VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 73047

Last change on this file since 73047 was 73047, checked in by vboxsync, 6 years ago

VMM/HMSVMR0: bugref:9204 Fix rdtscp.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 314.6 KB
Line 
1/* $Id: HMSVMR0.cpp 73047 2018-07-11 02:42:55Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/gim.h>
33#include <VBox/vmm/apic.h>
34#include "HMInternal.h"
35#include <VBox/vmm/vm.h>
36#include "HMSVMR0.h"
37#include "dtrace/VBoxVMM.h"
38
39#ifdef DEBUG_ramshankar
40# define HMSVM_SYNC_FULL_GUEST_STATE
41# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
42# define HMSVM_ALWAYS_TRAP_PF
43# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
44#endif
45
46
47/*********************************************************************************************************************************
48* Defined Constants And Macros *
49*********************************************************************************************************************************/
50#ifdef VBOX_WITH_STATISTICS
51# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
52 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
53 if ((u64ExitCode) == SVM_EXIT_NPF) \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
55 else \
56 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
57 } while (0)
58
59# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
60# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
61 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
62 if ((u64ExitCode) == SVM_EXIT_NPF) \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
64 else \
65 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
66 } while (0)
67# endif
68#else
69# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
70# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
71# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
72# endif
73#endif /* !VBOX_WITH_STATISTICS */
74
75/** If we decide to use a function table approach this can be useful to
76 * switch to a "static DECLCALLBACK(int)". */
77#define HMSVM_EXIT_DECL static int
78
79/**
80 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
81 * guest using hardware-assisted SVM.
82 *
83 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
84 * are swapped and restored across the world-switch and also registers like
85 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
86 * \#VMEXIT.
87 */
88#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
89 | CPUMCTX_EXTRN_RFLAGS \
90 | CPUMCTX_EXTRN_RAX \
91 | CPUMCTX_EXTRN_RSP \
92 | CPUMCTX_EXTRN_SREG_MASK \
93 | CPUMCTX_EXTRN_CR0 \
94 | CPUMCTX_EXTRN_CR2 \
95 | CPUMCTX_EXTRN_CR3 \
96 | CPUMCTX_EXTRN_TABLE_MASK \
97 | CPUMCTX_EXTRN_DR6 \
98 | CPUMCTX_EXTRN_DR7 \
99 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
100 | CPUMCTX_EXTRN_SYSCALL_MSRS \
101 | CPUMCTX_EXTRN_SYSENTER_MSRS \
102 | CPUMCTX_EXTRN_HWVIRT \
103 | CPUMCTX_EXTRN_HM_SVM_MASK)
104
105/**
106 * Subset of the guest-CPU state that is shared between the guest and host.
107 */
108#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
109
110/** Macro for importing guest state from the VMCB back into CPUMCTX. */
111#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
112 do { \
113 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
114 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
115 } while (0)
116
117/** Assert that the required state bits are fetched. */
118#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
119 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
120 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
121
122/** Assert that preemption is disabled or covered by thread-context hooks. */
123#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
124 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
125
126/** Assert that we haven't migrated CPUs when thread-context hooks are not
127 * used. */
128#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
129 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
130 ("Illegal migration! Entered on CPU %u Current %u\n", \
131 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()));
132
133/** Assert that we're not executing a nested-guest. */
134#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
135# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
136#else
137# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
138#endif
139
140/** Assert that we're executing a nested-guest. */
141#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
142# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
143#else
144# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
145#endif
146
147/** Macro for checking and returning from the using function for
148 * \#VMEXIT intercepts that maybe caused during delivering of another
149 * event in the guest. */
150#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
151# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
152 do \
153 { \
154 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
155 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
156 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
157 else if ( rc == VINF_EM_RESET \
158 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
159 { \
160 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK); \
161 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0)); \
162 } \
163 else \
164 return rc; \
165 } while (0)
166#else
167# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
168 do \
169 { \
170 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
171 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
172 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
173 else \
174 return rc; \
175 } while (0)
176#endif
177
178/** Macro which updates interrupt shadow for the current RIP. */
179#define HMSVM_UPDATE_INTR_SHADOW(a_pVCpu) \
180 do { \
181 /* Update interrupt shadow. */ \
182 if ( VMCPU_FF_IS_PENDING((a_pVCpu), VMCPU_FF_INHIBIT_INTERRUPTS) \
183 && (a_pVCpu)->cpum.GstCtx.rip != EMGetInhibitInterruptsPC((a_pVCpu))) \
184 VMCPU_FF_CLEAR((a_pVCpu), VMCPU_FF_INHIBIT_INTERRUPTS); \
185 } while (0)
186
187/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
188 * instruction that exited. */
189#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
190 do { \
191 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
192 (a_rc) = VINF_EM_DBG_STEPPED; \
193 } while (0)
194
195/** Validate segment descriptor granularity bit. */
196#ifdef VBOX_STRICT
197# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
198 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
199 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
200 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
201 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
202 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
203 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
204#else
205# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
206#endif
207
208/**
209 * Exception bitmap mask for all contributory exceptions.
210 *
211 * Page fault is deliberately excluded here as it's conditional as to whether
212 * it's contributory or benign. Page faults are handled separately.
213 */
214#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
215 | RT_BIT(X86_XCPT_DE))
216
217/**
218 * Mandatory/unconditional guest control intercepts.
219 *
220 * SMIs can and do happen in normal operation. We need not intercept them
221 * while executing the guest (or nested-guest).
222 */
223#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
224 | SVM_CTRL_INTERCEPT_NMI \
225 | SVM_CTRL_INTERCEPT_INIT \
226 | SVM_CTRL_INTERCEPT_RDPMC \
227 | SVM_CTRL_INTERCEPT_CPUID \
228 | SVM_CTRL_INTERCEPT_RSM \
229 | SVM_CTRL_INTERCEPT_HLT \
230 | SVM_CTRL_INTERCEPT_IOIO_PROT \
231 | SVM_CTRL_INTERCEPT_MSR_PROT \
232 | SVM_CTRL_INTERCEPT_INVLPGA \
233 | SVM_CTRL_INTERCEPT_SHUTDOWN \
234 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
235 | SVM_CTRL_INTERCEPT_VMRUN \
236 | SVM_CTRL_INTERCEPT_SKINIT \
237 | SVM_CTRL_INTERCEPT_WBINVD \
238 | SVM_CTRL_INTERCEPT_MONITOR \
239 | SVM_CTRL_INTERCEPT_MWAIT \
240 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
241 | SVM_CTRL_INTERCEPT_XSETBV)
242
243/** @name VMCB Clean Bits.
244 *
245 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
246 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
247 * memory.
248 *
249 * @{ */
250/** All intercepts vectors, TSC offset, PAUSE filter counter. */
251#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
252/** I/O permission bitmap, MSR permission bitmap. */
253#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
254/** ASID. */
255#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
256/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
257V_INTR_VECTOR. */
258#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
259/** Nested Paging: Nested CR3 (nCR3), PAT. */
260#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
261/** Control registers (CR0, CR3, CR4, EFER). */
262#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
263/** Debug registers (DR6, DR7). */
264#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
265/** GDT, IDT limit and base. */
266#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
267/** Segment register: CS, SS, DS, ES limit and base. */
268#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
269/** CR2.*/
270#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
271/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
272#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
273/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
274PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
275#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
276/** Mask of all valid VMCB Clean bits. */
277#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
278 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
279 | HMSVM_VMCB_CLEAN_ASID \
280 | HMSVM_VMCB_CLEAN_INT_CTRL \
281 | HMSVM_VMCB_CLEAN_NP \
282 | HMSVM_VMCB_CLEAN_CRX_EFER \
283 | HMSVM_VMCB_CLEAN_DRX \
284 | HMSVM_VMCB_CLEAN_DT \
285 | HMSVM_VMCB_CLEAN_SEG \
286 | HMSVM_VMCB_CLEAN_CR2 \
287 | HMSVM_VMCB_CLEAN_LBR \
288 | HMSVM_VMCB_CLEAN_AVIC)
289/** @} */
290
291/** @name SVM transient.
292 *
293 * A state structure for holding miscellaneous information across AMD-V
294 * VMRUN/\#VMEXIT operation, restored after the transition.
295 *
296 * @{ */
297typedef struct SVMTRANSIENT
298{
299 /** The host's rflags/eflags. */
300 RTCCUINTREG fEFlags;
301#if HC_ARCH_BITS == 32
302 uint32_t u32Alignment0;
303#endif
304
305 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
306 uint64_t u64ExitCode;
307 /** The guest's TPR value used for TPR shadowing. */
308 uint8_t u8GuestTpr;
309 /** Alignment. */
310 uint8_t abAlignment0[7];
311
312 /** Pointer to the currently executing VMCB. */
313 PSVMVMCB pVmcb;
314 /** Whether we are currently executing a nested-guest. */
315 bool fIsNestedGuest;
316
317 /** Whether the guest debug state was active at the time of \#VMEXIT. */
318 bool fWasGuestDebugStateActive;
319 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
320 bool fWasHyperDebugStateActive;
321 /** Whether the TSC offset mode needs to be updated. */
322 bool fUpdateTscOffsetting;
323 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
324 bool fRestoreTscAuxMsr;
325 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
326 * contributary exception or a page-fault. */
327 bool fVectoringDoublePF;
328 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
329 * external interrupt or NMI. */
330 bool fVectoringPF;
331} SVMTRANSIENT, *PSVMTRANSIENT;
332AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
333AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
334/** @} */
335
336/**
337 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
338 */
339typedef enum SVMMSREXITREAD
340{
341 /** Reading this MSR causes a \#VMEXIT. */
342 SVMMSREXIT_INTERCEPT_READ = 0xb,
343 /** Reading this MSR does not cause a \#VMEXIT. */
344 SVMMSREXIT_PASSTHRU_READ
345} SVMMSREXITREAD;
346
347/**
348 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
349 */
350typedef enum SVMMSREXITWRITE
351{
352 /** Writing to this MSR causes a \#VMEXIT. */
353 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
354 /** Writing to this MSR does not cause a \#VMEXIT. */
355 SVMMSREXIT_PASSTHRU_WRITE
356} SVMMSREXITWRITE;
357
358/**
359 * SVM \#VMEXIT handler.
360 *
361 * @returns VBox status code.
362 * @param pVCpu The cross context virtual CPU structure.
363 * @param pSvmTransient Pointer to the SVM-transient structure.
364 */
365typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
366
367
368/*********************************************************************************************************************************
369* Internal Functions *
370*********************************************************************************************************************************/
371static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
372static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState);
373
374
375/** @name \#VMEXIT handlers.
376 * @{
377 */
378static FNSVMEXITHANDLER hmR0SvmExitIntr;
379static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
380static FNSVMEXITHANDLER hmR0SvmExitInvd;
381static FNSVMEXITHANDLER hmR0SvmExitCpuid;
382static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
383static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
384static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
385static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
386static FNSVMEXITHANDLER hmR0SvmExitHlt;
387static FNSVMEXITHANDLER hmR0SvmExitMonitor;
388static FNSVMEXITHANDLER hmR0SvmExitMwait;
389static FNSVMEXITHANDLER hmR0SvmExitShutdown;
390static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
391static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
392static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
393static FNSVMEXITHANDLER hmR0SvmExitMsr;
394static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
395static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
396static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
397static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
398static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
399static FNSVMEXITHANDLER hmR0SvmExitVIntr;
400static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
401static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
402static FNSVMEXITHANDLER hmR0SvmExitPause;
403static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
404static FNSVMEXITHANDLER hmR0SvmExitIret;
405static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
406static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
407static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
408static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
409static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
410static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
411#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
412static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
413#endif
414#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
415static FNSVMEXITHANDLER hmR0SvmExitClgi;
416static FNSVMEXITHANDLER hmR0SvmExitStgi;
417static FNSVMEXITHANDLER hmR0SvmExitVmload;
418static FNSVMEXITHANDLER hmR0SvmExitVmsave;
419static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
420static FNSVMEXITHANDLER hmR0SvmExitVmrun;
421static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
422static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
423#endif
424/** @} */
425
426static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
427#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
428static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
429#endif
430
431
432/*********************************************************************************************************************************
433* Global Variables *
434*********************************************************************************************************************************/
435/** Ring-0 memory object for the IO bitmap. */
436static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
437/** Physical address of the IO bitmap. */
438static RTHCPHYS g_HCPhysIOBitmap;
439/** Pointer to the IO bitmap. */
440static R0PTRTYPE(void *) g_pvIOBitmap;
441
442#ifdef VBOX_STRICT
443# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
444# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
445# define HMSVM_LOG_CS RT_BIT_32(2)
446# define HMSVM_LOG_SS RT_BIT_32(3)
447# define HMSVM_LOG_FS RT_BIT_32(4)
448# define HMSVM_LOG_GS RT_BIT_32(5)
449# define HMSVM_LOG_LBR RT_BIT_32(6)
450# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
451 | HMSVM_LOG_CR_REGS \
452 | HMSVM_LOG_CS \
453 | HMSVM_LOG_SS \
454 | HMSVM_LOG_FS \
455 | HMSVM_LOG_GS \
456 | HMSVM_LOG_LBR)
457
458/**
459 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
460 *
461 * @param pVCpu The cross context virtual CPU structure.
462 * @param pVmcb Pointer to the VM control block.
463 * @param pszPrefix Log prefix.
464 * @param fFlags Log flags, see HMSVM_LOG_XXX.
465 * @param uVerbose The verbosity level, currently unused.
466 */
467static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
468{
469 RT_NOREF2(pVCpu, uVerbose);
470 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
471
472 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
473 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
474
475 if (fFlags & HMSVM_LOG_RBP_RSP)
476 {
477 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
478 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
479 }
480
481 if (fFlags & HMSVM_LOG_CR_REGS)
482 {
483 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
484 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
485 }
486
487 if (fFlags & HMSVM_LOG_CS)
488 {
489 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
490 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
491 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
492 }
493 if (fFlags & HMSVM_LOG_SS)
494 {
495 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
496 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
497 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
498 }
499 if (fFlags & HMSVM_LOG_FS)
500 {
501 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
502 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
503 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
504 }
505 if (fFlags & HMSVM_LOG_GS)
506 {
507 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
508 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
509 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
510 }
511
512 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
513 if (fFlags & HMSVM_LOG_LBR)
514 {
515 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
516 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
517 }
518 NOREF(pVmcbGuest); NOREF(pCtx);
519}
520#endif /* VBOX_STRICT */
521
522
523/**
524 * Sets up and activates AMD-V on the current CPU.
525 *
526 * @returns VBox status code.
527 * @param pHostCpu Pointer to the CPU info struct.
528 * @param pVM The cross context VM structure. Can be
529 * NULL after a resume!
530 * @param pvCpuPage Pointer to the global CPU page.
531 * @param HCPhysCpuPage Physical address of the global CPU page.
532 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
533 * @param pvArg Unused on AMD-V.
534 */
535VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
536 void *pvArg)
537{
538 Assert(!fEnabledByHost);
539 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
540 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
541 Assert(pvCpuPage); NOREF(pvCpuPage);
542 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
543
544 NOREF(pvArg);
545 NOREF(fEnabledByHost);
546
547 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
548 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
549
550 /*
551 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
552 */
553 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
554 if (u64HostEfer & MSR_K6_EFER_SVME)
555 {
556 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
557 if ( pVM
558 && pVM->hm.s.svm.fIgnoreInUseError)
559 pHostCpu->fIgnoreAMDVInUseError = true;
560
561 if (!pHostCpu->fIgnoreAMDVInUseError)
562 {
563 ASMSetFlags(fEFlags);
564 return VERR_SVM_IN_USE;
565 }
566 }
567
568 /* Turn on AMD-V in the EFER MSR. */
569 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
570
571 /* Write the physical page address where the CPU will store the host state while executing the VM. */
572 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
573
574 /* Restore interrupts. */
575 ASMSetFlags(fEFlags);
576
577 /*
578 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
579 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
580 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
581 * entirely with before executing any guest code.
582 */
583 pHostCpu->fFlushAsidBeforeUse = true;
584
585 /*
586 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
587 */
588 ++pHostCpu->cTlbFlushes;
589
590 return VINF_SUCCESS;
591}
592
593
594/**
595 * Deactivates AMD-V on the current CPU.
596 *
597 * @returns VBox status code.
598 * @param pHostCpu Pointer to the CPU info struct.
599 * @param pvCpuPage Pointer to the global CPU page.
600 * @param HCPhysCpuPage Physical address of the global CPU page.
601 */
602VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
603{
604 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
605 AssertReturn( HCPhysCpuPage
606 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
607 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
608 RT_NOREF(pHostCpu);
609
610 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
611 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
612
613 /* Turn off AMD-V in the EFER MSR. */
614 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
615 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
616
617 /* Invalidate host state physical address. */
618 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
619
620 /* Restore interrupts. */
621 ASMSetFlags(fEFlags);
622
623 return VINF_SUCCESS;
624}
625
626
627/**
628 * Does global AMD-V initialization (called during module initialization).
629 *
630 * @returns VBox status code.
631 */
632VMMR0DECL(int) SVMR0GlobalInit(void)
633{
634 /*
635 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
636 * intercept all IO accesses, it's done once globally here instead of per-VM.
637 */
638 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
639 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
640 if (RT_FAILURE(rc))
641 return rc;
642
643 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
644 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
645
646 /* Set all bits to intercept all IO accesses. */
647 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
648
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Does global AMD-V termination (called during module termination).
655 */
656VMMR0DECL(void) SVMR0GlobalTerm(void)
657{
658 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
659 {
660 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
661 g_pvIOBitmap = NULL;
662 g_HCPhysIOBitmap = 0;
663 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
664 }
665}
666
667
668/**
669 * Frees any allocated per-VCPU structures for a VM.
670 *
671 * @param pVM The cross context VM structure.
672 */
673DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
674{
675 for (uint32_t i = 0; i < pVM->cCpus; i++)
676 {
677 PVMCPU pVCpu = &pVM->aCpus[i];
678 AssertPtr(pVCpu);
679
680 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
683 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
684 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
690 pVCpu->hm.s.svm.pVmcb = NULL;
691 pVCpu->hm.s.svm.HCPhysVmcb = 0;
692 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
693 }
694
695 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
696 {
697 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
698 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
699 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
700 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
701 }
702 }
703}
704
705
706/**
707 * Does per-VM AMD-V initialization.
708 *
709 * @returns VBox status code.
710 * @param pVM The cross context VM structure.
711 */
712VMMR0DECL(int) SVMR0InitVM(PVM pVM)
713{
714 int rc = VERR_INTERNAL_ERROR_5;
715
716 /*
717 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
718 */
719 uint32_t u32Family;
720 uint32_t u32Model;
721 uint32_t u32Stepping;
722 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
723 {
724 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
725 pVM->hm.s.svm.fAlwaysFlushTLB = true;
726 }
727
728 /*
729 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
730 */
731 for (VMCPUID i = 0; i < pVM->cCpus; i++)
732 {
733 PVMCPU pVCpu = &pVM->aCpus[i];
734 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
735 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
736 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
737 }
738
739 for (VMCPUID i = 0; i < pVM->cCpus; i++)
740 {
741 PVMCPU pVCpu = &pVM->aCpus[i];
742
743 /*
744 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
745 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
746 */
747 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
748 if (RT_FAILURE(rc))
749 goto failure_cleanup;
750
751 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
752 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
753 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
754 ASMMemZeroPage(pvVmcbHost);
755
756 /*
757 * Allocate one page for the guest-state VMCB.
758 */
759 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
760 if (RT_FAILURE(rc))
761 goto failure_cleanup;
762
763 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
764 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
765 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
766 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
767
768 /*
769 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
770 * SVM to not require one.
771 */
772 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
773 false /* fExecutable */);
774 if (RT_FAILURE(rc))
775 goto failure_cleanup;
776
777 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
778 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
779 /* Set all bits to intercept all MSR accesses (changed later on). */
780 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
781 }
782
783 return VINF_SUCCESS;
784
785failure_cleanup:
786 hmR0SvmFreeStructs(pVM);
787 return rc;
788}
789
790
791/**
792 * Does per-VM AMD-V termination.
793 *
794 * @returns VBox status code.
795 * @param pVM The cross context VM structure.
796 */
797VMMR0DECL(int) SVMR0TermVM(PVM pVM)
798{
799 hmR0SvmFreeStructs(pVM);
800 return VINF_SUCCESS;
801}
802
803
804/**
805 * Returns whether the VMCB Clean Bits feature is supported.
806 *
807 * @return @c true if supported, @c false otherwise.
808 * @param pVCpu The cross context virtual CPU structure.
809 */
810DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu)
811{
812 PVM pVM = pVCpu->CTX_SUFF(pVM);
813#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
814 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
815 {
816 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
817 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
818 }
819#endif
820 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
821}
822
823
824/**
825 * Returns whether the decode assists feature is supported.
826 *
827 * @return @c true if supported, @c false otherwise.
828 * @param pVCpu The cross context virtual CPU structure.
829 */
830DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu)
831{
832 PVM pVM = pVCpu->CTX_SUFF(pVM);
833#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
834 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
835 {
836 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
837 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
838 }
839#endif
840 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
841}
842
843
844/**
845 * Returns whether the NRIP_SAVE feature is supported.
846 *
847 * @return @c true if supported, @c false otherwise.
848 * @param pVCpu The cross context virtual CPU structure.
849 */
850DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu)
851{
852#if 0
853 PVM pVM = pVCpu->CTX_SUFF(pVM);
854#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
855 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
856 {
857 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
858 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
859 }
860#endif
861 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
862#endif
863
864 /** @todo Temporarily disabled NRIP_SAVE for testing. re-enable once its working. */
865 NOREF(pVCpu);
866 return false;
867}
868
869
870/**
871 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
872 *
873 * @param pVCpu The cross context virtual CPU structure.
874 * @param pbMsrBitmap Pointer to the MSR bitmap.
875 * @param idMsr The MSR for which the permissions are being set.
876 * @param enmRead MSR read permissions.
877 * @param enmWrite MSR write permissions.
878 *
879 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
880 * caller needs to take care of this.
881 */
882static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
883 SVMMSREXITWRITE enmWrite)
884{
885 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
886 uint16_t offMsrpm;
887 uint8_t uMsrpmBit;
888 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
889 AssertRC(rc);
890
891 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
892 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
893
894 pbMsrBitmap += offMsrpm;
895 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
896 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
897 else
898 {
899 if (!fInNestedGuestMode)
900 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
901#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
902 else
903 {
904 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
905 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
906 pbNstGstMsrBitmap += offMsrpm;
907 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
908 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
909 else
910 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
911 }
912#endif
913 }
914
915 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
916 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
917 else
918 {
919 if (!fInNestedGuestMode)
920 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
921#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
922 else
923 {
924 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
925 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
926 pbNstGstMsrBitmap += offMsrpm;
927 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
928 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
929 else
930 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
931 }
932#endif
933 }
934}
935
936
937/**
938 * Sets up AMD-V for the specified VM.
939 * This function is only called once per-VM during initalization.
940 *
941 * @returns VBox status code.
942 * @param pVM The cross context VM structure.
943 */
944VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
945{
946 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
947 AssertReturn(pVM, VERR_INVALID_PARAMETER);
948 Assert(pVM->hm.s.svm.fSupported);
949
950 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
951 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
952 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
953
954 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
955 bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
956
957#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
958 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
959 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
960
961 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
962 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
963#endif
964
965 PVMCPU pVCpu = &pVM->aCpus[0];
966 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
967 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[0]\n"), VERR_SVM_INVALID_PVMCB);
968 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
969
970 /* Always trap #AC for reasons of security. */
971 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
972
973 /* Always trap #DB for reasons of security. */
974 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
975
976 /* Trap exceptions unconditionally (debug purposes). */
977#ifdef HMSVM_ALWAYS_TRAP_PF
978 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
979#endif
980#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
981 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
982 pVmcbCtrl->u32InterceptXcpt |= 0
983 | RT_BIT(X86_XCPT_BP)
984 | RT_BIT(X86_XCPT_DE)
985 | RT_BIT(X86_XCPT_NM)
986 | RT_BIT(X86_XCPT_UD)
987 | RT_BIT(X86_XCPT_NP)
988 | RT_BIT(X86_XCPT_SS)
989 | RT_BIT(X86_XCPT_GP)
990 | RT_BIT(X86_XCPT_PF)
991 | RT_BIT(X86_XCPT_MF)
992 ;
993#endif
994
995 /* Apply the exceptions intercepts needed by the GIM provider. */
996 if (pVCpu->hm.s.fGIMTrapXcptUD)
997 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
998
999 /* Set up unconditional intercepts and conditions. */
1000 pVmcbCtrl->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
1001 | SVM_CTRL_INTERCEPT_VMMCALL;
1002
1003#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
1004 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
1005#endif
1006
1007#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1008 /* Virtualized VMSAVE/VMLOAD. */
1009 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
1010 if (!fUseVirtVmsaveVmload)
1011 {
1012 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
1013 | SVM_CTRL_INTERCEPT_VMLOAD;
1014 }
1015
1016 /* Virtual GIF. */
1017 pVmcbCtrl->IntCtrl.n.u1VGifEnable = fUseVGif;
1018 if (!fUseVGif)
1019 {
1020 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
1021 | SVM_CTRL_INTERCEPT_STGI;
1022 }
1023#endif
1024
1025 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1026 pVmcbCtrl->u16InterceptWrCRx = RT_BIT(4);
1027
1028 /* Intercept all DRx reads and writes by default. Changed later on. */
1029 pVmcbCtrl->u16InterceptRdDRx = 0xffff;
1030 pVmcbCtrl->u16InterceptWrDRx = 0xffff;
1031
1032 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1033 pVmcbCtrl->IntCtrl.n.u1VIntrMasking = 1;
1034
1035 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1036 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1037 pVmcbCtrl->IntCtrl.n.u1IgnoreTPR = 1;
1038
1039 /* Set the IO permission bitmap physical addresses. */
1040 pVmcbCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1041
1042 /* LBR virtualization. */
1043 pVmcbCtrl->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1044
1045 /* The host ASID MBZ, for the guest start with 1. */
1046 pVmcbCtrl->TLBCtrl.n.u32ASID = 1;
1047
1048 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1049 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1050
1051 /* Without Nested Paging, we need additionally intercepts. */
1052 if (!pVM->hm.s.fNestedPaging)
1053 {
1054 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1055 pVmcbCtrl->u16InterceptRdCRx |= RT_BIT(3);
1056 pVmcbCtrl->u16InterceptWrCRx |= RT_BIT(3);
1057
1058 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1059 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1060 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1061
1062 /* Page faults must be intercepted to implement shadow paging. */
1063 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1064 }
1065
1066 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1067 if (fUsePauseFilter)
1068 {
1069 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1070 pVmcbCtrl->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1071 if (fPauseFilterThreshold)
1072 pVmcbCtrl->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1073 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1074 }
1075
1076 /*
1077 * Setup the MSR permission bitmap.
1078 * The following MSRs are saved/restored automatically during the world-switch.
1079 * Don't intercept guest read/write accesses to these MSRs.
1080 */
1081 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1082 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1083 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1084 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1085 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1086 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1087 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1088 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1089 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1090 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1091 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1092 pVmcbCtrl->u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
1093
1094 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1095 Assert(pVmcbCtrl->u32VmcbCleanBits == 0);
1096
1097 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1098 {
1099 PVMCPU pVCpuCur = &pVM->aCpus[i];
1100 PSVMVMCB pVmcbCur = pVM->aCpus[i].hm.s.svm.pVmcb;
1101 AssertMsgReturn(pVmcbCur, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
1102 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1103
1104 /* Copy the VMCB control area. */
1105 memcpy(pVmcbCtrlCur, pVmcbCtrl, sizeof(*pVmcbCtrlCur));
1106
1107 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1108 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
1109 memcpy(pbMsrBitmapCur, pbMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1110 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
1111
1112 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1113 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1114
1115 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1116 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu->hm.s.fGIMTrapXcptUD);
1117 }
1118
1119 return VINF_SUCCESS;
1120}
1121
1122
1123/**
1124 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1125 *
1126 * @returns Pointer to the current context VMCB.
1127 * @param pVCpu The cross context virtual CPU structure.
1128 */
1129DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu)
1130{
1131#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1132 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1133 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1134#endif
1135 return pVCpu->hm.s.svm.pVmcb;
1136}
1137
1138
1139/**
1140 * Gets a pointer to the nested-guest VMCB cache.
1141 *
1142 * @returns Pointer to the nested-guest VMCB cache.
1143 * @param pVCpu The cross context virtual CPU structure.
1144 */
1145DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPU pVCpu)
1146{
1147#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1148 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1149 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1150#else
1151 RT_NOREF(pVCpu);
1152 return NULL;
1153#endif
1154}
1155
1156
1157/**
1158 * Invalidates a guest page by guest virtual address.
1159 *
1160 * @returns VBox status code.
1161 * @param pVCpu The cross context virtual CPU structure.
1162 * @param GCVirt Guest virtual address of the page to invalidate.
1163 */
1164VMMR0DECL(int) SVMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1165{
1166 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1167
1168 bool const fFlushPending = pVCpu->CTX_SUFF(pVM)->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1169
1170 /* Skip it if a TLB flush is already pending. */
1171 if (!fFlushPending)
1172 {
1173 Log4Func(("%#RGv\n", GCVirt));
1174
1175 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1176 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1177
1178#if HC_ARCH_BITS == 32
1179 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
1180 if (CPUMIsGuestInLongMode(pVCpu))
1181 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1182 else
1183#endif
1184 {
1185 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1186 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1187 }
1188 }
1189 return VINF_SUCCESS;
1190}
1191
1192
1193/**
1194 * Flushes the appropriate tagged-TLB entries.
1195 *
1196 * @param pVCpu The cross context virtual CPU structure.
1197 * @param pVmcb Pointer to the VM control block.
1198 * @param pHostCpu Pointer to the HM host-CPU info.
1199 */
1200static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PSVMVMCB pVmcb, PHMGLOBALCPUINFO pHostCpu)
1201{
1202 /*
1203 * Force a TLB flush for the first world switch if the current CPU differs from the one
1204 * we ran on last. This can happen both for start & resume due to long jumps back to
1205 * ring-3.
1206 *
1207 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1208 * correlation between it and the physical CPU.
1209 *
1210 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1211 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1212 */
1213 bool fNewAsid = false;
1214 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1215 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1216 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
1217#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1218 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1219#endif
1220 )
1221 {
1222 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1223 pVCpu->hm.s.fForceTLBFlush = true;
1224 fNewAsid = true;
1225 }
1226
1227 /* Set TLB flush state as checked until we return from the world switch. */
1228 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1229
1230 /* Check for explicit TLB flushes. */
1231 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1232 {
1233 pVCpu->hm.s.fForceTLBFlush = true;
1234 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1235 }
1236
1237 /*
1238 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1239 * This Host CPU requirement takes precedence.
1240 */
1241 PVM pVM = pVCpu->CTX_SUFF(pVM);
1242 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1243 {
1244 pHostCpu->uCurrentAsid = 1;
1245 pVCpu->hm.s.uCurrentAsid = 1;
1246 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1247 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1248 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1249
1250 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1251 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1252 }
1253 else
1254 {
1255 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1256 if (pVCpu->hm.s.fForceTLBFlush)
1257 {
1258 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1259 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1260
1261 if (fNewAsid)
1262 {
1263 ++pHostCpu->uCurrentAsid;
1264
1265 bool fHitASIDLimit = false;
1266 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1267 {
1268 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1269 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1270 fHitASIDLimit = true;
1271 }
1272
1273 if ( fHitASIDLimit
1274 || pHostCpu->fFlushAsidBeforeUse)
1275 {
1276 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1277 pHostCpu->fFlushAsidBeforeUse = false;
1278 }
1279
1280 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1281 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1282 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1283 }
1284 else
1285 {
1286 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1287 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1288 else
1289 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1290 }
1291
1292 pVCpu->hm.s.fForceTLBFlush = false;
1293 }
1294 }
1295
1296 /* Update VMCB with the ASID. */
1297 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1298 {
1299 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1300 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1301 }
1302
1303 AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
1304 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
1305 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1306 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1307 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1308 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1309 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1310 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1311
1312#ifdef VBOX_WITH_STATISTICS
1313 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1314 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1315 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1316 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1317 {
1318 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1319 }
1320 else
1321 {
1322 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1323 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1324 }
1325#endif
1326}
1327
1328
1329/** @name 64-bit guest on 32-bit host OS helper functions.
1330 *
1331 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1332 * mode (code segment, paging). These wrappers/helpers perform the necessary
1333 * bits for the 32->64 switcher.
1334 *
1335 * @{ */
1336#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1337/**
1338 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1339 *
1340 * @returns VBox status code.
1341 * @param HCPhysVmcbHost Physical address of host VMCB.
1342 * @param HCPhysVmcb Physical address of the VMCB.
1343 * @param pCtx Pointer to the guest-CPU context.
1344 * @param pVM The cross context VM structure.
1345 * @param pVCpu The cross context virtual CPU structure.
1346 */
1347DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1348{
1349 RT_NOREF2(pVM, pCtx);
1350 uint32_t aParam[8];
1351 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1352 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1353 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1354 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1355 aParam[4] = VM_RC_ADDR(pVM, pVM);
1356 aParam[5] = 0;
1357 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1358 aParam[7] = 0;
1359
1360 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1361}
1362
1363
1364/**
1365 * Executes the specified VMRUN handler in 64-bit mode.
1366 *
1367 * @returns VBox status code.
1368 * @param pVCpu The cross context virtual CPU structure.
1369 * @param enmOp The operation to perform.
1370 * @param cParams Number of parameters.
1371 * @param paParam Array of 32-bit parameters.
1372 */
1373VMMR0DECL(int) SVMR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
1374{
1375 PVM pVM = pVCpu->CTX_SUFF(pVM);
1376 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1377 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1378
1379 /* Disable interrupts. */
1380 RTHCUINTREG const fEFlags = ASMIntDisableFlags();
1381
1382#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1383 RTCPUID idHostCpu = RTMpCpuId();
1384 CPUMR0SetLApic(pVCpu, idHostCpu);
1385#endif
1386
1387 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1388 CPUMSetHyperEIP(pVCpu, enmOp);
1389 for (int i = (int)cParams - 1; i >= 0; i--)
1390 CPUMPushHyper(pVCpu, paParam[i]);
1391
1392 /* Call the switcher. */
1393 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1394 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1395 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1396
1397 /* Restore interrupts. */
1398 ASMSetFlags(fEFlags);
1399 return rc;
1400}
1401
1402#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1403/** @} */
1404
1405
1406/**
1407 * Sets an exception intercept in the specified VMCB.
1408 *
1409 * @param pVmcb Pointer to the VM control block.
1410 * @param uXcpt The exception (X86_XCPT_*).
1411 */
1412DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1413{
1414 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1415 {
1416 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1417 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1418 }
1419}
1420
1421
1422/**
1423 * Clears an exception intercept in the specified VMCB.
1424 *
1425 * @param pVCpu The cross context virtual CPU structure.
1426 * @param pVmcb Pointer to the VM control block.
1427 * @param uXcpt The exception (X86_XCPT_*).
1428 *
1429 * @remarks This takes into account if we're executing a nested-guest and only
1430 * removes the exception intercept if both the guest -and- nested-guest
1431 * are not intercepting it.
1432 */
1433DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1434{
1435 Assert(uXcpt != X86_XCPT_DB);
1436 Assert(uXcpt != X86_XCPT_AC);
1437#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1438 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1439 {
1440 bool fRemove = true;
1441# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1442 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1443 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1444 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1445 {
1446 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1447 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1448 }
1449# else
1450 RT_NOREF(pVCpu);
1451# endif
1452 if (fRemove)
1453 {
1454 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1455 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1456 }
1457 }
1458#else
1459 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1460#endif
1461}
1462
1463
1464/**
1465 * Sets a control intercept in the specified VMCB.
1466 *
1467 * @param pVmcb Pointer to the VM control block.
1468 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1469 */
1470DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1471{
1472 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1473 {
1474 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1475 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1476 }
1477}
1478
1479
1480/**
1481 * Clears a control intercept in the specified VMCB.
1482 *
1483 * @returns @c true if the intercept is still set, @c false otherwise.
1484 * @param pVCpu The cross context virtual CPU structure.
1485 * @param pVmcb Pointer to the VM control block.
1486 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1487 *
1488 * @remarks This takes into account if we're executing a nested-guest and only
1489 * removes the control intercept if both the guest -and- nested-guest
1490 * are not intercepting it.
1491 */
1492static bool hmR0SvmClearCtrlIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1493{
1494 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1495 {
1496 bool fRemove = true;
1497#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1498 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1499 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1500 {
1501 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1502 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1503 }
1504#else
1505 RT_NOREF(pVCpu);
1506#endif
1507 if (fRemove)
1508 {
1509 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1510 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1511 }
1512 }
1513
1514 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1515}
1516
1517
1518/**
1519 * Exports the guest (or nested-guest) CR0 into the VMCB.
1520 *
1521 * @param pVCpu The cross context virtual CPU structure.
1522 * @param pVmcb Pointer to the VM control block.
1523 *
1524 * @remarks This assumes we always pre-load the guest FPU.
1525 * @remarks No-long-jump zone!!!
1526 */
1527static void hmR0SvmExportGuestCR0(PVMCPU pVCpu, PSVMVMCB pVmcb)
1528{
1529 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1530
1531 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1532 uint64_t const uGuestCr0 = pCtx->cr0;
1533 uint64_t uShadowCr0 = uGuestCr0;
1534
1535 /* Always enable caching. */
1536 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1537
1538 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1539 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1540 {
1541 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1542 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1543 }
1544
1545 /*
1546 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1547 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1548 * see @bugref{7243#c103}.
1549 */
1550 if (!(uGuestCr0 & X86_CR0_NE))
1551 {
1552 uShadowCr0 |= X86_CR0_NE;
1553 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1554 }
1555 else
1556 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1557
1558 /*
1559 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1560 *
1561 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1562 * see @bugref{6944}.
1563 *
1564 * We also don't ever want to honor weird things like cache disable from the guest.
1565 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1566 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1567 */
1568 if (uShadowCr0 == uGuestCr0)
1569 {
1570 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1571 {
1572 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1573 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1574 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1575 }
1576 else
1577 {
1578 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1579 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1580 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1581 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1582 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1583 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1584 }
1585 }
1586 else
1587 {
1588 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1589 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1590 }
1591 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1592
1593 Assert(!RT_HI_U32(uShadowCr0));
1594 if (pVmcb->guest.u64CR0 != uShadowCr0)
1595 {
1596 pVmcb->guest.u64CR0 = uShadowCr0;
1597 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1598 }
1599}
1600
1601
1602/**
1603 * Exports the guest (or nested-guest) CR3 into the VMCB.
1604 *
1605 * @param pVCpu The cross context virtual CPU structure.
1606 * @param pVmcb Pointer to the VM control block.
1607 *
1608 * @remarks No-long-jump zone!!!
1609 */
1610static void hmR0SvmExportGuestCR3(PVMCPU pVCpu, PSVMVMCB pVmcb)
1611{
1612 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1613
1614 PVM pVM = pVCpu->CTX_SUFF(pVM);
1615 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1616 if (pVM->hm.s.fNestedPaging)
1617 {
1618 PGMMODE enmShwPagingMode;
1619#if HC_ARCH_BITS == 32
1620 if (CPUMIsGuestInLongModeEx(pCtx))
1621 enmShwPagingMode = PGMMODE_AMD64_NX;
1622 else
1623#endif
1624 enmShwPagingMode = PGMGetHostMode(pVM);
1625
1626 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1627 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1628 pVmcb->guest.u64CR3 = pCtx->cr3;
1629 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1630 }
1631 else
1632 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1633
1634 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1635}
1636
1637
1638/**
1639 * Exports the guest (or nested-guest) CR4 into the VMCB.
1640 *
1641 * @param pVCpu The cross context virtual CPU structure.
1642 * @param pVmcb Pointer to the VM control block.
1643 *
1644 * @remarks No-long-jump zone!!!
1645 */
1646static int hmR0SvmExportGuestCR4(PVMCPU pVCpu, PSVMVMCB pVmcb)
1647{
1648 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1649
1650 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1651 uint64_t uShadowCr4 = pCtx->cr4;
1652 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1653 {
1654 switch (pVCpu->hm.s.enmShadowMode)
1655 {
1656 case PGMMODE_REAL:
1657 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1658 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1659
1660 case PGMMODE_32_BIT: /* 32-bit paging. */
1661 uShadowCr4 &= ~X86_CR4_PAE;
1662 break;
1663
1664 case PGMMODE_PAE: /* PAE paging. */
1665 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1666 /** Must use PAE paging as we could use physical memory > 4 GB */
1667 uShadowCr4 |= X86_CR4_PAE;
1668 break;
1669
1670 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1671 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1672#ifdef VBOX_ENABLE_64_BITS_GUESTS
1673 break;
1674#else
1675 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1676#endif
1677
1678 default: /* shut up gcc */
1679 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1680 }
1681 }
1682
1683 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1684 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1685
1686 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1687 if (uShadowCr4 == pCtx->cr4)
1688 {
1689 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1690 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1691 else
1692 {
1693 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1694 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1695 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1696 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1697 }
1698 }
1699 else
1700 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1701
1702 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1703 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1704
1705 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1706 Assert(!RT_HI_U32(uShadowCr4));
1707 pVmcb->guest.u64CR4 = uShadowCr4;
1708 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1709
1710 return VINF_SUCCESS;
1711}
1712
1713
1714/**
1715 * Exports the guest (or nested-guest) control registers into the VMCB.
1716 *
1717 * @returns VBox status code.
1718 * @param pVCpu The cross context virtual CPU structure.
1719 * @param pVmcb Pointer to the VM control block.
1720 *
1721 * @remarks No-long-jump zone!!!
1722 */
1723static int hmR0SvmExportGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1724{
1725 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1726
1727 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1728 {
1729 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1730 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1731
1732 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1733 {
1734 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1735 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1736 }
1737
1738 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1739 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1740
1741 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1742 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1743 {
1744 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1745 if (RT_FAILURE(rc))
1746 return rc;
1747 }
1748
1749 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1750 }
1751 return VINF_SUCCESS;
1752}
1753
1754
1755/**
1756 * Exports the guest (or nested-guest) segment registers into the VMCB.
1757 *
1758 * @returns VBox status code.
1759 * @param pVCpu The cross context virtual CPU structure.
1760 * @param pVmcb Pointer to the VM control block.
1761 *
1762 * @remarks No-long-jump zone!!!
1763 */
1764static void hmR0SvmExportGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1765{
1766 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1767 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1768
1769 /* Guest segment registers. */
1770 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1771 {
1772 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1773 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1774
1775 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1776 {
1777 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1778 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1779 }
1780
1781 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1782 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1783
1784 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1785 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1786
1787 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1788 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1789
1790 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1791 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1792
1793 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1794 }
1795
1796 /* Guest TR. */
1797 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1798 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1799
1800 /* Guest LDTR. */
1801 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1802 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1803
1804 /* Guest GDTR. */
1805 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1806 {
1807 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1808 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1809 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1810 }
1811
1812 /* Guest IDTR. */
1813 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1814 {
1815 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1816 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1817 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1818 }
1819
1820 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1821 | HM_CHANGED_GUEST_TABLE_MASK);
1822}
1823
1824
1825/**
1826 * Exports the guest (or nested-guest) MSRs into the VMCB.
1827 *
1828 * @param pVCpu The cross context virtual CPU structure.
1829 * @param pVmcb Pointer to the VM control block.
1830 *
1831 * @remarks No-long-jump zone!!!
1832 */
1833static void hmR0SvmExportGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1834{
1835 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1836 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1837
1838 /* Guest Sysenter MSRs. */
1839 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1840 {
1841 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1842 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1843
1844 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1845 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1846
1847 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1848 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1849 }
1850
1851 /*
1852 * Guest EFER MSR.
1853 * AMD-V requires guest EFER.SVME to be set. Weird.
1854 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1855 */
1856 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1857 {
1858 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1859 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1860 }
1861
1862 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1863 if ( !CPUMIsGuestInLongModeEx(pCtx)
1864 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1865 {
1866 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1867 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1868 }
1869
1870 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1871 {
1872 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1873 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1874 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1875 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1876 }
1877
1878 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1879 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1880
1881 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1882 | HM_CHANGED_GUEST_EFER_MSR
1883 | HM_CHANGED_GUEST_SYSCALL_MSRS
1884 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1885
1886 /*
1887 * Setup the PAT MSR (applicable for Nested Paging only).
1888 *
1889 * While guests can modify and see the modified values through the shadow values,
1890 * we shall not honor any guest modifications of this MSR to ensure caching is always
1891 * enabled similar to how we clear CR0.CD and NW bits.
1892 *
1893 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1894 */
1895 pVmcb->guest.u64PAT = MSR_IA32_CR_PAT_INIT_VAL;
1896
1897 /* Enable the last branch record bit if LBR virtualization is enabled. */
1898 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1899 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1900}
1901
1902
1903/**
1904 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1905 * the necessary intercepts accordingly.
1906 *
1907 * @param pVCpu The cross context virtual CPU structure.
1908 * @param pVmcb Pointer to the VM control block.
1909 *
1910 * @remarks No-long-jump zone!!!
1911 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1912 */
1913static void hmR0SvmExportSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb)
1914{
1915 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1916
1917 /*
1918 * Anyone single stepping on the host side? If so, we'll have to use the
1919 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1920 * the VMM level like the VT-x implementations does.
1921 */
1922 bool fInterceptMovDRx = false;
1923 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1924 if (fStepping)
1925 {
1926 pVCpu->hm.s.fClearTrapFlag = true;
1927 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1928 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1929 }
1930
1931 if ( fStepping
1932 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1933 {
1934 /*
1935 * Use the combined guest and host DRx values found in the hypervisor
1936 * register set because the debugger has breakpoints active or someone
1937 * is single stepping on the host side.
1938 *
1939 * Note! DBGF expects a clean DR6 state before executing guest code.
1940 */
1941#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1942 if ( CPUMIsGuestInLongModeEx(pCtx)
1943 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1944 {
1945 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1946 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1947 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1948 }
1949 else
1950#endif
1951 if (!CPUMIsHyperDebugStateActive(pVCpu))
1952 {
1953 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1954 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1955 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1956 }
1957
1958 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1959 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1960 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1961 {
1962 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1963 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1964 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1965 }
1966
1967 /** @todo If we cared, we could optimize to allow the guest to read registers
1968 * with the same values. */
1969 fInterceptMovDRx = true;
1970 pVCpu->hm.s.fUsingHyperDR7 = true;
1971 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1972 }
1973 else
1974 {
1975 /*
1976 * Update DR6, DR7 with the guest values if necessary.
1977 */
1978 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1979 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1980 {
1981 pVmcb->guest.u64DR7 = pCtx->dr[7];
1982 pVmcb->guest.u64DR6 = pCtx->dr[6];
1983 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1984 }
1985 pVCpu->hm.s.fUsingHyperDR7 = false;
1986
1987 /*
1988 * If the guest has enabled debug registers, we need to load them prior to
1989 * executing guest code so they'll trigger at the right time.
1990 */
1991 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1992 {
1993#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1994 if ( CPUMIsGuestInLongModeEx(pCtx)
1995 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1996 {
1997 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1998 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1999 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
2000 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
2001 }
2002 else
2003#endif
2004 if (!CPUMIsGuestDebugStateActive(pVCpu))
2005 {
2006 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
2007 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2008 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2009 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2010 }
2011 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2012 }
2013 /*
2014 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2015 * intercept #DB as DR6 is updated in the VMCB.
2016 *
2017 * Note! If we cared and dared, we could skip intercepting \#DB here.
2018 * However, \#DB shouldn't be performance critical, so we'll play safe
2019 * and keep the code similar to the VT-x code and always intercept it.
2020 */
2021#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2022 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
2023 && !CPUMIsGuestDebugStateActive(pVCpu))
2024#else
2025 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2026#endif
2027 {
2028 fInterceptMovDRx = true;
2029 }
2030 }
2031
2032 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2033 if (fInterceptMovDRx)
2034 {
2035 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2036 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2037 {
2038 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2039 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2040 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2041 }
2042 }
2043 else
2044 {
2045 if ( pVmcb->ctrl.u16InterceptRdDRx
2046 || pVmcb->ctrl.u16InterceptWrDRx)
2047 {
2048 pVmcb->ctrl.u16InterceptRdDRx = 0;
2049 pVmcb->ctrl.u16InterceptWrDRx = 0;
2050 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2051 }
2052 }
2053 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2054}
2055
2056#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2057/**
2058 * Exports the nested-guest hardware virtualization state into the nested-guest
2059 * VMCB.
2060 *
2061 * @param pVCpu The cross context virtual CPU structure.
2062 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2063 *
2064 * @remarks No-long-jump zone!!!
2065 */
2066static void hmR0SvmExportGuestHwvirtStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
2067{
2068 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2069
2070 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2071 {
2072 /*
2073 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2074 * since SVM doesn't have a preemption timer.
2075 *
2076 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2077 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2078 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2079 */
2080 PVM pVM = pVCpu->CTX_SUFF(pVM);
2081 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2082 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2083 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2084 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
2085 {
2086 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2087 pVmcbNstGstCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2088 pVmcbNstGstCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2089 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2090 }
2091 else
2092 {
2093 pVmcbNstGstCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2094 pVmcbNstGstCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2095 }
2096
2097 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2098 }
2099}
2100#endif
2101
2102/**
2103 * Exports the guest APIC TPR state into the VMCB.
2104 *
2105 * @returns VBox status code.
2106 * @param pVCpu The cross context virtual CPU structure.
2107 * @param pVmcb Pointer to the VM control block.
2108 */
2109static int hmR0SvmExportGuestApicTpr(PVMCPU pVCpu, PSVMVMCB pVmcb)
2110{
2111 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2112 {
2113 PVM pVM = pVCpu->CTX_SUFF(pVM);
2114 if ( PDMHasApic(pVM)
2115 && APICIsEnabled(pVCpu))
2116 {
2117 bool fPendingIntr;
2118 uint8_t u8Tpr;
2119 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2120 AssertRCReturn(rc, rc);
2121
2122 /* Assume that we need to trap all TPR accesses and thus need not check on
2123 every #VMEXIT if we should update the TPR. */
2124 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2125 pVCpu->hm.s.svm.fSyncVTpr = false;
2126
2127 if (!pVM->hm.s.fTPRPatchingActive)
2128 {
2129 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2130 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2131
2132 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2133 can deliver the interrupt to the guest. */
2134 if (fPendingIntr)
2135 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2136 else
2137 {
2138 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2139 pVCpu->hm.s.svm.fSyncVTpr = true;
2140 }
2141
2142 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2143 }
2144 else
2145 {
2146 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2147 pVmcb->guest.u64LSTAR = u8Tpr;
2148 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
2149
2150 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2151 if (fPendingIntr)
2152 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2153 else
2154 {
2155 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2156 pVCpu->hm.s.svm.fSyncVTpr = true;
2157 }
2158 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2159 }
2160 }
2161 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2162 }
2163 return VINF_SUCCESS;
2164}
2165
2166
2167/**
2168 * Sets up the exception interrupts required for guest (or nested-guest)
2169 * execution in the VMCB.
2170 *
2171 * @param pVCpu The cross context virtual CPU structure.
2172 * @param pVmcb Pointer to the VM control block.
2173 *
2174 * @remarks No-long-jump zone!!!
2175 */
2176static void hmR0SvmExportGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
2177{
2178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2179
2180 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2181 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)
2182 {
2183 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2184 if (pVCpu->hm.s.fGIMTrapXcptUD)
2185 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2186 else
2187 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2188
2189 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2190 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2191 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2192 else
2193 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2194
2195 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2196 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS;
2197 }
2198}
2199
2200
2201#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2202/**
2203 * Merges guest and nested-guest intercepts for executing the nested-guest using
2204 * hardware-assisted SVM.
2205 *
2206 * This merges the guest and nested-guest intercepts in a way that if the outer
2207 * guest intercept is set we need to intercept it in the nested-guest as
2208 * well.
2209 *
2210 * @param pVCpu The cross context virtual CPU structure.
2211 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2212 */
2213static void hmR0SvmMergeVmcbCtrlsNested(PVMCPU pVCpu)
2214{
2215 PVM pVM = pVCpu->CTX_SUFF(pVM);
2216 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2217 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2218 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2219
2220 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2221 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2222 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2223
2224 /* Always intercept CR4 writes for tracking PGM mode changes. */
2225 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2226
2227 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2228 if (!pVM->hm.s.fNestedPaging)
2229 {
2230 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2231 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2232 }
2233
2234 /** @todo Figure out debugging with nested-guests, till then just intercept
2235 * all DR[0-15] accesses. */
2236 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2237 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2238
2239 /*
2240 * Merge the guest's exception intercepts into the nested-guest VMCB.
2241 *
2242 * - \#UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2243 * while executing the nested-guest.
2244 *
2245 * - \#BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2246 * be tweaked later depending on how we wish to implement breakpoints.
2247 *
2248 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2249 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2250 */
2251#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2252 pVmcbNstGstCtrl->u32InterceptXcpt |= (pVmcb->ctrl.u32InterceptXcpt & ~( RT_BIT(X86_XCPT_UD)
2253 | RT_BIT(X86_XCPT_BP)));
2254#else
2255 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2256#endif
2257
2258 /*
2259 * Adjust intercepts while executing the nested-guest that differ from the
2260 * outer guest intercepts.
2261 *
2262 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2263 * that belong to the nested-guest to the outer guest.
2264 *
2265 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2266 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2267 */
2268 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2269 | SVM_CTRL_INTERCEPT_VMMCALL))
2270 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2271
2272 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2273 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2274
2275 /* Finally, update the VMCB clean bits. */
2276 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2277}
2278#endif
2279
2280
2281/**
2282 * Selects the appropriate function to run guest code.
2283 *
2284 * @returns VBox status code.
2285 * @param pVCpu The cross context virtual CPU structure.
2286 *
2287 * @remarks No-long-jump zone!!!
2288 */
2289static int hmR0SvmSelectVMRunHandler(PVMCPU pVCpu)
2290{
2291 if (CPUMIsGuestInLongMode(pVCpu))
2292 {
2293#ifndef VBOX_ENABLE_64_BITS_GUESTS
2294 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2295#endif
2296 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
2297#if HC_ARCH_BITS == 32
2298 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
2299 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
2300#else
2301 /* 64-bit host or hybrid host. */
2302 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
2303#endif
2304 }
2305 else
2306 {
2307 /* Guest is not in long mode, use the 32-bit handler. */
2308 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2309 }
2310 return VINF_SUCCESS;
2311}
2312
2313
2314/**
2315 * Enters the AMD-V session.
2316 *
2317 * @returns VBox status code.
2318 * @param pVCpu The cross context virtual CPU structure.
2319 * @param pHostCpu Pointer to the CPU info struct.
2320 */
2321VMMR0DECL(int) SVMR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
2322{
2323 AssertPtr(pVCpu);
2324 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2325 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2326 RT_NOREF(pHostCpu);
2327
2328 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2329 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2330 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2331
2332 pVCpu->hm.s.fLeaveDone = false;
2333 return VINF_SUCCESS;
2334}
2335
2336
2337/**
2338 * Thread-context callback for AMD-V.
2339 *
2340 * @param enmEvent The thread-context event.
2341 * @param pVCpu The cross context virtual CPU structure.
2342 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2343 * @thread EMT(pVCpu)
2344 */
2345VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
2346{
2347 NOREF(fGlobalInit);
2348
2349 switch (enmEvent)
2350 {
2351 case RTTHREADCTXEVENT_OUT:
2352 {
2353 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2354 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2355 VMCPU_ASSERT_EMT(pVCpu);
2356
2357 /* No longjmps (log-flush, locks) in this fragile context. */
2358 VMMRZCallRing3Disable(pVCpu);
2359
2360 if (!pVCpu->hm.s.fLeaveDone)
2361 {
2362 hmR0SvmLeave(pVCpu, false /* fImportState */);
2363 pVCpu->hm.s.fLeaveDone = true;
2364 }
2365
2366 /* Leave HM context, takes care of local init (term). */
2367 int rc = HMR0LeaveCpu(pVCpu);
2368 AssertRC(rc); NOREF(rc);
2369
2370 /* Restore longjmp state. */
2371 VMMRZCallRing3Enable(pVCpu);
2372 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2373 break;
2374 }
2375
2376 case RTTHREADCTXEVENT_IN:
2377 {
2378 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2379 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2380 VMCPU_ASSERT_EMT(pVCpu);
2381
2382 /* No longjmps (log-flush, locks) in this fragile context. */
2383 VMMRZCallRing3Disable(pVCpu);
2384
2385 /*
2386 * Initialize the bare minimum state required for HM. This takes care of
2387 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2388 */
2389 int rc = hmR0EnterCpu(pVCpu);
2390 AssertRC(rc); NOREF(rc);
2391 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2392 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2393
2394 pVCpu->hm.s.fLeaveDone = false;
2395
2396 /* Restore longjmp state. */
2397 VMMRZCallRing3Enable(pVCpu);
2398 break;
2399 }
2400
2401 default:
2402 break;
2403 }
2404}
2405
2406
2407/**
2408 * Saves the host state.
2409 *
2410 * @returns VBox status code.
2411 * @param pVCpu The cross context virtual CPU structure.
2412 *
2413 * @remarks No-long-jump zone!!!
2414 */
2415VMMR0DECL(int) SVMR0ExportHostState(PVMCPU pVCpu)
2416{
2417 NOREF(pVCpu);
2418
2419 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2420 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2421 return VINF_SUCCESS;
2422}
2423
2424
2425/**
2426 * Exports the guest state from the guest-CPU context into the VMCB.
2427 *
2428 * The CPU state will be loaded from these fields on every successful VM-entry.
2429 * Also sets up the appropriate VMRUN function to execute guest code based on
2430 * the guest CPU mode.
2431 *
2432 * @returns VBox status code.
2433 * @param pVCpu The cross context virtual CPU structure.
2434 *
2435 * @remarks No-long-jump zone!!!
2436 */
2437static int hmR0SvmExportGuestState(PVMCPU pVCpu)
2438{
2439 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2440
2441 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2442 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2443
2444 Assert(pVmcb);
2445 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2446
2447 pVmcb->guest.u64RIP = pCtx->rip;
2448 pVmcb->guest.u64RSP = pCtx->rsp;
2449 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2450 pVmcb->guest.u64RAX = pCtx->rax;
2451#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2452 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2453 {
2454 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
2455 pVmcb->ctrl.IntCtrl.n.u1VGif = pCtx->hwvirt.fGif;
2456 }
2457#endif
2458
2459 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2460
2461 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2462 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2463
2464 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2465 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2466 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2467
2468 ASMSetFlags(fEFlags);
2469
2470 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2471 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2472 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2473
2474 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2475 AssertRCReturn(rc, rc);
2476
2477 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2478 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2479 | HM_CHANGED_GUEST_RFLAGS
2480 | HM_CHANGED_GUEST_GPRS_MASK
2481 | HM_CHANGED_GUEST_X87
2482 | HM_CHANGED_GUEST_SSE_AVX
2483 | HM_CHANGED_GUEST_OTHER_XSAVE
2484 | HM_CHANGED_GUEST_XCRx
2485 | HM_CHANGED_GUEST_TSC_AUX
2486 | HM_CHANGED_GUEST_OTHER_MSRS
2487 | HM_CHANGED_GUEST_HWVIRT
2488 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)));
2489
2490#ifdef VBOX_STRICT
2491 /*
2492 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2493 * except for the host-context and/or shared host-guest context bits.
2494 */
2495 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2496 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2497 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2498 ("fCtxChanged=%#RX64\n", fCtxChanged));
2499
2500 /*
2501 * If we need to log state that isn't always imported, we'll need to import them here.
2502 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2503 */
2504 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2505#endif
2506
2507 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2508 return VINF_SUCCESS;
2509}
2510
2511
2512#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2513/**
2514 * Merges the guest and nested-guest MSR permission bitmap.
2515 *
2516 * If the guest is intercepting an MSR we need to intercept it regardless of
2517 * whether the nested-guest is intercepting it or not.
2518 *
2519 * @param pHostCpu Pointer to the physical CPU HM info. struct.
2520 * @param pVCpu The cross context virtual CPU structure.
2521 *
2522 * @remarks No-long-jmp zone!!!
2523 */
2524DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMGLOBALCPUINFO pHostCpu, PVMCPU pVCpu)
2525{
2526 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
2527 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2528 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2529
2530 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2531 uint32_t const offRsvdQwords = 0x1800 >> 3;
2532 for (uint32_t i = 0; i < offRsvdQwords; i++)
2533 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2534}
2535
2536
2537/**
2538 * Caches the nested-guest VMCB fields before we modify them for execution using
2539 * hardware-assisted SVM.
2540 *
2541 * @returns true if the VMCB was previously already cached, false otherwise.
2542 * @param pVCpu The cross context virtual CPU structure.
2543 *
2544 * @sa HMSvmNstGstVmExitNotify.
2545 */
2546static bool hmR0SvmCacheVmcbNested(PVMCPU pVCpu)
2547{
2548 /*
2549 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2550 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2551 *
2552 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2553 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2554 */
2555 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2556 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2557 if (!fWasCached)
2558 {
2559 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2560 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2561 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2562 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2563 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2564 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2565 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2566 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2567 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2568 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2569 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2570 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2571 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2572 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2573 pVmcbNstGstCache->fCacheValid = true;
2574 Log4Func(("Cached VMCB fields\n"));
2575 }
2576
2577 return fWasCached;
2578}
2579
2580
2581/**
2582 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2583 *
2584 * This is done the first time we enter nested-guest execution using SVM R0
2585 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2586 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2587 *
2588 * @param pVCpu The cross context virtual CPU structure.
2589 */
2590static void hmR0SvmSetupVmcbNested(PVMCPU pVCpu)
2591{
2592 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2593 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2594
2595 /*
2596 * First cache the nested-guest VMCB fields we may potentially modify.
2597 */
2598 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2599 if (!fVmcbCached)
2600 {
2601 /*
2602 * The IOPM of the nested-guest can be ignored because the the guest always
2603 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2604 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2605 */
2606 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2607
2608 /*
2609 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2610 * nested-paging suddenly while executing a VM (see assertion at the end of
2611 * Trap0eHandler() in PGMAllBth.h).
2612 */
2613 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2614
2615 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2616 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2617
2618 /*
2619 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2620 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2621 */
2622 pVCpu->hm.s.svm.fSyncVTpr = false;
2623
2624#ifdef DEBUG_ramshankar
2625 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2626 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2627#endif
2628
2629 /*
2630 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2631 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2632 */
2633 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2634 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2635 | SVM_CTRL_INTERCEPT_VMLOAD;
2636
2637 /*
2638 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2639 * CLGI/STGI instructions executed by the nested-guest.
2640 */
2641 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2642 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2643 | SVM_CTRL_INTERCEPT_STGI;
2644
2645 /* Merge the guest and nested-guest intercepts. */
2646 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2647
2648 /* Update the VMCB clean bits. */
2649 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2650 }
2651 else
2652 {
2653 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
2654 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2655 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2656 }
2657}
2658
2659
2660/**
2661 * Exports the nested-guest state into the VMCB.
2662 *
2663 * We need to export the entire state as we could be continuing nested-guest
2664 * execution at any point (not just immediately after VMRUN) and thus the VMCB
2665 * can be out-of-sync with the nested-guest state if it was executed in IEM.
2666 *
2667 * @returns VBox status code.
2668 * @param pVCpu The cross context virtual CPU structure.
2669 * @param pCtx Pointer to the guest-CPU context.
2670 *
2671 * @remarks No-long-jump zone!!!
2672 */
2673static int hmR0SvmExportGuestStateNested(PVMCPU pVCpu)
2674{
2675 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2676
2677 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2678 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2679 Assert(pVmcbNstGst);
2680
2681 hmR0SvmSetupVmcbNested(pVCpu);
2682
2683 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2684 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2685 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2686 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2687
2688 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2689
2690 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcbNstGst);
2691 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2692
2693 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcbNstGst);
2694 hmR0SvmExportGuestMsrs(pVCpu, pVmcbNstGst);
2695 hmR0SvmExportGuestHwvirtStateNested(pVCpu, pVmcbNstGst);
2696
2697 ASMSetFlags(fEFlags);
2698
2699 /* Nested VGIF not supported yet. */
2700 Assert(!pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable);
2701
2702 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2703 AssertRCReturn(rc, rc);
2704
2705 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2706 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2707 | HM_CHANGED_GUEST_RFLAGS
2708 | HM_CHANGED_GUEST_GPRS_MASK
2709 | HM_CHANGED_GUEST_APIC_TPR
2710 | HM_CHANGED_GUEST_X87
2711 | HM_CHANGED_GUEST_SSE_AVX
2712 | HM_CHANGED_GUEST_OTHER_XSAVE
2713 | HM_CHANGED_GUEST_XCRx
2714 | HM_CHANGED_GUEST_TSC_AUX
2715 | HM_CHANGED_GUEST_OTHER_MSRS
2716 | HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS
2717 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2718
2719#ifdef VBOX_STRICT
2720 /*
2721 * All of the guest-CPU state and SVM keeper bits should be exported here by now, except
2722 * for the host-context and/or shared host-guest context bits.
2723 */
2724 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2725 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2726 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2727 ("fCtxChanged=%#RX64\n", fCtxChanged));
2728
2729 /*
2730 * If we need to log state that isn't always imported, we'll need to import them here.
2731 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2732 */
2733 hmR0SvmLogState(pVCpu, pVmcbNstGst, "hmR0SvmExportGuestStateNested", 0 /* fFlags */, 0 /* uVerbose */);
2734#endif
2735
2736 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2737 return rc;
2738}
2739#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2740
2741
2742/**
2743 * Exports the state shared between the host and guest (or nested-guest) into
2744 * the VMCB.
2745 *
2746 * @param pVCpu The cross context virtual CPU structure.
2747 * @param pVmcb Pointer to the VM control block.
2748 *
2749 * @remarks No-long-jump zone!!!
2750 */
2751static void hmR0SvmExportSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb)
2752{
2753 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2754 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2755
2756 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2757 {
2758 /** @todo Figure out stepping with nested-guest. */
2759 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2760 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2761 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2762 else
2763 {
2764 pVmcb->guest.u64DR6 = pCtx->dr[6];
2765 pVmcb->guest.u64DR7 = pCtx->dr[7];
2766 }
2767 }
2768
2769 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2770 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2771 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2772}
2773
2774
2775/**
2776 * Worker for SVMR0ImportStateOnDemand.
2777 *
2778 * @param pVCpu The cross context virtual CPU structure.
2779 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2780 */
2781static void hmR0SvmImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
2782{
2783 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2784
2785 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2786 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2787 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2788 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2789
2790 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
2791
2792 /*
2793 * We disable interrupts to make the updating of the state and in particular
2794 * the fExtrn modification atomic wrt to preemption hooks.
2795 */
2796 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2797
2798 fWhat &= pCtx->fExtrn;
2799 if (fWhat)
2800 {
2801#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2802 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2803 {
2804 if ( !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
2805 && pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2806 {
2807 /* We don't yet support passing VGIF feature to the guest. */
2808 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fVGif);
2809 pCtx->hwvirt.fGif = pVmcbCtrl->IntCtrl.n.u1VGif;
2810 }
2811 }
2812
2813 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2814 {
2815 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2816 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2817 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2818 }
2819#endif
2820
2821 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2822 {
2823 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2824 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2825 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2826 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2827 }
2828
2829 if (fWhat & CPUMCTX_EXTRN_RIP)
2830 pCtx->rip = pVmcbGuest->u64RIP;
2831
2832 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2833 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2834
2835 if (fWhat & CPUMCTX_EXTRN_RSP)
2836 pCtx->rsp = pVmcbGuest->u64RSP;
2837
2838 if (fWhat & CPUMCTX_EXTRN_RAX)
2839 pCtx->rax = pVmcbGuest->u64RAX;
2840
2841 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2842 {
2843 if (fWhat & CPUMCTX_EXTRN_CS)
2844 {
2845 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2846 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2847 /** @todo SELM might need to be fixed as it too should not care about the
2848 * granularity bit. See @bugref{6785}. */
2849 if ( !pCtx->cs.Attr.n.u1Granularity
2850 && pCtx->cs.Attr.n.u1Present
2851 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2852 {
2853 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2854 pCtx->cs.Attr.n.u1Granularity = 1;
2855 }
2856 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2857 }
2858 if (fWhat & CPUMCTX_EXTRN_SS)
2859 {
2860 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2861 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2862 /*
2863 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2864 * VMCB and uses that and thus it's possible that when the CPL changes during
2865 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2866 * AMD Fusion CPUs with 64-bit guests.
2867 *
2868 * See AMD spec. 15.5.1 "Basic operation".
2869 */
2870 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2871 uint8_t const uCpl = pVmcbGuest->u8CPL;
2872 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2873 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2874 }
2875 if (fWhat & CPUMCTX_EXTRN_DS)
2876 {
2877 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2878 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2879 }
2880 if (fWhat & CPUMCTX_EXTRN_ES)
2881 {
2882 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2883 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2884 }
2885 if (fWhat & CPUMCTX_EXTRN_FS)
2886 {
2887 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2888 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2889 }
2890 if (fWhat & CPUMCTX_EXTRN_GS)
2891 {
2892 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2893 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2894 }
2895 }
2896
2897 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2898 {
2899 if (fWhat & CPUMCTX_EXTRN_TR)
2900 {
2901 /*
2902 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2903 * are used between Intel and AMD, see @bugref{6208#c39}.
2904 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2905 */
2906 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2907 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2908 {
2909 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2910 || CPUMIsGuestInLongModeEx(pCtx))
2911 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2912 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2913 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2914 }
2915 }
2916
2917 if (fWhat & CPUMCTX_EXTRN_LDTR)
2918 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2919
2920 if (fWhat & CPUMCTX_EXTRN_GDTR)
2921 {
2922 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2923 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2924 }
2925
2926 if (fWhat & CPUMCTX_EXTRN_IDTR)
2927 {
2928 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2929 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2930 }
2931 }
2932
2933 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2934 {
2935 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2936 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2937 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2938 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2939 }
2940
2941 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2942 {
2943 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2944 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2945 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2946 }
2947
2948 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2949 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2950
2951 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2952 {
2953 if (fWhat & CPUMCTX_EXTRN_DR6)
2954 {
2955 if (!pVCpu->hm.s.fUsingHyperDR7)
2956 pCtx->dr[6] = pVmcbGuest->u64DR6;
2957 else
2958 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2959 }
2960
2961 if (fWhat & CPUMCTX_EXTRN_DR7)
2962 {
2963 if (!pVCpu->hm.s.fUsingHyperDR7)
2964 pCtx->dr[7] = pVmcbGuest->u64DR7;
2965 else
2966 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2967 }
2968 }
2969
2970 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2971 {
2972 if (fWhat & CPUMCTX_EXTRN_CR0)
2973 {
2974 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2975 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2976 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2977 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2978 CPUMSetGuestCR0(pVCpu, uCr0);
2979 VMMRZCallRing3Enable(pVCpu);
2980 }
2981
2982 if (fWhat & CPUMCTX_EXTRN_CR2)
2983 pCtx->cr2 = pVmcbGuest->u64CR2;
2984
2985 if (fWhat & CPUMCTX_EXTRN_CR3)
2986 {
2987 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2988 && pCtx->cr3 != pVmcbGuest->u64CR3)
2989 {
2990 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2991 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2992 }
2993 }
2994
2995 /* Changes to CR4 are always intercepted. */
2996 }
2997
2998 /* Update fExtrn. */
2999 pCtx->fExtrn &= ~fWhat;
3000
3001 /* If everything has been imported, clear the HM keeper bit. */
3002 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
3003 {
3004 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
3005 Assert(!pCtx->fExtrn);
3006 }
3007 }
3008 else
3009 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3010
3011 ASMSetFlags(fEFlags);
3012
3013 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
3014
3015 /*
3016 * Honor any pending CR3 updates.
3017 *
3018 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
3019 * -> hmR0SvmCallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
3020 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
3021 * handling -> hmR0SvmImportGuestState() and here we are.
3022 *
3023 * The reason for such complicated handling is because VM-exits that call into PGM expect
3024 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
3025 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
3026 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
3027 *
3028 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
3029 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
3030 */
3031 if ( VMMRZCallRing3IsEnabled(pVCpu)
3032 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3033 {
3034 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
3035 PGMUpdateCR3(pVCpu, pCtx->cr3);
3036 }
3037}
3038
3039
3040/**
3041 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
3042 * context.
3043 *
3044 * Currently there is no residual state left in the CPU that is not updated in the
3045 * VMCB.
3046 *
3047 * @returns VBox status code.
3048 * @param pVCpu The cross context virtual CPU structure.
3049 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3050 */
3051VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
3052{
3053 hmR0SvmImportGuestState(pVCpu, fWhat);
3054 return VINF_SUCCESS;
3055}
3056
3057
3058/**
3059 * Does the necessary state syncing before returning to ring-3 for any reason
3060 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
3061 *
3062 * @param pVCpu The cross context virtual CPU structure.
3063 * @param fImportState Whether to import the guest state from the VMCB back
3064 * to the guest-CPU context.
3065 *
3066 * @remarks No-long-jmp zone!!!
3067 */
3068static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState)
3069{
3070 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3071 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3072 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3073
3074 /*
3075 * !!! IMPORTANT !!!
3076 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3077 */
3078
3079 /* Save the guest state if necessary. */
3080 if (fImportState)
3081 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3082
3083 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3084 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3085 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
3086
3087 /*
3088 * Restore host debug registers if necessary and resync on next R0 reentry.
3089 */
3090#ifdef VBOX_STRICT
3091 if (CPUMIsHyperDebugStateActive(pVCpu))
3092 {
3093 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
3094 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
3095 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
3096 }
3097#endif
3098 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3099 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3100 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3101
3102 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
3103 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
3104 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
3105 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
3106 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
3107 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3108
3109 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3110}
3111
3112
3113/**
3114 * Leaves the AMD-V session.
3115 *
3116 * Only used while returning to ring-3 either due to longjump or exits to
3117 * ring-3.
3118 *
3119 * @returns VBox status code.
3120 * @param pVCpu The cross context virtual CPU structure.
3121 */
3122static int hmR0SvmLeaveSession(PVMCPU pVCpu)
3123{
3124 HM_DISABLE_PREEMPT(pVCpu);
3125 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3126 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3127
3128 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3129 and done this from the SVMR0ThreadCtxCallback(). */
3130 if (!pVCpu->hm.s.fLeaveDone)
3131 {
3132 hmR0SvmLeave(pVCpu, true /* fImportState */);
3133 pVCpu->hm.s.fLeaveDone = true;
3134 }
3135
3136 /*
3137 * !!! IMPORTANT !!!
3138 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3139 */
3140
3141 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3142 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3143 VMMR0ThreadCtxHookDisable(pVCpu);
3144
3145 /* Leave HM context. This takes care of local init (term). */
3146 int rc = HMR0LeaveCpu(pVCpu);
3147
3148 HM_RESTORE_PREEMPT();
3149 return rc;
3150}
3151
3152
3153/**
3154 * Does the necessary state syncing before doing a longjmp to ring-3.
3155 *
3156 * @returns VBox status code.
3157 * @param pVCpu The cross context virtual CPU structure.
3158 *
3159 * @remarks No-long-jmp zone!!!
3160 */
3161static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
3162{
3163 return hmR0SvmLeaveSession(pVCpu);
3164}
3165
3166
3167/**
3168 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3169 * any remaining host state) before we longjump to ring-3 and possibly get
3170 * preempted.
3171 *
3172 * @param pVCpu The cross context virtual CPU structure.
3173 * @param enmOperation The operation causing the ring-3 longjump.
3174 * @param pvUser The user argument, NULL (currently unused).
3175 */
3176static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
3177{
3178 RT_NOREF_PV(pvUser);
3179
3180 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3181 {
3182 /*
3183 * !!! IMPORTANT !!!
3184 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3185 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3186 */
3187 VMMRZCallRing3RemoveNotification(pVCpu);
3188 VMMRZCallRing3Disable(pVCpu);
3189 HM_DISABLE_PREEMPT(pVCpu);
3190
3191 /* Import the entire guest state. */
3192 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3193
3194 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3195 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3196
3197 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3198 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3199
3200 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3201 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3202 VMMR0ThreadCtxHookDisable(pVCpu);
3203
3204 /* Leave HM context. This takes care of local init (term). */
3205 HMR0LeaveCpu(pVCpu);
3206
3207 HM_RESTORE_PREEMPT();
3208 return VINF_SUCCESS;
3209 }
3210
3211 Assert(pVCpu);
3212 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3213 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3214
3215 VMMRZCallRing3Disable(pVCpu);
3216 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3217
3218 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3219 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3220 AssertRCReturn(rc, rc);
3221
3222 VMMRZCallRing3Enable(pVCpu);
3223 return VINF_SUCCESS;
3224}
3225
3226
3227/**
3228 * Take necessary actions before going back to ring-3.
3229 *
3230 * An action requires us to go back to ring-3. This function does the necessary
3231 * steps before we can safely return to ring-3. This is not the same as longjmps
3232 * to ring-3, this is voluntary.
3233 *
3234 * @returns VBox status code.
3235 * @param pVCpu The cross context virtual CPU structure.
3236 * @param rcExit The reason for exiting to ring-3. Can be
3237 * VINF_VMM_UNKNOWN_RING3_CALL.
3238 */
3239static int hmR0SvmExitToRing3(PVMCPU pVCpu, int rcExit)
3240{
3241 Assert(pVCpu);
3242 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3243
3244 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3245 VMMRZCallRing3Disable(pVCpu);
3246 Log4Func(("rcExit=%d LocalFF=%#RX32 GlobalFF=%#RX32\n", rcExit, pVCpu->fLocalForcedActions,
3247 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3248
3249 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3250 if (pVCpu->hm.s.Event.fPending)
3251 {
3252 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3253 Assert(!pVCpu->hm.s.Event.fPending);
3254 }
3255
3256 /* Sync. the necessary state for going back to ring-3. */
3257 hmR0SvmLeaveSession(pVCpu);
3258 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3259
3260 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3261 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3262 | CPUM_CHANGED_LDTR
3263 | CPUM_CHANGED_GDTR
3264 | CPUM_CHANGED_IDTR
3265 | CPUM_CHANGED_TR
3266 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3267 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
3268 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3269 {
3270 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3271 }
3272
3273 /* Update the exit-to-ring 3 reason. */
3274 pVCpu->hm.s.rcLastExitToR3 = rcExit;
3275
3276 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
3277 if (rcExit != VINF_EM_RAW_INTERRUPT)
3278 {
3279 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3280 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3281 }
3282
3283 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3284
3285 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
3286 VMMRZCallRing3RemoveNotification(pVCpu);
3287 VMMRZCallRing3Enable(pVCpu);
3288
3289 /*
3290 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3291 * and if we're injecting an event we should have a TRPM trap pending.
3292 */
3293 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3294 pVCpu->hm.s.u32HMError = rcExit,
3295 VERR_SVM_IPE_5);
3296 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3297 pVCpu->hm.s.u32HMError = rcExit,
3298 VERR_SVM_IPE_4);
3299
3300 return rcExit;
3301}
3302
3303
3304/**
3305 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3306 * intercepts.
3307 *
3308 * @param pVCpu The cross context virtual CPU structure.
3309 * @param pVmcb Pointer to the VM control block.
3310 *
3311 * @remarks No-long-jump zone!!!
3312 */
3313static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3314{
3315 /*
3316 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3317 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3318 * RDTSC/RDTSCP as well.
3319 */
3320 bool fParavirtTsc;
3321 uint64_t uTscOffset;
3322 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3323
3324 bool fIntercept;
3325 if (fCanUseRealTsc)
3326 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3327 else
3328 {
3329 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3330 fIntercept = true;
3331 }
3332
3333 if (!fIntercept)
3334 {
3335#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3336 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3337 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3338 uTscOffset = HMSvmNstGstApplyTscOffset(pVCpu, uTscOffset);
3339#endif
3340
3341 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3342 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3343 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3344
3345 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
3346 }
3347 else
3348 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
3349
3350 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3351 information before every VM-entry, hence we have nothing to do here at the moment. */
3352 if (fParavirtTsc)
3353 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3354}
3355
3356
3357/**
3358 * Sets an event as a pending event to be injected into the guest.
3359 *
3360 * @param pVCpu The cross context virtual CPU structure.
3361 * @param pEvent Pointer to the SVM event.
3362 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3363 * page-fault.
3364 *
3365 * @remarks Statistics counter assumes this is a guest event being reflected to
3366 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3367 */
3368DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3369{
3370 Assert(!pVCpu->hm.s.Event.fPending);
3371 Assert(pEvent->n.u1Valid);
3372
3373 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3374 pVCpu->hm.s.Event.fPending = true;
3375 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3376
3377 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3378 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3379}
3380
3381
3382/**
3383 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3384 *
3385 * @param pVCpu The cross context virtual CPU structure.
3386 */
3387DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3388{
3389 SVMEVENT Event;
3390 Event.u = 0;
3391 Event.n.u1Valid = 1;
3392 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3393 Event.n.u8Vector = X86_XCPT_UD;
3394 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3395}
3396
3397
3398/**
3399 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3400 *
3401 * @param pVCpu The cross context virtual CPU structure.
3402 */
3403DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3404{
3405 SVMEVENT Event;
3406 Event.u = 0;
3407 Event.n.u1Valid = 1;
3408 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3409 Event.n.u8Vector = X86_XCPT_DB;
3410 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3411}
3412
3413
3414/**
3415 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3416 *
3417 * @param pVCpu The cross context virtual CPU structure.
3418 * @param u32ErrCode The error-code for the page-fault.
3419 * @param uFaultAddress The page fault address (CR2).
3420 *
3421 * @remarks This updates the guest CR2 with @a uFaultAddress!
3422 */
3423DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3424{
3425 SVMEVENT Event;
3426 Event.u = 0;
3427 Event.n.u1Valid = 1;
3428 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3429 Event.n.u8Vector = X86_XCPT_PF;
3430 Event.n.u1ErrorCodeValid = 1;
3431 Event.n.u32ErrorCode = u32ErrCode;
3432
3433 /* Update CR2 of the guest. */
3434 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3435 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3436 {
3437 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3438 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3439 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3440 }
3441
3442 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3443}
3444
3445
3446/**
3447 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3448 *
3449 * @param pVCpu The cross context virtual CPU structure.
3450 */
3451DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3452{
3453 SVMEVENT Event;
3454 Event.u = 0;
3455 Event.n.u1Valid = 1;
3456 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3457 Event.n.u8Vector = X86_XCPT_MF;
3458 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3459}
3460
3461
3462/**
3463 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3464 *
3465 * @param pVCpu The cross context virtual CPU structure.
3466 */
3467DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3468{
3469 SVMEVENT Event;
3470 Event.u = 0;
3471 Event.n.u1Valid = 1;
3472 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3473 Event.n.u8Vector = X86_XCPT_DF;
3474 Event.n.u1ErrorCodeValid = 1;
3475 Event.n.u32ErrorCode = 0;
3476 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3477}
3478
3479
3480/**
3481 * Injects an event into the guest upon VMRUN by updating the relevant field
3482 * in the VMCB.
3483 *
3484 * @param pVCpu The cross context virtual CPU structure.
3485 * @param pVmcb Pointer to the guest VM control block.
3486 * @param pEvent Pointer to the event.
3487 *
3488 * @remarks No-long-jump zone!!!
3489 * @remarks Requires CR0!
3490 */
3491DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3492{
3493 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3494 pVmcb->ctrl.EventInject.u = pEvent->u;
3495 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3496 RT_NOREF(pVCpu);
3497
3498 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3499 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3500}
3501
3502
3503
3504/**
3505 * Converts any TRPM trap into a pending HM event. This is typically used when
3506 * entering from ring-3 (not longjmp returns).
3507 *
3508 * @param pVCpu The cross context virtual CPU structure.
3509 */
3510static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
3511{
3512 Assert(TRPMHasTrap(pVCpu));
3513 Assert(!pVCpu->hm.s.Event.fPending);
3514
3515 uint8_t uVector;
3516 TRPMEVENT enmTrpmEvent;
3517 RTGCUINT uErrCode;
3518 RTGCUINTPTR GCPtrFaultAddress;
3519 uint8_t cbInstr;
3520
3521 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
3522 AssertRC(rc);
3523
3524 SVMEVENT Event;
3525 Event.u = 0;
3526 Event.n.u1Valid = 1;
3527 Event.n.u8Vector = uVector;
3528
3529 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3530 if (enmTrpmEvent == TRPM_TRAP)
3531 {
3532 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3533 switch (uVector)
3534 {
3535 case X86_XCPT_NMI:
3536 {
3537 Event.n.u3Type = SVM_EVENT_NMI;
3538 break;
3539 }
3540
3541 case X86_XCPT_PF:
3542 case X86_XCPT_DF:
3543 case X86_XCPT_TS:
3544 case X86_XCPT_NP:
3545 case X86_XCPT_SS:
3546 case X86_XCPT_GP:
3547 case X86_XCPT_AC:
3548 {
3549 Event.n.u1ErrorCodeValid = 1;
3550 Event.n.u32ErrorCode = uErrCode;
3551 break;
3552 }
3553 }
3554 }
3555 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3556 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3557 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3558 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3559 else
3560 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3561
3562 rc = TRPMResetTrap(pVCpu);
3563 AssertRC(rc);
3564
3565 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3566 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3567
3568 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3569}
3570
3571
3572/**
3573 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3574 * AMD-V to execute any instruction.
3575 *
3576 * @param pVCpu The cross context virtual CPU structure.
3577 */
3578static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3579{
3580 Assert(pVCpu->hm.s.Event.fPending);
3581 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3582
3583 SVMEVENT Event;
3584 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3585
3586 uint8_t uVector = Event.n.u8Vector;
3587 uint8_t uVectorType = Event.n.u3Type;
3588 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
3589
3590 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
3591
3592 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3593 AssertRC(rc);
3594
3595 if (Event.n.u1ErrorCodeValid)
3596 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3597
3598 if ( uVectorType == SVM_EVENT_EXCEPTION
3599 && uVector == X86_XCPT_PF)
3600 {
3601 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3602 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3603 }
3604 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
3605 {
3606 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
3607 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
3608 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
3609 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3610 }
3611 pVCpu->hm.s.Event.fPending = false;
3612}
3613
3614
3615/**
3616 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3617 * now.
3618 *
3619 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3620 * @param pVCpu The cross context virtual CPU structure.
3621 *
3622 * @remarks No-long-jump zone!!!
3623 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3624 */
3625static bool hmR0SvmIsIntrShadowActive(PVMCPU pVCpu)
3626{
3627 /*
3628 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3629 * completes. Check if we should inhibit interrupts or clear any existing
3630 * interrupt inhibition.
3631 */
3632 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3633 {
3634 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3635 {
3636 /*
3637 * We can clear the inhibit force flag as even if we go back to the recompiler
3638 * without executing guest code in AMD-V, the flag's condition to be cleared is
3639 * met and thus the cleared state is correct.
3640 */
3641 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3642 return false;
3643 }
3644 return true;
3645 }
3646 return false;
3647}
3648
3649
3650/**
3651 * Sets the virtual interrupt intercept control in the VMCB.
3652 *
3653 * @param pVCpu The cross context virtual CPU structure.
3654 * @param pVmcb Pointer to the VM control block.
3655 */
3656static void hmR0SvmSetIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3657{
3658 /*
3659 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3660 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3661 * (updating ISR at the right time) and inject the interrupt.
3662 *
3663 * With AVIC is supported, we could make use of the asynchronously delivery without
3664 * #VMEXIT and we would be passing the AVIC page to SVM.
3665 *
3666 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3667 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3668 */
3669#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3670 /*
3671 * Currently we don't overlay interupt windows and if there's any V_IRQ pending in the
3672 * nested-guest VMCB, we avoid setting up any interrupt window on behalf of the outer
3673 * guest.
3674 */
3675 /** @todo Does this mean we end up prioritizing virtual interrupt
3676 * delivery/window over a physical interrupt (from the outer guest)
3677 * might be pending? */
3678 bool const fEnableIntWindow = !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
3679 if (!fEnableIntWindow)
3680 {
3681 Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx));
3682 Log4(("Nested-guest V_IRQ already pending\n"));
3683 }
3684#else
3685 bool const fEnableIntWindow = true;
3686 RT_NOREF(pVCpu);
3687#endif
3688 if (fEnableIntWindow)
3689 {
3690 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3691 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3692 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3693 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3694 Log4(("Set VINTR intercept\n"));
3695 }
3696}
3697
3698
3699/**
3700 * Clears the virtual interrupt intercept control in the VMCB as
3701 * we are figured the guest is unable process any interrupts
3702 * at this point of time.
3703 *
3704 * @param pVCpu The cross context virtual CPU structure.
3705 * @param pVmcb Pointer to the VM control block.
3706 */
3707static void hmR0SvmClearIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3708{
3709 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3710 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3711 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3712 {
3713 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3714 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3715 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3716 Log4(("Cleared VINTR intercept\n"));
3717 }
3718}
3719
3720#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3721/**
3722 * Evaluates the event to be delivered to the nested-guest and sets it as the
3723 * pending event.
3724 *
3725 * @returns VBox strict status code.
3726 * @param pVCpu The cross context virtual CPU structure.
3727 */
3728static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu)
3729{
3730 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3731 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
3732 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3733 | CPUMCTX_EXTRN_RFLAGS
3734 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3735 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3736
3737 Assert(!pVCpu->hm.s.Event.fPending);
3738 Assert(pCtx->hwvirt.fGif);
3739 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3740 Assert(pVmcb);
3741
3742 bool const fVirtualGif = CPUMGetSvmNstGstVGif(pCtx);
3743 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3744 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3745
3746 Log4Func(("fVirtualGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3747 fVirtualGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3748 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3749
3750 /** @todo SMI. SMIs take priority over NMIs. */
3751
3752 /*
3753 * Check if the guest can receive NMIs.
3754 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3755 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3756 */
3757 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3758 && !fBlockNmi)
3759 {
3760 if ( fVirtualGif
3761 && !fIntShadow)
3762 {
3763 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3764 {
3765 Log4(("Intercepting NMI -> #VMEXIT\n"));
3766 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK);
3767 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3768 }
3769
3770 Log4(("Setting NMI pending for injection\n"));
3771 SVMEVENT Event;
3772 Event.u = 0;
3773 Event.n.u1Valid = 1;
3774 Event.n.u8Vector = X86_XCPT_NMI;
3775 Event.n.u3Type = SVM_EVENT_NMI;
3776 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3777 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3778 }
3779 else if (!fVirtualGif)
3780 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3781 else
3782 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3783 }
3784 /*
3785 * Check if the nested-guest can receive external interrupts (generated by the guest's
3786 * PIC/APIC).
3787 *
3788 * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
3789 * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
3790 *
3791 * External interrupts that are generated for the outer guest may be intercepted
3792 * depending on how the nested-guest VMCB was programmed by guest software.
3793 *
3794 * Physical interrupts always take priority over virtual interrupts,
3795 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3796 */
3797 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3798 && !pVCpu->hm.s.fSingleInstruction)
3799 {
3800 if ( fVirtualGif
3801 && !fIntShadow
3802 && CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx))
3803 {
3804 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3805 {
3806 Log4(("Intercepting INTR -> #VMEXIT\n"));
3807 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK);
3808 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3809 }
3810
3811 uint8_t u8Interrupt;
3812 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3813 if (RT_SUCCESS(rc))
3814 {
3815 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3816 SVMEVENT Event;
3817 Event.u = 0;
3818 Event.n.u1Valid = 1;
3819 Event.n.u8Vector = u8Interrupt;
3820 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3821 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3822 }
3823 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3824 {
3825 /*
3826 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3827 * updated eventually when the TPR is written by the guest.
3828 */
3829 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3830 }
3831 else
3832 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3833 }
3834 else if (!fVirtualGif)
3835 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3836 else
3837 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3838 }
3839
3840 return VINF_SUCCESS;
3841}
3842#endif
3843
3844/**
3845 * Evaluates the event to be delivered to the guest and sets it as the pending
3846 * event.
3847 *
3848 * @param pVCpu The cross context virtual CPU structure.
3849 */
3850static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu)
3851{
3852 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3853 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3854 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3855 | CPUMCTX_EXTRN_RFLAGS
3856 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW);
3857
3858 Assert(!pVCpu->hm.s.Event.fPending);
3859 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3860 Assert(pVmcb);
3861
3862#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3863 bool const fGif = pCtx->hwvirt.fGif;
3864#else
3865 bool const fGif = true;
3866#endif
3867 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3868 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3869 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3870
3871 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool fIntPending=%RTbool NMI pending=%RTbool\n",
3872 fGif, fBlockNmi, fBlockInt, fIntShadow,
3873 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3874 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3875
3876 /** @todo SMI. SMIs take priority over NMIs. */
3877
3878 /*
3879 * Check if the guest can receive NMIs.
3880 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3881 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3882 */
3883 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3884 && !fBlockNmi)
3885 {
3886 if ( fGif
3887 && !fIntShadow)
3888 {
3889 Log4(("Setting NMI pending for injection\n"));
3890 SVMEVENT Event;
3891 Event.u = 0;
3892 Event.n.u1Valid = 1;
3893 Event.n.u8Vector = X86_XCPT_NMI;
3894 Event.n.u3Type = SVM_EVENT_NMI;
3895 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3896 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3897 }
3898 else if (!fGif)
3899 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3900 else
3901 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3902 }
3903 /*
3904 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3905 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3906 * it from the APIC device.
3907 */
3908 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3909 && !pVCpu->hm.s.fSingleInstruction)
3910 {
3911 if ( fGif
3912 && !fBlockInt
3913 && !fIntShadow)
3914 {
3915 uint8_t u8Interrupt;
3916 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3917 if (RT_SUCCESS(rc))
3918 {
3919 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3920 SVMEVENT Event;
3921 Event.u = 0;
3922 Event.n.u1Valid = 1;
3923 Event.n.u8Vector = u8Interrupt;
3924 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3925 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3926 }
3927 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3928 {
3929 /*
3930 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3931 * updated eventually when the TPR is written by the guest.
3932 */
3933 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3934 }
3935 else
3936 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3937 }
3938 else if (!fGif)
3939 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3940 else
3941 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3942 }
3943}
3944
3945
3946/**
3947 * Injects any pending events into the guest (or nested-guest).
3948 *
3949 * @param pVCpu The cross context virtual CPU structure.
3950 * @param pVmcb Pointer to the VM control block.
3951 *
3952 * @remarks Must only be called when we are guaranteed to enter
3953 * hardware-assisted SVM execution and not return to ring-3
3954 * prematurely.
3955 */
3956static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PSVMVMCB pVmcb)
3957{
3958 Assert(!TRPMHasTrap(pVCpu));
3959 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3960
3961 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3962#ifdef VBOX_STRICT
3963 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3964 bool const fGif = pCtx->hwvirt.fGif;
3965 bool fAllowInt = fGif;
3966 if (fGif)
3967 {
3968 /*
3969 * For nested-guests we have no way to determine if we're injecting a physical or
3970 * virtual interrupt at this point. Hence the partial verification below.
3971 */
3972 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3973 fAllowInt = CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx) || CPUMCanSvmNstGstTakeVirtIntr(pVCpu, pCtx);
3974 else
3975 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3976 }
3977#endif
3978
3979 if (pVCpu->hm.s.Event.fPending)
3980 {
3981 SVMEVENT Event;
3982 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3983 Assert(Event.n.u1Valid);
3984
3985 /*
3986 * Validate event injection pre-conditions.
3987 */
3988 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3989 {
3990 Assert(fAllowInt);
3991 Assert(!fIntShadow);
3992 }
3993 else if (Event.n.u3Type == SVM_EVENT_NMI)
3994 {
3995 Assert(fGif);
3996 Assert(!fIntShadow);
3997 }
3998
3999 /*
4000 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
4001 * do this only when we are surely going to inject the NMI as otherwise if we return
4002 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
4003 * SVM R0.
4004 *
4005 * With VT-x, this is handled by the Guest interruptibility information VMCS field
4006 * which will set the VMCS field after actually delivering the NMI which we read on
4007 * VM-exit to determine the state.
4008 */
4009 if ( Event.n.u3Type == SVM_EVENT_NMI
4010 && Event.n.u8Vector == X86_XCPT_NMI
4011 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4012 {
4013 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4014 }
4015
4016 /*
4017 * Inject it (update VMCB for injection by the hardware).
4018 */
4019 Log4(("Injecting pending HM event\n"));
4020 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
4021 pVCpu->hm.s.Event.fPending = false;
4022
4023 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
4024 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
4025 else
4026 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
4027 }
4028 else
4029 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
4030
4031 /*
4032 * We could have injected an NMI through IEM and continue guest execution using
4033 * hardware-assisted SVM. In which case, we would not have any events pending (above)
4034 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
4035 */
4036 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4037 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
4038
4039 /*
4040 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
4041 *
4042 * For nested-guests: We need to update it too for the scenario where IEM executes
4043 * the nested-guest but execution later continues here with an interrupt shadow active.
4044 */
4045 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
4046}
4047
4048
4049/**
4050 * Reports world-switch error and dumps some useful debug info.
4051 *
4052 * @param pVCpu The cross context virtual CPU structure.
4053 * @param rcVMRun The return code from VMRUN (or
4054 * VERR_SVM_INVALID_GUEST_STATE for invalid
4055 * guest-state).
4056 */
4057static void hmR0SvmReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun)
4058{
4059 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4060 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4061 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4062
4063 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
4064 {
4065#ifdef VBOX_STRICT
4066 hmR0DumpRegs(pVCpu);
4067 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
4068 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
4069 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
4070 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
4071 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
4072 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
4073 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
4074 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
4075 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
4076 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
4077 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
4078
4079 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
4080 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
4081 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
4082
4083 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
4084 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
4085 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
4086 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
4087 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
4088 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
4089 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
4090 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
4091 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
4092 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
4093 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
4094 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
4095
4096 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
4097 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
4098 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
4099 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
4100 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
4101 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
4102 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
4103 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
4104 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
4105 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
4106 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4107 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
4108 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
4109 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
4110 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
4111 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
4112 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
4113 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
4114 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
4115 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
4116
4117 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
4118
4119 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
4120 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
4121
4122 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
4123 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
4124 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
4125 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
4126 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
4127 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
4128 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
4129 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
4130 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
4131 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
4132 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
4133 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
4134 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
4135 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
4136 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
4137 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
4138 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
4139 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
4140 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
4141 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
4142
4143 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
4144 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
4145
4146 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
4147 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
4148 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
4149 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
4150
4151 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
4152 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
4153
4154 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
4155 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
4156 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
4157 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
4158
4159 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
4160 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
4161 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
4162 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
4163 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
4164 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
4165 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
4166
4167 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
4168 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
4169 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
4170 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
4171
4172 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
4173 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
4174 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
4175
4176 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
4177 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
4178 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
4179 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
4180 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
4181 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
4182 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
4183 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
4184 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
4185 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
4186 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
4187 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
4188
4189 NOREF(pVmcb);
4190#endif /* VBOX_STRICT */
4191 }
4192 else
4193 Log4Func(("rcVMRun=%d\n", rcVMRun));
4194}
4195
4196
4197/**
4198 * Check per-VM and per-VCPU force flag actions that require us to go back to
4199 * ring-3 for one reason or another.
4200 *
4201 * @returns VBox status code (information status code included).
4202 * @retval VINF_SUCCESS if we don't have any actions that require going back to
4203 * ring-3.
4204 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
4205 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
4206 * interrupts)
4207 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
4208 * all EMTs to be in ring-3.
4209 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
4210 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
4211 * to the EM loop.
4212 *
4213 * @param pVCpu The cross context virtual CPU structure.
4214 */
4215static int hmR0SvmCheckForceFlags(PVMCPU pVCpu)
4216{
4217 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4218 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
4219
4220 /* Could happen as a result of longjump. */
4221 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
4222 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
4223
4224 /* Update pending interrupts into the APIC's IRR. */
4225 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
4226 APICUpdatePendingInterrupts(pVCpu);
4227
4228 PVM pVM = pVCpu->CTX_SUFF(pVM);
4229 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
4230 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4231 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
4232 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4233 {
4234 /* Pending PGM C3 sync. */
4235 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4236 {
4237 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4238 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4239 if (rc != VINF_SUCCESS)
4240 {
4241 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4242 return rc;
4243 }
4244 }
4245
4246 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4247 /* -XXX- what was that about single stepping? */
4248 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
4249 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4250 {
4251 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4252 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
4253 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4254 return rc;
4255 }
4256
4257 /* Pending VM request packets, such as hardware interrupts. */
4258 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
4259 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
4260 {
4261 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4262 return VINF_EM_PENDING_REQUEST;
4263 }
4264
4265 /* Pending PGM pool flushes. */
4266 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4267 {
4268 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4269 return VINF_PGM_POOL_FLUSH_PENDING;
4270 }
4271
4272 /* Pending DMA requests. */
4273 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
4274 {
4275 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4276 return VINF_EM_RAW_TO_R3;
4277 }
4278 }
4279
4280 return VINF_SUCCESS;
4281}
4282
4283
4284#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4285/**
4286 * Does the preparations before executing nested-guest code in AMD-V.
4287 *
4288 * @returns VBox status code (informational status codes included).
4289 * @retval VINF_SUCCESS if we can proceed with running the guest.
4290 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4291 *
4292 * @param pVCpu The cross context virtual CPU structure.
4293 * @param pSvmTransient Pointer to the SVM transient structure.
4294 *
4295 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
4296 * @sa hmR0SvmPreRunGuest.
4297 */
4298static int hmR0SvmPreRunGuestNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4299{
4300 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4301 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4302 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4303
4304#ifdef VBOX_WITH_NESTED_HWVIRT_SVM_ONLY_IN_IEM
4305 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4306 return VINF_EM_RESCHEDULE_REM;
4307#endif
4308
4309 /* Check force flag actions that might require us to go back to ring-3. */
4310 int rc = hmR0SvmCheckForceFlags(pVCpu);
4311 if (rc != VINF_SUCCESS)
4312 return rc;
4313
4314 if (TRPMHasTrap(pVCpu))
4315 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4316 else if (!pVCpu->hm.s.Event.fPending)
4317 {
4318 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu);
4319 if ( rcStrict != VINF_SUCCESS
4320 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4321 return VBOXSTRICTRC_VAL(rcStrict);
4322 }
4323
4324 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4325
4326 /*
4327 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4328 * Just do it in software, see @bugref{8411}.
4329 * NB: If we could continue a task switch exit we wouldn't need to do this.
4330 */
4331 PVM pVM = pVCpu->CTX_SUFF(pVM);
4332 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
4333 && pVCpu->hm.s.Event.fPending
4334 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4335 {
4336 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4337 }
4338
4339#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4340 Assert(!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4341 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4342#endif
4343
4344 /*
4345 * Export the nested-guest state bits that are not shared with the host in any way as we
4346 * can longjmp or get preempted in the midst of exporting some of the state.
4347 */
4348 rc = hmR0SvmExportGuestStateNested(pVCpu);
4349 AssertRCReturn(rc, rc);
4350 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4351
4352 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware-assisted SVM. */
4353 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4354
4355 /*
4356 * No longjmps to ring-3 from this point on!!!
4357 *
4358 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4359 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4360 */
4361 VMMRZCallRing3Disable(pVCpu);
4362
4363 /*
4364 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4365 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4366 * preemption disabled for a while. Since this is purly to aid the
4367 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4368 * disable interrupt on NT.
4369 *
4370 * We need to check for force-flags that could've possible been altered since we last
4371 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4372 * see @bugref{6398}).
4373 *
4374 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4375 * to ring-3 before executing guest code.
4376 */
4377 pSvmTransient->fEFlags = ASMIntDisableFlags();
4378 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4379 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4380 {
4381 ASMSetFlags(pSvmTransient->fEFlags);
4382 VMMRZCallRing3Enable(pVCpu);
4383 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4384 return VINF_EM_RAW_TO_R3;
4385 }
4386 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4387 {
4388 ASMSetFlags(pSvmTransient->fEFlags);
4389 VMMRZCallRing3Enable(pVCpu);
4390 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
4391 return VINF_EM_RAW_INTERRUPT;
4392 }
4393 return VINF_SUCCESS;
4394}
4395#endif
4396
4397
4398/**
4399 * Does the preparations before executing guest code in AMD-V.
4400 *
4401 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4402 * recompiler. We must be cautious what we do here regarding committing
4403 * guest-state information into the VMCB assuming we assuredly execute the guest
4404 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4405 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4406 * that the recompiler can (and should) use them when it resumes guest
4407 * execution. Otherwise such operations must be done when we can no longer
4408 * exit to ring-3.
4409 *
4410 * @returns VBox status code (informational status codes included).
4411 * @retval VINF_SUCCESS if we can proceed with running the guest.
4412 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4413 *
4414 * @param pVCpu The cross context virtual CPU structure.
4415 * @param pSvmTransient Pointer to the SVM transient structure.
4416 */
4417static int hmR0SvmPreRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4418{
4419 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4420 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4421
4422 /* Check force flag actions that might require us to go back to ring-3. */
4423 int rc = hmR0SvmCheckForceFlags(pVCpu);
4424 if (rc != VINF_SUCCESS)
4425 return rc;
4426
4427 if (TRPMHasTrap(pVCpu))
4428 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4429 else if (!pVCpu->hm.s.Event.fPending)
4430 hmR0SvmEvaluatePendingEvent(pVCpu);
4431
4432 /*
4433 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4434 * Just do it in software, see @bugref{8411}.
4435 * NB: If we could continue a task switch exit we wouldn't need to do this.
4436 */
4437 PVM pVM = pVCpu->CTX_SUFF(pVM);
4438 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
4439 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
4440 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4441
4442#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4443 Assert(!(pVCpu->cpum.GstCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4444 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4445#endif
4446
4447 /*
4448 * Export the guest state bits that are not shared with the host in any way as we can
4449 * longjmp or get preempted in the midst of exporting some of the state.
4450 */
4451 rc = hmR0SvmExportGuestState(pVCpu);
4452 AssertRCReturn(rc, rc);
4453 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4454
4455 /*
4456 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4457 * world-switch so we can update it on the way back if the guest changed the TPR.
4458 */
4459 if (pVCpu->hm.s.svm.fSyncVTpr)
4460 {
4461 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4462 if (pVM->hm.s.fTPRPatchingActive)
4463 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4464 else
4465 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4466 }
4467
4468 /*
4469 * No longjmps to ring-3 from this point on!!!
4470 *
4471 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4472 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4473 */
4474 VMMRZCallRing3Disable(pVCpu);
4475
4476 /*
4477 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4478 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4479 * preemption disabled for a while. Since this is purly to aid the
4480 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4481 * disable interrupt on NT.
4482 *
4483 * We need to check for force-flags that could've possible been altered since we last
4484 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4485 * see @bugref{6398}).
4486 *
4487 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4488 * to ring-3 before executing guest code.
4489 */
4490 pSvmTransient->fEFlags = ASMIntDisableFlags();
4491 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4492 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4493 {
4494 ASMSetFlags(pSvmTransient->fEFlags);
4495 VMMRZCallRing3Enable(pVCpu);
4496 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4497 return VINF_EM_RAW_TO_R3;
4498 }
4499 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4500 {
4501 ASMSetFlags(pSvmTransient->fEFlags);
4502 VMMRZCallRing3Enable(pVCpu);
4503 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
4504 return VINF_EM_RAW_INTERRUPT;
4505 }
4506
4507 return VINF_SUCCESS;
4508}
4509
4510
4511/**
4512 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4513 * doing so.
4514 *
4515 * This means there is no backing out to ring-3 or anywhere else at this point.
4516 *
4517 * @param pVCpu The cross context virtual CPU structure.
4518 * @param pSvmTransient Pointer to the SVM transient structure.
4519 *
4520 * @remarks Called with preemption disabled.
4521 * @remarks No-long-jump zone!!!
4522 */
4523static void hmR0SvmPreRunGuestCommitted(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4524{
4525 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4526 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4527 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4528
4529 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4530 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4531
4532 PVM pVM = pVCpu->CTX_SUFF(pVM);
4533 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4534
4535 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4536
4537 if (!CPUMIsGuestFPUStateActive(pVCpu))
4538 {
4539 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4540 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4541 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4542 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4543 }
4544
4545 /* Load the state shared between host and guest (FPU, debug). */
4546 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4547 hmR0SvmExportSharedState(pVCpu, pVmcb);
4548
4549 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4550 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4551
4552 PHMGLOBALCPUINFO pHostCpu = hmR0GetCurrentCpu();
4553 RTCPUID const idHostCpu = pHostCpu->idCpu;
4554 bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
4555
4556 /* Setup TSC offsetting. */
4557 if ( pSvmTransient->fUpdateTscOffsetting
4558 || fMigratedHostCpu)
4559 {
4560 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4561 pSvmTransient->fUpdateTscOffsetting = false;
4562 }
4563
4564 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4565 if (fMigratedHostCpu)
4566 pVmcb->ctrl.u32VmcbCleanBits = 0;
4567
4568 /* Store status of the shared guest-host state at the time of VMRUN. */
4569#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4570 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4571 {
4572 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4573 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4574 }
4575 else
4576#endif
4577 {
4578 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4579 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4580 }
4581
4582#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4583 uint8_t *pbMsrBitmap;
4584 if (!pSvmTransient->fIsNestedGuest)
4585 pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4586 else
4587 {
4588 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4589
4590 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4591 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4592 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4593 }
4594#else
4595 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4596#endif
4597
4598 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4599 /* Flush the appropriate tagged-TLB entries. */
4600 hmR0SvmFlushTaggedTlb(pVCpu, pVmcb, pHostCpu);
4601 Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
4602
4603 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4604
4605 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4606 to start executing. */
4607
4608 /*
4609 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4610 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4611 *
4612 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4613 */
4614 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
4615 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4616 {
4617 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4618 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4619 if (uGuestTscAux != pVCpu->hm.s.u64HostTscAux)
4620 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4621 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4622 pSvmTransient->fRestoreTscAuxMsr = true;
4623 }
4624 else
4625 {
4626 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4627 pSvmTransient->fRestoreTscAuxMsr = false;
4628 }
4629 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4630
4631 /*
4632 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4633 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4634 * from the VMCB.
4635 */
4636 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu);
4637 if (!fSupportsVmcbCleanBits)
4638 pVmcb->ctrl.u32VmcbCleanBits = 0;
4639}
4640
4641
4642/**
4643 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4644 *
4645 * @returns VBox strict status code.
4646 * @param pVCpu The cross context virtual CPU structure.
4647 * @param HCPhysVmcb The host physical address of the VMCB.
4648 *
4649 * @remarks No-long-jump zone!!!
4650 */
4651DECLINLINE(int) hmR0SvmRunGuest(PVMCPU pVCpu, RTHCPHYS HCPhysVmcb)
4652{
4653 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4654 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4655 pCtx->fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4656
4657 /*
4658 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4659 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4660 * callee-saved and thus the need for this XMM wrapper.
4661 *
4662 * Refer MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4663 */
4664 PVM pVM = pVCpu->CTX_SUFF(pVM);
4665#ifdef VBOX_WITH_KERNEL_USING_XMM
4666 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun);
4667#else
4668 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu);
4669#endif
4670}
4671
4672
4673/**
4674 * Undoes the TSC offset applied for an SVM nested-guest and returns the TSC
4675 * value for the guest.
4676 *
4677 * @returns The TSC offset after undoing any nested-guest TSC offset.
4678 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4679 * @param uTicks The nested-guest TSC.
4680 *
4681 * @note If you make any changes to this function, please check if
4682 * hmR0SvmNstGstUndoTscOffset() needs adjusting.
4683 *
4684 * @sa HMSvmNstGstApplyTscOffset().
4685 */
4686DECLINLINE(uint64_t) hmR0SvmNstGstUndoTscOffset(PVMCPU pVCpu, uint64_t uTicks)
4687{
4688 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
4689 Assert(pVmcbNstGstCache->fCacheValid);
4690 return uTicks - pVmcbNstGstCache->u64TSCOffset;
4691}
4692
4693
4694/**
4695 * Performs some essential restoration of state after running guest (or
4696 * nested-guest) code in AMD-V.
4697 *
4698 * @param pVCpu The cross context virtual CPU structure.
4699 * @param pSvmTransient Pointer to the SVM transient structure.
4700 * @param rcVMRun Return code of VMRUN.
4701 *
4702 * @remarks Called with interrupts disabled.
4703 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4704 * unconditionally when it is safe to do so.
4705 */
4706static void hmR0SvmPostRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4707{
4708 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4709
4710 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4711 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4712 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4713
4714 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4715 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4716
4717 /* TSC read must be done early for maximum accuracy. */
4718 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4719 {
4720 if (!pSvmTransient->fIsNestedGuest)
4721 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4722#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4723 else
4724 {
4725 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMSvmNstGstVmExitNotify(). */
4726 uint64_t const uGstTsc = hmR0SvmNstGstUndoTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4727 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4728 }
4729#endif
4730 }
4731
4732 if (pSvmTransient->fRestoreTscAuxMsr)
4733 {
4734 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4735 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4736 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4737 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4738 }
4739
4740 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4741 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4742 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4743
4744 Assert(!(ASMGetFlags() & X86_EFL_IF));
4745 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4746 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4747
4748 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4749 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4750 {
4751 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4752 return;
4753 }
4754
4755 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4756 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4757 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4758 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4759
4760#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4761 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4762 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4763#else
4764 /*
4765 * Always import the following:
4766 *
4767 * - RIP for exit optimizations and evaluating event injection on re-entry.
4768 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4769 * state on preemption.
4770 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4771 * - CS for exit optimizations.
4772 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4773 * assembly switcher code.
4774 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4775 */
4776 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4777 | CPUMCTX_EXTRN_RFLAGS
4778 | CPUMCTX_EXTRN_RAX
4779 | CPUMCTX_EXTRN_RSP
4780 | CPUMCTX_EXTRN_CS
4781 | CPUMCTX_EXTRN_HWVIRT
4782 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4783 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4784 | HMSVM_CPUMCTX_SHARED_STATE);
4785#endif
4786
4787 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4788 && pVCpu->hm.s.svm.fSyncVTpr)
4789 {
4790 Assert(!pSvmTransient->fIsNestedGuest);
4791 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4792 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
4793 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4794 {
4795 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4796 AssertRC(rc);
4797 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4798 }
4799 /* Sync TPR when we aren't intercepting CR8 writes. */
4800 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4801 {
4802 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4803 AssertRC(rc);
4804 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4805 }
4806 }
4807
4808#ifdef DEBUG_ramshankar
4809 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4810 {
4811 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4812 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4813 0 /* uVerbose */);
4814 }
4815#endif
4816
4817 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4818 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4819 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4820}
4821
4822
4823/**
4824 * Runs the guest code using AMD-V.
4825 *
4826 * @returns VBox status code.
4827 * @param pVCpu The cross context virtual CPU structure.
4828 * @param pcLoops Pointer to the number of executed loops.
4829 */
4830static int hmR0SvmRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
4831{
4832 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4833 Assert(pcLoops);
4834 Assert(*pcLoops <= cMaxResumeLoops);
4835
4836 SVMTRANSIENT SvmTransient;
4837 RT_ZERO(SvmTransient);
4838 SvmTransient.fUpdateTscOffsetting = true;
4839 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4840
4841 int rc = VERR_INTERNAL_ERROR_5;
4842 for (;;)
4843 {
4844 Assert(!HMR0SuspendPending());
4845 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4846
4847 /* Preparatory work for running nested-guest code, this may force us to return to
4848 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4849 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4850 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4851 if (rc != VINF_SUCCESS)
4852 break;
4853
4854 /*
4855 * No longjmps to ring-3 from this point on!!!
4856 *
4857 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4858 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4859 */
4860 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4861 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4862
4863 /* Restore any residual host-state and save any bits shared between host and guest
4864 into the guest-CPU state. Re-enables interrupts! */
4865 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4866
4867 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4868 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4869 {
4870 if (rc == VINF_SUCCESS)
4871 rc = VERR_SVM_INVALID_GUEST_STATE;
4872 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4873 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4874 break;
4875 }
4876
4877 /* Handle the #VMEXIT. */
4878 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4879 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4880 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4881 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4882 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4883 if (rc != VINF_SUCCESS)
4884 break;
4885 if (++(*pcLoops) >= cMaxResumeLoops)
4886 {
4887 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4888 rc = VINF_EM_RAW_INTERRUPT;
4889 break;
4890 }
4891 }
4892
4893 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4894 return rc;
4895}
4896
4897
4898/**
4899 * Runs the guest code using AMD-V in single step mode.
4900 *
4901 * @returns VBox status code.
4902 * @param pVCpu The cross context virtual CPU structure.
4903 * @param pcLoops Pointer to the number of executed loops.
4904 */
4905static int hmR0SvmRunGuestCodeStep(PVMCPU pVCpu, uint32_t *pcLoops)
4906{
4907 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4908 Assert(pcLoops);
4909 Assert(*pcLoops <= cMaxResumeLoops);
4910
4911 SVMTRANSIENT SvmTransient;
4912 RT_ZERO(SvmTransient);
4913 SvmTransient.fUpdateTscOffsetting = true;
4914 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4915
4916 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4917 uint16_t uCsStart = pCtx->cs.Sel;
4918 uint64_t uRipStart = pCtx->rip;
4919
4920 int rc = VERR_INTERNAL_ERROR_5;
4921 for (;;)
4922 {
4923 Assert(!HMR0SuspendPending());
4924 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4925 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4926 (unsigned)RTMpCpuId(), *pcLoops));
4927
4928 /* Preparatory work for running nested-guest code, this may force us to return to
4929 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4930 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4931 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4932 if (rc != VINF_SUCCESS)
4933 break;
4934
4935 /*
4936 * No longjmps to ring-3 from this point on!!!
4937 *
4938 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4939 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4940 */
4941 VMMRZCallRing3Disable(pVCpu);
4942 VMMRZCallRing3RemoveNotification(pVCpu);
4943 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4944
4945 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4946
4947 /* Restore any residual host-state and save any bits shared between host and guest
4948 into the guest-CPU state. Re-enables interrupts! */
4949 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4950
4951 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4952 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4953 {
4954 if (rc == VINF_SUCCESS)
4955 rc = VERR_SVM_INVALID_GUEST_STATE;
4956 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4957 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4958 return rc;
4959 }
4960
4961 /* Handle the #VMEXIT. */
4962 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4963 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4964 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4965 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4966 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4967 if (rc != VINF_SUCCESS)
4968 break;
4969 if (++(*pcLoops) >= cMaxResumeLoops)
4970 {
4971 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4972 rc = VINF_EM_RAW_INTERRUPT;
4973 break;
4974 }
4975
4976 /*
4977 * Did the RIP change, if so, consider it a single step.
4978 * Otherwise, make sure one of the TFs gets set.
4979 */
4980 if ( pCtx->rip != uRipStart
4981 || pCtx->cs.Sel != uCsStart)
4982 {
4983 rc = VINF_EM_DBG_STEPPED;
4984 break;
4985 }
4986 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4987 }
4988
4989 /*
4990 * Clear the X86_EFL_TF if necessary.
4991 */
4992 if (pVCpu->hm.s.fClearTrapFlag)
4993 {
4994 pVCpu->hm.s.fClearTrapFlag = false;
4995 pCtx->eflags.Bits.u1TF = 0;
4996 }
4997
4998 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4999 return rc;
5000}
5001
5002#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5003/**
5004 * Runs the nested-guest code using AMD-V.
5005 *
5006 * @returns VBox status code.
5007 * @param pVCpu The cross context virtual CPU structure.
5008 * @param pcLoops Pointer to the number of executed loops. If we're switching
5009 * from the guest-code execution loop to this nested-guest
5010 * execution loop pass the remainder value, else pass 0.
5011 */
5012static int hmR0SvmRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
5013{
5014 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5015 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
5016 Assert(pcLoops);
5017 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops);
5018
5019 SVMTRANSIENT SvmTransient;
5020 RT_ZERO(SvmTransient);
5021 SvmTransient.fUpdateTscOffsetting = true;
5022 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
5023 SvmTransient.fIsNestedGuest = true;
5024
5025 int rc = VERR_INTERNAL_ERROR_4;
5026 for (;;)
5027 {
5028 Assert(!HMR0SuspendPending());
5029 HMSVM_ASSERT_CPU_SAFE(pVCpu);
5030
5031 /* Preparatory work for running nested-guest code, this may force us to return to
5032 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
5033 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
5034 rc = hmR0SvmPreRunGuestNested(pVCpu, &SvmTransient);
5035 if ( rc != VINF_SUCCESS
5036 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5037 {
5038 break;
5039 }
5040
5041 /*
5042 * No longjmps to ring-3 from this point on!!!
5043 *
5044 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
5045 * better than a kernel panic. This also disables flushing of the R0-logger instance.
5046 */
5047 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
5048
5049 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
5050
5051 /* Restore any residual host-state and save any bits shared between host and guest
5052 into the guest-CPU state. Re-enables interrupts! */
5053 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
5054
5055 if (RT_LIKELY( rc == VINF_SUCCESS
5056 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
5057 { /* extremely likely */ }
5058 else
5059 {
5060 /* VMRUN failed, shouldn't really happen, Guru. */
5061 if (rc != VINF_SUCCESS)
5062 break;
5063
5064 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
5065 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
5066 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
5067 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
5068 break;
5069 }
5070
5071 /* Handle the #VMEXIT. */
5072 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
5073 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
5074 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
5075 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
5076 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
5077 if ( rc != VINF_SUCCESS
5078 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5079 break;
5080 if (++(*pcLoops) >= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
5081 {
5082 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
5083 rc = VINF_EM_RAW_INTERRUPT;
5084 break;
5085 }
5086
5087 /** @todo handle single-stepping */
5088 }
5089
5090 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5091 return rc;
5092}
5093#endif
5094
5095
5096/**
5097 * Runs the guest code using AMD-V.
5098 *
5099 * @returns Strict VBox status code.
5100 * @param pVCpu The cross context virtual CPU structure.
5101 */
5102VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPU pVCpu)
5103{
5104 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5105 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
5106 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, NULL /* pvUser */);
5107
5108 uint32_t cLoops = 0;
5109 int rc;
5110#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5111 if (!CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
5112#endif
5113 {
5114 if (!pVCpu->hm.s.fSingleInstruction)
5115 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
5116 else
5117 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
5118 }
5119#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5120 else
5121 {
5122 rc = VINF_SVM_VMRUN;
5123 }
5124
5125 /* Re-check the nested-guest condition here as we may be transitioning from the normal
5126 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
5127 if (rc == VINF_SVM_VMRUN)
5128 {
5129 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
5130 if (rc == VINF_SVM_VMEXIT)
5131 rc = VINF_SUCCESS;
5132 }
5133#endif
5134
5135 /* Fixup error codes. */
5136 if (rc == VERR_EM_INTERPRETER)
5137 rc = VINF_EM_RAW_EMULATE_INSTR;
5138 else if (rc == VINF_EM_RESET)
5139 rc = VINF_EM_TRIPLE_FAULT;
5140
5141 /* Prepare to return to ring-3. This will remove longjmp notifications. */
5142 rc = hmR0SvmExitToRing3(pVCpu, rc);
5143 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
5144 return rc;
5145}
5146
5147
5148#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5149/**
5150 * Determines whether an IOIO intercept is active for the nested-guest or not.
5151 *
5152 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
5153 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
5154 */
5155static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
5156{
5157 const uint16_t u16Port = pIoExitInfo->n.u16Port;
5158 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
5159 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
5160 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
5161 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
5162 const bool fRep = pIoExitInfo->n.u1Rep;
5163 const bool fStrIo = pIoExitInfo->n.u1Str;
5164
5165 return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
5166 NULL /* pIoExitInfo */);
5167}
5168
5169
5170/**
5171 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
5172 * SVM_EXIT_INVALID).
5173 *
5174 * @returns VBox status code (informational status codes included).
5175 * @param pVCpu The cross context virtual CPU structure.
5176 * @param pSvmTransient Pointer to the SVM transient structure.
5177 */
5178static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5179{
5180 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
5181 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5182 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5183
5184 /** @todo Figure out why using IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK instead of
5185 * HMSVM_CPUMCTX_EXTRN_ALL breaks nested guests (XP Pro, DSL etc.), see
5186 * also HMSvmNstGstVmExitNotify(). */
5187#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5188 do { \
5189 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5190 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2))); \
5191 } while (0)
5192
5193 /*
5194 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
5195 * nested-guest. If it isn't, it should be handled by the (outer) guest.
5196 */
5197 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
5198 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
5199 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
5200 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
5201 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
5202
5203 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
5204 switch (uExitCode)
5205 {
5206 case SVM_EXIT_CPUID:
5207 {
5208 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
5209 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5210 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
5211 }
5212
5213 case SVM_EXIT_RDTSC:
5214 {
5215 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
5216 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5217 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
5218 }
5219
5220 case SVM_EXIT_RDTSCP:
5221 {
5222 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
5223 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5224 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
5225 }
5226
5227 case SVM_EXIT_MONITOR:
5228 {
5229 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
5230 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5231 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
5232 }
5233
5234 case SVM_EXIT_MWAIT:
5235 {
5236 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
5237 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5238 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
5239 }
5240
5241 case SVM_EXIT_HLT:
5242 {
5243 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_HLT))
5244 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5245 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
5246 }
5247
5248 case SVM_EXIT_MSR:
5249 {
5250 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
5251 {
5252 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
5253 uint16_t offMsrpm;
5254 uint8_t uMsrpmBit;
5255 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
5256 if (RT_SUCCESS(rc))
5257 {
5258 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
5259 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
5260
5261 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
5262 pbMsrBitmap += offMsrpm;
5263 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
5264 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
5265
5266 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
5267 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
5268 {
5269 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5270 }
5271 }
5272 else
5273 {
5274 /*
5275 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
5276 * See AMD-V spec. "15.11 MSR Intercepts".
5277 */
5278 Assert(rc == VERR_OUT_OF_RANGE);
5279 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5280 }
5281 }
5282 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
5283 }
5284
5285 case SVM_EXIT_IOIO:
5286 {
5287 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
5288 {
5289 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
5290 SVMIOIOEXITINFO IoExitInfo;
5291 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
5292 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
5293 if (fIntercept)
5294 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5295 }
5296 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
5297 }
5298
5299 case SVM_EXIT_XCPT_PF:
5300 {
5301 PVM pVM = pVCpu->CTX_SUFF(pVM);
5302 if (pVM->hm.s.fNestedPaging)
5303 {
5304 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
5305 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
5306
5307 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
5308 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
5309 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
5310
5311 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
5312 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5313 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
5314 return VINF_SUCCESS;
5315 }
5316 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
5317 }
5318
5319 case SVM_EXIT_XCPT_UD:
5320 {
5321 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_UD))
5322 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5323 hmR0SvmSetPendingXcptUD(pVCpu);
5324 return VINF_SUCCESS;
5325 }
5326
5327 case SVM_EXIT_XCPT_MF:
5328 {
5329 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_MF))
5330 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5331 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
5332 }
5333
5334 case SVM_EXIT_XCPT_DB:
5335 {
5336 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_DB))
5337 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5338 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5339 }
5340
5341 case SVM_EXIT_XCPT_AC:
5342 {
5343 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_AC))
5344 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5345 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5346 }
5347
5348 case SVM_EXIT_XCPT_BP:
5349 {
5350 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_BP))
5351 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5352 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5353 }
5354
5355 case SVM_EXIT_READ_CR0:
5356 case SVM_EXIT_READ_CR3:
5357 case SVM_EXIT_READ_CR4:
5358 {
5359 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5360 if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, uCr))
5361 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5362 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5363 }
5364
5365 case SVM_EXIT_CR0_SEL_WRITE:
5366 {
5367 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5368 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5369 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5370 }
5371
5372 case SVM_EXIT_WRITE_CR0:
5373 case SVM_EXIT_WRITE_CR3:
5374 case SVM_EXIT_WRITE_CR4:
5375 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5376 {
5377 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5378 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5379
5380 if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, uCr))
5381 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5382 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5383 }
5384
5385 case SVM_EXIT_PAUSE:
5386 {
5387 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
5388 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5389 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5390 }
5391
5392 case SVM_EXIT_VINTR:
5393 {
5394 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VINTR))
5395 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5396 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5397 }
5398
5399 case SVM_EXIT_INTR:
5400 case SVM_EXIT_NMI:
5401 case SVM_EXIT_SMI:
5402 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5403 {
5404 /*
5405 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5406 *
5407 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5408 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5409 * nested-guest #VMEXIT.
5410 */
5411 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK);
5412 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5413 }
5414
5415 case SVM_EXIT_FERR_FREEZE:
5416 {
5417 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5418 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5419 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5420 }
5421
5422 case SVM_EXIT_INVLPG:
5423 {
5424 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
5425 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5426 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5427 }
5428
5429 case SVM_EXIT_WBINVD:
5430 {
5431 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_WBINVD))
5432 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5433 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5434 }
5435
5436 case SVM_EXIT_INVD:
5437 {
5438 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVD))
5439 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5440 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5441 }
5442
5443 case SVM_EXIT_RDPMC:
5444 {
5445 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
5446 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5447 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5448 }
5449
5450 default:
5451 {
5452 switch (uExitCode)
5453 {
5454 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5455 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5456 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5457 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5458 {
5459 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5460 if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, uDr))
5461 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5462 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5463 }
5464
5465 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5466 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5467 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5468 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5469 {
5470 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5471 if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, uDr))
5472 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5473 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5474 }
5475
5476 case SVM_EXIT_XCPT_DE:
5477 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5478 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5479 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5480 case SVM_EXIT_XCPT_OF:
5481 case SVM_EXIT_XCPT_BR:
5482 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5483 case SVM_EXIT_XCPT_NM:
5484 case SVM_EXIT_XCPT_DF:
5485 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5486 case SVM_EXIT_XCPT_TS:
5487 case SVM_EXIT_XCPT_NP:
5488 case SVM_EXIT_XCPT_SS:
5489 case SVM_EXIT_XCPT_GP:
5490 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5491 case SVM_EXIT_XCPT_15: /* Reserved. */
5492 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5493 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5494 case SVM_EXIT_XCPT_MC:
5495 case SVM_EXIT_XCPT_XF:
5496 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5497 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5498 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5499 {
5500 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5501 if (HMIsGuestSvmXcptInterceptSet(pVCpu, uVector))
5502 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5503 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5504 }
5505
5506 case SVM_EXIT_XSETBV:
5507 {
5508 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
5509 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5510 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5511 }
5512
5513 case SVM_EXIT_TASK_SWITCH:
5514 {
5515 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5516 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5517 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5518 }
5519
5520 case SVM_EXIT_IRET:
5521 {
5522 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IRET))
5523 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5524 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5525 }
5526
5527 case SVM_EXIT_SHUTDOWN:
5528 {
5529 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SHUTDOWN))
5530 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5531 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5532 }
5533
5534 case SVM_EXIT_VMMCALL:
5535 {
5536 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
5537 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5538 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5539 }
5540
5541 case SVM_EXIT_CLGI:
5542 {
5543 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
5544 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5545 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5546 }
5547
5548 case SVM_EXIT_STGI:
5549 {
5550 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_STGI))
5551 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5552 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5553 }
5554
5555 case SVM_EXIT_VMLOAD:
5556 {
5557 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
5558 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5559 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5560 }
5561
5562 case SVM_EXIT_VMSAVE:
5563 {
5564 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
5565 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5566 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5567 }
5568
5569 case SVM_EXIT_INVLPGA:
5570 {
5571 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
5572 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5573 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5574 }
5575
5576 case SVM_EXIT_VMRUN:
5577 {
5578 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
5579 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5580 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5581 }
5582
5583 case SVM_EXIT_RSM:
5584 {
5585 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RSM))
5586 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5587 hmR0SvmSetPendingXcptUD(pVCpu);
5588 return VINF_SUCCESS;
5589 }
5590
5591 case SVM_EXIT_SKINIT:
5592 {
5593 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
5594 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5595 hmR0SvmSetPendingXcptUD(pVCpu);
5596 return VINF_SUCCESS;
5597 }
5598
5599 case SVM_EXIT_NPF:
5600 {
5601 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5602 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5603 }
5604
5605 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5606 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5607
5608 default:
5609 {
5610 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5611 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5612 return VERR_SVM_UNKNOWN_EXIT;
5613 }
5614 }
5615 }
5616 }
5617 /* not reached */
5618
5619#undef NST_GST_VMEXIT_CALL_RET
5620}
5621#endif
5622
5623
5624/**
5625 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5626 *
5627 * @returns VBox status code (informational status codes included).
5628 * @param pVCpu The cross context virtual CPU structure.
5629 * @param pSvmTransient Pointer to the SVM transient structure.
5630 */
5631static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5632{
5633 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5634 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5635
5636#ifdef DEBUG_ramshankar
5637# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5638 do { \
5639 if ((a_fDbg) == 1) \
5640 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5641 int rc = a_CallExpr; \
5642 if ((a_fDbg) == 1) \
5643 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5644 return rc; \
5645 } while (0)
5646#else
5647# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5648#endif
5649
5650 /*
5651 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5652 * for most guests under normal workloads (for some definition of "normal").
5653 */
5654 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5655 switch (uExitCode)
5656 {
5657 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5658 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5659 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5660 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5661 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5662 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5663 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5664 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5665 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5666 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5667
5668 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5669 case SVM_EXIT_INTR:
5670 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5671
5672 case SVM_EXIT_READ_CR0:
5673 case SVM_EXIT_READ_CR3:
5674 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5675
5676 case SVM_EXIT_CR0_SEL_WRITE:
5677 case SVM_EXIT_WRITE_CR0:
5678 case SVM_EXIT_WRITE_CR3:
5679 case SVM_EXIT_WRITE_CR4:
5680 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5681
5682 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5683 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5684 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5685 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5686 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5687 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5688 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5689 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5690 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5691 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5692 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5693 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5694 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5695 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5696 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5697
5698 default:
5699 {
5700 switch (pSvmTransient->u64ExitCode)
5701 {
5702 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5703 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5704 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5705 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5706 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5707
5708 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5709 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5710 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5711 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5712 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5713
5714 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5715 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5716
5717 case SVM_EXIT_SMI:
5718 case SVM_EXIT_INIT:
5719 {
5720 /*
5721 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5722 * If it ever does, we want to know about it so log the exit code and bail.
5723 */
5724 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5725 }
5726
5727#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5728 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5729 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5730 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5731 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5732 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5733 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5734#else
5735 case SVM_EXIT_CLGI:
5736 case SVM_EXIT_STGI:
5737 case SVM_EXIT_VMLOAD:
5738 case SVM_EXIT_VMSAVE:
5739 case SVM_EXIT_INVLPGA:
5740 case SVM_EXIT_VMRUN:
5741#endif
5742 case SVM_EXIT_RSM:
5743 case SVM_EXIT_SKINIT:
5744 {
5745 hmR0SvmSetPendingXcptUD(pVCpu);
5746 return VINF_SUCCESS;
5747 }
5748
5749#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5750 case SVM_EXIT_XCPT_DE:
5751 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5752 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5753 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5754 case SVM_EXIT_XCPT_OF:
5755 case SVM_EXIT_XCPT_BR:
5756 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5757 case SVM_EXIT_XCPT_NM:
5758 case SVM_EXIT_XCPT_DF:
5759 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5760 case SVM_EXIT_XCPT_TS:
5761 case SVM_EXIT_XCPT_NP:
5762 case SVM_EXIT_XCPT_SS:
5763 case SVM_EXIT_XCPT_GP:
5764 /* SVM_EXIT_XCPT_PF: */
5765 case SVM_EXIT_XCPT_15: /* Reserved. */
5766 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5767 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5768 case SVM_EXIT_XCPT_MC:
5769 case SVM_EXIT_XCPT_XF:
5770 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5771 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5772 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5773 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5774#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5775
5776 default:
5777 {
5778 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5779 pVCpu->hm.s.u32HMError = uExitCode;
5780 return VERR_SVM_UNKNOWN_EXIT;
5781 }
5782 }
5783 }
5784 }
5785 /* not reached */
5786#undef VMEXIT_CALL_RET
5787}
5788
5789
5790#ifdef VBOX_STRICT
5791/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5792# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5793 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5794
5795# define HMSVM_ASSERT_PREEMPT_CPUID() \
5796 do \
5797 { \
5798 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5799 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5800 } while (0)
5801
5802# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5803 do { \
5804 AssertPtr((a_pVCpu)); \
5805 AssertPtr((a_pSvmTransient)); \
5806 Assert(ASMIntAreEnabled()); \
5807 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5808 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5809 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5810 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5811 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5812 HMSVM_ASSERT_PREEMPT_CPUID(); \
5813 } while (0)
5814#else
5815# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5816 do { \
5817 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5818 } while (0)
5819#endif
5820
5821
5822/**
5823 * Gets the IEM exception flags for the specified SVM event.
5824 *
5825 * @returns The IEM exception flags.
5826 * @param pEvent Pointer to the SVM event.
5827 *
5828 * @remarks This function currently only constructs flags required for
5829 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5830 * and CR2 aspects of an exception are not included).
5831 */
5832static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5833{
5834 uint8_t const uEventType = pEvent->n.u3Type;
5835 uint32_t fIemXcptFlags;
5836 switch (uEventType)
5837 {
5838 case SVM_EVENT_EXCEPTION:
5839 /*
5840 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5841 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5842 */
5843 if (pEvent->n.u8Vector == X86_XCPT_BP)
5844 {
5845 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5846 break;
5847 }
5848 if (pEvent->n.u8Vector == X86_XCPT_OF)
5849 {
5850 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5851 break;
5852 }
5853 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5854 RT_FALL_THRU();
5855 case SVM_EVENT_NMI:
5856 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5857 break;
5858
5859 case SVM_EVENT_EXTERNAL_IRQ:
5860 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5861 break;
5862
5863 case SVM_EVENT_SOFTWARE_INT:
5864 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5865 break;
5866
5867 default:
5868 fIemXcptFlags = 0;
5869 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5870 break;
5871 }
5872 return fIemXcptFlags;
5873}
5874
5875
5876/**
5877 * Handle a condition that occurred while delivering an event through the guest
5878 * IDT.
5879 *
5880 * @returns VBox status code (informational error codes included).
5881 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5882 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5883 * continue execution of the guest which will delivery the \#DF.
5884 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5885 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5886 *
5887 * @param pVCpu The cross context virtual CPU structure.
5888 * @param pSvmTransient Pointer to the SVM transient structure.
5889 *
5890 * @remarks No-long-jump zone!!!
5891 */
5892static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5893{
5894 int rc = VINF_SUCCESS;
5895 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5896 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5897
5898 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5899 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5900 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5901
5902 /*
5903 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5904 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5905 *
5906 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5907 */
5908 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5909 {
5910 IEMXCPTRAISE enmRaise;
5911 IEMXCPTRAISEINFO fRaiseInfo;
5912 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5913 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5914 if (fExitIsHwXcpt)
5915 {
5916 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5917 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5918 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5919 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5920 }
5921 else
5922 {
5923 /*
5924 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5925 * then we end up here.
5926 *
5927 * If the event was:
5928 * - a software interrupt, we can re-execute the instruction which will
5929 * regenerate the event.
5930 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5931 * - a hardware exception or external interrupt, we re-inject it.
5932 */
5933 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5934 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5935 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5936 else
5937 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5938 }
5939
5940 switch (enmRaise)
5941 {
5942 case IEMXCPTRAISE_CURRENT_XCPT:
5943 case IEMXCPTRAISE_PREV_EVENT:
5944 {
5945 /* For software interrupts, we shall re-execute the instruction. */
5946 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5947 {
5948 RTGCUINTPTR GCPtrFaultAddress = 0;
5949
5950 /* If we are re-injecting an NMI, clear NMI blocking. */
5951 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5952 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5953
5954 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5955 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5956 {
5957 pSvmTransient->fVectoringPF = true;
5958 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5959 pVCpu->cpum.GstCtx.cr2));
5960 }
5961 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5962 && uIdtVector == X86_XCPT_PF)
5963 {
5964 /*
5965 * If the previous exception was a #PF, we need to recover the CR2 value.
5966 * This can't happen with shadow paging.
5967 */
5968 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5969 }
5970
5971 /*
5972 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5973 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5974 */
5975 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5976 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5977 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5978
5979 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5980 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5981 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5982 }
5983 break;
5984 }
5985
5986 case IEMXCPTRAISE_REEXEC_INSTR:
5987 {
5988 Assert(rc == VINF_SUCCESS);
5989 break;
5990 }
5991
5992 case IEMXCPTRAISE_DOUBLE_FAULT:
5993 {
5994 /*
5995 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5996 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5997 * converted into a #DF.
5998 */
5999 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6000 {
6001 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
6002 pSvmTransient->fVectoringDoublePF = true;
6003 Assert(rc == VINF_SUCCESS);
6004 }
6005 else
6006 {
6007 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6008 hmR0SvmSetPendingXcptDF(pVCpu);
6009 rc = VINF_HM_DOUBLE_FAULT;
6010 }
6011 break;
6012 }
6013
6014 case IEMXCPTRAISE_TRIPLE_FAULT:
6015 {
6016 rc = VINF_EM_RESET;
6017 break;
6018 }
6019
6020 case IEMXCPTRAISE_CPU_HANG:
6021 {
6022 rc = VERR_EM_GUEST_CPU_HANG;
6023 break;
6024 }
6025
6026 default:
6027 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
6028 }
6029 }
6030 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
6031 return rc;
6032}
6033
6034
6035/**
6036 * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
6037 * supported, otherwise advances the RIP by the number of bytes specified in
6038 * @a cb.
6039 *
6040 * @param pVCpu The cross context virtual CPU structure.
6041 * @param cb RIP increment value in bytes when the CPU doesn't support
6042 * NRIP_SAVE.
6043 */
6044DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, uint32_t cb)
6045{
6046 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6047 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6048 if (fSupportsNextRipSave)
6049 {
6050 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6051 Assert(pVmcb);
6052 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
6053 Assert(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb);
6054 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6055 }
6056 else
6057 pCtx->rip += cb;
6058
6059 HMSVM_UPDATE_INTR_SHADOW(pVCpu);
6060}
6061
6062
6063/**
6064 * Gets the length of the current instruction when the CPU supports the NRIP_SAVE
6065 * feature.
6066 *
6067 * @returns The current instruction length in bytes.
6068 * @param pVCpu The cross context virtual CPU structure.
6069 *
6070 * @remarks Requires the NRIP_SAVE feature to be supported by the CPU.
6071 */
6072DECLINLINE(uint8_t) hmR0SvmGetInstrLength(PVMCPU pVCpu)
6073{
6074 Assert(hmR0SvmSupportsNextRipSave(pVCpu));
6075 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6076 return pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6077}
6078
6079
6080/**
6081 * Advances the guest RIP by the number of bytes specified in @a cb. This does
6082 * not make use of any hardware features to determine the instruction length.
6083 *
6084 * @param pVCpu The cross context virtual CPU structure.
6085 * @param cb RIP increment value in bytes.
6086 */
6087DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, uint32_t cb)
6088{
6089 pVCpu->cpum.GstCtx.rip += cb;
6090 HMSVM_UPDATE_INTR_SHADOW(pVCpu);
6091}
6092#undef HMSVM_UPDATE_INTR_SHADOW
6093
6094
6095/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6096/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6097/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6098
6099/** @name \#VMEXIT handlers.
6100 * @{
6101 */
6102
6103/**
6104 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
6105 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
6106 */
6107HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6108{
6109 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6110
6111 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
6112 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
6113 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
6114 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6115
6116 /*
6117 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
6118 * signal -before- the timer fires if the current interrupt is our own timer or a some
6119 * other host interrupt. We also cannot examine what interrupt it is until the host
6120 * actually take the interrupt.
6121 *
6122 * Going back to executing guest code here unconditionally causes random scheduling
6123 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
6124 */
6125 return VINF_EM_RAW_INTERRUPT;
6126}
6127
6128
6129/**
6130 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
6131 */
6132HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6133{
6134 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6135
6136 VBOXSTRICTRC rcStrict;
6137 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6138 if (fSupportsNextRipSave)
6139 {
6140 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6141 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
6142 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
6143 }
6144 else
6145 {
6146 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6147 rcStrict = IEMExecOne(pVCpu);
6148 }
6149
6150 if (rcStrict == VINF_IEM_RAISED_XCPT)
6151 {
6152 rcStrict = VINF_SUCCESS;
6153 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6154 }
6155 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6156 return VBOXSTRICTRC_TODO(rcStrict);
6157}
6158
6159
6160/**
6161 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
6162 */
6163HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6164{
6165 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6166
6167 VBOXSTRICTRC rcStrict;
6168 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6169 if (fSupportsNextRipSave)
6170 {
6171 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6172 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
6173 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
6174 }
6175 else
6176 {
6177 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6178 rcStrict = IEMExecOne(pVCpu);
6179 }
6180
6181 if (rcStrict == VINF_IEM_RAISED_XCPT)
6182 {
6183 rcStrict = VINF_SUCCESS;
6184 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6185 }
6186 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6187 return VBOXSTRICTRC_TODO(rcStrict);
6188}
6189
6190
6191/**
6192 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6193 */
6194HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6195{
6196 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6197
6198 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
6199 VBOXSTRICTRC rcStrict;
6200 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6201 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
6202 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6203 if (!pExitRec)
6204 {
6205 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6206 if (fSupportsNextRipSave)
6207 {
6208 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
6209 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
6210 }
6211 else
6212 {
6213 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6214 rcStrict = IEMExecOne(pVCpu);
6215 }
6216
6217 if (rcStrict == VINF_IEM_RAISED_XCPT)
6218 {
6219 rcStrict = VINF_SUCCESS;
6220 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6221 }
6222 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6223 }
6224 else
6225 {
6226 /*
6227 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6228 */
6229 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6230
6231 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
6232 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
6233
6234 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6235
6236 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6237 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6238 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6239 }
6240 return VBOXSTRICTRC_TODO(rcStrict);
6241}
6242
6243
6244/**
6245 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6246 */
6247HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6248{
6249 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6250
6251 VBOXSTRICTRC rcStrict;
6252 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6253 if (fSupportsNextRipSave)
6254 {
6255 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6256 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
6257 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
6258 }
6259 else
6260 {
6261 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6262 rcStrict = IEMExecOne(pVCpu);
6263 }
6264
6265 if (rcStrict == VINF_SUCCESS)
6266 pSvmTransient->fUpdateTscOffsetting = true;
6267 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6268 {
6269 rcStrict = VINF_SUCCESS;
6270 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6271 }
6272 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6273 return VBOXSTRICTRC_TODO(rcStrict);
6274}
6275
6276
6277/**
6278 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6279 */
6280HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6281{
6282 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6283
6284 VBOXSTRICTRC rcStrict;
6285 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6286 if (fSupportsNextRipSave)
6287 {
6288 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4
6289 | CPUMCTX_EXTRN_TSC_AUX);
6290 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
6291 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
6292 }
6293 else
6294 {
6295 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6296 rcStrict = IEMExecOne(pVCpu);
6297 }
6298
6299 if (rcStrict == VINF_SUCCESS)
6300 pSvmTransient->fUpdateTscOffsetting = true;
6301 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6302 {
6303 rcStrict = VINF_SUCCESS;
6304 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6305 }
6306 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6307 return VBOXSTRICTRC_TODO(rcStrict);
6308}
6309
6310
6311/**
6312 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6313 */
6314HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6315{
6316 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6317 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_SS);
6318
6319 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6320 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6321 if (RT_LIKELY(rc == VINF_SUCCESS))
6322 {
6323 hmR0SvmAdvanceRipHwAssist(pVCpu, 2);
6324 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6325 }
6326 else
6327 {
6328 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
6329 rc = VERR_EM_INTERPRETER;
6330 }
6331 return rc;
6332}
6333
6334
6335/**
6336 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6337 */
6338HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6339{
6340 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6341 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6342
6343 VBOXSTRICTRC rcStrict;
6344 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6345 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6346 if ( fSupportsDecodeAssists
6347 && fSupportsNextRipSave)
6348 {
6349 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6350 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6351 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6352 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6353 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6354 }
6355 else
6356 {
6357 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6358 rcStrict = IEMExecOne(pVCpu);
6359 }
6360
6361 if (rcStrict == VINF_IEM_RAISED_XCPT)
6362 {
6363 rcStrict = VINF_SUCCESS;
6364 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6365 }
6366 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6367 return VBOXSTRICTRC_VAL(rcStrict);
6368}
6369
6370
6371/**
6372 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6373 */
6374HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6375{
6376 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6377
6378 hmR0SvmAdvanceRipHwAssist(pVCpu, 1);
6379 int rc = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6380 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6381
6382 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6383 if (rc != VINF_SUCCESS)
6384 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6385 return rc;
6386}
6387
6388
6389/**
6390 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6391 */
6392HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6393{
6394 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6395 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_SS);
6396
6397 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6398 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6399 if (RT_LIKELY(rc == VINF_SUCCESS))
6400 {
6401 hmR0SvmAdvanceRipHwAssist(pVCpu, 3);
6402 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6403 }
6404 else
6405 {
6406 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
6407 rc = VERR_EM_INTERPRETER;
6408 }
6409 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6410 return rc;
6411}
6412
6413
6414/**
6415 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6416 */
6417HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6418{
6419 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6420 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_SS);
6421
6422 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6423 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6424 int rc = VBOXSTRICTRC_VAL(rc2);
6425 if ( rc == VINF_EM_HALT
6426 || rc == VINF_SUCCESS)
6427 {
6428 hmR0SvmAdvanceRipHwAssist(pVCpu, 3);
6429
6430 if ( rc == VINF_EM_HALT
6431 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
6432 {
6433 rc = VINF_SUCCESS;
6434 }
6435 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6436 }
6437 else
6438 {
6439 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
6440 rc = VERR_EM_INTERPRETER;
6441 }
6442 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
6443 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
6444 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6445 return rc;
6446}
6447
6448
6449/**
6450 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6451 * \#VMEXIT.
6452 */
6453HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6454{
6455 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6456 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6457 return VINF_EM_RESET;
6458}
6459
6460
6461/**
6462 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6463 */
6464HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6465{
6466 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6467 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6468 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6469 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6470 RT_NOREF(pVmcb);
6471 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6472 return VERR_SVM_UNEXPECTED_EXIT;
6473}
6474
6475
6476/**
6477 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6478 */
6479HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6480{
6481 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6482
6483 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6484 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6485#ifdef VBOX_WITH_STATISTICS
6486 switch (pSvmTransient->u64ExitCode)
6487 {
6488 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6489 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6490 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6491 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6492 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6493 }
6494#endif
6495
6496 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6497 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6498 if ( fSupportsDecodeAssists
6499 && fSupportsNextRipSave)
6500 {
6501 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6502 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6503 if (fMovCRx)
6504 {
6505 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6506 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6507 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6508 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6509 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6510 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6511 return VBOXSTRICTRC_VAL(rcStrict);
6512 }
6513 /* else: SMSW instruction, fall back below to IEM for this. */
6514 }
6515
6516 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6517 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6518 int rc = VBOXSTRICTRC_VAL(rc2);
6519 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
6520 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
6521 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6522 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6523 return rc;
6524}
6525
6526
6527/**
6528 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6529 */
6530HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6531{
6532 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6533
6534 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6535 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6536 Assert(iCrReg <= 15);
6537
6538 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6539 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6540 bool fDecodedInstr = false;
6541 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6542 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6543 if ( fSupportsDecodeAssists
6544 && fSupportsNextRipSave)
6545 {
6546 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6547 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6548 if (fMovCRx)
6549 {
6550 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6551 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6552 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6553 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6554 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6555 fDecodedInstr = true;
6556 }
6557 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6558 }
6559
6560 if (!fDecodedInstr)
6561 {
6562 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6563 Log4Func(("iCrReg=%#x\n", iCrReg));
6564 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
6565 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6566 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6567 rcStrict = VERR_EM_INTERPRETER;
6568 }
6569
6570 if (rcStrict == VINF_SUCCESS)
6571 {
6572 switch (iCrReg)
6573 {
6574 case 0:
6575 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6576 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6577 break;
6578
6579 case 2:
6580 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6581 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6582 break;
6583
6584 case 3:
6585 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6586 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6587 break;
6588
6589 case 4:
6590 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6591 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6592 break;
6593
6594 case 8:
6595 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6596 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6597 break;
6598
6599 default:
6600 {
6601 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6602 pSvmTransient->u64ExitCode, iCrReg));
6603 break;
6604 }
6605 }
6606 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6607 }
6608 else
6609 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
6610 return VBOXSTRICTRC_TODO(rcStrict);
6611}
6612
6613
6614/**
6615 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6616 *
6617 * @returns Strict VBox status code.
6618 * @param pVCpu The cross context virtual CPU structure.
6619 * @param pVmcb Pointer to the VM control block.
6620 */
6621static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPU pVCpu, PSVMVMCB pVmcb)
6622{
6623 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6624 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6625 Log4Func(("idMsr=%#RX32\n", pCtx->ecx));
6626
6627 VBOXSTRICTRC rcStrict;
6628 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6629 if (fSupportsNextRipSave)
6630 {
6631 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6632 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6633 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6634 rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmcb->ctrl.u64NextRIP - pCtx->rip);
6635 }
6636 else
6637 {
6638 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6639 rcStrict = IEMExecOne(pVCpu);
6640 }
6641
6642 AssertMsg( rcStrict == VINF_SUCCESS
6643 || rcStrict == VINF_IEM_RAISED_XCPT
6644 || rcStrict == VINF_CPUM_R3_MSR_READ,
6645 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6646
6647 if (rcStrict == VINF_IEM_RAISED_XCPT)
6648 {
6649 rcStrict = VINF_SUCCESS;
6650 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6651 }
6652 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6653 return rcStrict;
6654}
6655
6656
6657/**
6658 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6659 *
6660 * @returns Strict VBox status code.
6661 * @param pVCpu The cross context virtual CPU structure.
6662 * @param pVmcb Pointer to the VM control block.
6663 * @param pSvmTransient Pointer to the SVM-transient structure.
6664 */
6665static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6666{
6667 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6668 uint32_t const idMsr = pCtx->ecx;
6669 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6670 Log4Func(("idMsr=%#RX32\n", idMsr));
6671
6672 /*
6673 * Handle TPR patching MSR writes.
6674 * We utilitize the LSTAR MSR for patching.
6675 */
6676 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
6677 && idMsr == MSR_K8_LSTAR)
6678 {
6679 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6680 {
6681 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6682 int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6683 AssertRC(rc2);
6684 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6685 }
6686
6687 int rc = VINF_SUCCESS;
6688 hmR0SvmAdvanceRipHwAssist(pVCpu, 2);
6689 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6690 return rc;
6691 }
6692
6693 /*
6694 * Handle regular MSR writes.
6695 */
6696 VBOXSTRICTRC rcStrict;
6697 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6698 if (fSupportsNextRipSave)
6699 {
6700 /** @todo Optimize this: We don't need to get much of the MSR state here
6701 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6702 * clear the applicable extern flags. */
6703 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6704 rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmcb->ctrl.u64NextRIP - pCtx->rip);
6705 }
6706 else
6707 {
6708 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6709 rcStrict = IEMExecOne(pVCpu);
6710 }
6711
6712 AssertMsg( rcStrict == VINF_SUCCESS
6713 || rcStrict == VINF_IEM_RAISED_XCPT
6714 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6715 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6716
6717 if (rcStrict == VINF_SUCCESS)
6718 {
6719 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6720 if ( idMsr >= MSR_IA32_X2APIC_START
6721 && idMsr <= MSR_IA32_X2APIC_END)
6722 {
6723 /*
6724 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6725 * When full APIC register virtualization is implemented we'll have to make sure
6726 * APIC state is saved from the VMCB before IEM changes it.
6727 */
6728 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6729 }
6730 else
6731 {
6732 switch (idMsr)
6733 {
6734 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6735 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6736 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6737 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6738 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6739 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6740 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6741 }
6742 }
6743 }
6744 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6745 {
6746 rcStrict = VINF_SUCCESS;
6747 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6748 }
6749 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6750 return rcStrict;
6751}
6752
6753
6754/**
6755 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6756 * \#VMEXIT.
6757 */
6758HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6759{
6760 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6761
6762 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6763 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6764 return VBOXSTRICTRC_TODO(hmR0SvmExitReadMsr(pVCpu, pVmcb));
6765
6766 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6767 return VBOXSTRICTRC_TODO(hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient));
6768}
6769
6770
6771/**
6772 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6773 */
6774HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6775{
6776 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6777 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6778
6779 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6780
6781 /** @todo Stepping with nested-guest. */
6782 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6783 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6784 {
6785 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6786 if (pSvmTransient->fWasGuestDebugStateActive)
6787 {
6788 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6789 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6790 return VERR_SVM_UNEXPECTED_EXIT;
6791 }
6792
6793 /*
6794 * Lazy DR0-3 loading.
6795 */
6796 if (!pSvmTransient->fWasHyperDebugStateActive)
6797 {
6798 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6799 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6800
6801 /* Don't intercept DRx read and writes. */
6802 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6803 pVmcb->ctrl.u16InterceptRdDRx = 0;
6804 pVmcb->ctrl.u16InterceptWrDRx = 0;
6805 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6806
6807 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6808 VMMRZCallRing3Disable(pVCpu);
6809 HM_DISABLE_PREEMPT(pVCpu);
6810
6811 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6812 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6813 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6814
6815 HM_RESTORE_PREEMPT();
6816 VMMRZCallRing3Enable(pVCpu);
6817
6818 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6819 return VINF_SUCCESS;
6820 }
6821 }
6822
6823 /*
6824 * Interpret the read/writing of DRx.
6825 */
6826 /** @todo Decode assist. */
6827 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6828 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6829 if (RT_LIKELY(rc == VINF_SUCCESS))
6830 {
6831 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6832 /** @todo CPUM should set this flag! */
6833 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6834 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6835 }
6836 else
6837 Assert(rc == VERR_EM_INTERPRETER);
6838 return VBOXSTRICTRC_TODO(rc);
6839}
6840
6841
6842/**
6843 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6844 */
6845HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6846{
6847 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6848 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6849 int rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6850 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6851 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6852 return rc;
6853}
6854
6855
6856/**
6857 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6858 */
6859HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6860{
6861 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6862 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6863
6864 /** @todo decode assists... */
6865 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6866 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6867 {
6868 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6869 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6870 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0,
6871 pCtx->cr4));
6872 }
6873 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6874 {
6875 rcStrict = VINF_SUCCESS;
6876 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6877 }
6878 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6879 return VBOXSTRICTRC_TODO(rcStrict);
6880}
6881
6882
6883/**
6884 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6885 */
6886HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6887{
6888 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6889 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6890
6891 /* I/O operation lookup arrays. */
6892 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6893 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6894 the result (in AL/AX/EAX). */
6895 PVM pVM = pVCpu->CTX_SUFF(pVM);
6896 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6897 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6898
6899 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6900
6901 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6902 SVMIOIOEXITINFO IoExitInfo;
6903 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6904 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6905 uint32_t cbValue = s_aIOSize[uIOWidth];
6906 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6907
6908 if (RT_UNLIKELY(!cbValue))
6909 {
6910 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6911 return VERR_EM_INTERPRETER;
6912 }
6913
6914 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6915 VBOXSTRICTRC rcStrict;
6916 PCEMEXITREC pExitRec = NULL;
6917 if ( !pVCpu->hm.s.fSingleInstruction
6918 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6919 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6920 !IoExitInfo.n.u1Str
6921 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6922 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6923 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6924 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6925 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6926 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6927 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6928 if (!pExitRec)
6929 {
6930 bool fUpdateRipAlready = false;
6931 if (IoExitInfo.n.u1Str)
6932 {
6933 /* INS/OUTS - I/O String instruction. */
6934 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6935 * in EXITINFO1? Investigate once this thing is up and running. */
6936 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6937 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6938 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6939 static IEMMODE const s_aenmAddrMode[8] =
6940 {
6941 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6942 };
6943 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6944 if (enmAddrMode != (IEMMODE)-1)
6945 {
6946 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6947 if (cbInstr <= 15 && cbInstr >= 1)
6948 {
6949 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6950 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6951 {
6952 /* Don't know exactly how to detect whether u3Seg is valid, currently
6953 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6954 2384 Opterons when only checking NRIP. */
6955 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6956 if ( fSupportsNextRipSave
6957 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6958 {
6959 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6960 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6961 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6962 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6963 }
6964 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6965 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6966 X86_SREG_DS, true /*fIoChecked*/);
6967 else
6968 rcStrict = IEMExecOne(pVCpu);
6969 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6970 }
6971 else
6972 {
6973 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
6974 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6975 true /*fIoChecked*/);
6976 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6977 }
6978 }
6979 else
6980 {
6981 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6982 rcStrict = IEMExecOne(pVCpu);
6983 }
6984 }
6985 else
6986 {
6987 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6988 rcStrict = IEMExecOne(pVCpu);
6989 }
6990 fUpdateRipAlready = true;
6991 }
6992 else
6993 {
6994 /* IN/OUT - I/O instruction. */
6995 Assert(!IoExitInfo.n.u1Rep);
6996
6997 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6998 {
6999 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
7000 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
7001 }
7002 else
7003 {
7004 uint32_t u32Val = 0;
7005 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
7006 if (IOM_SUCCESS(rcStrict))
7007 {
7008 /* Save result of I/O IN instr. in AL/AX/EAX. */
7009 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
7010 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
7011 }
7012 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
7013 {
7014 HMR0SavePendingIOPortRead(pVCpu, pVCpu->cpum.GstCtx.rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
7015 uAndVal, cbValue);
7016 }
7017
7018 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
7019 }
7020 }
7021
7022 if (IOM_SUCCESS(rcStrict))
7023 {
7024 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
7025 if (!fUpdateRipAlready)
7026 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
7027
7028 /*
7029 * If any I/O breakpoints are armed, we need to check if one triggered
7030 * and take appropriate action.
7031 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
7032 */
7033 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
7034 * execution engines about whether hyper BPs and such are pending. */
7035 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
7036 uint32_t const uDr7 = pCtx->dr[7];
7037 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7038 && X86_DR7_ANY_RW_IO(uDr7)
7039 && (pCtx->cr4 & X86_CR4_DE))
7040 || DBGFBpIsHwIoArmed(pVM)))
7041 {
7042 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7043 VMMRZCallRing3Disable(pVCpu);
7044 HM_DISABLE_PREEMPT(pVCpu);
7045
7046 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
7047 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
7048
7049 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
7050 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
7051 {
7052 /* Raise #DB. */
7053 pVmcb->guest.u64DR6 = pCtx->dr[6];
7054 pVmcb->guest.u64DR7 = pCtx->dr[7];
7055 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7056 hmR0SvmSetPendingXcptDB(pVCpu);
7057 }
7058 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
7059 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
7060 else if ( rcStrict2 != VINF_SUCCESS
7061 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
7062 rcStrict = rcStrict2;
7063 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
7064
7065 HM_RESTORE_PREEMPT();
7066 VMMRZCallRing3Enable(pVCpu);
7067 }
7068
7069 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7070 }
7071
7072#ifdef VBOX_STRICT
7073 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
7074 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
7075 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
7076 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
7077 else
7078 {
7079 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
7080 * statuses, that the VMM device and some others may return. See
7081 * IOM_SUCCESS() for guidance. */
7082 AssertMsg( RT_FAILURE(rcStrict)
7083 || rcStrict == VINF_SUCCESS
7084 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
7085 || rcStrict == VINF_EM_DBG_BREAKPOINT
7086 || rcStrict == VINF_EM_RAW_GUEST_TRAP
7087 || rcStrict == VINF_EM_RAW_TO_R3
7088 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
7089 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7090 }
7091#endif
7092 }
7093 else
7094 {
7095 /*
7096 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7097 */
7098 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7099 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
7100 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
7101 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
7102 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
7103 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
7104 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
7105
7106 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7107 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7108
7109 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7110 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7111 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7112 }
7113 return VBOXSTRICTRC_TODO(rcStrict);
7114}
7115
7116
7117/**
7118 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
7119 */
7120HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7121{
7122 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7123 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7124 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7125
7126 PVM pVM = pVCpu->CTX_SUFF(pVM);
7127 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7128 Assert(pVM->hm.s.fNestedPaging);
7129
7130 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
7131 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7132 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
7133 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
7134 thus intentionally not copied into u32ErrCode. */
7135
7136 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
7137 u32ErrCode));
7138
7139 /*
7140 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
7141 */
7142 if ( pVM->hm.s.fTprPatchingAllowed
7143 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
7144 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
7145 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
7146 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7147 && !CPUMIsGuestInLongModeEx(pCtx)
7148 && !CPUMGetGuestCPL(pVCpu)
7149 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7150 {
7151 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7152 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7153
7154 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
7155 {
7156 /* Only attempt to patch the instruction once. */
7157 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7158 if (!pPatch)
7159 return VINF_EM_HM_PATCH_TPR_INSTR;
7160 }
7161 }
7162
7163 /*
7164 * Determine the nested paging mode.
7165 */
7166 PGMMODE enmNestedPagingMode;
7167#if HC_ARCH_BITS == 32
7168 if (CPUMIsGuestInLongModeEx(pCtx))
7169 enmNestedPagingMode = PGMMODE_AMD64_NX;
7170 else
7171#endif
7172 enmNestedPagingMode = PGMGetHostMode(pVM);
7173
7174 /*
7175 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
7176 */
7177 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
7178 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
7179 {
7180 /*
7181 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
7182 * injecting the original pending event would most likely cause the same MMIO #NPF.
7183 */
7184 if (pVCpu->hm.s.Event.fPending)
7185 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7186
7187 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
7188 VBOXSTRICTRC rcStrict;
7189 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
7190 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
7191 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
7192 if (!pExitRec)
7193 {
7194
7195 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
7196 u32ErrCode);
7197
7198 /*
7199 * If we succeed, resume guest execution.
7200 *
7201 * If we fail in interpreting the instruction because we couldn't get the guest
7202 * physical address of the page containing the instruction via the guest's page
7203 * tables (we would invalidate the guest page in the host TLB), resume execution
7204 * which would cause a guest page fault to let the guest handle this weird case.
7205 *
7206 * See @bugref{6043}.
7207 */
7208 if ( rcStrict == VINF_SUCCESS
7209 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
7210 || rcStrict == VERR_PAGE_NOT_PRESENT)
7211 {
7212 /* Successfully handled MMIO operation. */
7213 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
7214 rcStrict = VINF_SUCCESS;
7215 }
7216 }
7217 else
7218 {
7219 /*
7220 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7221 */
7222 Assert(pCtx == &pVCpu->cpum.GstCtx);
7223 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7224 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
7225 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
7226
7227 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7228 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7229
7230 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7231 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7232 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7233 }
7234 return VBOXSTRICTRC_TODO(rcStrict);
7235 }
7236
7237 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
7238 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
7239 TRPMResetTrap(pVCpu);
7240
7241 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
7242
7243 /*
7244 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
7245 */
7246 if ( rc == VINF_SUCCESS
7247 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7248 || rc == VERR_PAGE_NOT_PRESENT)
7249 {
7250 /* We've successfully synced our shadow page tables. */
7251 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7252 rc = VINF_SUCCESS;
7253 }
7254
7255 return rc;
7256}
7257
7258
7259/**
7260 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
7261 * \#VMEXIT.
7262 */
7263HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7264{
7265 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7266 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7267
7268 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7269 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7270 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
7271
7272 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7274 return VINF_SUCCESS;
7275}
7276
7277
7278/**
7279 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7280 * \#VMEXIT.
7281 */
7282HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7283{
7284 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7285 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7286
7287#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7288 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7289#endif
7290
7291 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7292 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7293 {
7294 /*
7295 * AMD-V provides us with the exception which caused the TS; we collect
7296 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7297 */
7298 Log4Func(("TS occurred during event delivery\n"));
7299 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7300 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7301 }
7302
7303 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7304 * emulation. */
7305 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7306 return VERR_EM_INTERPRETER;
7307}
7308
7309
7310/**
7311 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7312 */
7313HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7314{
7315 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7316 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7317
7318 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingAllowed)
7319 {
7320 int rc = hmSvmEmulateMovTpr(pVCpu);
7321 if (rc != VERR_NOT_FOUND)
7322 {
7323 Log4Func(("hmSvmEmulateMovTpr returns %Rrc\n", rc));
7324 return rc;
7325 }
7326 }
7327
7328 if (EMAreHypercallInstructionsEnabled(pVCpu))
7329 {
7330 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7331 if (RT_SUCCESS(rcStrict))
7332 {
7333 /* Only update the RIP if we're continuing guest execution and not in the case
7334 of say VINF_GIM_R3_HYPERCALL. */
7335 if (rcStrict == VINF_SUCCESS)
7336 hmR0SvmAdvanceRipHwAssist(pVCpu, 3 /* cbInstr */);
7337
7338 return VBOXSTRICTRC_VAL(rcStrict);
7339 }
7340 else
7341 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7342 }
7343
7344 hmR0SvmSetPendingXcptUD(pVCpu);
7345 return VINF_SUCCESS;
7346}
7347
7348
7349/**
7350 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7351 */
7352HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7353{
7354 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7355 hmR0SvmAdvanceRipHwAssist(pVCpu, 2);
7356 /** @todo The guest has likely hit a contended spinlock. We might want to
7357 * poke a schedule different guest VCPU. */
7358 return VINF_EM_RAW_INTERRUPT;
7359}
7360
7361
7362/**
7363 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7364 * \#VMEXIT.
7365 */
7366HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7367{
7368 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7369 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7370 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7371
7372 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7373 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7374}
7375
7376
7377/**
7378 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7379 */
7380HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7381{
7382 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7383
7384 /* Clear NMI blocking. */
7385 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
7386 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7387
7388 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7389 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7390 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7391
7392 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7393 return VINF_SUCCESS;
7394}
7395
7396
7397/**
7398 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7399 * Conditional \#VMEXIT.
7400 */
7401HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7402{
7403 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7404 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7405 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7406
7407 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7408 PVM pVM = pVCpu->CTX_SUFF(pVM);
7409 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7410 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7411 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7412 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7413
7414#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7415 if (pVM->hm.s.fNestedPaging)
7416 {
7417 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7418 if ( !pSvmTransient->fVectoringDoublePF
7419 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7420 {
7421 /* A genuine guest #PF, reflect it to the guest. */
7422 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7423 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7424 uFaultAddress, uErrCode));
7425 }
7426 else
7427 {
7428 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7429 hmR0SvmSetPendingXcptDF(pVCpu);
7430 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7431 }
7432 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7433 return VINF_SUCCESS;
7434 }
7435#endif
7436
7437 Assert(!pVM->hm.s.fNestedPaging);
7438
7439 /*
7440 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7441 */
7442 if ( pVM->hm.s.fTprPatchingAllowed
7443 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7444 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7445 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7446 && !CPUMIsGuestInLongModeEx(pCtx)
7447 && !CPUMGetGuestCPL(pVCpu)
7448 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7449 {
7450 RTGCPHYS GCPhysApicBase;
7451 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7452 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7453
7454 /* Check if the page at the fault-address is the APIC base. */
7455 RTGCPHYS GCPhysPage;
7456 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7457 if ( rc2 == VINF_SUCCESS
7458 && GCPhysPage == GCPhysApicBase)
7459 {
7460 /* Only attempt to patch the instruction once. */
7461 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7462 if (!pPatch)
7463 return VINF_EM_HM_PATCH_TPR_INSTR;
7464 }
7465 }
7466
7467 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7468 pCtx->rip, uErrCode, pCtx->cr3));
7469
7470 /*
7471 * If it's a vectoring #PF, emulate injecting the original event injection as
7472 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7473 * event injection that caused a #PF. See @bugref{6607}.
7474 */
7475 if (pSvmTransient->fVectoringPF)
7476 {
7477 Assert(pVCpu->hm.s.Event.fPending);
7478 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7479 }
7480
7481 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7482 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7483
7484 Log4Func(("#PF: rc=%Rrc\n", rc));
7485
7486 if (rc == VINF_SUCCESS)
7487 {
7488 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7489 TRPMResetTrap(pVCpu);
7490 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7491 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7492 return rc;
7493 }
7494
7495 if (rc == VINF_EM_RAW_GUEST_TRAP)
7496 {
7497 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7498
7499 /*
7500 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7501 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7502 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7503 */
7504 if ( !pSvmTransient->fVectoringDoublePF
7505 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7506 {
7507 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7508 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7509 TRPMResetTrap(pVCpu);
7510
7511#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7512 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7513 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7514 && HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
7515 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress));
7516#endif
7517
7518 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7519 }
7520 else
7521 {
7522 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7523 TRPMResetTrap(pVCpu);
7524 hmR0SvmSetPendingXcptDF(pVCpu);
7525 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7526 }
7527
7528 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7529 return VINF_SUCCESS;
7530 }
7531
7532 TRPMResetTrap(pVCpu);
7533 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7534 return rc;
7535}
7536
7537
7538/**
7539 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7540 * Conditional \#VMEXIT.
7541 */
7542HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7543{
7544 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7545 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7546
7547 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7548 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7549 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7550
7551 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7552 if (pVCpu->hm.s.fGIMTrapXcptUD)
7553 {
7554 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7555 uint8_t cbInstr = 0;
7556 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7557 if (rcStrict == VINF_SUCCESS)
7558 {
7559 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7560 hmR0SvmAdvanceRipDumb(pVCpu, cbInstr);
7561 rc = VINF_SUCCESS;
7562 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7563 }
7564 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7565 rc = VINF_SUCCESS;
7566 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7567 rc = VINF_GIM_R3_HYPERCALL;
7568 else
7569 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7570 }
7571
7572 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7573 if (RT_FAILURE(rc))
7574 {
7575 hmR0SvmSetPendingXcptUD(pVCpu);
7576 rc = VINF_SUCCESS;
7577 }
7578
7579 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7580 return rc;
7581}
7582
7583
7584/**
7585 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7586 * Conditional \#VMEXIT.
7587 */
7588HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7589{
7590 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7591 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7592
7593 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7594 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7595
7596 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7597 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7598
7599 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7600
7601 if (!(pCtx->cr0 & X86_CR0_NE))
7602 {
7603 PVM pVM = pVCpu->CTX_SUFF(pVM);
7604 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7605 unsigned cbOp;
7606 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
7607 if (RT_SUCCESS(rc))
7608 {
7609 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7610 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7611 if (RT_SUCCESS(rc))
7612 pCtx->rip += cbOp;
7613 }
7614 else
7615 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7616 return rc;
7617 }
7618
7619 hmR0SvmSetPendingXcptMF(pVCpu);
7620 return VINF_SUCCESS;
7621}
7622
7623
7624/**
7625 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7626 * \#VMEXIT.
7627 */
7628HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7629{
7630 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7631 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7632 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7633
7634 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7635 {
7636 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7637 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7638 }
7639
7640 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7641
7642 /*
7643 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7644 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7645 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7646 */
7647 PVM pVM = pVCpu->CTX_SUFF(pVM);
7648 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7649 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7650 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7651 if (rc == VINF_EM_RAW_GUEST_TRAP)
7652 {
7653 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7654 if (CPUMIsHyperDebugStateActive(pVCpu))
7655 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7656
7657 /* Reflect the exception back to the guest. */
7658 hmR0SvmSetPendingXcptDB(pVCpu);
7659 rc = VINF_SUCCESS;
7660 }
7661
7662 /*
7663 * Update DR6.
7664 */
7665 if (CPUMIsHyperDebugStateActive(pVCpu))
7666 {
7667 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7668 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7669 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7670 }
7671 else
7672 {
7673 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7674 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7675 }
7676
7677 return rc;
7678}
7679
7680
7681/**
7682 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7683 * Conditional \#VMEXIT.
7684 */
7685HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7686{
7687 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7688 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7689
7690 SVMEVENT Event;
7691 Event.u = 0;
7692 Event.n.u1Valid = 1;
7693 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7694 Event.n.u8Vector = X86_XCPT_AC;
7695 Event.n.u1ErrorCodeValid = 1;
7696 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7697 return VINF_SUCCESS;
7698}
7699
7700
7701/**
7702 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7703 * Conditional \#VMEXIT.
7704 */
7705HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7706{
7707 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7708 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7709 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7710
7711 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7712 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7713 if (rc == VINF_EM_RAW_GUEST_TRAP)
7714 {
7715 SVMEVENT Event;
7716 Event.u = 0;
7717 Event.n.u1Valid = 1;
7718 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7719 Event.n.u8Vector = X86_XCPT_BP;
7720 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7721 }
7722
7723 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7724 return rc;
7725}
7726
7727
7728#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7729/**
7730 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7731 */
7732HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7733{
7734 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7735 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7736
7737 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7738 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7739 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7740 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7741 Assert(uVector <= X86_XCPT_LAST);
7742 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7743
7744 SVMEVENT Event;
7745 Event.u = 0;
7746 Event.n.u1Valid = 1;
7747 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7748 Event.n.u8Vector = uVector;
7749 switch (uVector)
7750 {
7751 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7752 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7753 case X86_XCPT_DF:
7754 case X86_XCPT_TS:
7755 case X86_XCPT_NP:
7756 case X86_XCPT_SS:
7757 case X86_XCPT_GP:
7758 case X86_XCPT_AC:
7759 {
7760 Event.n.u1ErrorCodeValid = 1;
7761 Event.n.u32ErrorCode = uErrCode;
7762 break;
7763 }
7764 }
7765
7766 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7767 return VINF_SUCCESS;
7768}
7769#endif
7770
7771#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7772/**
7773 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7774 */
7775HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7776{
7777 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7778 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_HWVIRT);
7779
7780#ifdef VBOX_STRICT
7781 PCSVMVMCB pVmcbTmp = hmR0SvmGetCurrentVmcb(pVCpu);
7782 Assert(pVmcbTmp);
7783 Assert(!pVmcbTmp->ctrl.IntCtrl.n.u1VGifEnable);
7784 RT_NOREF(pVmcbTmp);
7785#endif
7786
7787 VBOXSTRICTRC rcStrict;
7788 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7789 if (fSupportsNextRipSave)
7790 {
7791 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
7792 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7793 }
7794 else
7795 rcStrict = IEMExecOne(pVCpu);
7796
7797 if (rcStrict == VINF_SUCCESS)
7798 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7799 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7800 {
7801 rcStrict = VINF_SUCCESS;
7802 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7803 }
7804 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7805 return VBOXSTRICTRC_TODO(rcStrict);
7806}
7807
7808
7809/**
7810 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7811 */
7812HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7813{
7814 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7815 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_HWVIRT);
7816
7817 /*
7818 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7819 * we only intercept STGI when events are pending for GIF to become 1.
7820 */
7821 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7822 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7823 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7824
7825 VBOXSTRICTRC rcStrict;
7826 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7827 if (fSupportsNextRipSave)
7828 {
7829 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
7830 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7831 }
7832 else
7833 rcStrict = IEMExecOne(pVCpu);
7834
7835 if (rcStrict == VINF_SUCCESS)
7836 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7837 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7838 {
7839 rcStrict = VINF_SUCCESS;
7840 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7841 }
7842 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7843 return VBOXSTRICTRC_TODO(rcStrict);
7844}
7845
7846
7847/**
7848 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7849 */
7850HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7851{
7852 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7853 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK
7854 | CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_TR
7855 | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS
7856 | CPUMCTX_EXTRN_SYSENTER_MSRS);
7857
7858#ifdef VBOX_STRICT
7859 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7860 Assert(pVmcb);
7861 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7862 RT_NOREF(pVmcb);
7863#endif
7864
7865 VBOXSTRICTRC rcStrict;
7866 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7867 if (fSupportsNextRipSave)
7868 {
7869 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
7870 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7871 }
7872 else
7873 rcStrict = IEMExecOne(pVCpu);
7874
7875 if (rcStrict == VINF_SUCCESS)
7876 {
7877 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7878 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7879 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7880 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7881 }
7882 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7883 {
7884 rcStrict = VINF_SUCCESS;
7885 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7886 }
7887 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7888 return VBOXSTRICTRC_TODO(rcStrict);
7889}
7890
7891
7892/**
7893 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7894 */
7895HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7896{
7897 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7898 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7899
7900#ifdef VBOX_STRICT
7901 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7902 Assert(pVmcb);
7903 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7904 RT_NOREF(pVmcb);
7905#endif
7906 VBOXSTRICTRC rcStrict;
7907 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7908 if (fSupportsNextRipSave)
7909 {
7910 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
7911 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7912 }
7913 else
7914 rcStrict = IEMExecOne(pVCpu);
7915
7916 if (rcStrict == VINF_IEM_RAISED_XCPT)
7917 {
7918 rcStrict = VINF_SUCCESS;
7919 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7920 }
7921 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7922 return VBOXSTRICTRC_TODO(rcStrict);
7923}
7924
7925
7926/**
7927 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7928 */
7929HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7930{
7931 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7932 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7933
7934 VBOXSTRICTRC rcStrict;
7935 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7936 if (fSupportsNextRipSave)
7937 {
7938 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
7939 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7940 }
7941 else
7942 rcStrict = IEMExecOne(pVCpu);
7943
7944 if (rcStrict == VINF_IEM_RAISED_XCPT)
7945 {
7946 rcStrict = VINF_SUCCESS;
7947 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7948 }
7949 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7950 return VBOXSTRICTRC_TODO(rcStrict);
7951}
7952
7953
7954/**
7955 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7956 */
7957HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7958{
7959 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7960 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | IEM_CPUMCTX_EXTRN_SVM_VMRUN_MASK);
7961
7962 VBOXSTRICTRC rcStrict;
7963 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7964 if (fSupportsNextRipSave)
7965 {
7966 uint8_t const cbInstr = hmR0SvmGetInstrLength(pVCpu);
7967 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7968 }
7969 else
7970 rcStrict = IEMExecOne(pVCpu);
7971
7972 if (rcStrict == VINF_SUCCESS)
7973 {
7974 rcStrict = VINF_SVM_VMRUN;
7975 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
7976 }
7977 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7978 {
7979 rcStrict = VINF_SUCCESS;
7980 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7981 }
7982
7983 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7984 return VBOXSTRICTRC_TODO(rcStrict);
7985}
7986
7987
7988/**
7989 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
7990 * Unconditional \#VMEXIT.
7991 */
7992HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7993{
7994 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7995 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7996
7997 if (pVCpu->hm.s.Event.fPending)
7998 {
7999 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
8000 return VINF_EM_RAW_INJECT_TRPM_EVENT;
8001 }
8002
8003 hmR0SvmSetPendingXcptDB(pVCpu);
8004 return VINF_SUCCESS;
8005}
8006
8007
8008/**
8009 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
8010 * Conditional \#VMEXIT.
8011 */
8012HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8013{
8014 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8015 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8016
8017 SVMEVENT Event;
8018 Event.u = 0;
8019 Event.n.u1Valid = 1;
8020 Event.n.u3Type = SVM_EVENT_EXCEPTION;
8021 Event.n.u8Vector = X86_XCPT_BP;
8022 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
8023 return VINF_SUCCESS;
8024}
8025#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
8026
8027/** @} */
8028
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette