VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 76993

Last change on this file since 76993 was 76993, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Allowing fetching VM-exit names from ring-0 as well. Various naming cleanups. Added HMDumpHwvirtVmxState() to be able to dump virtual VMCS state from ring-0 as well. Remove unusued HMIsVmxSupported() function.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 324.0 KB
Line 
1/* $Id: HMSVMR0.cpp 76993 2019-01-25 14:34:46Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vm.h>
37#include <VBox/err.h>
38#include "HMSVMR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMSVM_SYNC_FULL_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60
61# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
64 if ((u64ExitCode) == SVM_EXIT_NPF) \
65 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
66 else \
67 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
68 } while (0)
69# endif
70#else
71# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
72# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
73# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
74# endif
75#endif /* !VBOX_WITH_STATISTICS */
76
77/** If we decide to use a function table approach this can be useful to
78 * switch to a "static DECLCALLBACK(int)". */
79#define HMSVM_EXIT_DECL static int
80
81/**
82 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
83 * guest using hardware-assisted SVM.
84 *
85 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
86 * are swapped and restored across the world-switch and also registers like
87 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
88 * \#VMEXIT.
89 */
90#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
91 | CPUMCTX_EXTRN_RFLAGS \
92 | CPUMCTX_EXTRN_RAX \
93 | CPUMCTX_EXTRN_RSP \
94 | CPUMCTX_EXTRN_SREG_MASK \
95 | CPUMCTX_EXTRN_CR0 \
96 | CPUMCTX_EXTRN_CR2 \
97 | CPUMCTX_EXTRN_CR3 \
98 | CPUMCTX_EXTRN_TABLE_MASK \
99 | CPUMCTX_EXTRN_DR6 \
100 | CPUMCTX_EXTRN_DR7 \
101 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
102 | CPUMCTX_EXTRN_SYSCALL_MSRS \
103 | CPUMCTX_EXTRN_SYSENTER_MSRS \
104 | CPUMCTX_EXTRN_HWVIRT \
105 | CPUMCTX_EXTRN_HM_SVM_MASK)
106
107/**
108 * Subset of the guest-CPU state that is shared between the guest and host.
109 */
110#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
111
112/** Macro for importing guest state from the VMCB back into CPUMCTX. */
113#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
114 do { \
115 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
116 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
117 } while (0)
118
119/** Assert that the required state bits are fetched. */
120#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
121 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
122 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
123
124/** Assert that preemption is disabled or covered by thread-context hooks. */
125#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
126 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
127
128/** Assert that we haven't migrated CPUs when thread-context hooks are not
129 * used. */
130#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
131 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
132 ("Illegal migration! Entered on CPU %u Current %u\n", \
133 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()));
134
135/** Assert that we're not executing a nested-guest. */
136#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
137# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
138#else
139# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
140#endif
141
142/** Assert that we're executing a nested-guest. */
143#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
144# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
145#else
146# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
147#endif
148
149/** Macro for checking and returning from the using function for
150 * \#VMEXIT intercepts that maybe caused during delivering of another
151 * event in the guest. */
152#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
153# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
154 do \
155 { \
156 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
157 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
158 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
159 else if ( rc == VINF_EM_RESET \
160 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
161 { \
162 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
163 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0)); \
164 } \
165 else \
166 return rc; \
167 } while (0)
168#else
169# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
170 do \
171 { \
172 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
173 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
174 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
175 else \
176 return rc; \
177 } while (0)
178#endif
179
180/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
181 * instruction that exited. */
182#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
183 do { \
184 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
185 (a_rc) = VINF_EM_DBG_STEPPED; \
186 } while (0)
187
188/** Validate segment descriptor granularity bit. */
189#ifdef VBOX_STRICT
190# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
191 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
192 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
193 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
194 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
195 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
196 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
197#else
198# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
199#endif
200
201/**
202 * Exception bitmap mask for all contributory exceptions.
203 *
204 * Page fault is deliberately excluded here as it's conditional as to whether
205 * it's contributory or benign. Page faults are handled separately.
206 */
207#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
208 | RT_BIT(X86_XCPT_DE))
209
210/**
211 * Mandatory/unconditional guest control intercepts.
212 *
213 * SMIs can and do happen in normal operation. We need not intercept them
214 * while executing the guest (or nested-guest).
215 */
216#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
217 | SVM_CTRL_INTERCEPT_NMI \
218 | SVM_CTRL_INTERCEPT_INIT \
219 | SVM_CTRL_INTERCEPT_RDPMC \
220 | SVM_CTRL_INTERCEPT_CPUID \
221 | SVM_CTRL_INTERCEPT_RSM \
222 | SVM_CTRL_INTERCEPT_HLT \
223 | SVM_CTRL_INTERCEPT_IOIO_PROT \
224 | SVM_CTRL_INTERCEPT_MSR_PROT \
225 | SVM_CTRL_INTERCEPT_INVLPGA \
226 | SVM_CTRL_INTERCEPT_SHUTDOWN \
227 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
228 | SVM_CTRL_INTERCEPT_VMRUN \
229 | SVM_CTRL_INTERCEPT_SKINIT \
230 | SVM_CTRL_INTERCEPT_WBINVD \
231 | SVM_CTRL_INTERCEPT_MONITOR \
232 | SVM_CTRL_INTERCEPT_MWAIT \
233 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
234 | SVM_CTRL_INTERCEPT_XSETBV)
235
236/** @name VMCB Clean Bits.
237 *
238 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
239 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
240 * memory.
241 *
242 * @{ */
243/** All intercepts vectors, TSC offset, PAUSE filter counter. */
244#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
245/** I/O permission bitmap, MSR permission bitmap. */
246#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
247/** ASID. */
248#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
249/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
250V_INTR_VECTOR. */
251#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
252/** Nested Paging: Nested CR3 (nCR3), PAT. */
253#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
254/** Control registers (CR0, CR3, CR4, EFER). */
255#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
256/** Debug registers (DR6, DR7). */
257#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
258/** GDT, IDT limit and base. */
259#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
260/** Segment register: CS, SS, DS, ES limit and base. */
261#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
262/** CR2.*/
263#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
264/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
265#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
266/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
267PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
268#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
269/** Mask of all valid VMCB Clean bits. */
270#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
271 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
272 | HMSVM_VMCB_CLEAN_ASID \
273 | HMSVM_VMCB_CLEAN_INT_CTRL \
274 | HMSVM_VMCB_CLEAN_NP \
275 | HMSVM_VMCB_CLEAN_CRX_EFER \
276 | HMSVM_VMCB_CLEAN_DRX \
277 | HMSVM_VMCB_CLEAN_DT \
278 | HMSVM_VMCB_CLEAN_SEG \
279 | HMSVM_VMCB_CLEAN_CR2 \
280 | HMSVM_VMCB_CLEAN_LBR \
281 | HMSVM_VMCB_CLEAN_AVIC)
282/** @} */
283
284/** @name SVM transient.
285 *
286 * A state structure for holding miscellaneous information across AMD-V
287 * VMRUN/\#VMEXIT operation, restored after the transition.
288 *
289 * @{ */
290typedef struct SVMTRANSIENT
291{
292 /** The host's rflags/eflags. */
293 RTCCUINTREG fEFlags;
294#if HC_ARCH_BITS == 32
295 uint32_t u32Alignment0;
296#endif
297
298 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
299 uint64_t u64ExitCode;
300 /** The guest's TPR value used for TPR shadowing. */
301 uint8_t u8GuestTpr;
302 /** Alignment. */
303 uint8_t abAlignment0[7];
304
305 /** Pointer to the currently executing VMCB. */
306 PSVMVMCB pVmcb;
307 /** Whether we are currently executing a nested-guest. */
308 bool fIsNestedGuest;
309
310 /** Whether the guest debug state was active at the time of \#VMEXIT. */
311 bool fWasGuestDebugStateActive;
312 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
313 bool fWasHyperDebugStateActive;
314 /** Whether the TSC offset mode needs to be updated. */
315 bool fUpdateTscOffsetting;
316 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
317 bool fRestoreTscAuxMsr;
318 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
319 * contributary exception or a page-fault. */
320 bool fVectoringDoublePF;
321 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
322 * external interrupt or NMI. */
323 bool fVectoringPF;
324} SVMTRANSIENT, *PSVMTRANSIENT;
325AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
326AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
327/** @} */
328
329/**
330 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
331 */
332typedef enum SVMMSREXITREAD
333{
334 /** Reading this MSR causes a \#VMEXIT. */
335 SVMMSREXIT_INTERCEPT_READ = 0xb,
336 /** Reading this MSR does not cause a \#VMEXIT. */
337 SVMMSREXIT_PASSTHRU_READ
338} SVMMSREXITREAD;
339
340/**
341 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
342 */
343typedef enum SVMMSREXITWRITE
344{
345 /** Writing to this MSR causes a \#VMEXIT. */
346 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
347 /** Writing to this MSR does not cause a \#VMEXIT. */
348 SVMMSREXIT_PASSTHRU_WRITE
349} SVMMSREXITWRITE;
350
351/**
352 * SVM \#VMEXIT handler.
353 *
354 * @returns VBox status code.
355 * @param pVCpu The cross context virtual CPU structure.
356 * @param pSvmTransient Pointer to the SVM-transient structure.
357 */
358typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
359
360
361/*********************************************************************************************************************************
362* Internal Functions *
363*********************************************************************************************************************************/
364static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
365static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState);
366
367
368/** @name \#VMEXIT handlers.
369 * @{
370 */
371static FNSVMEXITHANDLER hmR0SvmExitIntr;
372static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
373static FNSVMEXITHANDLER hmR0SvmExitInvd;
374static FNSVMEXITHANDLER hmR0SvmExitCpuid;
375static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
376static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
377static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
378static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
379static FNSVMEXITHANDLER hmR0SvmExitHlt;
380static FNSVMEXITHANDLER hmR0SvmExitMonitor;
381static FNSVMEXITHANDLER hmR0SvmExitMwait;
382static FNSVMEXITHANDLER hmR0SvmExitShutdown;
383static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
384static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
385static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
386static FNSVMEXITHANDLER hmR0SvmExitMsr;
387static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
388static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
389static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
390static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
391static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
392static FNSVMEXITHANDLER hmR0SvmExitVIntr;
393static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
394static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
395static FNSVMEXITHANDLER hmR0SvmExitPause;
396static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
397static FNSVMEXITHANDLER hmR0SvmExitIret;
398static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
399static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
400static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
401static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
402static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
403static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
404static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
405#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
406static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
407#endif
408#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
409static FNSVMEXITHANDLER hmR0SvmExitClgi;
410static FNSVMEXITHANDLER hmR0SvmExitStgi;
411static FNSVMEXITHANDLER hmR0SvmExitVmload;
412static FNSVMEXITHANDLER hmR0SvmExitVmsave;
413static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
414static FNSVMEXITHANDLER hmR0SvmExitVmrun;
415static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
416static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
417#endif
418/** @} */
419
420static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
421#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
422static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
423#endif
424
425
426/*********************************************************************************************************************************
427* Global Variables *
428*********************************************************************************************************************************/
429/** Ring-0 memory object for the IO bitmap. */
430static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
431/** Physical address of the IO bitmap. */
432static RTHCPHYS g_HCPhysIOBitmap;
433/** Pointer to the IO bitmap. */
434static R0PTRTYPE(void *) g_pvIOBitmap;
435
436#ifdef VBOX_STRICT
437# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
438# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
439# define HMSVM_LOG_CS RT_BIT_32(2)
440# define HMSVM_LOG_SS RT_BIT_32(3)
441# define HMSVM_LOG_FS RT_BIT_32(4)
442# define HMSVM_LOG_GS RT_BIT_32(5)
443# define HMSVM_LOG_LBR RT_BIT_32(6)
444# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
445 | HMSVM_LOG_CR_REGS \
446 | HMSVM_LOG_CS \
447 | HMSVM_LOG_SS \
448 | HMSVM_LOG_FS \
449 | HMSVM_LOG_GS \
450 | HMSVM_LOG_LBR)
451
452/**
453 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
454 *
455 * @param pVCpu The cross context virtual CPU structure.
456 * @param pVmcb Pointer to the VM control block.
457 * @param pszPrefix Log prefix.
458 * @param fFlags Log flags, see HMSVM_LOG_XXX.
459 * @param uVerbose The verbosity level, currently unused.
460 */
461static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
462{
463 RT_NOREF2(pVCpu, uVerbose);
464 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
465
466 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
467 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
468
469 if (fFlags & HMSVM_LOG_RBP_RSP)
470 {
471 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
472 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
473 }
474
475 if (fFlags & HMSVM_LOG_CR_REGS)
476 {
477 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
478 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
479 }
480
481 if (fFlags & HMSVM_LOG_CS)
482 {
483 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
484 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
485 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
486 }
487 if (fFlags & HMSVM_LOG_SS)
488 {
489 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
490 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
491 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
492 }
493 if (fFlags & HMSVM_LOG_FS)
494 {
495 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
496 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
497 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
498 }
499 if (fFlags & HMSVM_LOG_GS)
500 {
501 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
502 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
503 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
504 }
505
506 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
507 if (fFlags & HMSVM_LOG_LBR)
508 {
509 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
510 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
511 }
512 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
513}
514#endif /* VBOX_STRICT */
515
516
517/**
518 * Sets up and activates AMD-V on the current CPU.
519 *
520 * @returns VBox status code.
521 * @param pHostCpu The HM physical-CPU structure.
522 * @param pVM The cross context VM structure. Can be
523 * NULL after a resume!
524 * @param pvCpuPage Pointer to the global CPU page.
525 * @param HCPhysCpuPage Physical address of the global CPU page.
526 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
527 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
528 * unused).
529 */
530VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
531 PCSUPHWVIRTMSRS pHwvirtMsrs)
532{
533 Assert(!fEnabledByHost);
534 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
535 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
536 Assert(pvCpuPage); NOREF(pvCpuPage);
537 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
538
539 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
540
541 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
542 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
543
544 /*
545 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
546 */
547 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
548 if (u64HostEfer & MSR_K6_EFER_SVME)
549 {
550 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
551 if ( pVM
552 && pVM->hm.s.svm.fIgnoreInUseError)
553 pHostCpu->fIgnoreAMDVInUseError = true;
554
555 if (!pHostCpu->fIgnoreAMDVInUseError)
556 {
557 ASMSetFlags(fEFlags);
558 return VERR_SVM_IN_USE;
559 }
560 }
561
562 /* Turn on AMD-V in the EFER MSR. */
563 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
564
565 /* Write the physical page address where the CPU will store the host state while executing the VM. */
566 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
567
568 /* Restore interrupts. */
569 ASMSetFlags(fEFlags);
570
571 /*
572 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
573 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
574 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
575 * entirely with before executing any guest code.
576 */
577 pHostCpu->fFlushAsidBeforeUse = true;
578
579 /*
580 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
581 */
582 ++pHostCpu->cTlbFlushes;
583
584 return VINF_SUCCESS;
585}
586
587
588/**
589 * Deactivates AMD-V on the current CPU.
590 *
591 * @returns VBox status code.
592 * @param pvCpuPage Pointer to the global CPU page.
593 * @param HCPhysCpuPage Physical address of the global CPU page.
594 */
595VMMR0DECL(int) SVMR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
596{
597 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
598 AssertReturn( HCPhysCpuPage
599 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
600 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
601
602 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
603 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
604
605 /* Turn off AMD-V in the EFER MSR. */
606 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
607 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
608
609 /* Invalidate host state physical address. */
610 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
611
612 /* Restore interrupts. */
613 ASMSetFlags(fEFlags);
614
615 return VINF_SUCCESS;
616}
617
618
619/**
620 * Does global AMD-V initialization (called during module initialization).
621 *
622 * @returns VBox status code.
623 */
624VMMR0DECL(int) SVMR0GlobalInit(void)
625{
626 /*
627 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
628 * intercept all IO accesses, it's done once globally here instead of per-VM.
629 */
630 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
631 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
632 if (RT_FAILURE(rc))
633 return rc;
634
635 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
636 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
637
638 /* Set all bits to intercept all IO accesses. */
639 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
640
641 return VINF_SUCCESS;
642}
643
644
645/**
646 * Does global AMD-V termination (called during module termination).
647 */
648VMMR0DECL(void) SVMR0GlobalTerm(void)
649{
650 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
651 {
652 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
653 g_pvIOBitmap = NULL;
654 g_HCPhysIOBitmap = 0;
655 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
656 }
657}
658
659
660/**
661 * Frees any allocated per-VCPU structures for a VM.
662 *
663 * @param pVM The cross context VM structure.
664 */
665DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
666{
667 for (uint32_t i = 0; i < pVM->cCpus; i++)
668 {
669 PVMCPU pVCpu = &pVM->aCpus[i];
670 AssertPtr(pVCpu);
671
672 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
673 {
674 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
675 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
676 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
677 }
678
679 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
680 {
681 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
682 pVCpu->hm.s.svm.pVmcb = NULL;
683 pVCpu->hm.s.svm.HCPhysVmcb = 0;
684 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
690 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
691 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
692 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
693 }
694 }
695}
696
697
698/**
699 * Does per-VM AMD-V initialization.
700 *
701 * @returns VBox status code.
702 * @param pVM The cross context VM structure.
703 */
704VMMR0DECL(int) SVMR0InitVM(PVM pVM)
705{
706 int rc = VERR_INTERNAL_ERROR_5;
707
708 /*
709 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
710 */
711 uint32_t u32Family;
712 uint32_t u32Model;
713 uint32_t u32Stepping;
714 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
715 {
716 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
717 pVM->hm.s.svm.fAlwaysFlushTLB = true;
718 }
719
720 /*
721 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
722 */
723 for (VMCPUID i = 0; i < pVM->cCpus; i++)
724 {
725 PVMCPU pVCpu = &pVM->aCpus[i];
726 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
727 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
728 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
729 }
730
731 for (VMCPUID i = 0; i < pVM->cCpus; i++)
732 {
733 PVMCPU pVCpu = &pVM->aCpus[i];
734
735 /*
736 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
737 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
738 */
739 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
740 if (RT_FAILURE(rc))
741 goto failure_cleanup;
742
743 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
744 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
745 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
746 ASMMemZeroPage(pvVmcbHost);
747
748 /*
749 * Allocate one page for the guest-state VMCB.
750 */
751 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
752 if (RT_FAILURE(rc))
753 goto failure_cleanup;
754
755 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
756 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
757 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
758 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
759
760 /*
761 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
762 * SVM to not require one.
763 */
764 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
765 false /* fExecutable */);
766 if (RT_FAILURE(rc))
767 goto failure_cleanup;
768
769 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
770 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
771 /* Set all bits to intercept all MSR accesses (changed later on). */
772 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
773 }
774
775 return VINF_SUCCESS;
776
777failure_cleanup:
778 hmR0SvmFreeStructs(pVM);
779 return rc;
780}
781
782
783/**
784 * Does per-VM AMD-V termination.
785 *
786 * @returns VBox status code.
787 * @param pVM The cross context VM structure.
788 */
789VMMR0DECL(int) SVMR0TermVM(PVM pVM)
790{
791 hmR0SvmFreeStructs(pVM);
792 return VINF_SUCCESS;
793}
794
795
796/**
797 * Returns whether the VMCB Clean Bits feature is supported.
798 *
799 * @return @c true if supported, @c false otherwise.
800 * @param pVCpu The cross context virtual CPU structure.
801 */
802DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu)
803{
804 PVM pVM = pVCpu->CTX_SUFF(pVM);
805#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
806 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
807 {
808 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
809 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
810 }
811#endif
812 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
813}
814
815
816/**
817 * Returns whether the decode assists feature is supported.
818 *
819 * @return @c true if supported, @c false otherwise.
820 * @param pVCpu The cross context virtual CPU structure.
821 */
822DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu)
823{
824 PVM pVM = pVCpu->CTX_SUFF(pVM);
825#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
826 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
827 {
828 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
829 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
830 }
831#endif
832 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
833}
834
835
836/**
837 * Returns whether the NRIP_SAVE feature is supported.
838 *
839 * @return @c true if supported, @c false otherwise.
840 * @param pVCpu The cross context virtual CPU structure.
841 */
842DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu)
843{
844 PVM pVM = pVCpu->CTX_SUFF(pVM);
845#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
846 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
847 {
848 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
849 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
850 }
851#endif
852 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
853}
854
855
856/**
857 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
858 *
859 * @param pVCpu The cross context virtual CPU structure.
860 * @param pbMsrBitmap Pointer to the MSR bitmap.
861 * @param idMsr The MSR for which the permissions are being set.
862 * @param enmRead MSR read permissions.
863 * @param enmWrite MSR write permissions.
864 *
865 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
866 * caller needs to take care of this.
867 */
868static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
869 SVMMSREXITWRITE enmWrite)
870{
871 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
872 uint16_t offMsrpm;
873 uint8_t uMsrpmBit;
874 int rc = HMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
875 AssertRC(rc);
876
877 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
878 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
879
880 pbMsrBitmap += offMsrpm;
881 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
882 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
883 else
884 {
885 if (!fInNestedGuestMode)
886 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
887#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
888 else
889 {
890 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
891 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
892 pbNstGstMsrBitmap += offMsrpm;
893 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
894 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
895 else
896 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
897 }
898#endif
899 }
900
901 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
902 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
903 else
904 {
905 if (!fInNestedGuestMode)
906 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
907#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
908 else
909 {
910 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
911 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
912 pbNstGstMsrBitmap += offMsrpm;
913 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
914 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
915 else
916 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
917 }
918#endif
919 }
920}
921
922
923/**
924 * Sets up AMD-V for the specified VM.
925 * This function is only called once per-VM during initalization.
926 *
927 * @returns VBox status code.
928 * @param pVM The cross context VM structure.
929 */
930VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
931{
932 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
933 AssertReturn(pVM, VERR_INVALID_PARAMETER);
934 Assert(pVM->hm.s.svm.fSupported);
935
936 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
937 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
938 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
939
940 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
941 bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
942
943#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
944 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
945 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
946
947 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
948 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
949#endif
950
951 PVMCPU pVCpu = &pVM->aCpus[0];
952 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
953 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[0]\n"), VERR_SVM_INVALID_PVMCB);
954 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
955
956 /* Always trap #AC for reasons of security. */
957 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
958
959 /* Always trap #DB for reasons of security. */
960 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
961
962 /* Trap exceptions unconditionally (debug purposes). */
963#ifdef HMSVM_ALWAYS_TRAP_PF
964 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
965#endif
966#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
967 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
968 pVmcbCtrl->u32InterceptXcpt |= 0
969 | RT_BIT(X86_XCPT_BP)
970 | RT_BIT(X86_XCPT_DE)
971 | RT_BIT(X86_XCPT_NM)
972 | RT_BIT(X86_XCPT_UD)
973 | RT_BIT(X86_XCPT_NP)
974 | RT_BIT(X86_XCPT_SS)
975 | RT_BIT(X86_XCPT_GP)
976 | RT_BIT(X86_XCPT_PF)
977 | RT_BIT(X86_XCPT_MF)
978 ;
979#endif
980
981 /* Apply the exceptions intercepts needed by the GIM provider. */
982 if (pVCpu->hm.s.fGIMTrapXcptUD)
983 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
984
985 /* The mesa 3d driver hack needs #GP. */
986 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
987 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
988
989 /* Set up unconditional intercepts and conditions. */
990 pVmcbCtrl->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
991 | SVM_CTRL_INTERCEPT_VMMCALL;
992
993#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
994 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
995#endif
996
997#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
998 /* Virtualized VMSAVE/VMLOAD. */
999 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
1000 if (!fUseVirtVmsaveVmload)
1001 {
1002 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
1003 | SVM_CTRL_INTERCEPT_VMLOAD;
1004 }
1005
1006 /* Virtual GIF. */
1007 pVmcbCtrl->IntCtrl.n.u1VGifEnable = fUseVGif;
1008 if (!fUseVGif)
1009 {
1010 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
1011 | SVM_CTRL_INTERCEPT_STGI;
1012 }
1013#endif
1014
1015 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1016 pVmcbCtrl->u16InterceptWrCRx = RT_BIT(4);
1017
1018 /* Intercept all DRx reads and writes by default. Changed later on. */
1019 pVmcbCtrl->u16InterceptRdDRx = 0xffff;
1020 pVmcbCtrl->u16InterceptWrDRx = 0xffff;
1021
1022 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1023 pVmcbCtrl->IntCtrl.n.u1VIntrMasking = 1;
1024
1025 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1026 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1027 pVmcbCtrl->IntCtrl.n.u1IgnoreTPR = 1;
1028
1029 /* Set the IO permission bitmap physical addresses. */
1030 pVmcbCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1031
1032 /* LBR virtualization. */
1033 pVmcbCtrl->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1034
1035 /* The host ASID MBZ, for the guest start with 1. */
1036 pVmcbCtrl->TLBCtrl.n.u32ASID = 1;
1037
1038 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1039 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1040
1041 /* Without Nested Paging, we need additionally intercepts. */
1042 if (!pVM->hm.s.fNestedPaging)
1043 {
1044 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1045 pVmcbCtrl->u16InterceptRdCRx |= RT_BIT(3);
1046 pVmcbCtrl->u16InterceptWrCRx |= RT_BIT(3);
1047
1048 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1049 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1050 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1051
1052 /* Page faults must be intercepted to implement shadow paging. */
1053 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1054 }
1055
1056 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1057 if (fUsePauseFilter)
1058 {
1059 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1060 pVmcbCtrl->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1061 if (fPauseFilterThreshold)
1062 pVmcbCtrl->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1063 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1064 }
1065
1066 /*
1067 * Setup the MSR permission bitmap.
1068 * The following MSRs are saved/restored automatically during the world-switch.
1069 * Don't intercept guest read/write accesses to these MSRs.
1070 */
1071 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1072 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1073 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1074 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1075 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1076 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1077 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1078 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1079 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1080 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1081 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1082 pVmcbCtrl->u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
1083
1084 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1085 Assert(pVmcbCtrl->u32VmcbCleanBits == 0);
1086
1087 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1088 {
1089 PVMCPU pVCpuCur = &pVM->aCpus[i];
1090 PSVMVMCB pVmcbCur = pVM->aCpus[i].hm.s.svm.pVmcb;
1091 AssertMsgReturn(pVmcbCur, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
1092 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1093
1094 /* Copy the VMCB control area. */
1095 memcpy(pVmcbCtrlCur, pVmcbCtrl, sizeof(*pVmcbCtrlCur));
1096
1097 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1098 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
1099 memcpy(pbMsrBitmapCur, pbMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1100 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
1101
1102 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1103 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1104
1105 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1106 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu->hm.s.fGIMTrapXcptUD);
1107 }
1108
1109#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1110 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1111 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1112#else
1113 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1114#endif
1115 return VINF_SUCCESS;
1116}
1117
1118
1119/**
1120 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1121 *
1122 * @returns Pointer to the current context VMCB.
1123 * @param pVCpu The cross context virtual CPU structure.
1124 */
1125DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu)
1126{
1127#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1128 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1129 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1130#endif
1131 return pVCpu->hm.s.svm.pVmcb;
1132}
1133
1134
1135/**
1136 * Gets a pointer to the nested-guest VMCB cache.
1137 *
1138 * @returns Pointer to the nested-guest VMCB cache.
1139 * @param pVCpu The cross context virtual CPU structure.
1140 */
1141DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPU pVCpu)
1142{
1143#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1144 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1145 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1146#else
1147 RT_NOREF(pVCpu);
1148 return NULL;
1149#endif
1150}
1151
1152
1153/**
1154 * Invalidates a guest page by guest virtual address.
1155 *
1156 * @returns VBox status code.
1157 * @param pVCpu The cross context virtual CPU structure.
1158 * @param GCVirt Guest virtual address of the page to invalidate.
1159 */
1160VMMR0DECL(int) SVMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1161{
1162 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1163
1164 bool const fFlushPending = pVCpu->CTX_SUFF(pVM)->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1165
1166 /* Skip it if a TLB flush is already pending. */
1167 if (!fFlushPending)
1168 {
1169 Log4Func(("%#RGv\n", GCVirt));
1170
1171 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1172 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1173
1174#if HC_ARCH_BITS == 32
1175 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
1176 if (CPUMIsGuestInLongMode(pVCpu))
1177 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1178 else
1179#endif
1180 {
1181 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1182 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1183 }
1184 }
1185 return VINF_SUCCESS;
1186}
1187
1188
1189/**
1190 * Flushes the appropriate tagged-TLB entries.
1191 *
1192 * @param pHostCpu The HM physical-CPU structure.
1193 * @param pVCpu The cross context virtual CPU structure.
1194 * @param pVmcb Pointer to the VM control block.
1195 */
1196static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PSVMVMCB pVmcb)
1197{
1198 /*
1199 * Force a TLB flush for the first world switch if the current CPU differs from the one
1200 * we ran on last. This can happen both for start & resume due to long jumps back to
1201 * ring-3.
1202 *
1203 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1204 * correlation between it and the physical CPU.
1205 *
1206 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1207 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1208 */
1209 bool fNewAsid = false;
1210 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1211 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1212 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
1213#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1214 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1215#endif
1216 )
1217 {
1218 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1219 pVCpu->hm.s.fForceTLBFlush = true;
1220 fNewAsid = true;
1221 }
1222
1223 /* Set TLB flush state as checked until we return from the world switch. */
1224 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1225
1226 /* Check for explicit TLB flushes. */
1227 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1228 {
1229 pVCpu->hm.s.fForceTLBFlush = true;
1230 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1231 }
1232
1233 /*
1234 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1235 * This Host CPU requirement takes precedence.
1236 */
1237 PVM pVM = pVCpu->CTX_SUFF(pVM);
1238 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1239 {
1240 pHostCpu->uCurrentAsid = 1;
1241 pVCpu->hm.s.uCurrentAsid = 1;
1242 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1243 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1244 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1245
1246 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1247 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1248 }
1249 else
1250 {
1251 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1252 if (pVCpu->hm.s.fForceTLBFlush)
1253 {
1254 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1255 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1256
1257 if (fNewAsid)
1258 {
1259 ++pHostCpu->uCurrentAsid;
1260
1261 bool fHitASIDLimit = false;
1262 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1263 {
1264 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1265 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1266 fHitASIDLimit = true;
1267 }
1268
1269 if ( fHitASIDLimit
1270 || pHostCpu->fFlushAsidBeforeUse)
1271 {
1272 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1273 pHostCpu->fFlushAsidBeforeUse = false;
1274 }
1275
1276 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1277 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1278 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1279 }
1280 else
1281 {
1282 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1283 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1284 else
1285 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1286 }
1287
1288 pVCpu->hm.s.fForceTLBFlush = false;
1289 }
1290 }
1291
1292 /* Update VMCB with the ASID. */
1293 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1294 {
1295 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1296 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1297 }
1298
1299 AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
1300 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
1301 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1302 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1303 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1304 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1305 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1306 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1307
1308#ifdef VBOX_WITH_STATISTICS
1309 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1310 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1311 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1312 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1313 {
1314 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1315 }
1316 else
1317 {
1318 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1319 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1320 }
1321#endif
1322}
1323
1324
1325/** @name 64-bit guest on 32-bit host OS helper functions.
1326 *
1327 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1328 * mode (code segment, paging). These wrappers/helpers perform the necessary
1329 * bits for the 32->64 switcher.
1330 *
1331 * @{ */
1332#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1333/**
1334 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1335 *
1336 * @returns VBox status code.
1337 * @param HCPhysVmcbHost Physical address of host VMCB.
1338 * @param HCPhysVmcb Physical address of the VMCB.
1339 * @param pCtx Pointer to the guest-CPU context.
1340 * @param pVM The cross context VM structure.
1341 * @param pVCpu The cross context virtual CPU structure.
1342 */
1343DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1344{
1345 RT_NOREF2(pVM, pCtx);
1346 uint32_t aParam[8];
1347 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1348 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1349 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1350 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1351 aParam[4] = VM_RC_ADDR(pVM, pVM);
1352 aParam[5] = 0;
1353 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1354 aParam[7] = 0;
1355
1356 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1357}
1358
1359
1360/**
1361 * Executes the specified VMRUN handler in 64-bit mode.
1362 *
1363 * @returns VBox status code.
1364 * @param pVCpu The cross context virtual CPU structure.
1365 * @param enmOp The operation to perform.
1366 * @param cParams Number of parameters.
1367 * @param paParam Array of 32-bit parameters.
1368 */
1369VMMR0DECL(int) SVMR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
1370{
1371 PVM pVM = pVCpu->CTX_SUFF(pVM);
1372 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1373 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1374
1375 /* Disable interrupts. */
1376 RTHCUINTREG const fEFlags = ASMIntDisableFlags();
1377
1378#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1379 RTCPUID idHostCpu = RTMpCpuId();
1380 CPUMR0SetLApic(pVCpu, idHostCpu);
1381#endif
1382
1383 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1384 CPUMSetHyperEIP(pVCpu, enmOp);
1385 for (int i = (int)cParams - 1; i >= 0; i--)
1386 CPUMPushHyper(pVCpu, paParam[i]);
1387
1388 /* Call the switcher. */
1389 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1390 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
1391 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1392
1393 /* Restore interrupts. */
1394 ASMSetFlags(fEFlags);
1395 return rc;
1396}
1397
1398#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1399/** @} */
1400
1401
1402/**
1403 * Sets an exception intercept in the specified VMCB.
1404 *
1405 * @param pVmcb Pointer to the VM control block.
1406 * @param uXcpt The exception (X86_XCPT_*).
1407 */
1408DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1409{
1410 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1411 {
1412 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1413 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1414 }
1415}
1416
1417
1418/**
1419 * Clears an exception intercept in the specified VMCB.
1420 *
1421 * @param pVCpu The cross context virtual CPU structure.
1422 * @param pVmcb Pointer to the VM control block.
1423 * @param uXcpt The exception (X86_XCPT_*).
1424 *
1425 * @remarks This takes into account if we're executing a nested-guest and only
1426 * removes the exception intercept if both the guest -and- nested-guest
1427 * are not intercepting it.
1428 */
1429DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1430{
1431 Assert(uXcpt != X86_XCPT_DB);
1432 Assert(uXcpt != X86_XCPT_AC);
1433 Assert(uXcpt != X86_XCPT_GP);
1434#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1435 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1436 {
1437 bool fRemove = true;
1438# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1439 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1440 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1441 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1442 {
1443 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1444 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1445 }
1446# else
1447 RT_NOREF(pVCpu);
1448# endif
1449 if (fRemove)
1450 {
1451 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1452 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1453 }
1454 }
1455#else
1456 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1457#endif
1458}
1459
1460
1461/**
1462 * Sets a control intercept in the specified VMCB.
1463 *
1464 * @param pVmcb Pointer to the VM control block.
1465 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1466 */
1467DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1468{
1469 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1470 {
1471 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1472 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1473 }
1474}
1475
1476
1477/**
1478 * Clears a control intercept in the specified VMCB.
1479 *
1480 * @returns @c true if the intercept is still set, @c false otherwise.
1481 * @param pVCpu The cross context virtual CPU structure.
1482 * @param pVmcb Pointer to the VM control block.
1483 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1484 *
1485 * @remarks This takes into account if we're executing a nested-guest and only
1486 * removes the control intercept if both the guest -and- nested-guest
1487 * are not intercepting it.
1488 */
1489static bool hmR0SvmClearCtrlIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1490{
1491 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1492 {
1493 bool fRemove = true;
1494#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1495 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1496 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1497 {
1498 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1499 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1500 }
1501#else
1502 RT_NOREF(pVCpu);
1503#endif
1504 if (fRemove)
1505 {
1506 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1507 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1508 }
1509 }
1510
1511 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1512}
1513
1514
1515/**
1516 * Exports the guest (or nested-guest) CR0 into the VMCB.
1517 *
1518 * @param pVCpu The cross context virtual CPU structure.
1519 * @param pVmcb Pointer to the VM control block.
1520 *
1521 * @remarks This assumes we always pre-load the guest FPU.
1522 * @remarks No-long-jump zone!!!
1523 */
1524static void hmR0SvmExportGuestCR0(PVMCPU pVCpu, PSVMVMCB pVmcb)
1525{
1526 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1527
1528 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1529 uint64_t const uGuestCr0 = pCtx->cr0;
1530 uint64_t uShadowCr0 = uGuestCr0;
1531
1532 /* Always enable caching. */
1533 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1534
1535 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1536 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1537 {
1538 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1539 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1540 }
1541
1542 /*
1543 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1544 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1545 * see @bugref{7243#c103}.
1546 */
1547 if (!(uGuestCr0 & X86_CR0_NE))
1548 {
1549 uShadowCr0 |= X86_CR0_NE;
1550 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1551 }
1552 else
1553 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1554
1555 /*
1556 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1557 *
1558 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1559 * see @bugref{6944}.
1560 *
1561 * We also don't ever want to honor weird things like cache disable from the guest.
1562 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1563 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1564 */
1565 if (uShadowCr0 == uGuestCr0)
1566 {
1567 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1568 {
1569 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1570 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1571 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1572 }
1573 else
1574 {
1575 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1576 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1577 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1578 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1579 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1580 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1581 }
1582 }
1583 else
1584 {
1585 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1586 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1587 }
1588 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1589
1590 Assert(!RT_HI_U32(uShadowCr0));
1591 if (pVmcb->guest.u64CR0 != uShadowCr0)
1592 {
1593 pVmcb->guest.u64CR0 = uShadowCr0;
1594 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1595 }
1596}
1597
1598
1599/**
1600 * Exports the guest (or nested-guest) CR3 into the VMCB.
1601 *
1602 * @param pVCpu The cross context virtual CPU structure.
1603 * @param pVmcb Pointer to the VM control block.
1604 *
1605 * @remarks No-long-jump zone!!!
1606 */
1607static void hmR0SvmExportGuestCR3(PVMCPU pVCpu, PSVMVMCB pVmcb)
1608{
1609 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1610
1611 PVM pVM = pVCpu->CTX_SUFF(pVM);
1612 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1613 if (pVM->hm.s.fNestedPaging)
1614 {
1615 PGMMODE enmShwPagingMode;
1616#if HC_ARCH_BITS == 32
1617 if (CPUMIsGuestInLongModeEx(pCtx))
1618 enmShwPagingMode = PGMMODE_AMD64_NX;
1619 else
1620#endif
1621 enmShwPagingMode = PGMGetHostMode(pVM);
1622
1623 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1624 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1625 pVmcb->guest.u64CR3 = pCtx->cr3;
1626 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1627 }
1628 else
1629 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1630
1631 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1632}
1633
1634
1635/**
1636 * Exports the guest (or nested-guest) CR4 into the VMCB.
1637 *
1638 * @param pVCpu The cross context virtual CPU structure.
1639 * @param pVmcb Pointer to the VM control block.
1640 *
1641 * @remarks No-long-jump zone!!!
1642 */
1643static int hmR0SvmExportGuestCR4(PVMCPU pVCpu, PSVMVMCB pVmcb)
1644{
1645 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1646
1647 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1648 uint64_t uShadowCr4 = pCtx->cr4;
1649 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1650 {
1651 switch (pVCpu->hm.s.enmShadowMode)
1652 {
1653 case PGMMODE_REAL:
1654 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1655 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1656
1657 case PGMMODE_32_BIT: /* 32-bit paging. */
1658 uShadowCr4 &= ~X86_CR4_PAE;
1659 break;
1660
1661 case PGMMODE_PAE: /* PAE paging. */
1662 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1663 /** Must use PAE paging as we could use physical memory > 4 GB */
1664 uShadowCr4 |= X86_CR4_PAE;
1665 break;
1666
1667 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1668 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1669#ifdef VBOX_ENABLE_64_BITS_GUESTS
1670 break;
1671#else
1672 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1673#endif
1674
1675 default: /* shut up gcc */
1676 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1677 }
1678 }
1679
1680 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1681 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1682
1683 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1684 if (uShadowCr4 == pCtx->cr4)
1685 {
1686 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1687 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1688 else
1689 {
1690 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1691 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1692 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1693 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1694 }
1695 }
1696 else
1697 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1698
1699 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1700 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1701
1702 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1703 Assert(!RT_HI_U32(uShadowCr4));
1704 pVmcb->guest.u64CR4 = uShadowCr4;
1705 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1706
1707 return VINF_SUCCESS;
1708}
1709
1710
1711/**
1712 * Exports the guest (or nested-guest) control registers into the VMCB.
1713 *
1714 * @returns VBox status code.
1715 * @param pVCpu The cross context virtual CPU structure.
1716 * @param pVmcb Pointer to the VM control block.
1717 *
1718 * @remarks No-long-jump zone!!!
1719 */
1720static int hmR0SvmExportGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1721{
1722 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1723
1724 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1725 {
1726 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1727 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1728
1729 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1730 {
1731 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1732 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1733 }
1734
1735 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1736 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1737
1738 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1739 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1740 {
1741 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1742 if (RT_FAILURE(rc))
1743 return rc;
1744 }
1745
1746 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1747 }
1748 return VINF_SUCCESS;
1749}
1750
1751
1752/**
1753 * Exports the guest (or nested-guest) segment registers into the VMCB.
1754 *
1755 * @returns VBox status code.
1756 * @param pVCpu The cross context virtual CPU structure.
1757 * @param pVmcb Pointer to the VM control block.
1758 *
1759 * @remarks No-long-jump zone!!!
1760 */
1761static void hmR0SvmExportGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1762{
1763 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1764 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1765
1766 /* Guest segment registers. */
1767 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1768 {
1769 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1770 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1771
1772 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1773 {
1774 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1775 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1776 }
1777
1778 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1779 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1780
1781 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1782 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1783
1784 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1785 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1786
1787 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1788 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1789
1790 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1791 }
1792
1793 /* Guest TR. */
1794 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1795 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1796
1797 /* Guest LDTR. */
1798 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1799 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1800
1801 /* Guest GDTR. */
1802 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1803 {
1804 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1805 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1806 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1807 }
1808
1809 /* Guest IDTR. */
1810 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1811 {
1812 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1813 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1814 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1815 }
1816
1817 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1818 | HM_CHANGED_GUEST_TABLE_MASK);
1819}
1820
1821
1822/**
1823 * Exports the guest (or nested-guest) MSRs into the VMCB.
1824 *
1825 * @param pVCpu The cross context virtual CPU structure.
1826 * @param pVmcb Pointer to the VM control block.
1827 *
1828 * @remarks No-long-jump zone!!!
1829 */
1830static void hmR0SvmExportGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1831{
1832 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1833 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1834
1835 /* Guest Sysenter MSRs. */
1836 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1837 {
1838 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1839 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1840
1841 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1842 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1843
1844 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1845 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1846 }
1847
1848 /*
1849 * Guest EFER MSR.
1850 * AMD-V requires guest EFER.SVME to be set. Weird.
1851 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1852 */
1853 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1854 {
1855 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1856 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1857 }
1858
1859 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1860 if ( !CPUMIsGuestInLongModeEx(pCtx)
1861 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1862 {
1863 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1864 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1865 }
1866
1867 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1868 {
1869 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1870 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1871 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1872 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1873 }
1874
1875 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1876 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1877
1878 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1879 | HM_CHANGED_GUEST_EFER_MSR
1880 | HM_CHANGED_GUEST_SYSCALL_MSRS
1881 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1882
1883 /*
1884 * Setup the PAT MSR (applicable for Nested Paging only).
1885 *
1886 * While guests can modify and see the modified values through the shadow values,
1887 * we shall not honor any guest modifications of this MSR to ensure caching is always
1888 * enabled similar to how we clear CR0.CD and NW bits.
1889 *
1890 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1891 */
1892 pVmcb->guest.u64PAT = MSR_IA32_CR_PAT_INIT_VAL;
1893
1894 /* Enable the last branch record bit if LBR virtualization is enabled. */
1895 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1896 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1897}
1898
1899
1900/**
1901 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1902 * the necessary intercepts accordingly.
1903 *
1904 * @param pVCpu The cross context virtual CPU structure.
1905 * @param pVmcb Pointer to the VM control block.
1906 *
1907 * @remarks No-long-jump zone!!!
1908 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1909 */
1910static void hmR0SvmExportSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb)
1911{
1912 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1913
1914 /*
1915 * Anyone single stepping on the host side? If so, we'll have to use the
1916 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1917 * the VMM level like the VT-x implementations does.
1918 */
1919 bool fInterceptMovDRx = false;
1920 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1921 if (fStepping)
1922 {
1923 pVCpu->hm.s.fClearTrapFlag = true;
1924 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1925 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1926 }
1927
1928 if ( fStepping
1929 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1930 {
1931 /*
1932 * Use the combined guest and host DRx values found in the hypervisor
1933 * register set because the debugger has breakpoints active or someone
1934 * is single stepping on the host side.
1935 *
1936 * Note! DBGF expects a clean DR6 state before executing guest code.
1937 */
1938#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1939 if ( CPUMIsGuestInLongModeEx(pCtx)
1940 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1941 {
1942 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1943 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1944 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1945 }
1946 else
1947#endif
1948 if (!CPUMIsHyperDebugStateActive(pVCpu))
1949 {
1950 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1951 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1952 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1953 }
1954
1955 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1956 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1957 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1958 {
1959 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1960 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1961 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1962 }
1963
1964 /** @todo If we cared, we could optimize to allow the guest to read registers
1965 * with the same values. */
1966 fInterceptMovDRx = true;
1967 pVCpu->hm.s.fUsingHyperDR7 = true;
1968 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1969 }
1970 else
1971 {
1972 /*
1973 * Update DR6, DR7 with the guest values if necessary.
1974 */
1975 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1976 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1977 {
1978 pVmcb->guest.u64DR7 = pCtx->dr[7];
1979 pVmcb->guest.u64DR6 = pCtx->dr[6];
1980 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1981 }
1982 pVCpu->hm.s.fUsingHyperDR7 = false;
1983
1984 /*
1985 * If the guest has enabled debug registers, we need to load them prior to
1986 * executing guest code so they'll trigger at the right time.
1987 */
1988 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1989 {
1990#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1991 if ( CPUMIsGuestInLongModeEx(pCtx)
1992 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1993 {
1994 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1995 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1996 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1997 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1998 }
1999 else
2000#endif
2001 if (!CPUMIsGuestDebugStateActive(pVCpu))
2002 {
2003 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
2004 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2005 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2006 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2007 }
2008 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2009 }
2010 /*
2011 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2012 * intercept #DB as DR6 is updated in the VMCB.
2013 *
2014 * Note! If we cared and dared, we could skip intercepting \#DB here.
2015 * However, \#DB shouldn't be performance critical, so we'll play safe
2016 * and keep the code similar to the VT-x code and always intercept it.
2017 */
2018#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2019 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
2020 && !CPUMIsGuestDebugStateActive(pVCpu))
2021#else
2022 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2023#endif
2024 {
2025 fInterceptMovDRx = true;
2026 }
2027 }
2028
2029 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2030 if (fInterceptMovDRx)
2031 {
2032 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2033 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2034 {
2035 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2036 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2037 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2038 }
2039 }
2040 else
2041 {
2042 if ( pVmcb->ctrl.u16InterceptRdDRx
2043 || pVmcb->ctrl.u16InterceptWrDRx)
2044 {
2045 pVmcb->ctrl.u16InterceptRdDRx = 0;
2046 pVmcb->ctrl.u16InterceptWrDRx = 0;
2047 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2048 }
2049 }
2050 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2051}
2052
2053#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2054/**
2055 * Exports the nested-guest hardware virtualization state into the nested-guest
2056 * VMCB.
2057 *
2058 * @param pVCpu The cross context virtual CPU structure.
2059 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2060 *
2061 * @remarks No-long-jump zone!!!
2062 */
2063static void hmR0SvmExportGuestHwvirtStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
2064{
2065 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2066
2067 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2068 {
2069 /*
2070 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2071 * since SVM doesn't have a preemption timer.
2072 *
2073 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2074 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2075 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2076 */
2077 PVM pVM = pVCpu->CTX_SUFF(pVM);
2078 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2079 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2080 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2081 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
2082 {
2083 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2084 pVmcbNstGstCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2085 pVmcbNstGstCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2086 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2087 }
2088 else
2089 {
2090 pVmcbNstGstCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2091 pVmcbNstGstCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2092 }
2093
2094 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2095 }
2096}
2097#endif
2098
2099/**
2100 * Exports the guest APIC TPR state into the VMCB.
2101 *
2102 * @returns VBox status code.
2103 * @param pVCpu The cross context virtual CPU structure.
2104 * @param pVmcb Pointer to the VM control block.
2105 */
2106static int hmR0SvmExportGuestApicTpr(PVMCPU pVCpu, PSVMVMCB pVmcb)
2107{
2108 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2109 {
2110 PVM pVM = pVCpu->CTX_SUFF(pVM);
2111 if ( PDMHasApic(pVM)
2112 && APICIsEnabled(pVCpu))
2113 {
2114 bool fPendingIntr;
2115 uint8_t u8Tpr;
2116 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2117 AssertRCReturn(rc, rc);
2118
2119 /* Assume that we need to trap all TPR accesses and thus need not check on
2120 every #VMEXIT if we should update the TPR. */
2121 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2122 pVCpu->hm.s.svm.fSyncVTpr = false;
2123
2124 if (!pVM->hm.s.fTPRPatchingActive)
2125 {
2126 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2127 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2128
2129 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2130 can deliver the interrupt to the guest. */
2131 if (fPendingIntr)
2132 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2133 else
2134 {
2135 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2136 pVCpu->hm.s.svm.fSyncVTpr = true;
2137 }
2138
2139 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2140 }
2141 else
2142 {
2143 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2144 pVmcb->guest.u64LSTAR = u8Tpr;
2145 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
2146
2147 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2148 if (fPendingIntr)
2149 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2150 else
2151 {
2152 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2153 pVCpu->hm.s.svm.fSyncVTpr = true;
2154 }
2155 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2156 }
2157 }
2158 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2159 }
2160 return VINF_SUCCESS;
2161}
2162
2163
2164/**
2165 * Sets up the exception interrupts required for guest (or nested-guest)
2166 * execution in the VMCB.
2167 *
2168 * @param pVCpu The cross context virtual CPU structure.
2169 * @param pVmcb Pointer to the VM control block.
2170 *
2171 * @remarks No-long-jump zone!!!
2172 */
2173static void hmR0SvmExportGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
2174{
2175 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2176
2177 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2178 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)
2179 {
2180 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2181 if (pVCpu->hm.s.fGIMTrapXcptUD)
2182 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2183 else
2184 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2185
2186 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2187 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2188 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2189 else
2190 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2191
2192 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2193 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS;
2194 }
2195}
2196
2197
2198#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2199/**
2200 * Merges guest and nested-guest intercepts for executing the nested-guest using
2201 * hardware-assisted SVM.
2202 *
2203 * This merges the guest and nested-guest intercepts in a way that if the outer
2204 * guest intercept is set we need to intercept it in the nested-guest as
2205 * well.
2206 *
2207 * @param pVCpu The cross context virtual CPU structure.
2208 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2209 */
2210static void hmR0SvmMergeVmcbCtrlsNested(PVMCPU pVCpu)
2211{
2212 PVM pVM = pVCpu->CTX_SUFF(pVM);
2213 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2214 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2215 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2216
2217 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2218 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2219 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2220
2221 /* Always intercept CR4 writes for tracking PGM mode changes. */
2222 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2223
2224 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2225 if (!pVM->hm.s.fNestedPaging)
2226 {
2227 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2228 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2229 }
2230
2231 /** @todo Figure out debugging with nested-guests, till then just intercept
2232 * all DR[0-15] accesses. */
2233 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2234 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2235
2236 /*
2237 * Merge the guest's exception intercepts into the nested-guest VMCB.
2238 *
2239 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2240 * while executing the nested-guest.
2241 *
2242 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2243 * be tweaked later depending on how we wish to implement breakpoints.
2244 *
2245 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2246 * loaded into their guests, not ours.
2247 *
2248 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2249 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2250 */
2251#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2252 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2253 & ~( RT_BIT(X86_XCPT_UD)
2254 | RT_BIT(X86_XCPT_BP)
2255 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2256#else
2257 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2258#endif
2259
2260 /*
2261 * Adjust intercepts while executing the nested-guest that differ from the
2262 * outer guest intercepts.
2263 *
2264 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2265 * that belong to the nested-guest to the outer guest.
2266 *
2267 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2268 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2269 */
2270 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2271 | SVM_CTRL_INTERCEPT_VMMCALL))
2272 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2273
2274 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2275 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2276
2277 /* Finally, update the VMCB clean bits. */
2278 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2279}
2280#endif
2281
2282
2283/**
2284 * Selects the appropriate function to run guest code.
2285 *
2286 * @returns VBox status code.
2287 * @param pVCpu The cross context virtual CPU structure.
2288 *
2289 * @remarks No-long-jump zone!!!
2290 */
2291static int hmR0SvmSelectVMRunHandler(PVMCPU pVCpu)
2292{
2293 if (CPUMIsGuestInLongMode(pVCpu))
2294 {
2295#ifndef VBOX_ENABLE_64_BITS_GUESTS
2296 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2297#endif
2298 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
2299#if HC_ARCH_BITS == 32
2300 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
2301 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
2302#else
2303 /* 64-bit host or hybrid host. */
2304 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
2305#endif
2306 }
2307 else
2308 {
2309 /* Guest is not in long mode, use the 32-bit handler. */
2310 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2311 }
2312 return VINF_SUCCESS;
2313}
2314
2315
2316/**
2317 * Enters the AMD-V session.
2318 *
2319 * @returns VBox status code.
2320 * @param pVCpu The cross context virtual CPU structure.
2321 */
2322VMMR0DECL(int) SVMR0Enter(PVMCPU pVCpu)
2323{
2324 AssertPtr(pVCpu);
2325 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2326 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2327
2328 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2329 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2330 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2331
2332 pVCpu->hm.s.fLeaveDone = false;
2333 return VINF_SUCCESS;
2334}
2335
2336
2337/**
2338 * Thread-context callback for AMD-V.
2339 *
2340 * @param enmEvent The thread-context event.
2341 * @param pVCpu The cross context virtual CPU structure.
2342 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2343 * @thread EMT(pVCpu)
2344 */
2345VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
2346{
2347 NOREF(fGlobalInit);
2348
2349 switch (enmEvent)
2350 {
2351 case RTTHREADCTXEVENT_OUT:
2352 {
2353 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2354 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2355 VMCPU_ASSERT_EMT(pVCpu);
2356
2357 /* No longjmps (log-flush, locks) in this fragile context. */
2358 VMMRZCallRing3Disable(pVCpu);
2359
2360 if (!pVCpu->hm.s.fLeaveDone)
2361 {
2362 hmR0SvmLeave(pVCpu, false /* fImportState */);
2363 pVCpu->hm.s.fLeaveDone = true;
2364 }
2365
2366 /* Leave HM context, takes care of local init (term). */
2367 int rc = HMR0LeaveCpu(pVCpu);
2368 AssertRC(rc); NOREF(rc);
2369
2370 /* Restore longjmp state. */
2371 VMMRZCallRing3Enable(pVCpu);
2372 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2373 break;
2374 }
2375
2376 case RTTHREADCTXEVENT_IN:
2377 {
2378 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2379 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2380 VMCPU_ASSERT_EMT(pVCpu);
2381
2382 /* No longjmps (log-flush, locks) in this fragile context. */
2383 VMMRZCallRing3Disable(pVCpu);
2384
2385 /*
2386 * Initialize the bare minimum state required for HM. This takes care of
2387 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2388 */
2389 int rc = hmR0EnterCpu(pVCpu);
2390 AssertRC(rc); NOREF(rc);
2391 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2392 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2393
2394 pVCpu->hm.s.fLeaveDone = false;
2395
2396 /* Restore longjmp state. */
2397 VMMRZCallRing3Enable(pVCpu);
2398 break;
2399 }
2400
2401 default:
2402 break;
2403 }
2404}
2405
2406
2407/**
2408 * Saves the host state.
2409 *
2410 * @returns VBox status code.
2411 * @param pVCpu The cross context virtual CPU structure.
2412 *
2413 * @remarks No-long-jump zone!!!
2414 */
2415VMMR0DECL(int) SVMR0ExportHostState(PVMCPU pVCpu)
2416{
2417 NOREF(pVCpu);
2418
2419 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2420 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2421 return VINF_SUCCESS;
2422}
2423
2424
2425/**
2426 * Exports the guest state from the guest-CPU context into the VMCB.
2427 *
2428 * The CPU state will be loaded from these fields on every successful VM-entry.
2429 * Also sets up the appropriate VMRUN function to execute guest code based on
2430 * the guest CPU mode.
2431 *
2432 * @returns VBox status code.
2433 * @param pVCpu The cross context virtual CPU structure.
2434 *
2435 * @remarks No-long-jump zone!!!
2436 */
2437static int hmR0SvmExportGuestState(PVMCPU pVCpu)
2438{
2439 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2440
2441 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2442 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2443
2444 Assert(pVmcb);
2445 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2446
2447 pVmcb->guest.u64RIP = pCtx->rip;
2448 pVmcb->guest.u64RSP = pCtx->rsp;
2449 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2450 pVmcb->guest.u64RAX = pCtx->rax;
2451#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2452 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2453 {
2454 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Hardware supports it. */
2455 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2456 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2457 }
2458#endif
2459
2460 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2461
2462 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2463 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2464
2465 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2466 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2467 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2468
2469 ASMSetFlags(fEFlags);
2470
2471 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2472 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2473 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2474
2475 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2476 AssertRCReturn(rc, rc);
2477
2478 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2479 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2480 | HM_CHANGED_GUEST_RFLAGS
2481 | HM_CHANGED_GUEST_GPRS_MASK
2482 | HM_CHANGED_GUEST_X87
2483 | HM_CHANGED_GUEST_SSE_AVX
2484 | HM_CHANGED_GUEST_OTHER_XSAVE
2485 | HM_CHANGED_GUEST_XCRx
2486 | HM_CHANGED_GUEST_TSC_AUX
2487 | HM_CHANGED_GUEST_OTHER_MSRS
2488 | HM_CHANGED_GUEST_HWVIRT
2489 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS)));
2490
2491#ifdef VBOX_STRICT
2492 /*
2493 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2494 * except for the host-context and/or shared host-guest context bits.
2495 */
2496 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2497 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2498 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2499 ("fCtxChanged=%#RX64\n", fCtxChanged));
2500
2501 /*
2502 * If we need to log state that isn't always imported, we'll need to import them here.
2503 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2504 */
2505 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2506#endif
2507
2508 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2509 return VINF_SUCCESS;
2510}
2511
2512
2513#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2514/**
2515 * Merges the guest and nested-guest MSR permission bitmap.
2516 *
2517 * If the guest is intercepting an MSR we need to intercept it regardless of
2518 * whether the nested-guest is intercepting it or not.
2519 *
2520 * @param pHostCpu The HM physical-CPU structure.
2521 * @param pVCpu The cross context virtual CPU structure.
2522 *
2523 * @remarks No-long-jmp zone!!!
2524 */
2525DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2526{
2527 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
2528 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2529 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2530
2531 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2532 uint32_t const offRsvdQwords = 0x1800 >> 3;
2533 for (uint32_t i = 0; i < offRsvdQwords; i++)
2534 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2535}
2536
2537
2538/**
2539 * Caches the nested-guest VMCB fields before we modify them for execution using
2540 * hardware-assisted SVM.
2541 *
2542 * @returns true if the VMCB was previously already cached, false otherwise.
2543 * @param pVCpu The cross context virtual CPU structure.
2544 *
2545 * @sa HMNotifySvmNstGstVmexit.
2546 */
2547static bool hmR0SvmCacheVmcbNested(PVMCPU pVCpu)
2548{
2549 /*
2550 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2551 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2552 *
2553 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2554 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2555 */
2556 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2557 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2558 if (!fWasCached)
2559 {
2560 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2561 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2562 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2563 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2564 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2565 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2566 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2567 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2568 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2569 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2570 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2571 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2572 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2573 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2574 pVmcbNstGstCache->fCacheValid = true;
2575 Log4Func(("Cached VMCB fields\n"));
2576 }
2577
2578 return fWasCached;
2579}
2580
2581
2582/**
2583 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2584 *
2585 * This is done the first time we enter nested-guest execution using SVM R0
2586 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2587 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2588 *
2589 * @param pVCpu The cross context virtual CPU structure.
2590 */
2591static void hmR0SvmSetupVmcbNested(PVMCPU pVCpu)
2592{
2593 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2594 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2595
2596 /*
2597 * First cache the nested-guest VMCB fields we may potentially modify.
2598 */
2599 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2600 if (!fVmcbCached)
2601 {
2602 /*
2603 * The IOPM of the nested-guest can be ignored because the the guest always
2604 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2605 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2606 */
2607 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2608
2609 /*
2610 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2611 * nested-paging suddenly while executing a VM (see assertion at the end of
2612 * Trap0eHandler() in PGMAllBth.h).
2613 */
2614 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2615
2616 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2617 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2618
2619 /*
2620 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2621 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2622 */
2623 pVCpu->hm.s.svm.fSyncVTpr = false;
2624
2625#ifdef DEBUG_ramshankar
2626 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2627 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2628#endif
2629
2630 /*
2631 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2632 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2633 */
2634 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2635 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2636 | SVM_CTRL_INTERCEPT_VMLOAD;
2637
2638 /*
2639 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2640 * CLGI/STGI instructions executed by the nested-guest.
2641 */
2642 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2643 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2644 | SVM_CTRL_INTERCEPT_STGI;
2645
2646 /* Merge the guest and nested-guest intercepts. */
2647 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2648
2649 /* Update the VMCB clean bits. */
2650 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2651 }
2652 else
2653 {
2654 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
2655 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2656 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2657 }
2658}
2659
2660
2661/**
2662 * Exports the nested-guest state into the VMCB.
2663 *
2664 * We need to export the entire state as we could be continuing nested-guest
2665 * execution at any point (not just immediately after VMRUN) and thus the VMCB
2666 * can be out-of-sync with the nested-guest state if it was executed in IEM.
2667 *
2668 * @returns VBox status code.
2669 * @param pVCpu The cross context virtual CPU structure.
2670 * @param pCtx Pointer to the guest-CPU context.
2671 *
2672 * @remarks No-long-jump zone!!!
2673 */
2674static int hmR0SvmExportGuestStateNested(PVMCPU pVCpu)
2675{
2676 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2677
2678 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2679 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2680 Assert(pVmcbNstGst);
2681
2682 hmR0SvmSetupVmcbNested(pVCpu);
2683
2684 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2685 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2686 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2687 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2688
2689 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2690
2691 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcbNstGst);
2692 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2693
2694 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcbNstGst);
2695 hmR0SvmExportGuestMsrs(pVCpu, pVmcbNstGst);
2696 hmR0SvmExportGuestHwvirtStateNested(pVCpu, pVmcbNstGst);
2697
2698 ASMSetFlags(fEFlags);
2699
2700 /* Nested VGIF not supported yet. */
2701 Assert(!pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable);
2702
2703 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2704 AssertRCReturn(rc, rc);
2705
2706 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2707 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2708 | HM_CHANGED_GUEST_RFLAGS
2709 | HM_CHANGED_GUEST_GPRS_MASK
2710 | HM_CHANGED_GUEST_APIC_TPR
2711 | HM_CHANGED_GUEST_X87
2712 | HM_CHANGED_GUEST_SSE_AVX
2713 | HM_CHANGED_GUEST_OTHER_XSAVE
2714 | HM_CHANGED_GUEST_XCRx
2715 | HM_CHANGED_GUEST_TSC_AUX
2716 | HM_CHANGED_GUEST_OTHER_MSRS
2717 | HM_CHANGED_SVM_GUEST_XCPT_INTERCEPTS
2718 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2719
2720#ifdef VBOX_STRICT
2721 /*
2722 * All of the guest-CPU state and SVM keeper bits should be exported here by now, except
2723 * for the host-context and/or shared host-guest context bits.
2724 */
2725 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2726 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2727 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2728 ("fCtxChanged=%#RX64\n", fCtxChanged));
2729
2730 /*
2731 * If we need to log state that isn't always imported, we'll need to import them here.
2732 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2733 */
2734 hmR0SvmLogState(pVCpu, pVmcbNstGst, "hmR0SvmExportGuestStateNested", 0 /* fFlags */, 0 /* uVerbose */);
2735#endif
2736
2737 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2738 return rc;
2739}
2740#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2741
2742
2743/**
2744 * Exports the state shared between the host and guest (or nested-guest) into
2745 * the VMCB.
2746 *
2747 * @param pVCpu The cross context virtual CPU structure.
2748 * @param pVmcb Pointer to the VM control block.
2749 *
2750 * @remarks No-long-jump zone!!!
2751 */
2752static void hmR0SvmExportSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb)
2753{
2754 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2755 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2756
2757 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2758 {
2759 /** @todo Figure out stepping with nested-guest. */
2760 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2761 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2762 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2763 else
2764 {
2765 pVmcb->guest.u64DR6 = pCtx->dr[6];
2766 pVmcb->guest.u64DR7 = pCtx->dr[7];
2767 }
2768 }
2769
2770 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2771 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2772 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2773}
2774
2775
2776/**
2777 * Worker for SVMR0ImportStateOnDemand.
2778 *
2779 * @param pVCpu The cross context virtual CPU structure.
2780 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2781 */
2782static void hmR0SvmImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
2783{
2784 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2785
2786 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2787 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2788 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2789 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2790
2791 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
2792
2793 /*
2794 * We disable interrupts to make the updating of the state and in particular
2795 * the fExtrn modification atomic wrt to preemption hooks.
2796 */
2797 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2798
2799 fWhat &= pCtx->fExtrn;
2800 if (fWhat)
2801 {
2802#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2803 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2804 {
2805 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2806 {
2807 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2808 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2809 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2810 }
2811 }
2812
2813 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2814 {
2815 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2816 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2817 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2818 }
2819#endif
2820
2821 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2822 {
2823 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2824 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2825 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2826 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2827 }
2828
2829 if (fWhat & CPUMCTX_EXTRN_RIP)
2830 pCtx->rip = pVmcbGuest->u64RIP;
2831
2832 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2833 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2834
2835 if (fWhat & CPUMCTX_EXTRN_RSP)
2836 pCtx->rsp = pVmcbGuest->u64RSP;
2837
2838 if (fWhat & CPUMCTX_EXTRN_RAX)
2839 pCtx->rax = pVmcbGuest->u64RAX;
2840
2841 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2842 {
2843 if (fWhat & CPUMCTX_EXTRN_CS)
2844 {
2845 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2846 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2847 /** @todo SELM might need to be fixed as it too should not care about the
2848 * granularity bit. See @bugref{6785}. */
2849 if ( !pCtx->cs.Attr.n.u1Granularity
2850 && pCtx->cs.Attr.n.u1Present
2851 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2852 {
2853 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2854 pCtx->cs.Attr.n.u1Granularity = 1;
2855 }
2856 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2857 }
2858 if (fWhat & CPUMCTX_EXTRN_SS)
2859 {
2860 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2861 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2862 /*
2863 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2864 * VMCB and uses that and thus it's possible that when the CPL changes during
2865 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2866 * AMD Fusion CPUs with 64-bit guests.
2867 *
2868 * See AMD spec. 15.5.1 "Basic operation".
2869 */
2870 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2871 uint8_t const uCpl = pVmcbGuest->u8CPL;
2872 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2873 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2874 }
2875 if (fWhat & CPUMCTX_EXTRN_DS)
2876 {
2877 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2878 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2879 }
2880 if (fWhat & CPUMCTX_EXTRN_ES)
2881 {
2882 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2883 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2884 }
2885 if (fWhat & CPUMCTX_EXTRN_FS)
2886 {
2887 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2888 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2889 }
2890 if (fWhat & CPUMCTX_EXTRN_GS)
2891 {
2892 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2893 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2894 }
2895 }
2896
2897 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2898 {
2899 if (fWhat & CPUMCTX_EXTRN_TR)
2900 {
2901 /*
2902 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2903 * are used between Intel and AMD, see @bugref{6208#c39}.
2904 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2905 */
2906 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2907 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2908 {
2909 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2910 || CPUMIsGuestInLongModeEx(pCtx))
2911 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2912 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2913 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2914 }
2915 }
2916
2917 if (fWhat & CPUMCTX_EXTRN_LDTR)
2918 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2919
2920 if (fWhat & CPUMCTX_EXTRN_GDTR)
2921 {
2922 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2923 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2924 }
2925
2926 if (fWhat & CPUMCTX_EXTRN_IDTR)
2927 {
2928 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2929 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2930 }
2931 }
2932
2933 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2934 {
2935 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2936 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2937 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2938 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2939 }
2940
2941 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2942 {
2943 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2944 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2945 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2946 }
2947
2948 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2949 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2950
2951 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2952 {
2953 if (fWhat & CPUMCTX_EXTRN_DR6)
2954 {
2955 if (!pVCpu->hm.s.fUsingHyperDR7)
2956 pCtx->dr[6] = pVmcbGuest->u64DR6;
2957 else
2958 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2959 }
2960
2961 if (fWhat & CPUMCTX_EXTRN_DR7)
2962 {
2963 if (!pVCpu->hm.s.fUsingHyperDR7)
2964 pCtx->dr[7] = pVmcbGuest->u64DR7;
2965 else
2966 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2967 }
2968 }
2969
2970 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2971 {
2972 if (fWhat & CPUMCTX_EXTRN_CR0)
2973 {
2974 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2975 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2976 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2977 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2978 CPUMSetGuestCR0(pVCpu, uCr0);
2979 VMMRZCallRing3Enable(pVCpu);
2980 }
2981
2982 if (fWhat & CPUMCTX_EXTRN_CR2)
2983 pCtx->cr2 = pVmcbGuest->u64CR2;
2984
2985 if (fWhat & CPUMCTX_EXTRN_CR3)
2986 {
2987 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2988 && pCtx->cr3 != pVmcbGuest->u64CR3)
2989 {
2990 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2991 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2992 }
2993 }
2994
2995 /* Changes to CR4 are always intercepted. */
2996 }
2997
2998 /* Update fExtrn. */
2999 pCtx->fExtrn &= ~fWhat;
3000
3001 /* If everything has been imported, clear the HM keeper bit. */
3002 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
3003 {
3004 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
3005 Assert(!pCtx->fExtrn);
3006 }
3007 }
3008 else
3009 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3010
3011 ASMSetFlags(fEFlags);
3012
3013 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
3014
3015 /*
3016 * Honor any pending CR3 updates.
3017 *
3018 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
3019 * -> hmR0SvmCallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
3020 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
3021 * handling -> hmR0SvmImportGuestState() and here we are.
3022 *
3023 * The reason for such complicated handling is because VM-exits that call into PGM expect
3024 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
3025 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
3026 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
3027 *
3028 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
3029 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
3030 */
3031 if ( VMMRZCallRing3IsEnabled(pVCpu)
3032 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3033 {
3034 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
3035 PGMUpdateCR3(pVCpu, pCtx->cr3);
3036 }
3037}
3038
3039
3040/**
3041 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
3042 * context.
3043 *
3044 * Currently there is no residual state left in the CPU that is not updated in the
3045 * VMCB.
3046 *
3047 * @returns VBox status code.
3048 * @param pVCpu The cross context virtual CPU structure.
3049 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3050 */
3051VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
3052{
3053 hmR0SvmImportGuestState(pVCpu, fWhat);
3054 return VINF_SUCCESS;
3055}
3056
3057
3058/**
3059 * Does the necessary state syncing before returning to ring-3 for any reason
3060 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
3061 *
3062 * @param pVCpu The cross context virtual CPU structure.
3063 * @param fImportState Whether to import the guest state from the VMCB back
3064 * to the guest-CPU context.
3065 *
3066 * @remarks No-long-jmp zone!!!
3067 */
3068static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState)
3069{
3070 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3071 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3072 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3073
3074 /*
3075 * !!! IMPORTANT !!!
3076 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3077 */
3078
3079 /* Save the guest state if necessary. */
3080 if (fImportState)
3081 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3082
3083 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3084 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3085 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
3086
3087 /*
3088 * Restore host debug registers if necessary and resync on next R0 reentry.
3089 */
3090#ifdef VBOX_STRICT
3091 if (CPUMIsHyperDebugStateActive(pVCpu))
3092 {
3093 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
3094 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
3095 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
3096 }
3097#endif
3098 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3099 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3100 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3101
3102 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
3103 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
3104 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
3105 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
3106 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
3107 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3108
3109 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3110}
3111
3112
3113/**
3114 * Leaves the AMD-V session.
3115 *
3116 * Only used while returning to ring-3 either due to longjump or exits to
3117 * ring-3.
3118 *
3119 * @returns VBox status code.
3120 * @param pVCpu The cross context virtual CPU structure.
3121 */
3122static int hmR0SvmLeaveSession(PVMCPU pVCpu)
3123{
3124 HM_DISABLE_PREEMPT(pVCpu);
3125 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3126 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3127
3128 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3129 and done this from the SVMR0ThreadCtxCallback(). */
3130 if (!pVCpu->hm.s.fLeaveDone)
3131 {
3132 hmR0SvmLeave(pVCpu, true /* fImportState */);
3133 pVCpu->hm.s.fLeaveDone = true;
3134 }
3135
3136 /*
3137 * !!! IMPORTANT !!!
3138 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3139 */
3140
3141 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3142 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3143 VMMR0ThreadCtxHookDisable(pVCpu);
3144
3145 /* Leave HM context. This takes care of local init (term). */
3146 int rc = HMR0LeaveCpu(pVCpu);
3147
3148 HM_RESTORE_PREEMPT();
3149 return rc;
3150}
3151
3152
3153/**
3154 * Does the necessary state syncing before doing a longjmp to ring-3.
3155 *
3156 * @returns VBox status code.
3157 * @param pVCpu The cross context virtual CPU structure.
3158 *
3159 * @remarks No-long-jmp zone!!!
3160 */
3161static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
3162{
3163 return hmR0SvmLeaveSession(pVCpu);
3164}
3165
3166
3167/**
3168 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3169 * any remaining host state) before we longjump to ring-3 and possibly get
3170 * preempted.
3171 *
3172 * @param pVCpu The cross context virtual CPU structure.
3173 * @param enmOperation The operation causing the ring-3 longjump.
3174 * @param pvUser The user argument, NULL (currently unused).
3175 */
3176static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
3177{
3178 RT_NOREF_PV(pvUser);
3179
3180 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3181 {
3182 /*
3183 * !!! IMPORTANT !!!
3184 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3185 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3186 */
3187 VMMRZCallRing3RemoveNotification(pVCpu);
3188 VMMRZCallRing3Disable(pVCpu);
3189 HM_DISABLE_PREEMPT(pVCpu);
3190
3191 /* Import the entire guest state. */
3192 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3193
3194 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3195 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3196
3197 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3198 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3199
3200 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3201 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3202 VMMR0ThreadCtxHookDisable(pVCpu);
3203
3204 /* Leave HM context. This takes care of local init (term). */
3205 HMR0LeaveCpu(pVCpu);
3206
3207 HM_RESTORE_PREEMPT();
3208 return VINF_SUCCESS;
3209 }
3210
3211 Assert(pVCpu);
3212 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3213 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3214
3215 VMMRZCallRing3Disable(pVCpu);
3216 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3217
3218 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3219 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3220 AssertRCReturn(rc, rc);
3221
3222 VMMRZCallRing3Enable(pVCpu);
3223 return VINF_SUCCESS;
3224}
3225
3226
3227/**
3228 * Take necessary actions before going back to ring-3.
3229 *
3230 * An action requires us to go back to ring-3. This function does the necessary
3231 * steps before we can safely return to ring-3. This is not the same as longjmps
3232 * to ring-3, this is voluntary.
3233 *
3234 * @returns VBox status code.
3235 * @param pVCpu The cross context virtual CPU structure.
3236 * @param rcExit The reason for exiting to ring-3. Can be
3237 * VINF_VMM_UNKNOWN_RING3_CALL.
3238 */
3239static int hmR0SvmExitToRing3(PVMCPU pVCpu, int rcExit)
3240{
3241 Assert(pVCpu);
3242 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3243
3244 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3245 VMMRZCallRing3Disable(pVCpu);
3246 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", rcExit, (uint64_t)pVCpu->fLocalForcedActions,
3247 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3248
3249 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3250 if (pVCpu->hm.s.Event.fPending)
3251 {
3252 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3253 Assert(!pVCpu->hm.s.Event.fPending);
3254 }
3255
3256 /* Sync. the necessary state for going back to ring-3. */
3257 hmR0SvmLeaveSession(pVCpu);
3258 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3259
3260 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3261 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3262 | CPUM_CHANGED_LDTR
3263 | CPUM_CHANGED_GDTR
3264 | CPUM_CHANGED_IDTR
3265 | CPUM_CHANGED_TR
3266 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3267 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
3268 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3269 {
3270 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3271 }
3272
3273 /* Update the exit-to-ring 3 reason. */
3274 pVCpu->hm.s.rcLastExitToR3 = rcExit;
3275
3276 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3277 if ( rcExit != VINF_EM_RAW_INTERRUPT
3278 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3279 {
3280 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3281 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3282 }
3283
3284 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3285
3286 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
3287 VMMRZCallRing3RemoveNotification(pVCpu);
3288 VMMRZCallRing3Enable(pVCpu);
3289
3290 /*
3291 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3292 * and if we're injecting an event we should have a TRPM trap pending.
3293 */
3294 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3295 pVCpu->hm.s.u32HMError = rcExit,
3296 VERR_SVM_IPE_5);
3297 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3298 pVCpu->hm.s.u32HMError = rcExit,
3299 VERR_SVM_IPE_4);
3300
3301 return rcExit;
3302}
3303
3304
3305/**
3306 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3307 * intercepts.
3308 *
3309 * @param pVCpu The cross context virtual CPU structure.
3310 * @param pVmcb Pointer to the VM control block.
3311 *
3312 * @remarks No-long-jump zone!!!
3313 */
3314static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3315{
3316 /*
3317 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3318 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3319 * RDTSC/RDTSCP as well.
3320 */
3321 bool fParavirtTsc;
3322 uint64_t uTscOffset;
3323 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3324
3325 bool fIntercept;
3326 if (fCanUseRealTsc)
3327 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3328 else
3329 {
3330 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3331 fIntercept = true;
3332 }
3333
3334 if (!fIntercept)
3335 {
3336#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3337 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3338 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3339 uTscOffset = HMApplySvmNstGstTscOffset(pVCpu, uTscOffset);
3340#endif
3341
3342 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3343 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3344 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3345
3346 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
3347 }
3348 else
3349 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
3350
3351 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3352 information before every VM-entry, hence we have nothing to do here at the moment. */
3353 if (fParavirtTsc)
3354 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3355}
3356
3357
3358/**
3359 * Sets an event as a pending event to be injected into the guest.
3360 *
3361 * @param pVCpu The cross context virtual CPU structure.
3362 * @param pEvent Pointer to the SVM event.
3363 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3364 * page-fault.
3365 *
3366 * @remarks Statistics counter assumes this is a guest event being reflected to
3367 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3368 */
3369DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3370{
3371 Assert(!pVCpu->hm.s.Event.fPending);
3372 Assert(pEvent->n.u1Valid);
3373
3374 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3375 pVCpu->hm.s.Event.fPending = true;
3376 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3377
3378 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3379 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3380}
3381
3382
3383/**
3384 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3385 *
3386 * @param pVCpu The cross context virtual CPU structure.
3387 */
3388DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3389{
3390 SVMEVENT Event;
3391 Event.u = 0;
3392 Event.n.u1Valid = 1;
3393 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3394 Event.n.u8Vector = X86_XCPT_UD;
3395 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3396}
3397
3398
3399/**
3400 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3401 *
3402 * @param pVCpu The cross context virtual CPU structure.
3403 */
3404DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3405{
3406 SVMEVENT Event;
3407 Event.u = 0;
3408 Event.n.u1Valid = 1;
3409 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3410 Event.n.u8Vector = X86_XCPT_DB;
3411 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3412}
3413
3414
3415/**
3416 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3417 *
3418 * @param pVCpu The cross context virtual CPU structure.
3419 * @param u32ErrCode The error-code for the page-fault.
3420 * @param uFaultAddress The page fault address (CR2).
3421 *
3422 * @remarks This updates the guest CR2 with @a uFaultAddress!
3423 */
3424DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3425{
3426 SVMEVENT Event;
3427 Event.u = 0;
3428 Event.n.u1Valid = 1;
3429 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3430 Event.n.u8Vector = X86_XCPT_PF;
3431 Event.n.u1ErrorCodeValid = 1;
3432 Event.n.u32ErrorCode = u32ErrCode;
3433
3434 /* Update CR2 of the guest. */
3435 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3436 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3437 {
3438 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3439 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3440 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3441 }
3442
3443 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3444}
3445
3446
3447/**
3448 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3449 *
3450 * @param pVCpu The cross context virtual CPU structure.
3451 */
3452DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3453{
3454 SVMEVENT Event;
3455 Event.u = 0;
3456 Event.n.u1Valid = 1;
3457 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3458 Event.n.u8Vector = X86_XCPT_MF;
3459 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3460}
3461
3462
3463/**
3464 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3465 *
3466 * @param pVCpu The cross context virtual CPU structure.
3467 */
3468DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3469{
3470 SVMEVENT Event;
3471 Event.u = 0;
3472 Event.n.u1Valid = 1;
3473 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3474 Event.n.u8Vector = X86_XCPT_DF;
3475 Event.n.u1ErrorCodeValid = 1;
3476 Event.n.u32ErrorCode = 0;
3477 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3478}
3479
3480
3481/**
3482 * Injects an event into the guest upon VMRUN by updating the relevant field
3483 * in the VMCB.
3484 *
3485 * @param pVCpu The cross context virtual CPU structure.
3486 * @param pVmcb Pointer to the guest VM control block.
3487 * @param pEvent Pointer to the event.
3488 *
3489 * @remarks No-long-jump zone!!!
3490 * @remarks Requires CR0!
3491 */
3492DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3493{
3494 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3495 pVmcb->ctrl.EventInject.u = pEvent->u;
3496 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3497 RT_NOREF(pVCpu);
3498
3499 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3500 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3501}
3502
3503
3504
3505/**
3506 * Converts any TRPM trap into a pending HM event. This is typically used when
3507 * entering from ring-3 (not longjmp returns).
3508 *
3509 * @param pVCpu The cross context virtual CPU structure.
3510 */
3511static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
3512{
3513 Assert(TRPMHasTrap(pVCpu));
3514 Assert(!pVCpu->hm.s.Event.fPending);
3515
3516 uint8_t uVector;
3517 TRPMEVENT enmTrpmEvent;
3518 RTGCUINT uErrCode;
3519 RTGCUINTPTR GCPtrFaultAddress;
3520 uint8_t cbInstr;
3521
3522 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
3523 AssertRC(rc);
3524
3525 SVMEVENT Event;
3526 Event.u = 0;
3527 Event.n.u1Valid = 1;
3528 Event.n.u8Vector = uVector;
3529
3530 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3531 if (enmTrpmEvent == TRPM_TRAP)
3532 {
3533 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3534 switch (uVector)
3535 {
3536 case X86_XCPT_NMI:
3537 {
3538 Event.n.u3Type = SVM_EVENT_NMI;
3539 break;
3540 }
3541
3542 case X86_XCPT_PF:
3543 case X86_XCPT_DF:
3544 case X86_XCPT_TS:
3545 case X86_XCPT_NP:
3546 case X86_XCPT_SS:
3547 case X86_XCPT_GP:
3548 case X86_XCPT_AC:
3549 {
3550 Event.n.u1ErrorCodeValid = 1;
3551 Event.n.u32ErrorCode = uErrCode;
3552 break;
3553 }
3554 }
3555 }
3556 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3557 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3558 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3559 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3560 else
3561 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3562
3563 rc = TRPMResetTrap(pVCpu);
3564 AssertRC(rc);
3565
3566 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3567 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3568
3569 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3570}
3571
3572
3573/**
3574 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3575 * AMD-V to execute any instruction.
3576 *
3577 * @param pVCpu The cross context virtual CPU structure.
3578 */
3579static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3580{
3581 Assert(pVCpu->hm.s.Event.fPending);
3582 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3583
3584 SVMEVENT Event;
3585 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3586
3587 uint8_t uVector = Event.n.u8Vector;
3588 uint8_t uVectorType = Event.n.u3Type;
3589 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
3590
3591 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
3592
3593 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3594 AssertRC(rc);
3595
3596 if (Event.n.u1ErrorCodeValid)
3597 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3598
3599 if ( uVectorType == SVM_EVENT_EXCEPTION
3600 && uVector == X86_XCPT_PF)
3601 {
3602 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3603 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3604 }
3605 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
3606 {
3607 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
3608 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
3609 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
3610 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3611 }
3612 pVCpu->hm.s.Event.fPending = false;
3613}
3614
3615
3616/**
3617 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3618 * now.
3619 *
3620 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3621 * @param pVCpu The cross context virtual CPU structure.
3622 *
3623 * @remarks No-long-jump zone!!!
3624 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3625 */
3626static bool hmR0SvmIsIntrShadowActive(PVMCPU pVCpu)
3627{
3628 /*
3629 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3630 * completes. Check if we should inhibit interrupts or clear any existing
3631 * interrupt inhibition.
3632 */
3633 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3634 {
3635 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3636 {
3637 /*
3638 * We can clear the inhibit force flag as even if we go back to the recompiler
3639 * without executing guest code in AMD-V, the flag's condition to be cleared is
3640 * met and thus the cleared state is correct.
3641 */
3642 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3643 return false;
3644 }
3645 return true;
3646 }
3647 return false;
3648}
3649
3650
3651/**
3652 * Sets the virtual interrupt intercept control in the VMCB.
3653 *
3654 * @param pVCpu The cross context virtual CPU structure.
3655 * @param pVmcb Pointer to the VM control block.
3656 */
3657static void hmR0SvmSetIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3658{
3659 /*
3660 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3661 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3662 * (updating ISR at the right time) and inject the interrupt.
3663 *
3664 * With AVIC is supported, we could make use of the asynchronously delivery without
3665 * #VMEXIT and we would be passing the AVIC page to SVM.
3666 *
3667 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3668 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3669 */
3670#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3671 /*
3672 * Currently we don't overlay interupt windows and if there's any V_IRQ pending in the
3673 * nested-guest VMCB, we avoid setting up any interrupt window on behalf of the outer
3674 * guest.
3675 */
3676 /** @todo Does this mean we end up prioritizing virtual interrupt
3677 * delivery/window over a physical interrupt (from the outer guest)
3678 * might be pending? */
3679 bool const fEnableIntWindow = !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
3680 if (!fEnableIntWindow)
3681 {
3682 Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx));
3683 Log4(("Nested-guest V_IRQ already pending\n"));
3684 }
3685#else
3686 bool const fEnableIntWindow = true;
3687 RT_NOREF(pVCpu);
3688#endif
3689 if (fEnableIntWindow)
3690 {
3691 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3692 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3693 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3694 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3695 Log4(("Set VINTR intercept\n"));
3696 }
3697}
3698
3699
3700/**
3701 * Clears the virtual interrupt intercept control in the VMCB as
3702 * we are figured the guest is unable process any interrupts
3703 * at this point of time.
3704 *
3705 * @param pVCpu The cross context virtual CPU structure.
3706 * @param pVmcb Pointer to the VM control block.
3707 */
3708static void hmR0SvmClearIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3709{
3710 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3711 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3712 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3713 {
3714 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3715 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3716 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3717 Log4(("Cleared VINTR intercept\n"));
3718 }
3719}
3720
3721#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3722/**
3723 * Evaluates the event to be delivered to the nested-guest and sets it as the
3724 * pending event.
3725 *
3726 * @returns VBox strict status code.
3727 * @param pVCpu The cross context virtual CPU structure.
3728 */
3729static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu)
3730{
3731 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3732 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
3733 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3734 | CPUMCTX_EXTRN_RFLAGS
3735 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3736 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3737
3738 Assert(!pVCpu->hm.s.Event.fPending);
3739 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3740 Assert(pVmcb);
3741
3742 bool const fGif = CPUMGetGuestGif(pCtx);
3743 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3744 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3745
3746 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3747 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3748 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3749
3750 /** @todo SMI. SMIs take priority over NMIs. */
3751
3752 /*
3753 * Check if the guest can receive NMIs.
3754 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3755 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3756 */
3757 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3758 && !fBlockNmi)
3759 {
3760 if ( fGif
3761 && !fIntShadow)
3762 {
3763 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3764 {
3765 Log4(("Intercepting NMI -> #VMEXIT\n"));
3766 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3767 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3768 }
3769
3770 Log4(("Setting NMI pending for injection\n"));
3771 SVMEVENT Event;
3772 Event.u = 0;
3773 Event.n.u1Valid = 1;
3774 Event.n.u8Vector = X86_XCPT_NMI;
3775 Event.n.u3Type = SVM_EVENT_NMI;
3776 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3777 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3778 }
3779 else if (!fGif)
3780 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3781 else
3782 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3783 }
3784 /*
3785 * Check if the nested-guest can receive external interrupts (generated by the guest's
3786 * PIC/APIC).
3787 *
3788 * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
3789 * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
3790 *
3791 * External interrupts that are generated for the outer guest may be intercepted
3792 * depending on how the nested-guest VMCB was programmed by guest software.
3793 *
3794 * Physical interrupts always take priority over virtual interrupts,
3795 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3796 *
3797 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3798 * do that work when we execute nested guest code esp. since all the required information
3799 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3800 * the virtual interrupt controller.
3801 */
3802 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3803 && !pVCpu->hm.s.fSingleInstruction)
3804 {
3805 if ( fGif
3806 && !fIntShadow
3807 && CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx))
3808 {
3809 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3810 {
3811 Log4(("Intercepting INTR -> #VMEXIT\n"));
3812 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3813 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3814 }
3815
3816 uint8_t u8Interrupt;
3817 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3818 if (RT_SUCCESS(rc))
3819 {
3820 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3821 SVMEVENT Event;
3822 Event.u = 0;
3823 Event.n.u1Valid = 1;
3824 Event.n.u8Vector = u8Interrupt;
3825 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3826 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3827 }
3828 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3829 {
3830 /*
3831 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3832 * updated eventually when the TPR is written by the guest.
3833 */
3834 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3835 }
3836 else
3837 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3838 }
3839 else if (!fGif)
3840 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3841 else
3842 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3843 }
3844
3845 return VINF_SUCCESS;
3846}
3847#endif
3848
3849/**
3850 * Evaluates the event to be delivered to the guest and sets it as the pending
3851 * event.
3852 *
3853 * @param pVCpu The cross context virtual CPU structure.
3854 */
3855static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu)
3856{
3857 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3858 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3859 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3860 | CPUMCTX_EXTRN_RFLAGS
3861 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW);
3862
3863 Assert(!pVCpu->hm.s.Event.fPending);
3864 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3865 Assert(pVmcb);
3866
3867 bool const fGif = CPUMGetGuestGif(pCtx);
3868 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3869 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3870 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3871
3872 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool fIntPending=%RTbool NMI pending=%RTbool\n",
3873 fGif, fBlockNmi, fBlockInt, fIntShadow,
3874 VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3875 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3876
3877 /** @todo SMI. SMIs take priority over NMIs. */
3878
3879 /*
3880 * Check if the guest can receive NMIs.
3881 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3882 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3883 */
3884 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3885 && !fBlockNmi)
3886 {
3887 if ( fGif
3888 && !fIntShadow)
3889 {
3890 Log4(("Setting NMI pending for injection\n"));
3891 SVMEVENT Event;
3892 Event.u = 0;
3893 Event.n.u1Valid = 1;
3894 Event.n.u8Vector = X86_XCPT_NMI;
3895 Event.n.u3Type = SVM_EVENT_NMI;
3896 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3897 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3898 }
3899 else if (!fGif)
3900 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3901 else
3902 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3903 }
3904 /*
3905 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3906 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3907 * it from the APIC device.
3908 */
3909 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3910 && !pVCpu->hm.s.fSingleInstruction)
3911 {
3912 if ( fGif
3913 && !fBlockInt
3914 && !fIntShadow)
3915 {
3916 uint8_t u8Interrupt;
3917 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3918 if (RT_SUCCESS(rc))
3919 {
3920 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3921 SVMEVENT Event;
3922 Event.u = 0;
3923 Event.n.u1Valid = 1;
3924 Event.n.u8Vector = u8Interrupt;
3925 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3926 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3927 }
3928 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3929 {
3930 /*
3931 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3932 * updated eventually when the TPR is written by the guest.
3933 */
3934 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3935 }
3936 else
3937 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3938 }
3939 else if (!fGif)
3940 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3941 else
3942 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3943 }
3944}
3945
3946
3947/**
3948 * Injects any pending events into the guest (or nested-guest).
3949 *
3950 * @param pVCpu The cross context virtual CPU structure.
3951 * @param pVmcb Pointer to the VM control block.
3952 *
3953 * @remarks Must only be called when we are guaranteed to enter
3954 * hardware-assisted SVM execution and not return to ring-3
3955 * prematurely.
3956 */
3957static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PSVMVMCB pVmcb)
3958{
3959 Assert(!TRPMHasTrap(pVCpu));
3960 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3961
3962 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3963#ifdef VBOX_STRICT
3964 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3965 bool const fGif = pCtx->hwvirt.fGif;
3966 bool fAllowInt = fGif;
3967 if (fGif)
3968 {
3969 /*
3970 * For nested-guests we have no way to determine if we're injecting a physical or
3971 * virtual interrupt at this point. Hence the partial verification below.
3972 */
3973 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3974 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3975 else
3976 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3977 }
3978#endif
3979
3980 if (pVCpu->hm.s.Event.fPending)
3981 {
3982 SVMEVENT Event;
3983 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3984 Assert(Event.n.u1Valid);
3985
3986 /*
3987 * Validate event injection pre-conditions.
3988 */
3989 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3990 {
3991 Assert(fAllowInt);
3992 Assert(!fIntShadow);
3993 }
3994 else if (Event.n.u3Type == SVM_EVENT_NMI)
3995 {
3996 Assert(fGif);
3997 Assert(!fIntShadow);
3998 }
3999
4000 /*
4001 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
4002 * do this only when we are surely going to inject the NMI as otherwise if we return
4003 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
4004 * SVM R0.
4005 *
4006 * With VT-x, this is handled by the Guest interruptibility information VMCS field
4007 * which will set the VMCS field after actually delivering the NMI which we read on
4008 * VM-exit to determine the state.
4009 */
4010 if ( Event.n.u3Type == SVM_EVENT_NMI
4011 && Event.n.u8Vector == X86_XCPT_NMI
4012 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
4013 {
4014 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4015 }
4016
4017 /*
4018 * Inject it (update VMCB for injection by the hardware).
4019 */
4020 Log4(("Injecting pending HM event\n"));
4021 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
4022 pVCpu->hm.s.Event.fPending = false;
4023
4024 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
4025 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
4026 else
4027 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
4028 }
4029 else
4030 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
4031
4032 /*
4033 * We could have injected an NMI through IEM and continue guest execution using
4034 * hardware-assisted SVM. In which case, we would not have any events pending (above)
4035 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
4036 */
4037 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
4038 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
4039
4040 /*
4041 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
4042 *
4043 * For nested-guests: We need to update it too for the scenario where IEM executes
4044 * the nested-guest but execution later continues here with an interrupt shadow active.
4045 */
4046 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
4047}
4048
4049
4050/**
4051 * Reports world-switch error and dumps some useful debug info.
4052 *
4053 * @param pVCpu The cross context virtual CPU structure.
4054 * @param rcVMRun The return code from VMRUN (or
4055 * VERR_SVM_INVALID_GUEST_STATE for invalid
4056 * guest-state).
4057 */
4058static void hmR0SvmReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun)
4059{
4060 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4061 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4062 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4063
4064 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
4065 {
4066#ifdef VBOX_STRICT
4067 hmR0DumpRegs(pVCpu);
4068 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
4069 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
4070 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
4071 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
4072 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
4073 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
4074 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
4075 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
4076 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
4077 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
4078 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
4079
4080 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
4081 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
4082 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
4083
4084 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
4085 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
4086 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
4087 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
4088 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
4089 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
4090 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
4091 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
4092 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
4093 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
4094 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
4095 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
4096
4097 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
4098 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
4099 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
4100 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
4101 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
4102 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
4103 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
4104 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
4105 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
4106 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
4107 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4108 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
4109 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
4110 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
4111 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
4112 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
4113 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
4114 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
4115 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
4116 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
4117
4118 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
4119
4120 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
4121 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
4122
4123 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
4124 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
4125 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
4126 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
4127 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
4128 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
4129 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
4130 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
4131 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
4132 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
4133 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
4134 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
4135 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
4136 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
4137 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
4138 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
4139 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
4140 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
4141 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
4142 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
4143
4144 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
4145 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
4146
4147 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
4148 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
4149 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
4150 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
4151
4152 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
4153 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
4154
4155 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
4156 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
4157 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
4158 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
4159
4160 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
4161 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
4162 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
4163 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
4164 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
4165 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
4166 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
4167
4168 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
4169 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
4170 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
4171 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
4172
4173 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
4174 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
4175 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
4176
4177 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
4178 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
4179 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
4180 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
4181 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
4182 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
4183 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
4184 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
4185 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
4186 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
4187 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
4188 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
4189
4190 NOREF(pVmcb);
4191#endif /* VBOX_STRICT */
4192 }
4193 else
4194 Log4Func(("rcVMRun=%d\n", rcVMRun));
4195}
4196
4197
4198/**
4199 * Check per-VM and per-VCPU force flag actions that require us to go back to
4200 * ring-3 for one reason or another.
4201 *
4202 * @returns VBox status code (information status code included).
4203 * @retval VINF_SUCCESS if we don't have any actions that require going back to
4204 * ring-3.
4205 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
4206 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
4207 * interrupts)
4208 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
4209 * all EMTs to be in ring-3.
4210 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
4211 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
4212 * to the EM loop.
4213 *
4214 * @param pVCpu The cross context virtual CPU structure.
4215 */
4216static int hmR0SvmCheckForceFlags(PVMCPU pVCpu)
4217{
4218 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4219 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
4220
4221 /* Could happen as a result of longjump. */
4222 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
4223 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
4224
4225 /* Update pending interrupts into the APIC's IRR. */
4226 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
4227 APICUpdatePendingInterrupts(pVCpu);
4228
4229 PVM pVM = pVCpu->CTX_SUFF(pVM);
4230 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
4231 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4232 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
4233 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4234 {
4235 /* Pending PGM C3 sync. */
4236 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4237 {
4238 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4239 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4240 if (rc != VINF_SUCCESS)
4241 {
4242 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4243 return rc;
4244 }
4245 }
4246
4247 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4248 /* -XXX- what was that about single stepping? */
4249 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
4250 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4251 {
4252 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4253 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
4254 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4255 return rc;
4256 }
4257
4258 /* Pending VM request packets, such as hardware interrupts. */
4259 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
4260 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
4261 {
4262 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4263 return VINF_EM_PENDING_REQUEST;
4264 }
4265
4266 /* Pending PGM pool flushes. */
4267 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4268 {
4269 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4270 return VINF_PGM_POOL_FLUSH_PENDING;
4271 }
4272
4273 /* Pending DMA requests. */
4274 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4275 {
4276 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4277 return VINF_EM_RAW_TO_R3;
4278 }
4279 }
4280
4281 return VINF_SUCCESS;
4282}
4283
4284
4285#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4286/**
4287 * Does the preparations before executing nested-guest code in AMD-V.
4288 *
4289 * @returns VBox status code (informational status codes included).
4290 * @retval VINF_SUCCESS if we can proceed with running the guest.
4291 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4292 *
4293 * @param pVCpu The cross context virtual CPU structure.
4294 * @param pSvmTransient Pointer to the SVM transient structure.
4295 *
4296 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
4297 * @sa hmR0SvmPreRunGuest.
4298 */
4299static int hmR0SvmPreRunGuestNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4300{
4301 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4302 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4303 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4304
4305#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4306 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) /* Redundant check to avoid unreachable code warning. */
4307 {
4308 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4309 return VINF_EM_RESCHEDULE_REM;
4310 }
4311#endif
4312
4313 /* Check force flag actions that might require us to go back to ring-3. */
4314 int rc = hmR0SvmCheckForceFlags(pVCpu);
4315 if (rc != VINF_SUCCESS)
4316 return rc;
4317
4318 if (TRPMHasTrap(pVCpu))
4319 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4320 else if (!pVCpu->hm.s.Event.fPending)
4321 {
4322 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu);
4323 if ( rcStrict != VINF_SUCCESS
4324 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4325 return VBOXSTRICTRC_VAL(rcStrict);
4326 }
4327
4328 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4329
4330 /*
4331 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4332 * Just do it in software, see @bugref{8411}.
4333 * NB: If we could continue a task switch exit we wouldn't need to do this.
4334 */
4335 PVM pVM = pVCpu->CTX_SUFF(pVM);
4336 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
4337 && pVCpu->hm.s.Event.fPending
4338 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4339 {
4340 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4341 }
4342
4343#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4344 Assert(!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4345 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4346#endif
4347
4348 /*
4349 * Export the nested-guest state bits that are not shared with the host in any way as we
4350 * can longjmp or get preempted in the midst of exporting some of the state.
4351 */
4352 rc = hmR0SvmExportGuestStateNested(pVCpu);
4353 AssertRCReturn(rc, rc);
4354 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4355
4356 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware-assisted SVM. */
4357 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4358
4359 /*
4360 * No longjmps to ring-3 from this point on!!!
4361 *
4362 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4363 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4364 */
4365 VMMRZCallRing3Disable(pVCpu);
4366
4367 /*
4368 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4369 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4370 * preemption disabled for a while. Since this is purly to aid the
4371 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4372 * disable interrupt on NT.
4373 *
4374 * We need to check for force-flags that could've possible been altered since we last
4375 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4376 * see @bugref{6398}).
4377 *
4378 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4379 * to ring-3 before executing guest code.
4380 */
4381 pSvmTransient->fEFlags = ASMIntDisableFlags();
4382 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4383 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4384 {
4385 ASMSetFlags(pSvmTransient->fEFlags);
4386 VMMRZCallRing3Enable(pVCpu);
4387 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4388 return VINF_EM_RAW_TO_R3;
4389 }
4390 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4391 {
4392 ASMSetFlags(pSvmTransient->fEFlags);
4393 VMMRZCallRing3Enable(pVCpu);
4394 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4395 return VINF_EM_RAW_INTERRUPT;
4396 }
4397 return VINF_SUCCESS;
4398}
4399#endif
4400
4401
4402/**
4403 * Does the preparations before executing guest code in AMD-V.
4404 *
4405 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4406 * recompiler. We must be cautious what we do here regarding committing
4407 * guest-state information into the VMCB assuming we assuredly execute the guest
4408 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4409 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4410 * that the recompiler can (and should) use them when it resumes guest
4411 * execution. Otherwise such operations must be done when we can no longer
4412 * exit to ring-3.
4413 *
4414 * @returns VBox status code (informational status codes included).
4415 * @retval VINF_SUCCESS if we can proceed with running the guest.
4416 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4417 *
4418 * @param pVCpu The cross context virtual CPU structure.
4419 * @param pSvmTransient Pointer to the SVM transient structure.
4420 */
4421static int hmR0SvmPreRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4422{
4423 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4424 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4425
4426 /* Check force flag actions that might require us to go back to ring-3. */
4427 int rc = hmR0SvmCheckForceFlags(pVCpu);
4428 if (rc != VINF_SUCCESS)
4429 return rc;
4430
4431 if (TRPMHasTrap(pVCpu))
4432 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4433 else if (!pVCpu->hm.s.Event.fPending)
4434 hmR0SvmEvaluatePendingEvent(pVCpu);
4435
4436 /*
4437 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4438 * Just do it in software, see @bugref{8411}.
4439 * NB: If we could continue a task switch exit we wouldn't need to do this.
4440 */
4441 PVM pVM = pVCpu->CTX_SUFF(pVM);
4442 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
4443 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
4444 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4445
4446#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4447 Assert(!(pVCpu->cpum.GstCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4448 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4449#endif
4450
4451 /*
4452 * Export the guest state bits that are not shared with the host in any way as we can
4453 * longjmp or get preempted in the midst of exporting some of the state.
4454 */
4455 rc = hmR0SvmExportGuestState(pVCpu);
4456 AssertRCReturn(rc, rc);
4457 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4458
4459 /*
4460 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4461 * world-switch so we can update it on the way back if the guest changed the TPR.
4462 */
4463 if (pVCpu->hm.s.svm.fSyncVTpr)
4464 {
4465 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4466 if (pVM->hm.s.fTPRPatchingActive)
4467 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4468 else
4469 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4470 }
4471
4472 /*
4473 * No longjmps to ring-3 from this point on!!!
4474 *
4475 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4476 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4477 */
4478 VMMRZCallRing3Disable(pVCpu);
4479
4480 /*
4481 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4482 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4483 * preemption disabled for a while. Since this is purly to aid the
4484 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4485 * disable interrupt on NT.
4486 *
4487 * We need to check for force-flags that could've possible been altered since we last
4488 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4489 * see @bugref{6398}).
4490 *
4491 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4492 * to ring-3 before executing guest code.
4493 */
4494 pSvmTransient->fEFlags = ASMIntDisableFlags();
4495 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4496 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4497 {
4498 ASMSetFlags(pSvmTransient->fEFlags);
4499 VMMRZCallRing3Enable(pVCpu);
4500 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4501 return VINF_EM_RAW_TO_R3;
4502 }
4503 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4504 {
4505 ASMSetFlags(pSvmTransient->fEFlags);
4506 VMMRZCallRing3Enable(pVCpu);
4507 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4508 return VINF_EM_RAW_INTERRUPT;
4509 }
4510
4511 return VINF_SUCCESS;
4512}
4513
4514
4515/**
4516 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4517 * doing so.
4518 *
4519 * This means there is no backing out to ring-3 or anywhere else at this point.
4520 *
4521 * @param pVCpu The cross context virtual CPU structure.
4522 * @param pSvmTransient Pointer to the SVM transient structure.
4523 *
4524 * @remarks Called with preemption disabled.
4525 * @remarks No-long-jump zone!!!
4526 */
4527static void hmR0SvmPreRunGuestCommitted(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4528{
4529 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4530 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4531 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4532
4533 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4534 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4535
4536 PVM pVM = pVCpu->CTX_SUFF(pVM);
4537 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4538
4539 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4540
4541 if (!CPUMIsGuestFPUStateActive(pVCpu))
4542 {
4543 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4544 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4545 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4546 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4547 }
4548
4549 /* Load the state shared between host and guest (FPU, debug). */
4550 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4551 hmR0SvmExportSharedState(pVCpu, pVmcb);
4552
4553 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4554 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4555
4556 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4557 RTCPUID const idHostCpu = pHostCpu->idCpu;
4558 bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
4559
4560 /* Setup TSC offsetting. */
4561 if ( pSvmTransient->fUpdateTscOffsetting
4562 || fMigratedHostCpu)
4563 {
4564 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4565 pSvmTransient->fUpdateTscOffsetting = false;
4566 }
4567
4568 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4569 if (fMigratedHostCpu)
4570 pVmcb->ctrl.u32VmcbCleanBits = 0;
4571
4572 /* Store status of the shared guest-host state at the time of VMRUN. */
4573#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4574 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4575 {
4576 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4577 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4578 }
4579 else
4580#endif
4581 {
4582 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4583 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4584 }
4585
4586#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4587 uint8_t *pbMsrBitmap;
4588 if (!pSvmTransient->fIsNestedGuest)
4589 pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4590 else
4591 {
4592 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4593
4594 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4595 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4596 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4597 }
4598#else
4599 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4600#endif
4601
4602 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4603 /* Flush the appropriate tagged-TLB entries. */
4604 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4605 Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
4606
4607 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4608
4609 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4610 to start executing. */
4611
4612 /*
4613 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4614 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4615 *
4616 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4617 */
4618 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4619 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4620 {
4621 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4622 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4623 if (uGuestTscAux != pVCpu->hm.s.u64HostTscAux)
4624 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4625 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4626 pSvmTransient->fRestoreTscAuxMsr = true;
4627 }
4628 else
4629 {
4630 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4631 pSvmTransient->fRestoreTscAuxMsr = false;
4632 }
4633 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4634
4635 /*
4636 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4637 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4638 * from the VMCB.
4639 */
4640 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu);
4641 if (!fSupportsVmcbCleanBits)
4642 pVmcb->ctrl.u32VmcbCleanBits = 0;
4643}
4644
4645
4646/**
4647 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4648 *
4649 * @returns VBox strict status code.
4650 * @param pVCpu The cross context virtual CPU structure.
4651 * @param HCPhysVmcb The host physical address of the VMCB.
4652 *
4653 * @remarks No-long-jump zone!!!
4654 */
4655DECLINLINE(int) hmR0SvmRunGuest(PVMCPU pVCpu, RTHCPHYS HCPhysVmcb)
4656{
4657 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4658 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4659 pCtx->fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4660
4661 /*
4662 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4663 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4664 * callee-saved and thus the need for this XMM wrapper.
4665 *
4666 * Refer MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4667 */
4668 PVM pVM = pVCpu->CTX_SUFF(pVM);
4669#ifdef VBOX_WITH_KERNEL_USING_XMM
4670 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun);
4671#else
4672 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu);
4673#endif
4674}
4675
4676
4677/**
4678 * Undoes the TSC offset applied for an SVM nested-guest and returns the TSC
4679 * value for the guest.
4680 *
4681 * @returns The TSC offset after undoing any nested-guest TSC offset.
4682 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4683 * @param uTicks The nested-guest TSC.
4684 *
4685 * @note If you make any changes to this function, please check if
4686 * hmR0SvmNstGstUndoTscOffset() needs adjusting.
4687 *
4688 * @sa HMApplySvmNstGstTscOffset().
4689 */
4690DECLINLINE(uint64_t) hmR0SvmNstGstUndoTscOffset(PVMCPU pVCpu, uint64_t uTicks)
4691{
4692 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
4693 Assert(pVmcbNstGstCache->fCacheValid);
4694 return uTicks - pVmcbNstGstCache->u64TSCOffset;
4695}
4696
4697
4698/**
4699 * Performs some essential restoration of state after running guest (or
4700 * nested-guest) code in AMD-V.
4701 *
4702 * @param pVCpu The cross context virtual CPU structure.
4703 * @param pSvmTransient Pointer to the SVM transient structure.
4704 * @param rcVMRun Return code of VMRUN.
4705 *
4706 * @remarks Called with interrupts disabled.
4707 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4708 * unconditionally when it is safe to do so.
4709 */
4710static void hmR0SvmPostRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4711{
4712 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4713
4714 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4715 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4716 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4717
4718 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4719 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4720
4721 /* TSC read must be done early for maximum accuracy. */
4722 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4723 {
4724 if (!pSvmTransient->fIsNestedGuest)
4725 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4726#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4727 else
4728 {
4729 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4730 uint64_t const uGstTsc = hmR0SvmNstGstUndoTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4731 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4732 }
4733#endif
4734 }
4735
4736 if (pSvmTransient->fRestoreTscAuxMsr)
4737 {
4738 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4739 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4740 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4741 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4742 }
4743
4744 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4745 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4746 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4747
4748 Assert(!(ASMGetFlags() & X86_EFL_IF));
4749 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4750 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4751
4752 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4753 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4754 {
4755 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4756 return;
4757 }
4758
4759 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4760 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4761 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4762 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4763
4764#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4765 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4766 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4767#else
4768 /*
4769 * Always import the following:
4770 *
4771 * - RIP for exit optimizations and evaluating event injection on re-entry.
4772 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4773 * state on preemption.
4774 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4775 * - CS for exit optimizations.
4776 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4777 * assembly switcher code.
4778 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4779 */
4780 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4781 | CPUMCTX_EXTRN_RFLAGS
4782 | CPUMCTX_EXTRN_RAX
4783 | CPUMCTX_EXTRN_RSP
4784 | CPUMCTX_EXTRN_CS
4785 | CPUMCTX_EXTRN_HWVIRT
4786 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4787 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4788 | HMSVM_CPUMCTX_SHARED_STATE);
4789#endif
4790
4791 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4792 && pVCpu->hm.s.svm.fSyncVTpr)
4793 {
4794 Assert(!pSvmTransient->fIsNestedGuest);
4795 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4796 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
4797 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4798 {
4799 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4800 AssertRC(rc);
4801 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4802 }
4803 /* Sync TPR when we aren't intercepting CR8 writes. */
4804 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4805 {
4806 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4807 AssertRC(rc);
4808 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4809 }
4810 }
4811
4812#ifdef DEBUG_ramshankar
4813 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4814 {
4815 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4816 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4817 0 /* uVerbose */);
4818 }
4819#endif
4820
4821 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4822 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4823 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4824}
4825
4826
4827/**
4828 * Runs the guest code using AMD-V.
4829 *
4830 * @returns VBox status code.
4831 * @param pVCpu The cross context virtual CPU structure.
4832 * @param pcLoops Pointer to the number of executed loops.
4833 */
4834static int hmR0SvmRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
4835{
4836 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4837 Assert(pcLoops);
4838 Assert(*pcLoops <= cMaxResumeLoops);
4839
4840 SVMTRANSIENT SvmTransient;
4841 RT_ZERO(SvmTransient);
4842 SvmTransient.fUpdateTscOffsetting = true;
4843 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4844
4845 int rc = VERR_INTERNAL_ERROR_5;
4846 for (;;)
4847 {
4848 Assert(!HMR0SuspendPending());
4849 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4850
4851 /* Preparatory work for running nested-guest code, this may force us to return to
4852 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4853 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4854 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4855 if (rc != VINF_SUCCESS)
4856 break;
4857
4858 /*
4859 * No longjmps to ring-3 from this point on!!!
4860 *
4861 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4862 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4863 */
4864 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4865 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4866
4867 /* Restore any residual host-state and save any bits shared between host and guest
4868 into the guest-CPU state. Re-enables interrupts! */
4869 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4870
4871 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4872 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4873 {
4874 if (rc == VINF_SUCCESS)
4875 rc = VERR_SVM_INVALID_GUEST_STATE;
4876 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4877 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4878 break;
4879 }
4880
4881 /* Handle the #VMEXIT. */
4882 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4883 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4884 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4885 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4886 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4887 if (rc != VINF_SUCCESS)
4888 break;
4889 if (++(*pcLoops) >= cMaxResumeLoops)
4890 {
4891 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4892 rc = VINF_EM_RAW_INTERRUPT;
4893 break;
4894 }
4895 }
4896
4897 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4898 return rc;
4899}
4900
4901
4902/**
4903 * Runs the guest code using AMD-V in single step mode.
4904 *
4905 * @returns VBox status code.
4906 * @param pVCpu The cross context virtual CPU structure.
4907 * @param pcLoops Pointer to the number of executed loops.
4908 */
4909static int hmR0SvmRunGuestCodeStep(PVMCPU pVCpu, uint32_t *pcLoops)
4910{
4911 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4912 Assert(pcLoops);
4913 Assert(*pcLoops <= cMaxResumeLoops);
4914
4915 SVMTRANSIENT SvmTransient;
4916 RT_ZERO(SvmTransient);
4917 SvmTransient.fUpdateTscOffsetting = true;
4918 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4919
4920 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4921 uint16_t uCsStart = pCtx->cs.Sel;
4922 uint64_t uRipStart = pCtx->rip;
4923
4924 int rc = VERR_INTERNAL_ERROR_5;
4925 for (;;)
4926 {
4927 Assert(!HMR0SuspendPending());
4928 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4929 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4930 (unsigned)RTMpCpuId(), *pcLoops));
4931
4932 /* Preparatory work for running nested-guest code, this may force us to return to
4933 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4934 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4935 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4936 if (rc != VINF_SUCCESS)
4937 break;
4938
4939 /*
4940 * No longjmps to ring-3 from this point on!!!
4941 *
4942 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4943 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4944 */
4945 VMMRZCallRing3Disable(pVCpu);
4946 VMMRZCallRing3RemoveNotification(pVCpu);
4947 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4948
4949 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4950
4951 /* Restore any residual host-state and save any bits shared between host and guest
4952 into the guest-CPU state. Re-enables interrupts! */
4953 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4954
4955 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4956 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4957 {
4958 if (rc == VINF_SUCCESS)
4959 rc = VERR_SVM_INVALID_GUEST_STATE;
4960 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4961 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4962 return rc;
4963 }
4964
4965 /* Handle the #VMEXIT. */
4966 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4967 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4968 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4969 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4970 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4971 if (rc != VINF_SUCCESS)
4972 break;
4973 if (++(*pcLoops) >= cMaxResumeLoops)
4974 {
4975 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4976 rc = VINF_EM_RAW_INTERRUPT;
4977 break;
4978 }
4979
4980 /*
4981 * Did the RIP change, if so, consider it a single step.
4982 * Otherwise, make sure one of the TFs gets set.
4983 */
4984 if ( pCtx->rip != uRipStart
4985 || pCtx->cs.Sel != uCsStart)
4986 {
4987 rc = VINF_EM_DBG_STEPPED;
4988 break;
4989 }
4990 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4991 }
4992
4993 /*
4994 * Clear the X86_EFL_TF if necessary.
4995 */
4996 if (pVCpu->hm.s.fClearTrapFlag)
4997 {
4998 pVCpu->hm.s.fClearTrapFlag = false;
4999 pCtx->eflags.Bits.u1TF = 0;
5000 }
5001
5002 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5003 return rc;
5004}
5005
5006#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5007/**
5008 * Runs the nested-guest code using AMD-V.
5009 *
5010 * @returns VBox status code.
5011 * @param pVCpu The cross context virtual CPU structure.
5012 * @param pcLoops Pointer to the number of executed loops. If we're switching
5013 * from the guest-code execution loop to this nested-guest
5014 * execution loop pass the remainder value, else pass 0.
5015 */
5016static int hmR0SvmRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
5017{
5018 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5019 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
5020 Assert(pcLoops);
5021 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops);
5022
5023 SVMTRANSIENT SvmTransient;
5024 RT_ZERO(SvmTransient);
5025 SvmTransient.fUpdateTscOffsetting = true;
5026 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
5027 SvmTransient.fIsNestedGuest = true;
5028
5029 int rc = VERR_INTERNAL_ERROR_4;
5030 for (;;)
5031 {
5032 Assert(!HMR0SuspendPending());
5033 HMSVM_ASSERT_CPU_SAFE(pVCpu);
5034
5035 /* Preparatory work for running nested-guest code, this may force us to return to
5036 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
5037 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
5038 rc = hmR0SvmPreRunGuestNested(pVCpu, &SvmTransient);
5039 if ( rc != VINF_SUCCESS
5040 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5041 {
5042 break;
5043 }
5044
5045 /*
5046 * No longjmps to ring-3 from this point on!!!
5047 *
5048 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
5049 * better than a kernel panic. This also disables flushing of the R0-logger instance.
5050 */
5051 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
5052
5053 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
5054
5055 /* Restore any residual host-state and save any bits shared between host and guest
5056 into the guest-CPU state. Re-enables interrupts! */
5057 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
5058
5059 if (RT_LIKELY( rc == VINF_SUCCESS
5060 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
5061 { /* extremely likely */ }
5062 else
5063 {
5064 /* VMRUN failed, shouldn't really happen, Guru. */
5065 if (rc != VINF_SUCCESS)
5066 break;
5067
5068 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
5069 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
5070 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
5071 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
5072 break;
5073 }
5074
5075 /* Handle the #VMEXIT. */
5076 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
5077 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
5078 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
5079 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
5080 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
5081 if ( rc != VINF_SUCCESS
5082 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5083 break;
5084 if (++(*pcLoops) >= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
5085 {
5086 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
5087 rc = VINF_EM_RAW_INTERRUPT;
5088 break;
5089 }
5090
5091 /** @todo handle single-stepping */
5092 }
5093
5094 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5095 return rc;
5096}
5097#endif
5098
5099
5100/**
5101 * Runs the guest code using AMD-V.
5102 *
5103 * @returns Strict VBox status code.
5104 * @param pVCpu The cross context virtual CPU structure.
5105 */
5106VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPU pVCpu)
5107{
5108 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5109 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
5110 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, NULL /* pvUser */);
5111
5112 uint32_t cLoops = 0;
5113 int rc;
5114#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5115 if (!CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
5116#endif
5117 {
5118 if (!pVCpu->hm.s.fSingleInstruction)
5119 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
5120 else
5121 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
5122 }
5123#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5124 else
5125 {
5126 rc = VINF_SVM_VMRUN;
5127 }
5128
5129 /* Re-check the nested-guest condition here as we may be transitioning from the normal
5130 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
5131 if (rc == VINF_SVM_VMRUN)
5132 {
5133 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
5134 if (rc == VINF_SVM_VMEXIT)
5135 rc = VINF_SUCCESS;
5136 }
5137#endif
5138
5139 /* Fixup error codes. */
5140 if (rc == VERR_EM_INTERPRETER)
5141 rc = VINF_EM_RAW_EMULATE_INSTR;
5142 else if (rc == VINF_EM_RESET)
5143 rc = VINF_EM_TRIPLE_FAULT;
5144
5145 /* Prepare to return to ring-3. This will remove longjmp notifications. */
5146 rc = hmR0SvmExitToRing3(pVCpu, rc);
5147 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
5148 return rc;
5149}
5150
5151
5152#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5153/**
5154 * Determines whether an IOIO intercept is active for the nested-guest or not.
5155 *
5156 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
5157 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
5158 */
5159static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
5160{
5161 const uint16_t u16Port = pIoExitInfo->n.u16Port;
5162 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
5163 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
5164 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
5165 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
5166 const bool fRep = pIoExitInfo->n.u1Rep;
5167 const bool fStrIo = pIoExitInfo->n.u1Str;
5168
5169 return HMIsSvmIoInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
5170 NULL /* pIoExitInfo */);
5171}
5172
5173
5174/**
5175 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
5176 * SVM_EXIT_INVALID).
5177 *
5178 * @returns VBox status code (informational status codes included).
5179 * @param pVCpu The cross context virtual CPU structure.
5180 * @param pSvmTransient Pointer to the SVM transient structure.
5181 */
5182static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5183{
5184 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
5185 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5186 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5187
5188 /*
5189 * We import the complete state here because we use separate VMCBs for the guest and the
5190 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
5191 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
5192 */
5193#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5194 do { \
5195 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5196 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2))); \
5197 } while (0)
5198
5199 /*
5200 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
5201 * nested-guest. If it isn't, it should be handled by the (outer) guest.
5202 */
5203 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
5204 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
5205 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
5206 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
5207 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
5208
5209 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
5210 switch (uExitCode)
5211 {
5212 case SVM_EXIT_CPUID:
5213 {
5214 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CPUID))
5215 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5216 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
5217 }
5218
5219 case SVM_EXIT_RDTSC:
5220 {
5221 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSC))
5222 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5223 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
5224 }
5225
5226 case SVM_EXIT_RDTSCP:
5227 {
5228 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDTSCP))
5229 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5230 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
5231 }
5232
5233 case SVM_EXIT_MONITOR:
5234 {
5235 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MONITOR))
5236 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5237 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
5238 }
5239
5240 case SVM_EXIT_MWAIT:
5241 {
5242 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MWAIT))
5243 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5244 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
5245 }
5246
5247 case SVM_EXIT_HLT:
5248 {
5249 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_HLT))
5250 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5251 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
5252 }
5253
5254 case SVM_EXIT_MSR:
5255 {
5256 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_MSR_PROT))
5257 {
5258 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
5259 uint16_t offMsrpm;
5260 uint8_t uMsrpmBit;
5261 int rc = HMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
5262 if (RT_SUCCESS(rc))
5263 {
5264 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
5265 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
5266
5267 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
5268 pbMsrBitmap += offMsrpm;
5269 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
5270 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
5271
5272 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
5273 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
5274 {
5275 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5276 }
5277 }
5278 else
5279 {
5280 /*
5281 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
5282 * See AMD-V spec. "15.11 MSR Intercepts".
5283 */
5284 Assert(rc == VERR_OUT_OF_RANGE);
5285 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5286 }
5287 }
5288 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
5289 }
5290
5291 case SVM_EXIT_IOIO:
5292 {
5293 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT))
5294 {
5295 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
5296 SVMIOIOEXITINFO IoExitInfo;
5297 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
5298 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
5299 if (fIntercept)
5300 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5301 }
5302 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
5303 }
5304
5305 case SVM_EXIT_XCPT_PF:
5306 {
5307 PVM pVM = pVCpu->CTX_SUFF(pVM);
5308 if (pVM->hm.s.fNestedPaging)
5309 {
5310 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
5311 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
5312
5313 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
5314 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
5315 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
5316
5317 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
5318 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5319 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
5320 return VINF_SUCCESS;
5321 }
5322 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
5323 }
5324
5325 case SVM_EXIT_XCPT_UD:
5326 {
5327 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_UD))
5328 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5329 hmR0SvmSetPendingXcptUD(pVCpu);
5330 return VINF_SUCCESS;
5331 }
5332
5333 case SVM_EXIT_XCPT_MF:
5334 {
5335 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_MF))
5336 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5337 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
5338 }
5339
5340 case SVM_EXIT_XCPT_DB:
5341 {
5342 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_DB))
5343 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5344 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5345 }
5346
5347 case SVM_EXIT_XCPT_AC:
5348 {
5349 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_AC))
5350 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5351 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5352 }
5353
5354 case SVM_EXIT_XCPT_BP:
5355 {
5356 if (HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_BP))
5357 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5358 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5359 }
5360
5361 case SVM_EXIT_READ_CR0:
5362 case SVM_EXIT_READ_CR3:
5363 case SVM_EXIT_READ_CR4:
5364 {
5365 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5366 if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, uCr))
5367 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5368 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5369 }
5370
5371 case SVM_EXIT_CR0_SEL_WRITE:
5372 {
5373 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5374 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5375 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5376 }
5377
5378 case SVM_EXIT_WRITE_CR0:
5379 case SVM_EXIT_WRITE_CR3:
5380 case SVM_EXIT_WRITE_CR4:
5381 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5382 {
5383 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5384 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5385
5386 if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, uCr))
5387 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5388 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5389 }
5390
5391 case SVM_EXIT_PAUSE:
5392 {
5393 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_PAUSE))
5394 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5395 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5396 }
5397
5398 case SVM_EXIT_VINTR:
5399 {
5400 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VINTR))
5401 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5402 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5403 }
5404
5405 case SVM_EXIT_INTR:
5406 case SVM_EXIT_NMI:
5407 case SVM_EXIT_SMI:
5408 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5409 {
5410 /*
5411 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5412 *
5413 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5414 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5415 * nested-guest #VMEXIT.
5416 *
5417 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5418 * while trying to inject interrupts, see comment at the top of this function.
5419 */
5420 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5421 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5422 }
5423
5424 case SVM_EXIT_FERR_FREEZE:
5425 {
5426 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5427 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5428 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5429 }
5430
5431 case SVM_EXIT_INVLPG:
5432 {
5433 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPG))
5434 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5435 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5436 }
5437
5438 case SVM_EXIT_WBINVD:
5439 {
5440 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_WBINVD))
5441 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5442 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5443 }
5444
5445 case SVM_EXIT_INVD:
5446 {
5447 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVD))
5448 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5449 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5450 }
5451
5452 case SVM_EXIT_RDPMC:
5453 {
5454 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RDPMC))
5455 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5456 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5457 }
5458
5459 default:
5460 {
5461 switch (uExitCode)
5462 {
5463 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5464 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5465 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5466 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5467 {
5468 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5469 if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, uDr))
5470 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5471 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5472 }
5473
5474 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5475 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5476 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5477 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5478 {
5479 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5480 if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, uDr))
5481 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5482 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5483 }
5484
5485 case SVM_EXIT_XCPT_DE:
5486 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5487 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5488 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5489 case SVM_EXIT_XCPT_OF:
5490 case SVM_EXIT_XCPT_BR:
5491 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5492 case SVM_EXIT_XCPT_NM:
5493 case SVM_EXIT_XCPT_DF:
5494 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5495 case SVM_EXIT_XCPT_TS:
5496 case SVM_EXIT_XCPT_NP:
5497 case SVM_EXIT_XCPT_SS:
5498 case SVM_EXIT_XCPT_GP:
5499 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5500 case SVM_EXIT_XCPT_15: /* Reserved. */
5501 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5502 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5503 case SVM_EXIT_XCPT_MC:
5504 case SVM_EXIT_XCPT_XF:
5505 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5506 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5507 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5508 {
5509 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5510 if (HMIsGuestSvmXcptInterceptSet(pVCpu, uVector))
5511 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5512 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5513 }
5514
5515 case SVM_EXIT_XSETBV:
5516 {
5517 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_XSETBV))
5518 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5519 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5520 }
5521
5522 case SVM_EXIT_TASK_SWITCH:
5523 {
5524 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5525 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5526 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5527 }
5528
5529 case SVM_EXIT_IRET:
5530 {
5531 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_IRET))
5532 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5533 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5534 }
5535
5536 case SVM_EXIT_SHUTDOWN:
5537 {
5538 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SHUTDOWN))
5539 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5540 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5541 }
5542
5543 case SVM_EXIT_VMMCALL:
5544 {
5545 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL))
5546 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5547 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5548 }
5549
5550 case SVM_EXIT_CLGI:
5551 {
5552 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_CLGI))
5553 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5554 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5555 }
5556
5557 case SVM_EXIT_STGI:
5558 {
5559 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_STGI))
5560 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5561 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5562 }
5563
5564 case SVM_EXIT_VMLOAD:
5565 {
5566 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD))
5567 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5568 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5569 }
5570
5571 case SVM_EXIT_VMSAVE:
5572 {
5573 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE))
5574 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5575 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5576 }
5577
5578 case SVM_EXIT_INVLPGA:
5579 {
5580 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA))
5581 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5582 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5583 }
5584
5585 case SVM_EXIT_VMRUN:
5586 {
5587 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_VMRUN))
5588 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5589 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5590 }
5591
5592 case SVM_EXIT_RSM:
5593 {
5594 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_RSM))
5595 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5596 hmR0SvmSetPendingXcptUD(pVCpu);
5597 return VINF_SUCCESS;
5598 }
5599
5600 case SVM_EXIT_SKINIT:
5601 {
5602 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, SVM_CTRL_INTERCEPT_SKINIT))
5603 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5604 hmR0SvmSetPendingXcptUD(pVCpu);
5605 return VINF_SUCCESS;
5606 }
5607
5608 case SVM_EXIT_NPF:
5609 {
5610 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5611 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5612 }
5613
5614 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5615 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5616
5617 default:
5618 {
5619 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5620 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5621 return VERR_SVM_UNKNOWN_EXIT;
5622 }
5623 }
5624 }
5625 }
5626 /* not reached */
5627
5628#undef NST_GST_VMEXIT_CALL_RET
5629}
5630#endif
5631
5632
5633/**
5634 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5635 *
5636 * @returns VBox status code (informational status codes included).
5637 * @param pVCpu The cross context virtual CPU structure.
5638 * @param pSvmTransient Pointer to the SVM transient structure.
5639 */
5640static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5641{
5642 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5643 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5644
5645#ifdef DEBUG_ramshankar
5646# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5647 do { \
5648 if ((a_fDbg) == 1) \
5649 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5650 int rc = a_CallExpr; \
5651 if ((a_fDbg) == 1) \
5652 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5653 return rc; \
5654 } while (0)
5655#else
5656# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5657#endif
5658
5659 /*
5660 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5661 * for most guests under normal workloads (for some definition of "normal").
5662 */
5663 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5664 switch (uExitCode)
5665 {
5666 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5667 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5668 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5669 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5670 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5671 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5672 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5673 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5674 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5675 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5676
5677 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5678 case SVM_EXIT_INTR:
5679 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5680
5681 case SVM_EXIT_READ_CR0:
5682 case SVM_EXIT_READ_CR3:
5683 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5684
5685 case SVM_EXIT_CR0_SEL_WRITE:
5686 case SVM_EXIT_WRITE_CR0:
5687 case SVM_EXIT_WRITE_CR3:
5688 case SVM_EXIT_WRITE_CR4:
5689 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5690
5691 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5692 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5693 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5694 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5695 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5696 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5697 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5698 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5699 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5700 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5701 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5702 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5703 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5704 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5705 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5706 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5707
5708 default:
5709 {
5710 switch (pSvmTransient->u64ExitCode)
5711 {
5712 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5713 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5714 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5715 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5716 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5717
5718 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5719 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5720 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5721 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5722 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5723
5724 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5725 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5726
5727 case SVM_EXIT_SMI:
5728 case SVM_EXIT_INIT:
5729 {
5730 /*
5731 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5732 * If it ever does, we want to know about it so log the exit code and bail.
5733 */
5734 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5735 }
5736
5737#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5738 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5739 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5740 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5741 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5742 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5743 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5744#else
5745 case SVM_EXIT_CLGI:
5746 case SVM_EXIT_STGI:
5747 case SVM_EXIT_VMLOAD:
5748 case SVM_EXIT_VMSAVE:
5749 case SVM_EXIT_INVLPGA:
5750 case SVM_EXIT_VMRUN:
5751#endif
5752 case SVM_EXIT_RSM:
5753 case SVM_EXIT_SKINIT:
5754 {
5755 hmR0SvmSetPendingXcptUD(pVCpu);
5756 return VINF_SUCCESS;
5757 }
5758
5759#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5760 case SVM_EXIT_XCPT_DE:
5761 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5762 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5763 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5764 case SVM_EXIT_XCPT_OF:
5765 case SVM_EXIT_XCPT_BR:
5766 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5767 case SVM_EXIT_XCPT_NM:
5768 case SVM_EXIT_XCPT_DF:
5769 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5770 case SVM_EXIT_XCPT_TS:
5771 case SVM_EXIT_XCPT_NP:
5772 case SVM_EXIT_XCPT_SS:
5773 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5774 /* SVM_EXIT_XCPT_PF: */
5775 case SVM_EXIT_XCPT_15: /* Reserved. */
5776 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5777 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5778 case SVM_EXIT_XCPT_MC:
5779 case SVM_EXIT_XCPT_XF:
5780 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5781 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5782 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5783 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5784#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5785
5786 default:
5787 {
5788 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5789 pVCpu->hm.s.u32HMError = uExitCode;
5790 return VERR_SVM_UNKNOWN_EXIT;
5791 }
5792 }
5793 }
5794 }
5795 /* not reached */
5796#undef VMEXIT_CALL_RET
5797}
5798
5799
5800#ifdef VBOX_STRICT
5801/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5802# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5803 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5804
5805# define HMSVM_ASSERT_PREEMPT_CPUID() \
5806 do \
5807 { \
5808 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5809 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5810 } while (0)
5811
5812# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5813 do { \
5814 AssertPtr((a_pVCpu)); \
5815 AssertPtr((a_pSvmTransient)); \
5816 Assert(ASMIntAreEnabled()); \
5817 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5818 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5819 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5820 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5821 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5822 HMSVM_ASSERT_PREEMPT_CPUID(); \
5823 } while (0)
5824#else
5825# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5826 do { \
5827 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5828 } while (0)
5829#endif
5830
5831
5832/**
5833 * Gets the IEM exception flags for the specified SVM event.
5834 *
5835 * @returns The IEM exception flags.
5836 * @param pEvent Pointer to the SVM event.
5837 *
5838 * @remarks This function currently only constructs flags required for
5839 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5840 * and CR2 aspects of an exception are not included).
5841 */
5842static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5843{
5844 uint8_t const uEventType = pEvent->n.u3Type;
5845 uint32_t fIemXcptFlags;
5846 switch (uEventType)
5847 {
5848 case SVM_EVENT_EXCEPTION:
5849 /*
5850 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5851 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5852 */
5853 if (pEvent->n.u8Vector == X86_XCPT_BP)
5854 {
5855 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5856 break;
5857 }
5858 if (pEvent->n.u8Vector == X86_XCPT_OF)
5859 {
5860 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5861 break;
5862 }
5863 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5864 RT_FALL_THRU();
5865 case SVM_EVENT_NMI:
5866 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5867 break;
5868
5869 case SVM_EVENT_EXTERNAL_IRQ:
5870 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5871 break;
5872
5873 case SVM_EVENT_SOFTWARE_INT:
5874 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5875 break;
5876
5877 default:
5878 fIemXcptFlags = 0;
5879 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5880 break;
5881 }
5882 return fIemXcptFlags;
5883}
5884
5885
5886/**
5887 * Handle a condition that occurred while delivering an event through the guest
5888 * IDT.
5889 *
5890 * @returns VBox status code (informational error codes included).
5891 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5892 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5893 * continue execution of the guest which will delivery the \#DF.
5894 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5895 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5896 *
5897 * @param pVCpu The cross context virtual CPU structure.
5898 * @param pSvmTransient Pointer to the SVM transient structure.
5899 *
5900 * @remarks No-long-jump zone!!!
5901 */
5902static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5903{
5904 int rc = VINF_SUCCESS;
5905 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5906 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5907
5908 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5909 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5910 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5911
5912 /*
5913 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5914 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5915 *
5916 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5917 */
5918 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5919 {
5920 IEMXCPTRAISE enmRaise;
5921 IEMXCPTRAISEINFO fRaiseInfo;
5922 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5923 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5924 if (fExitIsHwXcpt)
5925 {
5926 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5927 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5928 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5929 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5930 }
5931 else
5932 {
5933 /*
5934 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5935 * then we end up here.
5936 *
5937 * If the event was:
5938 * - a software interrupt, we can re-execute the instruction which will
5939 * regenerate the event.
5940 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5941 * - a hardware exception or external interrupt, we re-inject it.
5942 */
5943 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5944 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5945 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5946 else
5947 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5948 }
5949
5950 switch (enmRaise)
5951 {
5952 case IEMXCPTRAISE_CURRENT_XCPT:
5953 case IEMXCPTRAISE_PREV_EVENT:
5954 {
5955 /* For software interrupts, we shall re-execute the instruction. */
5956 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5957 {
5958 RTGCUINTPTR GCPtrFaultAddress = 0;
5959
5960 /* If we are re-injecting an NMI, clear NMI blocking. */
5961 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5962 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5963
5964 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5965 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5966 {
5967 pSvmTransient->fVectoringPF = true;
5968 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5969 pVCpu->cpum.GstCtx.cr2));
5970 }
5971 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5972 && uIdtVector == X86_XCPT_PF)
5973 {
5974 /*
5975 * If the previous exception was a #PF, we need to recover the CR2 value.
5976 * This can't happen with shadow paging.
5977 */
5978 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5979 }
5980
5981 /*
5982 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5983 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5984 */
5985 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5986 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5987 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5988
5989 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5990 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5991 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5992 }
5993 break;
5994 }
5995
5996 case IEMXCPTRAISE_REEXEC_INSTR:
5997 {
5998 Assert(rc == VINF_SUCCESS);
5999 break;
6000 }
6001
6002 case IEMXCPTRAISE_DOUBLE_FAULT:
6003 {
6004 /*
6005 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
6006 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
6007 * converted into a #DF.
6008 */
6009 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6010 {
6011 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
6012 pSvmTransient->fVectoringDoublePF = true;
6013 Assert(rc == VINF_SUCCESS);
6014 }
6015 else
6016 {
6017 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6018 hmR0SvmSetPendingXcptDF(pVCpu);
6019 rc = VINF_HM_DOUBLE_FAULT;
6020 }
6021 break;
6022 }
6023
6024 case IEMXCPTRAISE_TRIPLE_FAULT:
6025 {
6026 rc = VINF_EM_RESET;
6027 break;
6028 }
6029
6030 case IEMXCPTRAISE_CPU_HANG:
6031 {
6032 rc = VERR_EM_GUEST_CPU_HANG;
6033 break;
6034 }
6035
6036 default:
6037 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
6038 }
6039 }
6040 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
6041 return rc;
6042}
6043
6044
6045/**
6046 * Advances the guest RIP by the number of bytes specified in @a cb.
6047 *
6048 * @param pVCpu The cross context virtual CPU structure.
6049 * @param cb RIP increment value in bytes.
6050 */
6051DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPU pVCpu, uint32_t cb)
6052{
6053 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6054 pCtx->rip += cb;
6055
6056 /* Update interrupt shadow. */
6057 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
6058 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
6059 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6060}
6061
6062
6063/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6064/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6065/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6066
6067/** @name \#VMEXIT handlers.
6068 * @{
6069 */
6070
6071/**
6072 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
6073 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
6074 */
6075HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6076{
6077 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6078
6079 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
6080 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
6081 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
6082 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6083
6084 /*
6085 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
6086 * signal -before- the timer fires if the current interrupt is our own timer or a some
6087 * other host interrupt. We also cannot examine what interrupt it is until the host
6088 * actually take the interrupt.
6089 *
6090 * Going back to executing guest code here unconditionally causes random scheduling
6091 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
6092 */
6093 return VINF_EM_RAW_INTERRUPT;
6094}
6095
6096
6097/**
6098 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
6099 */
6100HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6101{
6102 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6103
6104 VBOXSTRICTRC rcStrict;
6105 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6106 if (fSupportsNextRipSave)
6107 {
6108 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6109 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6110 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6111 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
6112 }
6113 else
6114 {
6115 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6116 rcStrict = IEMExecOne(pVCpu);
6117 }
6118
6119 if (rcStrict == VINF_IEM_RAISED_XCPT)
6120 {
6121 rcStrict = VINF_SUCCESS;
6122 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6123 }
6124 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6125 return VBOXSTRICTRC_TODO(rcStrict);
6126}
6127
6128
6129/**
6130 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
6131 */
6132HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6133{
6134 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6135
6136 VBOXSTRICTRC rcStrict;
6137 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6138 if (fSupportsNextRipSave)
6139 {
6140 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6141 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6142 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6143 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
6144 }
6145 else
6146 {
6147 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6148 rcStrict = IEMExecOne(pVCpu);
6149 }
6150
6151 if (rcStrict == VINF_IEM_RAISED_XCPT)
6152 {
6153 rcStrict = VINF_SUCCESS;
6154 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6155 }
6156 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6157 return VBOXSTRICTRC_TODO(rcStrict);
6158}
6159
6160
6161/**
6162 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6163 */
6164HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6165{
6166 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6167
6168 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
6169 VBOXSTRICTRC rcStrict;
6170 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6171 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
6172 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6173 if (!pExitRec)
6174 {
6175 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6176 if (fSupportsNextRipSave)
6177 {
6178 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6179 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6180 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
6181 }
6182 else
6183 {
6184 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6185 rcStrict = IEMExecOne(pVCpu);
6186 }
6187
6188 if (rcStrict == VINF_IEM_RAISED_XCPT)
6189 {
6190 rcStrict = VINF_SUCCESS;
6191 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6192 }
6193 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6194 }
6195 else
6196 {
6197 /*
6198 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6199 */
6200 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6201
6202 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
6203 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
6204
6205 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6206
6207 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6208 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6209 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6210 }
6211 return VBOXSTRICTRC_TODO(rcStrict);
6212}
6213
6214
6215/**
6216 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6217 */
6218HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6219{
6220 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6221
6222 VBOXSTRICTRC rcStrict;
6223 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6224 if (fSupportsNextRipSave)
6225 {
6226 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6227 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6228 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6229 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
6230 }
6231 else
6232 {
6233 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6234 rcStrict = IEMExecOne(pVCpu);
6235 }
6236
6237 if (rcStrict == VINF_SUCCESS)
6238 pSvmTransient->fUpdateTscOffsetting = true;
6239 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6240 {
6241 rcStrict = VINF_SUCCESS;
6242 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6243 }
6244 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6245 return VBOXSTRICTRC_TODO(rcStrict);
6246}
6247
6248
6249/**
6250 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6251 */
6252HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6253{
6254 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6255
6256 VBOXSTRICTRC rcStrict;
6257 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6258 if (fSupportsNextRipSave)
6259 {
6260 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
6261 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6262 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6263 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
6264 }
6265 else
6266 {
6267 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6268 rcStrict = IEMExecOne(pVCpu);
6269 }
6270
6271 if (rcStrict == VINF_SUCCESS)
6272 pSvmTransient->fUpdateTscOffsetting = true;
6273 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6274 {
6275 rcStrict = VINF_SUCCESS;
6276 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6277 }
6278 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6279 return VBOXSTRICTRC_TODO(rcStrict);
6280}
6281
6282
6283/**
6284 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6285 */
6286HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6287{
6288 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6289
6290 VBOXSTRICTRC rcStrict;
6291 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6292 if (fSupportsNextRipSave)
6293 {
6294 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6295 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6296 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6297 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
6298 }
6299 else
6300 {
6301 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6302 rcStrict = IEMExecOne(pVCpu);
6303 }
6304
6305 if (rcStrict == VINF_IEM_RAISED_XCPT)
6306 {
6307 rcStrict = VINF_SUCCESS;
6308 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6309 }
6310 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6311 return VBOXSTRICTRC_TODO(rcStrict);
6312}
6313
6314
6315/**
6316 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6317 */
6318HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6319{
6320 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6321 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6322
6323 VBOXSTRICTRC rcStrict;
6324 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6325 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6326 if ( fSupportsDecodeAssists
6327 && fSupportsNextRipSave)
6328 {
6329 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
6330 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6331 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6332 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6333 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6334 }
6335 else
6336 {
6337 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6338 rcStrict = IEMExecOne(pVCpu);
6339 }
6340
6341 if (rcStrict == VINF_IEM_RAISED_XCPT)
6342 {
6343 rcStrict = VINF_SUCCESS;
6344 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6345 }
6346 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6347 return VBOXSTRICTRC_VAL(rcStrict);
6348}
6349
6350
6351/**
6352 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6353 */
6354HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6355{
6356 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6357
6358 VBOXSTRICTRC rcStrict;
6359 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6360 if (fSupportsNextRipSave)
6361 {
6362 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6363 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6364 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6365 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6366 }
6367 else
6368 {
6369 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6370 rcStrict = IEMExecOne(pVCpu);
6371 }
6372
6373 if ( rcStrict == VINF_EM_HALT
6374 || rcStrict == VINF_SUCCESS)
6375 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6376 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6377 {
6378 rcStrict = VINF_SUCCESS;
6379 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6380 }
6381 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6382 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6383 if (rcStrict != VINF_SUCCESS)
6384 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6385 return VBOXSTRICTRC_VAL(rcStrict);;
6386}
6387
6388
6389/**
6390 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6391 */
6392HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6393{
6394 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6395
6396 /*
6397 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6398 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6399 * segment override prefix or other prefixes might be used, in which case we fallback to
6400 * IEMExecOne() to figure out.
6401 */
6402 VBOXSTRICTRC rcStrict;
6403 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6404 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6405 if (cbInstr)
6406 {
6407 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6408 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6409 }
6410 else
6411 {
6412 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6413 rcStrict = IEMExecOne(pVCpu);
6414 }
6415
6416 if (rcStrict == VINF_IEM_RAISED_XCPT)
6417 {
6418 rcStrict = VINF_SUCCESS;
6419 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6420 }
6421 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6422 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6423 return VBOXSTRICTRC_TODO(rcStrict);
6424}
6425
6426
6427/**
6428 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6429 */
6430HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6431{
6432 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6433
6434 VBOXSTRICTRC rcStrict;
6435 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6436 if (fSupportsNextRipSave)
6437 {
6438 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6439 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6440 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6441 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6442 }
6443 else
6444 {
6445 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6446 rcStrict = IEMExecOne(pVCpu);
6447 }
6448
6449 if ( rcStrict == VINF_EM_HALT
6450 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6451 rcStrict = VINF_SUCCESS;
6452 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6453 {
6454 rcStrict = VINF_SUCCESS;
6455 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6456 }
6457 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6458 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6459 return VBOXSTRICTRC_TODO(rcStrict);
6460}
6461
6462
6463/**
6464 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6465 * \#VMEXIT.
6466 */
6467HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6468{
6469 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6470 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6471 return VINF_EM_RESET;
6472}
6473
6474
6475/**
6476 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6477 */
6478HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6479{
6480 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6481 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6482 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6483 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6484 RT_NOREF(pVmcb);
6485 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6486 return VERR_SVM_UNEXPECTED_EXIT;
6487}
6488
6489
6490/**
6491 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6492 */
6493HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6494{
6495 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6496
6497 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6498 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6499#ifdef VBOX_WITH_STATISTICS
6500 switch (pSvmTransient->u64ExitCode)
6501 {
6502 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6503 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6504 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6505 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6506 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6507 }
6508#endif
6509
6510 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6511 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6512 if ( fSupportsDecodeAssists
6513 && fSupportsNextRipSave)
6514 {
6515 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6516 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6517 if (fMovCRx)
6518 {
6519 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6520 | CPUMCTX_EXTRN_APIC_TPR);
6521 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6522 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6523 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6524 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6525 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6526 return VBOXSTRICTRC_VAL(rcStrict);
6527 }
6528 /* else: SMSW instruction, fall back below to IEM for this. */
6529 }
6530
6531 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6532 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6533 AssertMsg( rcStrict == VINF_SUCCESS
6534 || rcStrict == VINF_PGM_SYNC_CR3
6535 || rcStrict == VINF_IEM_RAISED_XCPT,
6536 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6537 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6538 if (rcStrict == VINF_IEM_RAISED_XCPT)
6539 {
6540 rcStrict = VINF_SUCCESS;
6541 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6542 }
6543 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6544 return VBOXSTRICTRC_TODO(rcStrict);
6545}
6546
6547
6548/**
6549 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6550 */
6551HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6552{
6553 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6554
6555 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6556 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6557 Assert(iCrReg <= 15);
6558
6559 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6560 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6561 bool fDecodedInstr = false;
6562 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6563 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6564 if ( fSupportsDecodeAssists
6565 && fSupportsNextRipSave)
6566 {
6567 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6568 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6569 if (fMovCRx)
6570 {
6571 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6572 | CPUMCTX_EXTRN_APIC_TPR);
6573 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6574 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6575 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6576 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6577 fDecodedInstr = true;
6578 }
6579 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6580 }
6581
6582 if (!fDecodedInstr)
6583 {
6584 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6585 Log4Func(("iCrReg=%#x\n", iCrReg));
6586 rcStrict = IEMExecOne(pVCpu);
6587 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6588 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6589 rcStrict = VERR_EM_INTERPRETER;
6590 }
6591
6592 if (rcStrict == VINF_SUCCESS)
6593 {
6594 switch (iCrReg)
6595 {
6596 case 0:
6597 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6598 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6599 break;
6600
6601 case 2:
6602 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6603 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6604 break;
6605
6606 case 3:
6607 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6608 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6609 break;
6610
6611 case 4:
6612 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6614 break;
6615
6616 case 8:
6617 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6618 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6619 break;
6620
6621 default:
6622 {
6623 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6624 pSvmTransient->u64ExitCode, iCrReg));
6625 break;
6626 }
6627 }
6628 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6629 }
6630 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6631 {
6632 rcStrict = VINF_SUCCESS;
6633 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6634 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6635 }
6636 else
6637 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6638 return VBOXSTRICTRC_TODO(rcStrict);
6639}
6640
6641
6642/**
6643 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6644 *
6645 * @returns Strict VBox status code.
6646 * @param pVCpu The cross context virtual CPU structure.
6647 * @param pVmcb Pointer to the VM control block.
6648 */
6649static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPU pVCpu, PSVMVMCB pVmcb)
6650{
6651 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6652 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6653
6654 VBOXSTRICTRC rcStrict;
6655 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6656 if (fSupportsNextRipSave)
6657 {
6658 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6659 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6660 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6661 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6662 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6663 }
6664 else
6665 {
6666 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6667 rcStrict = IEMExecOne(pVCpu);
6668 }
6669
6670 AssertMsg( rcStrict == VINF_SUCCESS
6671 || rcStrict == VINF_IEM_RAISED_XCPT
6672 || rcStrict == VINF_CPUM_R3_MSR_READ,
6673 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6674
6675 if (rcStrict == VINF_IEM_RAISED_XCPT)
6676 {
6677 rcStrict = VINF_SUCCESS;
6678 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6679 }
6680 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6681 return rcStrict;
6682}
6683
6684
6685/**
6686 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6687 *
6688 * @returns Strict VBox status code.
6689 * @param pVCpu The cross context virtual CPU structure.
6690 * @param pVmcb Pointer to the VM control block.
6691 * @param pSvmTransient Pointer to the SVM-transient structure.
6692 */
6693static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6694{
6695 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6696 uint32_t const idMsr = pCtx->ecx;
6697 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6698 Log4Func(("idMsr=%#RX32\n", idMsr));
6699
6700 /*
6701 * Handle TPR patching MSR writes.
6702 * We utilitize the LSTAR MSR for patching.
6703 */
6704 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6705 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
6706 && idMsr == MSR_K8_LSTAR)
6707 {
6708 unsigned cbInstr;
6709 if (fSupportsNextRipSave)
6710 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6711 else
6712 {
6713 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6714 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6715 if ( rc == VINF_SUCCESS
6716 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6717 Assert(cbInstr > 0);
6718 else
6719 cbInstr = 0;
6720 }
6721
6722 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6723 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6724 {
6725 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6726 AssertRCReturn(rc, rc);
6727 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6728 }
6729
6730 int rc = VINF_SUCCESS;
6731 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6732 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6733 return rc;
6734 }
6735
6736 /*
6737 * Handle regular MSR writes.
6738 */
6739 VBOXSTRICTRC rcStrict;
6740 if (fSupportsNextRipSave)
6741 {
6742 /** @todo Optimize this: We don't need to get much of the MSR state here
6743 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6744 * clear the applicable extern flags. */
6745 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6746 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6747 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6748 }
6749 else
6750 {
6751 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6752 rcStrict = IEMExecOne(pVCpu);
6753 }
6754
6755 AssertMsg( rcStrict == VINF_SUCCESS
6756 || rcStrict == VINF_IEM_RAISED_XCPT
6757 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6758 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6759
6760 if (rcStrict == VINF_SUCCESS)
6761 {
6762 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6763 if ( idMsr >= MSR_IA32_X2APIC_START
6764 && idMsr <= MSR_IA32_X2APIC_END)
6765 {
6766 /*
6767 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6768 * When full APIC register virtualization is implemented we'll have to make sure
6769 * APIC state is saved from the VMCB before IEM changes it.
6770 */
6771 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6772 }
6773 else
6774 {
6775 switch (idMsr)
6776 {
6777 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6778 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6779 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6780 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6781 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6782 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6783 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6784 }
6785 }
6786 }
6787 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6788 {
6789 rcStrict = VINF_SUCCESS;
6790 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6791 }
6792 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6793 return rcStrict;
6794}
6795
6796
6797/**
6798 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6799 * \#VMEXIT.
6800 */
6801HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6802{
6803 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6804
6805 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6806 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6807 return VBOXSTRICTRC_TODO(hmR0SvmExitReadMsr(pVCpu, pVmcb));
6808
6809 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6810 return VBOXSTRICTRC_TODO(hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient));
6811}
6812
6813
6814/**
6815 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6816 */
6817HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6818{
6819 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6820 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6821
6822 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6823
6824 /** @todo Stepping with nested-guest. */
6825 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6826 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6827 {
6828 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6829 if (pSvmTransient->fWasGuestDebugStateActive)
6830 {
6831 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6832 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6833 return VERR_SVM_UNEXPECTED_EXIT;
6834 }
6835
6836 /*
6837 * Lazy DR0-3 loading.
6838 */
6839 if (!pSvmTransient->fWasHyperDebugStateActive)
6840 {
6841 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6842 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6843
6844 /* Don't intercept DRx read and writes. */
6845 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6846 pVmcb->ctrl.u16InterceptRdDRx = 0;
6847 pVmcb->ctrl.u16InterceptWrDRx = 0;
6848 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6849
6850 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6851 VMMRZCallRing3Disable(pVCpu);
6852 HM_DISABLE_PREEMPT(pVCpu);
6853
6854 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6855 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6856 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6857
6858 HM_RESTORE_PREEMPT();
6859 VMMRZCallRing3Enable(pVCpu);
6860
6861 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6862 return VINF_SUCCESS;
6863 }
6864 }
6865
6866 /*
6867 * Interpret the read/writing of DRx.
6868 */
6869 /** @todo Decode assist. */
6870 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6871 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6872 if (RT_LIKELY(rc == VINF_SUCCESS))
6873 {
6874 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6875 /** @todo CPUM should set this flag! */
6876 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6877 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6878 }
6879 else
6880 Assert(rc == VERR_EM_INTERPRETER);
6881 return VBOXSTRICTRC_TODO(rc);
6882}
6883
6884
6885/**
6886 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6887 */
6888HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6889{
6890 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6891 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6892 int rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6893 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6894 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6895 return rc;
6896}
6897
6898
6899/**
6900 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6901 */
6902HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6903{
6904 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6905 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6906
6907 /** @todo decode assists... */
6908 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6909 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6910 {
6911 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6912 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6913 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0,
6914 pCtx->cr4));
6915 }
6916 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6917 {
6918 rcStrict = VINF_SUCCESS;
6919 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6920 }
6921 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6922 return VBOXSTRICTRC_TODO(rcStrict);
6923}
6924
6925
6926/**
6927 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6928 */
6929HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6930{
6931 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6932 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6933
6934 /* I/O operation lookup arrays. */
6935 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6936 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6937 the result (in AL/AX/EAX). */
6938 PVM pVM = pVCpu->CTX_SUFF(pVM);
6939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6940 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6941
6942 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6943
6944 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6945 SVMIOIOEXITINFO IoExitInfo;
6946 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6947 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6948 uint32_t cbValue = s_aIOSize[uIOWidth];
6949 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6950
6951 if (RT_UNLIKELY(!cbValue))
6952 {
6953 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6954 return VERR_EM_INTERPRETER;
6955 }
6956
6957 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6958 VBOXSTRICTRC rcStrict;
6959 PCEMEXITREC pExitRec = NULL;
6960 if ( !pVCpu->hm.s.fSingleInstruction
6961 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6962 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6963 !IoExitInfo.n.u1Str
6964 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6965 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6966 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6967 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6968 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6969 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6970 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6971 if (!pExitRec)
6972 {
6973 bool fUpdateRipAlready = false;
6974 if (IoExitInfo.n.u1Str)
6975 {
6976 /* INS/OUTS - I/O String instruction. */
6977 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6978 * in EXITINFO1? Investigate once this thing is up and running. */
6979 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6980 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6981 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6982 static IEMMODE const s_aenmAddrMode[8] =
6983 {
6984 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6985 };
6986 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6987 if (enmAddrMode != (IEMMODE)-1)
6988 {
6989 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6990 if (cbInstr <= 15 && cbInstr >= 1)
6991 {
6992 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6993 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6994 {
6995 /* Don't know exactly how to detect whether u3Seg is valid, currently
6996 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6997 2384 Opterons when only checking NRIP. */
6998 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6999 if ( fSupportsNextRipSave
7000 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
7001 {
7002 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
7003 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
7004 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7005 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
7006 }
7007 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
7008 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7009 X86_SREG_DS, true /*fIoChecked*/);
7010 else
7011 rcStrict = IEMExecOne(pVCpu);
7012 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
7013 }
7014 else
7015 {
7016 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
7017 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7018 true /*fIoChecked*/);
7019 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
7020 }
7021 }
7022 else
7023 {
7024 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
7025 rcStrict = IEMExecOne(pVCpu);
7026 }
7027 }
7028 else
7029 {
7030 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
7031 rcStrict = IEMExecOne(pVCpu);
7032 }
7033 fUpdateRipAlready = true;
7034 }
7035 else
7036 {
7037 /* IN/OUT - I/O instruction. */
7038 Assert(!IoExitInfo.n.u1Rep);
7039
7040 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
7041 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
7042 {
7043 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
7044 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7045 && !pCtx->eflags.Bits.u1TF)
7046 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
7047 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
7048 }
7049 else
7050 {
7051 uint32_t u32Val = 0;
7052 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
7053 if (IOM_SUCCESS(rcStrict))
7054 {
7055 /* Save result of I/O IN instr. in AL/AX/EAX. */
7056 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
7057 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
7058 }
7059 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7060 && !pCtx->eflags.Bits.u1TF)
7061 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
7062
7063 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
7064 }
7065 }
7066
7067 if (IOM_SUCCESS(rcStrict))
7068 {
7069 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
7070 if (!fUpdateRipAlready)
7071 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
7072
7073 /*
7074 * If any I/O breakpoints are armed, we need to check if one triggered
7075 * and take appropriate action.
7076 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
7077 */
7078 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
7079 * execution engines about whether hyper BPs and such are pending. */
7080 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
7081 uint32_t const uDr7 = pCtx->dr[7];
7082 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7083 && X86_DR7_ANY_RW_IO(uDr7)
7084 && (pCtx->cr4 & X86_CR4_DE))
7085 || DBGFBpIsHwIoArmed(pVM)))
7086 {
7087 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7088 VMMRZCallRing3Disable(pVCpu);
7089 HM_DISABLE_PREEMPT(pVCpu);
7090
7091 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
7092 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
7093
7094 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
7095 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
7096 {
7097 /* Raise #DB. */
7098 pVmcb->guest.u64DR6 = pCtx->dr[6];
7099 pVmcb->guest.u64DR7 = pCtx->dr[7];
7100 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7101 hmR0SvmSetPendingXcptDB(pVCpu);
7102 }
7103 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
7104 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
7105 else if ( rcStrict2 != VINF_SUCCESS
7106 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
7107 rcStrict = rcStrict2;
7108 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
7109
7110 HM_RESTORE_PREEMPT();
7111 VMMRZCallRing3Enable(pVCpu);
7112 }
7113
7114 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7115 }
7116
7117#ifdef VBOX_STRICT
7118 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7119 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
7120 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
7121 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7122 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
7123 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
7124 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
7125 else
7126 {
7127 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
7128 * statuses, that the VMM device and some others may return. See
7129 * IOM_SUCCESS() for guidance. */
7130 AssertMsg( RT_FAILURE(rcStrict)
7131 || rcStrict == VINF_SUCCESS
7132 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
7133 || rcStrict == VINF_EM_DBG_BREAKPOINT
7134 || rcStrict == VINF_EM_RAW_GUEST_TRAP
7135 || rcStrict == VINF_EM_RAW_TO_R3
7136 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
7137 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7138 }
7139#endif
7140 }
7141 else
7142 {
7143 /*
7144 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7145 */
7146 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7147 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
7148 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
7149 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
7150 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
7151 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
7152 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
7153
7154 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7155 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7156
7157 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7158 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7159 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7160 }
7161 return VBOXSTRICTRC_TODO(rcStrict);
7162}
7163
7164
7165/**
7166 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
7167 */
7168HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7169{
7170 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7171 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7172 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7173
7174 PVM pVM = pVCpu->CTX_SUFF(pVM);
7175 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7176 Assert(pVM->hm.s.fNestedPaging);
7177
7178 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
7179 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7180 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
7181 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
7182 thus intentionally not copied into u32ErrCode. */
7183
7184 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
7185 u32ErrCode));
7186
7187 /*
7188 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
7189 */
7190 if ( pVM->hm.s.fTprPatchingAllowed
7191 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
7192 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
7193 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
7194 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7195 && !CPUMIsGuestInLongModeEx(pCtx)
7196 && !CPUMGetGuestCPL(pVCpu)
7197 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7198 {
7199 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7200 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7201
7202 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
7203 {
7204 /* Only attempt to patch the instruction once. */
7205 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7206 if (!pPatch)
7207 return VINF_EM_HM_PATCH_TPR_INSTR;
7208 }
7209 }
7210
7211 /*
7212 * Determine the nested paging mode.
7213 */
7214/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
7215 PGMMODE enmNestedPagingMode;
7216#if HC_ARCH_BITS == 32
7217 if (CPUMIsGuestInLongModeEx(pCtx))
7218 enmNestedPagingMode = PGMMODE_AMD64_NX;
7219 else
7220#endif
7221 enmNestedPagingMode = PGMGetHostMode(pVM);
7222
7223 /*
7224 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
7225 */
7226 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
7227 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
7228 {
7229 /*
7230 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
7231 * injecting the original pending event would most likely cause the same MMIO #NPF.
7232 */
7233 if (pVCpu->hm.s.Event.fPending)
7234 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7235
7236 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
7237 VBOXSTRICTRC rcStrict;
7238 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
7239 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
7240 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
7241 if (!pExitRec)
7242 {
7243
7244 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
7245 u32ErrCode);
7246
7247 /*
7248 * If we succeed, resume guest execution.
7249 *
7250 * If we fail in interpreting the instruction because we couldn't get the guest
7251 * physical address of the page containing the instruction via the guest's page
7252 * tables (we would invalidate the guest page in the host TLB), resume execution
7253 * which would cause a guest page fault to let the guest handle this weird case.
7254 *
7255 * See @bugref{6043}.
7256 */
7257 if ( rcStrict == VINF_SUCCESS
7258 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
7259 || rcStrict == VERR_PAGE_NOT_PRESENT)
7260 {
7261 /* Successfully handled MMIO operation. */
7262 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
7263 rcStrict = VINF_SUCCESS;
7264 }
7265 }
7266 else
7267 {
7268 /*
7269 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7270 */
7271 Assert(pCtx == &pVCpu->cpum.GstCtx);
7272 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7273 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
7274 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
7275
7276 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7277 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7278
7279 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7280 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7281 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7282 }
7283 return VBOXSTRICTRC_TODO(rcStrict);
7284 }
7285
7286 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
7287 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
7288 TRPMResetTrap(pVCpu);
7289
7290 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
7291
7292 /*
7293 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
7294 */
7295 if ( rc == VINF_SUCCESS
7296 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7297 || rc == VERR_PAGE_NOT_PRESENT)
7298 {
7299 /* We've successfully synced our shadow page tables. */
7300 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7301 rc = VINF_SUCCESS;
7302 }
7303
7304 return rc;
7305}
7306
7307
7308/**
7309 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
7310 * \#VMEXIT.
7311 */
7312HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7313{
7314 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7315 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7316
7317 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7318 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7319 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
7320
7321 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7322 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7323 return VINF_SUCCESS;
7324}
7325
7326
7327/**
7328 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7329 * \#VMEXIT.
7330 */
7331HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7332{
7333 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7334 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7335
7336#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7337 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7338#endif
7339
7340 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7341 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7342 {
7343 /*
7344 * AMD-V provides us with the exception which caused the TS; we collect
7345 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7346 */
7347 Log4Func(("TS occurred during event delivery\n"));
7348 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7349 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7350 }
7351
7352 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7353 * emulation. */
7354 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7355 return VERR_EM_INTERPRETER;
7356}
7357
7358
7359/**
7360 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7361 */
7362HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7363{
7364 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7365 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7366
7367 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingAllowed)
7368 {
7369 int rc = hmSvmEmulateMovTpr(pVCpu);
7370 if (rc != VERR_NOT_FOUND)
7371 {
7372 Log4Func(("hmSvmEmulateMovTpr returns %Rrc\n", rc));
7373 return rc;
7374 }
7375 }
7376
7377 if (EMAreHypercallInstructionsEnabled(pVCpu))
7378 {
7379 unsigned cbInstr;
7380 if (hmR0SvmSupportsNextRipSave(pVCpu))
7381 {
7382 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7383 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7384 }
7385 else
7386 {
7387 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7388 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7389 if ( rc == VINF_SUCCESS
7390 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7391 Assert(cbInstr > 0);
7392 else
7393 cbInstr = 0;
7394 }
7395
7396 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7397 if (RT_SUCCESS(rcStrict))
7398 {
7399 /* Only update the RIP if we're continuing guest execution and not in the case
7400 of say VINF_GIM_R3_HYPERCALL. */
7401 if (rcStrict == VINF_SUCCESS)
7402 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7403
7404 return VBOXSTRICTRC_VAL(rcStrict);
7405 }
7406 else
7407 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7408 }
7409
7410 hmR0SvmSetPendingXcptUD(pVCpu);
7411 return VINF_SUCCESS;
7412}
7413
7414
7415/**
7416 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7417 */
7418HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7419{
7420 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7421
7422 unsigned cbInstr;
7423 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7424 if (fSupportsNextRipSave)
7425 {
7426 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7427 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7428 }
7429 else
7430 {
7431 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7432 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7433 if ( rc == VINF_SUCCESS
7434 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7435 Assert(cbInstr > 0);
7436 else
7437 cbInstr = 0;
7438 }
7439
7440 /** @todo The guest has likely hit a contended spinlock. We might want to
7441 * poke a schedule different guest VCPU. */
7442 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7443 return VINF_EM_RAW_INTERRUPT;
7444}
7445
7446
7447/**
7448 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7449 * \#VMEXIT.
7450 */
7451HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7452{
7453 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7454 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7455 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7456
7457 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7458 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7459}
7460
7461
7462/**
7463 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7464 */
7465HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7466{
7467 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7468
7469 /* Clear NMI blocking. */
7470 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7471 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7472
7473 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7474 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7475 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7476
7477 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7478 return VINF_SUCCESS;
7479}
7480
7481
7482/**
7483 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7484 * Conditional \#VMEXIT.
7485 */
7486HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7487{
7488 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7489 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7490 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7491
7492 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7493 PVM pVM = pVCpu->CTX_SUFF(pVM);
7494 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7495 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7496 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7497 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7498
7499#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7500 if (pVM->hm.s.fNestedPaging)
7501 {
7502 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7503 if ( !pSvmTransient->fVectoringDoublePF
7504 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7505 {
7506 /* A genuine guest #PF, reflect it to the guest. */
7507 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7508 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7509 uFaultAddress, uErrCode));
7510 }
7511 else
7512 {
7513 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7514 hmR0SvmSetPendingXcptDF(pVCpu);
7515 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7516 }
7517 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7518 return VINF_SUCCESS;
7519 }
7520#endif
7521
7522 Assert(!pVM->hm.s.fNestedPaging);
7523
7524 /*
7525 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7526 */
7527 if ( pVM->hm.s.fTprPatchingAllowed
7528 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7529 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7530 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7531 && !CPUMIsGuestInLongModeEx(pCtx)
7532 && !CPUMGetGuestCPL(pVCpu)
7533 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7534 {
7535 RTGCPHYS GCPhysApicBase;
7536 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7537 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7538
7539 /* Check if the page at the fault-address is the APIC base. */
7540 RTGCPHYS GCPhysPage;
7541 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7542 if ( rc2 == VINF_SUCCESS
7543 && GCPhysPage == GCPhysApicBase)
7544 {
7545 /* Only attempt to patch the instruction once. */
7546 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7547 if (!pPatch)
7548 return VINF_EM_HM_PATCH_TPR_INSTR;
7549 }
7550 }
7551
7552 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7553 pCtx->rip, uErrCode, pCtx->cr3));
7554
7555 /*
7556 * If it's a vectoring #PF, emulate injecting the original event injection as
7557 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7558 * event injection that caused a #PF. See @bugref{6607}.
7559 */
7560 if (pSvmTransient->fVectoringPF)
7561 {
7562 Assert(pVCpu->hm.s.Event.fPending);
7563 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7564 }
7565
7566 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7567 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7568
7569 Log4Func(("#PF: rc=%Rrc\n", rc));
7570
7571 if (rc == VINF_SUCCESS)
7572 {
7573 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7574 TRPMResetTrap(pVCpu);
7575 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7576 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7577 return rc;
7578 }
7579
7580 if (rc == VINF_EM_RAW_GUEST_TRAP)
7581 {
7582 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7583
7584 /*
7585 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7586 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7587 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7588 */
7589 if ( !pSvmTransient->fVectoringDoublePF
7590 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7591 {
7592 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7593 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7594 TRPMResetTrap(pVCpu);
7595
7596#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7597 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7598 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7599 && HMIsGuestSvmXcptInterceptSet(pVCpu, X86_XCPT_PF))
7600 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress));
7601#endif
7602
7603 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7604 }
7605 else
7606 {
7607 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7608 TRPMResetTrap(pVCpu);
7609 hmR0SvmSetPendingXcptDF(pVCpu);
7610 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7611 }
7612
7613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7614 return VINF_SUCCESS;
7615 }
7616
7617 TRPMResetTrap(pVCpu);
7618 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7619 return rc;
7620}
7621
7622
7623/**
7624 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7625 * Conditional \#VMEXIT.
7626 */
7627HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7628{
7629 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7630 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7631
7632 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7633 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7634 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7635
7636 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7637 if (pVCpu->hm.s.fGIMTrapXcptUD)
7638 {
7639 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7640 uint8_t cbInstr = 0;
7641 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7642 if (rcStrict == VINF_SUCCESS)
7643 {
7644 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7645 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7646 rc = VINF_SUCCESS;
7647 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7648 }
7649 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7650 rc = VINF_SUCCESS;
7651 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7652 rc = VINF_GIM_R3_HYPERCALL;
7653 else
7654 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7655 }
7656
7657 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7658 if (RT_FAILURE(rc))
7659 {
7660 hmR0SvmSetPendingXcptUD(pVCpu);
7661 rc = VINF_SUCCESS;
7662 }
7663
7664 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7665 return rc;
7666}
7667
7668
7669/**
7670 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7671 * Conditional \#VMEXIT.
7672 */
7673HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7674{
7675 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7676 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7677
7678 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7679 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7680
7681 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7682 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7683
7684 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7685
7686 if (!(pCtx->cr0 & X86_CR0_NE))
7687 {
7688 PVM pVM = pVCpu->CTX_SUFF(pVM);
7689 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7690 unsigned cbInstr;
7691 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7692 if (RT_SUCCESS(rc))
7693 {
7694 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7695 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7696 if (RT_SUCCESS(rc))
7697 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7698 }
7699 else
7700 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7701 return rc;
7702 }
7703
7704 hmR0SvmSetPendingXcptMF(pVCpu);
7705 return VINF_SUCCESS;
7706}
7707
7708
7709/**
7710 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7711 * \#VMEXIT.
7712 */
7713HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7714{
7715 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7716 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7717 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7718
7719 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7720 {
7721 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7722 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7723 }
7724
7725 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7726
7727 /*
7728 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7729 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7730 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7731 */
7732 PVM pVM = pVCpu->CTX_SUFF(pVM);
7733 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7734 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7735 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7736 if (rc == VINF_EM_RAW_GUEST_TRAP)
7737 {
7738 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7739 if (CPUMIsHyperDebugStateActive(pVCpu))
7740 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7741
7742 /* Reflect the exception back to the guest. */
7743 hmR0SvmSetPendingXcptDB(pVCpu);
7744 rc = VINF_SUCCESS;
7745 }
7746
7747 /*
7748 * Update DR6.
7749 */
7750 if (CPUMIsHyperDebugStateActive(pVCpu))
7751 {
7752 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7753 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7754 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7755 }
7756 else
7757 {
7758 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7759 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7760 }
7761
7762 return rc;
7763}
7764
7765
7766/**
7767 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7768 * Conditional \#VMEXIT.
7769 */
7770HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7771{
7772 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7773 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7774
7775 SVMEVENT Event;
7776 Event.u = 0;
7777 Event.n.u1Valid = 1;
7778 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7779 Event.n.u8Vector = X86_XCPT_AC;
7780 Event.n.u1ErrorCodeValid = 1;
7781 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7782 return VINF_SUCCESS;
7783}
7784
7785
7786/**
7787 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7788 * Conditional \#VMEXIT.
7789 */
7790HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7791{
7792 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7793 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7794 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7795
7796 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7797 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7798 if (rc == VINF_EM_RAW_GUEST_TRAP)
7799 {
7800 SVMEVENT Event;
7801 Event.u = 0;
7802 Event.n.u1Valid = 1;
7803 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7804 Event.n.u8Vector = X86_XCPT_BP;
7805 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7806 }
7807
7808 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7809 return rc;
7810}
7811
7812
7813/**
7814 * Hacks its way around the lovely mesa driver's backdoor accesses.
7815 *
7816 * @sa hmR0VmxHandleMesaDrvGp
7817 */
7818static int hmR0SvmHandleMesaDrvGp(PVMCPU pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7819{
7820 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7821 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7822 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7823 RT_NOREF(pCtx, pVmcb);
7824
7825 /* For now we'll just skip the instruction. */
7826 hmR0SvmAdvanceRip(pVCpu, 1);
7827 return VINF_SUCCESS;
7828}
7829
7830
7831/**
7832 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7833 * backdoor logging w/o checking what it is running inside.
7834 *
7835 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7836 * backdoor port and magic numbers loaded in registers.
7837 *
7838 * @returns true if it is, false if it isn't.
7839 * @sa hmR0VmxIsMesaDrvGp
7840 */
7841DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPU pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7842{
7843 /* Check magic and port. */
7844 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7845 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7846 if (pCtx->dx != UINT32_C(0x5658))
7847 return false;
7848 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7849 return false;
7850
7851 /* Check that it is #GP(0). */
7852 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7853 return false;
7854
7855 /* Flat ring-3 CS. */
7856 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7857 if (pVmcb->guest.u8CPL != 3)
7858 return false;
7859 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7860 return false;
7861
7862 /* 0xed: IN eAX,dx */
7863 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7864 {
7865 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7866 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7867 uint8_t abInstr[1];
7868 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7869 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7870 if (RT_FAILURE(rc))
7871 return false;
7872 if (abInstr[0] != 0xed)
7873 return false;
7874 }
7875 else
7876 {
7877 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7878 if (pVmcb->ctrl.abInstr[0] != 0xed)
7879 return false;
7880 }
7881 return true;
7882}
7883
7884
7885/**
7886 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7887 * Conditional \#VMEXIT.
7888 */
7889HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7890{
7891 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7892 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7893
7894 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7895 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7896
7897 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7898 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7899 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7900 {
7901 SVMEVENT Event;
7902 Event.u = 0;
7903 Event.n.u1Valid = 1;
7904 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7905 Event.n.u8Vector = X86_XCPT_GP;
7906 Event.n.u1ErrorCodeValid = 1;
7907 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7908 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7909 return VINF_SUCCESS;
7910 }
7911 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7912}
7913
7914
7915#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7916/**
7917 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7918 */
7919HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7920{
7921 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7922 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7923
7924 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7925 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7926 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7927 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7928 Assert(uVector <= X86_XCPT_LAST);
7929 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7930
7931 SVMEVENT Event;
7932 Event.u = 0;
7933 Event.n.u1Valid = 1;
7934 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7935 Event.n.u8Vector = uVector;
7936 switch (uVector)
7937 {
7938 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7939 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7940 case X86_XCPT_DF:
7941 case X86_XCPT_TS:
7942 case X86_XCPT_NP:
7943 case X86_XCPT_SS:
7944 case X86_XCPT_GP:
7945 case X86_XCPT_AC:
7946 {
7947 Event.n.u1ErrorCodeValid = 1;
7948 Event.n.u32ErrorCode = uErrCode;
7949 break;
7950 }
7951 }
7952
7953 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7954 return VINF_SUCCESS;
7955}
7956#endif
7957
7958#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7959/**
7960 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7961 */
7962HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7963{
7964 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7965
7966 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7967 Assert(pVmcb);
7968 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7969
7970 VBOXSTRICTRC rcStrict;
7971 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7972 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7973 if (fSupportsNextRipSave)
7974 {
7975 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7976 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7977 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7978 }
7979 else
7980 {
7981 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7982 rcStrict = IEMExecOne(pVCpu);
7983 }
7984
7985 if (rcStrict == VINF_SUCCESS)
7986 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7987 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7988 {
7989 rcStrict = VINF_SUCCESS;
7990 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7991 }
7992 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7993 return VBOXSTRICTRC_TODO(rcStrict);
7994}
7995
7996
7997/**
7998 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7999 */
8000HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8001{
8002 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8003
8004 /*
8005 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
8006 * we only intercept STGI when events are pending for GIF to become 1.
8007 */
8008 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8009 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
8010 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
8011
8012 VBOXSTRICTRC rcStrict;
8013 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8014 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
8015 if (fSupportsNextRipSave)
8016 {
8017 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
8018 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8019 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
8020 }
8021 else
8022 {
8023 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
8024 rcStrict = IEMExecOne(pVCpu);
8025 }
8026
8027 if (rcStrict == VINF_SUCCESS)
8028 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
8029 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8030 {
8031 rcStrict = VINF_SUCCESS;
8032 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8033 }
8034 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8035 return VBOXSTRICTRC_TODO(rcStrict);
8036}
8037
8038
8039/**
8040 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
8041 */
8042HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8043{
8044 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8045
8046 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8047 Assert(pVmcb);
8048 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
8049
8050 VBOXSTRICTRC rcStrict;
8051 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8052 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
8053 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
8054 | CPUMCTX_EXTRN_SYSENTER_MSRS;
8055 if (fSupportsNextRipSave)
8056 {
8057 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
8058 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8059 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
8060 }
8061 else
8062 {
8063 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
8064 rcStrict = IEMExecOne(pVCpu);
8065 }
8066
8067 if (rcStrict == VINF_SUCCESS)
8068 {
8069 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
8070 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
8071 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
8072 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
8073 }
8074 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8075 {
8076 rcStrict = VINF_SUCCESS;
8077 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8078 }
8079 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8080 return VBOXSTRICTRC_TODO(rcStrict);
8081}
8082
8083
8084/**
8085 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
8086 */
8087HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8088{
8089 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8090
8091 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8092 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
8093
8094 VBOXSTRICTRC rcStrict;
8095 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8096 if (fSupportsNextRipSave)
8097 {
8098 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
8099 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8100 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
8101 }
8102 else
8103 {
8104 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8105 rcStrict = IEMExecOne(pVCpu);
8106 }
8107
8108 if (rcStrict == VINF_IEM_RAISED_XCPT)
8109 {
8110 rcStrict = VINF_SUCCESS;
8111 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8112 }
8113 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8114 return VBOXSTRICTRC_TODO(rcStrict);
8115}
8116
8117
8118/**
8119 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
8120 */
8121HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8122{
8123 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8124
8125 VBOXSTRICTRC rcStrict;
8126 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8127 if (fSupportsNextRipSave)
8128 {
8129 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
8130 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8131 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8132 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
8133 }
8134 else
8135 {
8136 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8137 rcStrict = IEMExecOne(pVCpu);
8138 }
8139
8140 if (rcStrict == VINF_IEM_RAISED_XCPT)
8141 {
8142 rcStrict = VINF_SUCCESS;
8143 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8144 }
8145 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8146 return VBOXSTRICTRC_TODO(rcStrict);
8147}
8148
8149
8150/**
8151 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
8152 */
8153HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8154{
8155 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8156 /* We shall import the entire state here, just in case we enter and continue execution of
8157 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
8158 could lose lose part of CPU state. */
8159 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
8160
8161 VBOXSTRICTRC rcStrict;
8162 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8163 if (fSupportsNextRipSave)
8164 {
8165 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8166 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8167 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
8168 }
8169 else
8170 {
8171 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
8172 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
8173 instruction itself, see @bugref{7243#c126} */
8174 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
8175 }
8176
8177 if (rcStrict == VINF_SUCCESS)
8178 {
8179 rcStrict = VINF_SVM_VMRUN;
8180 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
8181 }
8182 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8183 {
8184 rcStrict = VINF_SUCCESS;
8185 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8186 }
8187 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8188 return VBOXSTRICTRC_TODO(rcStrict);
8189}
8190
8191
8192/**
8193 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
8194 * Unconditional \#VMEXIT.
8195 */
8196HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8197{
8198 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8199 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8200
8201 if (pVCpu->hm.s.Event.fPending)
8202 {
8203 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
8204 return VINF_EM_RAW_INJECT_TRPM_EVENT;
8205 }
8206
8207 hmR0SvmSetPendingXcptDB(pVCpu);
8208 return VINF_SUCCESS;
8209}
8210
8211
8212/**
8213 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
8214 * Conditional \#VMEXIT.
8215 */
8216HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8217{
8218 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8219 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8220
8221 SVMEVENT Event;
8222 Event.u = 0;
8223 Event.n.u1Valid = 1;
8224 Event.n.u3Type = SVM_EVENT_EXCEPTION;
8225 Event.n.u8Vector = X86_XCPT_BP;
8226 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
8227 return VINF_SUCCESS;
8228}
8229#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
8230
8231/** @} */
8232
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette