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
4247 {
4248 hmR0SvmUpdateTscOffsettingNested(pVM, pVCpu, pCtx, pVmcbNstGst);
4249 pSvmTransient->fUpdateTscOffsetting = false;
4250 }
4251
4252 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4253 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
4254 pVmcbNstGst->ctrl.u32VmcbCleanBits = 0;
4255
4256 /* Store status of the shared guest-host state at the time of VMRUN. */
4257#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4258 if (CPUMIsGuestInLongModeEx(pCtx))
4259 {
4260 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4261 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4262 }
4263 else
4264#endif
4265 {
4266 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4267 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4268 }
4269 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
4270
4271 /* The TLB flushing would've already been setup by the nested-hypervisor. */
4272 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4273 hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcbNstGst);
4274 Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
4275
4276 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4277
4278 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4279 to start executing. */
4280
4281 /*
4282 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
4283 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
4284 *
4285 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4286 */
4287 uint8_t *pbMsrBitmap = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4288 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
4289 && !(pVmcbNstGst->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4290 {
4291 hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4292 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4293 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
4294 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
4295 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
4296 pSvmTransient->fRestoreTscAuxMsr = true;
4297 }
4298 else
4299 {
4300 hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4301 pSvmTransient->fRestoreTscAuxMsr = false;
4302 }
4303
4304 /*
4305 * If VMCB Clean bits isn't supported by the CPU or exposed by the guest,
4306 * mark all state-bits as dirty indicating to the CPU to re-load from VMCB.
4307 */
4308 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pCtx);
4309 if (!fSupportsVmcbCleanBits)
4310 pVmcbNstGst->ctrl.u32VmcbCleanBits = 0;
4311}
4312#endif
4313
4314
4315/**
4316 * Prepares to run guest code in AMD-V and we've committed to doing so. This
4317 * means there is no backing out to ring-3 or anywhere else at this
4318 * point.
4319 *
4320 * @param pVM The cross context VM structure.
4321 * @param pVCpu The cross context virtual CPU structure.
4322 * @param pCtx Pointer to the guest-CPU context.
4323 * @param pSvmTransient Pointer to the SVM transient structure.
4324 *
4325 * @remarks Called with preemption disabled.
4326 * @remarks No-long-jump zone!!!
4327 */
4328static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4329{
4330 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4331 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4332 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4333 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
4334
4335 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4336 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4337
4338 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4339 hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcb);
4340
4341 if ( pVCpu->hm.s.fPreloadGuestFpu
4342 && !CPUMIsGuestFPUStateActive(pVCpu))
4343 {
4344 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4345 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
4346 }
4347
4348 /* Load the state shared between host and guest (FPU, debug). */
4349 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
4350 hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
4351
4352 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
4353 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
4354
4355 /* Setup TSC offsetting. */
4356 RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
4357 if ( pSvmTransient->fUpdateTscOffsetting
4358 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
4359 {
4360 hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pVmcb);
4361 pSvmTransient->fUpdateTscOffsetting = false;
4362 }
4363
4364 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4365 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
4366 pVmcb->ctrl.u32VmcbCleanBits = 0;
4367
4368 /* Store status of the shared guest-host state at the time of VMRUN. */
4369#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4370 if (CPUMIsGuestInLongModeEx(pCtx))
4371 {
4372 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4373 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4374 }
4375 else
4376#endif
4377 {
4378 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4379 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4380 }
4381 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
4382
4383 /* Flush the appropriate tagged-TLB entries. */
4384 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4385 hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcb);
4386 Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
4387
4388 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4389
4390 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4391 to start executing. */
4392
4393 /*
4394 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
4395 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
4396 *
4397 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4398 */
4399 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4400 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
4401 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4402 {
4403 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4404 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4405 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
4406 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
4407 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
4408 pSvmTransient->fRestoreTscAuxMsr = true;
4409 }
4410 else
4411 {
4412 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4413 pSvmTransient->fRestoreTscAuxMsr = false;
4414 }
4415
4416 /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
4417 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pCtx);
4418 if (!fSupportsVmcbCleanBits)
4419 pVmcb->ctrl.u32VmcbCleanBits = 0;
4420}
4421
4422
4423/**
4424 * Wrapper for running the guest code in AMD-V.
4425 *
4426 * @returns VBox strict status code.
4427 * @param pVM The cross context VM structure.
4428 * @param pVCpu The cross context virtual CPU structure.
4429 * @param pCtx Pointer to the guest-CPU context.
4430 *
4431 * @remarks No-long-jump zone!!!
4432 */
4433DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4434{
4435 /*
4436 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4437 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4438 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4439 */
4440#ifdef VBOX_WITH_KERNEL_USING_XMM
4441 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
4442 pVCpu->hm.s.svm.pfnVMRun);
4443#else
4444 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
4445#endif
4446}
4447
4448
4449#ifdef VBOX_WITH_NESTED_HWVIRT
4450/**
4451 * Wrapper for running the nested-guest code in AMD-V.
4452 *
4453 * @returns VBox strict status code.
4454 * @param pVM The cross context VM structure.
4455 * @param pVCpu The cross context virtual CPU structure.
4456 * @param pCtx Pointer to the guest-CPU context.
4457 *
4458 * @remarks No-long-jump zone!!!
4459 */
4460DECLINLINE(int) hmR0SvmRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4461{
4462 /*
4463 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4464 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4465 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4466 */
4467#ifdef VBOX_WITH_KERNEL_USING_XMM
4468 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
4469 pVCpu->hm.s.svm.pfnVMRun);
4470#else
4471 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
4472#endif
4473}
4474
4475
4476/**
4477 * Performs some essential restoration of state after running nested-guest code in
4478 * AMD-V.
4479 *
4480 * @param pVM The cross context VM structure.
4481 * @param pVCpu The cross context virtual CPU structure.
4482 * @param pMixedCtx Pointer to the nested-guest-CPU context. The data maybe
4483 * out-of-sync. Make sure to update the required fields
4484 * before using them.
4485 * @param pSvmTransient Pointer to the SVM transient structure.
4486 * @param rcVMRun Return code of VMRUN.
4487 *
4488 * @remarks Called with interrupts disabled.
4489 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4490 * unconditionally when it is safe to do so.
4491 */
4492static void hmR0SvmPostRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4493{
4494 RT_NOREF(pVM);
4495 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4496
4497 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4498 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4499
4500 /* TSC read must be done early for maximum accuracy. */
4501 PSVMVMCB pVmcbNstGst = pMixedCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4502 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4503 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
4504 if (!(pVmcbNstGstCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4505 {
4506 /*
4507 * Undo what we did in hmR0SvmUpdateTscOffsettingNested() but don't restore the
4508 * nested-guest VMCB TSC offset here. It shall eventually be restored on #VMEXIT
4509 * later by HMSvmNstGstVmExitNotify().
4510 */
4511 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcbNstGstCtrl->u64TSCOffset - pVmcbNstGstCache->u64TSCOffset);
4512 }
4513
4514 if (pSvmTransient->fRestoreTscAuxMsr)
4515 {
4516 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4517 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4518 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4519 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4520 }
4521
4522 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
4523 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4524 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4525
4526 Assert(!(ASMGetFlags() & X86_EFL_IF));
4527 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4528 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4529
4530 /* Mark the VMCB-state cache as unmodified by VMM. */
4531 pVmcbNstGstCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL;
4532
4533 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4534 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4535 {
4536 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4537 return;
4538 }
4539
4540 pSvmTransient->u64ExitCode = pVmcbNstGstCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4541 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcbNstGstCtrl->u64ExitCode);/* Update the #VMEXIT history array. */
4542 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4543 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4544
4545 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
4546 hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcbNstGst); /* Save the nested-guest state from the VMCB to the
4547 guest-CPU context. */
4548}
4549#endif
4550
4551/**
4552 * Performs some essential restoration of state after running guest code in
4553 * AMD-V.
4554 *
4555 * @param pVM The cross context VM structure.
4556 * @param pVCpu The cross context virtual CPU structure.
4557 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4558 * out-of-sync. Make sure to update the required fields
4559 * before using them.
4560 * @param pSvmTransient Pointer to the SVM transient structure.
4561 * @param rcVMRun Return code of VMRUN.
4562 *
4563 * @remarks Called with interrupts disabled.
4564 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4565 * unconditionally when it is safe to do so.
4566 */
4567static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4568{
4569 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4570
4571 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4572 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4573
4574 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4575 pVmcb->ctrl.u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4576
4577 /* TSC read must be done early for maximum accuracy. */
4578 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4579 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
4580
4581 if (pSvmTransient->fRestoreTscAuxMsr)
4582 {
4583 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4584 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4585 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4586 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4587 }
4588
4589 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
4590 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4591 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4592
4593 Assert(!(ASMGetFlags() & X86_EFL_IF));
4594 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4595 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4596
4597 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4598 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4599 {
4600 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4601 return;
4602 }
4603
4604 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
4605 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
4606 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4607 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4608
4609 hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcb); /* Save the guest state from the VMCB to the guest-CPU context. */
4610
4611 if (RT_LIKELY(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID))
4612 {
4613 if (pVCpu->hm.s.svm.fSyncVTpr)
4614 {
4615 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4616 if ( pVM->hm.s.fTPRPatchingActive
4617 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4618 {
4619 int rc = APICSetTpr(pVCpu, pMixedCtx->msrLSTAR & 0xff);
4620 AssertRC(rc);
4621 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4622 }
4623 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
4624 {
4625 int rc = APICSetTpr(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
4626 AssertRC(rc);
4627 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4628 }
4629 }
4630 }
4631}
4632
4633
4634/**
4635 * Runs the guest code using AMD-V.
4636 *
4637 * @returns VBox status code.
4638 * @param pVM The cross context VM structure.
4639 * @param pVCpu The cross context virtual CPU structure.
4640 * @param pCtx Pointer to the guest-CPU context.
4641 * @param pcLoops Pointer to the number of executed loops.
4642 */
4643static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4644{
4645 uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
4646 Assert(pcLoops);
4647 Assert(*pcLoops <= cMaxResumeLoops);
4648
4649 SVMTRANSIENT SvmTransient;
4650 SvmTransient.fUpdateTscOffsetting = true;
4651
4652 int rc = VERR_INTERNAL_ERROR_5;
4653 for (;;)
4654 {
4655 Assert(!HMR0SuspendPending());
4656 HMSVM_ASSERT_CPU_SAFE();
4657
4658 /* Preparatory work for running guest code, this may force us to return
4659 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4660 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4661 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
4662 if (rc != VINF_SUCCESS)
4663 break;
4664
4665 /*
4666 * No longjmps to ring-3 from this point on!!!
4667 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4668 * This also disables flushing of the R0-logger instance (if any).
4669 */
4670 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
4671 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
4672
4673 /* Restore any residual host-state and save any bits shared between host
4674 and guest into the guest-CPU state. Re-enables interrupts! */
4675 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
4676
4677 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4678 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4679 {
4680 if (rc == VINF_SUCCESS)
4681 rc = VERR_SVM_INVALID_GUEST_STATE;
4682 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4683 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4684 break;
4685 }
4686
4687 /* Handle the #VMEXIT. */
4688 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4689 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4690 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4691 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
4692 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4693 if (rc != VINF_SUCCESS)
4694 break;
4695 if (++(*pcLoops) >= cMaxResumeLoops)
4696 {
4697 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4698 rc = VINF_EM_RAW_INTERRUPT;
4699 break;
4700 }
4701 }
4702
4703 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4704 return rc;
4705}
4706
4707
4708/**
4709 * Runs the guest code using AMD-V in single step mode.
4710 *
4711 * @returns VBox status code.
4712 * @param pVM The cross context VM structure.
4713 * @param pVCpu The cross context virtual CPU structure.
4714 * @param pCtx Pointer to the guest-CPU context.
4715 * @param pcLoops Pointer to the number of executed loops.
4716 */
4717static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4718{
4719 uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
4720 Assert(pcLoops);
4721 Assert(*pcLoops <= cMaxResumeLoops);
4722
4723 SVMTRANSIENT SvmTransient;
4724 SvmTransient.fUpdateTscOffsetting = true;
4725
4726 uint16_t uCsStart = pCtx->cs.Sel;
4727 uint64_t uRipStart = pCtx->rip;
4728
4729 int rc = VERR_INTERNAL_ERROR_5;
4730 for (;;)
4731 {
4732 Assert(!HMR0SuspendPending());
4733 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4734 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4735 (unsigned)RTMpCpuId(), *pcLoops));
4736
4737 /* Preparatory work for running guest code, this may force us to return
4738 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4739 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4740 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
4741 if (rc != VINF_SUCCESS)
4742 break;
4743
4744 /*
4745 * No longjmps to ring-3 from this point on!!!
4746 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4747 * This also disables flushing of the R0-logger instance (if any).
4748 */
4749 VMMRZCallRing3Disable(pVCpu);
4750 VMMRZCallRing3RemoveNotification(pVCpu);
4751 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
4752
4753 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
4754
4755 /*
4756 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
4757 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
4758 */
4759 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
4760 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4761 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4762 {
4763 if (rc == VINF_SUCCESS)
4764 rc = VERR_SVM_INVALID_GUEST_STATE;
4765 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4766 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4767 return rc;
4768 }
4769
4770 /* Handle the #VMEXIT. */
4771 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4772 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4773 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4774 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
4775 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4776 if (rc != VINF_SUCCESS)
4777 break;
4778 if (++(*pcLoops) >= cMaxResumeLoops)
4779 {
4780 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4781 rc = VINF_EM_RAW_INTERRUPT;
4782 break;
4783 }
4784
4785 /*
4786 * Did the RIP change, if so, consider it a single step.
4787 * Otherwise, make sure one of the TFs gets set.
4788 */
4789 if ( pCtx->rip != uRipStart
4790 || pCtx->cs.Sel != uCsStart)
4791 {
4792 rc = VINF_EM_DBG_STEPPED;
4793 break;
4794 }
4795 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4796 }
4797
4798 /*
4799 * Clear the X86_EFL_TF if necessary.
4800 */
4801 if (pVCpu->hm.s.fClearTrapFlag)
4802 {
4803 pVCpu->hm.s.fClearTrapFlag = false;
4804 pCtx->eflags.Bits.u1TF = 0;
4805 }
4806
4807 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4808 return rc;
4809}
4810
4811#ifdef VBOX_WITH_NESTED_HWVIRT
4812/**
4813 * Runs the nested-guest code using AMD-V.
4814 *
4815 * @returns VBox status code.
4816 * @param pVM The cross context VM structure.
4817 * @param pVCpu The cross context virtual CPU structure.
4818 * @param pCtx Pointer to the guest-CPU context.
4819 * @param pcLoops Pointer to the number of executed loops. If we're switching
4820 * from the guest-code execution loop to this nested-guest
4821 * execution loop pass the remainder value, else pass 0.
4822 */
4823static int hmR0SvmRunGuestCodeNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4824{
4825 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4826 Assert(pcLoops);
4827 Assert(*pcLoops <= pVM->hm.s.cMaxResumeLoops);
4828
4829 SVMTRANSIENT SvmTransient;
4830 SvmTransient.fUpdateTscOffsetting = true;
4831
4832 int rc = VERR_INTERNAL_ERROR_4;
4833 for (;;)
4834 {
4835 Assert(!HMR0SuspendPending());
4836 HMSVM_ASSERT_CPU_SAFE();
4837
4838 /* Preparatory work for running nested-guest code, this may force us to return
4839 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4840 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4841 rc = hmR0SvmPreRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient);
4842 if ( rc != VINF_SUCCESS
4843 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4844 {
4845 break;
4846 }
4847
4848 /*
4849 * No longjmps to ring-3 from this point on!!!
4850 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4851 * This also disables flushing of the R0-logger instance (if any).
4852 */
4853 hmR0SvmPreRunGuestCommittedNested(pVM, pVCpu, pCtx, &SvmTransient);
4854
4855 rc = hmR0SvmRunGuestNested(pVM, pVCpu, pCtx);
4856
4857 /* Restore any residual host-state and save any bits shared between host
4858 and guest into the guest-CPU state. Re-enables interrupts! */
4859 hmR0SvmPostRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient, rc);
4860
4861 if (RT_LIKELY( rc == VINF_SUCCESS
4862 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
4863 { /* extremely likely */ }
4864 else
4865 {
4866 /* VMRUN failed, shouldn't really happen, Guru. */
4867 if (rc != VINF_SUCCESS)
4868 break;
4869
4870 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
4871 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
4872 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
4873 break;
4874 }
4875
4876 /* Handle the #VMEXIT. */
4877 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4878 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4879 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
4880 rc = hmR0SvmHandleExitNested(pVCpu, pCtx, &SvmTransient);
4881 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4882 if (rc != VINF_SUCCESS)
4883 break;
4884 if (++(*pcLoops) >= pVM->hm.s.cMaxResumeLoops)
4885 {
4886 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4887 rc = VINF_EM_RAW_INTERRUPT;
4888 break;
4889 }
4890
4891 /** @todo handle single-stepping */
4892 }
4893
4894 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4895 return rc;
4896}
4897#endif
4898
4899
4900/**
4901 * Runs the guest code using AMD-V.
4902 *
4903 * @returns Strict VBox status code.
4904 * @param pVM The cross context VM structure.
4905 * @param pVCpu The cross context virtual CPU structure.
4906 * @param pCtx Pointer to the guest-CPU context.
4907 */
4908VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4909{
4910 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4911 HMSVM_ASSERT_PREEMPT_SAFE();
4912 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
4913
4914 uint32_t cLoops = 0;
4915 int rc;
4916#ifdef VBOX_WITH_NESTED_HWVIRT
4917 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4918#endif
4919 {
4920 if (!pVCpu->hm.s.fSingleInstruction)
4921 rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx, &cLoops);
4922 else
4923 rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx, &cLoops);
4924 }
4925#ifdef VBOX_WITH_NESTED_HWVIRT
4926 else
4927 {
4928 rc = VINF_SVM_VMRUN;
4929 }
4930
4931 /* Re-check the nested-guest condition here as we may be transitioning from the normal
4932 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
4933 if (rc == VINF_SVM_VMRUN)
4934 {
4935 rc = hmR0SvmRunGuestCodeNested(pVM, pVCpu, pCtx, &cLoops);
4936 if (rc == VINF_SVM_VMEXIT)
4937 rc = VINF_SUCCESS;
4938 }
4939#endif
4940
4941 /* Fixup error codes. */
4942 if (rc == VERR_EM_INTERPRETER)
4943 rc = VINF_EM_RAW_EMULATE_INSTR;
4944 else if (rc == VINF_EM_RESET)
4945 rc = VINF_EM_TRIPLE_FAULT;
4946
4947 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4948 rc = hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
4949 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
4950 return rc;
4951}
4952
4953
4954#ifdef VBOX_WITH_NESTED_HWVIRT
4955/**
4956 * Determines whether an IOIO intercept is active for the nested-guest or not.
4957 *
4958 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4959 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4960 */
4961static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4962{
4963 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4964 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4965 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4966 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4967 const uint8_t iEffSeg = pIoExitInfo->n.u3SEG;
4968 const bool fRep = pIoExitInfo->n.u1REP;
4969 const bool fStrIo = pIoExitInfo->n.u1STR;
4970
4971 return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4972 NULL /* pIoExitInfo */);
4973}
4974
4975
4976/**
4977 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4978 * SVM_EXIT_INVALID).
4979 *
4980 * @returns VBox status code (informational status codes included).
4981 * @param pVCpu The cross context virtual CPU structure.
4982 * @param pCtx Pointer to the guest-CPU context.
4983 * @param pSvmTransient Pointer to the SVM transient structure.
4984 */
4985static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4986{
4987 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4988 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4989 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4990
4991#define HM_SVM_VMEXIT_NESTED(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4992 VBOXSTRICTRC_TODO(IEMExecSvmVmexit(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2))
4993
4994 /*
4995 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected
4996 * by the nested-guest. If it isn't, it should be handled by the (outer) guest.
4997 */
4998 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4999 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
5000 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
5001 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
5002 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
5003
5004 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
5005 switch (uExitCode)
5006 {
5007 case SVM_EXIT_CPUID:
5008 {
5009 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
5010 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5011 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
5012 }
5013
5014 case SVM_EXIT_RDTSC:
5015 {
5016 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
5017 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5018 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
5019 }
5020
5021 case SVM_EXIT_RDTSCP:
5022 {
5023 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
5024 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5025 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
5026 }
5027
5028
5029 case SVM_EXIT_MONITOR:
5030 {
5031 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
5032 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5033 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
5034 }
5035
5036 case SVM_EXIT_MWAIT:
5037 {
5038 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
5039 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5040 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
5041 }
5042
5043 case SVM_EXIT_HLT:
5044 {
5045 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
5046 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5047 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
5048 }
5049
5050 case SVM_EXIT_MSR:
5051 {
5052 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
5053 {
5054 uint32_t const idMsr = pCtx->ecx;
5055 uint16_t offMsrpm;
5056 uint32_t uMsrpmBit;
5057 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
5058 if (RT_SUCCESS(rc))
5059 {
5060 void const *pvMsrBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
5061 bool const fInterceptRead = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit);
5062 bool const fInterceptWrite = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit + 1);
5063
5064 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
5065 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
5066 {
5067 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5068 }
5069 }
5070 else
5071 {
5072 /*
5073 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
5074 * See AMD-V spec. "15.11 MSR Intercepts".
5075 */
5076 Assert(rc == VERR_OUT_OF_RANGE);
5077 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5078 }
5079 }
5080 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
5081 }
5082
5083 case SVM_EXIT_IOIO:
5084 {
5085 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
5086 {
5087 void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
5088 SVMIOIOEXITINFO IoExitInfo;
5089 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
5090 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
5091 if (fIntercept)
5092 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5093 }
5094 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
5095 }
5096
5097 case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
5098 {
5099 PVM pVM = pVCpu->CTX_SUFF(pVM);
5100 if (pVM->hm.s.fNestedPaging)
5101 {
5102 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
5103 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
5104
5105 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
5106 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
5107 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
5108
5109 /* If the nested-guest is not intercepting #PFs, forward the #PF to the nested-guest. */
5110 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
5111 return VINF_SUCCESS;
5112 }
5113 return hmR0SvmExitXcptPFNested(pVCpu, pCtx,pSvmTransient);
5114 }
5115
5116 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
5117 {
5118 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_NM))
5119 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5120 hmR0SvmSetPendingXcptNM(pVCpu);
5121 return VINF_SUCCESS;
5122 }
5123
5124 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
5125 {
5126 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
5127 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5128 hmR0SvmSetPendingXcptUD(pVCpu);
5129 return VINF_SUCCESS;
5130 }
5131
5132 case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
5133 {
5134 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
5135 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5136 hmR0SvmSetPendingXcptMF(pVCpu);
5137 return VINF_SUCCESS;
5138 }
5139
5140 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
5141 {
5142 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
5143 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5144 return hmR0SvmNestedExitXcptDB(pVCpu, pCtx, pSvmTransient);
5145 }
5146
5147 case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
5148 {
5149 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
5150 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5151 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
5152 }
5153
5154 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
5155 {
5156 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
5157 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5158 return hmR0SvmNestedExitXcptBP(pVCpu, pCtx, pSvmTransient);
5159 }
5160
5161 case SVM_EXIT_READ_CR0:
5162 case SVM_EXIT_READ_CR3:
5163 case SVM_EXIT_READ_CR4:
5164 {
5165 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5166 if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
5167 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5168 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
5169 }
5170
5171 case SVM_EXIT_WRITE_CR0:
5172 case SVM_EXIT_WRITE_CR3:
5173 case SVM_EXIT_WRITE_CR4:
5174 case SVM_EXIT_WRITE_CR8: /** @todo Shouldn't writes to CR8 go to V_TPR instead since we run with V_INTR_MASKING set?? */
5175 {
5176 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5177 Log4(("hmR0SvmHandleExitNested: Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5178
5179 if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
5180 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5181 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
5182 }
5183
5184 case SVM_EXIT_PAUSE:
5185 {
5186 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
5187 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5188 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
5189 }
5190
5191 case SVM_EXIT_VINTR:
5192 {
5193 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
5194 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5195 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5196 }
5197
5198 case SVM_EXIT_INTR:
5199 case SVM_EXIT_NMI:
5200 case SVM_EXIT_SMI:
5201 {
5202 /*
5203 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5204 *
5205 * Although we don't intercept SMIs, the nested-guest might. Therefore, we
5206 * might get an SMI #VMEXIT here so simply ignore rather than causing a
5207 * corresponding nested-guest #VMEXIT.
5208 */
5209 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
5210 }
5211
5212 case SVM_EXIT_FERR_FREEZE:
5213 {
5214 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5215 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5216 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
5217 }
5218
5219 case SVM_EXIT_INVLPG:
5220 {
5221 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5222 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5223 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
5224 }
5225
5226 case SVM_EXIT_WBINVD:
5227 {
5228 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5229 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5230 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
5231 }
5232
5233 case SVM_EXIT_INVD:
5234 {
5235 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5236 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5237 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
5238 }
5239
5240 case SVM_EXIT_RDPMC:
5241 {
5242 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5243 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5244 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
5245 }
5246
5247 default:
5248 {
5249 switch (uExitCode)
5250 {
5251 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5252 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5253 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5254 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5255 {
5256 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5257 if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5258 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5259 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
5260 }
5261
5262 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5263 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5264 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5265 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5266 {
5267 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5268 if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5269 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5270 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
5271 }
5272
5273 /* The exceptions not handled here are already handled individually above (as they occur more frequently). */
5274 case SVM_EXIT_EXCEPTION_0: /*case SVM_EXIT_EXCEPTION_1:*/ case SVM_EXIT_EXCEPTION_2:
5275 /*case SVM_EXIT_EXCEPTION_3:*/ case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5:
5276 /*case SVM_EXIT_EXCEPTION_6:*/ /*case SVM_EXIT_EXCEPTION_7:*/ case SVM_EXIT_EXCEPTION_8:
5277 case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
5278 case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: /*case SVM_EXIT_EXCEPTION_14:*/
5279 case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: /*case SVM_EXIT_EXCEPTION_17:*/
5280 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_20:
5281 case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
5282 case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26:
5283 case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29:
5284 case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
5285 {
5286 uint8_t const uVector = uExitCode - SVM_EXIT_EXCEPTION_0;
5287 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5288 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5289 return hmR0SvmExitXcptGeneric(pVCpu, pCtx, pSvmTransient);
5290 }
5291
5292 case SVM_EXIT_XSETBV:
5293 {
5294 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5295 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5296 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
5297 }
5298
5299 case SVM_EXIT_TASK_SWITCH:
5300 {
5301 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5302 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5303 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
5304 }
5305
5306 case SVM_EXIT_IRET:
5307 {
5308 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5309 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5310 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
5311 }
5312
5313 case SVM_EXIT_SHUTDOWN:
5314 {
5315 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5316 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5317 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
5318 }
5319
5320 case SVM_EXIT_VMMCALL:
5321 {
5322 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5323 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5324 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
5325 }
5326
5327 case SVM_EXIT_CLGI:
5328 {
5329 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5330 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5331 return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
5332 }
5333
5334 case SVM_EXIT_STGI:
5335 {
5336 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5337 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5338 return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
5339 }
5340
5341 case SVM_EXIT_VMLOAD:
5342 {
5343 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5344 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5345 return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
5346 }
5347
5348 case SVM_EXIT_VMSAVE:
5349 {
5350 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5351 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5352 return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
5353 }
5354
5355 case SVM_EXIT_INVLPGA:
5356 {
5357 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5358 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5359 return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
5360 }
5361
5362 case SVM_EXIT_VMRUN:
5363 {
5364 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5365 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5366 return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
5367 }
5368
5369 case SVM_EXIT_RSM:
5370 {
5371 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5372 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5373 hmR0SvmSetPendingXcptUD(pVCpu);
5374 return VINF_SUCCESS;
5375 }
5376
5377 case SVM_EXIT_SKINIT:
5378 {
5379 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5380 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5381 hmR0SvmSetPendingXcptUD(pVCpu);
5382 return VINF_SUCCESS;
5383 }
5384
5385 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5386 case SVM_EXIT_NPF: /* We don't yet support nested-paging for nested-guests, so this should never happen. */
5387 {
5388 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5389 }
5390
5391 default:
5392 {
5393 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5394 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5395 return VERR_SVM_UNKNOWN_EXIT;
5396 }
5397 }
5398 }
5399 }
5400 /* not reached */
5401
5402#undef HM_SVM_VMEXIT_NESTED
5403}
5404#endif
5405
5406
5407/**
5408 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5409 *
5410 * @returns VBox status code (informational status codes included).
5411 * @param pVCpu The cross context virtual CPU structure.
5412 * @param pCtx Pointer to the guest-CPU context.
5413 * @param pSvmTransient Pointer to the SVM transient structure.
5414 */
5415static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5416{
5417 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5418 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5419
5420 /*
5421 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
5422 * normal workloads (for some definition of "normal").
5423 */
5424 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5425 switch (uExitCode)
5426 {
5427 case SVM_EXIT_NPF:
5428 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
5429
5430 case SVM_EXIT_IOIO:
5431 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
5432
5433 case SVM_EXIT_RDTSC:
5434 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
5435
5436 case SVM_EXIT_RDTSCP:
5437 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
5438
5439 case SVM_EXIT_CPUID:
5440 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
5441
5442 case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
5443 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
5444
5445 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
5446 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
5447
5448 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
5449 return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
5450
5451 case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
5452 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
5453
5454 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
5455 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
5456
5457 case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
5458 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
5459
5460 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
5461 return hmR0SvmExitXcptBP(pVCpu, pCtx, pSvmTransient);
5462
5463 case SVM_EXIT_MONITOR:
5464 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
5465
5466 case SVM_EXIT_MWAIT:
5467 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
5468
5469 case SVM_EXIT_HLT:
5470 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
5471
5472 case SVM_EXIT_READ_CR0:
5473 case SVM_EXIT_READ_CR3:
5474 case SVM_EXIT_READ_CR4:
5475 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
5476
5477 case SVM_EXIT_WRITE_CR0:
5478 case SVM_EXIT_WRITE_CR3:
5479 case SVM_EXIT_WRITE_CR4:
5480 case SVM_EXIT_WRITE_CR8:
5481 {
5482 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5483 Log4(("hmR0SvmHandleExitNested: Write CR%u\n", uCr)); NOREF(uCr);
5484 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
5485 }
5486
5487 case SVM_EXIT_PAUSE:
5488 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
5489
5490 case SVM_EXIT_VMMCALL:
5491 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
5492
5493 case SVM_EXIT_VINTR:
5494 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
5495
5496 case SVM_EXIT_INTR:
5497 case SVM_EXIT_FERR_FREEZE:
5498 case SVM_EXIT_NMI:
5499 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
5500
5501 case SVM_EXIT_MSR:
5502 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
5503
5504 case SVM_EXIT_INVLPG:
5505 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
5506
5507 case SVM_EXIT_WBINVD:
5508 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
5509
5510 case SVM_EXIT_INVD:
5511 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
5512
5513 case SVM_EXIT_RDPMC:
5514 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
5515
5516 default:
5517 {
5518 switch (pSvmTransient->u64ExitCode)
5519 {
5520 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5521 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5522 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5523 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5524 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
5525
5526 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5527 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5528 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5529 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5530 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
5531
5532 case SVM_EXIT_XSETBV:
5533 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
5534
5535 case SVM_EXIT_TASK_SWITCH:
5536 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
5537
5538 case SVM_EXIT_IRET:
5539 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
5540
5541 case SVM_EXIT_SHUTDOWN:
5542 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
5543
5544 case SVM_EXIT_SMI:
5545 case SVM_EXIT_INIT:
5546 {
5547 /*
5548 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5549 * If it ever does, we want to know about it so log the exit code and bail.
5550 */
5551 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5552 }
5553
5554#ifdef VBOX_WITH_NESTED_HWVIRT
5555 case SVM_EXIT_CLGI: return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
5556 case SVM_EXIT_STGI: return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
5557 case SVM_EXIT_VMLOAD: return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
5558 case SVM_EXIT_VMSAVE: return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
5559 case SVM_EXIT_INVLPGA: return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
5560 case SVM_EXIT_VMRUN: return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
5561#else
5562 case SVM_EXIT_CLGI:
5563 case SVM_EXIT_STGI:
5564 case SVM_EXIT_VMLOAD:
5565 case SVM_EXIT_VMSAVE:
5566 case SVM_EXIT_INVLPGA:
5567 case SVM_EXIT_VMRUN:
5568#endif
5569 case SVM_EXIT_RSM:
5570 case SVM_EXIT_SKINIT:
5571 {
5572 hmR0SvmSetPendingXcptUD(pVCpu);
5573 return VINF_SUCCESS;
5574 }
5575
5576#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5577 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
5578 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
5579 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
5580 /* SVM_EXIT_EXCEPTION_3: */ /* X86_XCPT_BP - Handled above. */
5581 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
5582 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
5583 /* SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
5584 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
5585 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
5586 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
5587 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_TS */
5588 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_NP */
5589 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_SS */
5590 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_GP */
5591 /* SVM_EXIT_EXCEPTION_14: */ /* X86_XCPT_PF - Handled above. */
5592 case SVM_EXIT_EXCEPTION_15: /* Reserved. */
5593 /* SVM_EXIT_EXCEPTION_16: */ /* X86_XCPT_MF - Handled above. */
5594 /* SVM_EXIT_EXCEPTION_17: */ /* X86_XCPT_AC - Handled above. */
5595 case SVM_EXIT_EXCEPTION_18: /* X86_XCPT_MC */
5596 case SVM_EXIT_EXCEPTION_19: /* X86_XCPT_XF */
5597 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22:
5598 case SVM_EXIT_EXCEPTION_23: case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25:
5599 case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28:
5600 case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
5601 return hmR0SvmExitXcptGeneric(pVCpu, pCtx, pSvmTransient);
5602#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5603
5604 default:
5605 {
5606 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5607 pVCpu->hm.s.u32HMError = uExitCode;
5608 return VERR_SVM_UNKNOWN_EXIT;
5609 }
5610 }
5611 }
5612 }
5613 /* not reached */
5614}
5615
5616
5617#ifdef DEBUG
5618/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5619# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5620 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5621
5622# define HMSVM_ASSERT_PREEMPT_CPUID() \
5623 do \
5624 { \
5625 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5626 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5627 } while (0)
5628
5629# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
5630 do { \
5631 AssertPtr(pVCpu); \
5632 AssertPtr(pCtx); \
5633 AssertPtr(pSvmTransient); \
5634 Assert(ASMIntAreEnabled()); \
5635 HMSVM_ASSERT_PREEMPT_SAFE(); \
5636 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5637 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
5638 HMSVM_ASSERT_PREEMPT_SAFE(); \
5639 if (VMMR0IsLogFlushDisabled(pVCpu)) \
5640 HMSVM_ASSERT_PREEMPT_CPUID(); \
5641 } while (0)
5642#else /* Release builds */
5643# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
5644#endif
5645
5646
5647/**
5648 * Worker for hmR0SvmInterpretInvlpg().
5649 *
5650 * @return VBox status code.
5651 * @param pVCpu The cross context virtual CPU structure.
5652 * @param pCpu Pointer to the disassembler state.
5653 * @param pCtx The guest CPU context.
5654 */
5655static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
5656{
5657 DISQPVPARAMVAL Param1;
5658 RTGCPTR GCPtrPage;
5659
5660 int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
5661 if (RT_FAILURE(rc))
5662 return VERR_EM_INTERPRETER;
5663
5664 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
5665 || Param1.type == DISQPV_TYPE_ADDRESS)
5666 {
5667 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
5668 return VERR_EM_INTERPRETER;
5669
5670 GCPtrPage = Param1.val.val64;
5671 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
5672 rc = VBOXSTRICTRC_VAL(rc2);
5673 }
5674 else
5675 {
5676 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
5677 rc = VERR_EM_INTERPRETER;
5678 }
5679
5680 return rc;
5681}
5682
5683
5684/**
5685 * Interprets INVLPG.
5686 *
5687 * @returns VBox status code.
5688 * @retval VINF_* Scheduling instructions.
5689 * @retval VERR_EM_INTERPRETER Something we can't cope with.
5690 * @retval VERR_* Fatal errors.
5691 *
5692 * @param pVM The cross context VM structure.
5693 * @param pVCpu The cross context virtual CPU structure.
5694 * @param pCtx The guest CPU context.
5695 *
5696 * @remarks Updates the RIP if the instruction was executed successfully.
5697 */
5698static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5699{
5700 /* Only allow 32 & 64 bit code. */
5701 if (CPUMGetGuestCodeBits(pVCpu) != 16)
5702 {
5703 PDISSTATE pDis = &pVCpu->hm.s.DisState;
5704 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
5705 if ( RT_SUCCESS(rc)
5706 && pDis->pCurInstr->uOpcode == OP_INVLPG)
5707 {
5708 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
5709 if (RT_SUCCESS(rc))
5710 pCtx->rip += pDis->cbInstr;
5711 return rc;
5712 }
5713 else
5714 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
5715 }
5716 return VERR_EM_INTERPRETER;
5717}
5718
5719
5720#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
5721/**
5722 * Gets the IEM exception flags for the specified SVM event.
5723 *
5724 * @returns The IEM exception flags.
5725 * @param pEvent Pointer to the SVM event.
5726 *
5727 * @remarks This function currently only constructs flags required for
5728 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5729 * and CR2 aspects of an exception are not included).
5730 */
5731static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5732{
5733 uint8_t const uEventType = pEvent->n.u3Type;
5734 uint32_t fIemXcptFlags;
5735 switch (uEventType)
5736 {
5737 case SVM_EVENT_EXCEPTION:
5738 /*
5739 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5740 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5741 */
5742 if (pEvent->n.u8Vector == X86_XCPT_BP)
5743 {
5744 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5745 break;
5746 }
5747 if (pEvent->n.u8Vector == X86_XCPT_OF)
5748 {
5749 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5750 break;
5751 }
5752 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5753 RT_FALL_THRU();
5754 case SVM_EVENT_NMI:
5755 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5756 break;
5757
5758 case SVM_EVENT_EXTERNAL_IRQ:
5759 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5760 break;
5761
5762 case SVM_EVENT_SOFTWARE_INT:
5763 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5764 break;
5765
5766 default:
5767 fIemXcptFlags = 0;
5768 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5769 break;
5770 }
5771 return fIemXcptFlags;
5772}
5773
5774#else
5775/**
5776 * Determines if an exception is a contributory exception.
5777 *
5778 * Contributory exceptions are ones which can cause double-faults unless the
5779 * original exception was a benign exception. Page-fault is intentionally not
5780 * included here as it's a conditional contributory exception.
5781 *
5782 * @returns @c true if the exception is contributory, @c false otherwise.
5783 * @param uVector The exception vector.
5784 */
5785DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
5786{
5787 switch (uVector)
5788 {
5789 case X86_XCPT_GP:
5790 case X86_XCPT_SS:
5791 case X86_XCPT_NP:
5792 case X86_XCPT_TS:
5793 case X86_XCPT_DE:
5794 return true;
5795 default:
5796 break;
5797 }
5798 return false;
5799}
5800#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
5801
5802
5803/**
5804 * Handle a condition that occurred while delivering an event through the guest
5805 * IDT.
5806 *
5807 * @returns VBox status code (informational error codes included).
5808 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5809 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5810 * continue execution of the guest which will delivery the \#DF.
5811 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5812 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5813 *
5814 * @param pVCpu The cross context virtual CPU structure.
5815 * @param pCtx Pointer to the guest-CPU context.
5816 * @param pSvmTransient Pointer to the SVM transient structure.
5817 *
5818 * @remarks No-long-jump zone!!!
5819 */
5820static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5821{
5822 int rc = VINF_SUCCESS;
5823 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
5824
5825 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5826 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5827 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5828
5829 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
5830 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
5831 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5832 {
5833#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
5834 IEMXCPTRAISE enmRaise;
5835 IEMXCPTRAISEINFO fRaiseInfo;
5836 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31;
5837 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5838 if (fExitIsHwXcpt)
5839 {
5840 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
5841 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5842 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5843 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5844 }
5845 else
5846 {
5847 /*
5848 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF) then we
5849 * end up here.
5850 *
5851 * If the event was:
5852 * - a software interrupt, we can re-execute the instruction which will regenerate
5853 * the event.
5854 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5855 * - a hardware exception or external interrupt, we re-inject it.
5856 */
5857 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5858 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5859 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5860 else
5861 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5862 }
5863
5864 switch (enmRaise)
5865 {
5866 case IEMXCPTRAISE_CURRENT_XCPT:
5867 case IEMXCPTRAISE_PREV_EVENT:
5868 {
5869 /* For software interrupts, we shall re-execute the instruction. */
5870 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5871 {
5872 RTGCUINTPTR GCPtrFaultAddress = 0;
5873
5874 /* If we are re-injecting an NMI, clear NMI blocking. */
5875 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5876 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5877
5878 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5879 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5880 pSvmTransient->fVectoringPF = true;
5881 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5882 && uIdtVector == X86_XCPT_PF)
5883 {
5884 /*
5885 * If the previous exception was a #PF, we need to recover the CR2 value.
5886 * This can't happen with shadow paging.
5887 */
5888 GCPtrFaultAddress = pCtx->cr2;
5889 }
5890
5891 /*
5892 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5893 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5894 */
5895 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5896 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5897 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5898
5899 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5900 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5901 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5902 }
5903 break;
5904 }
5905
5906 case IEMXCPTRAISE_REEXEC_INSTR:
5907 {
5908 Assert(rc == VINF_SUCCESS);
5909 break;
5910 }
5911
5912 case IEMXCPTRAISE_DOUBLE_FAULT:
5913 {
5914 /*
5915 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
5916 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
5917 */
5918 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5919 {
5920 pSvmTransient->fVectoringDoublePF = true;
5921 Assert(rc == VINF_SUCCESS);
5922 }
5923 else
5924 {
5925 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5926 hmR0SvmSetPendingXcptDF(pVCpu);
5927 rc = VINF_HM_DOUBLE_FAULT;
5928 }
5929 break;
5930 }
5931
5932 case IEMXCPTRAISE_TRIPLE_FAULT:
5933 {
5934 rc = VINF_EM_RESET;
5935 break;
5936 }
5937
5938 case IEMXCPTRAISE_CPU_HANG:
5939 {
5940 rc = VERR_EM_GUEST_CPU_HANG;
5941 break;
5942 }
5943
5944 default:
5945 {
5946 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
5947 rc = VERR_SVM_IPE_2;
5948 break;
5949 }
5950 }
5951#else
5952 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5953
5954 typedef enum
5955 {
5956 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5957 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5958 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5959 SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
5960 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
5961 } SVMREFLECTXCPT;
5962
5963 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
5964 bool fReflectingNmi = false;
5965 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
5966 {
5967 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
5968 {
5969 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
5970
5971#ifdef VBOX_STRICT
5972 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
5973 && uExitVector == X86_XCPT_PF)
5974 {
5975 Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
5976 }
5977#endif
5978
5979 if ( uIdtVector == X86_XCPT_BP
5980 || uIdtVector == X86_XCPT_OF)
5981 {
5982 /* Ignore INT3/INTO, just re-execute. See @bugref{8357}. */
5983 }
5984 else if ( uExitVector == X86_XCPT_PF
5985 && uIdtVector == X86_XCPT_PF)
5986 {
5987 pSvmTransient->fVectoringDoublePF = true;
5988 Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
5989 }
5990 else if ( uExitVector == X86_XCPT_AC
5991 && uIdtVector == X86_XCPT_AC)
5992 {
5993 enmReflect = SVMREFLECTXCPT_HANG;
5994 Log4(("IDT: Nested #AC - Bad guest\n"));
5995 }
5996 else if ( (pVmcb->ctrl.u32InterceptXcpt & HMSVM_CONTRIBUTORY_XCPT_MASK)
5997 && hmR0SvmIsContributoryXcpt(uExitVector)
5998 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
5999 || uIdtVector == X86_XCPT_PF))
6000 {
6001 enmReflect = SVMREFLECTXCPT_DF;
6002 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6003 uIdtVector, uExitVector));
6004 }
6005 else if (uIdtVector == X86_XCPT_DF)
6006 {
6007 enmReflect = SVMREFLECTXCPT_TF;
6008 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
6009 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6010 }
6011 else
6012 enmReflect = SVMREFLECTXCPT_XCPT;
6013 }
6014 else
6015 {
6016 /*
6017 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
6018 * exception to the guest after handling the #VMEXIT.
6019 */
6020 enmReflect = SVMREFLECTXCPT_XCPT;
6021 }
6022 }
6023 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
6024 || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
6025 {
6026 enmReflect = SVMREFLECTXCPT_XCPT;
6027 fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
6028
6029 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
6030 {
6031 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
6032 if (uExitVector == X86_XCPT_PF)
6033 {
6034 pSvmTransient->fVectoringPF = true;
6035 Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
6036 }
6037 }
6038 }
6039 /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
6040
6041 switch (enmReflect)
6042 {
6043 case SVMREFLECTXCPT_XCPT:
6044 {
6045 /* If we are re-injecting the NMI, clear NMI blocking. */
6046 if (fReflectingNmi)
6047 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6048
6049 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
6050 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6051 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
6052
6053 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
6054 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
6055 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
6056 break;
6057 }
6058
6059 case SVMREFLECTXCPT_DF:
6060 {
6061 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6062 hmR0SvmSetPendingXcptDF(pVCpu);
6063 rc = VINF_HM_DOUBLE_FAULT;
6064 break;
6065 }
6066
6067 case SVMREFLECTXCPT_TF:
6068 {
6069 rc = VINF_EM_RESET;
6070 break;
6071 }
6072
6073 case SVMREFLECTXCPT_HANG:
6074 {
6075 rc = VERR_EM_GUEST_CPU_HANG;
6076 break;
6077 }
6078
6079 default:
6080 Assert(rc == VINF_SUCCESS);
6081 break;
6082 }
6083#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
6084 }
6085 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
6086 NOREF(pCtx);
6087 return rc;
6088}
6089
6090
6091/**
6092 * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
6093 * supported, otherwise advances the RIP by the number of bytes specified in
6094 * @a cb.
6095 *
6096 * @param pVCpu The cross context virtual CPU structure.
6097 * @param pCtx Pointer to the guest-CPU context.
6098 * @param cb RIP increment value in bytes.
6099 *
6100 * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
6101 * when NRIP_SAVE is supported by the CPU, otherwise use
6102 * hmR0SvmAdvanceRipDumb!
6103 */
6104DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
6105{
6106 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6107 if (fSupportsNextRipSave)
6108 {
6109 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6110 Assert(pVmcb->ctrl.u64NextRIP);
6111 AssertRelease(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb); /* temporary, remove later */
6112 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6113 }
6114 else
6115 pCtx->rip += cb;
6116
6117 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
6118}
6119
6120
6121#ifdef VBOX_WITH_NESTED_HWVIRT
6122/**
6123 * Gets the length of the current instruction if the CPU supports the NRIP_SAVE
6124 * feature. Otherwise, returns the value in @a cbLikely.
6125 *
6126 * @param pVCpu The cross context virtual CPU structure.
6127 * @param pCtx Pointer to the guest-CPU context.
6128 * @param cbLikely The likely instruction length.
6129 */
6130DECLINLINE(uint8_t) hmR0SvmGetInstrLengthHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbLikely)
6131{
6132 Assert(cbLikely <= 15); /* See Intel spec. 2.3.11 "AVX Instruction Length" */
6133 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6134 if (fSupportsNextRipSave)
6135 {
6136 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6137 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6138 Assert(cbInstr == cbLikely);
6139 return cbInstr;
6140 }
6141 return cbLikely;
6142}
6143#endif
6144
6145
6146/**
6147 * Advances the guest RIP by the number of bytes specified in @a cb. This does
6148 * not make use of any hardware features to determine the instruction length.
6149 *
6150 * @param pVCpu The cross context virtual CPU structure.
6151 * @param pCtx Pointer to the guest-CPU context.
6152 * @param cb RIP increment value in bytes.
6153 */
6154DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
6155{
6156 pCtx->rip += cb;
6157 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
6158}
6159#undef HMSVM_UPDATE_INTR_SHADOW
6160
6161
6162/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6163/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6164/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6165
6166/** @name \#VMEXIT handlers.
6167 * @{
6168 */
6169
6170/**
6171 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
6172 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
6173 */
6174HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6175{
6176 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6177
6178 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
6179 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
6180 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
6181 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6182
6183 /*
6184 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
6185 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
6186 * interrupt it is until the host actually take the interrupt.
6187 *
6188 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
6189 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
6190 */
6191 return VINF_EM_RAW_INTERRUPT;
6192}
6193
6194
6195/**
6196 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
6197 */
6198HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6199{
6200 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6201
6202 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6203 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
6204 int rc = VINF_SUCCESS;
6205 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6206 return rc;
6207}
6208
6209
6210/**
6211 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
6212 */
6213HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6214{
6215 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6216
6217 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6218 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
6219 int rc = VINF_SUCCESS;
6220 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6221 return rc;
6222}
6223
6224
6225/**
6226 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6227 */
6228HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6229{
6230 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6231 PVM pVM = pVCpu->CTX_SUFF(pVM);
6232 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6233 if (RT_LIKELY(rc == VINF_SUCCESS))
6234 {
6235 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6236 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6237 }
6238 else
6239 {
6240 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
6241 rc = VERR_EM_INTERPRETER;
6242 }
6243 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
6244 return rc;
6245}
6246
6247
6248/**
6249 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6250 */
6251HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6252{
6253 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6254 PVM pVM = pVCpu->CTX_SUFF(pVM);
6255 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6256 if (RT_LIKELY(rc == VINF_SUCCESS))
6257 {
6258 pSvmTransient->fUpdateTscOffsetting = true;
6259 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6260 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6261 }
6262 else
6263 {
6264 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
6265 rc = VERR_EM_INTERPRETER;
6266 }
6267 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
6268 return rc;
6269}
6270
6271
6272/**
6273 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6274 */
6275HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6276{
6277 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6278 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
6279 if (RT_LIKELY(rc == VINF_SUCCESS))
6280 {
6281 pSvmTransient->fUpdateTscOffsetting = true;
6282 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6283 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6284 }
6285 else
6286 {
6287 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
6288 rc = VERR_EM_INTERPRETER;
6289 }
6290 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
6291 return rc;
6292}
6293
6294
6295/**
6296 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6297 */
6298HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6299{
6300 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6301 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6302 if (RT_LIKELY(rc == VINF_SUCCESS))
6303 {
6304 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6305 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6306 }
6307 else
6308 {
6309 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
6310 rc = VERR_EM_INTERPRETER;
6311 }
6312 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
6313 return rc;
6314}
6315
6316
6317/**
6318 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6319 */
6320HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6321{
6322 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6323 PVM pVM = pVCpu->CTX_SUFF(pVM);
6324 Assert(!pVM->hm.s.fNestedPaging);
6325 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
6326
6327 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu, pCtx);
6328 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6329 if ( fSupportsDecodeAssists
6330 && fSupportsNextRipSave)
6331 {
6332 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6333 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6334 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6335 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6336 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6337 return VBOXSTRICTRC_VAL(rcStrict);
6338 }
6339
6340 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
6341 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
6342 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6343 return rc;
6344}
6345
6346
6347/**
6348 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6349 */
6350HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6351{
6352 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6353
6354 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 1);
6355 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6356 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6357 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6358 if (rc != VINF_SUCCESS)
6359 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6360 return rc;
6361}
6362
6363
6364/**
6365 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6366 */
6367HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6368{
6369 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6370 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6371 if (RT_LIKELY(rc == VINF_SUCCESS))
6372 {
6373 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6374 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6375 }
6376 else
6377 {
6378 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
6379 rc = VERR_EM_INTERPRETER;
6380 }
6381 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6382 return rc;
6383}
6384
6385
6386/**
6387 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6388 */
6389HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6390{
6391 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6392 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6393 int rc = VBOXSTRICTRC_VAL(rc2);
6394 if ( rc == VINF_EM_HALT
6395 || rc == VINF_SUCCESS)
6396 {
6397 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6398
6399 if ( rc == VINF_EM_HALT
6400 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
6401 {
6402 rc = VINF_SUCCESS;
6403 }
6404 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6405 }
6406 else
6407 {
6408 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
6409 rc = VERR_EM_INTERPRETER;
6410 }
6411 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
6412 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
6413 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6414 return rc;
6415}
6416
6417
6418/**
6419 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6420 * \#VMEXIT.
6421 */
6422HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6423{
6424 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6425 return VINF_EM_RESET;
6426}
6427
6428
6429/**
6430 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6431 */
6432HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6433{
6434 RT_NOREF(pCtx);
6435 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64\n", pSvmTransient->u64ExitCode));
6436 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6437 return VERR_SVM_UNEXPECTED_EXIT;
6438}
6439
6440
6441/**
6442 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6443 */
6444HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6445{
6446 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6447
6448 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6449 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
6450
6451 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu, pCtx);
6452 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6453 if ( fSupportsDecodeAssists
6454 && fSupportsNextRipSave)
6455 {
6456 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6457 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6458 if (fMovCRx)
6459 {
6460 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6461 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6462 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6463 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6464 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6465 return VBOXSTRICTRC_VAL(rcStrict);
6466 }
6467 /* else: SMSW instruction, fall back below to IEM for this. */
6468 }
6469
6470 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6471 int rc = VBOXSTRICTRC_VAL(rc2);
6472 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
6473 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
6474 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6475 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6476 return rc;
6477}
6478
6479
6480/**
6481 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6482 */
6483HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6484{
6485 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6486
6487 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0;
6488 Assert(iCrReg <= 15);
6489
6490 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6491 bool fDecodedInstr = false;
6492 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu, pCtx);
6493 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6494 if ( fSupportsDecodeAssists
6495 && fSupportsNextRipSave)
6496 {
6497 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6498 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6499 if (fMovCRx)
6500 {
6501 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6502 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6503 Log4(("hmR0SvmExitWriteCRx: Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6504 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6505 fDecodedInstr = true;
6506 }
6507 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6508 }
6509
6510 if (!fDecodedInstr)
6511 {
6512 Log4(("hmR0SvmExitWriteCRx: iCrReg=%#x\n", iCrReg));
6513 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
6514 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6515 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6516 rcStrict = VERR_EM_INTERPRETER;
6517 }
6518
6519 if (rcStrict == VINF_SUCCESS)
6520 {
6521 switch (iCrReg)
6522 {
6523 case 0: /* CR0. */
6524 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
6525 break;
6526
6527 case 3: /* CR3. */
6528 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
6529 break;
6530
6531 case 4: /* CR4. */
6532 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
6533 break;
6534
6535 case 8: /* CR8 (TPR). */
6536 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6537 break;
6538
6539 default:
6540 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6541 pSvmTransient->u64ExitCode, iCrReg));
6542 break;
6543 }
6544 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6545 }
6546 else
6547 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
6548 return VBOXSTRICTRC_TODO(rcStrict);
6549}
6550
6551
6552/**
6553 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6554 * \#VMEXIT.
6555 */
6556HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6557{
6558 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6559 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6560 PVM pVM = pVCpu->CTX_SUFF(pVM);
6561
6562 int rc;
6563 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
6564 {
6565 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6566 Log4(("MSR Write: idMsr=%#RX32\n", pCtx->ecx));
6567
6568 /* Handle TPR patching; intercepted LSTAR write. */
6569 if ( pVM->hm.s.fTPRPatchingActive
6570 && pCtx->ecx == MSR_K8_LSTAR)
6571 {
6572 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6573 {
6574 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6575 int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6576 AssertRC(rc2);
6577 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6578 }
6579 rc = VINF_SUCCESS;
6580 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6581 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6582 return rc;
6583 }
6584
6585 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6586 if (fSupportsNextRipSave)
6587 {
6588 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6589 if (RT_LIKELY(rc == VINF_SUCCESS))
6590 {
6591 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6592 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6593 }
6594 else
6595 AssertMsg( rc == VERR_EM_INTERPRETER
6596 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
6597 }
6598 else
6599 {
6600 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
6601 if (RT_LIKELY(rc == VINF_SUCCESS))
6602 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
6603 else
6604 AssertMsg( rc == VERR_EM_INTERPRETER
6605 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
6606 }
6607
6608 if (rc == VINF_SUCCESS)
6609 {
6610 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
6611 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
6612 && pCtx->ecx <= MSR_IA32_X2APIC_END)
6613 {
6614 /*
6615 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
6616 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
6617 * EMInterpretWrmsr() changes it.
6618 */
6619 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6620 }
6621 else
6622 {
6623 switch (pCtx->ecx)
6624 {
6625 case MSR_K6_EFER: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR); break;
6626 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6627 case MSR_K8_FS_BASE:
6628 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
6629 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6630 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6631 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6632 }
6633 }
6634 }
6635 }
6636 else
6637 {
6638 /* MSR Read access. */
6639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6640 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
6641 Log4(("MSR Read: idMsr=%#RX32\n", pCtx->ecx));
6642
6643 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6644 if (fSupportsNextRipSave)
6645 {
6646 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6647 if (RT_LIKELY(rc == VINF_SUCCESS))
6648 {
6649 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6650 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6651 }
6652 else
6653 AssertMsg( rc == VERR_EM_INTERPRETER
6654 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
6655 }
6656 else
6657 {
6658 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
6659 if (RT_UNLIKELY(rc != VINF_SUCCESS))
6660 {
6661 AssertMsg( rc == VERR_EM_INTERPRETER
6662 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
6663 }
6664 /* RIP updated by EMInterpretInstruction(). */
6665 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6666 }
6667 }
6668
6669 /* RIP has been updated by EMInterpret[Rd|Wr]msr() or EMInterpretInstruction(). */
6670 return rc;
6671}
6672
6673
6674/**
6675 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6676 */
6677HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6678{
6679 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6680 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6681
6682 /** @todo Stepping with nested-guest. */
6683 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6684 {
6685 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6686 if (pSvmTransient->fWasGuestDebugStateActive)
6687 {
6688 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6689 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6690 return VERR_SVM_UNEXPECTED_EXIT;
6691 }
6692
6693 /*
6694 * Lazy DR0-3 loading.
6695 */
6696 if (!pSvmTransient->fWasHyperDebugStateActive)
6697 {
6698 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6699 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6700
6701 /* Don't intercept DRx read and writes. */
6702 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6703 pVmcb->ctrl.u16InterceptRdDRx = 0;
6704 pVmcb->ctrl.u16InterceptWrDRx = 0;
6705 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6706
6707 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6708 VMMRZCallRing3Disable(pVCpu);
6709 HM_DISABLE_PREEMPT();
6710
6711 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6712 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6713 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6714
6715 HM_RESTORE_PREEMPT();
6716 VMMRZCallRing3Enable(pVCpu);
6717
6718 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6719 return VINF_SUCCESS;
6720 }
6721 }
6722
6723 /*
6724 * Interpret the read/writing of DRx.
6725 */
6726 /** @todo Decode assist. */
6727 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6728 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6729 if (RT_LIKELY(rc == VINF_SUCCESS))
6730 {
6731 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6732 /** @todo CPUM should set this flag! */
6733 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
6734 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6735 }
6736 else
6737 Assert(rc == VERR_EM_INTERPRETER);
6738 return VBOXSTRICTRC_TODO(rc);
6739}
6740
6741
6742/**
6743 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6744 */
6745HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6746{
6747 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6748 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6749 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
6750 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6751 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6752 return rc;
6753}
6754
6755
6756/**
6757 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6758 */
6759HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6760{
6761 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6762
6763 /** @todo decode assists... */
6764 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6765 if (rcStrict == VINF_IEM_RAISED_XCPT)
6766 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6767
6768 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6769 Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
6770 pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
6771
6772 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6773 return VBOXSTRICTRC_TODO(rcStrict);
6774}
6775
6776
6777/**
6778 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6779 */
6780HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6781{
6782 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6783
6784 /* I/O operation lookup arrays. */
6785 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6786 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6787 the result (in AL/AX/EAX). */
6788 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6789
6790 PVM pVM = pVCpu->CTX_SUFF(pVM);
6791 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6792
6793 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6794 SVMIOIOEXITINFO IoExitInfo;
6795 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6796 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6797 uint32_t cbValue = s_aIOSize[uIOWidth];
6798 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6799
6800 if (RT_UNLIKELY(!cbValue))
6801 {
6802 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6803 return VERR_EM_INTERPRETER;
6804 }
6805
6806 VBOXSTRICTRC rcStrict;
6807 bool fUpdateRipAlready = false;
6808 if (IoExitInfo.n.u1STR)
6809 {
6810#ifdef VBOX_WITH_2ND_IEM_STEP
6811 /* INS/OUTS - I/O String instruction. */
6812 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6813 * in EXITINFO1? Investigate once this thing is up and running. */
6814 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6815 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6816 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6817 static IEMMODE const s_aenmAddrMode[8] =
6818 {
6819 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6820 };
6821 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6822 if (enmAddrMode != (IEMMODE)-1)
6823 {
6824 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6825 if (cbInstr <= 15 && cbInstr >= 1)
6826 {
6827 Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
6828 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6829 {
6830 /* Don't know exactly how to detect whether u3SEG is valid, currently
6831 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6832 2384 Opterons when only checking NRIP. */
6833 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6834 if ( fSupportsNextRipSave
6835 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6836 {
6837 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
6838 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
6839 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6840 IoExitInfo.n.u3SEG, true /*fIoChecked*/);
6841 }
6842 else if (cbInstr == 1U + IoExitInfo.n.u1REP)
6843 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6844 X86_SREG_DS, true /*fIoChecked*/);
6845 else
6846 rcStrict = IEMExecOne(pVCpu);
6847 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6848 }
6849 else
6850 {
6851 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
6852 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6853 true /*fIoChecked*/);
6854 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6855 }
6856 }
6857 else
6858 {
6859 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6860 rcStrict = IEMExecOne(pVCpu);
6861 }
6862 }
6863 else
6864 {
6865 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6866 rcStrict = IEMExecOne(pVCpu);
6867 }
6868 fUpdateRipAlready = true;
6869
6870#else
6871 /* INS/OUTS - I/O String instruction. */
6872 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6873
6874 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6875 * in EXITINFO1? Investigate once this thing is up and running. */
6876
6877 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
6878 if (rcStrict == VINF_SUCCESS)
6879 {
6880 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6881 {
6882 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
6883 (DISCPUMODE)pDis->uAddrMode, cbValue);
6884 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6885 }
6886 else
6887 {
6888 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
6889 (DISCPUMODE)pDis->uAddrMode, cbValue);
6890 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6891 }
6892 }
6893 else
6894 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
6895#endif
6896 }
6897 else
6898 {
6899 /* IN/OUT - I/O instruction. */
6900 Assert(!IoExitInfo.n.u1REP);
6901
6902 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6903 {
6904 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6905 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6906 }
6907 else
6908 {
6909 uint32_t u32Val = 0;
6910 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6911 if (IOM_SUCCESS(rcStrict))
6912 {
6913 /* Save result of I/O IN instr. in AL/AX/EAX. */
6914 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6915 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6916 }
6917 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
6918 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
6919
6920 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6921 }
6922 }
6923
6924 if (IOM_SUCCESS(rcStrict))
6925 {
6926 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6927 if (!fUpdateRipAlready)
6928 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6929
6930 /*
6931 * If any I/O breakpoints are armed, we need to check if one triggered
6932 * and take appropriate action.
6933 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6934 */
6935 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6936 * execution engines about whether hyper BPs and such are pending. */
6937 uint32_t const uDr7 = pCtx->dr[7];
6938 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6939 && X86_DR7_ANY_RW_IO(uDr7)
6940 && (pCtx->cr4 & X86_CR4_DE))
6941 || DBGFBpIsHwIoArmed(pVM)))
6942 {
6943 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6944 VMMRZCallRing3Disable(pVCpu);
6945 HM_DISABLE_PREEMPT();
6946
6947 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6948 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6949
6950 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
6951 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6952 {
6953 /* Raise #DB. */
6954 pVmcb->guest.u64DR6 = pCtx->dr[6];
6955 pVmcb->guest.u64DR7 = pCtx->dr[7];
6956 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6957 hmR0SvmSetPendingXcptDB(pVCpu);
6958 }
6959 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6960 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6961 else if ( rcStrict2 != VINF_SUCCESS
6962 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6963 rcStrict = rcStrict2;
6964 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6965
6966 HM_RESTORE_PREEMPT();
6967 VMMRZCallRing3Enable(pVCpu);
6968 }
6969
6970 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6971 }
6972
6973#ifdef VBOX_STRICT
6974 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
6975 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6976 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
6977 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6978 else
6979 {
6980 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6981 * statuses, that the VMM device and some others may return. See
6982 * IOM_SUCCESS() for guidance. */
6983 AssertMsg( RT_FAILURE(rcStrict)
6984 || rcStrict == VINF_SUCCESS
6985 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6986 || rcStrict == VINF_EM_DBG_BREAKPOINT
6987 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6988 || rcStrict == VINF_EM_RAW_TO_R3
6989 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
6990 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6991 }
6992#endif
6993 return VBOXSTRICTRC_TODO(rcStrict);
6994}
6995
6996
6997/**
6998 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6999 */
7000HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7001{
7002 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7003 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
7004
7005 PVM pVM = pVCpu->CTX_SUFF(pVM);
7006 Assert(pVM->hm.s.fNestedPaging);
7007
7008 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7009
7010 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
7011 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7012 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
7013 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
7014
7015 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
7016
7017#ifdef VBOX_HM_WITH_GUEST_PATCHING
7018 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
7019 if ( pVM->hm.s.fTprPatchingAllowed
7020 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
7021 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
7022 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
7023 && !CPUMIsGuestInLongModeEx(pCtx)
7024 && !CPUMGetGuestCPL(pVCpu)
7025 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7026 {
7027 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7028 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7029
7030 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
7031 {
7032 /* Only attempt to patch the instruction once. */
7033 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7034 if (!pPatch)
7035 return VINF_EM_HM_PATCH_TPR_INSTR;
7036 }
7037 }
7038#endif
7039
7040 /*
7041 * Determine the nested paging mode.
7042 */
7043 PGMMODE enmNestedPagingMode;
7044#if HC_ARCH_BITS == 32
7045 if (CPUMIsGuestInLongModeEx(pCtx))
7046 enmNestedPagingMode = PGMMODE_AMD64_NX;
7047 else
7048#endif
7049 enmNestedPagingMode = PGMGetHostMode(pVM);
7050
7051 /*
7052 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
7053 */
7054 int rc;
7055 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
7056 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
7057 {
7058 /* If event delivery causes an MMIO #NPF, go back to instruction emulation as
7059 otherwise injecting the original pending event would most likely cause the same MMIO #NPF. */
7060 if (pVCpu->hm.s.Event.fPending)
7061 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7062
7063 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
7064 u32ErrCode);
7065 rc = VBOXSTRICTRC_VAL(rc2);
7066
7067 /*
7068 * If we succeed, resume guest execution.
7069 * If we fail in interpreting the instruction because we couldn't get the guest physical address
7070 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
7071 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
7072 * weird case. See @bugref{6043}.
7073 */
7074 if ( rc == VINF_SUCCESS
7075 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7076 || rc == VERR_PAGE_NOT_PRESENT)
7077 {
7078 /* Successfully handled MMIO operation. */
7079 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
7080 rc = VINF_SUCCESS;
7081 }
7082 return rc;
7083 }
7084
7085 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
7086 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
7087 TRPMResetTrap(pVCpu);
7088
7089 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
7090
7091 /*
7092 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
7093 */
7094 if ( rc == VINF_SUCCESS
7095 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7096 || rc == VERR_PAGE_NOT_PRESENT)
7097 {
7098 /* We've successfully synced our shadow page tables. */
7099 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7100 rc = VINF_SUCCESS;
7101 }
7102
7103 return rc;
7104}
7105
7106
7107/**
7108 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
7109 * \#VMEXIT.
7110 */
7111HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7112{
7113 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7114 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
7115
7116 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7117 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7118 hmR0SvmClearVirtIntrIntercept(pVmcb);
7119
7120 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7121 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7122 return VINF_SUCCESS;
7123}
7124
7125
7126/**
7127 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7128 * \#VMEXIT.
7129 */
7130HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7131{
7132 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7133
7134 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7135
7136#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7137 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7138#endif
7139
7140 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7141 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7142 {
7143 /*
7144 * AMD-V provides us with the exception which caused the TS; we collect
7145 * the information in the call to hmR0SvmCheckExitDueToEventDelivery.
7146 */
7147 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
7148 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7149 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7150 }
7151
7152 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7153 * emulation. */
7154 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7155 return VERR_EM_INTERPRETER;
7156}
7157
7158
7159/**
7160 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7161 */
7162HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7163{
7164 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7165 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
7166
7167 bool fRipUpdated;
7168 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fRipUpdated);
7169 if (RT_SUCCESS(rcStrict))
7170 {
7171 /* Only update the RIP if we're continuing guest execution and not
7172 in the case of say VINF_GIM_R3_HYPERCALL. */
7173 if ( rcStrict == VINF_SUCCESS
7174 && !fRipUpdated)
7175 {
7176 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3 /* cbInstr */);
7177 }
7178
7179 /* If the hypercall or TPR patching changes anything other than guest's general-purpose registers,
7180 we would need to reload the guest changed bits here before VM-entry. */
7181 return VBOXSTRICTRC_VAL(rcStrict);
7182 }
7183
7184 hmR0SvmSetPendingXcptUD(pVCpu);
7185 return VINF_SUCCESS;
7186}
7187
7188
7189/**
7190 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7191 */
7192HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7193{
7194 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7195 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
7196 return VINF_EM_RAW_INTERRUPT;
7197}
7198
7199
7200/**
7201 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7202 */
7203HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7204{
7205 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7206
7207 /* Clear NMI blocking. */
7208 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7209
7210 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7211 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7212 hmR0SvmClearIretIntercept(pVmcb);
7213
7214 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7215 return VINF_SUCCESS;
7216}
7217
7218
7219/**
7220 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_14).
7221 * Conditional \#VMEXIT.
7222 */
7223HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7224{
7225 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7226 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
7227
7228 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7229
7230 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7231 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7232 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
7233 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7234 PVM pVM = pVCpu->CTX_SUFF(pVM);
7235
7236#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7237 if (pVM->hm.s.fNestedPaging)
7238 {
7239 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7240 if (!pSvmTransient->fVectoringDoublePF)
7241 {
7242 /* A genuine guest #PF, reflect it to the guest. */
7243 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7244 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7245 uFaultAddress, u32ErrCode));
7246 }
7247 else
7248 {
7249 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7250 hmR0SvmSetPendingXcptDF(pVCpu);
7251 Log4(("Pending #DF due to vectoring #PF. NP\n"));
7252 }
7253 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7254 return VINF_SUCCESS;
7255 }
7256#endif
7257
7258 Assert(!pVM->hm.s.fNestedPaging);
7259
7260#ifdef VBOX_HM_WITH_GUEST_PATCHING
7261 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
7262 if ( pVM->hm.s.fTprPatchingAllowed
7263 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7264 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
7265 && !CPUMIsGuestInLongModeEx(pCtx)
7266 && !CPUMGetGuestCPL(pVCpu)
7267 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7268 {
7269 RTGCPHYS GCPhysApicBase;
7270 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7271 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7272
7273 /* Check if the page at the fault-address is the APIC base. */
7274 RTGCPHYS GCPhysPage;
7275 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7276 if ( rc2 == VINF_SUCCESS
7277 && GCPhysPage == GCPhysApicBase)
7278 {
7279 /* Only attempt to patch the instruction once. */
7280 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7281 if (!pPatch)
7282 return VINF_EM_HM_PATCH_TPR_INSTR;
7283 }
7284 }
7285#endif
7286
7287 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7288 pCtx->rip, u32ErrCode, pCtx->cr3));
7289
7290 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
7291 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
7292 if (pSvmTransient->fVectoringPF)
7293 {
7294 Assert(pVCpu->hm.s.Event.fPending);
7295 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7296 }
7297
7298 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
7299 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7300
7301 Log4(("#PF rc=%Rrc\n", rc));
7302
7303 if (rc == VINF_SUCCESS)
7304 {
7305 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7306 TRPMResetTrap(pVCpu);
7307 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7308 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7309 return rc;
7310 }
7311 else if (rc == VINF_EM_RAW_GUEST_TRAP)
7312 {
7313 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7314
7315 if (!pSvmTransient->fVectoringDoublePF)
7316 {
7317 /* It's a guest page fault and needs to be reflected to the guest. */
7318 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7319 TRPMResetTrap(pVCpu);
7320 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7321 }
7322 else
7323 {
7324 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7325 TRPMResetTrap(pVCpu);
7326 hmR0SvmSetPendingXcptDF(pVCpu);
7327 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
7328 }
7329
7330 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7331 return VINF_SUCCESS;
7332 }
7333
7334 TRPMResetTrap(pVCpu);
7335 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7336 return rc;
7337}
7338
7339
7340/**
7341 * \#VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
7342 * Conditional \#VMEXIT.
7343 */
7344HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7345{
7346 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7347
7348 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7349 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7350 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7351
7352 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7353 VMMRZCallRing3Disable(pVCpu);
7354 HM_DISABLE_PREEMPT();
7355
7356 int rc;
7357 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
7358 if (pSvmTransient->fWasGuestFPUStateActive)
7359 {
7360 rc = VINF_EM_RAW_GUEST_TRAP;
7361 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
7362 }
7363 else
7364 {
7365#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
7366 Assert(!pSvmTransient->fWasGuestFPUStateActive);
7367#endif
7368 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu); /* (No need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
7369 Assert( rc == VINF_EM_RAW_GUEST_TRAP
7370 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
7371 }
7372
7373 HM_RESTORE_PREEMPT();
7374 VMMRZCallRing3Enable(pVCpu);
7375
7376 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
7377 {
7378 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
7379 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7380 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
7381 pVCpu->hm.s.fPreloadGuestFpu = true;
7382 }
7383 else
7384 {
7385 /* Forward #NM to the guest. */
7386 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
7387 hmR0SvmSetPendingXcptNM(pVCpu);
7388 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
7389 }
7390 return VINF_SUCCESS;
7391}
7392
7393
7394/**
7395 * \#VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6).
7396 * Conditional \#VMEXIT.
7397 */
7398HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7399{
7400 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7401
7402 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7403 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7404 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7405
7406 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7407 if (pVCpu->hm.s.fGIMTrapXcptUD)
7408 {
7409 uint8_t cbInstr = 0;
7410 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, pCtx, NULL /* pDis */, &cbInstr);
7411 if (rcStrict == VINF_SUCCESS)
7412 {
7413 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7414 hmR0SvmAdvanceRipDumb(pVCpu, pCtx, cbInstr);
7415 rc = VINF_SUCCESS;
7416 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7417 }
7418 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7419 rc = VINF_SUCCESS;
7420 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7421 rc = VINF_GIM_R3_HYPERCALL;
7422 else
7423 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7424 }
7425
7426 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7427 if (RT_FAILURE(rc))
7428 {
7429 hmR0SvmSetPendingXcptUD(pVCpu);
7430 rc = VINF_SUCCESS;
7431 }
7432
7433 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7434 return rc;
7435}
7436
7437
7438/**
7439 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_16).
7440 * Conditional \#VMEXIT.
7441 */
7442HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7443{
7444 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7445
7446 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7447 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7448 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7449
7450 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7451
7452 if (!(pCtx->cr0 & X86_CR0_NE))
7453 {
7454 PVM pVM = pVCpu->CTX_SUFF(pVM);
7455 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7456 unsigned cbOp;
7457 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
7458 if (RT_SUCCESS(rc))
7459 {
7460 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7461 /** @todo FERR intercept when in nested-guest mode? */
7462 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
7463 if (RT_SUCCESS(rc))
7464 pCtx->rip += cbOp;
7465 }
7466 else
7467 Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7468 return rc;
7469 }
7470
7471 hmR0SvmSetPendingXcptMF(pVCpu);
7472 return VINF_SUCCESS;
7473}
7474
7475
7476/**
7477 * \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
7478 * \#VMEXIT.
7479 */
7480HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7481{
7482 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7483
7484 /* If this #DB is the result of delivering an event, go back to the interpreter. */
7485 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7486 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7487 {
7488 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7489 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7490 }
7491
7492 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7493
7494 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
7495 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
7496 PVM pVM = pVCpu->CTX_SUFF(pVM);
7497 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7498 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7499 if (rc == VINF_EM_RAW_GUEST_TRAP)
7500 {
7501 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7502 if (CPUMIsHyperDebugStateActive(pVCpu))
7503 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7504
7505 /* Reflect the exception back to the guest. */
7506 hmR0SvmSetPendingXcptDB(pVCpu);
7507 rc = VINF_SUCCESS;
7508 }
7509
7510 /*
7511 * Update DR6.
7512 */
7513 if (CPUMIsHyperDebugStateActive(pVCpu))
7514 {
7515 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7516 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7517 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7518 }
7519 else
7520 {
7521 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7522 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7523 }
7524
7525 return rc;
7526}
7527
7528
7529/**
7530 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_EXCEPTION_17).
7531 * Conditional \#VMEXIT.
7532 */
7533HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7534{
7535 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7536
7537 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7538 * shutdown VMEXIT. */
7539 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7540
7541 SVMEVENT Event;
7542 Event.u = 0;
7543 Event.n.u1Valid = 1;
7544 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7545 Event.n.u8Vector = X86_XCPT_AC;
7546 Event.n.u1ErrorCodeValid = 1;
7547 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7548 return VINF_SUCCESS;
7549}
7550
7551
7552/**
7553 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
7554 * Conditional \#VMEXIT.
7555 */
7556HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7557{
7558 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7559
7560 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7561
7562 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7563 if (rc == VINF_EM_RAW_GUEST_TRAP)
7564 {
7565 SVMEVENT Event;
7566 Event.u = 0;
7567 Event.n.u1Valid = 1;
7568 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7569 Event.n.u8Vector = X86_XCPT_BP;
7570 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7571 }
7572
7573 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7574 return rc;
7575}
7576
7577
7578#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT)
7579/**
7580 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7581 */
7582HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7583{
7584 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7585
7586 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7587
7588 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7589 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_EXCEPTION_0;
7590 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7591 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7592 Assert(uVector <= X86_XCPT_LAST);
7593 Log4(("hmR0SvmExitXcptGeneric: uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7594
7595 SVMEVENT Event;
7596 Event.u = 0;
7597 Event.n.u1Valid = 1;
7598 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7599 Event.n.u8Vector = uVector;
7600 switch (uVector)
7601 {
7602 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7603 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7604 case X86_XCPT_DF:
7605 case X86_XCPT_TS:
7606 case X86_XCPT_NP:
7607 case X86_XCPT_SS:
7608 case X86_XCPT_GP:
7609 case X86_XCPT_AC:
7610 {
7611 Event.n.u1ErrorCodeValid = 1;
7612 Event.n.u32ErrorCode = uErrCode;
7613 break;
7614 }
7615 }
7616
7617 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7618 return VINF_SUCCESS;
7619}
7620#endif
7621
7622#ifdef VBOX_WITH_NESTED_HWVIRT
7623/**
7624 * \#VMEXIT handler for #PF occuring while in nested-guest execution
7625 * (SVM_EXIT_EXCEPTION_14). Conditional \#VMEXIT.
7626 */
7627HMSVM_EXIT_DECL hmR0SvmExitXcptPFNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7628{
7629 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7630
7631 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7632
7633 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7634 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7635 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
7636 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7637
7638 Log4(("#PFNested: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode=%#RX32 CR3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7639 pCtx->rip, u32ErrCode, pCtx->cr3));
7640
7641 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
7642 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
7643 if (pSvmTransient->fVectoringPF)
7644 {
7645 Assert(pVCpu->hm.s.Event.fPending);
7646 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7647 }
7648
7649 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7650
7651 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
7652 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7653
7654 Log4(("#PFNested: rc=%Rrc\n", rc));
7655
7656 if (rc == VINF_SUCCESS)
7657 {
7658 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7659 TRPMResetTrap(pVCpu);
7660 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7661 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7662 return rc;
7663 }
7664
7665 if (rc == VINF_EM_RAW_GUEST_TRAP)
7666 {
7667 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7668
7669 if (!pSvmTransient->fVectoringDoublePF)
7670 {
7671 /* It's a nested-guest page fault and needs to be reflected to the nested-guest. */
7672 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7673 TRPMResetTrap(pVCpu);
7674 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7675 }
7676 else
7677 {
7678 /* A nested-guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7679 TRPMResetTrap(pVCpu);
7680 hmR0SvmSetPendingXcptDF(pVCpu);
7681 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
7682 }
7683
7684 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7685 return VINF_SUCCESS;
7686 }
7687
7688 TRPMResetTrap(pVCpu);
7689 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7690 return rc;
7691}
7692
7693
7694/**
7695 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7696 */
7697HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7698{
7699 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7700
7701#ifdef VBOX_STRICT
7702 PCSVMVMCB pVmcbTmp = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7703 Assert(pVmcbTmp);
7704 Assert(!pVmcbTmp->ctrl.IntCtrl.n.u1VGifEnable);
7705 RT_NOREF(pVmcbTmp);
7706#endif
7707
7708 /** @todo Stat. */
7709 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClgi); */
7710 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7711 VBOXSTRICTRC rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7712 return VBOXSTRICTRC_VAL(rcStrict);
7713}
7714
7715
7716/**
7717 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7718 */
7719HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7720{
7721 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7722
7723#ifdef VBOX_STRICT
7724 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7725 Assert(pVmcb);
7726 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7727 RT_NOREF(pVmcb);
7728#endif
7729
7730 /** @todo Stat. */
7731 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitStgi); */
7732 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7733 VBOXSTRICTRC rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7734 return VBOXSTRICTRC_VAL(rcStrict);
7735}
7736
7737
7738/**
7739 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7740 */
7741HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7742{
7743 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7744
7745#ifdef VBOX_STRICT
7746 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7747 Assert(pVmcb);
7748 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7749 RT_NOREF(pVmcb);
7750#endif
7751
7752 /** @todo Stat. */
7753 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmload); */
7754 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7755 VBOXSTRICTRC rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7756 if (rcStrict == VINF_SUCCESS)
7757 {
7758 /* We skip flagging changes made to LSTAR, STAR, SFMASK and other MSRs as they are always re-loaded. */
7759 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
7760 | HM_CHANGED_GUEST_TR
7761 | HM_CHANGED_GUEST_LDTR);
7762 }
7763 return VBOXSTRICTRC_VAL(rcStrict);
7764}
7765
7766
7767/**
7768 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7769 */
7770HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7771{
7772 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7773
7774#ifdef VBOX_STRICT
7775 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7776 Assert(pVmcb);
7777 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7778 RT_NOREF(pVmcb);
7779#endif
7780
7781 /** @todo Stat. */
7782 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmsave); */
7783 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7784 VBOXSTRICTRC rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7785 return VBOXSTRICTRC_VAL(rcStrict);
7786}
7787
7788
7789/**
7790 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7791 */
7792HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7793{
7794 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7795 /** @todo Stat. */
7796 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpga); */
7797 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7798 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7799 return VBOXSTRICTRC_VAL(rcStrict);
7800}
7801
7802
7803/**
7804 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7805 */
7806HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7807{
7808 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7809 /** @todo Stat. */
7810 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmrun); */
7811#if 0
7812 VBOXSTRICTRC rcStrict;
7813 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7814 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7815 Log4(("IEMExecDecodedVmrun: returned %d\n", VBOXSTRICTRC_VAL(rcStrict)));
7816 if (rcStrict == VINF_SUCCESS)
7817 {
7818 rcStrict = VINF_SVM_VMRUN;
7819 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7820 }
7821 return VBOXSTRICTRC_VAL(rcStrict);
7822#endif
7823 return VERR_EM_INTERPRETER;
7824}
7825
7826
7827/**
7828 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1).
7829 * Unconditional \#VMEXIT.
7830 */
7831HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7832{
7833 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7834
7835 /* If this #DB is the result of delivering an event, go back to the interpreter. */
7836 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7837 * shutdown VMEXIT. */
7838 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7839 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7840 {
7841 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7842 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7843 }
7844
7845 hmR0SvmSetPendingXcptDB(pVCpu);
7846 return VINF_SUCCESS;
7847}
7848
7849
7850/**
7851 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
7852 * Conditional \#VMEXIT.
7853 */
7854HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7855{
7856 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7857
7858 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7859 * shutdown VMEXIT. */
7860 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7861
7862 SVMEVENT Event;
7863 Event.u = 0;
7864 Event.n.u1Valid = 1;
7865 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7866 Event.n.u8Vector = X86_XCPT_BP;
7867 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7868 return VINF_SUCCESS;
7869}
7870
7871#endif /* VBOX_WITH_NESTED_HWVIRT */
7872
7873
7874/** @} */
7875
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette