VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 73140

Last change on this file since 73140 was 73140, checked in by vboxsync, 6 years ago

VMM/HMSVM: Sort out state syncing on #VMEXIT, VMRUN transitions. We need to swap the full state as we use dedicated VMCBs for
guest and nested-guest.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 318.3 KB
Line 
1/* $Id: HMSVMR0.cpp 73140 2018-07-16 09:06:51Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/gim.h>
33#include <VBox/vmm/apic.h>
34#include "HMInternal.h"
35#include <VBox/vmm/vm.h>
36#include "HMSVMR0.h"
37#include "dtrace/VBoxVMM.h"
38
39#ifdef DEBUG_ramshankar
40# define HMSVM_SYNC_FULL_GUEST_STATE
41# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
42# define HMSVM_ALWAYS_TRAP_PF
43# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
44#endif
45
46
47/*********************************************************************************************************************************
48* Defined Constants And Macros *
49*********************************************************************************************************************************/
50#ifdef VBOX_WITH_STATISTICS
51# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
52 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
53 if ((u64ExitCode) == SVM_EXIT_NPF) \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
55 else \
56 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
57 } while (0)
58
59# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
60# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
61 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
62 if ((u64ExitCode) == SVM_EXIT_NPF) \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
64 else \
65 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
66 } while (0)
67# endif
68#else
69# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
70# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
71# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
72# endif
73#endif /* !VBOX_WITH_STATISTICS */
74
75/** If we decide to use a function table approach this can be useful to
76 * switch to a "static DECLCALLBACK(int)". */
77#define HMSVM_EXIT_DECL static int
78
79/**
80 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
81 * guest using hardware-assisted SVM.
82 *
83 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
84 * are swapped and restored across the world-switch and also registers like
85 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
86 * \#VMEXIT.
87 */
88#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
89 | CPUMCTX_EXTRN_RFLAGS \
90 | CPUMCTX_EXTRN_RAX \
91 | CPUMCTX_EXTRN_RSP \
92 | CPUMCTX_EXTRN_SREG_MASK \
93 | CPUMCTX_EXTRN_CR0 \
94 | CPUMCTX_EXTRN_CR2 \
95 | CPUMCTX_EXTRN_CR3 \
96 | CPUMCTX_EXTRN_TABLE_MASK \
97 | CPUMCTX_EXTRN_DR6 \
98 | CPUMCTX_EXTRN_DR7 \
99 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
100 | CPUMCTX_EXTRN_SYSCALL_MSRS \
101 | CPUMCTX_EXTRN_SYSENTER_MSRS \
102 | CPUMCTX_EXTRN_HWVIRT \
103 | CPUMCTX_EXTRN_HM_SVM_MASK)
104
105/**
106 * Subset of the guest-CPU state that is shared between the guest and host.
107 */
108#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
109
110/** Macro for importing guest state from the VMCB back into CPUMCTX. */
111#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
112 do { \
113 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
114 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
115 } while (0)
116
117/** Assert that the required state bits are fetched. */
118#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
119 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
120 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
121
122/** Assert that preemption is disabled or covered by thread-context hooks. */
123#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
124 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
125
126/** Assert that we haven't migrated CPUs when thread-context hooks are not
127 * used. */
128#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
129 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
130 ("Illegal migration! Entered on CPU %u Current %u\n", \
131 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()));
132
133/** Assert that we're not executing a nested-guest. */
134#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
135# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
136#else
137# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
138#endif
139
140/** Assert that we're executing a nested-guest. */
141#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
142# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
143#else
144# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
145#endif
146
147/** Macro for checking and returning from the using function for
148 * \#VMEXIT intercepts that maybe caused during delivering of another
149 * event in the guest. */
150#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
151# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
152 do \
153 { \
154 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
155 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
156 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
157 else if ( rc == VINF_EM_RESET \
158 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
159 { \
160 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
161 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0)); \
162 } \
163 else \
164 return rc; \
165 } while (0)
166#else
167# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
168 do \
169 { \
170 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
171 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
172 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
173 else \
174 return rc; \
175 } while (0)
176#endif
177
178/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
179 * instruction that exited. */
180#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
181 do { \
182 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
183 (a_rc) = VINF_EM_DBG_STEPPED; \
184 } while (0)
185
186/** Validate segment descriptor granularity bit. */
187#ifdef VBOX_STRICT
188# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
189 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
190 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
191 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
192 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
193 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
194 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
195#else
196# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
197#endif
198
199/**
200 * Exception bitmap mask for all contributory exceptions.
201 *
202 * Page fault is deliberately excluded here as it's conditional as to whether
203 * it's contributory or benign. Page faults are handled separately.
204 */
205#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
206 | RT_BIT(X86_XCPT_DE))
207
208/**
209 * Mandatory/unconditional guest control intercepts.
210 *
211 * SMIs can and do happen in normal operation. We need not intercept them
212 * while executing the guest (or nested-guest).
213 */
214#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
215 | SVM_CTRL_INTERCEPT_NMI \
216 | SVM_CTRL_INTERCEPT_INIT \
217 | SVM_CTRL_INTERCEPT_RDPMC \
218 | SVM_CTRL_INTERCEPT_CPUID \
219 | SVM_CTRL_INTERCEPT_RSM \
220 | SVM_CTRL_INTERCEPT_HLT \
221 | SVM_CTRL_INTERCEPT_IOIO_PROT \
222 | SVM_CTRL_INTERCEPT_MSR_PROT \
223 | SVM_CTRL_INTERCEPT_INVLPGA \
224 | SVM_CTRL_INTERCEPT_SHUTDOWN \
225 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
226 | SVM_CTRL_INTERCEPT_VMRUN \
227 | SVM_CTRL_INTERCEPT_SKINIT \
228 | SVM_CTRL_INTERCEPT_WBINVD \
229 | SVM_CTRL_INTERCEPT_MONITOR \
230 | SVM_CTRL_INTERCEPT_MWAIT \
231 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
232 | SVM_CTRL_INTERCEPT_XSETBV)
233
234/** @name VMCB Clean Bits.
235 *
236 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
237 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
238 * memory.
239 *
240 * @{ */
241/** All intercepts vectors, TSC offset, PAUSE filter counter. */
242#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
243/** I/O permission bitmap, MSR permission bitmap. */
244#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
245/** ASID. */
246#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
247/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
248V_INTR_VECTOR. */
249#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
250/** Nested Paging: Nested CR3 (nCR3), PAT. */
251#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
252/** Control registers (CR0, CR3, CR4, EFER). */
253#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
254/** Debug registers (DR6, DR7). */
255#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
256/** GDT, IDT limit and base. */
257#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
258/** Segment register: CS, SS, DS, ES limit and base. */
259#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
260/** CR2.*/
261#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
262/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
263#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
264/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
265PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
266#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
267/** Mask of all valid VMCB Clean bits. */
268#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
269 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
270 | HMSVM_VMCB_CLEAN_ASID \
271 | HMSVM_VMCB_CLEAN_INT_CTRL \
272 | HMSVM_VMCB_CLEAN_NP \
273 | HMSVM_VMCB_CLEAN_CRX_EFER \
274 | HMSVM_VMCB_CLEAN_DRX \
275 | HMSVM_VMCB_CLEAN_DT \
276 | HMSVM_VMCB_CLEAN_SEG \
277 | HMSVM_VMCB_CLEAN_CR2 \
278 | HMSVM_VMCB_CLEAN_LBR \
279 | HMSVM_VMCB_CLEAN_AVIC)
280/** @} */
281
282/** @name SVM transient.
283 *
284 * A state structure for holding miscellaneous information across AMD-V
285 * VMRUN/\#VMEXIT operation, restored after the transition.
286 *
287 * @{ */
288typedef struct SVMTRANSIENT
289{
290 /** The host's rflags/eflags. */
291 RTCCUINTREG fEFlags;
292#if HC_ARCH_BITS == 32
293 uint32_t u32Alignment0;
294#endif
295
296 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
297 uint64_t u64ExitCode;
298 /** The guest's TPR value used for TPR shadowing. */
299 uint8_t u8GuestTpr;
300 /** Alignment. */
301 uint8_t abAlignment0[7];
302
303 /** Pointer to the currently executing VMCB. */
304 PSVMVMCB pVmcb;
305 /** Whether we are currently executing a nested-guest. */
306 bool fIsNestedGuest;
307
308 /** Whether the guest debug state was active at the time of \#VMEXIT. */
309 bool fWasGuestDebugStateActive;
310 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
311 bool fWasHyperDebugStateActive;
312 /** Whether the TSC offset mode needs to be updated. */
313 bool fUpdateTscOffsetting;
314 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
315 bool fRestoreTscAuxMsr;
316 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
317 * contributary exception or a page-fault. */
318 bool fVectoringDoublePF;
319 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
320 * external interrupt or NMI. */
321 bool fVectoringPF;
322} SVMTRANSIENT, *PSVMTRANSIENT;
323AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
324AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
325/** @} */
326
327/**
328 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
329 */
330typedef enum SVMMSREXITREAD
331{
332 /** Reading this MSR causes a \#VMEXIT. */
333 SVMMSREXIT_INTERCEPT_READ = 0xb,
334 /** Reading this MSR does not cause a \#VMEXIT. */
335 SVMMSREXIT_PASSTHRU_READ
336} SVMMSREXITREAD;
337
338/**
339 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
340 */
341typedef enum SVMMSREXITWRITE
342{
343 /** Writing to this MSR causes a \#VMEXIT. */
344 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
345 /** Writing to this MSR does not cause a \#VMEXIT. */
346 SVMMSREXIT_PASSTHRU_WRITE
347} SVMMSREXITWRITE;
348
349/**
350 * SVM \#VMEXIT handler.
351 *
352 * @returns VBox status code.
353 * @param pVCpu The cross context virtual CPU structure.
354 * @param pSvmTransient Pointer to the SVM-transient structure.
355 */
356typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
357
358
359/*********************************************************************************************************************************
360* Internal Functions *
361*********************************************************************************************************************************/
362static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
363static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState);
364
365
366/** @name \#VMEXIT handlers.
367 * @{
368 */
369static FNSVMEXITHANDLER hmR0SvmExitIntr;
370static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
371static FNSVMEXITHANDLER hmR0SvmExitInvd;
372static FNSVMEXITHANDLER hmR0SvmExitCpuid;
373static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
374static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
375static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
376static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
377static FNSVMEXITHANDLER hmR0SvmExitHlt;
378static FNSVMEXITHANDLER hmR0SvmExitMonitor;
379static FNSVMEXITHANDLER hmR0SvmExitMwait;
380static FNSVMEXITHANDLER hmR0SvmExitShutdown;
381static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
382static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
383static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
384static FNSVMEXITHANDLER hmR0SvmExitMsr;
385static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
386static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
387static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
388static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
389static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
390static FNSVMEXITHANDLER hmR0SvmExitVIntr;
391static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
392static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
393static FNSVMEXITHANDLER hmR0SvmExitPause;
394static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
395static FNSVMEXITHANDLER hmR0SvmExitIret;
396static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
397static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
398static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
399static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
400static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
401static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
402#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
403static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
404#endif
405#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
406static FNSVMEXITHANDLER hmR0SvmExitClgi;
407static FNSVMEXITHANDLER hmR0SvmExitStgi;
408static FNSVMEXITHANDLER hmR0SvmExitVmload;
409static FNSVMEXITHANDLER hmR0SvmExitVmsave;
410static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
411static FNSVMEXITHANDLER hmR0SvmExitVmrun;
412static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
413static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
414#endif
415/** @} */
416
417static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
418#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
419static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
420#endif
421
422
423/*********************************************************************************************************************************
424* Global Variables *
425*********************************************************************************************************************************/
426/** Ring-0 memory object for the IO bitmap. */
427static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
428/** Physical address of the IO bitmap. */
429static RTHCPHYS g_HCPhysIOBitmap;
430/** Pointer to the IO bitmap. */
431static R0PTRTYPE(void *) g_pvIOBitmap;
432
433#ifdef VBOX_STRICT
434# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
435# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
436# define HMSVM_LOG_CS RT_BIT_32(2)
437# define HMSVM_LOG_SS RT_BIT_32(3)
438# define HMSVM_LOG_FS RT_BIT_32(4)
439# define HMSVM_LOG_GS RT_BIT_32(5)
440# define HMSVM_LOG_LBR RT_BIT_32(6)
441# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
442 | HMSVM_LOG_CR_REGS \
443 | HMSVM_LOG_CS \
444 | HMSVM_LOG_SS \
445 | HMSVM_LOG_FS \
446 | HMSVM_LOG_GS \
447 | HMSVM_LOG_LBR)
448
449/**
450 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
451 *
452 * @param pVCpu The cross context virtual CPU structure.
453 * @param pVmcb Pointer to the VM control block.
454 * @param pszPrefix Log prefix.
455 * @param fFlags Log flags, see HMSVM_LOG_XXX.
456 * @param uVerbose The verbosity level, currently unused.
457 */
458static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
459{
460 RT_NOREF2(pVCpu, uVerbose);
461 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
462
463 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
464 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
465
466 if (fFlags & HMSVM_LOG_RBP_RSP)
467 {
468 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
469 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
470 }
471
472 if (fFlags & HMSVM_LOG_CR_REGS)
473 {
474 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
475 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
476 }
477
478 if (fFlags & HMSVM_LOG_CS)
479 {
480 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
481 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
482 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
483 }
484 if (fFlags & HMSVM_LOG_SS)
485 {
486 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
487 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
488 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
489 }
490 if (fFlags & HMSVM_LOG_FS)
491 {
492 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
493 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
494 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
495 }
496 if (fFlags & HMSVM_LOG_GS)
497 {
498 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
499 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
500 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
501 }
502
503 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
504 if (fFlags & HMSVM_LOG_LBR)
505 {
506 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
507 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
508 }
509 NOREF(pVmcbGuest); NOREF(pCtx);
510}
511#endif /* VBOX_STRICT */
512
513
514/**
515 * Sets up and activates AMD-V on the current CPU.
516 *
517 * @returns VBox status code.
518 * @param pHostCpu Pointer to the CPU info struct.
519 * @param pVM The cross context VM structure. Can be
520 * NULL after a resume!
521 * @param pvCpuPage Pointer to the global CPU page.
522 * @param HCPhysCpuPage Physical address of the global CPU page.
523 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
524 * @param pvArg Unused on AMD-V.
525 */
526VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
527 void *pvArg)
528{
529 Assert(!fEnabledByHost);
530 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
531 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
532 Assert(pvCpuPage); NOREF(pvCpuPage);
533 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
534
535 NOREF(pvArg);
536 NOREF(fEnabledByHost);
537
538 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
539 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
540
541 /*
542 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
543 */
544 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
545 if (u64HostEfer & MSR_K6_EFER_SVME)
546 {
547 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
548 if ( pVM
549 && pVM->hm.s.svm.fIgnoreInUseError)
550 pHostCpu->fIgnoreAMDVInUseError = true;
551
552 if (!pHostCpu->fIgnoreAMDVInUseError)
553 {
554 ASMSetFlags(fEFlags);
555 return VERR_SVM_IN_USE;
556 }
557 }
558
559 /* Turn on AMD-V in the EFER MSR. */
560 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
561
562 /* Write the physical page address where the CPU will store the host state while executing the VM. */
563 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
564
565 /* Restore interrupts. */
566 ASMSetFlags(fEFlags);
567
568 /*
569 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
570 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
571 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
572 * entirely with before executing any guest code.
573 */
574 pHostCpu->fFlushAsidBeforeUse = true;
575
576 /*
577 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
578 */
579 ++pHostCpu->cTlbFlushes;
580
581 return VINF_SUCCESS;
582}
583
584
585/**
586 * Deactivates AMD-V on the current CPU.
587 *
588 * @returns VBox status code.
589 * @param pHostCpu Pointer to the CPU info struct.
590 * @param pvCpuPage Pointer to the global CPU page.
591 * @param HCPhysCpuPage Physical address of the global CPU page.
592 */
593VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
594{
595 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
596 AssertReturn( HCPhysCpuPage
597 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
598 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
599 RT_NOREF(pHostCpu);
600
601 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
602 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
603
604 /* Turn off AMD-V in the EFER MSR. */
605 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
606 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
607
608 /* Invalidate host state physical address. */
609 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
610
611 /* Restore interrupts. */
612 ASMSetFlags(fEFlags);
613
614 return VINF_SUCCESS;
615}
616
617
618/**
619 * Does global AMD-V initialization (called during module initialization).
620 *
621 * @returns VBox status code.
622 */
623VMMR0DECL(int) SVMR0GlobalInit(void)
624{
625 /*
626 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
627 * intercept all IO accesses, it's done once globally here instead of per-VM.
628 */
629 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
630 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
631 if (RT_FAILURE(rc))
632 return rc;
633
634 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
635 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
636
637 /* Set all bits to intercept all IO accesses. */
638 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
639
640 return VINF_SUCCESS;
641}
642
643
644/**
645 * Does global AMD-V termination (called during module termination).
646 */
647VMMR0DECL(void) SVMR0GlobalTerm(void)
648{
649 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
650 {
651 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
652 g_pvIOBitmap = NULL;
653 g_HCPhysIOBitmap = 0;
654 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
655 }
656}
657
658
659/**
660 * Frees any allocated per-VCPU structures for a VM.
661 *
662 * @param pVM The cross context VM structure.
663 */
664DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
665{
666 for (uint32_t i = 0; i < pVM->cCpus; i++)
667 {
668 PVMCPU pVCpu = &pVM->aCpus[i];
669 AssertPtr(pVCpu);
670
671 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
672 {
673 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
674 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
675 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
676 }
677
678 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
679 {
680 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
681 pVCpu->hm.s.svm.pVmcb = NULL;
682 pVCpu->hm.s.svm.HCPhysVmcb = 0;
683 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
684 }
685
686 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
687 {
688 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
689 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
690 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
691 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
692 }
693 }
694}
695
696
697/**
698 * Does per-VM AMD-V initialization.
699 *
700 * @returns VBox status code.
701 * @param pVM The cross context VM structure.
702 */
703VMMR0DECL(int) SVMR0InitVM(PVM pVM)
704{
705 int rc = VERR_INTERNAL_ERROR_5;
706
707 /*
708 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
709 */
710 uint32_t u32Family;
711 uint32_t u32Model;
712 uint32_t u32Stepping;
713 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
714 {
715 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
716 pVM->hm.s.svm.fAlwaysFlushTLB = true;
717 }
718
719 /*
720 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
721 */
722 for (VMCPUID i = 0; i < pVM->cCpus; i++)
723 {
724 PVMCPU pVCpu = &pVM->aCpus[i];
725 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
726 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
727 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
728 }
729
730 for (VMCPUID i = 0; i < pVM->cCpus; i++)
731 {
732 PVMCPU pVCpu = &pVM->aCpus[i];
733
734 /*
735 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
736 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
737 */
738 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
739 if (RT_FAILURE(rc))
740 goto failure_cleanup;
741
742 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
743 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
744 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
745 ASMMemZeroPage(pvVmcbHost);
746
747 /*
748 * Allocate one page for the guest-state VMCB.
749 */
750 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
751 if (RT_FAILURE(rc))
752 goto failure_cleanup;
753
754 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
755 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
756 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
757 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
758
759 /*
760 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
761 * SVM to not require one.
762 */
763 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
764 false /* fExecutable */);
765 if (RT_FAILURE(rc))
766 goto failure_cleanup;
767
768 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
769 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
770 /* Set all bits to intercept all MSR accesses (changed later on). */
771 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
772 }
773
774 return VINF_SUCCESS;
775
776failure_cleanup:
777 hmR0SvmFreeStructs(pVM);
778 return rc;
779}
780
781
782/**
783 * Does per-VM AMD-V termination.
784 *
785 * @returns VBox status code.
786 * @param pVM The cross context VM structure.
787 */
788VMMR0DECL(int) SVMR0TermVM(PVM pVM)
789{
790 hmR0SvmFreeStructs(pVM);
791 return VINF_SUCCESS;
792}
793
794
795/**
796 * Returns whether the VMCB Clean Bits feature is supported.
797 *
798 * @return @c true if supported, @c false otherwise.
799 * @param pVCpu The cross context virtual CPU structure.
800 */
801DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu)
802{
803 PVM pVM = pVCpu->CTX_SUFF(pVM);
804#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
805 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
806 {
807 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
808 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
809 }
810#endif
811 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
812}
813
814
815/**
816 * Returns whether the decode assists feature is supported.
817 *
818 * @return @c true if supported, @c false otherwise.
819 * @param pVCpu The cross context virtual CPU structure.
820 */
821DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu)
822{
823 PVM pVM = pVCpu->CTX_SUFF(pVM);
824#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
825 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
826 {
827 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
828 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
829 }
830#endif
831 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
832}
833
834
835/**
836 * Returns whether the NRIP_SAVE feature is supported.
837 *
838 * @return @c true if supported, @c false otherwise.
839 * @param pVCpu The cross context virtual CPU structure.
840 */
841DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu)
842{
843#if 0
844 PVM pVM = pVCpu->CTX_SUFF(pVM);
845#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
846 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
847 {
848 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
849 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
850 }
851#endif
852 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
853#endif
854
855 /** @todo Temporarily disabled NRIP_SAVE for testing. re-enable once its working. */
856 NOREF(pVCpu);
857 return false;
858}
859
860
861/**
862 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
863 *
864 * @param pVCpu The cross context virtual CPU structure.
865 * @param pbMsrBitmap Pointer to the MSR bitmap.
866 * @param idMsr The MSR for which the permissions are being set.
867 * @param enmRead MSR read permissions.
868 * @param enmWrite MSR write permissions.
869 *
870 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
871 * caller needs to take care of this.
872 */
873static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
874 SVMMSREXITWRITE enmWrite)
875{
876 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
877 uint16_t offMsrpm;
878 uint8_t uMsrpmBit;
879 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
880 AssertRC(rc);
881
882 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
883 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
884
885 pbMsrBitmap += offMsrpm;
886 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
887 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
888 else
889 {
890 if (!fInNestedGuestMode)
891 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
892#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
893 else
894 {
895 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
896 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
897 pbNstGstMsrBitmap += offMsrpm;
898 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
899 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
900 else
901 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
902 }
903#endif
904 }
905
906 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
907 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
908 else
909 {
910 if (!fInNestedGuestMode)
911 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
912#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
913 else
914 {
915 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
916 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
917 pbNstGstMsrBitmap += offMsrpm;
918 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
919 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
920 else
921 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
922 }
923#endif
924 }
925}
926
927
928/**
929 * Sets up AMD-V for the specified VM.
930 * This function is only called once per-VM during initalization.
931 *
932 * @returns VBox status code.
933 * @param pVM The cross context VM structure.
934 */
935VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
936{
937 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
938 AssertReturn(pVM, VERR_INVALID_PARAMETER);
939 Assert(pVM->hm.s.svm.fSupported);
940
941 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
942 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
943 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
944
945 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
946 bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
947
948#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
949 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
950 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
951
952 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
953 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
954#endif
955
956 PVMCPU pVCpu = &pVM->aCpus[0];
957 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
958 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[0]\n"), VERR_SVM_INVALID_PVMCB);
959 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
960
961 /* Always trap #AC for reasons of security. */
962 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
963
964 /* Always trap #DB for reasons of security. */
965 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
966
967 /* Trap exceptions unconditionally (debug purposes). */
968#ifdef HMSVM_ALWAYS_TRAP_PF
969 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
970#endif
971#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
972 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
973 pVmcbCtrl->u32InterceptXcpt |= 0
974 | RT_BIT(X86_XCPT_BP)
975 | RT_BIT(X86_XCPT_DE)
976 | RT_BIT(X86_XCPT_NM)
977 | RT_BIT(X86_XCPT_UD)
978 | RT_BIT(X86_XCPT_NP)
979 | RT_BIT(X86_XCPT_SS)
980 | RT_BIT(X86_XCPT_GP)
981 | RT_BIT(X86_XCPT_PF)
982 | RT_BIT(X86_XCPT_MF)
983 ;
984#endif
985
986 /* Apply the exceptions intercepts needed by the GIM provider. */
987 if (pVCpu->hm.s.fGIMTrapXcptUD)
988 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
989
990 /* Set up unconditional intercepts and conditions. */
991 pVmcbCtrl->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
992 | SVM_CTRL_INTERCEPT_VMMCALL;
993
994#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
995 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
996#endif
997
998#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
999 /* Virtualized VMSAVE/VMLOAD. */
1000 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
1001 if (!fUseVirtVmsaveVmload)
1002 {
1003 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
1004 | SVM_CTRL_INTERCEPT_VMLOAD;
1005 }
1006
1007 /* Virtual GIF. */
1008 pVmcbCtrl->IntCtrl.n.u1VGifEnable = fUseVGif;
1009 if (!fUseVGif)
1010 {
1011 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
1012 | SVM_CTRL_INTERCEPT_STGI;
1013 }
1014#endif
1015
1016 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1017 pVmcbCtrl->u16InterceptWrCRx = RT_BIT(4);
1018
1019 /* Intercept all DRx reads and writes by default. Changed later on. */
1020 pVmcbCtrl->u16InterceptRdDRx = 0xffff;
1021 pVmcbCtrl->u16InterceptWrDRx = 0xffff;
1022
1023 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1024 pVmcbCtrl->IntCtrl.n.u1VIntrMasking = 1;
1025
1026 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1027 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1028 pVmcbCtrl->IntCtrl.n.u1IgnoreTPR = 1;
1029
1030 /* Set the IO permission bitmap physical addresses. */
1031 pVmcbCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1032
1033 /* LBR virtualization. */
1034 pVmcbCtrl->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1035
1036 /* The host ASID MBZ, for the guest start with 1. */
1037 pVmcbCtrl->TLBCtrl.n.u32ASID = 1;
1038
1039 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1040 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1041
1042 /* Without Nested Paging, we need additionally intercepts. */
1043 if (!pVM->hm.s.fNestedPaging)
1044 {
1045 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1046 pVmcbCtrl->u16InterceptRdCRx |= RT_BIT(3);
1047 pVmcbCtrl->u16InterceptWrCRx |= RT_BIT(3);
1048
1049 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1050 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1051 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1052
1053 /* Page faults must be intercepted to implement shadow paging. */
1054 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1055 }
1056
1057 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1058 if (fUsePauseFilter)
1059 {
1060 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1061 pVmcbCtrl->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1062 if (fPauseFilterThreshold)
1063 pVmcbCtrl->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1064 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1065 }
1066
1067 /*
1068 * Setup the MSR permission bitmap.
1069 * The following MSRs are saved/restored automatically during the world-switch.
1070 * Don't intercept guest read/write accesses to these MSRs.
1071 */
1072 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1073 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1074 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1075 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1076 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1077 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1078 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1079 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1080 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1081 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1082 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1083 pVmcbCtrl->u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
1084
1085 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1086 Assert(pVmcbCtrl->u32VmcbCleanBits == 0);
1087
1088 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1089 {
1090 PVMCPU pVCpuCur = &pVM->aCpus[i];
1091 PSVMVMCB pVmcbCur = pVM->aCpus[i].hm.s.svm.pVmcb;
1092 AssertMsgReturn(pVmcbCur, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
1093 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1094
1095 /* Copy the VMCB control area. */
1096 memcpy(pVmcbCtrlCur, pVmcbCtrl, sizeof(*pVmcbCtrlCur));
1097
1098 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1099 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
1100 memcpy(pbMsrBitmapCur, pbMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1101 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
1102
1103 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1104 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1105
1106 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1107 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu->hm.s.fGIMTrapXcptUD);
1108 }
1109
1110 return VINF_SUCCESS;
1111}
1112
1113
1114/**
1115 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1116 *
1117 * @returns Pointer to the current context VMCB.
1118 * @param pVCpu The cross context virtual CPU structure.
1119 */
1120DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu)
1121{
1122#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1123 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1124 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1125#endif
1126 return pVCpu->hm.s.svm.pVmcb;
1127}
1128
1129
1130/**
1131 * Gets a pointer to the nested-guest VMCB cache.
1132 *
1133 * @returns Pointer to the nested-guest VMCB cache.
1134 * @param pVCpu The cross context virtual CPU structure.
1135 */
1136DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPU pVCpu)
1137{
1138#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1139 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1140 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1141#else
1142 RT_NOREF(pVCpu);
1143 return NULL;
1144#endif
1145}
1146
1147
1148/**
1149 * Invalidates a guest page by guest virtual address.
1150 *
1151 * @returns VBox status code.
1152 * @param pVCpu The cross context virtual CPU structure.
1153 * @param GCVirt Guest virtual address of the page to invalidate.
1154 */
1155VMMR0DECL(int) SVMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1156{
1157 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1158
1159 bool const fFlushPending = pVCpu->CTX_SUFF(pVM)->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1160
1161 /* Skip it if a TLB flush is already pending. */
1162 if (!fFlushPending)
1163 {
1164 Log4Func(("%#RGv\n", GCVirt));
1165
1166 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1167 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1168
1169#if HC_ARCH_BITS == 32
1170 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
1171 if (CPUMIsGuestInLongMode(pVCpu))
1172 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1173 else
1174#endif
1175 {
1176 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1177 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1178 }
1179 }
1180 return VINF_SUCCESS;
1181}
1182
1183
1184/**
1185 * Flushes the appropriate tagged-TLB entries.
1186 *
1187 * @param pVCpu The cross context virtual CPU structure.
1188 * @param pVmcb Pointer to the VM control block.
1189 * @param pHostCpu Pointer to the HM host-CPU info.
1190 */
1191static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PSVMVMCB pVmcb, PHMGLOBALCPUINFO pHostCpu)
1192{
1193 /*
1194 * Force a TLB flush for the first world switch if the current CPU differs from the one
1195 * we ran on last. This can happen both for start & resume due to long jumps back to
1196 * ring-3.
1197 *
1198 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1199 * correlation between it and the physical CPU.
1200 *
1201 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1202 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1203 */
1204 bool fNewAsid = false;
1205 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1206 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1207 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
1208#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1209 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1210#endif
1211 )
1212 {
1213 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1214 pVCpu->hm.s.fForceTLBFlush = true;
1215 fNewAsid = true;
1216 }
1217
1218 /* Set TLB flush state as checked until we return from the world switch. */
1219 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1220
1221 /* Check for explicit TLB flushes. */
1222 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1223 {
1224 pVCpu->hm.s.fForceTLBFlush = true;
1225 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1226 }
1227
1228 /*
1229 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1230 * This Host CPU requirement takes precedence.
1231 */
1232 PVM pVM = pVCpu->CTX_SUFF(pVM);
1233 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1234 {
1235 pHostCpu->uCurrentAsid = 1;
1236 pVCpu->hm.s.uCurrentAsid = 1;
1237 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1238 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1239 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1240
1241 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1242 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1243 }
1244 else
1245 {
1246 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1247 if (pVCpu->hm.s.fForceTLBFlush)
1248 {
1249 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1250 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1251
1252 if (fNewAsid)
1253 {
1254 ++pHostCpu->uCurrentAsid;
1255
1256 bool fHitASIDLimit = false;
1257 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1258 {
1259 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1260 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1261 fHitASIDLimit = true;
1262 }
1263
1264 if ( fHitASIDLimit
1265 || pHostCpu->fFlushAsidBeforeUse)
1266 {
1267 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1268 pHostCpu->fFlushAsidBeforeUse = false;
1269 }
1270
1271 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1272 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1273 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1274 }
1275 else
1276 {
1277 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1278 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1279 else
1280 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1281 }
1282
1283 pVCpu->hm.s.fForceTLBFlush = false;
1284 }
1285 }
1286
1287 /* Update VMCB with the ASID. */
1288 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1289 {
1290 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1291 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1292 }
1293
1294 AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
1295 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
1296 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1297 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1298 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1299 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1300 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1301 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1302
1303#ifdef VBOX_WITH_STATISTICS
1304 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1305 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1306 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1307 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1308 {
1309 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1310 }
1311 else
1312 {
1313 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1314 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1315 }
1316#endif
1317}
1318
1319
1320/** @name 64-bit guest on 32-bit host OS helper functions.
1321 *
1322 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1323 * mode (code segment, paging). These wrappers/helpers perform the necessary
1324 * bits for the 32->64 switcher.
1325 *
1326 * @{ */
1327#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1328/**
1329 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1330 *
1331 * @returns VBox status code.
1332 * @param HCPhysVmcbHost Physical address of host VMCB.
1333 * @param HCPhysVmcb Physical address of the VMCB.
1334 * @param pCtx Pointer to the guest-CPU context.
1335 * @param pVM The cross context VM structure.
1336 * @param pVCpu The cross context virtual CPU structure.
1337 */
1338DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1339{
1340 RT_NOREF2(pVM, pCtx);
1341 uint32_t aParam[8];
1342 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1343 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1344 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1345 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1346 aParam[4] = VM_RC_ADDR(pVM, pVM);
1347 aParam[5] = 0;
1348 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1349 aParam[7] = 0;
1350
1351 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1352}
1353
1354
1355/**
1356 * Executes the specified VMRUN handler in 64-bit mode.
1357 *
1358 * @returns VBox status code.
1359 * @param pVCpu The cross context virtual CPU structure.
1360 * @param enmOp The operation to perform.
1361 * @param cParams Number of parameters.
1362 * @param paParam Array of 32-bit parameters.
1363 */
1364VMMR0DECL(int) SVMR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
1365{
1366 PVM pVM = pVCpu->CTX_SUFF(pVM);
1367 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1368 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1369
1370 /* Disable interrupts. */
1371 RTHCUINTREG const fEFlags = ASMIntDisableFlags();
1372
1373#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1374 RTCPUID idHostCpu = RTMpCpuId();
1375 CPUMR0SetLApic(pVCpu, idHostCpu);
1376#endif
1377
1378 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1379 CPUMSetHyperEIP(pVCpu, enmOp);
1380 for (int i = (int)cParams - 1; i >= 0; i--)
1381 CPUMPushHyper(pVCpu, paParam[i]);
1382
1383 /* Call the switcher. */
1384 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1385 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
1386 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1387
1388 /* Restore interrupts. */
1389 ASMSetFlags(fEFlags);
1390 return rc;
1391}
1392
1393#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1394/** @} */
1395
1396
1397/**
1398 * Sets an exception intercept in the specified VMCB.
1399 *
1400 * @param pVmcb Pointer to the VM control block.
1401 * @param uXcpt The exception (X86_XCPT_*).
1402 */
1403DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1404{
1405 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1406 {
1407 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1408 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1409 }
1410}
1411
1412
1413/**
1414 * Clears an exception intercept in the specified VMCB.
1415 *
1416 * @param pVCpu The cross context virtual CPU structure.
1417 * @param pVmcb Pointer to the VM control block.
1418 * @param uXcpt The exception (X86_XCPT_*).
1419 *
1420 * @remarks This takes into account if we're executing a nested-guest and only
1421 * removes the exception intercept if both the guest -and- nested-guest
1422 * are not intercepting it.
1423 */
1424DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1425{
1426 Assert(uXcpt != X86_XCPT_DB);
1427 Assert(uXcpt != X86_XCPT_AC);
1428#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1429 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1430 {
1431 bool fRemove = true;
1432# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1433 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1434 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1435 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1436 {
1437 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1438 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1439 }
1440# else
1441 RT_NOREF(pVCpu);
1442# endif
1443 if (fRemove)
1444 {
1445 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1446 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1447 }
1448 }
1449#else
1450 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1451#endif
1452}
1453
1454
1455/**
1456 * Sets a control intercept in the specified VMCB.
1457 *
1458 * @param pVmcb Pointer to the VM control block.
1459 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1460 */
1461DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1462{
1463 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1464 {
1465 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1466 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1467 }
1468}
1469
1470
1471/**
1472 * Clears a control intercept in the specified VMCB.
1473 *
1474 * @returns @c true if the intercept is still set, @c false otherwise.
1475 * @param pVCpu The cross context virtual CPU structure.
1476 * @param pVmcb Pointer to the VM control block.
1477 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1478 *
1479 * @remarks This takes into account if we're executing a nested-guest and only
1480 * removes the control intercept if both the guest -and- nested-guest
1481 * are not intercepting it.
1482 */
1483static bool hmR0SvmClearCtrlIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1484{
1485 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1486 {
1487 bool fRemove = true;
1488#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1489 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1490 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1491 {
1492 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1493 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1494 }
1495#else
1496 RT_NOREF(pVCpu);
1497#endif
1498 if (fRemove)
1499 {
1500 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1501 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1502 }
1503 }
1504
1505 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1506}
1507
1508
1509/**
1510 * Exports the guest (or nested-guest) CR0 into the VMCB.
1511 *
1512 * @param pVCpu The cross context virtual CPU structure.
1513 * @param pVmcb Pointer to the VM control block.
1514 *
1515 * @remarks This assumes we always pre-load the guest FPU.
1516 * @remarks No-long-jump zone!!!
1517 */
1518static void hmR0SvmExportGuestCR0(PVMCPU pVCpu, PSVMVMCB pVmcb)
1519{
1520 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1521
1522 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1523 uint64_t const uGuestCr0 = pCtx->cr0;
1524 uint64_t uShadowCr0 = uGuestCr0;
1525
1526 /* Always enable caching. */
1527 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1528
1529 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1530 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1531 {
1532 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1533 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1534 }
1535
1536 /*
1537 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1538 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1539 * see @bugref{7243#c103}.
1540 */
1541 if (!(uGuestCr0 & X86_CR0_NE))
1542 {
1543 uShadowCr0 |= X86_CR0_NE;
1544 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1545 }
1546 else
1547 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1548
1549 /*
1550 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1551 *
1552 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1553 * see @bugref{6944}.
1554 *
1555 * We also don't ever want to honor weird things like cache disable from the guest.
1556 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1557 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1558 */
1559 if (uShadowCr0 == uGuestCr0)
1560 {
1561 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1562 {
1563 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1564 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1565 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1566 }
1567 else
1568 {
1569 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1570 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1571 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1572 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1573 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1574 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1575 }
1576 }
1577 else
1578 {
1579 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1580 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1581 }
1582 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1583
1584 Assert(!RT_HI_U32(uShadowCr0));
1585 if (pVmcb->guest.u64CR0 != uShadowCr0)
1586 {
1587 pVmcb->guest.u64CR0 = uShadowCr0;
1588 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1589 }
1590}
1591
1592
1593/**
1594 * Exports the guest (or nested-guest) CR3 into the VMCB.
1595 *
1596 * @param pVCpu The cross context virtual CPU structure.
1597 * @param pVmcb Pointer to the VM control block.
1598 *
1599 * @remarks No-long-jump zone!!!
1600 */
1601static void hmR0SvmExportGuestCR3(PVMCPU pVCpu, PSVMVMCB pVmcb)
1602{
1603 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1604
1605 PVM pVM = pVCpu->CTX_SUFF(pVM);
1606 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1607 if (pVM->hm.s.fNestedPaging)
1608 {
1609 PGMMODE enmShwPagingMode;
1610#if HC_ARCH_BITS == 32
1611 if (CPUMIsGuestInLongModeEx(pCtx))
1612 enmShwPagingMode = PGMMODE_AMD64_NX;
1613 else
1614#endif
1615 enmShwPagingMode = PGMGetHostMode(pVM);
1616
1617 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1618 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1619 pVmcb->guest.u64CR3 = pCtx->cr3;
1620 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1621 }
1622 else
1623 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1624
1625 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1626}
1627
1628
1629/**
1630 * Exports the guest (or nested-guest) CR4 into the VMCB.
1631 *
1632 * @param pVCpu The cross context virtual CPU structure.
1633 * @param pVmcb Pointer to the VM control block.
1634 *
1635 * @remarks No-long-jump zone!!!
1636 */
1637static int hmR0SvmExportGuestCR4(PVMCPU pVCpu, PSVMVMCB pVmcb)
1638{
1639 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1640
1641 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1642 uint64_t uShadowCr4 = pCtx->cr4;
1643 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1644 {
1645 switch (pVCpu->hm.s.enmShadowMode)
1646 {
1647 case PGMMODE_REAL:
1648 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1649 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1650
1651 case PGMMODE_32_BIT: /* 32-bit paging. */
1652 uShadowCr4 &= ~X86_CR4_PAE;
1653 break;
1654
1655 case PGMMODE_PAE: /* PAE paging. */
1656 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1657 /** Must use PAE paging as we could use physical memory > 4 GB */
1658 uShadowCr4 |= X86_CR4_PAE;
1659 break;
1660
1661 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1662 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1663#ifdef VBOX_ENABLE_64_BITS_GUESTS
1664 break;
1665#else
1666 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1667#endif
1668
1669 default: /* shut up gcc */
1670 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1671 }
1672 }
1673
1674 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1675 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1676
1677 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1678 if (uShadowCr4 == pCtx->cr4)
1679 {
1680 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1681 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1682 else
1683 {
1684 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1685 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1686 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1687 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1688 }
1689 }
1690 else
1691 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1692
1693 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1694 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1695
1696 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1697 Assert(!RT_HI_U32(uShadowCr4));
1698 pVmcb->guest.u64CR4 = uShadowCr4;
1699 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1700
1701 return VINF_SUCCESS;
1702}
1703
1704
1705/**
1706 * Exports the guest (or nested-guest) control registers into the VMCB.
1707 *
1708 * @returns VBox status code.
1709 * @param pVCpu The cross context virtual CPU structure.
1710 * @param pVmcb Pointer to the VM control block.
1711 *
1712 * @remarks No-long-jump zone!!!
1713 */
1714static int hmR0SvmExportGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1715{
1716 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1717
1718 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1719 {
1720 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1721 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1722
1723 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1724 {
1725 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1726 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1727 }
1728
1729 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1730 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1731
1732 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1733 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1734 {
1735 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1736 if (RT_FAILURE(rc))
1737 return rc;
1738 }
1739
1740 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1741 }
1742 return VINF_SUCCESS;
1743}
1744
1745
1746/**
1747 * Exports the guest (or nested-guest) segment registers into the VMCB.
1748 *
1749 * @returns VBox status code.
1750 * @param pVCpu The cross context virtual CPU structure.
1751 * @param pVmcb Pointer to the VM control block.
1752 *
1753 * @remarks No-long-jump zone!!!
1754 */
1755static void hmR0SvmExportGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1756{
1757 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1758 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1759
1760 /* Guest segment registers. */
1761 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1762 {
1763 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1764 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1765
1766 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1767 {
1768 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1769 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1770 }
1771
1772 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1773 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1774
1775 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1776 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1777
1778 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1779 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1780
1781 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1782 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1783
1784 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1785 }
1786
1787 /* Guest TR. */
1788 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1789 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1790
1791 /* Guest LDTR. */
1792 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1793 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1794
1795 /* Guest GDTR. */
1796 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1797 {
1798 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1799 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1800 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1801 }
1802
1803 /* Guest IDTR. */
1804 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1805 {
1806 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1807 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1808 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1809 }
1810
1811 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1812 | HM_CHANGED_GUEST_TABLE_MASK);
1813}
1814
1815
1816/**
1817 * Exports the guest (or nested-guest) MSRs into the VMCB.
1818 *
1819 * @param pVCpu The cross context virtual CPU structure.
1820 * @param pVmcb Pointer to the VM control block.
1821 *
1822 * @remarks No-long-jump zone!!!
1823 */
1824static void hmR0SvmExportGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1825{
1826 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1827 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1828
1829 /* Guest Sysenter MSRs. */
1830 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1831 {
1832 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1833 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1834
1835 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1836 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1837
1838 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1839 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1840 }
1841
1842 /*
1843 * Guest EFER MSR.
1844 * AMD-V requires guest EFER.SVME to be set. Weird.
1845 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1846 */
1847 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1848 {
1849 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1850 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1851 }
1852
1853 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1854 if ( !CPUMIsGuestInLongModeEx(pCtx)
1855 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1856 {
1857 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1858 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1859 }
1860
1861 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1862 {
1863 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1864 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1865 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1866 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1867 }
1868
1869 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1870 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1871
1872 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1873 | HM_CHANGED_GUEST_EFER_MSR
1874 | HM_CHANGED_GUEST_SYSCALL_MSRS
1875 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1876
1877 /*
1878 * Setup the PAT MSR (applicable for Nested Paging only).
1879 *
1880 * While guests can modify and see the modified values through the shadow values,
1881 * we shall not honor any guest modifications of this MSR to ensure caching is always
1882 * enabled similar to how we clear CR0.CD and NW bits.
1883 *
1884 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1885 */
1886 pVmcb->guest.u64PAT = MSR_IA32_CR_PAT_INIT_VAL;
1887
1888 /* Enable the last branch record bit if LBR virtualization is enabled. */
1889 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1890 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1891}
1892
1893
1894/**
1895 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1896 * the necessary intercepts accordingly.
1897 *
1898 * @param pVCpu The cross context virtual CPU structure.
1899 * @param pVmcb Pointer to the VM control block.
1900 *
1901 * @remarks No-long-jump zone!!!
1902 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1903 */
1904static void hmR0SvmExportSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb)
1905{
1906 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1907
1908 /*
1909 * Anyone single stepping on the host side? If so, we'll have to use the
1910 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1911 * the VMM level like the VT-x implementations does.
1912 */
1913 bool fInterceptMovDRx = false;
1914 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1915 if (fStepping)
1916 {
1917 pVCpu->hm.s.fClearTrapFlag = true;
1918 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1919 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1920 }
1921
1922 if ( fStepping
1923 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1924 {
1925 /*
1926 * Use the combined guest and host DRx values found in the hypervisor
1927 * register set because the debugger has breakpoints active or someone
1928 * is single stepping on the host side.
1929 *
1930 * Note! DBGF expects a clean DR6 state before executing guest code.
1931 */
1932#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1933 if ( CPUMIsGuestInLongModeEx(pCtx)
1934 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1935 {
1936 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1937 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1938 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1939 }
1940 else
1941#endif
1942 if (!CPUMIsHyperDebugStateActive(pVCpu))
1943 {
1944 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1945 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1946 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1947 }
1948
1949 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1950 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1951 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1952 {
1953 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1954 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1955 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1956 }
1957
1958 /** @todo If we cared, we could optimize to allow the guest to read registers
1959 * with the same values. */
1960 fInterceptMovDRx = true;
1961 pVCpu->hm.s.fUsingHyperDR7 = true;
1962 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1963 }
1964 else
1965 {
1966 /*
1967 * Update DR6, DR7 with the guest values if necessary.
1968 */
1969 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1970 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1971 {
1972 pVmcb->guest.u64DR7 = pCtx->dr[7];
1973 pVmcb->guest.u64DR6 = pCtx->dr[6];
1974 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1975 }
1976 pVCpu->hm.s.fUsingHyperDR7 = false;
1977
1978 /*
1979 * If the guest has enabled debug registers, we need to load them prior to
1980 * executing guest code so they'll trigger at the right time.
1981 */
1982 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1983 {
1984#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1985 if ( CPUMIsGuestInLongModeEx(pCtx)
1986 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1987 {
1988 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1989 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1990 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1991 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1992 }
1993 else
1994#endif
1995 if (!CPUMIsGuestDebugStateActive(pVCpu))
1996 {
1997 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1998 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1999 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2000 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2001 }
2002 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2003 }
2004 /*
2005 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2006 * intercept #DB as DR6 is updated in the VMCB.
2007 *
2008 * Note! If we cared and dared, we could skip intercepting \#DB here.
2009 * However, \#DB shouldn't be performance critical, so we'll play safe
2010 * and keep the code similar to the VT-x code and always intercept it.
2011 */
2012#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2013 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
2014 && !CPUMIsGuestDebugStateActive(pVCpu))
2015#else
2016 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2017#endif
2018 {
2019 fInterceptMovDRx = true;
2020 }
2021 }
2022
2023 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2024 if (fInterceptMovDRx)
2025 {
2026 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2027 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2028 {
2029 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2030 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2031 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2032 }
2033 }
2034 else
2035 {
2036 if ( pVmcb->ctrl.u16InterceptRdDRx
2037 || pVmcb->ctrl.u16InterceptWrDRx)
2038 {
2039 pVmcb->ctrl.u16InterceptRdDRx = 0;
2040 pVmcb->ctrl.u16InterceptWrDRx = 0;
2041 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2042 }
2043 }
2044 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2045}
2046
2047#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2048/**
2049 * Exports the nested-guest hardware virtualization state into the nested-guest
2050 * VMCB.
2051 *
2052 * @param pVCpu The cross context virtual CPU structure.
2053 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2054 *
2055 * @remarks No-long-jump zone!!!
2056 */
2057static void hmR0SvmExportGuestHwvirtStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
2058{
2059 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2060
2061 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2062 {
2063 /*
2064 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2065 * since SVM doesn't have a preemption timer.
2066 *
2067 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2068 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2069 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2070 */
2071 PVM pVM = pVCpu->CTX_SUFF(pVM);
2072 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2073 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2074 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2075 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
2076 {
2077 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2078 pVmcbNstGstCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2079 pVmcbNstGstCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2080 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2081 }
2082 else
2083 {
2084 pVmcbNstGstCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2085 pVmcbNstGstCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2086 }
2087
2088 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2089 }
2090}
2091#endif
2092
2093/**
2094 * Exports the guest APIC TPR state into the VMCB.
2095 *
2096 * @returns VBox status code.
2097 * @param pVCpu The cross context virtual CPU structure.
2098 * @param pVmcb Pointer to the VM control block.
2099 */
2100static int hmR0SvmExportGuestApicTpr(PVMCPU pVCpu, PSVMVMCB pVmcb)
2101{
2102 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2103 {
2104 PVM pVM = pVCpu->CTX_SUFF(pVM);
2105 if ( PDMHasApic(pVM)
2106 && APICIsEnabled(pVCpu))
2107 {
2108 bool fPendingIntr;
2109 uint8_t u8Tpr;
2110 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2111 AssertRCReturn(rc, rc);
2112
2113 /* Assume that we need to trap all TPR accesses and thus need not check on
2114 every #VMEXIT if we should update the TPR. */
2115 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2116 pVCpu->hm.s.svm.fSyncVTpr = false;
2117
2118 if (!pVM->hm.s.fTPRPatchingActive)
2119 {
2120 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2121 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2122
2123 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2124 can deliver the interrupt to the guest. */
2125 if (fPendingIntr)
2126 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2127 else
2128 {
2129 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2130 pVCpu->hm.s.svm.fSyncVTpr = true;
2131 }
2132
2133 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2134 }
2135 else
2136 {
2137 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2138 pVmcb->guest.u64LSTAR = u8Tpr;
2139 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
2140
2141 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2142 if (fPendingIntr)
2143 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2144 else
2145 {
2146 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2147 pVCpu->hm.s.svm.fSyncVTpr = true;
2148 }
2149 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2150 }
2151 }
2152 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2153 }
2154 return VINF_SUCCESS;
2155}
2156
2157
2158/**
2159 * Sets up the exception interrupts required for guest (or nested-guest)
2160 * execution in the VMCB.
2161 *
2162 * @param pVCpu The cross context virtual CPU structure.
2163 * @param pVmcb Pointer to the VM control block.
2164 *
2165 * @remarks No-long-jump zone!!!
2166 */
2167static void hmR0SvmExportGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
2168{
2169 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2170
2171 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2172 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)
2173 {
2174 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2175 if (pVCpu->hm.s.fGIMTrapXcptUD)
2176 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2177 else
2178 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2179
2180 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2181 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2182 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2183 else
2184 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2185
2186 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2187 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS;
2188 }
2189}
2190
2191
2192#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2193/**
2194 * Merges guest and nested-guest intercepts for executing the nested-guest using
2195 * hardware-assisted SVM.
2196 *
2197 * This merges the guest and nested-guest intercepts in a way that if the outer
2198 * guest intercept is set we need to intercept it in the nested-guest as
2199 * well.
2200 *
2201 * @param pVCpu The cross context virtual CPU structure.
2202 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2203 */
2204static void hmR0SvmMergeVmcbCtrlsNested(PVMCPU pVCpu)
2205{
2206 PVM pVM = pVCpu->CTX_SUFF(pVM);
2207 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2208 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2209 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2210
2211 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2212 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2213 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2214
2215 /* Always intercept CR4 writes for tracking PGM mode changes. */
2216 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2217
2218 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2219 if (!pVM->hm.s.fNestedPaging)
2220 {
2221 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2222 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2223 }
2224
2225 /** @todo Figure out debugging with nested-guests, till then just intercept
2226 * all DR[0-15] accesses. */
2227 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2228 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2229
2230 /*
2231 * Merge the guest's exception intercepts into the nested-guest VMCB.
2232 *
2233 * - \#UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2234 * while executing the nested-guest.
2235 *
2236 * - \#BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2237 * be tweaked later depending on how we wish to implement breakpoints.
2238 *
2239 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2240 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2241 */
2242#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2243 pVmcbNstGstCtrl->u32InterceptXcpt |= (pVmcb->ctrl.u32InterceptXcpt & ~( RT_BIT(X86_XCPT_UD)
2244 | RT_BIT(X86_XCPT_BP)));
2245#else
2246 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2247#endif
2248
2249 /*
2250 * Adjust intercepts while executing the nested-guest that differ from the
2251 * outer guest intercepts.
2252 *
2253 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2254 * that belong to the nested-guest to the outer guest.
2255 *
2256 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2257 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2258 */
2259 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2260 | SVM_CTRL_INTERCEPT_VMMCALL))
2261 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2262
2263 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2264 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2265
2266 /* Finally, update the VMCB clean bits. */
2267 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2268}
2269#endif
2270
2271
2272/**
2273 * Selects the appropriate function to run guest code.
2274 *
2275 * @returns VBox status code.
2276 * @param pVCpu The cross context virtual CPU structure.
2277 *
2278 * @remarks No-long-jump zone!!!
2279 */
2280static int hmR0SvmSelectVMRunHandler(PVMCPU pVCpu)
2281{
2282 if (CPUMIsGuestInLongMode(pVCpu))
2283 {
2284#ifndef VBOX_ENABLE_64_BITS_GUESTS
2285 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2286#endif
2287 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
2288#if HC_ARCH_BITS == 32
2289 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
2290 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
2291#else
2292 /* 64-bit host or hybrid host. */
2293 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
2294#endif
2295 }
2296 else
2297 {
2298 /* Guest is not in long mode, use the 32-bit handler. */
2299 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2300 }
2301 return VINF_SUCCESS;
2302}
2303
2304
2305/**
2306 * Enters the AMD-V session.
2307 *
2308 * @returns VBox status code.
2309 * @param pVCpu The cross context virtual CPU structure.
2310 * @param pHostCpu Pointer to the CPU info struct.
2311 */
2312VMMR0DECL(int) SVMR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
2313{
2314 AssertPtr(pVCpu);
2315 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2316 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2317 RT_NOREF(pHostCpu);
2318
2319 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2320 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2321 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2322
2323 pVCpu->hm.s.fLeaveDone = false;
2324 return VINF_SUCCESS;
2325}
2326
2327
2328/**
2329 * Thread-context callback for AMD-V.
2330 *
2331 * @param enmEvent The thread-context event.
2332 * @param pVCpu The cross context virtual CPU structure.
2333 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2334 * @thread EMT(pVCpu)
2335 */
2336VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
2337{
2338 NOREF(fGlobalInit);
2339
2340 switch (enmEvent)
2341 {
2342 case RTTHREADCTXEVENT_OUT:
2343 {
2344 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2345 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2346 VMCPU_ASSERT_EMT(pVCpu);
2347
2348 /* No longjmps (log-flush, locks) in this fragile context. */
2349 VMMRZCallRing3Disable(pVCpu);
2350
2351 if (!pVCpu->hm.s.fLeaveDone)
2352 {
2353 hmR0SvmLeave(pVCpu, false /* fImportState */);
2354 pVCpu->hm.s.fLeaveDone = true;
2355 }
2356
2357 /* Leave HM context, takes care of local init (term). */
2358 int rc = HMR0LeaveCpu(pVCpu);
2359 AssertRC(rc); NOREF(rc);
2360
2361 /* Restore longjmp state. */
2362 VMMRZCallRing3Enable(pVCpu);
2363 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2364 break;
2365 }
2366
2367 case RTTHREADCTXEVENT_IN:
2368 {
2369 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2370 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2371 VMCPU_ASSERT_EMT(pVCpu);
2372
2373 /* No longjmps (log-flush, locks) in this fragile context. */
2374 VMMRZCallRing3Disable(pVCpu);
2375
2376 /*
2377 * Initialize the bare minimum state required for HM. This takes care of
2378 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2379 */
2380 int rc = hmR0EnterCpu(pVCpu);
2381 AssertRC(rc); NOREF(rc);
2382 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2383 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2384
2385 pVCpu->hm.s.fLeaveDone = false;
2386
2387 /* Restore longjmp state. */
2388 VMMRZCallRing3Enable(pVCpu);
2389 break;
2390 }
2391
2392 default:
2393 break;
2394 }
2395}
2396
2397
2398/**
2399 * Saves the host state.
2400 *
2401 * @returns VBox status code.
2402 * @param pVCpu The cross context virtual CPU structure.
2403 *
2404 * @remarks No-long-jump zone!!!
2405 */
2406VMMR0DECL(int) SVMR0ExportHostState(PVMCPU pVCpu)
2407{
2408 NOREF(pVCpu);
2409
2410 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2411 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2412 return VINF_SUCCESS;
2413}
2414
2415
2416/**
2417 * Exports the guest state from the guest-CPU context into the VMCB.
2418 *
2419 * The CPU state will be loaded from these fields on every successful VM-entry.
2420 * Also sets up the appropriate VMRUN function to execute guest code based on
2421 * the guest CPU mode.
2422 *
2423 * @returns VBox status code.
2424 * @param pVCpu The cross context virtual CPU structure.
2425 *
2426 * @remarks No-long-jump zone!!!
2427 */
2428static int hmR0SvmExportGuestState(PVMCPU pVCpu)
2429{
2430 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2431
2432 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2433 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2434
2435 Assert(pVmcb);
2436 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2437
2438 pVmcb->guest.u64RIP = pCtx->rip;
2439 pVmcb->guest.u64RSP = pCtx->rsp;
2440 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2441 pVmcb->guest.u64RAX = pCtx->rax;
2442#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2443 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2444 {
2445 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
2446 pVmcb->ctrl.IntCtrl.n.u1VGif = pCtx->hwvirt.fGif;
2447 }
2448#endif
2449
2450 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2451
2452 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2453 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2454
2455 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2456 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2457 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2458
2459 ASMSetFlags(fEFlags);
2460
2461 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2462 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2463 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2464
2465 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2466 AssertRCReturn(rc, rc);
2467
2468 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2469 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2470 | HM_CHANGED_GUEST_RFLAGS
2471 | HM_CHANGED_GUEST_GPRS_MASK
2472 | HM_CHANGED_GUEST_X87
2473 | HM_CHANGED_GUEST_SSE_AVX
2474 | HM_CHANGED_GUEST_OTHER_XSAVE
2475 | HM_CHANGED_GUEST_XCRx
2476 | HM_CHANGED_GUEST_TSC_AUX
2477 | HM_CHANGED_GUEST_OTHER_MSRS
2478 | HM_CHANGED_GUEST_HWVIRT
2479 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)));
2480
2481#ifdef VBOX_STRICT
2482 /*
2483 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2484 * except for the host-context and/or shared host-guest context bits.
2485 */
2486 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2487 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2488 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2489 ("fCtxChanged=%#RX64\n", fCtxChanged));
2490
2491 /*
2492 * If we need to log state that isn't always imported, we'll need to import them here.
2493 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2494 */
2495 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2496#endif
2497
2498 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2499 return VINF_SUCCESS;
2500}
2501
2502
2503#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2504/**
2505 * Merges the guest and nested-guest MSR permission bitmap.
2506 *
2507 * If the guest is intercepting an MSR we need to intercept it regardless of
2508 * whether the nested-guest is intercepting it or not.
2509 *
2510 * @param pHostCpu Pointer to the physical CPU HM info. struct.
2511 * @param pVCpu The cross context virtual CPU structure.
2512 *
2513 * @remarks No-long-jmp zone!!!
2514 */
2515DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMGLOBALCPUINFO pHostCpu, PVMCPU pVCpu)
2516{
2517 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
2518 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2519 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2520
2521 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2522 uint32_t const offRsvdQwords = 0x1800 >> 3;
2523 for (uint32_t i = 0; i < offRsvdQwords; i++)
2524 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2525}
2526
2527
2528/**
2529 * Caches the nested-guest VMCB fields before we modify them for execution using
2530 * hardware-assisted SVM.
2531 *
2532 * @returns true if the VMCB was previously already cached, false otherwise.
2533 * @param pVCpu The cross context virtual CPU structure.
2534 *
2535 * @sa HMSvmNstGstVmExitNotify.
2536 */
2537static bool hmR0SvmCacheVmcbNested(PVMCPU pVCpu)
2538{
2539 /*
2540 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2541 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2542 *
2543 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2544 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2545 */
2546 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2547 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2548 if (!fWasCached)
2549 {
2550 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2551 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2552 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2553 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2554 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2555 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2556 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2557 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2558 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2559 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2560 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2561 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2562 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2563 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2564 pVmcbNstGstCache->fCacheValid = true;
2565 Log4Func(("Cached VMCB fields\n"));
2566 }
2567
2568 return fWasCached;
2569}
2570
2571
2572/**
2573 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2574 *
2575 * This is done the first time we enter nested-guest execution using SVM R0
2576 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2577 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2578 *
2579 * @param pVCpu The cross context virtual CPU structure.
2580 */
2581static void hmR0SvmSetupVmcbNested(PVMCPU pVCpu)
2582{
2583 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2584 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2585
2586 /*
2587 * First cache the nested-guest VMCB fields we may potentially modify.
2588 */
2589 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2590 if (!fVmcbCached)
2591 {
2592 /*
2593 * The IOPM of the nested-guest can be ignored because the the guest always
2594 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2595 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2596 */
2597 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2598
2599 /*
2600 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2601 * nested-paging suddenly while executing a VM (see assertion at the end of
2602 * Trap0eHandler() in PGMAllBth.h).
2603 */
2604 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2605
2606 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2607 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2608
2609 /*
2610 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2611 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2612 */
2613 pVCpu->hm.s.svm.fSyncVTpr = false;
2614
2615#ifdef DEBUG_ramshankar
2616 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2617 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2618#endif
2619
2620 /*
2621 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2622 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2623 */
2624 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2625 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2626 | SVM_CTRL_INTERCEPT_VMLOAD;
2627
2628 /*
2629 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2630 * CLGI/STGI instructions executed by the nested-guest.
2631 */
2632 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2633 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2634 | SVM_CTRL_INTERCEPT_STGI;
2635
2636 /* Merge the guest and nested-guest intercepts. */
2637 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2638
2639 /* Update the VMCB clean bits. */
2640 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2641 }
2642 else
2643 {
2644 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
2645 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2646 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2647 }
2648}
2649
2650
2651/**
2652 * Exports the nested-guest state into the VMCB.
2653 *
2654 * We need to export the entire state as we could be continuing nested-guest
2655 * execution at any point (not just immediately after VMRUN) and thus the VMCB
2656 * can be out-of-sync with the nested-guest state if it was executed in IEM.
2657 *
2658 * @returns VBox status code.
2659 * @param pVCpu The cross context virtual CPU structure.
2660 * @param pCtx Pointer to the guest-CPU context.
2661 *
2662 * @remarks No-long-jump zone!!!
2663 */
2664static int hmR0SvmExportGuestStateNested(PVMCPU pVCpu)
2665{
2666 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2667
2668 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2669 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2670 Assert(pVmcbNstGst);
2671
2672 hmR0SvmSetupVmcbNested(pVCpu);
2673
2674 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2675 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2676 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2677 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2678
2679 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2680
2681 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcbNstGst);
2682 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2683
2684 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcbNstGst);
2685 hmR0SvmExportGuestMsrs(pVCpu, pVmcbNstGst);
2686 hmR0SvmExportGuestHwvirtStateNested(pVCpu, pVmcbNstGst);
2687
2688 ASMSetFlags(fEFlags);
2689
2690 /* Nested VGIF not supported yet. */
2691 Assert(!pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable);
2692
2693 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2694 AssertRCReturn(rc, rc);
2695
2696 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2697 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2698 | HM_CHANGED_GUEST_RFLAGS
2699 | HM_CHANGED_GUEST_GPRS_MASK
2700 | HM_CHANGED_GUEST_APIC_TPR
2701 | HM_CHANGED_GUEST_X87
2702 | HM_CHANGED_GUEST_SSE_AVX
2703 | HM_CHANGED_GUEST_OTHER_XSAVE
2704 | HM_CHANGED_GUEST_XCRx
2705 | HM_CHANGED_GUEST_TSC_AUX
2706 | HM_CHANGED_GUEST_OTHER_MSRS
2707 | HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS
2708 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2709
2710#ifdef VBOX_STRICT
2711 /*
2712 * All of the guest-CPU state and SVM keeper bits should be exported here by now, except
2713 * for the host-context and/or shared host-guest context bits.
2714 */
2715 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2716 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2717 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2718 ("fCtxChanged=%#RX64\n", fCtxChanged));
2719
2720 /*
2721 * If we need to log state that isn't always imported, we'll need to import them here.
2722 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2723 */
2724 hmR0SvmLogState(pVCpu, pVmcbNstGst, "hmR0SvmExportGuestStateNested", 0 /* fFlags */, 0 /* uVerbose */);
2725#endif
2726
2727 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2728 return rc;
2729}
2730#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2731
2732
2733/**
2734 * Exports the state shared between the host and guest (or nested-guest) into
2735 * the VMCB.
2736 *
2737 * @param pVCpu The cross context virtual CPU structure.
2738 * @param pVmcb Pointer to the VM control block.
2739 *
2740 * @remarks No-long-jump zone!!!
2741 */
2742static void hmR0SvmExportSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb)
2743{
2744 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2745 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2746
2747 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2748 {
2749 /** @todo Figure out stepping with nested-guest. */
2750 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2751 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2752 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2753 else
2754 {
2755 pVmcb->guest.u64DR6 = pCtx->dr[6];
2756 pVmcb->guest.u64DR7 = pCtx->dr[7];
2757 }
2758 }
2759
2760 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2761 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2762 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2763}
2764
2765
2766/**
2767 * Worker for SVMR0ImportStateOnDemand.
2768 *
2769 * @param pVCpu The cross context virtual CPU structure.
2770 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2771 */
2772static void hmR0SvmImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
2773{
2774 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2775
2776 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2777 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2778 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2779 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2780
2781 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
2782
2783 /*
2784 * We disable interrupts to make the updating of the state and in particular
2785 * the fExtrn modification atomic wrt to preemption hooks.
2786 */
2787 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2788
2789 fWhat &= pCtx->fExtrn;
2790 if (fWhat)
2791 {
2792#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2793 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2794 {
2795 if ( !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
2796 && pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2797 {
2798 /* We don't yet support passing VGIF feature to the guest. */
2799 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fVGif);
2800 pCtx->hwvirt.fGif = pVmcbCtrl->IntCtrl.n.u1VGif;
2801 }
2802 }
2803
2804 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2805 {
2806 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2807 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2808 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2809 }
2810#endif
2811
2812 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2813 {
2814 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2815 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2816 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2817 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2818 }
2819
2820 if (fWhat & CPUMCTX_EXTRN_RIP)
2821 pCtx->rip = pVmcbGuest->u64RIP;
2822
2823 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2824 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2825
2826 if (fWhat & CPUMCTX_EXTRN_RSP)
2827 pCtx->rsp = pVmcbGuest->u64RSP;
2828
2829 if (fWhat & CPUMCTX_EXTRN_RAX)
2830 pCtx->rax = pVmcbGuest->u64RAX;
2831
2832 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2833 {
2834 if (fWhat & CPUMCTX_EXTRN_CS)
2835 {
2836 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2837 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2838 /** @todo SELM might need to be fixed as it too should not care about the
2839 * granularity bit. See @bugref{6785}. */
2840 if ( !pCtx->cs.Attr.n.u1Granularity
2841 && pCtx->cs.Attr.n.u1Present
2842 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2843 {
2844 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2845 pCtx->cs.Attr.n.u1Granularity = 1;
2846 }
2847 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2848 }
2849 if (fWhat & CPUMCTX_EXTRN_SS)
2850 {
2851 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2852 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2853 /*
2854 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2855 * VMCB and uses that and thus it's possible that when the CPL changes during
2856 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2857 * AMD Fusion CPUs with 64-bit guests.
2858 *
2859 * See AMD spec. 15.5.1 "Basic operation".
2860 */
2861 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2862 uint8_t const uCpl = pVmcbGuest->u8CPL;
2863 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2864 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2865 }
2866 if (fWhat & CPUMCTX_EXTRN_DS)
2867 {
2868 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2869 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2870 }
2871 if (fWhat & CPUMCTX_EXTRN_ES)
2872 {
2873 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2874 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2875 }
2876 if (fWhat & CPUMCTX_EXTRN_FS)
2877 {
2878 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2879 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2880 }
2881 if (fWhat & CPUMCTX_EXTRN_GS)
2882 {
2883 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2884 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2885 }
2886 }
2887
2888 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2889 {
2890 if (fWhat & CPUMCTX_EXTRN_TR)
2891 {
2892 /*
2893 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2894 * are used between Intel and AMD, see @bugref{6208#c39}.
2895 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2896 */
2897 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2898 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2899 {
2900 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2901 || CPUMIsGuestInLongModeEx(pCtx))
2902 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2903 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2904 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2905 }
2906 }
2907
2908 if (fWhat & CPUMCTX_EXTRN_LDTR)
2909 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2910
2911 if (fWhat & CPUMCTX_EXTRN_GDTR)
2912 {
2913 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2914 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2915 }
2916
2917 if (fWhat & CPUMCTX_EXTRN_IDTR)
2918 {
2919 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2920 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2921 }
2922 }
2923
2924 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2925 {
2926 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2927 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2928 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2929 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2930 }
2931
2932 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2933 {
2934 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2935 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2936 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2937 }
2938
2939 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2940 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2941
2942 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2943 {
2944 if (fWhat & CPUMCTX_EXTRN_DR6)
2945 {
2946 if (!pVCpu->hm.s.fUsingHyperDR7)
2947 pCtx->dr[6] = pVmcbGuest->u64DR6;
2948 else
2949 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2950 }
2951
2952 if (fWhat & CPUMCTX_EXTRN_DR7)
2953 {
2954 if (!pVCpu->hm.s.fUsingHyperDR7)
2955 pCtx->dr[7] = pVmcbGuest->u64DR7;
2956 else
2957 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2958 }
2959 }
2960
2961 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2962 {
2963 if (fWhat & CPUMCTX_EXTRN_CR0)
2964 {
2965 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2966 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2967 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2968 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2969 CPUMSetGuestCR0(pVCpu, uCr0);
2970 VMMRZCallRing3Enable(pVCpu);
2971 }
2972
2973 if (fWhat & CPUMCTX_EXTRN_CR2)
2974 pCtx->cr2 = pVmcbGuest->u64CR2;
2975
2976 if (fWhat & CPUMCTX_EXTRN_CR3)
2977 {
2978 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2979 && pCtx->cr3 != pVmcbGuest->u64CR3)
2980 {
2981 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2982 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2983 }
2984 }
2985
2986 /* Changes to CR4 are always intercepted. */
2987 }
2988
2989 /* Update fExtrn. */
2990 pCtx->fExtrn &= ~fWhat;
2991
2992 /* If everything has been imported, clear the HM keeper bit. */
2993 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2994 {
2995 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2996 Assert(!pCtx->fExtrn);
2997 }
2998 }
2999 else
3000 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3001
3002 ASMSetFlags(fEFlags);
3003
3004 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
3005
3006 /*
3007 * Honor any pending CR3 updates.
3008 *
3009 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
3010 * -> hmR0SvmCallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
3011 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
3012 * handling -> hmR0SvmImportGuestState() and here we are.
3013 *
3014 * The reason for such complicated handling is because VM-exits that call into PGM expect
3015 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
3016 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
3017 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
3018 *
3019 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
3020 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
3021 */
3022 if ( VMMRZCallRing3IsEnabled(pVCpu)
3023 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3024 {
3025 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
3026 PGMUpdateCR3(pVCpu, pCtx->cr3);
3027 }
3028}
3029
3030
3031/**
3032 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
3033 * context.
3034 *
3035 * Currently there is no residual state left in the CPU that is not updated in the
3036 * VMCB.
3037 *
3038 * @returns VBox status code.
3039 * @param pVCpu The cross context virtual CPU structure.
3040 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3041 */
3042VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
3043{
3044 hmR0SvmImportGuestState(pVCpu, fWhat);
3045 return VINF_SUCCESS;
3046}
3047
3048
3049/**
3050 * Does the necessary state syncing before returning to ring-3 for any reason
3051 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
3052 *
3053 * @param pVCpu The cross context virtual CPU structure.
3054 * @param fImportState Whether to import the guest state from the VMCB back
3055 * to the guest-CPU context.
3056 *
3057 * @remarks No-long-jmp zone!!!
3058 */
3059static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState)
3060{
3061 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3062 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3063 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3064
3065 /*
3066 * !!! IMPORTANT !!!
3067 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3068 */
3069
3070 /* Save the guest state if necessary. */
3071 if (fImportState)
3072 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3073
3074 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3075 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3076 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
3077
3078 /*
3079 * Restore host debug registers if necessary and resync on next R0 reentry.
3080 */
3081#ifdef VBOX_STRICT
3082 if (CPUMIsHyperDebugStateActive(pVCpu))
3083 {
3084 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
3085 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
3086 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
3087 }
3088#endif
3089 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3090 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3091 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3092
3093 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
3094 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
3095 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
3096 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
3097 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
3098 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3099
3100 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3101}
3102
3103
3104/**
3105 * Leaves the AMD-V session.
3106 *
3107 * Only used while returning to ring-3 either due to longjump or exits to
3108 * ring-3.
3109 *
3110 * @returns VBox status code.
3111 * @param pVCpu The cross context virtual CPU structure.
3112 */
3113static int hmR0SvmLeaveSession(PVMCPU pVCpu)
3114{
3115 HM_DISABLE_PREEMPT(pVCpu);
3116 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3117 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3118
3119 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3120 and done this from the SVMR0ThreadCtxCallback(). */
3121 if (!pVCpu->hm.s.fLeaveDone)
3122 {
3123 hmR0SvmLeave(pVCpu, true /* fImportState */);
3124 pVCpu->hm.s.fLeaveDone = true;
3125 }
3126
3127 /*
3128 * !!! IMPORTANT !!!
3129 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3130 */
3131
3132 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3133 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3134 VMMR0ThreadCtxHookDisable(pVCpu);
3135
3136 /* Leave HM context. This takes care of local init (term). */
3137 int rc = HMR0LeaveCpu(pVCpu);
3138
3139 HM_RESTORE_PREEMPT();
3140 return rc;
3141}
3142
3143
3144/**
3145 * Does the necessary state syncing before doing a longjmp to ring-3.
3146 *
3147 * @returns VBox status code.
3148 * @param pVCpu The cross context virtual CPU structure.
3149 *
3150 * @remarks No-long-jmp zone!!!
3151 */
3152static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
3153{
3154 return hmR0SvmLeaveSession(pVCpu);
3155}
3156
3157
3158/**
3159 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3160 * any remaining host state) before we longjump to ring-3 and possibly get
3161 * preempted.
3162 *
3163 * @param pVCpu The cross context virtual CPU structure.
3164 * @param enmOperation The operation causing the ring-3 longjump.
3165 * @param pvUser The user argument, NULL (currently unused).
3166 */
3167static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
3168{
3169 RT_NOREF_PV(pvUser);
3170
3171 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3172 {
3173 /*
3174 * !!! IMPORTANT !!!
3175 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3176 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3177 */
3178 VMMRZCallRing3RemoveNotification(pVCpu);
3179 VMMRZCallRing3Disable(pVCpu);
3180 HM_DISABLE_PREEMPT(pVCpu);
3181
3182 /* Import the entire guest state. */
3183 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3184
3185 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3186 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3187
3188 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3189 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3190
3191 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3192 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3193 VMMR0ThreadCtxHookDisable(pVCpu);
3194
3195 /* Leave HM context. This takes care of local init (term). */
3196 HMR0LeaveCpu(pVCpu);
3197
3198 HM_RESTORE_PREEMPT();
3199 return VINF_SUCCESS;
3200 }
3201
3202 Assert(pVCpu);
3203 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3204 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3205
3206 VMMRZCallRing3Disable(pVCpu);
3207 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3208
3209 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3210 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3211 AssertRCReturn(rc, rc);
3212
3213 VMMRZCallRing3Enable(pVCpu);
3214 return VINF_SUCCESS;
3215}
3216
3217
3218/**
3219 * Take necessary actions before going back to ring-3.
3220 *
3221 * An action requires us to go back to ring-3. This function does the necessary
3222 * steps before we can safely return to ring-3. This is not the same as longjmps
3223 * to ring-3, this is voluntary.
3224 *
3225 * @returns VBox status code.
3226 * @param pVCpu The cross context virtual CPU structure.
3227 * @param rcExit The reason for exiting to ring-3. Can be
3228 * VINF_VMM_UNKNOWN_RING3_CALL.
3229 */
3230static int hmR0SvmExitToRing3(PVMCPU pVCpu, int rcExit)
3231{
3232 Assert(pVCpu);
3233 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3234
3235 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3236 VMMRZCallRing3Disable(pVCpu);
3237 Log4Func(("rcExit=%d LocalFF=%#RX32 GlobalFF=%#RX32\n", rcExit, pVCpu->fLocalForcedActions,
3238 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3239
3240 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3241 if (pVCpu->hm.s.Event.fPending)
3242 {
3243 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3244 Assert(!pVCpu->hm.s.Event.fPending);
3245 }
3246
3247 /* Sync. the necessary state for going back to ring-3. */
3248 hmR0SvmLeaveSession(pVCpu);
3249 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3250
3251 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3252 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3253 | CPUM_CHANGED_LDTR
3254 | CPUM_CHANGED_GDTR
3255 | CPUM_CHANGED_IDTR
3256 | CPUM_CHANGED_TR
3257 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3258 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
3259 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3260 {
3261 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3262 }
3263
3264 /* Update the exit-to-ring 3 reason. */
3265 pVCpu->hm.s.rcLastExitToR3 = rcExit;
3266
3267 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3268 if ( rcExit != VINF_EM_RAW_INTERRUPT
3269 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3270 {
3271 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3272 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3273 }
3274
3275 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3276
3277 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
3278 VMMRZCallRing3RemoveNotification(pVCpu);
3279 VMMRZCallRing3Enable(pVCpu);
3280
3281 /*
3282 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3283 * and if we're injecting an event we should have a TRPM trap pending.
3284 */
3285 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3286 pVCpu->hm.s.u32HMError = rcExit,
3287 VERR_SVM_IPE_5);
3288 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3289 pVCpu->hm.s.u32HMError = rcExit,
3290 VERR_SVM_IPE_4);
3291
3292 return rcExit;
3293}
3294
3295
3296/**
3297 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3298 * intercepts.
3299 *
3300 * @param pVCpu The cross context virtual CPU structure.
3301 * @param pVmcb Pointer to the VM control block.
3302 *
3303 * @remarks No-long-jump zone!!!
3304 */
3305static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3306{
3307 /*
3308 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3309 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3310 * RDTSC/RDTSCP as well.
3311 */
3312 bool fParavirtTsc;
3313 uint64_t uTscOffset;
3314 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3315
3316 bool fIntercept;
3317 if (fCanUseRealTsc)
3318 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3319 else
3320 {
3321 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3322 fIntercept = true;
3323 }
3324
3325 if (!fIntercept)
3326 {
3327#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3328 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3329 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3330 uTscOffset = HMSvmNstGstApplyTscOffset(pVCpu, uTscOffset);
3331#endif
3332
3333 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3334 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3335 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3336
3337 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
3338 }
3339 else
3340 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
3341
3342 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3343 information before every VM-entry, hence we have nothing to do here at the moment. */
3344 if (fParavirtTsc)
3345 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3346}
3347
3348
3349/**
3350 * Sets an event as a pending event to be injected into the guest.
3351 *
3352 * @param pVCpu The cross context virtual CPU structure.
3353 * @param pEvent Pointer to the SVM event.
3354 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3355 * page-fault.
3356 *
3357 * @remarks Statistics counter assumes this is a guest event being reflected to
3358 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3359 */
3360DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3361{
3362 Assert(!pVCpu->hm.s.Event.fPending);
3363 Assert(pEvent->n.u1Valid);
3364
3365 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3366 pVCpu->hm.s.Event.fPending = true;
3367 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3368
3369 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3370 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3371}
3372
3373
3374/**
3375 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3376 *
3377 * @param pVCpu The cross context virtual CPU structure.
3378 */
3379DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3380{
3381 SVMEVENT Event;
3382 Event.u = 0;
3383 Event.n.u1Valid = 1;
3384 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3385 Event.n.u8Vector = X86_XCPT_UD;
3386 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3387}
3388
3389
3390/**
3391 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3392 *
3393 * @param pVCpu The cross context virtual CPU structure.
3394 */
3395DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3396{
3397 SVMEVENT Event;
3398 Event.u = 0;
3399 Event.n.u1Valid = 1;
3400 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3401 Event.n.u8Vector = X86_XCPT_DB;
3402 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3403}
3404
3405
3406/**
3407 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3408 *
3409 * @param pVCpu The cross context virtual CPU structure.
3410 * @param u32ErrCode The error-code for the page-fault.
3411 * @param uFaultAddress The page fault address (CR2).
3412 *
3413 * @remarks This updates the guest CR2 with @a uFaultAddress!
3414 */
3415DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3416{
3417 SVMEVENT Event;
3418 Event.u = 0;
3419 Event.n.u1Valid = 1;
3420 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3421 Event.n.u8Vector = X86_XCPT_PF;
3422 Event.n.u1ErrorCodeValid = 1;
3423 Event.n.u32ErrorCode = u32ErrCode;
3424
3425 /* Update CR2 of the guest. */
3426 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3427 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3428 {
3429 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3430 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3431 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3432 }
3433
3434 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3435}
3436
3437
3438/**
3439 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3440 *
3441 * @param pVCpu The cross context virtual CPU structure.
3442 */
3443DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3444{
3445 SVMEVENT Event;
3446 Event.u = 0;
3447 Event.n.u1Valid = 1;
3448 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3449 Event.n.u8Vector = X86_XCPT_MF;
3450 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3451}
3452
3453
3454/**
3455 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3456 *
3457 * @param pVCpu The cross context virtual CPU structure.
3458 */
3459DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3460{
3461 SVMEVENT Event;
3462 Event.u = 0;
3463 Event.n.u1Valid = 1;
3464 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3465 Event.n.u8Vector = X86_XCPT_DF;
3466 Event.n.u1ErrorCodeValid = 1;
3467 Event.n.u32ErrorCode = 0;
3468 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3469}
3470
3471
3472/**
3473 * Injects an event into the guest upon VMRUN by updating the relevant field
3474 * in the VMCB.
3475 *
3476 * @param pVCpu The cross context virtual CPU structure.
3477 * @param pVmcb Pointer to the guest VM control block.
3478 * @param pEvent Pointer to the event.
3479 *
3480 * @remarks No-long-jump zone!!!
3481 * @remarks Requires CR0!
3482 */
3483DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3484{
3485 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3486 pVmcb->ctrl.EventInject.u = pEvent->u;
3487 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3488 RT_NOREF(pVCpu);
3489
3490 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3491 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3492}
3493
3494
3495
3496/**
3497 * Converts any TRPM trap into a pending HM event. This is typically used when
3498 * entering from ring-3 (not longjmp returns).
3499 *
3500 * @param pVCpu The cross context virtual CPU structure.
3501 */
3502static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
3503{
3504 Assert(TRPMHasTrap(pVCpu));
3505 Assert(!pVCpu->hm.s.Event.fPending);
3506
3507 uint8_t uVector;
3508 TRPMEVENT enmTrpmEvent;
3509 RTGCUINT uErrCode;
3510 RTGCUINTPTR GCPtrFaultAddress;
3511 uint8_t cbInstr;
3512
3513 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
3514 AssertRC(rc);
3515
3516 SVMEVENT Event;
3517 Event.u = 0;
3518 Event.n.u1Valid = 1;
3519 Event.n.u8Vector = uVector;
3520
3521 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3522 if (enmTrpmEvent == TRPM_TRAP)
3523 {
3524 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3525 switch (uVector)
3526 {
3527 case X86_XCPT_NMI:
3528 {
3529 Event.n.u3Type = SVM_EVENT_NMI;
3530 break;
3531 }
3532
3533 case X86_XCPT_PF:
3534 case X86_XCPT_DF:
3535 case X86_XCPT_TS:
3536 case X86_XCPT_NP:
3537 case X86_XCPT_SS:
3538 case X86_XCPT_GP:
3539 case X86_XCPT_AC:
3540 {
3541 Event.n.u1ErrorCodeValid = 1;
3542 Event.n.u32ErrorCode = uErrCode;
3543 break;
3544 }
3545 }
3546 }
3547 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3548 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3549 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3550 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3551 else
3552 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3553
3554 rc = TRPMResetTrap(pVCpu);
3555 AssertRC(rc);
3556
3557 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3558 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3559
3560 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3561}
3562
3563
3564/**
3565 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3566 * AMD-V to execute any instruction.
3567 *
3568 * @param pVCpu The cross context virtual CPU structure.
3569 */
3570static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3571{
3572 Assert(pVCpu->hm.s.Event.fPending);
3573 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3574
3575 SVMEVENT Event;
3576 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3577
3578 uint8_t uVector = Event.n.u8Vector;
3579 uint8_t uVectorType = Event.n.u3Type;
3580 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
3581
3582 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
3583
3584 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3585 AssertRC(rc);
3586
3587 if (Event.n.u1ErrorCodeValid)
3588 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3589
3590 if ( uVectorType == SVM_EVENT_EXCEPTION
3591 && uVector == X86_XCPT_PF)
3592 {
3593 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3594 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3595 }
3596 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
3597 {
3598 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
3599 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
3600 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
3601 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3602 }
3603 pVCpu->hm.s.Event.fPending = false;
3604}
3605
3606
3607/**
3608 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3609 * now.
3610 *
3611 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3612 * @param pVCpu The cross context virtual CPU structure.
3613 *
3614 * @remarks No-long-jump zone!!!
3615 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3616 */
3617static bool hmR0SvmIsIntrShadowActive(PVMCPU pVCpu)
3618{
3619 /*
3620 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3621 * completes. Check if we should inhibit interrupts or clear any existing
3622 * interrupt inhibition.
3623 */
3624 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3625 {
3626 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3627 {
3628 /*
3629 * We can clear the inhibit force flag as even if we go back to the recompiler
3630 * without executing guest code in AMD-V, the flag's condition to be cleared is
3631 * met and thus the cleared state is correct.
3632 */
3633 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3634 return false;
3635 }
3636 return true;
3637 }
3638 return false;
3639}
3640
3641
3642/**
3643 * Sets the virtual interrupt intercept control in the VMCB.
3644 *
3645 * @param pVCpu The cross context virtual CPU structure.
3646 * @param pVmcb Pointer to the VM control block.
3647 */
3648static void hmR0SvmSetIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3649{
3650 /*
3651 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3652 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3653 * (updating ISR at the right time) and inject the interrupt.
3654 *
3655 * With AVIC is supported, we could make use of the asynchronously delivery without
3656 * #VMEXIT and we would be passing the AVIC page to SVM.
3657 *
3658 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3659 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3660 */
3661#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3662 /*
3663 * Currently we don't overlay interupt windows and if there's any V_IRQ pending in the
3664 * nested-guest VMCB, we avoid setting up any interrupt window on behalf of the outer
3665 * guest.
3666 */
3667 /** @todo Does this mean we end up prioritizing virtual interrupt
3668 * delivery/window over a physical interrupt (from the outer guest)
3669 * might be pending? */
3670 bool const fEnableIntWindow = !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
3671 if (!fEnableIntWindow)
3672 {
3673 Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx));
3674 Log4(("Nested-guest V_IRQ already pending\n"));
3675 }
3676#else
3677 bool const fEnableIntWindow = true;
3678 RT_NOREF(pVCpu);
3679#endif
3680 if (fEnableIntWindow)
3681 {
3682 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3683 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3684 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3685 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3686 Log4(("Set VINTR intercept\n"));
3687 }
3688}
3689
3690
3691/**
3692 * Clears the virtual interrupt intercept control in the VMCB as
3693 * we are figured the guest is unable process any interrupts
3694 * at this point of time.
3695 *
3696 * @param pVCpu The cross context virtual CPU structure.
3697 * @param pVmcb Pointer to the VM control block.
3698 */
3699static void hmR0SvmClearIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3700{
3701 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3702 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3703 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3704 {
3705 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3706 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3707 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3708 Log4(("Cleared VINTR intercept\n"));
3709 }
3710}
3711
3712#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3713/**
3714 * Evaluates the event to be delivered to the nested-guest and sets it as the
3715 * pending event.
3716 *
3717 * @returns VBox strict status code.
3718 * @param pVCpu The cross context virtual CPU structure.
3719 */
3720static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu)
3721{
3722 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3723 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
3724 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3725 | CPUMCTX_EXTRN_RFLAGS
3726 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3727 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3728
3729 Assert(!pVCpu->hm.s.Event.fPending);
3730 Assert(pCtx->hwvirt.fGif);
3731 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3732 Assert(pVmcb);
3733
3734 bool const fVirtualGif = CPUMGetSvmNstGstVGif(pCtx);
3735 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3736 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3737
3738 Log4Func(("fVirtualGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3739 fVirtualGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3740 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3741
3742 /** @todo SMI. SMIs take priority over NMIs. */
3743
3744 /*
3745 * Check if the guest can receive NMIs.
3746 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3747 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3748 */
3749 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3750 && !fBlockNmi)
3751 {
3752 if ( fVirtualGif
3753 && !fIntShadow)
3754 {
3755 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3756 {
3757 Log4(("Intercepting NMI -> #VMEXIT\n"));
3758 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3759 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3760 }
3761
3762 Log4(("Setting NMI pending for injection\n"));
3763 SVMEVENT Event;
3764 Event.u = 0;
3765 Event.n.u1Valid = 1;
3766 Event.n.u8Vector = X86_XCPT_NMI;
3767 Event.n.u3Type = SVM_EVENT_NMI;
3768 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3769 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3770 }
3771 else if (!fVirtualGif)
3772 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3773 else
3774 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3775 }
3776 /*
3777 * Check if the nested-guest can receive external interrupts (generated by the guest's
3778 * PIC/APIC).
3779 *
3780 * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
3781 * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
3782 *
3783 * External interrupts that are generated for the outer guest may be intercepted
3784 * depending on how the nested-guest VMCB was programmed by guest software.
3785 *
3786 * Physical interrupts always take priority over virtual interrupts,
3787 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3788 */
3789 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3790 && !pVCpu->hm.s.fSingleInstruction)
3791 {
3792 if ( fVirtualGif
3793 && !fIntShadow
3794 && CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx))
3795 {
3796 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3797 {
3798 Log4(("Intercepting INTR -> #VMEXIT\n"));
3799 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3800 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3801 }
3802
3803 uint8_t u8Interrupt;
3804 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3805 if (RT_SUCCESS(rc))
3806 {
3807 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3808 SVMEVENT Event;
3809 Event.u = 0;
3810 Event.n.u1Valid = 1;
3811 Event.n.u8Vector = u8Interrupt;
3812 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3813 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3814 }
3815 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3816 {
3817 /*
3818 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3819 * updated eventually when the TPR is written by the guest.
3820 */
3821 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3822 }
3823 else
3824 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3825 }
3826 else if (!fVirtualGif)
3827 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3828 else
3829 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3830 }
3831
3832 return VINF_SUCCESS;
3833}
3834#endif
3835
3836/**
3837 * Evaluates the event to be delivered to the guest and sets it as the pending
3838 * event.
3839 *
3840 * @param pVCpu The cross context virtual CPU structure.
3841 */
3842static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu)
3843{
3844 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3845 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3846 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3847 | CPUMCTX_EXTRN_RFLAGS
3848 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW);
3849
3850 Assert(!pVCpu->hm.s.Event.fPending);
3851 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3852 Assert(pVmcb);
3853
3854#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3855 bool const fGif = pCtx->hwvirt.fGif;
3856#else
3857 bool const fGif = true;
3858#endif
3859 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3860 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3861 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3862
3863 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool fIntPending=%RTbool NMI pending=%RTbool\n",
3864 fGif, fBlockNmi, fBlockInt, fIntShadow,
3865 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3866 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3867
3868 /** @todo SMI. SMIs take priority over NMIs. */
3869
3870 /*
3871 * Check if the guest can receive NMIs.
3872 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3873 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3874 */
3875 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3876 && !fBlockNmi)
3877 {
3878 if ( fGif
3879 && !fIntShadow)
3880 {
3881 Log4(("Setting NMI pending for injection\n"));
3882 SVMEVENT Event;
3883 Event.u = 0;
3884 Event.n.u1Valid = 1;
3885 Event.n.u8Vector = X86_XCPT_NMI;
3886 Event.n.u3Type = SVM_EVENT_NMI;
3887 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3888 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3889 }
3890 else if (!fGif)
3891 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3892 else
3893 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3894 }
3895 /*
3896 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3897 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3898 * it from the APIC device.
3899 */
3900 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3901 && !pVCpu->hm.s.fSingleInstruction)
3902 {
3903 if ( fGif
3904 && !fBlockInt
3905 && !fIntShadow)
3906 {
3907 uint8_t u8Interrupt;
3908 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3909 if (RT_SUCCESS(rc))
3910 {
3911 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3912 SVMEVENT Event;
3913 Event.u = 0;
3914 Event.n.u1Valid = 1;
3915 Event.n.u8Vector = u8Interrupt;
3916 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3917 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3918 }
3919 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3920 {
3921 /*
3922 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3923 * updated eventually when the TPR is written by the guest.
3924 */
3925 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3926 }
3927 else
3928 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3929 }
3930 else if (!fGif)
3931 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3932 else
3933 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3934 }
3935}
3936
3937
3938/**
3939 * Injects any pending events into the guest (or nested-guest).
3940 *
3941 * @param pVCpu The cross context virtual CPU structure.
3942 * @param pVmcb Pointer to the VM control block.
3943 *
3944 * @remarks Must only be called when we are guaranteed to enter
3945 * hardware-assisted SVM execution and not return to ring-3
3946 * prematurely.
3947 */
3948static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PSVMVMCB pVmcb)
3949{
3950 Assert(!TRPMHasTrap(pVCpu));
3951 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3952
3953 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3954#ifdef VBOX_STRICT
3955 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3956 bool const fGif = pCtx->hwvirt.fGif;
3957 bool fAllowInt = fGif;
3958 if (fGif)
3959 {
3960 /*
3961 * For nested-guests we have no way to determine if we're injecting a physical or
3962 * virtual interrupt at this point. Hence the partial verification below.
3963 */
3964 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3965 fAllowInt = CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx) || CPUMCanSvmNstGstTakeVirtIntr(pVCpu, pCtx);
3966 else
3967 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3968 }
3969#endif
3970
3971 if (pVCpu->hm.s.Event.fPending)
3972 {
3973 SVMEVENT Event;
3974 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3975 Assert(Event.n.u1Valid);
3976
3977 /*
3978 * Validate event injection pre-conditions.
3979 */
3980 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3981 {
3982 Assert(fAllowInt);
3983 Assert(!fIntShadow);
3984 }
3985 else if (Event.n.u3Type == SVM_EVENT_NMI)
3986 {
3987 Assert(fGif);
3988 Assert(!fIntShadow);
3989 }
3990
3991 /*
3992 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3993 * do this only when we are surely going to inject the NMI as otherwise if we return
3994 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3995 * SVM R0.
3996 *
3997 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3998 * which will set the VMCS field after actually delivering the NMI which we read on
3999 * VM-exit to determine the state.
4000 */
4001 if ( Event.n.u3Type == SVM_EVENT_NMI
4002 && Event.n.u8Vector == X86_XCPT_NMI
4003 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4004 {
4005 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4006 }
4007
4008 /*
4009 * Inject it (update VMCB for injection by the hardware).
4010 */
4011 Log4(("Injecting pending HM event\n"));
4012 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
4013 pVCpu->hm.s.Event.fPending = false;
4014
4015 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
4016 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
4017 else
4018 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
4019 }
4020 else
4021 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
4022
4023 /*
4024 * We could have injected an NMI through IEM and continue guest execution using
4025 * hardware-assisted SVM. In which case, we would not have any events pending (above)
4026 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
4027 */
4028 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
4029 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
4030
4031 /*
4032 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
4033 *
4034 * For nested-guests: We need to update it too for the scenario where IEM executes
4035 * the nested-guest but execution later continues here with an interrupt shadow active.
4036 */
4037 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
4038}
4039
4040
4041/**
4042 * Reports world-switch error and dumps some useful debug info.
4043 *
4044 * @param pVCpu The cross context virtual CPU structure.
4045 * @param rcVMRun The return code from VMRUN (or
4046 * VERR_SVM_INVALID_GUEST_STATE for invalid
4047 * guest-state).
4048 */
4049static void hmR0SvmReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun)
4050{
4051 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4052 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4053 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4054
4055 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
4056 {
4057#ifdef VBOX_STRICT
4058 hmR0DumpRegs(pVCpu);
4059 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
4060 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
4061 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
4062 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
4063 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
4064 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
4065 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
4066 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
4067 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
4068 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
4069 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
4070
4071 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
4072 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
4073 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
4074
4075 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
4076 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
4077 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
4078 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
4079 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
4080 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
4081 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
4082 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
4083 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
4084 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
4085 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
4086 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
4087
4088 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
4089 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
4090 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
4091 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
4092 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
4093 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
4094 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
4095 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
4096 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
4097 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
4098 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4099 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
4100 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
4101 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
4102 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
4103 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
4104 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
4105 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
4106 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
4107 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
4108
4109 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
4110
4111 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
4112 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
4113
4114 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
4115 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
4116 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
4117 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
4118 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
4119 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
4120 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
4121 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
4122 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
4123 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
4124 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
4125 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
4126 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
4127 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
4128 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
4129 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
4130 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
4131 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
4132 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
4133 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
4134
4135 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
4136 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
4137
4138 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
4139 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
4140 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
4141 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
4142
4143 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
4144 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
4145
4146 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
4147 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
4148 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
4149 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
4150
4151 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
4152 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
4153 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
4154 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
4155 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
4156 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
4157 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
4158
4159 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
4160 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
4161 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
4162 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
4163
4164 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
4165 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
4166 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
4167
4168 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
4169 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
4170 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
4171 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
4172 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
4173 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
4174 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
4175 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
4176 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
4177 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
4178 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
4179 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
4180
4181 NOREF(pVmcb);
4182#endif /* VBOX_STRICT */
4183 }
4184 else
4185 Log4Func(("rcVMRun=%d\n", rcVMRun));
4186}
4187
4188
4189/**
4190 * Check per-VM and per-VCPU force flag actions that require us to go back to
4191 * ring-3 for one reason or another.
4192 *
4193 * @returns VBox status code (information status code included).
4194 * @retval VINF_SUCCESS if we don't have any actions that require going back to
4195 * ring-3.
4196 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
4197 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
4198 * interrupts)
4199 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
4200 * all EMTs to be in ring-3.
4201 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
4202 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
4203 * to the EM loop.
4204 *
4205 * @param pVCpu The cross context virtual CPU structure.
4206 */
4207static int hmR0SvmCheckForceFlags(PVMCPU pVCpu)
4208{
4209 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4210 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
4211
4212 /* Could happen as a result of longjump. */
4213 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
4214 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
4215
4216 /* Update pending interrupts into the APIC's IRR. */
4217 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
4218 APICUpdatePendingInterrupts(pVCpu);
4219
4220 PVM pVM = pVCpu->CTX_SUFF(pVM);
4221 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
4222 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4223 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
4224 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4225 {
4226 /* Pending PGM C3 sync. */
4227 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4228 {
4229 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4230 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4231 if (rc != VINF_SUCCESS)
4232 {
4233 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4234 return rc;
4235 }
4236 }
4237
4238 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4239 /* -XXX- what was that about single stepping? */
4240 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
4241 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4242 {
4243 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4244 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
4245 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4246 return rc;
4247 }
4248
4249 /* Pending VM request packets, such as hardware interrupts. */
4250 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
4251 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
4252 {
4253 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4254 return VINF_EM_PENDING_REQUEST;
4255 }
4256
4257 /* Pending PGM pool flushes. */
4258 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4259 {
4260 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4261 return VINF_PGM_POOL_FLUSH_PENDING;
4262 }
4263
4264 /* Pending DMA requests. */
4265 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
4266 {
4267 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4268 return VINF_EM_RAW_TO_R3;
4269 }
4270 }
4271
4272 return VINF_SUCCESS;
4273}
4274
4275
4276#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4277/**
4278 * Does the preparations before executing nested-guest code in AMD-V.
4279 *
4280 * @returns VBox status code (informational status codes included).
4281 * @retval VINF_SUCCESS if we can proceed with running the guest.
4282 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4283 *
4284 * @param pVCpu The cross context virtual CPU structure.
4285 * @param pSvmTransient Pointer to the SVM transient structure.
4286 *
4287 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
4288 * @sa hmR0SvmPreRunGuest.
4289 */
4290static int hmR0SvmPreRunGuestNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4291{
4292 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4293 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4294 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4295
4296#ifdef VBOX_WITH_NESTED_HWVIRT_SVM_ONLY_IN_IEM
4297 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4298 return VINF_EM_RESCHEDULE_REM;
4299#endif
4300
4301 /* Check force flag actions that might require us to go back to ring-3. */
4302 int rc = hmR0SvmCheckForceFlags(pVCpu);
4303 if (rc != VINF_SUCCESS)
4304 return rc;
4305
4306 if (TRPMHasTrap(pVCpu))
4307 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4308 else if (!pVCpu->hm.s.Event.fPending)
4309 {
4310 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu);
4311 if ( rcStrict != VINF_SUCCESS
4312 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4313 return VBOXSTRICTRC_VAL(rcStrict);
4314 }
4315
4316 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4317
4318 /*
4319 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4320 * Just do it in software, see @bugref{8411}.
4321 * NB: If we could continue a task switch exit we wouldn't need to do this.
4322 */
4323 PVM pVM = pVCpu->CTX_SUFF(pVM);
4324 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
4325 && pVCpu->hm.s.Event.fPending
4326 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4327 {
4328 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4329 }
4330
4331#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4332 Assert(!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4333 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4334#endif
4335
4336 /*
4337 * Export the nested-guest state bits that are not shared with the host in any way as we
4338 * can longjmp or get preempted in the midst of exporting some of the state.
4339 */
4340 rc = hmR0SvmExportGuestStateNested(pVCpu);
4341 AssertRCReturn(rc, rc);
4342 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4343
4344 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware-assisted SVM. */
4345 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4346
4347 /*
4348 * No longjmps to ring-3 from this point on!!!
4349 *
4350 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4351 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4352 */
4353 VMMRZCallRing3Disable(pVCpu);
4354
4355 /*
4356 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4357 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4358 * preemption disabled for a while. Since this is purly to aid the
4359 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4360 * disable interrupt on NT.
4361 *
4362 * We need to check for force-flags that could've possible been altered since we last
4363 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4364 * see @bugref{6398}).
4365 *
4366 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4367 * to ring-3 before executing guest code.
4368 */
4369 pSvmTransient->fEFlags = ASMIntDisableFlags();
4370 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4371 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4372 {
4373 ASMSetFlags(pSvmTransient->fEFlags);
4374 VMMRZCallRing3Enable(pVCpu);
4375 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4376 return VINF_EM_RAW_TO_R3;
4377 }
4378 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4379 {
4380 ASMSetFlags(pSvmTransient->fEFlags);
4381 VMMRZCallRing3Enable(pVCpu);
4382 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
4383 return VINF_EM_RAW_INTERRUPT;
4384 }
4385 return VINF_SUCCESS;
4386}
4387#endif
4388
4389
4390/**
4391 * Does the preparations before executing guest code in AMD-V.
4392 *
4393 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4394 * recompiler. We must be cautious what we do here regarding committing
4395 * guest-state information into the VMCB assuming we assuredly execute the guest
4396 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4397 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4398 * that the recompiler can (and should) use them when it resumes guest
4399 * execution. Otherwise such operations must be done when we can no longer
4400 * exit to ring-3.
4401 *
4402 * @returns VBox status code (informational status codes included).
4403 * @retval VINF_SUCCESS if we can proceed with running the guest.
4404 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4405 *
4406 * @param pVCpu The cross context virtual CPU structure.
4407 * @param pSvmTransient Pointer to the SVM transient structure.
4408 */
4409static int hmR0SvmPreRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4410{
4411 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4412 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4413
4414 /* Check force flag actions that might require us to go back to ring-3. */
4415 int rc = hmR0SvmCheckForceFlags(pVCpu);
4416 if (rc != VINF_SUCCESS)
4417 return rc;
4418
4419 if (TRPMHasTrap(pVCpu))
4420 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4421 else if (!pVCpu->hm.s.Event.fPending)
4422 hmR0SvmEvaluatePendingEvent(pVCpu);
4423
4424 /*
4425 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4426 * Just do it in software, see @bugref{8411}.
4427 * NB: If we could continue a task switch exit we wouldn't need to do this.
4428 */
4429 PVM pVM = pVCpu->CTX_SUFF(pVM);
4430 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
4431 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
4432 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4433
4434#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4435 Assert(!(pVCpu->cpum.GstCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4436 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4437#endif
4438
4439 /*
4440 * Export the guest state bits that are not shared with the host in any way as we can
4441 * longjmp or get preempted in the midst of exporting some of the state.
4442 */
4443 rc = hmR0SvmExportGuestState(pVCpu);
4444 AssertRCReturn(rc, rc);
4445 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4446
4447 /*
4448 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4449 * world-switch so we can update it on the way back if the guest changed the TPR.
4450 */
4451 if (pVCpu->hm.s.svm.fSyncVTpr)
4452 {
4453 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4454 if (pVM->hm.s.fTPRPatchingActive)
4455 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4456 else
4457 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4458 }
4459
4460 /*
4461 * No longjmps to ring-3 from this point on!!!
4462 *
4463 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4464 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4465 */
4466 VMMRZCallRing3Disable(pVCpu);
4467
4468 /*
4469 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4470 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4471 * preemption disabled for a while. Since this is purly to aid the
4472 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4473 * disable interrupt on NT.
4474 *
4475 * We need to check for force-flags that could've possible been altered since we last
4476 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4477 * see @bugref{6398}).
4478 *
4479 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4480 * to ring-3 before executing guest code.
4481 */
4482 pSvmTransient->fEFlags = ASMIntDisableFlags();
4483 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4484 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4485 {
4486 ASMSetFlags(pSvmTransient->fEFlags);
4487 VMMRZCallRing3Enable(pVCpu);
4488 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4489 return VINF_EM_RAW_TO_R3;
4490 }
4491 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4492 {
4493 ASMSetFlags(pSvmTransient->fEFlags);
4494 VMMRZCallRing3Enable(pVCpu);
4495 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
4496 return VINF_EM_RAW_INTERRUPT;
4497 }
4498
4499 return VINF_SUCCESS;
4500}
4501
4502
4503/**
4504 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4505 * doing so.
4506 *
4507 * This means there is no backing out to ring-3 or anywhere else at this point.
4508 *
4509 * @param pVCpu The cross context virtual CPU structure.
4510 * @param pSvmTransient Pointer to the SVM transient structure.
4511 *
4512 * @remarks Called with preemption disabled.
4513 * @remarks No-long-jump zone!!!
4514 */
4515static void hmR0SvmPreRunGuestCommitted(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4516{
4517 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4518 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4519 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4520
4521 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4522 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4523
4524 PVM pVM = pVCpu->CTX_SUFF(pVM);
4525 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4526
4527 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4528
4529 if (!CPUMIsGuestFPUStateActive(pVCpu))
4530 {
4531 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4532 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4533 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4534 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4535 }
4536
4537 /* Load the state shared between host and guest (FPU, debug). */
4538 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4539 hmR0SvmExportSharedState(pVCpu, pVmcb);
4540
4541 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4542 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4543
4544 PHMGLOBALCPUINFO pHostCpu = hmR0GetCurrentCpu();
4545 RTCPUID const idHostCpu = pHostCpu->idCpu;
4546 bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
4547
4548 /* Setup TSC offsetting. */
4549 if ( pSvmTransient->fUpdateTscOffsetting
4550 || fMigratedHostCpu)
4551 {
4552 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4553 pSvmTransient->fUpdateTscOffsetting = false;
4554 }
4555
4556 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4557 if (fMigratedHostCpu)
4558 pVmcb->ctrl.u32VmcbCleanBits = 0;
4559
4560 /* Store status of the shared guest-host state at the time of VMRUN. */
4561#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4562 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4563 {
4564 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4565 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4566 }
4567 else
4568#endif
4569 {
4570 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4571 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4572 }
4573
4574#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4575 uint8_t *pbMsrBitmap;
4576 if (!pSvmTransient->fIsNestedGuest)
4577 pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4578 else
4579 {
4580 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4581
4582 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4583 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4584 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4585 }
4586#else
4587 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4588#endif
4589
4590 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4591 /* Flush the appropriate tagged-TLB entries. */
4592 hmR0SvmFlushTaggedTlb(pVCpu, pVmcb, pHostCpu);
4593 Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
4594
4595 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4596
4597 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4598 to start executing. */
4599
4600 /*
4601 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4602 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4603 *
4604 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4605 */
4606 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
4607 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4608 {
4609 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4610 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4611 if (uGuestTscAux != pVCpu->hm.s.u64HostTscAux)
4612 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4613 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4614 pSvmTransient->fRestoreTscAuxMsr = true;
4615 }
4616 else
4617 {
4618 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4619 pSvmTransient->fRestoreTscAuxMsr = false;
4620 }
4621 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4622
4623 /*
4624 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4625 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4626 * from the VMCB.
4627 */
4628 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu);
4629 if (!fSupportsVmcbCleanBits)
4630 pVmcb->ctrl.u32VmcbCleanBits = 0;
4631}
4632
4633
4634/**
4635 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4636 *
4637 * @returns VBox strict status code.
4638 * @param pVCpu The cross context virtual CPU structure.
4639 * @param HCPhysVmcb The host physical address of the VMCB.
4640 *
4641 * @remarks No-long-jump zone!!!
4642 */
4643DECLINLINE(int) hmR0SvmRunGuest(PVMCPU pVCpu, RTHCPHYS HCPhysVmcb)
4644{
4645 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4646 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4647 pCtx->fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4648
4649 /*
4650 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4651 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4652 * callee-saved and thus the need for this XMM wrapper.
4653 *
4654 * Refer MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4655 */
4656 PVM pVM = pVCpu->CTX_SUFF(pVM);
4657#ifdef VBOX_WITH_KERNEL_USING_XMM
4658 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun);
4659#else
4660 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu);
4661#endif
4662}
4663
4664
4665/**
4666 * Undoes the TSC offset applied for an SVM nested-guest and returns the TSC
4667 * value for the guest.
4668 *
4669 * @returns The TSC offset after undoing any nested-guest TSC offset.
4670 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4671 * @param uTicks The nested-guest TSC.
4672 *
4673 * @note If you make any changes to this function, please check if
4674 * hmR0SvmNstGstUndoTscOffset() needs adjusting.
4675 *
4676 * @sa HMSvmNstGstApplyTscOffset().
4677 */
4678DECLINLINE(uint64_t) hmR0SvmNstGstUndoTscOffset(PVMCPU pVCpu, uint64_t uTicks)
4679{
4680 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
4681 Assert(pVmcbNstGstCache->fCacheValid);
4682 return uTicks - pVmcbNstGstCache->u64TSCOffset;
4683}
4684
4685
4686/**
4687 * Performs some essential restoration of state after running guest (or
4688 * nested-guest) code in AMD-V.
4689 *
4690 * @param pVCpu The cross context virtual CPU structure.
4691 * @param pSvmTransient Pointer to the SVM transient structure.
4692 * @param rcVMRun Return code of VMRUN.
4693 *
4694 * @remarks Called with interrupts disabled.
4695 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4696 * unconditionally when it is safe to do so.
4697 */
4698static void hmR0SvmPostRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4699{
4700 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4701
4702 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4703 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4704 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4705
4706 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4707 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4708
4709 /* TSC read must be done early for maximum accuracy. */
4710 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4711 {
4712 if (!pSvmTransient->fIsNestedGuest)
4713 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4714#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4715 else
4716 {
4717 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMSvmNstGstVmExitNotify(). */
4718 uint64_t const uGstTsc = hmR0SvmNstGstUndoTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4719 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4720 }
4721#endif
4722 }
4723
4724 if (pSvmTransient->fRestoreTscAuxMsr)
4725 {
4726 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4727 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4728 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4729 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4730 }
4731
4732 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4733 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4734 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4735
4736 Assert(!(ASMGetFlags() & X86_EFL_IF));
4737 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4738 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4739
4740 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4741 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4742 {
4743 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4744 return;
4745 }
4746
4747 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4748 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4749 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4750 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4751
4752#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4753 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4754 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4755#else
4756 /*
4757 * Always import the following:
4758 *
4759 * - RIP for exit optimizations and evaluating event injection on re-entry.
4760 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4761 * state on preemption.
4762 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4763 * - CS for exit optimizations.
4764 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4765 * assembly switcher code.
4766 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4767 */
4768 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4769 | CPUMCTX_EXTRN_RFLAGS
4770 | CPUMCTX_EXTRN_RAX
4771 | CPUMCTX_EXTRN_RSP
4772 | CPUMCTX_EXTRN_CS
4773 | CPUMCTX_EXTRN_HWVIRT
4774 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4775 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4776 | HMSVM_CPUMCTX_SHARED_STATE);
4777#endif
4778
4779 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4780 && pVCpu->hm.s.svm.fSyncVTpr)
4781 {
4782 Assert(!pSvmTransient->fIsNestedGuest);
4783 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4784 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
4785 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4786 {
4787 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4788 AssertRC(rc);
4789 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4790 }
4791 /* Sync TPR when we aren't intercepting CR8 writes. */
4792 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4793 {
4794 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4795 AssertRC(rc);
4796 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4797 }
4798 }
4799
4800#ifdef DEBUG_ramshankar
4801 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4802 {
4803 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4804 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4805 0 /* uVerbose */);
4806 }
4807#endif
4808
4809 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4810 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4811 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4812}
4813
4814
4815/**
4816 * Runs the guest code using AMD-V.
4817 *
4818 * @returns VBox status code.
4819 * @param pVCpu The cross context virtual CPU structure.
4820 * @param pcLoops Pointer to the number of executed loops.
4821 */
4822static int hmR0SvmRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
4823{
4824 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4825 Assert(pcLoops);
4826 Assert(*pcLoops <= cMaxResumeLoops);
4827
4828 SVMTRANSIENT SvmTransient;
4829 RT_ZERO(SvmTransient);
4830 SvmTransient.fUpdateTscOffsetting = true;
4831 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4832
4833 int rc = VERR_INTERNAL_ERROR_5;
4834 for (;;)
4835 {
4836 Assert(!HMR0SuspendPending());
4837 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4838
4839 /* Preparatory work for running nested-guest code, this may force us to return to
4840 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4841 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4842 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4843 if (rc != VINF_SUCCESS)
4844 break;
4845
4846 /*
4847 * No longjmps to ring-3 from this point on!!!
4848 *
4849 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4850 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4851 */
4852 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4853 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4854
4855 /* Restore any residual host-state and save any bits shared between host and guest
4856 into the guest-CPU state. Re-enables interrupts! */
4857 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4858
4859 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4860 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4861 {
4862 if (rc == VINF_SUCCESS)
4863 rc = VERR_SVM_INVALID_GUEST_STATE;
4864 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4865 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4866 break;
4867 }
4868
4869 /* Handle the #VMEXIT. */
4870 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4871 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4872 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4873 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4874 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4875 if (rc != VINF_SUCCESS)
4876 break;
4877 if (++(*pcLoops) >= cMaxResumeLoops)
4878 {
4879 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4880 rc = VINF_EM_RAW_INTERRUPT;
4881 break;
4882 }
4883 }
4884
4885 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4886 return rc;
4887}
4888
4889
4890/**
4891 * Runs the guest code using AMD-V in single step mode.
4892 *
4893 * @returns VBox status code.
4894 * @param pVCpu The cross context virtual CPU structure.
4895 * @param pcLoops Pointer to the number of executed loops.
4896 */
4897static int hmR0SvmRunGuestCodeStep(PVMCPU pVCpu, uint32_t *pcLoops)
4898{
4899 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4900 Assert(pcLoops);
4901 Assert(*pcLoops <= cMaxResumeLoops);
4902
4903 SVMTRANSIENT SvmTransient;
4904 RT_ZERO(SvmTransient);
4905 SvmTransient.fUpdateTscOffsetting = true;
4906 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4907
4908 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4909 uint16_t uCsStart = pCtx->cs.Sel;
4910 uint64_t uRipStart = pCtx->rip;
4911
4912 int rc = VERR_INTERNAL_ERROR_5;
4913 for (;;)
4914 {
4915 Assert(!HMR0SuspendPending());
4916 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4917 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4918 (unsigned)RTMpCpuId(), *pcLoops));
4919
4920 /* Preparatory work for running nested-guest code, this may force us to return to
4921 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4922 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4923 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4924 if (rc != VINF_SUCCESS)
4925 break;
4926
4927 /*
4928 * No longjmps to ring-3 from this point on!!!
4929 *
4930 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4931 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4932 */
4933 VMMRZCallRing3Disable(pVCpu);
4934 VMMRZCallRing3RemoveNotification(pVCpu);
4935 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4936
4937 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4938
4939 /* Restore any residual host-state and save any bits shared between host and guest
4940 into the guest-CPU state. Re-enables interrupts! */
4941 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4942
4943 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4944 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4945 {
4946 if (rc == VINF_SUCCESS)
4947 rc = VERR_SVM_INVALID_GUEST_STATE;
4948 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4949 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4950 return rc;
4951 }
4952
4953 /* Handle the #VMEXIT. */
4954 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4955 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4956 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4957 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4958 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4959 if (rc != VINF_SUCCESS)
4960 break;
4961 if (++(*pcLoops) >= cMaxResumeLoops)
4962 {
4963 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4964 rc = VINF_EM_RAW_INTERRUPT;
4965 break;
4966 }
4967
4968 /*
4969 * Did the RIP change, if so, consider it a single step.
4970 * Otherwise, make sure one of the TFs gets set.
4971 */
4972 if ( pCtx->rip != uRipStart
4973 || pCtx->cs.Sel != uCsStart)
4974 {
4975 rc = VINF_EM_DBG_STEPPED;
4976 break;
4977 }
4978 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4979 }
4980
4981 /*
4982 * Clear the X86_EFL_TF if necessary.
4983 */
4984 if (pVCpu->hm.s.fClearTrapFlag)
4985 {
4986 pVCpu->hm.s.fClearTrapFlag = false;
4987 pCtx->eflags.Bits.u1TF = 0;
4988 }
4989
4990 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4991 return rc;
4992}
4993
4994#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4995/**
4996 * Runs the nested-guest code using AMD-V.
4997 *
4998 * @returns VBox status code.
4999 * @param pVCpu The cross context virtual CPU structure.
5000 * @param pcLoops Pointer to the number of executed loops. If we're switching
5001 * from the guest-code execution loop to this nested-guest
5002 * execution loop pass the remainder value, else pass 0.
5003 */
5004static int hmR0SvmRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
5005{
5006 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5007 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
5008 Assert(pcLoops);
5009 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops);
5010
5011 SVMTRANSIENT SvmTransient;
5012 RT_ZERO(SvmTransient);
5013 SvmTransient.fUpdateTscOffsetting = true;
5014 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
5015 SvmTransient.fIsNestedGuest = true;
5016
5017 int rc = VERR_INTERNAL_ERROR_4;
5018 for (;;)
5019 {
5020 Assert(!HMR0SuspendPending());
5021 HMSVM_ASSERT_CPU_SAFE(pVCpu);
5022
5023 /* Preparatory work for running nested-guest code, this may force us to return to
5024 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
5025 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
5026 rc = hmR0SvmPreRunGuestNested(pVCpu, &SvmTransient);
5027 if ( rc != VINF_SUCCESS
5028 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5029 {
5030 break;
5031 }
5032
5033 /*
5034 * No longjmps to ring-3 from this point on!!!
5035 *
5036 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
5037 * better than a kernel panic. This also disables flushing of the R0-logger instance.
5038 */
5039 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
5040
5041 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
5042
5043 /* Restore any residual host-state and save any bits shared between host and guest
5044 into the guest-CPU state. Re-enables interrupts! */
5045 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
5046
5047 if (RT_LIKELY( rc == VINF_SUCCESS
5048 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
5049 { /* extremely likely */ }
5050 else
5051 {
5052 /* VMRUN failed, shouldn't really happen, Guru. */
5053 if (rc != VINF_SUCCESS)
5054 break;
5055
5056 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
5057 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
5058 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
5059 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
5060 break;
5061 }
5062
5063 /* Handle the #VMEXIT. */
5064 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
5065 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
5066 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
5067 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
5068 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
5069 if ( rc != VINF_SUCCESS
5070 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5071 break;
5072 if (++(*pcLoops) >= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
5073 {
5074 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
5075 rc = VINF_EM_RAW_INTERRUPT;
5076 break;
5077 }
5078
5079 /** @todo handle single-stepping */
5080 }
5081
5082 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5083 return rc;
5084}
5085#endif
5086
5087
5088/**
5089 * Runs the guest code using AMD-V.
5090 *
5091 * @returns Strict VBox status code.
5092 * @param pVCpu The cross context virtual CPU structure.
5093 */
5094VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPU pVCpu)
5095{
5096 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5097 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
5098 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, NULL /* pvUser */);
5099
5100 uint32_t cLoops = 0;
5101 int rc;
5102#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5103 if (!CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
5104#endif
5105 {
5106 if (!pVCpu->hm.s.fSingleInstruction)
5107 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
5108 else
5109 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
5110 }
5111#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5112 else
5113 {
5114 rc = VINF_SVM_VMRUN;
5115 }
5116
5117 /* Re-check the nested-guest condition here as we may be transitioning from the normal
5118 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
5119 if (rc == VINF_SVM_VMRUN)
5120 {
5121 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
5122 if (rc == VINF_SVM_VMEXIT)
5123 rc = VINF_SUCCESS;
5124 }
5125#endif
5126
5127 /* Fixup error codes. */
5128 if (rc == VERR_EM_INTERPRETER)
5129 rc = VINF_EM_RAW_EMULATE_INSTR;
5130 else if (rc == VINF_EM_RESET)
5131 rc = VINF_EM_TRIPLE_FAULT;
5132
5133 /* Prepare to return to ring-3. This will remove longjmp notifications. */
5134 rc = hmR0SvmExitToRing3(pVCpu, rc);
5135 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
5136 return rc;
5137}
5138
5139
5140#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5141/**
5142 * Determines whether an IOIO intercept is active for the nested-guest or not.
5143 *
5144 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
5145 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
5146 */
5147static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
5148{
5149 const uint16_t u16Port = pIoExitInfo->n.u16Port;
5150 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
5151 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
5152 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
5153 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
5154 const bool fRep = pIoExitInfo->n.u1Rep;
5155 const bool fStrIo = pIoExitInfo->n.u1Str;
5156
5157 return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
5158 NULL /* pIoExitInfo */);
5159}
5160
5161
5162/**
5163 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
5164 * SVM_EXIT_INVALID).
5165 *
5166 * @returns VBox status code (informational status codes included).
5167 * @param pVCpu The cross context virtual CPU structure.
5168 * @param pSvmTransient Pointer to the SVM transient structure.
5169 */
5170static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5171{
5172 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
5173 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5174 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5175
5176 /*
5177 * We import the complete state here because we use separate VMCBs for the guest and the
5178 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
5179 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
5180 */
5181#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5182 do { \
5183 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5184 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2))); \
5185 } while (0)
5186
5187 /*
5188 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
5189 * nested-guest. If it isn't, it should be handled by the (outer) guest.
5190 */
5191 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
5192 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
5193 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
5194 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
5195 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
5196
5197 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
5198 switch (uExitCode)
5199 {
5200 case SVM_EXIT_CPUID:
5201 {
5202 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
5203 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5204 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
5205 }
5206
5207 case SVM_EXIT_RDTSC:
5208 {
5209 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
5210 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5211 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
5212 }
5213
5214 case SVM_EXIT_RDTSCP:
5215 {
5216 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
5217 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5218 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
5219 }
5220
5221 case SVM_EXIT_MONITOR:
5222 {
5223 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
5224 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5225 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
5226 }
5227
5228 case SVM_EXIT_MWAIT:
5229 {
5230 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
5231 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5232 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
5233 }
5234
5235 case SVM_EXIT_HLT:
5236 {
5237 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_HLT))
5238 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5239 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
5240 }
5241
5242 case SVM_EXIT_MSR:
5243 {
5244 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
5245 {
5246 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
5247 uint16_t offMsrpm;
5248 uint8_t uMsrpmBit;
5249 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
5250 if (RT_SUCCESS(rc))
5251 {
5252 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
5253 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
5254
5255 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
5256 pbMsrBitmap += offMsrpm;
5257 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
5258 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
5259
5260 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
5261 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
5262 {
5263 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5264 }
5265 }
5266 else
5267 {
5268 /*
5269 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
5270 * See AMD-V spec. "15.11 MSR Intercepts".
5271 */
5272 Assert(rc == VERR_OUT_OF_RANGE);
5273 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5274 }
5275 }
5276 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
5277 }
5278
5279 case SVM_EXIT_IOIO:
5280 {
5281 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
5282 {
5283 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
5284 SVMIOIOEXITINFO IoExitInfo;
5285 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
5286 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
5287 if (fIntercept)
5288 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5289 }
5290 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
5291 }
5292
5293 case SVM_EXIT_XCPT_PF:
5294 {
5295 PVM pVM = pVCpu->CTX_SUFF(pVM);
5296 if (pVM->hm.s.fNestedPaging)
5297 {
5298 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
5299 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
5300
5301 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
5302 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
5303 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
5304
5305 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
5306 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5307 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
5308 return VINF_SUCCESS;
5309 }
5310 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
5311 }
5312
5313 case SVM_EXIT_XCPT_UD:
5314 {
5315 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_UD))
5316 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5317 hmR0SvmSetPendingXcptUD(pVCpu);
5318 return VINF_SUCCESS;
5319 }
5320
5321 case SVM_EXIT_XCPT_MF:
5322 {
5323 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_MF))
5324 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5325 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
5326 }
5327
5328 case SVM_EXIT_XCPT_DB:
5329 {
5330 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_DB))
5331 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5332 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5333 }
5334
5335 case SVM_EXIT_XCPT_AC:
5336 {
5337 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_AC))
5338 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5339 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5340 }
5341
5342 case SVM_EXIT_XCPT_BP:
5343 {
5344 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_BP))
5345 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5346 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5347 }
5348
5349 case SVM_EXIT_READ_CR0:
5350 case SVM_EXIT_READ_CR3:
5351 case SVM_EXIT_READ_CR4:
5352 {
5353 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5354 if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, uCr))
5355 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5356 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5357 }
5358
5359 case SVM_EXIT_CR0_SEL_WRITE:
5360 {
5361 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5362 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5363 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5364 }
5365
5366 case SVM_EXIT_WRITE_CR0:
5367 case SVM_EXIT_WRITE_CR3:
5368 case SVM_EXIT_WRITE_CR4:
5369 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5370 {
5371 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5372 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5373
5374 if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, uCr))
5375 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5376 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5377 }
5378
5379 case SVM_EXIT_PAUSE:
5380 {
5381 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
5382 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5383 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5384 }
5385
5386 case SVM_EXIT_VINTR:
5387 {
5388 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VINTR))
5389 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5390 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5391 }
5392
5393 case SVM_EXIT_INTR:
5394 case SVM_EXIT_NMI:
5395 case SVM_EXIT_SMI:
5396 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5397 {
5398 /*
5399 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5400 *
5401 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5402 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5403 * nested-guest #VMEXIT.
5404 *
5405 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5406 * while trying to inject interrupts, see comment at the top of this function.
5407 */
5408 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5409 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5410 }
5411
5412 case SVM_EXIT_FERR_FREEZE:
5413 {
5414 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5415 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5416 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5417 }
5418
5419 case SVM_EXIT_INVLPG:
5420 {
5421 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
5422 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5423 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5424 }
5425
5426 case SVM_EXIT_WBINVD:
5427 {
5428 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_WBINVD))
5429 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5430 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5431 }
5432
5433 case SVM_EXIT_INVD:
5434 {
5435 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVD))
5436 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5437 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5438 }
5439
5440 case SVM_EXIT_RDPMC:
5441 {
5442 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
5443 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5444 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5445 }
5446
5447 default:
5448 {
5449 switch (uExitCode)
5450 {
5451 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5452 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5453 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5454 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5455 {
5456 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5457 if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, uDr))
5458 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5459 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5460 }
5461
5462 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5463 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5464 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5465 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5466 {
5467 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5468 if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, uDr))
5469 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5470 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5471 }
5472
5473 case SVM_EXIT_XCPT_DE:
5474 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5475 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5476 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5477 case SVM_EXIT_XCPT_OF:
5478 case SVM_EXIT_XCPT_BR:
5479 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5480 case SVM_EXIT_XCPT_NM:
5481 case SVM_EXIT_XCPT_DF:
5482 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5483 case SVM_EXIT_XCPT_TS:
5484 case SVM_EXIT_XCPT_NP:
5485 case SVM_EXIT_XCPT_SS:
5486 case SVM_EXIT_XCPT_GP:
5487 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5488 case SVM_EXIT_XCPT_15: /* Reserved. */
5489 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5490 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5491 case SVM_EXIT_XCPT_MC:
5492 case SVM_EXIT_XCPT_XF:
5493 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5494 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5495 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5496 {
5497 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5498 if (HMIsGuestSvmXcptInterceptSet(pVCpu, uVector))
5499 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5500 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5501 }
5502
5503 case SVM_EXIT_XSETBV:
5504 {
5505 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
5506 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5507 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5508 }
5509
5510 case SVM_EXIT_TASK_SWITCH:
5511 {
5512 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5513 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5514 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5515 }
5516
5517 case SVM_EXIT_IRET:
5518 {
5519 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IRET))
5520 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5521 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5522 }
5523
5524 case SVM_EXIT_SHUTDOWN:
5525 {
5526 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SHUTDOWN))
5527 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5528 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5529 }
5530
5531 case SVM_EXIT_VMMCALL:
5532 {
5533 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
5534 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5535 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5536 }
5537
5538 case SVM_EXIT_CLGI:
5539 {
5540 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
5541 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5542 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5543 }
5544
5545 case SVM_EXIT_STGI:
5546 {
5547 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_STGI))
5548 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5549 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5550 }
5551
5552 case SVM_EXIT_VMLOAD:
5553 {
5554 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
5555 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5556 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5557 }
5558
5559 case SVM_EXIT_VMSAVE:
5560 {
5561 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
5562 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5563 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5564 }
5565
5566 case SVM_EXIT_INVLPGA:
5567 {
5568 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
5569 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5570 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5571 }
5572
5573 case SVM_EXIT_VMRUN:
5574 {
5575 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
5576 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5577 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5578 }
5579
5580 case SVM_EXIT_RSM:
5581 {
5582 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RSM))
5583 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5584 hmR0SvmSetPendingXcptUD(pVCpu);
5585 return VINF_SUCCESS;
5586 }
5587
5588 case SVM_EXIT_SKINIT:
5589 {
5590 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
5591 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5592 hmR0SvmSetPendingXcptUD(pVCpu);
5593 return VINF_SUCCESS;
5594 }
5595
5596 case SVM_EXIT_NPF:
5597 {
5598 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5599 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5600 }
5601
5602 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5603 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5604
5605 default:
5606 {
5607 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5608 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5609 return VERR_SVM_UNKNOWN_EXIT;
5610 }
5611 }
5612 }
5613 }
5614 /* not reached */
5615
5616#undef NST_GST_VMEXIT_CALL_RET
5617}
5618#endif
5619
5620
5621/**
5622 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5623 *
5624 * @returns VBox status code (informational status codes included).
5625 * @param pVCpu The cross context virtual CPU structure.
5626 * @param pSvmTransient Pointer to the SVM transient structure.
5627 */
5628static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5629{
5630 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5631 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5632
5633#ifdef DEBUG_ramshankar
5634# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5635 do { \
5636 if ((a_fDbg) == 1) \
5637 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5638 int rc = a_CallExpr; \
5639 if ((a_fDbg) == 1) \
5640 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5641 return rc; \
5642 } while (0)
5643#else
5644# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5645#endif
5646
5647 /*
5648 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5649 * for most guests under normal workloads (for some definition of "normal").
5650 */
5651 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5652 switch (uExitCode)
5653 {
5654 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5655 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5656 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5657 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5658 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5659 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5660 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5661 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5662 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5663 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5664
5665 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5666 case SVM_EXIT_INTR:
5667 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5668
5669 case SVM_EXIT_READ_CR0:
5670 case SVM_EXIT_READ_CR3:
5671 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5672
5673 case SVM_EXIT_CR0_SEL_WRITE:
5674 case SVM_EXIT_WRITE_CR0:
5675 case SVM_EXIT_WRITE_CR3:
5676 case SVM_EXIT_WRITE_CR4:
5677 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5678
5679 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5680 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5681 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5682 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5683 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5684 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5685 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5686 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5687 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5688 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5689 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5690 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5691 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5692 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5693 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5694
5695 default:
5696 {
5697 switch (pSvmTransient->u64ExitCode)
5698 {
5699 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5700 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5701 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5702 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5703 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5704
5705 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5706 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5707 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5708 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5709 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5710
5711 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5712 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5713
5714 case SVM_EXIT_SMI:
5715 case SVM_EXIT_INIT:
5716 {
5717 /*
5718 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5719 * If it ever does, we want to know about it so log the exit code and bail.
5720 */
5721 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5722 }
5723
5724#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5725 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5726 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5727 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5728 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5729 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5730 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5731#else
5732 case SVM_EXIT_CLGI:
5733 case SVM_EXIT_STGI:
5734 case SVM_EXIT_VMLOAD:
5735 case SVM_EXIT_VMSAVE:
5736 case SVM_EXIT_INVLPGA:
5737 case SVM_EXIT_VMRUN:
5738#endif
5739 case SVM_EXIT_RSM:
5740 case SVM_EXIT_SKINIT:
5741 {
5742 hmR0SvmSetPendingXcptUD(pVCpu);
5743 return VINF_SUCCESS;
5744 }
5745
5746#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5747 case SVM_EXIT_XCPT_DE:
5748 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5749 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5750 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5751 case SVM_EXIT_XCPT_OF:
5752 case SVM_EXIT_XCPT_BR:
5753 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5754 case SVM_EXIT_XCPT_NM:
5755 case SVM_EXIT_XCPT_DF:
5756 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5757 case SVM_EXIT_XCPT_TS:
5758 case SVM_EXIT_XCPT_NP:
5759 case SVM_EXIT_XCPT_SS:
5760 case SVM_EXIT_XCPT_GP:
5761 /* SVM_EXIT_XCPT_PF: */
5762 case SVM_EXIT_XCPT_15: /* Reserved. */
5763 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5764 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5765 case SVM_EXIT_XCPT_MC:
5766 case SVM_EXIT_XCPT_XF:
5767 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5768 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5769 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5770 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5771#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5772
5773 default:
5774 {
5775 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5776 pVCpu->hm.s.u32HMError = uExitCode;
5777 return VERR_SVM_UNKNOWN_EXIT;
5778 }
5779 }
5780 }
5781 }
5782 /* not reached */
5783#undef VMEXIT_CALL_RET
5784}
5785
5786
5787#ifdef VBOX_STRICT
5788/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5789# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5790 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5791
5792# define HMSVM_ASSERT_PREEMPT_CPUID() \
5793 do \
5794 { \
5795 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5796 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5797 } while (0)
5798
5799# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5800 do { \
5801 AssertPtr((a_pVCpu)); \
5802 AssertPtr((a_pSvmTransient)); \
5803 Assert(ASMIntAreEnabled()); \
5804 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5805 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5806 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5807 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5808 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5809 HMSVM_ASSERT_PREEMPT_CPUID(); \
5810 } while (0)
5811#else
5812# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5813 do { \
5814 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5815 } while (0)
5816#endif
5817
5818
5819/**
5820 * Gets the IEM exception flags for the specified SVM event.
5821 *
5822 * @returns The IEM exception flags.
5823 * @param pEvent Pointer to the SVM event.
5824 *
5825 * @remarks This function currently only constructs flags required for
5826 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5827 * and CR2 aspects of an exception are not included).
5828 */
5829static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5830{
5831 uint8_t const uEventType = pEvent->n.u3Type;
5832 uint32_t fIemXcptFlags;
5833 switch (uEventType)
5834 {
5835 case SVM_EVENT_EXCEPTION:
5836 /*
5837 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5838 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5839 */
5840 if (pEvent->n.u8Vector == X86_XCPT_BP)
5841 {
5842 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5843 break;
5844 }
5845 if (pEvent->n.u8Vector == X86_XCPT_OF)
5846 {
5847 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5848 break;
5849 }
5850 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5851 RT_FALL_THRU();
5852 case SVM_EVENT_NMI:
5853 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5854 break;
5855
5856 case SVM_EVENT_EXTERNAL_IRQ:
5857 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5858 break;
5859
5860 case SVM_EVENT_SOFTWARE_INT:
5861 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5862 break;
5863
5864 default:
5865 fIemXcptFlags = 0;
5866 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5867 break;
5868 }
5869 return fIemXcptFlags;
5870}
5871
5872
5873/**
5874 * Handle a condition that occurred while delivering an event through the guest
5875 * IDT.
5876 *
5877 * @returns VBox status code (informational error codes included).
5878 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5879 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5880 * continue execution of the guest which will delivery the \#DF.
5881 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5882 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5883 *
5884 * @param pVCpu The cross context virtual CPU structure.
5885 * @param pSvmTransient Pointer to the SVM transient structure.
5886 *
5887 * @remarks No-long-jump zone!!!
5888 */
5889static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5890{
5891 int rc = VINF_SUCCESS;
5892 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5893 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5894
5895 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5896 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5897 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5898
5899 /*
5900 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5901 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5902 *
5903 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5904 */
5905 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5906 {
5907 IEMXCPTRAISE enmRaise;
5908 IEMXCPTRAISEINFO fRaiseInfo;
5909 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5910 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5911 if (fExitIsHwXcpt)
5912 {
5913 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5914 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5915 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5916 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5917 }
5918 else
5919 {
5920 /*
5921 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5922 * then we end up here.
5923 *
5924 * If the event was:
5925 * - a software interrupt, we can re-execute the instruction which will
5926 * regenerate the event.
5927 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5928 * - a hardware exception or external interrupt, we re-inject it.
5929 */
5930 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5931 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5932 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5933 else
5934 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5935 }
5936
5937 switch (enmRaise)
5938 {
5939 case IEMXCPTRAISE_CURRENT_XCPT:
5940 case IEMXCPTRAISE_PREV_EVENT:
5941 {
5942 /* For software interrupts, we shall re-execute the instruction. */
5943 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5944 {
5945 RTGCUINTPTR GCPtrFaultAddress = 0;
5946
5947 /* If we are re-injecting an NMI, clear NMI blocking. */
5948 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5949 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5950
5951 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5952 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5953 {
5954 pSvmTransient->fVectoringPF = true;
5955 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5956 pVCpu->cpum.GstCtx.cr2));
5957 }
5958 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5959 && uIdtVector == X86_XCPT_PF)
5960 {
5961 /*
5962 * If the previous exception was a #PF, we need to recover the CR2 value.
5963 * This can't happen with shadow paging.
5964 */
5965 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5966 }
5967
5968 /*
5969 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5970 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5971 */
5972 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5973 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5974 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5975
5976 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5977 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5978 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5979 }
5980 break;
5981 }
5982
5983 case IEMXCPTRAISE_REEXEC_INSTR:
5984 {
5985 Assert(rc == VINF_SUCCESS);
5986 break;
5987 }
5988
5989 case IEMXCPTRAISE_DOUBLE_FAULT:
5990 {
5991 /*
5992 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5993 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5994 * converted into a #DF.
5995 */
5996 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5997 {
5998 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
5999 pSvmTransient->fVectoringDoublePF = true;
6000 Assert(rc == VINF_SUCCESS);
6001 }
6002 else
6003 {
6004 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6005 hmR0SvmSetPendingXcptDF(pVCpu);
6006 rc = VINF_HM_DOUBLE_FAULT;
6007 }
6008 break;
6009 }
6010
6011 case IEMXCPTRAISE_TRIPLE_FAULT:
6012 {
6013 rc = VINF_EM_RESET;
6014 break;
6015 }
6016
6017 case IEMXCPTRAISE_CPU_HANG:
6018 {
6019 rc = VERR_EM_GUEST_CPU_HANG;
6020 break;
6021 }
6022
6023 default:
6024 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
6025 }
6026 }
6027 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
6028 return rc;
6029}
6030
6031
6032/**
6033 * Advances the guest RIP by the number of bytes specified in @a cb.
6034 *
6035 * @param pVCpu The cross context virtual CPU structure.
6036 * @param cb RIP increment value in bytes.
6037 */
6038DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPU pVCpu, uint32_t cb)
6039{
6040 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6041 pCtx->rip += cb;
6042
6043 /* Update interrupt shadow. */
6044 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
6045 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
6046 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6047}
6048
6049
6050/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6051/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6052/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6053
6054/** @name \#VMEXIT handlers.
6055 * @{
6056 */
6057
6058/**
6059 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
6060 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
6061 */
6062HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6063{
6064 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6065
6066 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
6067 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
6068 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
6069 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6070
6071 /*
6072 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
6073 * signal -before- the timer fires if the current interrupt is our own timer or a some
6074 * other host interrupt. We also cannot examine what interrupt it is until the host
6075 * actually take the interrupt.
6076 *
6077 * Going back to executing guest code here unconditionally causes random scheduling
6078 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
6079 */
6080 return VINF_EM_RAW_INTERRUPT;
6081}
6082
6083
6084/**
6085 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
6086 */
6087HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6088{
6089 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6090
6091 VBOXSTRICTRC rcStrict;
6092 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6093 if (fSupportsNextRipSave)
6094 {
6095 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6096 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6097 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6098 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
6099 }
6100 else
6101 {
6102 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6103 rcStrict = IEMExecOne(pVCpu);
6104 }
6105
6106 if (rcStrict == VINF_IEM_RAISED_XCPT)
6107 {
6108 rcStrict = VINF_SUCCESS;
6109 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6110 }
6111 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6112 return VBOXSTRICTRC_TODO(rcStrict);
6113}
6114
6115
6116/**
6117 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
6118 */
6119HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6120{
6121 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6122
6123 VBOXSTRICTRC rcStrict;
6124 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6125 if (fSupportsNextRipSave)
6126 {
6127 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6128 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6129 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6130 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
6131 }
6132 else
6133 {
6134 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6135 rcStrict = IEMExecOne(pVCpu);
6136 }
6137
6138 if (rcStrict == VINF_IEM_RAISED_XCPT)
6139 {
6140 rcStrict = VINF_SUCCESS;
6141 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6142 }
6143 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6144 return VBOXSTRICTRC_TODO(rcStrict);
6145}
6146
6147
6148/**
6149 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6150 */
6151HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6152{
6153 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6154
6155 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
6156 VBOXSTRICTRC rcStrict;
6157 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6158 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
6159 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6160 if (!pExitRec)
6161 {
6162 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6163 if (fSupportsNextRipSave)
6164 {
6165 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6166 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6167 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
6168 }
6169 else
6170 {
6171 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6172 rcStrict = IEMExecOne(pVCpu);
6173 }
6174
6175 if (rcStrict == VINF_IEM_RAISED_XCPT)
6176 {
6177 rcStrict = VINF_SUCCESS;
6178 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6179 }
6180 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6181 }
6182 else
6183 {
6184 /*
6185 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6186 */
6187 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6188
6189 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
6190 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
6191
6192 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6193
6194 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6195 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6196 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6197 }
6198 return VBOXSTRICTRC_TODO(rcStrict);
6199}
6200
6201
6202/**
6203 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6204 */
6205HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6206{
6207 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6208
6209 VBOXSTRICTRC rcStrict;
6210 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6211 if (fSupportsNextRipSave)
6212 {
6213 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6214 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6215 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6216 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
6217 }
6218 else
6219 {
6220 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6221 rcStrict = IEMExecOne(pVCpu);
6222 }
6223
6224 if (rcStrict == VINF_SUCCESS)
6225 pSvmTransient->fUpdateTscOffsetting = true;
6226 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6227 {
6228 rcStrict = VINF_SUCCESS;
6229 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6230 }
6231 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6232 return VBOXSTRICTRC_TODO(rcStrict);
6233}
6234
6235
6236/**
6237 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6238 */
6239HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6240{
6241 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6242
6243 VBOXSTRICTRC rcStrict;
6244 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6245 if (fSupportsNextRipSave)
6246 {
6247 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
6248 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6249 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6250 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
6251 }
6252 else
6253 {
6254 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6255 rcStrict = IEMExecOne(pVCpu);
6256 }
6257
6258 if (rcStrict == VINF_SUCCESS)
6259 pSvmTransient->fUpdateTscOffsetting = true;
6260 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6261 {
6262 rcStrict = VINF_SUCCESS;
6263 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6264 }
6265 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6266 return VBOXSTRICTRC_TODO(rcStrict);
6267}
6268
6269
6270/**
6271 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6272 */
6273HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6274{
6275 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6276
6277 VBOXSTRICTRC rcStrict;
6278 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6279 if (fSupportsNextRipSave)
6280 {
6281 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6282 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6283 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6284 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
6285 }
6286 else
6287 {
6288 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6289 rcStrict = IEMExecOne(pVCpu);
6290 }
6291
6292 if (rcStrict == VINF_IEM_RAISED_XCPT)
6293 {
6294 rcStrict = VINF_SUCCESS;
6295 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6296 }
6297 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6298 return VBOXSTRICTRC_TODO(rcStrict);
6299}
6300
6301
6302/**
6303 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6304 */
6305HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6306{
6307 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6308 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6309
6310 VBOXSTRICTRC rcStrict;
6311 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6312 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6313 if ( fSupportsDecodeAssists
6314 && fSupportsNextRipSave)
6315 {
6316 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
6317 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6318 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6319 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6320 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6321 }
6322 else
6323 {
6324 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6325 rcStrict = IEMExecOne(pVCpu);
6326 }
6327
6328 if (rcStrict == VINF_IEM_RAISED_XCPT)
6329 {
6330 rcStrict = VINF_SUCCESS;
6331 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6332 }
6333 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6334 return VBOXSTRICTRC_VAL(rcStrict);
6335}
6336
6337
6338/**
6339 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6340 */
6341HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6342{
6343 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6344
6345 VBOXSTRICTRC rcStrict;
6346 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6347 if (fSupportsNextRipSave)
6348 {
6349 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6350 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6351 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6352 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6353 }
6354 else
6355 {
6356 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6357 rcStrict = IEMExecOne(pVCpu);
6358 }
6359
6360 if ( rcStrict == VINF_EM_HALT
6361 || rcStrict == VINF_SUCCESS)
6362 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6363 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6364 {
6365 rcStrict = VINF_SUCCESS;
6366 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6367 }
6368 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6369 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6370 if (rcStrict != VINF_SUCCESS)
6371 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6372 return VBOXSTRICTRC_VAL(rcStrict);;
6373}
6374
6375
6376/**
6377 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6378 */
6379HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6380{
6381 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6382
6383 /*
6384 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6385 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6386 * segment override prefix or other prefixes might be used, in which case we fallback to
6387 * IEMExecOne() to figure out.
6388 */
6389 VBOXSTRICTRC rcStrict;
6390 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6391 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6392 if (cbInstr)
6393 {
6394 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6395 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6396 }
6397 else
6398 {
6399 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6400 rcStrict = IEMExecOne(pVCpu);
6401 }
6402
6403 if (rcStrict == VINF_IEM_RAISED_XCPT)
6404 {
6405 rcStrict = VINF_SUCCESS;
6406 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6407 }
6408 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6409 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6410 return VBOXSTRICTRC_TODO(rcStrict);
6411}
6412
6413
6414/**
6415 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6416 */
6417HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6418{
6419 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6420
6421 VBOXSTRICTRC rcStrict;
6422 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6423 if (fSupportsNextRipSave)
6424 {
6425 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6426 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6427 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6428 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6429 }
6430 else
6431 {
6432 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6433 rcStrict = IEMExecOne(pVCpu);
6434 }
6435
6436 if ( rcStrict == VINF_EM_HALT
6437 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6438 rcStrict = VINF_SUCCESS;
6439 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6440 {
6441 rcStrict = VINF_SUCCESS;
6442 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6443 }
6444 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6445 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6446 return VBOXSTRICTRC_TODO(rcStrict);
6447}
6448
6449
6450/**
6451 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6452 * \#VMEXIT.
6453 */
6454HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6455{
6456 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6457 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6458 return VINF_EM_RESET;
6459}
6460
6461
6462/**
6463 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6464 */
6465HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6466{
6467 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6468 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6469 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6470 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6471 RT_NOREF(pVmcb);
6472 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6473 return VERR_SVM_UNEXPECTED_EXIT;
6474}
6475
6476
6477/**
6478 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6479 */
6480HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6481{
6482 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6483
6484 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6485 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6486#ifdef VBOX_WITH_STATISTICS
6487 switch (pSvmTransient->u64ExitCode)
6488 {
6489 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6490 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6491 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6492 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6493 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6494 }
6495#endif
6496
6497 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6498 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6499 if ( fSupportsDecodeAssists
6500 && fSupportsNextRipSave)
6501 {
6502 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6503 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6504 if (fMovCRx)
6505 {
6506 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6507 | CPUMCTX_EXTRN_APIC_TPR);
6508 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6509 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6510 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6511 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6512 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6513 return VBOXSTRICTRC_VAL(rcStrict);
6514 }
6515 /* else: SMSW instruction, fall back below to IEM for this. */
6516 }
6517
6518 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6519 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6520 AssertMsg( rcStrict == VINF_SUCCESS
6521 || rcStrict == VINF_PGM_CHANGE_MODE
6522 || rcStrict == VINF_PGM_SYNC_CR3
6523 || rcStrict == VINF_IEM_RAISED_XCPT,
6524 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6525 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6526 if (rcStrict == VINF_IEM_RAISED_XCPT)
6527 {
6528 rcStrict = VINF_SUCCESS;
6529 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6530 }
6531 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6532 return VBOXSTRICTRC_TODO(rcStrict);
6533}
6534
6535
6536/**
6537 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6538 */
6539HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6540{
6541 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6542
6543 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6544 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6545 Assert(iCrReg <= 15);
6546
6547 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6548 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6549 bool fDecodedInstr = false;
6550 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6551 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6552 if ( fSupportsDecodeAssists
6553 && fSupportsNextRipSave)
6554 {
6555 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6556 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6557 if (fMovCRx)
6558 {
6559 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6560 | CPUMCTX_EXTRN_APIC_TPR);
6561 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6562 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6563 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6564 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6565 fDecodedInstr = true;
6566 }
6567 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6568 }
6569
6570 if (!fDecodedInstr)
6571 {
6572 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6573 Log4Func(("iCrReg=%#x\n", iCrReg));
6574 rcStrict = IEMExecOne(pVCpu);
6575 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6576 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6577 rcStrict = VERR_EM_INTERPRETER;
6578 }
6579
6580 if (rcStrict == VINF_SUCCESS)
6581 {
6582 switch (iCrReg)
6583 {
6584 case 0:
6585 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6586 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6587 break;
6588
6589 case 2:
6590 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6591 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6592 break;
6593
6594 case 3:
6595 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6596 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6597 break;
6598
6599 case 4:
6600 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6601 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6602 break;
6603
6604 case 8:
6605 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6606 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6607 break;
6608
6609 default:
6610 {
6611 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6612 pSvmTransient->u64ExitCode, iCrReg));
6613 break;
6614 }
6615 }
6616 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6617 }
6618 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6619 {
6620 rcStrict = VINF_SUCCESS;
6621 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6622 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6623 }
6624 else
6625 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
6626 return VBOXSTRICTRC_TODO(rcStrict);
6627}
6628
6629
6630/**
6631 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6632 *
6633 * @returns Strict VBox status code.
6634 * @param pVCpu The cross context virtual CPU structure.
6635 * @param pVmcb Pointer to the VM control block.
6636 */
6637static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPU pVCpu, PSVMVMCB pVmcb)
6638{
6639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6640 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6641
6642 VBOXSTRICTRC rcStrict;
6643 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6644 if (fSupportsNextRipSave)
6645 {
6646 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6647 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6648 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6649 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6650 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6651 }
6652 else
6653 {
6654 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6655 rcStrict = IEMExecOne(pVCpu);
6656 }
6657
6658 AssertMsg( rcStrict == VINF_SUCCESS
6659 || rcStrict == VINF_IEM_RAISED_XCPT
6660 || rcStrict == VINF_CPUM_R3_MSR_READ,
6661 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6662
6663 if (rcStrict == VINF_IEM_RAISED_XCPT)
6664 {
6665 rcStrict = VINF_SUCCESS;
6666 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6667 }
6668 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6669 return rcStrict;
6670}
6671
6672
6673/**
6674 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6675 *
6676 * @returns Strict VBox status code.
6677 * @param pVCpu The cross context virtual CPU structure.
6678 * @param pVmcb Pointer to the VM control block.
6679 * @param pSvmTransient Pointer to the SVM-transient structure.
6680 */
6681static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6682{
6683 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6684 uint32_t const idMsr = pCtx->ecx;
6685 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6686 Log4Func(("idMsr=%#RX32\n", idMsr));
6687
6688 /*
6689 * Handle TPR patching MSR writes.
6690 * We utilitize the LSTAR MSR for patching.
6691 */
6692 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6693 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
6694 && idMsr == MSR_K8_LSTAR)
6695 {
6696 unsigned cbInstr;
6697 if (fSupportsNextRipSave)
6698 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6699 else
6700 {
6701 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6702 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6703 if ( rc == VINF_SUCCESS
6704 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6705 Assert(cbInstr > 0);
6706 else
6707 cbInstr = 0;
6708 }
6709
6710 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6711 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6712 {
6713 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6714 AssertRCReturn(rc, rc);
6715 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6716 }
6717
6718 int rc = VINF_SUCCESS;
6719 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6720 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6721 return rc;
6722 }
6723
6724 /*
6725 * Handle regular MSR writes.
6726 */
6727 VBOXSTRICTRC rcStrict;
6728 if (fSupportsNextRipSave)
6729 {
6730 /** @todo Optimize this: We don't need to get much of the MSR state here
6731 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6732 * clear the applicable extern flags. */
6733 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6734 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6735 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6736 }
6737 else
6738 {
6739 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6740 rcStrict = IEMExecOne(pVCpu);
6741 }
6742
6743 AssertMsg( rcStrict == VINF_SUCCESS
6744 || rcStrict == VINF_IEM_RAISED_XCPT
6745 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6746 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6747
6748 if (rcStrict == VINF_SUCCESS)
6749 {
6750 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6751 if ( idMsr >= MSR_IA32_X2APIC_START
6752 && idMsr <= MSR_IA32_X2APIC_END)
6753 {
6754 /*
6755 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6756 * When full APIC register virtualization is implemented we'll have to make sure
6757 * APIC state is saved from the VMCB before IEM changes it.
6758 */
6759 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6760 }
6761 else
6762 {
6763 switch (idMsr)
6764 {
6765 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6766 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6767 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6768 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6769 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6770 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6771 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6772 }
6773 }
6774 }
6775 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6776 {
6777 rcStrict = VINF_SUCCESS;
6778 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6779 }
6780 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6781 return rcStrict;
6782}
6783
6784
6785/**
6786 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6787 * \#VMEXIT.
6788 */
6789HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6790{
6791 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6792
6793 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6794 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6795 return VBOXSTRICTRC_TODO(hmR0SvmExitReadMsr(pVCpu, pVmcb));
6796
6797 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6798 return VBOXSTRICTRC_TODO(hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient));
6799}
6800
6801
6802/**
6803 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6804 */
6805HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6806{
6807 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6808 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6809
6810 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6811
6812 /** @todo Stepping with nested-guest. */
6813 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6814 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6815 {
6816 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6817 if (pSvmTransient->fWasGuestDebugStateActive)
6818 {
6819 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6820 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6821 return VERR_SVM_UNEXPECTED_EXIT;
6822 }
6823
6824 /*
6825 * Lazy DR0-3 loading.
6826 */
6827 if (!pSvmTransient->fWasHyperDebugStateActive)
6828 {
6829 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6830 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6831
6832 /* Don't intercept DRx read and writes. */
6833 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6834 pVmcb->ctrl.u16InterceptRdDRx = 0;
6835 pVmcb->ctrl.u16InterceptWrDRx = 0;
6836 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6837
6838 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6839 VMMRZCallRing3Disable(pVCpu);
6840 HM_DISABLE_PREEMPT(pVCpu);
6841
6842 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6843 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6844 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6845
6846 HM_RESTORE_PREEMPT();
6847 VMMRZCallRing3Enable(pVCpu);
6848
6849 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6850 return VINF_SUCCESS;
6851 }
6852 }
6853
6854 /*
6855 * Interpret the read/writing of DRx.
6856 */
6857 /** @todo Decode assist. */
6858 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6859 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6860 if (RT_LIKELY(rc == VINF_SUCCESS))
6861 {
6862 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6863 /** @todo CPUM should set this flag! */
6864 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6865 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6866 }
6867 else
6868 Assert(rc == VERR_EM_INTERPRETER);
6869 return VBOXSTRICTRC_TODO(rc);
6870}
6871
6872
6873/**
6874 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6875 */
6876HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6877{
6878 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6879 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6880 int rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6881 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6882 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6883 return rc;
6884}
6885
6886
6887/**
6888 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6889 */
6890HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6891{
6892 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6893 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6894
6895 /** @todo decode assists... */
6896 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6897 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6898 {
6899 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6900 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6901 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0,
6902 pCtx->cr4));
6903 }
6904 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6905 {
6906 rcStrict = VINF_SUCCESS;
6907 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6908 }
6909 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6910 return VBOXSTRICTRC_TODO(rcStrict);
6911}
6912
6913
6914/**
6915 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6916 */
6917HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6918{
6919 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6920 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6921
6922 /* I/O operation lookup arrays. */
6923 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6924 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6925 the result (in AL/AX/EAX). */
6926 PVM pVM = pVCpu->CTX_SUFF(pVM);
6927 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6928 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6929
6930 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6931
6932 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6933 SVMIOIOEXITINFO IoExitInfo;
6934 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6935 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6936 uint32_t cbValue = s_aIOSize[uIOWidth];
6937 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6938
6939 if (RT_UNLIKELY(!cbValue))
6940 {
6941 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6942 return VERR_EM_INTERPRETER;
6943 }
6944
6945 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6946 VBOXSTRICTRC rcStrict;
6947 PCEMEXITREC pExitRec = NULL;
6948 if ( !pVCpu->hm.s.fSingleInstruction
6949 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6950 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6951 !IoExitInfo.n.u1Str
6952 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6953 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6954 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6955 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6956 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6957 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6958 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6959 if (!pExitRec)
6960 {
6961 bool fUpdateRipAlready = false;
6962 if (IoExitInfo.n.u1Str)
6963 {
6964 /* INS/OUTS - I/O String instruction. */
6965 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6966 * in EXITINFO1? Investigate once this thing is up and running. */
6967 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6968 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6969 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6970 static IEMMODE const s_aenmAddrMode[8] =
6971 {
6972 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6973 };
6974 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6975 if (enmAddrMode != (IEMMODE)-1)
6976 {
6977 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6978 if (cbInstr <= 15 && cbInstr >= 1)
6979 {
6980 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6981 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6982 {
6983 /* Don't know exactly how to detect whether u3Seg is valid, currently
6984 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6985 2384 Opterons when only checking NRIP. */
6986 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6987 if ( fSupportsNextRipSave
6988 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6989 {
6990 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6991 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6992 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6993 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6994 }
6995 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6996 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6997 X86_SREG_DS, true /*fIoChecked*/);
6998 else
6999 rcStrict = IEMExecOne(pVCpu);
7000 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
7001 }
7002 else
7003 {
7004 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
7005 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7006 true /*fIoChecked*/);
7007 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
7008 }
7009 }
7010 else
7011 {
7012 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
7013 rcStrict = IEMExecOne(pVCpu);
7014 }
7015 }
7016 else
7017 {
7018 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
7019 rcStrict = IEMExecOne(pVCpu);
7020 }
7021 fUpdateRipAlready = true;
7022 }
7023 else
7024 {
7025 /* IN/OUT - I/O instruction. */
7026 Assert(!IoExitInfo.n.u1Rep);
7027
7028 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
7029 {
7030 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
7031 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
7032 }
7033 else
7034 {
7035 uint32_t u32Val = 0;
7036 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
7037 if (IOM_SUCCESS(rcStrict))
7038 {
7039 /* Save result of I/O IN instr. in AL/AX/EAX. */
7040 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
7041 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
7042 }
7043 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
7044 {
7045 HMR0SavePendingIOPortRead(pVCpu, pVCpu->cpum.GstCtx.rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port,
7046 uAndVal, cbValue);
7047 }
7048
7049 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
7050 }
7051 }
7052
7053 if (IOM_SUCCESS(rcStrict))
7054 {
7055 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
7056 if (!fUpdateRipAlready)
7057 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
7058
7059 /*
7060 * If any I/O breakpoints are armed, we need to check if one triggered
7061 * and take appropriate action.
7062 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
7063 */
7064 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
7065 * execution engines about whether hyper BPs and such are pending. */
7066 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
7067 uint32_t const uDr7 = pCtx->dr[7];
7068 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7069 && X86_DR7_ANY_RW_IO(uDr7)
7070 && (pCtx->cr4 & X86_CR4_DE))
7071 || DBGFBpIsHwIoArmed(pVM)))
7072 {
7073 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7074 VMMRZCallRing3Disable(pVCpu);
7075 HM_DISABLE_PREEMPT(pVCpu);
7076
7077 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
7078 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
7079
7080 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
7081 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
7082 {
7083 /* Raise #DB. */
7084 pVmcb->guest.u64DR6 = pCtx->dr[6];
7085 pVmcb->guest.u64DR7 = pCtx->dr[7];
7086 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7087 hmR0SvmSetPendingXcptDB(pVCpu);
7088 }
7089 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
7090 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
7091 else if ( rcStrict2 != VINF_SUCCESS
7092 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
7093 rcStrict = rcStrict2;
7094 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
7095
7096 HM_RESTORE_PREEMPT();
7097 VMMRZCallRing3Enable(pVCpu);
7098 }
7099
7100 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7101 }
7102
7103#ifdef VBOX_STRICT
7104 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
7105 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
7106 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
7107 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
7108 else
7109 {
7110 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
7111 * statuses, that the VMM device and some others may return. See
7112 * IOM_SUCCESS() for guidance. */
7113 AssertMsg( RT_FAILURE(rcStrict)
7114 || rcStrict == VINF_SUCCESS
7115 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
7116 || rcStrict == VINF_EM_DBG_BREAKPOINT
7117 || rcStrict == VINF_EM_RAW_GUEST_TRAP
7118 || rcStrict == VINF_EM_RAW_TO_R3
7119 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
7120 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7121 }
7122#endif
7123 }
7124 else
7125 {
7126 /*
7127 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7128 */
7129 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7130 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
7131 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
7132 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
7133 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
7134 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
7135 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
7136
7137 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7138 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7139
7140 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7141 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7142 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7143 }
7144 return VBOXSTRICTRC_TODO(rcStrict);
7145}
7146
7147
7148/**
7149 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
7150 */
7151HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7152{
7153 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7154 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7155 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7156
7157 PVM pVM = pVCpu->CTX_SUFF(pVM);
7158 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7159 Assert(pVM->hm.s.fNestedPaging);
7160
7161 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
7162 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7163 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
7164 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
7165 thus intentionally not copied into u32ErrCode. */
7166
7167 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
7168 u32ErrCode));
7169
7170 /*
7171 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
7172 */
7173 if ( pVM->hm.s.fTprPatchingAllowed
7174 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
7175 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
7176 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
7177 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7178 && !CPUMIsGuestInLongModeEx(pCtx)
7179 && !CPUMGetGuestCPL(pVCpu)
7180 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7181 {
7182 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7183 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7184
7185 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
7186 {
7187 /* Only attempt to patch the instruction once. */
7188 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7189 if (!pPatch)
7190 return VINF_EM_HM_PATCH_TPR_INSTR;
7191 }
7192 }
7193
7194 /*
7195 * Determine the nested paging mode.
7196 */
7197 PGMMODE enmNestedPagingMode;
7198#if HC_ARCH_BITS == 32
7199 if (CPUMIsGuestInLongModeEx(pCtx))
7200 enmNestedPagingMode = PGMMODE_AMD64_NX;
7201 else
7202#endif
7203 enmNestedPagingMode = PGMGetHostMode(pVM);
7204
7205 /*
7206 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
7207 */
7208 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
7209 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
7210 {
7211 /*
7212 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
7213 * injecting the original pending event would most likely cause the same MMIO #NPF.
7214 */
7215 if (pVCpu->hm.s.Event.fPending)
7216 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7217
7218 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
7219 VBOXSTRICTRC rcStrict;
7220 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
7221 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
7222 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
7223 if (!pExitRec)
7224 {
7225
7226 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
7227 u32ErrCode);
7228
7229 /*
7230 * If we succeed, resume guest execution.
7231 *
7232 * If we fail in interpreting the instruction because we couldn't get the guest
7233 * physical address of the page containing the instruction via the guest's page
7234 * tables (we would invalidate the guest page in the host TLB), resume execution
7235 * which would cause a guest page fault to let the guest handle this weird case.
7236 *
7237 * See @bugref{6043}.
7238 */
7239 if ( rcStrict == VINF_SUCCESS
7240 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
7241 || rcStrict == VERR_PAGE_NOT_PRESENT)
7242 {
7243 /* Successfully handled MMIO operation. */
7244 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
7245 rcStrict = VINF_SUCCESS;
7246 }
7247 }
7248 else
7249 {
7250 /*
7251 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7252 */
7253 Assert(pCtx == &pVCpu->cpum.GstCtx);
7254 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7255 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
7256 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
7257
7258 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7259 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7260
7261 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7262 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7263 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7264 }
7265 return VBOXSTRICTRC_TODO(rcStrict);
7266 }
7267
7268 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
7269 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
7270 TRPMResetTrap(pVCpu);
7271
7272 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
7273
7274 /*
7275 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
7276 */
7277 if ( rc == VINF_SUCCESS
7278 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7279 || rc == VERR_PAGE_NOT_PRESENT)
7280 {
7281 /* We've successfully synced our shadow page tables. */
7282 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7283 rc = VINF_SUCCESS;
7284 }
7285
7286 return rc;
7287}
7288
7289
7290/**
7291 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
7292 * \#VMEXIT.
7293 */
7294HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7295{
7296 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7297 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7298
7299 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7300 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7301 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
7302
7303 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7304 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7305 return VINF_SUCCESS;
7306}
7307
7308
7309/**
7310 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7311 * \#VMEXIT.
7312 */
7313HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7314{
7315 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7316 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7317
7318#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7319 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7320#endif
7321
7322 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7323 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7324 {
7325 /*
7326 * AMD-V provides us with the exception which caused the TS; we collect
7327 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7328 */
7329 Log4Func(("TS occurred during event delivery\n"));
7330 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7331 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7332 }
7333
7334 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7335 * emulation. */
7336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7337 return VERR_EM_INTERPRETER;
7338}
7339
7340
7341/**
7342 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7343 */
7344HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7345{
7346 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7347 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7348
7349 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingAllowed)
7350 {
7351 int rc = hmSvmEmulateMovTpr(pVCpu);
7352 if (rc != VERR_NOT_FOUND)
7353 {
7354 Log4Func(("hmSvmEmulateMovTpr returns %Rrc\n", rc));
7355 return rc;
7356 }
7357 }
7358
7359 if (EMAreHypercallInstructionsEnabled(pVCpu))
7360 {
7361 unsigned cbInstr;
7362 if (hmR0SvmSupportsNextRipSave(pVCpu))
7363 {
7364 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7365 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7366 }
7367 else
7368 {
7369 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7370 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7371 if ( rc == VINF_SUCCESS
7372 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7373 Assert(cbInstr > 0);
7374 else
7375 cbInstr = 0;
7376 }
7377
7378 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7379 if (RT_SUCCESS(rcStrict))
7380 {
7381 /* Only update the RIP if we're continuing guest execution and not in the case
7382 of say VINF_GIM_R3_HYPERCALL. */
7383 if (rcStrict == VINF_SUCCESS)
7384 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7385
7386 return VBOXSTRICTRC_VAL(rcStrict);
7387 }
7388 else
7389 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7390 }
7391
7392 hmR0SvmSetPendingXcptUD(pVCpu);
7393 return VINF_SUCCESS;
7394}
7395
7396
7397/**
7398 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7399 */
7400HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7401{
7402 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7403
7404 unsigned cbInstr;
7405 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7406 if (fSupportsNextRipSave)
7407 {
7408 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7409 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7410 }
7411 else
7412 {
7413 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7414 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7415 if ( rc == VINF_SUCCESS
7416 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7417 Assert(cbInstr > 0);
7418 else
7419 cbInstr = 0;
7420 }
7421
7422 /** @todo The guest has likely hit a contended spinlock. We might want to
7423 * poke a schedule different guest VCPU. */
7424 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7425 return VINF_EM_RAW_INTERRUPT;
7426}
7427
7428
7429/**
7430 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7431 * \#VMEXIT.
7432 */
7433HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7434{
7435 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7436 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7437 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7438
7439 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7440 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7441}
7442
7443
7444/**
7445 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7446 */
7447HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7448{
7449 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7450
7451 /* Clear NMI blocking. */
7452 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
7453 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7454
7455 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7456 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7457 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7458
7459 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7460 return VINF_SUCCESS;
7461}
7462
7463
7464/**
7465 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7466 * Conditional \#VMEXIT.
7467 */
7468HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7469{
7470 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7471 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7472 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7473
7474 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7475 PVM pVM = pVCpu->CTX_SUFF(pVM);
7476 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7477 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7478 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7479 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7480
7481#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7482 if (pVM->hm.s.fNestedPaging)
7483 {
7484 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7485 if ( !pSvmTransient->fVectoringDoublePF
7486 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7487 {
7488 /* A genuine guest #PF, reflect it to the guest. */
7489 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7490 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7491 uFaultAddress, uErrCode));
7492 }
7493 else
7494 {
7495 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7496 hmR0SvmSetPendingXcptDF(pVCpu);
7497 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7498 }
7499 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7500 return VINF_SUCCESS;
7501 }
7502#endif
7503
7504 Assert(!pVM->hm.s.fNestedPaging);
7505
7506 /*
7507 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7508 */
7509 if ( pVM->hm.s.fTprPatchingAllowed
7510 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7511 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7512 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7513 && !CPUMIsGuestInLongModeEx(pCtx)
7514 && !CPUMGetGuestCPL(pVCpu)
7515 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7516 {
7517 RTGCPHYS GCPhysApicBase;
7518 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7519 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7520
7521 /* Check if the page at the fault-address is the APIC base. */
7522 RTGCPHYS GCPhysPage;
7523 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7524 if ( rc2 == VINF_SUCCESS
7525 && GCPhysPage == GCPhysApicBase)
7526 {
7527 /* Only attempt to patch the instruction once. */
7528 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7529 if (!pPatch)
7530 return VINF_EM_HM_PATCH_TPR_INSTR;
7531 }
7532 }
7533
7534 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7535 pCtx->rip, uErrCode, pCtx->cr3));
7536
7537 /*
7538 * If it's a vectoring #PF, emulate injecting the original event injection as
7539 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7540 * event injection that caused a #PF. See @bugref{6607}.
7541 */
7542 if (pSvmTransient->fVectoringPF)
7543 {
7544 Assert(pVCpu->hm.s.Event.fPending);
7545 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7546 }
7547
7548 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7549 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7550
7551 Log4Func(("#PF: rc=%Rrc\n", rc));
7552
7553 if (rc == VINF_SUCCESS)
7554 {
7555 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7556 TRPMResetTrap(pVCpu);
7557 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7558 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7559 return rc;
7560 }
7561
7562 if (rc == VINF_EM_RAW_GUEST_TRAP)
7563 {
7564 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7565
7566 /*
7567 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7568 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7569 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7570 */
7571 if ( !pSvmTransient->fVectoringDoublePF
7572 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7573 {
7574 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7575 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7576 TRPMResetTrap(pVCpu);
7577
7578#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7579 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7580 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7581 && HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
7582 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress));
7583#endif
7584
7585 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7586 }
7587 else
7588 {
7589 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7590 TRPMResetTrap(pVCpu);
7591 hmR0SvmSetPendingXcptDF(pVCpu);
7592 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7593 }
7594
7595 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7596 return VINF_SUCCESS;
7597 }
7598
7599 TRPMResetTrap(pVCpu);
7600 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7601 return rc;
7602}
7603
7604
7605/**
7606 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7607 * Conditional \#VMEXIT.
7608 */
7609HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7610{
7611 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7612 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7613
7614 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7615 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7616 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7617
7618 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7619 if (pVCpu->hm.s.fGIMTrapXcptUD)
7620 {
7621 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7622 uint8_t cbInstr = 0;
7623 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7624 if (rcStrict == VINF_SUCCESS)
7625 {
7626 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7627 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7628 rc = VINF_SUCCESS;
7629 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7630 }
7631 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7632 rc = VINF_SUCCESS;
7633 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7634 rc = VINF_GIM_R3_HYPERCALL;
7635 else
7636 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7637 }
7638
7639 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7640 if (RT_FAILURE(rc))
7641 {
7642 hmR0SvmSetPendingXcptUD(pVCpu);
7643 rc = VINF_SUCCESS;
7644 }
7645
7646 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7647 return rc;
7648}
7649
7650
7651/**
7652 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7653 * Conditional \#VMEXIT.
7654 */
7655HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7656{
7657 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7658 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7659
7660 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7661 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7662
7663 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7664 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7665
7666 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7667
7668 if (!(pCtx->cr0 & X86_CR0_NE))
7669 {
7670 PVM pVM = pVCpu->CTX_SUFF(pVM);
7671 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7672 unsigned cbInstr;
7673 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7674 if (RT_SUCCESS(rc))
7675 {
7676 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7677 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7678 if (RT_SUCCESS(rc))
7679 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7680 }
7681 else
7682 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7683 return rc;
7684 }
7685
7686 hmR0SvmSetPendingXcptMF(pVCpu);
7687 return VINF_SUCCESS;
7688}
7689
7690
7691/**
7692 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7693 * \#VMEXIT.
7694 */
7695HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7696{
7697 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7698 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7699 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7700
7701 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7702 {
7703 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7704 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7705 }
7706
7707 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7708
7709 /*
7710 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7711 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7712 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7713 */
7714 PVM pVM = pVCpu->CTX_SUFF(pVM);
7715 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7716 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7717 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7718 if (rc == VINF_EM_RAW_GUEST_TRAP)
7719 {
7720 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7721 if (CPUMIsHyperDebugStateActive(pVCpu))
7722 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7723
7724 /* Reflect the exception back to the guest. */
7725 hmR0SvmSetPendingXcptDB(pVCpu);
7726 rc = VINF_SUCCESS;
7727 }
7728
7729 /*
7730 * Update DR6.
7731 */
7732 if (CPUMIsHyperDebugStateActive(pVCpu))
7733 {
7734 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7735 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7736 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7737 }
7738 else
7739 {
7740 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7741 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7742 }
7743
7744 return rc;
7745}
7746
7747
7748/**
7749 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7750 * Conditional \#VMEXIT.
7751 */
7752HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7753{
7754 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7755 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7756
7757 SVMEVENT Event;
7758 Event.u = 0;
7759 Event.n.u1Valid = 1;
7760 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7761 Event.n.u8Vector = X86_XCPT_AC;
7762 Event.n.u1ErrorCodeValid = 1;
7763 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7764 return VINF_SUCCESS;
7765}
7766
7767
7768/**
7769 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7770 * Conditional \#VMEXIT.
7771 */
7772HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7773{
7774 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7775 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7776 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7777
7778 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7779 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7780 if (rc == VINF_EM_RAW_GUEST_TRAP)
7781 {
7782 SVMEVENT Event;
7783 Event.u = 0;
7784 Event.n.u1Valid = 1;
7785 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7786 Event.n.u8Vector = X86_XCPT_BP;
7787 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7788 }
7789
7790 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7791 return rc;
7792}
7793
7794
7795#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7796/**
7797 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7798 */
7799HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7800{
7801 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7802 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7803
7804 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7805 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7806 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7807 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7808 Assert(uVector <= X86_XCPT_LAST);
7809 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7810
7811 SVMEVENT Event;
7812 Event.u = 0;
7813 Event.n.u1Valid = 1;
7814 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7815 Event.n.u8Vector = uVector;
7816 switch (uVector)
7817 {
7818 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7819 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7820 case X86_XCPT_DF:
7821 case X86_XCPT_TS:
7822 case X86_XCPT_NP:
7823 case X86_XCPT_SS:
7824 case X86_XCPT_GP:
7825 case X86_XCPT_AC:
7826 {
7827 Event.n.u1ErrorCodeValid = 1;
7828 Event.n.u32ErrorCode = uErrCode;
7829 break;
7830 }
7831 }
7832
7833 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7834 return VINF_SUCCESS;
7835}
7836#endif
7837
7838#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7839/**
7840 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7841 */
7842HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7843{
7844 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7845
7846 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7847 Assert(pVmcb);
7848 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7849
7850 VBOXSTRICTRC rcStrict;
7851 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7852 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7853 if (fSupportsNextRipSave)
7854 {
7855 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7856 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7857 }
7858 else
7859 {
7860 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7861 rcStrict = IEMExecOne(pVCpu);
7862 }
7863
7864 if (rcStrict == VINF_SUCCESS)
7865 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7866 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7867 {
7868 rcStrict = VINF_SUCCESS;
7869 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7870 }
7871 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7872 return VBOXSTRICTRC_TODO(rcStrict);
7873}
7874
7875
7876/**
7877 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7878 */
7879HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7880{
7881 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7882
7883 /*
7884 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7885 * we only intercept STGI when events are pending for GIF to become 1.
7886 */
7887 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7888 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7889 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7890
7891 VBOXSTRICTRC rcStrict;
7892 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7893 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7894 if (fSupportsNextRipSave)
7895 {
7896 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7897 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7898 }
7899 else
7900 {
7901 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7902 rcStrict = IEMExecOne(pVCpu);
7903 }
7904
7905 if (rcStrict == VINF_SUCCESS)
7906 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7907 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7908 {
7909 rcStrict = VINF_SUCCESS;
7910 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7911 }
7912 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7913 return VBOXSTRICTRC_TODO(rcStrict);
7914}
7915
7916
7917/**
7918 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7919 */
7920HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7921{
7922 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7923
7924 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7925 Assert(pVmcb);
7926 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7927
7928 VBOXSTRICTRC rcStrict;
7929 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7930 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
7931 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
7932 | CPUMCTX_EXTRN_SYSENTER_MSRS;
7933 if (fSupportsNextRipSave)
7934 {
7935 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7936 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7937 }
7938 else
7939 {
7940 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7941 rcStrict = IEMExecOne(pVCpu);
7942 }
7943
7944 if (rcStrict == VINF_SUCCESS)
7945 {
7946 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7947 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7948 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7949 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7950 }
7951 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7952 {
7953 rcStrict = VINF_SUCCESS;
7954 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7955 }
7956 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7957 return VBOXSTRICTRC_TODO(rcStrict);
7958}
7959
7960
7961/**
7962 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7963 */
7964HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7965{
7966 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7967
7968 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7969 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7970
7971 VBOXSTRICTRC rcStrict;
7972 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7973 if (fSupportsNextRipSave)
7974 {
7975 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7976 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7977 }
7978 else
7979 {
7980 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7981 rcStrict = IEMExecOne(pVCpu);
7982 }
7983
7984 if (rcStrict == VINF_IEM_RAISED_XCPT)
7985 {
7986 rcStrict = VINF_SUCCESS;
7987 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7988 }
7989 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7990 return VBOXSTRICTRC_TODO(rcStrict);
7991}
7992
7993
7994/**
7995 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7996 */
7997HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7998{
7999 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8000
8001 VBOXSTRICTRC rcStrict;
8002 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8003 if (fSupportsNextRipSave)
8004 {
8005 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8006 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8007 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
8008 }
8009 else
8010 {
8011 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8012 rcStrict = IEMExecOne(pVCpu);
8013 }
8014
8015 if (rcStrict == VINF_IEM_RAISED_XCPT)
8016 {
8017 rcStrict = VINF_SUCCESS;
8018 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8019 }
8020 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8021 return VBOXSTRICTRC_TODO(rcStrict);
8022}
8023
8024
8025/**
8026 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
8027 */
8028HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8029{
8030 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8031 /* We shall import the entire state here, just in case we enter and continue execution of
8032 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
8033 could lose lose part of CPU state. */
8034 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
8035
8036 VBOXSTRICTRC rcStrict;
8037 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8038 if (fSupportsNextRipSave)
8039 {
8040 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8041 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8042 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
8043 }
8044 else
8045 {
8046 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
8047 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
8048 instruction itself, see @bugref{7243#c126} */
8049 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
8050 }
8051
8052 if (rcStrict == VINF_SUCCESS)
8053 {
8054 rcStrict = VINF_SVM_VMRUN;
8055 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
8056 }
8057 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8058 {
8059 rcStrict = VINF_SUCCESS;
8060 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8061 }
8062 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8063 return VBOXSTRICTRC_TODO(rcStrict);
8064}
8065
8066
8067/**
8068 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
8069 * Unconditional \#VMEXIT.
8070 */
8071HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8072{
8073 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8074 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8075
8076 if (pVCpu->hm.s.Event.fPending)
8077 {
8078 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
8079 return VINF_EM_RAW_INJECT_TRPM_EVENT;
8080 }
8081
8082 hmR0SvmSetPendingXcptDB(pVCpu);
8083 return VINF_SUCCESS;
8084}
8085
8086
8087/**
8088 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
8089 * Conditional \#VMEXIT.
8090 */
8091HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8092{
8093 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8094 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8095
8096 SVMEVENT Event;
8097 Event.u = 0;
8098 Event.n.u1Valid = 1;
8099 Event.n.u3Type = SVM_EVENT_EXCEPTION;
8100 Event.n.u8Vector = X86_XCPT_BP;
8101 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
8102 return VINF_SUCCESS;
8103}
8104#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
8105
8106/** @} */
8107
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette