VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 80036

Last change on this file since 80036 was 80036, checked in by vboxsync, 5 years ago

VMM/HMSVMR0: Nested SVM: bugref:7243 Move u64HostTscAux to svm union.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 326.5 KB
Line 
1/* $Id: HMSVMR0.cpp 80036 2019-07-29 07:44:29Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vm.h>
37#include <VBox/err.h>
38#include "HMSVMR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMSVM_SYNC_FULL_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60
61# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
65 if ((u64ExitCode) == SVM_EXIT_NPF) \
66 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
67 else \
68 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
69 } while (0)
70# endif
71#else
72# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
74# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
75# endif
76#endif /* !VBOX_WITH_STATISTICS */
77
78/** If we decide to use a function table approach this can be useful to
79 * switch to a "static DECLCALLBACK(int)". */
80#define HMSVM_EXIT_DECL static int
81
82/**
83 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
84 * guest using hardware-assisted SVM.
85 *
86 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
87 * are swapped and restored across the world-switch and also registers like
88 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
89 * \#VMEXIT.
90 */
91#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
92 | CPUMCTX_EXTRN_RFLAGS \
93 | CPUMCTX_EXTRN_RAX \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_CR0 \
97 | CPUMCTX_EXTRN_CR2 \
98 | CPUMCTX_EXTRN_CR3 \
99 | CPUMCTX_EXTRN_TABLE_MASK \
100 | CPUMCTX_EXTRN_DR6 \
101 | CPUMCTX_EXTRN_DR7 \
102 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
103 | CPUMCTX_EXTRN_SYSCALL_MSRS \
104 | CPUMCTX_EXTRN_SYSENTER_MSRS \
105 | CPUMCTX_EXTRN_HWVIRT \
106 | CPUMCTX_EXTRN_HM_SVM_MASK)
107
108/**
109 * Subset of the guest-CPU state that is shared between the guest and host.
110 */
111#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
112
113/** Macro for importing guest state from the VMCB back into CPUMCTX. */
114#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
115 do { \
116 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
117 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
118 } while (0)
119
120/** Assert that the required state bits are fetched. */
121#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
122 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
123 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
124
125/** Assert that preemption is disabled or covered by thread-context hooks. */
126#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
127 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
128
129/** Assert that we haven't migrated CPUs when thread-context hooks are not
130 * used. */
131#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
132 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
133 ("Illegal migration! Entered on CPU %u Current %u\n", \
134 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()));
135
136/** Assert that we're not executing a nested-guest. */
137#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
139#else
140# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
141#endif
142
143/** Assert that we're executing a nested-guest. */
144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
146#else
147# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
148#endif
149
150/** Macro for checking and returning from the using function for
151 * \#VMEXIT intercepts that maybe caused during delivering of another
152 * event in the guest. */
153#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
154# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
155 do \
156 { \
157 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
158 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
159 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
160 else if ( rc == VINF_EM_RESET \
161 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
162 { \
163 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
164 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0)); \
165 } \
166 else \
167 return rc; \
168 } while (0)
169#else
170# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
171 do \
172 { \
173 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
174 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
175 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
176 else \
177 return rc; \
178 } while (0)
179#endif
180
181/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
182 * instruction that exited. */
183#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
184 do { \
185 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
186 (a_rc) = VINF_EM_DBG_STEPPED; \
187 } while (0)
188
189/** Validate segment descriptor granularity bit. */
190#ifdef VBOX_STRICT
191# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
192 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
193 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
194 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
195 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
196 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
197 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
198#else
199# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
200#endif
201
202/**
203 * Exception bitmap mask for all contributory exceptions.
204 *
205 * Page fault is deliberately excluded here as it's conditional as to whether
206 * it's contributory or benign. Page faults are handled separately.
207 */
208#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
209 | RT_BIT(X86_XCPT_DE))
210
211/**
212 * Mandatory/unconditional guest control intercepts.
213 *
214 * SMIs can and do happen in normal operation. We need not intercept them
215 * while executing the guest (or nested-guest).
216 */
217#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
218 | SVM_CTRL_INTERCEPT_NMI \
219 | SVM_CTRL_INTERCEPT_INIT \
220 | SVM_CTRL_INTERCEPT_RDPMC \
221 | SVM_CTRL_INTERCEPT_CPUID \
222 | SVM_CTRL_INTERCEPT_RSM \
223 | SVM_CTRL_INTERCEPT_HLT \
224 | SVM_CTRL_INTERCEPT_IOIO_PROT \
225 | SVM_CTRL_INTERCEPT_MSR_PROT \
226 | SVM_CTRL_INTERCEPT_INVLPGA \
227 | SVM_CTRL_INTERCEPT_SHUTDOWN \
228 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
229 | SVM_CTRL_INTERCEPT_VMRUN \
230 | SVM_CTRL_INTERCEPT_SKINIT \
231 | SVM_CTRL_INTERCEPT_WBINVD \
232 | SVM_CTRL_INTERCEPT_MONITOR \
233 | SVM_CTRL_INTERCEPT_MWAIT \
234 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
235 | SVM_CTRL_INTERCEPT_XSETBV)
236
237/** @name VMCB Clean Bits.
238 *
239 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
240 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
241 * memory.
242 *
243 * @{ */
244/** All intercepts vectors, TSC offset, PAUSE filter counter. */
245#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
246/** I/O permission bitmap, MSR permission bitmap. */
247#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
248/** ASID. */
249#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
250/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
251V_INTR_VECTOR. */
252#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
253/** Nested Paging: Nested CR3 (nCR3), PAT. */
254#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
255/** Control registers (CR0, CR3, CR4, EFER). */
256#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
257/** Debug registers (DR6, DR7). */
258#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
259/** GDT, IDT limit and base. */
260#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
261/** Segment register: CS, SS, DS, ES limit and base. */
262#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
263/** CR2.*/
264#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
265/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
266#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
267/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
268PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
269#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
270/** Mask of all valid VMCB Clean bits. */
271#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
272 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
273 | HMSVM_VMCB_CLEAN_ASID \
274 | HMSVM_VMCB_CLEAN_INT_CTRL \
275 | HMSVM_VMCB_CLEAN_NP \
276 | HMSVM_VMCB_CLEAN_CRX_EFER \
277 | HMSVM_VMCB_CLEAN_DRX \
278 | HMSVM_VMCB_CLEAN_DT \
279 | HMSVM_VMCB_CLEAN_SEG \
280 | HMSVM_VMCB_CLEAN_CR2 \
281 | HMSVM_VMCB_CLEAN_LBR \
282 | HMSVM_VMCB_CLEAN_AVIC)
283/** @} */
284
285/** @name SVM transient.
286 *
287 * A state structure for holding miscellaneous information across AMD-V
288 * VMRUN/\#VMEXIT operation, restored after the transition.
289 *
290 * @{ */
291typedef struct SVMTRANSIENT
292{
293 /** The host's rflags/eflags. */
294 RTCCUINTREG fEFlags;
295#if HC_ARCH_BITS == 32
296 uint32_t u32Alignment0;
297#endif
298
299 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
300 uint64_t u64ExitCode;
301 /** The guest's TPR value used for TPR shadowing. */
302 uint8_t u8GuestTpr;
303 /** Alignment. */
304 uint8_t abAlignment0[7];
305
306 /** Pointer to the currently executing VMCB. */
307 PSVMVMCB pVmcb;
308 /** Whether we are currently executing a nested-guest. */
309 bool fIsNestedGuest;
310
311 /** Whether the guest debug state was active at the time of \#VMEXIT. */
312 bool fWasGuestDebugStateActive;
313 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
314 bool fWasHyperDebugStateActive;
315 /** Whether the TSC offset mode needs to be updated. */
316 bool fUpdateTscOffsetting;
317 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
318 bool fRestoreTscAuxMsr;
319 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
320 * contributary exception or a page-fault. */
321 bool fVectoringDoublePF;
322 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
323 * external interrupt or NMI. */
324 bool fVectoringPF;
325} SVMTRANSIENT, *PSVMTRANSIENT;
326AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
327AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
328/** @} */
329
330/**
331 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
332 */
333typedef enum SVMMSREXITREAD
334{
335 /** Reading this MSR causes a \#VMEXIT. */
336 SVMMSREXIT_INTERCEPT_READ = 0xb,
337 /** Reading this MSR does not cause a \#VMEXIT. */
338 SVMMSREXIT_PASSTHRU_READ
339} SVMMSREXITREAD;
340
341/**
342 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
343 */
344typedef enum SVMMSREXITWRITE
345{
346 /** Writing to this MSR causes a \#VMEXIT. */
347 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
348 /** Writing to this MSR does not cause a \#VMEXIT. */
349 SVMMSREXIT_PASSTHRU_WRITE
350} SVMMSREXITWRITE;
351
352/**
353 * SVM \#VMEXIT handler.
354 *
355 * @returns VBox status code.
356 * @param pVCpu The cross context virtual CPU structure.
357 * @param pSvmTransient Pointer to the SVM-transient structure.
358 */
359typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
360
361
362/*********************************************************************************************************************************
363* Internal Functions *
364*********************************************************************************************************************************/
365static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
366static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState);
367
368
369/** @name \#VMEXIT handlers.
370 * @{
371 */
372static FNSVMEXITHANDLER hmR0SvmExitIntr;
373static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
374static FNSVMEXITHANDLER hmR0SvmExitInvd;
375static FNSVMEXITHANDLER hmR0SvmExitCpuid;
376static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
377static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
378static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
379static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
380static FNSVMEXITHANDLER hmR0SvmExitHlt;
381static FNSVMEXITHANDLER hmR0SvmExitMonitor;
382static FNSVMEXITHANDLER hmR0SvmExitMwait;
383static FNSVMEXITHANDLER hmR0SvmExitShutdown;
384static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
385static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
386static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
387static FNSVMEXITHANDLER hmR0SvmExitMsr;
388static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
389static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
390static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
391static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
392static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
393static FNSVMEXITHANDLER hmR0SvmExitVIntr;
394static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
395static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
396static FNSVMEXITHANDLER hmR0SvmExitPause;
397static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
398static FNSVMEXITHANDLER hmR0SvmExitIret;
399static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
400static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
401static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
402static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
403static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
404static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
405static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
406#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
407static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
408#endif
409#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
410static FNSVMEXITHANDLER hmR0SvmExitClgi;
411static FNSVMEXITHANDLER hmR0SvmExitStgi;
412static FNSVMEXITHANDLER hmR0SvmExitVmload;
413static FNSVMEXITHANDLER hmR0SvmExitVmsave;
414static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
415static FNSVMEXITHANDLER hmR0SvmExitVmrun;
416static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
417static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
418#endif
419/** @} */
420
421static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
422#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
423static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient);
424#endif
425
426
427/*********************************************************************************************************************************
428* Global Variables *
429*********************************************************************************************************************************/
430/** Ring-0 memory object for the IO bitmap. */
431static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
432/** Physical address of the IO bitmap. */
433static RTHCPHYS g_HCPhysIOBitmap;
434/** Pointer to the IO bitmap. */
435static R0PTRTYPE(void *) g_pvIOBitmap;
436
437#ifdef VBOX_STRICT
438# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
439# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
440# define HMSVM_LOG_CS RT_BIT_32(2)
441# define HMSVM_LOG_SS RT_BIT_32(3)
442# define HMSVM_LOG_FS RT_BIT_32(4)
443# define HMSVM_LOG_GS RT_BIT_32(5)
444# define HMSVM_LOG_LBR RT_BIT_32(6)
445# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
446 | HMSVM_LOG_CR_REGS \
447 | HMSVM_LOG_CS \
448 | HMSVM_LOG_SS \
449 | HMSVM_LOG_FS \
450 | HMSVM_LOG_GS \
451 | HMSVM_LOG_LBR)
452
453/**
454 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
455 *
456 * @param pVCpu The cross context virtual CPU structure.
457 * @param pVmcb Pointer to the VM control block.
458 * @param pszPrefix Log prefix.
459 * @param fFlags Log flags, see HMSVM_LOG_XXX.
460 * @param uVerbose The verbosity level, currently unused.
461 */
462static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
463{
464 RT_NOREF2(pVCpu, uVerbose);
465 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
466
467 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
468 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
469
470 if (fFlags & HMSVM_LOG_RBP_RSP)
471 {
472 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
473 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
474 }
475
476 if (fFlags & HMSVM_LOG_CR_REGS)
477 {
478 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
479 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
480 }
481
482 if (fFlags & HMSVM_LOG_CS)
483 {
484 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
485 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
486 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
487 }
488 if (fFlags & HMSVM_LOG_SS)
489 {
490 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
491 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
492 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
493 }
494 if (fFlags & HMSVM_LOG_FS)
495 {
496 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
497 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
498 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
499 }
500 if (fFlags & HMSVM_LOG_GS)
501 {
502 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
503 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
504 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
505 }
506
507 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
508 if (fFlags & HMSVM_LOG_LBR)
509 {
510 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
511 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
512 }
513 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
514}
515#endif /* VBOX_STRICT */
516
517
518/**
519 * Sets up and activates AMD-V on the current CPU.
520 *
521 * @returns VBox status code.
522 * @param pHostCpu The HM physical-CPU structure.
523 * @param pVM The cross context VM structure. Can be
524 * NULL after a resume!
525 * @param pvCpuPage Pointer to the global CPU page.
526 * @param HCPhysCpuPage Physical address of the global CPU page.
527 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
528 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
529 * unused).
530 */
531VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
532 PCSUPHWVIRTMSRS pHwvirtMsrs)
533{
534 Assert(!fEnabledByHost);
535 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
536 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
537 Assert(pvCpuPage); NOREF(pvCpuPage);
538 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
539
540 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
541
542 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
543 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
544
545 /*
546 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
547 */
548 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
549 if (u64HostEfer & MSR_K6_EFER_SVME)
550 {
551 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
552 if ( pVM
553 && pVM->hm.s.svm.fIgnoreInUseError)
554 pHostCpu->fIgnoreAMDVInUseError = true;
555
556 if (!pHostCpu->fIgnoreAMDVInUseError)
557 {
558 ASMSetFlags(fEFlags);
559 return VERR_SVM_IN_USE;
560 }
561 }
562
563 /* Turn on AMD-V in the EFER MSR. */
564 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
565
566 /* Write the physical page address where the CPU will store the host state while executing the VM. */
567 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
568
569 /* Restore interrupts. */
570 ASMSetFlags(fEFlags);
571
572 /*
573 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
574 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
575 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
576 * entirely with before executing any guest code.
577 */
578 pHostCpu->fFlushAsidBeforeUse = true;
579
580 /*
581 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
582 */
583 ++pHostCpu->cTlbFlushes;
584
585 return VINF_SUCCESS;
586}
587
588
589/**
590 * Deactivates AMD-V on the current CPU.
591 *
592 * @returns VBox status code.
593 * @param pvCpuPage Pointer to the global CPU page.
594 * @param HCPhysCpuPage Physical address of the global CPU page.
595 */
596VMMR0DECL(int) SVMR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
597{
598 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
599 AssertReturn( HCPhysCpuPage
600 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
601 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
602
603 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
604 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
605
606 /* Turn off AMD-V in the EFER MSR. */
607 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
608 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
609
610 /* Invalidate host state physical address. */
611 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
612
613 /* Restore interrupts. */
614 ASMSetFlags(fEFlags);
615
616 return VINF_SUCCESS;
617}
618
619
620/**
621 * Does global AMD-V initialization (called during module initialization).
622 *
623 * @returns VBox status code.
624 */
625VMMR0DECL(int) SVMR0GlobalInit(void)
626{
627 /*
628 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
629 * intercept all IO accesses, it's done once globally here instead of per-VM.
630 */
631 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
632 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
633 if (RT_FAILURE(rc))
634 return rc;
635
636 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
637 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
638
639 /* Set all bits to intercept all IO accesses. */
640 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
641
642 return VINF_SUCCESS;
643}
644
645
646/**
647 * Does global AMD-V termination (called during module termination).
648 */
649VMMR0DECL(void) SVMR0GlobalTerm(void)
650{
651 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
652 {
653 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
654 g_pvIOBitmap = NULL;
655 g_HCPhysIOBitmap = 0;
656 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
657 }
658}
659
660
661/**
662 * Frees any allocated per-VCPU structures for a VM.
663 *
664 * @param pVM The cross context VM structure.
665 */
666DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
667{
668 for (uint32_t i = 0; i < pVM->cCpus; i++)
669 {
670 PVMCPU pVCpu = &pVM->aCpus[i];
671 AssertPtr(pVCpu);
672
673 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
674 {
675 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
676 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
677 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
678 }
679
680 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
683 pVCpu->hm.s.svm.pVmcb = NULL;
684 pVCpu->hm.s.svm.HCPhysVmcb = 0;
685 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
686 }
687
688 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
689 {
690 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
691 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
692 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
693 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
694 }
695 }
696}
697
698
699/**
700 * Does per-VM AMD-V initialization.
701 *
702 * @returns VBox status code.
703 * @param pVM The cross context VM structure.
704 */
705VMMR0DECL(int) SVMR0InitVM(PVM pVM)
706{
707 int rc = VERR_INTERNAL_ERROR_5;
708
709 /*
710 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
711 */
712 uint32_t u32Family;
713 uint32_t u32Model;
714 uint32_t u32Stepping;
715 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
716 {
717 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
718 pVM->hm.s.svm.fAlwaysFlushTLB = true;
719 }
720
721 /*
722 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
723 */
724 for (VMCPUID i = 0; i < pVM->cCpus; i++)
725 {
726 PVMCPU pVCpu = &pVM->aCpus[i];
727 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
728 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
729 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
730 }
731
732 for (VMCPUID i = 0; i < pVM->cCpus; i++)
733 {
734 PVMCPU pVCpu = &pVM->aCpus[i];
735
736 /*
737 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
738 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
739 */
740 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
741 if (RT_FAILURE(rc))
742 goto failure_cleanup;
743
744 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
745 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
746 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
747 ASMMemZeroPage(pvVmcbHost);
748
749 /*
750 * Allocate one page for the guest-state VMCB.
751 */
752 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
753 if (RT_FAILURE(rc))
754 goto failure_cleanup;
755
756 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
757 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
758 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
759 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
760
761 /*
762 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
763 * SVM to not require one.
764 */
765 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
766 false /* fExecutable */);
767 if (RT_FAILURE(rc))
768 goto failure_cleanup;
769
770 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
771 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
772 /* Set all bits to intercept all MSR accesses (changed later on). */
773 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
774 }
775
776 return VINF_SUCCESS;
777
778failure_cleanup:
779 hmR0SvmFreeStructs(pVM);
780 return rc;
781}
782
783
784/**
785 * Does per-VM AMD-V termination.
786 *
787 * @returns VBox status code.
788 * @param pVM The cross context VM structure.
789 */
790VMMR0DECL(int) SVMR0TermVM(PVM pVM)
791{
792 hmR0SvmFreeStructs(pVM);
793 return VINF_SUCCESS;
794}
795
796
797/**
798 * Returns whether the VMCB Clean Bits feature is supported.
799 *
800 * @returns @c true if supported, @c false otherwise.
801 * @param pVCpu The cross context virtual CPU structure.
802 */
803DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu)
804{
805 PVM pVM = pVCpu->CTX_SUFF(pVM);
806#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
807 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
808 {
809 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
810 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
811 }
812#endif
813 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
814}
815
816
817/**
818 * Returns whether the decode assists feature is supported.
819 *
820 * @returns @c true if supported, @c false otherwise.
821 * @param pVCpu The cross context virtual CPU structure.
822 */
823DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu)
824{
825 PVM pVM = pVCpu->CTX_SUFF(pVM);
826#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
827 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
828 {
829 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
830 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
831 }
832#endif
833 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
834}
835
836
837/**
838 * Returns whether the NRIP_SAVE feature is supported.
839 *
840 * @returns @c true if supported, @c false otherwise.
841 * @param pVCpu The cross context virtual CPU structure.
842 */
843DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu)
844{
845 PVM pVM = pVCpu->CTX_SUFF(pVM);
846#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
847 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
848 {
849 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
850 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
851 }
852#endif
853 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
854}
855
856
857/**
858 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
859 *
860 * @param pVCpu The cross context virtual CPU structure.
861 * @param pbMsrBitmap Pointer to the MSR bitmap.
862 * @param idMsr The MSR for which the permissions are being set.
863 * @param enmRead MSR read permissions.
864 * @param enmWrite MSR write permissions.
865 *
866 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
867 * caller needs to take care of this.
868 */
869static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
870 SVMMSREXITWRITE enmWrite)
871{
872 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
873 uint16_t offMsrpm;
874 uint8_t uMsrpmBit;
875 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
876 AssertRC(rc);
877
878 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
879 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
880
881 pbMsrBitmap += offMsrpm;
882 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
883 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
884 else
885 {
886 if (!fInNestedGuestMode)
887 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
888#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
889 else
890 {
891 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
892 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
893 pbNstGstMsrBitmap += offMsrpm;
894 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
895 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
896 else
897 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
898 }
899#endif
900 }
901
902 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
903 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
904 else
905 {
906 if (!fInNestedGuestMode)
907 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
908#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
909 else
910 {
911 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
912 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
913 pbNstGstMsrBitmap += offMsrpm;
914 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
915 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
916 else
917 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
918 }
919#endif
920 }
921}
922
923
924/**
925 * Sets up AMD-V for the specified VM.
926 * This function is only called once per-VM during initalization.
927 *
928 * @returns VBox status code.
929 * @param pVM The cross context VM structure.
930 */
931VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
932{
933 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
934 AssertReturn(pVM, VERR_INVALID_PARAMETER);
935 Assert(pVM->hm.s.svm.fSupported);
936
937 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
938 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
939 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
940
941 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
942 bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
943
944#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
945 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
946 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
947
948 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
949 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
950#endif
951
952 PVMCPU pVCpu = &pVM->aCpus[0];
953 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
954 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[0]\n"), VERR_SVM_INVALID_PVMCB);
955 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
956
957 /* Always trap #AC for reasons of security. */
958 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
959
960 /* Always trap #DB for reasons of security. */
961 pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
962
963 /* Trap exceptions unconditionally (debug purposes). */
964#ifdef HMSVM_ALWAYS_TRAP_PF
965 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
966#endif
967#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
968 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
969 pVmcbCtrl->u32InterceptXcpt |= 0
970 | RT_BIT(X86_XCPT_BP)
971 | RT_BIT(X86_XCPT_DE)
972 | RT_BIT(X86_XCPT_NM)
973 | RT_BIT(X86_XCPT_UD)
974 | RT_BIT(X86_XCPT_NP)
975 | RT_BIT(X86_XCPT_SS)
976 | RT_BIT(X86_XCPT_GP)
977 | RT_BIT(X86_XCPT_PF)
978 | RT_BIT(X86_XCPT_MF)
979 ;
980#endif
981
982 /* Apply the exceptions intercepts needed by the GIM provider. */
983 if (pVCpu->hm.s.fGIMTrapXcptUD)
984 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
985
986 /* The mesa 3d driver hack needs #GP. */
987 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
988 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
989
990 /* Set up unconditional intercepts and conditions. */
991 pVmcbCtrl->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
992 | SVM_CTRL_INTERCEPT_VMMCALL;
993
994#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
995 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
996#endif
997
998#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
999 /* Virtualized VMSAVE/VMLOAD. */
1000 pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
1001 if (!fUseVirtVmsaveVmload)
1002 {
1003 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
1004 | SVM_CTRL_INTERCEPT_VMLOAD;
1005 }
1006
1007 /* Virtual GIF. */
1008 pVmcbCtrl->IntCtrl.n.u1VGifEnable = fUseVGif;
1009 if (!fUseVGif)
1010 {
1011 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
1012 | SVM_CTRL_INTERCEPT_STGI;
1013 }
1014#endif
1015
1016 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1017 pVmcbCtrl->u16InterceptWrCRx = RT_BIT(4);
1018
1019 /* Intercept all DRx reads and writes by default. Changed later on. */
1020 pVmcbCtrl->u16InterceptRdDRx = 0xffff;
1021 pVmcbCtrl->u16InterceptWrDRx = 0xffff;
1022
1023 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1024 pVmcbCtrl->IntCtrl.n.u1VIntrMasking = 1;
1025
1026 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1027 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1028 pVmcbCtrl->IntCtrl.n.u1IgnoreTPR = 1;
1029
1030 /* Set the IO permission bitmap physical addresses. */
1031 pVmcbCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1032
1033 /* LBR virtualization. */
1034 pVmcbCtrl->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1035
1036 /* The host ASID MBZ, for the guest start with 1. */
1037 pVmcbCtrl->TLBCtrl.n.u32ASID = 1;
1038
1039 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1040 pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1041
1042 /* Without Nested Paging, we need additionally intercepts. */
1043 if (!pVM->hm.s.fNestedPaging)
1044 {
1045 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1046 pVmcbCtrl->u16InterceptRdCRx |= RT_BIT(3);
1047 pVmcbCtrl->u16InterceptWrCRx |= RT_BIT(3);
1048
1049 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1050 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1051 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1052
1053 /* Page faults must be intercepted to implement shadow paging. */
1054 pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1055 }
1056
1057 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1058 if (fUsePauseFilter)
1059 {
1060 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1061 pVmcbCtrl->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1062 if (fPauseFilterThreshold)
1063 pVmcbCtrl->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1064 pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1065 }
1066
1067 /*
1068 * Setup the MSR permission bitmap.
1069 * The following MSRs are saved/restored automatically during the world-switch.
1070 * Don't intercept guest read/write accesses to these MSRs.
1071 */
1072 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1073 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1074 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1075 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1076 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1077 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1078 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1079 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1080 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1081 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1082 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1083 pVmcbCtrl->u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
1084
1085 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1086 Assert(pVmcbCtrl->u32VmcbCleanBits == 0);
1087
1088 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1089 {
1090 PVMCPU pVCpuCur = &pVM->aCpus[i];
1091 PSVMVMCB pVmcbCur = pVM->aCpus[i].hm.s.svm.pVmcb;
1092 AssertMsgReturn(pVmcbCur, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
1093 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1094
1095 /* Copy the VMCB control area. */
1096 memcpy(pVmcbCtrlCur, pVmcbCtrl, sizeof(*pVmcbCtrlCur));
1097
1098 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1099 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
1100 memcpy(pbMsrBitmapCur, pbMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1101 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
1102
1103 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1104 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1105
1106 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1107 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu->hm.s.fGIMTrapXcptUD);
1108 }
1109
1110#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1111 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1112 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1113#else
1114 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1115#endif
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1122 *
1123 * @returns Pointer to the current context VMCB.
1124 * @param pVCpu The cross context virtual CPU structure.
1125 */
1126DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu)
1127{
1128#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1129 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1130 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1131#endif
1132 return pVCpu->hm.s.svm.pVmcb;
1133}
1134
1135
1136/**
1137 * Gets a pointer to the nested-guest VMCB cache.
1138 *
1139 * @returns Pointer to the nested-guest VMCB cache.
1140 * @param pVCpu The cross context virtual CPU structure.
1141 */
1142DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPU pVCpu)
1143{
1144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1145 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1146 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1147#else
1148 RT_NOREF(pVCpu);
1149 return NULL;
1150#endif
1151}
1152
1153
1154/**
1155 * Invalidates a guest page by guest virtual address.
1156 *
1157 * @returns VBox status code.
1158 * @param pVCpu The cross context virtual CPU structure.
1159 * @param GCVirt Guest virtual address of the page to invalidate.
1160 */
1161VMMR0DECL(int) SVMR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1162{
1163 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1164
1165 bool const fFlushPending = pVCpu->CTX_SUFF(pVM)->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1166
1167 /* Skip it if a TLB flush is already pending. */
1168 if (!fFlushPending)
1169 {
1170 Log4Func(("%#RGv\n", GCVirt));
1171
1172 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1173 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1174
1175#if HC_ARCH_BITS == 32
1176 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
1177 if (CPUMIsGuestInLongMode(pVCpu))
1178 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1179 else
1180#endif
1181 {
1182 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1183 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1184 }
1185 }
1186 return VINF_SUCCESS;
1187}
1188
1189
1190/**
1191 * Flushes the appropriate tagged-TLB entries.
1192 *
1193 * @param pHostCpu The HM physical-CPU structure.
1194 * @param pVCpu The cross context virtual CPU structure.
1195 * @param pVmcb Pointer to the VM control block.
1196 */
1197static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PSVMVMCB pVmcb)
1198{
1199 /*
1200 * Force a TLB flush for the first world switch if the current CPU differs from the one
1201 * we ran on last. This can happen both for start & resume due to long jumps back to
1202 * ring-3.
1203 *
1204 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1205 * correlation between it and the physical CPU.
1206 *
1207 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1208 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1209 */
1210 bool fNewAsid = false;
1211 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1212 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1213 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
1214#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1215 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1216#endif
1217 )
1218 {
1219 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1220 pVCpu->hm.s.fForceTLBFlush = true;
1221 fNewAsid = true;
1222 }
1223
1224 /* Set TLB flush state as checked until we return from the world switch. */
1225 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1226
1227 /* Check for explicit TLB flushes. */
1228 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1229 {
1230 pVCpu->hm.s.fForceTLBFlush = true;
1231 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1232 }
1233
1234 /*
1235 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1236 * This Host CPU requirement takes precedence.
1237 */
1238 PVM pVM = pVCpu->CTX_SUFF(pVM);
1239 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1240 {
1241 pHostCpu->uCurrentAsid = 1;
1242 pVCpu->hm.s.uCurrentAsid = 1;
1243 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1244 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1245 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1246
1247 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1248 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1249 }
1250 else
1251 {
1252 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1253 if (pVCpu->hm.s.fForceTLBFlush)
1254 {
1255 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1256 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1257
1258 if (fNewAsid)
1259 {
1260 ++pHostCpu->uCurrentAsid;
1261
1262 bool fHitASIDLimit = false;
1263 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1264 {
1265 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1266 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1267 fHitASIDLimit = true;
1268 }
1269
1270 if ( fHitASIDLimit
1271 || pHostCpu->fFlushAsidBeforeUse)
1272 {
1273 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1274 pHostCpu->fFlushAsidBeforeUse = false;
1275 }
1276
1277 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1278 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1279 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1280 }
1281 else
1282 {
1283 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1284 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1285 else
1286 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1287 }
1288
1289 pVCpu->hm.s.fForceTLBFlush = false;
1290 }
1291 }
1292
1293 /* Update VMCB with the ASID. */
1294 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1295 {
1296 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1297 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1298 }
1299
1300 AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
1301 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
1302 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1303 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1304 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1305 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1306 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1307 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1308
1309#ifdef VBOX_WITH_STATISTICS
1310 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1311 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1312 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1313 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1314 {
1315 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1316 }
1317 else
1318 {
1319 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1320 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1321 }
1322#endif
1323}
1324
1325
1326/** @name 64-bit guest on 32-bit host OS helper functions.
1327 *
1328 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1329 * mode (code segment, paging). These wrappers/helpers perform the necessary
1330 * bits for the 32->64 switcher.
1331 *
1332 * @{ */
1333#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1334/**
1335 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1336 *
1337 * @returns VBox status code.
1338 * @param HCPhysVmcbHost Physical address of host VMCB.
1339 * @param HCPhysVmcb Physical address of the VMCB.
1340 * @param pCtx Pointer to the guest-CPU context.
1341 * @param pVM The cross context VM structure.
1342 * @param pVCpu The cross context virtual CPU structure.
1343 */
1344DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1345{
1346 RT_NOREF2(pVM, pCtx);
1347 uint32_t aParam[8];
1348 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1349 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1350 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1351 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1352 aParam[4] = VM_RC_ADDR(pVM, pVM);
1353 aParam[5] = 0;
1354 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1355 aParam[7] = 0;
1356
1357 return SVMR0Execute64BitsHandler(pVCpu, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1358}
1359
1360
1361/**
1362 * Executes the specified VMRUN handler in 64-bit mode.
1363 *
1364 * @returns VBox status code.
1365 * @param pVCpu The cross context virtual CPU structure.
1366 * @param enmOp The operation to perform.
1367 * @param cParams Number of parameters.
1368 * @param paParam Array of 32-bit parameters.
1369 */
1370VMMR0DECL(int) SVMR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
1371{
1372 PVM pVM = pVCpu->CTX_SUFF(pVM);
1373 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1374 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1375
1376 /* Disable interrupts. */
1377 RTHCUINTREG const fEFlags = ASMIntDisableFlags();
1378
1379#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1380 RTCPUID idHostCpu = RTMpCpuId();
1381 CPUMR0SetLApic(pVCpu, idHostCpu);
1382#endif
1383
1384 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1385 CPUMSetHyperEIP(pVCpu, enmOp);
1386 for (int i = (int)cParams - 1; i >= 0; i--)
1387 CPUMPushHyper(pVCpu, paParam[i]);
1388
1389 /* Call the switcher. */
1390 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1391 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
1392 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1393
1394 /* Restore interrupts. */
1395 ASMSetFlags(fEFlags);
1396 return rc;
1397}
1398
1399#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1400/** @} */
1401
1402
1403/**
1404 * Sets an exception intercept in the specified VMCB.
1405 *
1406 * @param pVmcb Pointer to the VM control block.
1407 * @param uXcpt The exception (X86_XCPT_*).
1408 */
1409DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1410{
1411 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1412 {
1413 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1414 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1415 }
1416}
1417
1418
1419/**
1420 * Clears an exception intercept in the specified VMCB.
1421 *
1422 * @param pVCpu The cross context virtual CPU structure.
1423 * @param pVmcb Pointer to the VM control block.
1424 * @param uXcpt The exception (X86_XCPT_*).
1425 *
1426 * @remarks This takes into account if we're executing a nested-guest and only
1427 * removes the exception intercept if both the guest -and- nested-guest
1428 * are not intercepting it.
1429 */
1430DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1431{
1432 Assert(uXcpt != X86_XCPT_DB);
1433 Assert(uXcpt != X86_XCPT_AC);
1434 Assert(uXcpt != X86_XCPT_GP);
1435#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1436 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1437 {
1438 bool fRemove = true;
1439# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1440 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1441 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1442 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1443 {
1444 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1445 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1446 }
1447# else
1448 RT_NOREF(pVCpu);
1449# endif
1450 if (fRemove)
1451 {
1452 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1453 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1454 }
1455 }
1456#else
1457 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1458#endif
1459}
1460
1461
1462/**
1463 * Sets a control intercept in the specified VMCB.
1464 *
1465 * @param pVmcb Pointer to the VM control block.
1466 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1467 */
1468DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1469{
1470 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1471 {
1472 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1473 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1474 }
1475}
1476
1477
1478/**
1479 * Clears a control intercept in the specified VMCB.
1480 *
1481 * @returns @c true if the intercept is still set, @c false otherwise.
1482 * @param pVCpu The cross context virtual CPU structure.
1483 * @param pVmcb Pointer to the VM control block.
1484 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1485 *
1486 * @remarks This takes into account if we're executing a nested-guest and only
1487 * removes the control intercept if both the guest -and- nested-guest
1488 * are not intercepting it.
1489 */
1490static bool hmR0SvmClearCtrlIntercept(PVMCPU pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1491{
1492 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1493 {
1494 bool fRemove = true;
1495#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1496 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1497 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1498 {
1499 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1500 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1501 }
1502#else
1503 RT_NOREF(pVCpu);
1504#endif
1505 if (fRemove)
1506 {
1507 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1508 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1509 }
1510 }
1511
1512 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1513}
1514
1515
1516/**
1517 * Exports the guest (or nested-guest) CR0 into the VMCB.
1518 *
1519 * @param pVCpu The cross context virtual CPU structure.
1520 * @param pVmcb Pointer to the VM control block.
1521 *
1522 * @remarks This assumes we always pre-load the guest FPU.
1523 * @remarks No-long-jump zone!!!
1524 */
1525static void hmR0SvmExportGuestCR0(PVMCPU pVCpu, PSVMVMCB pVmcb)
1526{
1527 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1528
1529 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1530 uint64_t const uGuestCr0 = pCtx->cr0;
1531 uint64_t uShadowCr0 = uGuestCr0;
1532
1533 /* Always enable caching. */
1534 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1535
1536 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1537 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1538 {
1539 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1540 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1541 }
1542
1543 /*
1544 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1545 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1546 * see @bugref{7243#c103}.
1547 */
1548 if (!(uGuestCr0 & X86_CR0_NE))
1549 {
1550 uShadowCr0 |= X86_CR0_NE;
1551 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1552 }
1553 else
1554 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1555
1556 /*
1557 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1558 *
1559 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1560 * see @bugref{6944}.
1561 *
1562 * We also don't ever want to honor weird things like cache disable from the guest.
1563 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1564 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1565 */
1566 if (uShadowCr0 == uGuestCr0)
1567 {
1568 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1569 {
1570 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1571 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1572 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1573 }
1574 else
1575 {
1576 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1577 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1578 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1579 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1580 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1581 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1582 }
1583 }
1584 else
1585 {
1586 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1587 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1588 }
1589 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1590
1591 Assert(!RT_HI_U32(uShadowCr0));
1592 if (pVmcb->guest.u64CR0 != uShadowCr0)
1593 {
1594 pVmcb->guest.u64CR0 = uShadowCr0;
1595 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1596 }
1597}
1598
1599
1600/**
1601 * Exports the guest (or nested-guest) CR3 into the VMCB.
1602 *
1603 * @param pVCpu The cross context virtual CPU structure.
1604 * @param pVmcb Pointer to the VM control block.
1605 *
1606 * @remarks No-long-jump zone!!!
1607 */
1608static void hmR0SvmExportGuestCR3(PVMCPU pVCpu, PSVMVMCB pVmcb)
1609{
1610 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1611
1612 PVM pVM = pVCpu->CTX_SUFF(pVM);
1613 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1614 if (pVM->hm.s.fNestedPaging)
1615 {
1616 PGMMODE enmShwPagingMode;
1617#if HC_ARCH_BITS == 32
1618 if (CPUMIsGuestInLongModeEx(pCtx))
1619 enmShwPagingMode = PGMMODE_AMD64_NX;
1620 else
1621#endif
1622 enmShwPagingMode = PGMGetHostMode(pVM);
1623
1624 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1625 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1626 pVmcb->guest.u64CR3 = pCtx->cr3;
1627 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1628 }
1629 else
1630 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1631
1632 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1633}
1634
1635
1636/**
1637 * Exports the guest (or nested-guest) CR4 into the VMCB.
1638 *
1639 * @param pVCpu The cross context virtual CPU structure.
1640 * @param pVmcb Pointer to the VM control block.
1641 *
1642 * @remarks No-long-jump zone!!!
1643 */
1644static int hmR0SvmExportGuestCR4(PVMCPU pVCpu, PSVMVMCB pVmcb)
1645{
1646 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1647
1648 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1649 uint64_t uShadowCr4 = pCtx->cr4;
1650 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1651 {
1652 switch (pVCpu->hm.s.enmShadowMode)
1653 {
1654 case PGMMODE_REAL:
1655 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1656 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1657
1658 case PGMMODE_32_BIT: /* 32-bit paging. */
1659 uShadowCr4 &= ~X86_CR4_PAE;
1660 break;
1661
1662 case PGMMODE_PAE: /* PAE paging. */
1663 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1664 /** Must use PAE paging as we could use physical memory > 4 GB */
1665 uShadowCr4 |= X86_CR4_PAE;
1666 break;
1667
1668 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1669 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1670#ifdef VBOX_ENABLE_64_BITS_GUESTS
1671 break;
1672#else
1673 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1674#endif
1675
1676 default: /* shut up gcc */
1677 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1678 }
1679 }
1680
1681 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1682 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1683
1684 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1685 if (uShadowCr4 == pCtx->cr4)
1686 {
1687 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1688 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1689 else
1690 {
1691 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1692 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1693 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1694 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1695 }
1696 }
1697 else
1698 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1699
1700 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1701 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1702
1703 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1704 Assert(!RT_HI_U32(uShadowCr4));
1705 pVmcb->guest.u64CR4 = uShadowCr4;
1706 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1707
1708 return VINF_SUCCESS;
1709}
1710
1711
1712/**
1713 * Exports the guest (or nested-guest) control registers into the VMCB.
1714 *
1715 * @returns VBox status code.
1716 * @param pVCpu The cross context virtual CPU structure.
1717 * @param pVmcb Pointer to the VM control block.
1718 *
1719 * @remarks No-long-jump zone!!!
1720 */
1721static int hmR0SvmExportGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1722{
1723 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1724
1725 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1726 {
1727 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1728 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1729
1730 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1731 {
1732 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1733 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1734 }
1735
1736 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1737 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1738
1739 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1740 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1741 {
1742 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1743 if (RT_FAILURE(rc))
1744 return rc;
1745 }
1746
1747 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1748 }
1749 return VINF_SUCCESS;
1750}
1751
1752
1753/**
1754 * Exports the guest (or nested-guest) segment registers into the VMCB.
1755 *
1756 * @returns VBox status code.
1757 * @param pVCpu The cross context virtual CPU structure.
1758 * @param pVmcb Pointer to the VM control block.
1759 *
1760 * @remarks No-long-jump zone!!!
1761 */
1762static void hmR0SvmExportGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1763{
1764 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1765 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1766
1767 /* Guest segment registers. */
1768 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1769 {
1770 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1771 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1772
1773 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1774 {
1775 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1776 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1777 }
1778
1779 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1780 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1781
1782 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1783 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1784
1785 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1786 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1787
1788 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1789 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1790
1791 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1792 }
1793
1794 /* Guest TR. */
1795 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1796 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1797
1798 /* Guest LDTR. */
1799 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1800 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1801
1802 /* Guest GDTR. */
1803 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1804 {
1805 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1806 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1807 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1808 }
1809
1810 /* Guest IDTR. */
1811 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1812 {
1813 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1814 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1815 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1816 }
1817
1818 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1819 | HM_CHANGED_GUEST_TABLE_MASK);
1820}
1821
1822
1823/**
1824 * Exports the guest (or nested-guest) MSRs into the VMCB.
1825 *
1826 * @param pVCpu The cross context virtual CPU structure.
1827 * @param pVmcb Pointer to the VM control block.
1828 *
1829 * @remarks No-long-jump zone!!!
1830 */
1831static void hmR0SvmExportGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb)
1832{
1833 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1834 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1835
1836 /* Guest Sysenter MSRs. */
1837 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1838 {
1839 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1840 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1841
1842 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1843 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1844
1845 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1846 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1847 }
1848
1849 /*
1850 * Guest EFER MSR.
1851 * AMD-V requires guest EFER.SVME to be set. Weird.
1852 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1853 */
1854 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1855 {
1856 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1857 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1858 }
1859
1860 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1861 if ( !CPUMIsGuestInLongModeEx(pCtx)
1862 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1863 {
1864 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1865 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1866 }
1867
1868 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1869 {
1870 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1871 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1872 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1873 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1874 }
1875
1876 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1877 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1878
1879 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1880 | HM_CHANGED_GUEST_EFER_MSR
1881 | HM_CHANGED_GUEST_SYSCALL_MSRS
1882 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1883
1884 /*
1885 * Setup the PAT MSR (applicable for Nested Paging only).
1886 *
1887 * While guests can modify and see the modified values through the shadow values,
1888 * we shall not honor any guest modifications of this MSR to ensure caching is always
1889 * enabled similar to how we clear CR0.CD and NW bits.
1890 *
1891 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1892 */
1893 pVmcb->guest.u64PAT = MSR_IA32_CR_PAT_INIT_VAL;
1894
1895 /* Enable the last branch record bit if LBR virtualization is enabled. */
1896 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1897 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1898}
1899
1900
1901/**
1902 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1903 * the necessary intercepts accordingly.
1904 *
1905 * @param pVCpu The cross context virtual CPU structure.
1906 * @param pVmcb Pointer to the VM control block.
1907 *
1908 * @remarks No-long-jump zone!!!
1909 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1910 */
1911static void hmR0SvmExportSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb)
1912{
1913 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1914
1915 /*
1916 * Anyone single stepping on the host side? If so, we'll have to use the
1917 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1918 * the VMM level like the VT-x implementations does.
1919 */
1920 bool fInterceptMovDRx = false;
1921 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1922 if (fStepping)
1923 {
1924 pVCpu->hm.s.fClearTrapFlag = true;
1925 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1926 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1927 }
1928
1929 if ( fStepping
1930 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1931 {
1932 /*
1933 * Use the combined guest and host DRx values found in the hypervisor
1934 * register set because the debugger has breakpoints active or someone
1935 * is single stepping on the host side.
1936 *
1937 * Note! DBGF expects a clean DR6 state before executing guest code.
1938 */
1939#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1940 if ( CPUMIsGuestInLongModeEx(pCtx)
1941 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1942 {
1943 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1944 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1945 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1946 }
1947 else
1948#endif
1949 if (!CPUMIsHyperDebugStateActive(pVCpu))
1950 {
1951 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1952 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1953 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1954 }
1955
1956 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1957 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1958 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1959 {
1960 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1961 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1962 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1963 }
1964
1965 /** @todo If we cared, we could optimize to allow the guest to read registers
1966 * with the same values. */
1967 fInterceptMovDRx = true;
1968 pVCpu->hm.s.fUsingHyperDR7 = true;
1969 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1970 }
1971 else
1972 {
1973 /*
1974 * Update DR6, DR7 with the guest values if necessary.
1975 */
1976 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1977 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1978 {
1979 pVmcb->guest.u64DR7 = pCtx->dr[7];
1980 pVmcb->guest.u64DR6 = pCtx->dr[6];
1981 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1982 }
1983 pVCpu->hm.s.fUsingHyperDR7 = false;
1984
1985 /*
1986 * If the guest has enabled debug registers, we need to load them prior to
1987 * executing guest code so they'll trigger at the right time.
1988 */
1989 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1990 {
1991#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1992 if ( CPUMIsGuestInLongModeEx(pCtx)
1993 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1994 {
1995 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1996 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1997 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1998 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1999 }
2000 else
2001#endif
2002 if (!CPUMIsGuestDebugStateActive(pVCpu))
2003 {
2004 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
2005 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2006 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2007 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2008 }
2009 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2010 }
2011 /*
2012 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2013 * intercept #DB as DR6 is updated in the VMCB.
2014 *
2015 * Note! If we cared and dared, we could skip intercepting \#DB here.
2016 * However, \#DB shouldn't be performance critical, so we'll play safe
2017 * and keep the code similar to the VT-x code and always intercept it.
2018 */
2019#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
2020 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
2021 && !CPUMIsGuestDebugStateActive(pVCpu))
2022#else
2023 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2024#endif
2025 {
2026 fInterceptMovDRx = true;
2027 }
2028 }
2029
2030 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2031 if (fInterceptMovDRx)
2032 {
2033 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2034 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2035 {
2036 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2037 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2038 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2039 }
2040 }
2041 else
2042 {
2043 if ( pVmcb->ctrl.u16InterceptRdDRx
2044 || pVmcb->ctrl.u16InterceptWrDRx)
2045 {
2046 pVmcb->ctrl.u16InterceptRdDRx = 0;
2047 pVmcb->ctrl.u16InterceptWrDRx = 0;
2048 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2049 }
2050 }
2051 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2052}
2053
2054#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2055/**
2056 * Exports the nested-guest hardware virtualization state into the nested-guest
2057 * VMCB.
2058 *
2059 * @param pVCpu The cross context virtual CPU structure.
2060 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2061 *
2062 * @remarks No-long-jump zone!!!
2063 */
2064static void hmR0SvmExportGuestHwvirtStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
2065{
2066 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2067
2068 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2069 {
2070 /*
2071 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2072 * since SVM doesn't have a preemption timer.
2073 *
2074 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2075 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2076 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2077 */
2078 PVM pVM = pVCpu->CTX_SUFF(pVM);
2079 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2080 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2081 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2082 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
2083 {
2084 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2085 pVmcbNstGstCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2086 pVmcbNstGstCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2087 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2088 }
2089 else
2090 {
2091 pVmcbNstGstCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2092 pVmcbNstGstCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2093 }
2094
2095 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2096 }
2097}
2098#endif
2099
2100/**
2101 * Exports the guest APIC TPR state into the VMCB.
2102 *
2103 * @returns VBox status code.
2104 * @param pVCpu The cross context virtual CPU structure.
2105 * @param pVmcb Pointer to the VM control block.
2106 */
2107static int hmR0SvmExportGuestApicTpr(PVMCPU pVCpu, PSVMVMCB pVmcb)
2108{
2109 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2110 {
2111 PVM pVM = pVCpu->CTX_SUFF(pVM);
2112 if ( PDMHasApic(pVM)
2113 && APICIsEnabled(pVCpu))
2114 {
2115 bool fPendingIntr;
2116 uint8_t u8Tpr;
2117 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2118 AssertRCReturn(rc, rc);
2119
2120 /* Assume that we need to trap all TPR accesses and thus need not check on
2121 every #VMEXIT if we should update the TPR. */
2122 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2123 pVCpu->hm.s.svm.fSyncVTpr = false;
2124
2125 if (!pVM->hm.s.fTPRPatchingActive)
2126 {
2127 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2128 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2129
2130 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2131 can deliver the interrupt to the guest. */
2132 if (fPendingIntr)
2133 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2134 else
2135 {
2136 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2137 pVCpu->hm.s.svm.fSyncVTpr = true;
2138 }
2139
2140 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2141 }
2142 else
2143 {
2144 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2145 pVmcb->guest.u64LSTAR = u8Tpr;
2146 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
2147
2148 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2149 if (fPendingIntr)
2150 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2151 else
2152 {
2153 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2154 pVCpu->hm.s.svm.fSyncVTpr = true;
2155 }
2156 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2157 }
2158 }
2159 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2160 }
2161 return VINF_SUCCESS;
2162}
2163
2164
2165/**
2166 * Sets up the exception interrupts required for guest (or nested-guest)
2167 * execution in the VMCB.
2168 *
2169 * @param pVCpu The cross context virtual CPU structure.
2170 * @param pVmcb Pointer to the VM control block.
2171 *
2172 * @remarks No-long-jump zone!!!
2173 */
2174static void hmR0SvmExportGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb)
2175{
2176 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2177
2178 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2179 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_XCPT_INTERCEPTS)
2180 {
2181 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2182 if (pVCpu->hm.s.fGIMTrapXcptUD)
2183 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2184 else
2185 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2186
2187 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2188 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2189 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2190 else
2191 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2192
2193 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2194 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_SVM_XCPT_INTERCEPTS;
2195 }
2196}
2197
2198
2199#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2200/**
2201 * Merges guest and nested-guest intercepts for executing the nested-guest using
2202 * hardware-assisted SVM.
2203 *
2204 * This merges the guest and nested-guest intercepts in a way that if the outer
2205 * guest intercept is set we need to intercept it in the nested-guest as
2206 * well.
2207 *
2208 * @param pVCpu The cross context virtual CPU structure.
2209 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2210 */
2211static void hmR0SvmMergeVmcbCtrlsNested(PVMCPU pVCpu)
2212{
2213 PVM pVM = pVCpu->CTX_SUFF(pVM);
2214 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2215 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2216 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2217
2218 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2219 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2220 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2221
2222 /* Always intercept CR4 writes for tracking PGM mode changes. */
2223 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2224
2225 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2226 if (!pVM->hm.s.fNestedPaging)
2227 {
2228 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2229 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2230 }
2231
2232 /** @todo Figure out debugging with nested-guests, till then just intercept
2233 * all DR[0-15] accesses. */
2234 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2235 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2236
2237 /*
2238 * Merge the guest's exception intercepts into the nested-guest VMCB.
2239 *
2240 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2241 * while executing the nested-guest.
2242 *
2243 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2244 * be tweaked later depending on how we wish to implement breakpoints.
2245 *
2246 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2247 * loaded into their guests, not ours.
2248 *
2249 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2250 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2251 */
2252#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2253 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2254 & ~( RT_BIT(X86_XCPT_UD)
2255 | RT_BIT(X86_XCPT_BP)
2256 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2257#else
2258 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2259#endif
2260
2261 /*
2262 * Adjust intercepts while executing the nested-guest that differ from the
2263 * outer guest intercepts.
2264 *
2265 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2266 * that belong to the nested-guest to the outer guest.
2267 *
2268 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2269 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2270 */
2271 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2272 | SVM_CTRL_INTERCEPT_VMMCALL))
2273 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2274
2275 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2276 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2277
2278 /* Finally, update the VMCB clean bits. */
2279 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2280}
2281#endif
2282
2283
2284/**
2285 * Selects the appropriate function to run guest code.
2286 *
2287 * @returns VBox status code.
2288 * @param pVCpu The cross context virtual CPU structure.
2289 *
2290 * @remarks No-long-jump zone!!!
2291 */
2292static int hmR0SvmSelectVMRunHandler(PVMCPU pVCpu)
2293{
2294 if (CPUMIsGuestInLongMode(pVCpu))
2295 {
2296#ifndef VBOX_ENABLE_64_BITS_GUESTS
2297 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2298#endif
2299 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
2300#if HC_ARCH_BITS == 32
2301 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
2302 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
2303#else
2304 /* 64-bit host or hybrid host. */
2305 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
2306#endif
2307 }
2308 else
2309 {
2310 /* Guest is not in long mode, use the 32-bit handler. */
2311 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2312 }
2313 return VINF_SUCCESS;
2314}
2315
2316
2317/**
2318 * Enters the AMD-V session.
2319 *
2320 * @returns VBox status code.
2321 * @param pVCpu The cross context virtual CPU structure.
2322 */
2323VMMR0DECL(int) SVMR0Enter(PVMCPU pVCpu)
2324{
2325 AssertPtr(pVCpu);
2326 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2327 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2328
2329 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2330 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2331 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2332
2333 pVCpu->hm.s.fLeaveDone = false;
2334 return VINF_SUCCESS;
2335}
2336
2337
2338/**
2339 * Thread-context callback for AMD-V.
2340 *
2341 * @param enmEvent The thread-context event.
2342 * @param pVCpu The cross context virtual CPU structure.
2343 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2344 * @thread EMT(pVCpu)
2345 */
2346VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
2347{
2348 NOREF(fGlobalInit);
2349
2350 switch (enmEvent)
2351 {
2352 case RTTHREADCTXEVENT_OUT:
2353 {
2354 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2355 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2356 VMCPU_ASSERT_EMT(pVCpu);
2357
2358 /* No longjmps (log-flush, locks) in this fragile context. */
2359 VMMRZCallRing3Disable(pVCpu);
2360
2361 if (!pVCpu->hm.s.fLeaveDone)
2362 {
2363 hmR0SvmLeave(pVCpu, false /* fImportState */);
2364 pVCpu->hm.s.fLeaveDone = true;
2365 }
2366
2367 /* Leave HM context, takes care of local init (term). */
2368 int rc = HMR0LeaveCpu(pVCpu);
2369 AssertRC(rc); NOREF(rc);
2370
2371 /* Restore longjmp state. */
2372 VMMRZCallRing3Enable(pVCpu);
2373 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2374 break;
2375 }
2376
2377 case RTTHREADCTXEVENT_IN:
2378 {
2379 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2380 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2381 VMCPU_ASSERT_EMT(pVCpu);
2382
2383 /* No longjmps (log-flush, locks) in this fragile context. */
2384 VMMRZCallRing3Disable(pVCpu);
2385
2386 /*
2387 * Initialize the bare minimum state required for HM. This takes care of
2388 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2389 */
2390 int rc = hmR0EnterCpu(pVCpu);
2391 AssertRC(rc); NOREF(rc);
2392 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2393 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2394
2395 pVCpu->hm.s.fLeaveDone = false;
2396
2397 /* Restore longjmp state. */
2398 VMMRZCallRing3Enable(pVCpu);
2399 break;
2400 }
2401
2402 default:
2403 break;
2404 }
2405}
2406
2407
2408/**
2409 * Saves the host state.
2410 *
2411 * @returns VBox status code.
2412 * @param pVCpu The cross context virtual CPU structure.
2413 *
2414 * @remarks No-long-jump zone!!!
2415 */
2416VMMR0DECL(int) SVMR0ExportHostState(PVMCPU pVCpu)
2417{
2418 NOREF(pVCpu);
2419
2420 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2421 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2422 return VINF_SUCCESS;
2423}
2424
2425
2426/**
2427 * Exports the guest state from the guest-CPU context into the VMCB.
2428 *
2429 * The CPU state will be loaded from these fields on every successful VM-entry.
2430 * Also sets up the appropriate VMRUN function to execute guest code based on
2431 * the guest CPU mode.
2432 *
2433 * @returns VBox status code.
2434 * @param pVCpu The cross context virtual CPU structure.
2435 *
2436 * @remarks No-long-jump zone!!!
2437 */
2438static int hmR0SvmExportGuestState(PVMCPU pVCpu)
2439{
2440 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2441
2442 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2443 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2444
2445 Assert(pVmcb);
2446 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2447
2448 pVmcb->guest.u64RIP = pCtx->rip;
2449 pVmcb->guest.u64RSP = pCtx->rsp;
2450 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2451 pVmcb->guest.u64RAX = pCtx->rax;
2452#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2453 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2454 {
2455 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Hardware supports it. */
2456 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2457 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2458 }
2459#endif
2460
2461 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2462
2463 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2464 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2465
2466 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2467 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2468 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2469
2470 ASMSetFlags(fEFlags);
2471
2472 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2473 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2474 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2475
2476 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2477 AssertRCReturn(rc, rc);
2478
2479 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2480 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2481 | HM_CHANGED_GUEST_RFLAGS
2482 | HM_CHANGED_GUEST_GPRS_MASK
2483 | HM_CHANGED_GUEST_X87
2484 | HM_CHANGED_GUEST_SSE_AVX
2485 | HM_CHANGED_GUEST_OTHER_XSAVE
2486 | HM_CHANGED_GUEST_XCRx
2487 | HM_CHANGED_GUEST_TSC_AUX
2488 | HM_CHANGED_GUEST_OTHER_MSRS
2489 | HM_CHANGED_GUEST_HWVIRT
2490 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_XCPT_INTERCEPTS)));
2491
2492#ifdef VBOX_STRICT
2493 /*
2494 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2495 * except for the host-context and/or shared host-guest context bits.
2496 */
2497 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2498 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2499 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2500 ("fCtxChanged=%#RX64\n", fCtxChanged));
2501
2502 /*
2503 * If we need to log state that isn't always imported, we'll need to import them here.
2504 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2505 */
2506 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2507#endif
2508
2509 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2510 return VINF_SUCCESS;
2511}
2512
2513
2514#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2515/**
2516 * Merges the guest and nested-guest MSR permission bitmap.
2517 *
2518 * If the guest is intercepting an MSR we need to intercept it regardless of
2519 * whether the nested-guest is intercepting it or not.
2520 *
2521 * @param pHostCpu The HM physical-CPU structure.
2522 * @param pVCpu The cross context virtual CPU structure.
2523 *
2524 * @remarks No-long-jmp zone!!!
2525 */
2526DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2527{
2528 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
2529 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2530 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2531
2532 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2533 uint32_t const offRsvdQwords = 0x1800 >> 3;
2534 for (uint32_t i = 0; i < offRsvdQwords; i++)
2535 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2536}
2537
2538
2539/**
2540 * Caches the nested-guest VMCB fields before we modify them for execution using
2541 * hardware-assisted SVM.
2542 *
2543 * @returns true if the VMCB was previously already cached, false otherwise.
2544 * @param pVCpu The cross context virtual CPU structure.
2545 *
2546 * @sa HMNotifySvmNstGstVmexit.
2547 */
2548static bool hmR0SvmCacheVmcbNested(PVMCPU pVCpu)
2549{
2550 /*
2551 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2552 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2553 *
2554 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2555 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2556 */
2557 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2558 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2559 if (!fWasCached)
2560 {
2561 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2562 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2563 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2564 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2565 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2566 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2567 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2568 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2569 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2570 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2571 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2572 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2573 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2574 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2575 pVmcbNstGstCache->fCacheValid = true;
2576 Log4Func(("Cached VMCB fields\n"));
2577 }
2578
2579 return fWasCached;
2580}
2581
2582
2583/**
2584 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2585 *
2586 * This is done the first time we enter nested-guest execution using SVM R0
2587 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2588 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2589 *
2590 * @param pVCpu The cross context virtual CPU structure.
2591 */
2592static void hmR0SvmSetupVmcbNested(PVMCPU pVCpu)
2593{
2594 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2595 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2596
2597 /*
2598 * First cache the nested-guest VMCB fields we may potentially modify.
2599 */
2600 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2601 if (!fVmcbCached)
2602 {
2603 /*
2604 * The IOPM of the nested-guest can be ignored because the the guest always
2605 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2606 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2607 */
2608 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2609
2610 /*
2611 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2612 * nested-paging suddenly while executing a VM (see assertion at the end of
2613 * Trap0eHandler() in PGMAllBth.h).
2614 */
2615 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2616
2617 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2618 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2619
2620 /*
2621 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2622 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2623 */
2624 pVCpu->hm.s.svm.fSyncVTpr = false;
2625
2626#ifdef DEBUG_ramshankar
2627 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2628 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2629#endif
2630
2631 /*
2632 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2633 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2634 */
2635 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2636 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2637 | SVM_CTRL_INTERCEPT_VMLOAD;
2638
2639 /*
2640 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2641 * CLGI/STGI instructions executed by the nested-guest.
2642 */
2643 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2644 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2645 | SVM_CTRL_INTERCEPT_STGI;
2646
2647 /* Merge the guest and nested-guest intercepts. */
2648 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2649
2650 /* Update the VMCB clean bits. */
2651 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2652 }
2653 else
2654 {
2655 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
2656 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2657 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2658 }
2659}
2660
2661
2662/**
2663 * Exports the nested-guest state into the VMCB.
2664 *
2665 * We need to export the entire state as we could be continuing nested-guest
2666 * execution at any point (not just immediately after VMRUN) and thus the VMCB
2667 * can be out-of-sync with the nested-guest state if it was executed in IEM.
2668 *
2669 * @returns VBox status code.
2670 * @param pVCpu The cross context virtual CPU structure.
2671 * @param pCtx Pointer to the guest-CPU context.
2672 *
2673 * @remarks No-long-jump zone!!!
2674 */
2675static int hmR0SvmExportGuestStateNested(PVMCPU pVCpu)
2676{
2677 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2678
2679 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2680 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2681 Assert(pVmcbNstGst);
2682
2683 hmR0SvmSetupVmcbNested(pVCpu);
2684
2685 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2686 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2687 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2688 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2689
2690 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2691
2692 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcbNstGst);
2693 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2694
2695 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcbNstGst);
2696 hmR0SvmExportGuestMsrs(pVCpu, pVmcbNstGst);
2697 hmR0SvmExportGuestHwvirtStateNested(pVCpu, pVmcbNstGst);
2698
2699 ASMSetFlags(fEFlags);
2700
2701 /* Nested VGIF not supported yet. */
2702 Assert(!pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable);
2703
2704 rc = hmR0SvmSelectVMRunHandler(pVCpu);
2705 AssertRCReturn(rc, rc);
2706
2707 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2708 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( HM_CHANGED_GUEST_RIP
2709 | HM_CHANGED_GUEST_RFLAGS
2710 | HM_CHANGED_GUEST_GPRS_MASK
2711 | HM_CHANGED_GUEST_APIC_TPR
2712 | HM_CHANGED_GUEST_X87
2713 | HM_CHANGED_GUEST_SSE_AVX
2714 | HM_CHANGED_GUEST_OTHER_XSAVE
2715 | HM_CHANGED_GUEST_XCRx
2716 | HM_CHANGED_GUEST_TSC_AUX
2717 | HM_CHANGED_GUEST_OTHER_MSRS
2718 | HM_CHANGED_SVM_XCPT_INTERCEPTS
2719 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2720
2721#ifdef VBOX_STRICT
2722 /*
2723 * All of the guest-CPU state and SVM keeper bits should be exported here by now, except
2724 * for the host-context and/or shared host-guest context bits.
2725 */
2726 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2727 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
2728 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2729 ("fCtxChanged=%#RX64\n", fCtxChanged));
2730
2731 /*
2732 * If we need to log state that isn't always imported, we'll need to import them here.
2733 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2734 */
2735 hmR0SvmLogState(pVCpu, pVmcbNstGst, "hmR0SvmExportGuestStateNested", 0 /* fFlags */, 0 /* uVerbose */);
2736#endif
2737
2738 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2739 return rc;
2740}
2741#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2742
2743
2744/**
2745 * Exports the state shared between the host and guest (or nested-guest) into
2746 * the VMCB.
2747 *
2748 * @param pVCpu The cross context virtual CPU structure.
2749 * @param pVmcb Pointer to the VM control block.
2750 *
2751 * @remarks No-long-jump zone!!!
2752 */
2753static void hmR0SvmExportSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb)
2754{
2755 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2756 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2757
2758 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2759 {
2760 /** @todo Figure out stepping with nested-guest. */
2761 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2762 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2763 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2764 else
2765 {
2766 pVmcb->guest.u64DR6 = pCtx->dr[6];
2767 pVmcb->guest.u64DR7 = pCtx->dr[7];
2768 }
2769 }
2770
2771 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2772 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2773 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2774}
2775
2776
2777/**
2778 * Worker for SVMR0ImportStateOnDemand.
2779 *
2780 * @param pVCpu The cross context virtual CPU structure.
2781 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2782 */
2783static void hmR0SvmImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
2784{
2785 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2786
2787 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2788 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2789 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2790 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2791
2792 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
2793
2794 /*
2795 * We disable interrupts to make the updating of the state and in particular
2796 * the fExtrn modification atomic wrt to preemption hooks.
2797 */
2798 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2799
2800 fWhat &= pCtx->fExtrn;
2801 if (fWhat)
2802 {
2803#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2804 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2805 {
2806 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2807 {
2808 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2809 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2810 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2811 }
2812 }
2813
2814 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2815 {
2816 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2817 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2818 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2819 }
2820#endif
2821
2822 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2823 {
2824 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2825 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2826 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2827 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2828 }
2829
2830 if (fWhat & CPUMCTX_EXTRN_RIP)
2831 pCtx->rip = pVmcbGuest->u64RIP;
2832
2833 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2834 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2835
2836 if (fWhat & CPUMCTX_EXTRN_RSP)
2837 pCtx->rsp = pVmcbGuest->u64RSP;
2838
2839 if (fWhat & CPUMCTX_EXTRN_RAX)
2840 pCtx->rax = pVmcbGuest->u64RAX;
2841
2842 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2843 {
2844 if (fWhat & CPUMCTX_EXTRN_CS)
2845 {
2846 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2847 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2848 /** @todo SELM might need to be fixed as it too should not care about the
2849 * granularity bit. See @bugref{6785}. */
2850 if ( !pCtx->cs.Attr.n.u1Granularity
2851 && pCtx->cs.Attr.n.u1Present
2852 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2853 {
2854 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2855 pCtx->cs.Attr.n.u1Granularity = 1;
2856 }
2857 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2858 }
2859 if (fWhat & CPUMCTX_EXTRN_SS)
2860 {
2861 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2862 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2863 /*
2864 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2865 * VMCB and uses that and thus it's possible that when the CPL changes during
2866 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2867 * AMD Fusion CPUs with 64-bit guests.
2868 *
2869 * See AMD spec. 15.5.1 "Basic operation".
2870 */
2871 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2872 uint8_t const uCpl = pVmcbGuest->u8CPL;
2873 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2874 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2875 }
2876 if (fWhat & CPUMCTX_EXTRN_DS)
2877 {
2878 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2879 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2880 }
2881 if (fWhat & CPUMCTX_EXTRN_ES)
2882 {
2883 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2884 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2885 }
2886 if (fWhat & CPUMCTX_EXTRN_FS)
2887 {
2888 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2889 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2890 }
2891 if (fWhat & CPUMCTX_EXTRN_GS)
2892 {
2893 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2894 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2895 }
2896 }
2897
2898 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2899 {
2900 if (fWhat & CPUMCTX_EXTRN_TR)
2901 {
2902 /*
2903 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2904 * are used between Intel and AMD, see @bugref{6208#c39}.
2905 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2906 */
2907 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2908 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2909 {
2910 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2911 || CPUMIsGuestInLongModeEx(pCtx))
2912 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2913 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2914 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2915 }
2916 }
2917
2918 if (fWhat & CPUMCTX_EXTRN_LDTR)
2919 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2920
2921 if (fWhat & CPUMCTX_EXTRN_GDTR)
2922 {
2923 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2924 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2925 }
2926
2927 if (fWhat & CPUMCTX_EXTRN_IDTR)
2928 {
2929 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2930 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2931 }
2932 }
2933
2934 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2935 {
2936 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2937 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2938 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2939 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2940 }
2941
2942 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2943 {
2944 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2945 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2946 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2947 }
2948
2949 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2950 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2951
2952 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2953 {
2954 if (fWhat & CPUMCTX_EXTRN_DR6)
2955 {
2956 if (!pVCpu->hm.s.fUsingHyperDR7)
2957 pCtx->dr[6] = pVmcbGuest->u64DR6;
2958 else
2959 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2960 }
2961
2962 if (fWhat & CPUMCTX_EXTRN_DR7)
2963 {
2964 if (!pVCpu->hm.s.fUsingHyperDR7)
2965 pCtx->dr[7] = pVmcbGuest->u64DR7;
2966 else
2967 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2968 }
2969 }
2970
2971 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2972 {
2973 if (fWhat & CPUMCTX_EXTRN_CR0)
2974 {
2975 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2976 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2977 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2978 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2979 CPUMSetGuestCR0(pVCpu, uCr0);
2980 VMMRZCallRing3Enable(pVCpu);
2981 }
2982
2983 if (fWhat & CPUMCTX_EXTRN_CR2)
2984 pCtx->cr2 = pVmcbGuest->u64CR2;
2985
2986 if (fWhat & CPUMCTX_EXTRN_CR3)
2987 {
2988 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2989 && pCtx->cr3 != pVmcbGuest->u64CR3)
2990 {
2991 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2992 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2993 }
2994 }
2995
2996 /* Changes to CR4 are always intercepted. */
2997 }
2998
2999 /* Update fExtrn. */
3000 pCtx->fExtrn &= ~fWhat;
3001
3002 /* If everything has been imported, clear the HM keeper bit. */
3003 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
3004 {
3005 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
3006 Assert(!pCtx->fExtrn);
3007 }
3008 }
3009 else
3010 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3011
3012 ASMSetFlags(fEFlags);
3013
3014 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
3015
3016 /*
3017 * Honor any pending CR3 updates.
3018 *
3019 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
3020 * -> hmR0SvmCallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
3021 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
3022 * handling -> hmR0SvmImportGuestState() and here we are.
3023 *
3024 * The reason for such complicated handling is because VM-exits that call into PGM expect
3025 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
3026 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
3027 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
3028 *
3029 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
3030 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
3031 */
3032 if ( VMMRZCallRing3IsEnabled(pVCpu)
3033 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3034 {
3035 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
3036 PGMUpdateCR3(pVCpu, pCtx->cr3);
3037 }
3038}
3039
3040
3041/**
3042 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
3043 * context.
3044 *
3045 * Currently there is no residual state left in the CPU that is not updated in the
3046 * VMCB.
3047 *
3048 * @returns VBox status code.
3049 * @param pVCpu The cross context virtual CPU structure.
3050 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3051 */
3052VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
3053{
3054 hmR0SvmImportGuestState(pVCpu, fWhat);
3055 return VINF_SUCCESS;
3056}
3057
3058
3059/**
3060 * Does the necessary state syncing before returning to ring-3 for any reason
3061 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
3062 *
3063 * @param pVCpu The cross context virtual CPU structure.
3064 * @param fImportState Whether to import the guest state from the VMCB back
3065 * to the guest-CPU context.
3066 *
3067 * @remarks No-long-jmp zone!!!
3068 */
3069static void hmR0SvmLeave(PVMCPU pVCpu, bool fImportState)
3070{
3071 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3072 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3073 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3074
3075 /*
3076 * !!! IMPORTANT !!!
3077 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3078 */
3079
3080 /* Save the guest state if necessary. */
3081 if (fImportState)
3082 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3083
3084 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3085 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3086 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
3087
3088 /*
3089 * Restore host debug registers if necessary and resync on next R0 reentry.
3090 */
3091#ifdef VBOX_STRICT
3092 if (CPUMIsHyperDebugStateActive(pVCpu))
3093 {
3094 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
3095 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
3096 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
3097 }
3098#endif
3099 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3100 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3101 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3102
3103 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
3104 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
3105 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
3106 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
3107 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
3108 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
3109 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3110
3111 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3112}
3113
3114
3115/**
3116 * Leaves the AMD-V session.
3117 *
3118 * Only used while returning to ring-3 either due to longjump or exits to
3119 * ring-3.
3120 *
3121 * @returns VBox status code.
3122 * @param pVCpu The cross context virtual CPU structure.
3123 */
3124static int hmR0SvmLeaveSession(PVMCPU pVCpu)
3125{
3126 HM_DISABLE_PREEMPT(pVCpu);
3127 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3128 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3129
3130 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3131 and done this from the SVMR0ThreadCtxCallback(). */
3132 if (!pVCpu->hm.s.fLeaveDone)
3133 {
3134 hmR0SvmLeave(pVCpu, true /* fImportState */);
3135 pVCpu->hm.s.fLeaveDone = true;
3136 }
3137
3138 /*
3139 * !!! IMPORTANT !!!
3140 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
3141 */
3142
3143 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3144 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3145 VMMR0ThreadCtxHookDisable(pVCpu);
3146
3147 /* Leave HM context. This takes care of local init (term). */
3148 int rc = HMR0LeaveCpu(pVCpu);
3149
3150 HM_RESTORE_PREEMPT();
3151 return rc;
3152}
3153
3154
3155/**
3156 * Does the necessary state syncing before doing a longjmp to ring-3.
3157 *
3158 * @returns VBox status code.
3159 * @param pVCpu The cross context virtual CPU structure.
3160 *
3161 * @remarks No-long-jmp zone!!!
3162 */
3163static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
3164{
3165 return hmR0SvmLeaveSession(pVCpu);
3166}
3167
3168
3169/**
3170 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3171 * any remaining host state) before we longjump to ring-3 and possibly get
3172 * preempted.
3173 *
3174 * @param pVCpu The cross context virtual CPU structure.
3175 * @param enmOperation The operation causing the ring-3 longjump.
3176 * @param pvUser The user argument, NULL (currently unused).
3177 */
3178static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
3179{
3180 RT_NOREF_PV(pvUser);
3181
3182 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3183 {
3184 /*
3185 * !!! IMPORTANT !!!
3186 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3187 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3188 */
3189 VMMRZCallRing3RemoveNotification(pVCpu);
3190 VMMRZCallRing3Disable(pVCpu);
3191 HM_DISABLE_PREEMPT(pVCpu);
3192
3193 /* Import the entire guest state. */
3194 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3195
3196 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3197 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3198
3199 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3200 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3201
3202 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3203 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3204 VMMR0ThreadCtxHookDisable(pVCpu);
3205
3206 /* Leave HM context. This takes care of local init (term). */
3207 HMR0LeaveCpu(pVCpu);
3208
3209 HM_RESTORE_PREEMPT();
3210 return VINF_SUCCESS;
3211 }
3212
3213 Assert(pVCpu);
3214 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3215 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3216
3217 VMMRZCallRing3Disable(pVCpu);
3218 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3219
3220 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3221 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3222 AssertRCReturn(rc, rc);
3223
3224 VMMRZCallRing3Enable(pVCpu);
3225 return VINF_SUCCESS;
3226}
3227
3228
3229/**
3230 * Take necessary actions before going back to ring-3.
3231 *
3232 * An action requires us to go back to ring-3. This function does the necessary
3233 * steps before we can safely return to ring-3. This is not the same as longjmps
3234 * to ring-3, this is voluntary.
3235 *
3236 * @returns VBox status code.
3237 * @param pVCpu The cross context virtual CPU structure.
3238 * @param rcExit The reason for exiting to ring-3. Can be
3239 * VINF_VMM_UNKNOWN_RING3_CALL.
3240 */
3241static int hmR0SvmExitToRing3(PVMCPU pVCpu, int rcExit)
3242{
3243 Assert(pVCpu);
3244 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3245
3246 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3247 VMMRZCallRing3Disable(pVCpu);
3248 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", rcExit, (uint64_t)pVCpu->fLocalForcedActions,
3249 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3250
3251 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3252 if (pVCpu->hm.s.Event.fPending)
3253 {
3254 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3255 Assert(!pVCpu->hm.s.Event.fPending);
3256 }
3257
3258 /* Sync. the necessary state for going back to ring-3. */
3259 hmR0SvmLeaveSession(pVCpu);
3260 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3261
3262 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3263 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3264 | CPUM_CHANGED_LDTR
3265 | CPUM_CHANGED_GDTR
3266 | CPUM_CHANGED_IDTR
3267 | CPUM_CHANGED_TR
3268 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3269 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
3270 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3271 {
3272 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3273 }
3274
3275 /* Update the exit-to-ring 3 reason. */
3276 pVCpu->hm.s.rcLastExitToR3 = rcExit;
3277
3278 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3279 if ( rcExit != VINF_EM_RAW_INTERRUPT
3280 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3281 {
3282 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3283 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3284 }
3285
3286 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3287
3288 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
3289 VMMRZCallRing3RemoveNotification(pVCpu);
3290 VMMRZCallRing3Enable(pVCpu);
3291
3292 /*
3293 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3294 * and if we're injecting an event we should have a TRPM trap pending.
3295 */
3296 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3297 pVCpu->hm.s.u32HMError = rcExit,
3298 VERR_SVM_IPE_5);
3299 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3300 pVCpu->hm.s.u32HMError = rcExit,
3301 VERR_SVM_IPE_4);
3302
3303 return rcExit;
3304}
3305
3306
3307/**
3308 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3309 * intercepts.
3310 *
3311 * @param pVCpu The cross context virtual CPU structure.
3312 * @param pVmcb Pointer to the VM control block.
3313 *
3314 * @remarks No-long-jump zone!!!
3315 */
3316static void hmR0SvmUpdateTscOffsetting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3317{
3318 /*
3319 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3320 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3321 * RDTSC/RDTSCP as well.
3322 */
3323 bool fParavirtTsc;
3324 uint64_t uTscOffset;
3325 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3326
3327 bool fIntercept;
3328 if (fCanUseRealTsc)
3329 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3330 else
3331 {
3332 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3333 fIntercept = true;
3334 }
3335
3336 if (!fIntercept)
3337 {
3338#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3339 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3340 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3341 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
3342#endif
3343
3344 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3345 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3346 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3347 }
3348
3349 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3350 information before every VM-entry, hence we have nothing to do here at the moment. */
3351 if (fParavirtTsc)
3352 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3353}
3354
3355
3356/**
3357 * Sets an event as a pending event to be injected into the guest.
3358 *
3359 * @param pVCpu The cross context virtual CPU structure.
3360 * @param pEvent Pointer to the SVM event.
3361 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3362 * page-fault.
3363 *
3364 * @remarks Statistics counter assumes this is a guest event being reflected to
3365 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3366 */
3367DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3368{
3369 Assert(!pVCpu->hm.s.Event.fPending);
3370 Assert(pEvent->n.u1Valid);
3371
3372 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3373 pVCpu->hm.s.Event.fPending = true;
3374 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3375
3376 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3377 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3378}
3379
3380
3381/**
3382 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3383 *
3384 * @param pVCpu The cross context virtual CPU structure.
3385 */
3386DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3387{
3388 SVMEVENT Event;
3389 Event.u = 0;
3390 Event.n.u1Valid = 1;
3391 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3392 Event.n.u8Vector = X86_XCPT_UD;
3393 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3394}
3395
3396
3397/**
3398 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3399 *
3400 * @param pVCpu The cross context virtual CPU structure.
3401 */
3402DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3403{
3404 SVMEVENT Event;
3405 Event.u = 0;
3406 Event.n.u1Valid = 1;
3407 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3408 Event.n.u8Vector = X86_XCPT_DB;
3409 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3410}
3411
3412
3413/**
3414 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3415 *
3416 * @param pVCpu The cross context virtual CPU structure.
3417 * @param u32ErrCode The error-code for the page-fault.
3418 * @param uFaultAddress The page fault address (CR2).
3419 *
3420 * @remarks This updates the guest CR2 with @a uFaultAddress!
3421 */
3422DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3423{
3424 SVMEVENT Event;
3425 Event.u = 0;
3426 Event.n.u1Valid = 1;
3427 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3428 Event.n.u8Vector = X86_XCPT_PF;
3429 Event.n.u1ErrorCodeValid = 1;
3430 Event.n.u32ErrorCode = u32ErrCode;
3431
3432 /* Update CR2 of the guest. */
3433 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3434 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3435 {
3436 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3437 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3438 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3439 }
3440
3441 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3442}
3443
3444
3445/**
3446 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3447 *
3448 * @param pVCpu The cross context virtual CPU structure.
3449 */
3450DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3451{
3452 SVMEVENT Event;
3453 Event.u = 0;
3454 Event.n.u1Valid = 1;
3455 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3456 Event.n.u8Vector = X86_XCPT_MF;
3457 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3458}
3459
3460
3461/**
3462 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3463 *
3464 * @param pVCpu The cross context virtual CPU structure.
3465 */
3466DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3467{
3468 SVMEVENT Event;
3469 Event.u = 0;
3470 Event.n.u1Valid = 1;
3471 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3472 Event.n.u8Vector = X86_XCPT_DF;
3473 Event.n.u1ErrorCodeValid = 1;
3474 Event.n.u32ErrorCode = 0;
3475 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3476}
3477
3478
3479/**
3480 * Injects an event into the guest upon VMRUN by updating the relevant field
3481 * in the VMCB.
3482 *
3483 * @param pVCpu The cross context virtual CPU structure.
3484 * @param pVmcb Pointer to the guest VM control block.
3485 * @param pEvent Pointer to the event.
3486 *
3487 * @remarks No-long-jump zone!!!
3488 * @remarks Requires CR0!
3489 */
3490DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3491{
3492 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3493 pVmcb->ctrl.EventInject.u = pEvent->u;
3494 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3495 RT_NOREF(pVCpu);
3496
3497 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3498 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3499}
3500
3501
3502
3503/**
3504 * Converts any TRPM trap into a pending HM event. This is typically used when
3505 * entering from ring-3 (not longjmp returns).
3506 *
3507 * @param pVCpu The cross context virtual CPU structure.
3508 */
3509static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
3510{
3511 Assert(TRPMHasTrap(pVCpu));
3512 Assert(!pVCpu->hm.s.Event.fPending);
3513
3514 uint8_t uVector;
3515 TRPMEVENT enmTrpmEvent;
3516 RTGCUINT uErrCode;
3517 RTGCUINTPTR GCPtrFaultAddress;
3518 uint8_t cbInstr;
3519
3520 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
3521 AssertRC(rc);
3522
3523 SVMEVENT Event;
3524 Event.u = 0;
3525 Event.n.u1Valid = 1;
3526 Event.n.u8Vector = uVector;
3527
3528 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3529 if (enmTrpmEvent == TRPM_TRAP)
3530 {
3531 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3532 switch (uVector)
3533 {
3534 case X86_XCPT_NMI:
3535 {
3536 Event.n.u3Type = SVM_EVENT_NMI;
3537 break;
3538 }
3539
3540 case X86_XCPT_BP:
3541 case X86_XCPT_OF:
3542 AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
3543 RT_FALL_THRU();
3544
3545 case X86_XCPT_PF:
3546 case X86_XCPT_DF:
3547 case X86_XCPT_TS:
3548 case X86_XCPT_NP:
3549 case X86_XCPT_SS:
3550 case X86_XCPT_GP:
3551 case X86_XCPT_AC:
3552 {
3553 Event.n.u1ErrorCodeValid = 1;
3554 Event.n.u32ErrorCode = uErrCode;
3555 break;
3556 }
3557 }
3558 }
3559 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3560 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3561 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3562 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3563 else
3564 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3565
3566 rc = TRPMResetTrap(pVCpu);
3567 AssertRC(rc);
3568
3569 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3570 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3571
3572 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3573}
3574
3575
3576/**
3577 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3578 * AMD-V to execute any instruction.
3579 *
3580 * @param pVCpu The cross context virtual CPU structure.
3581 */
3582static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3583{
3584 Assert(pVCpu->hm.s.Event.fPending);
3585 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3586
3587 SVMEVENT Event;
3588 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3589
3590 uint8_t uVector = Event.n.u8Vector;
3591 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
3592
3593 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
3594
3595 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3596 AssertRC(rc);
3597
3598 if (Event.n.u1ErrorCodeValid)
3599 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3600
3601 if ( enmTrapType == TRPM_TRAP
3602 && uVector == X86_XCPT_PF)
3603 {
3604 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3605 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3606 }
3607 else if (enmTrapType == TRPM_SOFTWARE_INT)
3608 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3609 pVCpu->hm.s.Event.fPending = false;
3610}
3611
3612
3613/**
3614 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3615 * now.
3616 *
3617 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3618 * @param pVCpu The cross context virtual CPU structure.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3622 */
3623static bool hmR0SvmIsIntrShadowActive(PVMCPU pVCpu)
3624{
3625 /*
3626 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3627 * completes. Check if we should inhibit interrupts or clear any existing
3628 * interrupt inhibition.
3629 */
3630 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3631 {
3632 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3633 {
3634 /*
3635 * We can clear the inhibit force flag as even if we go back to the recompiler
3636 * without executing guest code in AMD-V, the flag's condition to be cleared is
3637 * met and thus the cleared state is correct.
3638 */
3639 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3640 return false;
3641 }
3642 return true;
3643 }
3644 return false;
3645}
3646
3647
3648/**
3649 * Sets the virtual interrupt intercept control in the VMCB.
3650 *
3651 * @param pVCpu The cross context virtual CPU structure.
3652 * @param pVmcb Pointer to the VM control block.
3653 */
3654static void hmR0SvmSetIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3655{
3656 /*
3657 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3658 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3659 * (updating ISR at the right time) and inject the interrupt.
3660 *
3661 * With AVIC is supported, we could make use of the asynchronously delivery without
3662 * #VMEXIT and we would be passing the AVIC page to SVM.
3663 *
3664 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3665 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3666 */
3667#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3668 /*
3669 * Currently we don't overlay interupt windows and if there's any V_IRQ pending in the
3670 * nested-guest VMCB, we avoid setting up any interrupt window on behalf of the outer
3671 * guest.
3672 */
3673 /** @todo Does this mean we end up prioritizing virtual interrupt
3674 * delivery/window over a physical interrupt (from the outer guest)
3675 * might be pending? */
3676 bool const fEnableIntWindow = !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
3677 if (!fEnableIntWindow)
3678 {
3679 Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx));
3680 Log4(("Nested-guest V_IRQ already pending\n"));
3681 }
3682#else
3683 bool const fEnableIntWindow = true;
3684 RT_NOREF(pVCpu);
3685#endif
3686 if (fEnableIntWindow)
3687 {
3688 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3689 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3690 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3691 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3692 Log4(("Set VINTR intercept\n"));
3693 }
3694}
3695
3696
3697/**
3698 * Clears the virtual interrupt intercept control in the VMCB as
3699 * we are figured the guest is unable process any interrupts
3700 * at this point of time.
3701 *
3702 * @param pVCpu The cross context virtual CPU structure.
3703 * @param pVmcb Pointer to the VM control block.
3704 */
3705static void hmR0SvmClearIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb)
3706{
3707 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3708 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3709 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3710 {
3711 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3712 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3713 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3714 Log4(("Cleared VINTR intercept\n"));
3715 }
3716}
3717
3718#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3719/**
3720 * Evaluates the event to be delivered to the nested-guest and sets it as the
3721 * pending event.
3722 *
3723 * @returns VBox strict status code.
3724 * @param pVCpu The cross context virtual CPU structure.
3725 */
3726static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu)
3727{
3728 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3729 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
3730 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3731 | CPUMCTX_EXTRN_RFLAGS
3732 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3733 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3734
3735 Assert(!pVCpu->hm.s.Event.fPending);
3736 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3737 Assert(pVmcb);
3738
3739 bool const fGif = CPUMGetGuestGif(pCtx);
3740 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3741 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3742
3743 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3744 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3745 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3746
3747 /** @todo SMI. SMIs take priority over NMIs. */
3748
3749 /*
3750 * Check if the guest can receive NMIs.
3751 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3752 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3753 */
3754 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3755 && !fBlockNmi)
3756 {
3757 if ( fGif
3758 && !fIntShadow)
3759 {
3760 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3761 {
3762 Log4(("Intercepting NMI -> #VMEXIT\n"));
3763 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3764 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3765 }
3766
3767 Log4(("Setting NMI pending for injection\n"));
3768 SVMEVENT Event;
3769 Event.u = 0;
3770 Event.n.u1Valid = 1;
3771 Event.n.u8Vector = X86_XCPT_NMI;
3772 Event.n.u3Type = SVM_EVENT_NMI;
3773 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3774 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3775 }
3776 else if (!fGif)
3777 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3778 else
3779 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3780 }
3781 /*
3782 * Check if the nested-guest can receive external interrupts (generated by the guest's
3783 * PIC/APIC).
3784 *
3785 * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
3786 * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
3787 *
3788 * External interrupts that are generated for the outer guest may be intercepted
3789 * depending on how the nested-guest VMCB was programmed by guest software.
3790 *
3791 * Physical interrupts always take priority over virtual interrupts,
3792 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3793 *
3794 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3795 * do that work when we execute nested guest code esp. since all the required information
3796 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3797 * the virtual interrupt controller.
3798 */
3799 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3800 && !pVCpu->hm.s.fSingleInstruction)
3801 {
3802 if ( fGif
3803 && !fIntShadow
3804 && CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx))
3805 {
3806 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3807 {
3808 Log4(("Intercepting INTR -> #VMEXIT\n"));
3809 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3810 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3811 }
3812
3813 uint8_t u8Interrupt;
3814 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3815 if (RT_SUCCESS(rc))
3816 {
3817 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3818 SVMEVENT Event;
3819 Event.u = 0;
3820 Event.n.u1Valid = 1;
3821 Event.n.u8Vector = u8Interrupt;
3822 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3823 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3824 }
3825 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3826 {
3827 /*
3828 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3829 * updated eventually when the TPR is written by the guest.
3830 */
3831 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3832 }
3833 else
3834 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3835 }
3836 else if (!fGif)
3837 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3838 else
3839 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3840 }
3841
3842 return VINF_SUCCESS;
3843}
3844#endif
3845
3846/**
3847 * Evaluates the event to be delivered to the guest and sets it as the pending
3848 * event.
3849 *
3850 * @param pVCpu The cross context virtual CPU structure.
3851 */
3852static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu)
3853{
3854 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3855 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3856 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3857 | CPUMCTX_EXTRN_RFLAGS
3858 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW);
3859
3860 Assert(!pVCpu->hm.s.Event.fPending);
3861 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3862 Assert(pVmcb);
3863
3864 bool const fGif = CPUMGetGuestGif(pCtx);
3865 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3866 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3867 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3868
3869 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool fIntPending=%RTbool NMI pending=%RTbool\n",
3870 fGif, fBlockNmi, fBlockInt, fIntShadow,
3871 VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3872 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3873
3874 /** @todo SMI. SMIs take priority over NMIs. */
3875
3876 /*
3877 * Check if the guest can receive NMIs.
3878 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3879 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3880 */
3881 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3882 && !fBlockNmi)
3883 {
3884 if ( fGif
3885 && !fIntShadow)
3886 {
3887 Log4(("Setting NMI pending for injection\n"));
3888 SVMEVENT Event;
3889 Event.u = 0;
3890 Event.n.u1Valid = 1;
3891 Event.n.u8Vector = X86_XCPT_NMI;
3892 Event.n.u3Type = SVM_EVENT_NMI;
3893 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3894 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3895 }
3896 else if (!fGif)
3897 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3898 else
3899 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3900 }
3901 /*
3902 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3903 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3904 * it from the APIC device.
3905 */
3906 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3907 && !pVCpu->hm.s.fSingleInstruction)
3908 {
3909 if ( fGif
3910 && !fBlockInt
3911 && !fIntShadow)
3912 {
3913 uint8_t u8Interrupt;
3914 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3915 if (RT_SUCCESS(rc))
3916 {
3917 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3918 SVMEVENT Event;
3919 Event.u = 0;
3920 Event.n.u1Valid = 1;
3921 Event.n.u8Vector = u8Interrupt;
3922 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3923 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3924 }
3925 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3926 {
3927 /*
3928 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3929 * updated eventually when the TPR is written by the guest.
3930 */
3931 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3932 }
3933 else
3934 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3935 }
3936 else if (!fGif)
3937 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3938 else
3939 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3940 }
3941}
3942
3943
3944/**
3945 * Injects any pending events into the guest (or nested-guest).
3946 *
3947 * @param pVCpu The cross context virtual CPU structure.
3948 * @param pVmcb Pointer to the VM control block.
3949 *
3950 * @remarks Must only be called when we are guaranteed to enter
3951 * hardware-assisted SVM execution and not return to ring-3
3952 * prematurely.
3953 */
3954static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PSVMVMCB pVmcb)
3955{
3956 Assert(!TRPMHasTrap(pVCpu));
3957 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3958
3959 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3960#ifdef VBOX_STRICT
3961 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3962 bool const fGif = CPUMGetGuestGif(pCtx);
3963 bool fAllowInt = fGif;
3964 if (fGif)
3965 {
3966 /*
3967 * For nested-guests we have no way to determine if we're injecting a physical or
3968 * virtual interrupt at this point. Hence the partial verification below.
3969 */
3970 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3971 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3972 else
3973 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3974 }
3975#endif
3976
3977 if (pVCpu->hm.s.Event.fPending)
3978 {
3979 SVMEVENT Event;
3980 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3981 Assert(Event.n.u1Valid);
3982
3983 /*
3984 * Validate event injection pre-conditions.
3985 */
3986 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3987 {
3988 Assert(fAllowInt);
3989 Assert(!fIntShadow);
3990 }
3991 else if (Event.n.u3Type == SVM_EVENT_NMI)
3992 {
3993 Assert(fGif);
3994 Assert(!fIntShadow);
3995 }
3996
3997 /*
3998 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3999 * do this only when we are surely going to inject the NMI as otherwise if we return
4000 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
4001 * SVM R0.
4002 *
4003 * With VT-x, this is handled by the Guest interruptibility information VMCS field
4004 * which will set the VMCS field after actually delivering the NMI which we read on
4005 * VM-exit to determine the state.
4006 */
4007 if ( Event.n.u3Type == SVM_EVENT_NMI
4008 && Event.n.u8Vector == X86_XCPT_NMI
4009 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
4010 {
4011 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
4012 }
4013
4014 /*
4015 * Inject it (update VMCB for injection by the hardware).
4016 */
4017 Log4(("Injecting pending HM event\n"));
4018 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
4019 pVCpu->hm.s.Event.fPending = false;
4020
4021 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
4022 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
4023 else
4024 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
4025 }
4026 else
4027 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
4028
4029 /*
4030 * We could have injected an NMI through IEM and continue guest execution using
4031 * hardware-assisted SVM. In which case, we would not have any events pending (above)
4032 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
4033 */
4034 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
4035 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
4036
4037 /*
4038 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
4039 *
4040 * For nested-guests: We need to update it too for the scenario where IEM executes
4041 * the nested-guest but execution later continues here with an interrupt shadow active.
4042 */
4043 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
4044}
4045
4046
4047/**
4048 * Reports world-switch error and dumps some useful debug info.
4049 *
4050 * @param pVCpu The cross context virtual CPU structure.
4051 * @param rcVMRun The return code from VMRUN (or
4052 * VERR_SVM_INVALID_GUEST_STATE for invalid
4053 * guest-state).
4054 */
4055static void hmR0SvmReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun)
4056{
4057 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4058 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4059 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4060
4061 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
4062 {
4063#ifdef VBOX_STRICT
4064 hmR0DumpRegs(pVCpu);
4065 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
4066 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
4067 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
4068 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
4069 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
4070 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
4071 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
4072 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
4073 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
4074 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
4075 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
4076
4077 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
4078 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
4079 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
4080
4081 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
4082 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
4083 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
4084 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
4085 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
4086 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
4087 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
4088 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
4089 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
4090 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
4091 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
4092 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
4093
4094 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
4095 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
4096 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
4097 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
4098 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
4099 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
4100 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
4101 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
4102 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
4103 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
4104 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4105 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
4106 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
4107 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
4108 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
4109 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
4110 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
4111 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
4112 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
4113 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
4114
4115 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
4116
4117 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
4118 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
4119
4120 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
4121 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
4122 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
4123 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
4124 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
4125 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
4126 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
4127 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
4128 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
4129 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
4130 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
4131 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
4132 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
4133 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
4134 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
4135 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
4136 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
4137 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
4138 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
4139 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
4140
4141 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
4142 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
4143
4144 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
4145 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
4146 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
4147 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
4148
4149 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
4150 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
4151
4152 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
4153 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
4154 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
4155 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
4156
4157 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
4158 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
4159 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
4160 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
4161 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
4162 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
4163 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
4164
4165 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
4166 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
4167 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
4168 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
4169
4170 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
4171 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
4172 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
4173
4174 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
4175 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
4176 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
4177 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
4178 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
4179 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
4180 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
4181 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
4182 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
4183 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
4184 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
4185 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
4186
4187 NOREF(pVmcb);
4188#endif /* VBOX_STRICT */
4189 }
4190 else
4191 Log4Func(("rcVMRun=%d\n", rcVMRun));
4192}
4193
4194
4195/**
4196 * Check per-VM and per-VCPU force flag actions that require us to go back to
4197 * ring-3 for one reason or another.
4198 *
4199 * @returns VBox status code (information status code included).
4200 * @retval VINF_SUCCESS if we don't have any actions that require going back to
4201 * ring-3.
4202 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
4203 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
4204 * interrupts)
4205 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
4206 * all EMTs to be in ring-3.
4207 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
4208 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
4209 * to the EM loop.
4210 *
4211 * @param pVCpu The cross context virtual CPU structure.
4212 */
4213static int hmR0SvmCheckForceFlags(PVMCPU pVCpu)
4214{
4215 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4216 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
4217
4218 /* Could happen as a result of longjump. */
4219 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
4220 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
4221
4222 /* Update pending interrupts into the APIC's IRR. */
4223 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
4224 APICUpdatePendingInterrupts(pVCpu);
4225
4226 PVM pVM = pVCpu->CTX_SUFF(pVM);
4227 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
4228 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
4229 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
4230 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
4231 {
4232 /* Pending PGM C3 sync. */
4233 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4234 {
4235 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4236 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4237 if (rc != VINF_SUCCESS)
4238 {
4239 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4240 return rc;
4241 }
4242 }
4243
4244 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4245 /* -XXX- what was that about single stepping? */
4246 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
4247 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4248 {
4249 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4250 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
4251 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4252 return rc;
4253 }
4254
4255 /* Pending VM request packets, such as hardware interrupts. */
4256 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
4257 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
4258 {
4259 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
4260 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4261 return VINF_EM_PENDING_REQUEST;
4262 }
4263
4264 /* Pending PGM pool flushes. */
4265 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4266 {
4267 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
4268 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4269 return VINF_PGM_POOL_FLUSH_PENDING;
4270 }
4271
4272 /* Pending DMA requests. */
4273 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4274 {
4275 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
4276 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4277 return VINF_EM_RAW_TO_R3;
4278 }
4279 }
4280
4281 return VINF_SUCCESS;
4282}
4283
4284
4285#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4286/**
4287 * Does the preparations before executing nested-guest code in AMD-V.
4288 *
4289 * @returns VBox status code (informational status codes included).
4290 * @retval VINF_SUCCESS if we can proceed with running the guest.
4291 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4292 *
4293 * @param pVCpu The cross context virtual CPU structure.
4294 * @param pSvmTransient Pointer to the SVM transient structure.
4295 *
4296 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
4297 * @sa hmR0SvmPreRunGuest.
4298 */
4299static int hmR0SvmPreRunGuestNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4300{
4301 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4302 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4303 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4304
4305#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4306 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) /* Redundant check to avoid unreachable code warning. */
4307 {
4308 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4309 return VINF_EM_RESCHEDULE_REM;
4310 }
4311#endif
4312
4313 /* Check force flag actions that might require us to go back to ring-3. */
4314 int rc = hmR0SvmCheckForceFlags(pVCpu);
4315 if (rc != VINF_SUCCESS)
4316 return rc;
4317
4318 if (TRPMHasTrap(pVCpu))
4319 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4320 else if (!pVCpu->hm.s.Event.fPending)
4321 {
4322 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu);
4323 if ( rcStrict != VINF_SUCCESS
4324 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4325 return VBOXSTRICTRC_VAL(rcStrict);
4326 }
4327
4328 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4329
4330 /*
4331 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4332 * Just do it in software, see @bugref{8411}.
4333 * NB: If we could continue a task switch exit we wouldn't need to do this.
4334 */
4335 PVM pVM = pVCpu->CTX_SUFF(pVM);
4336 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
4337 && pVCpu->hm.s.Event.fPending
4338 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4339 {
4340 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4341 }
4342
4343#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4344 Assert(!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4345 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4346#endif
4347
4348 /*
4349 * Export the nested-guest state bits that are not shared with the host in any way as we
4350 * can longjmp or get preempted in the midst of exporting some of the state.
4351 */
4352 rc = hmR0SvmExportGuestStateNested(pVCpu);
4353 AssertRCReturn(rc, rc);
4354 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4355
4356 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware-assisted SVM. */
4357 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4358
4359 /*
4360 * No longjmps to ring-3 from this point on!!!
4361 *
4362 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4363 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4364 */
4365 VMMRZCallRing3Disable(pVCpu);
4366
4367 /*
4368 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4369 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4370 * preemption disabled for a while. Since this is purly to aid the
4371 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4372 * disable interrupt on NT.
4373 *
4374 * We need to check for force-flags that could've possible been altered since we last
4375 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4376 * see @bugref{6398}).
4377 *
4378 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4379 * to ring-3 before executing guest code.
4380 */
4381 pSvmTransient->fEFlags = ASMIntDisableFlags();
4382 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4383 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4384 {
4385 ASMSetFlags(pSvmTransient->fEFlags);
4386 VMMRZCallRing3Enable(pVCpu);
4387 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4388 return VINF_EM_RAW_TO_R3;
4389 }
4390 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4391 {
4392 ASMSetFlags(pSvmTransient->fEFlags);
4393 VMMRZCallRing3Enable(pVCpu);
4394 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4395 return VINF_EM_RAW_INTERRUPT;
4396 }
4397 return VINF_SUCCESS;
4398}
4399#endif
4400
4401
4402/**
4403 * Does the preparations before executing guest code in AMD-V.
4404 *
4405 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4406 * recompiler. We must be cautious what we do here regarding committing
4407 * guest-state information into the VMCB assuming we assuredly execute the guest
4408 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4409 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4410 * that the recompiler can (and should) use them when it resumes guest
4411 * execution. Otherwise such operations must be done when we can no longer
4412 * exit to ring-3.
4413 *
4414 * @returns VBox status code (informational status codes included).
4415 * @retval VINF_SUCCESS if we can proceed with running the guest.
4416 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4417 *
4418 * @param pVCpu The cross context virtual CPU structure.
4419 * @param pSvmTransient Pointer to the SVM transient structure.
4420 */
4421static int hmR0SvmPreRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4422{
4423 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4424 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4425
4426 /* Check force flag actions that might require us to go back to ring-3. */
4427 int rc = hmR0SvmCheckForceFlags(pVCpu);
4428 if (rc != VINF_SUCCESS)
4429 return rc;
4430
4431 if (TRPMHasTrap(pVCpu))
4432 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4433 else if (!pVCpu->hm.s.Event.fPending)
4434 hmR0SvmEvaluatePendingEvent(pVCpu);
4435
4436 /*
4437 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4438 * Just do it in software, see @bugref{8411}.
4439 * NB: If we could continue a task switch exit we wouldn't need to do this.
4440 */
4441 PVM pVM = pVCpu->CTX_SUFF(pVM);
4442 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
4443 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
4444 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4445
4446#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4447 Assert(!(pVCpu->cpum.GstCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4448 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4449#endif
4450
4451 /*
4452 * Export the guest state bits that are not shared with the host in any way as we can
4453 * longjmp or get preempted in the midst of exporting some of the state.
4454 */
4455 rc = hmR0SvmExportGuestState(pVCpu);
4456 AssertRCReturn(rc, rc);
4457 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4458
4459 /*
4460 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4461 * world-switch so we can update it on the way back if the guest changed the TPR.
4462 */
4463 if (pVCpu->hm.s.svm.fSyncVTpr)
4464 {
4465 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4466 if (pVM->hm.s.fTPRPatchingActive)
4467 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4468 else
4469 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4470 }
4471
4472 /*
4473 * No longjmps to ring-3 from this point on!!!
4474 *
4475 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4476 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4477 */
4478 VMMRZCallRing3Disable(pVCpu);
4479
4480 /*
4481 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4482 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4483 * preemption disabled for a while. Since this is purly to aid the
4484 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4485 * disable interrupt on NT.
4486 *
4487 * We need to check for force-flags that could've possible been altered since we last
4488 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4489 * see @bugref{6398}).
4490 *
4491 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4492 * to ring-3 before executing guest code.
4493 */
4494 pSvmTransient->fEFlags = ASMIntDisableFlags();
4495 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4496 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4497 {
4498 ASMSetFlags(pSvmTransient->fEFlags);
4499 VMMRZCallRing3Enable(pVCpu);
4500 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4501 return VINF_EM_RAW_TO_R3;
4502 }
4503 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4504 {
4505 ASMSetFlags(pSvmTransient->fEFlags);
4506 VMMRZCallRing3Enable(pVCpu);
4507 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4508 return VINF_EM_RAW_INTERRUPT;
4509 }
4510
4511 return VINF_SUCCESS;
4512}
4513
4514
4515/**
4516 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4517 * doing so.
4518 *
4519 * This means there is no backing out to ring-3 or anywhere else at this point.
4520 *
4521 * @param pVCpu The cross context virtual CPU structure.
4522 * @param pSvmTransient Pointer to the SVM transient structure.
4523 *
4524 * @remarks Called with preemption disabled.
4525 * @remarks No-long-jump zone!!!
4526 */
4527static void hmR0SvmPreRunGuestCommitted(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
4528{
4529 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4530 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4531 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4532
4533 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4534 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4535
4536 PVM pVM = pVCpu->CTX_SUFF(pVM);
4537 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4538
4539 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4540
4541 if (!CPUMIsGuestFPUStateActive(pVCpu))
4542 {
4543 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4544 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4545 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4546 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4547 }
4548
4549 /* Load the state shared between host and guest (FPU, debug). */
4550 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4551 hmR0SvmExportSharedState(pVCpu, pVmcb);
4552
4553 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4554 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4555
4556 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4557 RTCPUID const idHostCpu = pHostCpu->idCpu;
4558 bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
4559
4560 /* Setup TSC offsetting. */
4561 if ( pSvmTransient->fUpdateTscOffsetting
4562 || fMigratedHostCpu)
4563 {
4564 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4565 pSvmTransient->fUpdateTscOffsetting = false;
4566 }
4567
4568 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
4569 if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
4570 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4571 else
4572 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4573
4574 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4575 if (fMigratedHostCpu)
4576 pVmcb->ctrl.u32VmcbCleanBits = 0;
4577
4578 /* Store status of the shared guest-host state at the time of VMRUN. */
4579#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4580 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4581 {
4582 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4583 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4584 }
4585 else
4586#endif
4587 {
4588 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4589 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4590 }
4591
4592#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4593 uint8_t *pbMsrBitmap;
4594 if (!pSvmTransient->fIsNestedGuest)
4595 pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4596 else
4597 {
4598 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4599
4600 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4601 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4602 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4603 }
4604#else
4605 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4606#endif
4607
4608 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4609 /* Flush the appropriate tagged-TLB entries. */
4610 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4611 Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
4612
4613 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4614
4615 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4616 to start executing. */
4617
4618 /*
4619 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4620 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4621 *
4622 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4623 */
4624 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4625 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4626 {
4627 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4628 pVCpu->hm.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4629 if (uGuestTscAux != pVCpu->hm.s.svm.u64HostTscAux)
4630 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4631 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4632 pSvmTransient->fRestoreTscAuxMsr = true;
4633 }
4634 else
4635 {
4636 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4637 pSvmTransient->fRestoreTscAuxMsr = false;
4638 }
4639 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4640
4641 /*
4642 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4643 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4644 * from the VMCB.
4645 */
4646 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu);
4647 if (!fSupportsVmcbCleanBits)
4648 pVmcb->ctrl.u32VmcbCleanBits = 0;
4649}
4650
4651
4652/**
4653 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4654 *
4655 * @returns VBox strict status code.
4656 * @param pVCpu The cross context virtual CPU structure.
4657 * @param HCPhysVmcb The host physical address of the VMCB.
4658 *
4659 * @remarks No-long-jump zone!!!
4660 */
4661DECLINLINE(int) hmR0SvmRunGuest(PVMCPU pVCpu, RTHCPHYS HCPhysVmcb)
4662{
4663 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4664 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4665 pCtx->fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4666
4667 /*
4668 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4669 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4670 * callee-saved and thus the need for this XMM wrapper.
4671 *
4672 * Refer MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4673 */
4674 PVM pVM = pVCpu->CTX_SUFF(pVM);
4675#ifdef VBOX_WITH_KERNEL_USING_XMM
4676 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun);
4677#else
4678 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu);
4679#endif
4680}
4681
4682
4683/**
4684 * Performs some essential restoration of state after running guest (or
4685 * nested-guest) code in AMD-V.
4686 *
4687 * @param pVCpu The cross context virtual CPU structure.
4688 * @param pSvmTransient Pointer to the SVM transient structure.
4689 * @param rcVMRun Return code of VMRUN.
4690 *
4691 * @remarks Called with interrupts disabled.
4692 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4693 * unconditionally when it is safe to do so.
4694 */
4695static void hmR0SvmPostRunGuest(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4696{
4697 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4698
4699 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4700 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4701 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4702
4703 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4704 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4705
4706 /* TSC read must be done early for maximum accuracy. */
4707 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4708 {
4709 if (!pSvmTransient->fIsNestedGuest)
4710 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4711#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4712 else
4713 {
4714 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4715 uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4716 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4717 }
4718#endif
4719 }
4720
4721 if (pSvmTransient->fRestoreTscAuxMsr)
4722 {
4723 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4724 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4725 if (u64GuestTscAuxMsr != pVCpu->hm.s.svm.u64HostTscAux)
4726 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.svm.u64HostTscAux);
4727 }
4728
4729 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4730 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4731 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4732
4733 Assert(!(ASMGetFlags() & X86_EFL_IF));
4734 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4735 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4736
4737 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4738 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4739 {
4740 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4741 return;
4742 }
4743
4744 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4745 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4746 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4747 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4748
4749#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4750 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4751 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4752#else
4753 /*
4754 * Always import the following:
4755 *
4756 * - RIP for exit optimizations and evaluating event injection on re-entry.
4757 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4758 * state on preemption.
4759 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4760 * - CS for exit optimizations.
4761 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4762 * assembly switcher code.
4763 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4764 */
4765 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4766 | CPUMCTX_EXTRN_RFLAGS
4767 | CPUMCTX_EXTRN_RAX
4768 | CPUMCTX_EXTRN_RSP
4769 | CPUMCTX_EXTRN_CS
4770 | CPUMCTX_EXTRN_HWVIRT
4771 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4772 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4773 | HMSVM_CPUMCTX_SHARED_STATE);
4774#endif
4775
4776 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4777 && pVCpu->hm.s.svm.fSyncVTpr)
4778 {
4779 Assert(!pSvmTransient->fIsNestedGuest);
4780 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4781 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
4782 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4783 {
4784 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4785 AssertRC(rc);
4786 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4787 }
4788 /* Sync TPR when we aren't intercepting CR8 writes. */
4789 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4790 {
4791 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4792 AssertRC(rc);
4793 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4794 }
4795 }
4796
4797#ifdef DEBUG_ramshankar
4798 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4799 {
4800 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4801 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4802 0 /* uVerbose */);
4803 }
4804#endif
4805
4806 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4807 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4808 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4809}
4810
4811
4812/**
4813 * Runs the guest code using AMD-V.
4814 *
4815 * @returns VBox status code.
4816 * @param pVCpu The cross context virtual CPU structure.
4817 * @param pcLoops Pointer to the number of executed loops.
4818 */
4819static int hmR0SvmRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
4820{
4821 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4822 Assert(pcLoops);
4823 Assert(*pcLoops <= cMaxResumeLoops);
4824
4825 SVMTRANSIENT SvmTransient;
4826 RT_ZERO(SvmTransient);
4827 SvmTransient.fUpdateTscOffsetting = true;
4828 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4829
4830 int rc = VERR_INTERNAL_ERROR_5;
4831 for (;;)
4832 {
4833 Assert(!HMR0SuspendPending());
4834 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4835
4836 /* Preparatory work for running nested-guest code, this may force us to return to
4837 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4838 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4839 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4840 if (rc != VINF_SUCCESS)
4841 break;
4842
4843 /*
4844 * No longjmps to ring-3 from this point on!!!
4845 *
4846 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4847 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4848 */
4849 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4850 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4851
4852 /* Restore any residual host-state and save any bits shared between host and guest
4853 into the guest-CPU state. Re-enables interrupts! */
4854 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4855
4856 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4857 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4858 {
4859 if (rc == VINF_SUCCESS)
4860 rc = VERR_SVM_INVALID_GUEST_STATE;
4861 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4862 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4863 break;
4864 }
4865
4866 /* Handle the #VMEXIT. */
4867 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4868 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4869 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4870 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4871 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4872 if (rc != VINF_SUCCESS)
4873 break;
4874 if (++(*pcLoops) >= cMaxResumeLoops)
4875 {
4876 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4877 rc = VINF_EM_RAW_INTERRUPT;
4878 break;
4879 }
4880 }
4881
4882 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4883 return rc;
4884}
4885
4886
4887/**
4888 * Runs the guest code using AMD-V in single step mode.
4889 *
4890 * @returns VBox status code.
4891 * @param pVCpu The cross context virtual CPU structure.
4892 * @param pcLoops Pointer to the number of executed loops.
4893 */
4894static int hmR0SvmRunGuestCodeStep(PVMCPU pVCpu, uint32_t *pcLoops)
4895{
4896 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4897 Assert(pcLoops);
4898 Assert(*pcLoops <= cMaxResumeLoops);
4899
4900 SVMTRANSIENT SvmTransient;
4901 RT_ZERO(SvmTransient);
4902 SvmTransient.fUpdateTscOffsetting = true;
4903 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4904
4905 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4906 uint16_t uCsStart = pCtx->cs.Sel;
4907 uint64_t uRipStart = pCtx->rip;
4908
4909 int rc = VERR_INTERNAL_ERROR_5;
4910 for (;;)
4911 {
4912 Assert(!HMR0SuspendPending());
4913 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4914 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4915 (unsigned)RTMpCpuId(), *pcLoops));
4916
4917 /* Preparatory work for running nested-guest code, this may force us to return to
4918 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4919 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4920 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4921 if (rc != VINF_SUCCESS)
4922 break;
4923
4924 /*
4925 * No longjmps to ring-3 from this point on!!!
4926 *
4927 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4928 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4929 */
4930 VMMRZCallRing3Disable(pVCpu);
4931 VMMRZCallRing3RemoveNotification(pVCpu);
4932 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4933
4934 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4935
4936 /* Restore any residual host-state and save any bits shared between host and guest
4937 into the guest-CPU state. Re-enables interrupts! */
4938 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4939
4940 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4941 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4942 {
4943 if (rc == VINF_SUCCESS)
4944 rc = VERR_SVM_INVALID_GUEST_STATE;
4945 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4946 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4947 return rc;
4948 }
4949
4950 /* Handle the #VMEXIT. */
4951 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4952 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4953 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4954 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4955 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4956 if (rc != VINF_SUCCESS)
4957 break;
4958 if (++(*pcLoops) >= cMaxResumeLoops)
4959 {
4960 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4961 rc = VINF_EM_RAW_INTERRUPT;
4962 break;
4963 }
4964
4965 /*
4966 * Did the RIP change, if so, consider it a single step.
4967 * Otherwise, make sure one of the TFs gets set.
4968 */
4969 if ( pCtx->rip != uRipStart
4970 || pCtx->cs.Sel != uCsStart)
4971 {
4972 rc = VINF_EM_DBG_STEPPED;
4973 break;
4974 }
4975 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4976 }
4977
4978 /*
4979 * Clear the X86_EFL_TF if necessary.
4980 */
4981 if (pVCpu->hm.s.fClearTrapFlag)
4982 {
4983 pVCpu->hm.s.fClearTrapFlag = false;
4984 pCtx->eflags.Bits.u1TF = 0;
4985 }
4986
4987 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4988 return rc;
4989}
4990
4991#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4992/**
4993 * Runs the nested-guest code using AMD-V.
4994 *
4995 * @returns VBox status code.
4996 * @param pVCpu The cross context virtual CPU structure.
4997 * @param pcLoops Pointer to the number of executed loops. If we're switching
4998 * from the guest-code execution loop to this nested-guest
4999 * execution loop pass the remainder value, else pass 0.
5000 */
5001static int hmR0SvmRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
5002{
5003 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5004 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
5005 Assert(pcLoops);
5006 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops);
5007
5008 SVMTRANSIENT SvmTransient;
5009 RT_ZERO(SvmTransient);
5010 SvmTransient.fUpdateTscOffsetting = true;
5011 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
5012 SvmTransient.fIsNestedGuest = true;
5013
5014 int rc = VERR_INTERNAL_ERROR_4;
5015 for (;;)
5016 {
5017 Assert(!HMR0SuspendPending());
5018 HMSVM_ASSERT_CPU_SAFE(pVCpu);
5019
5020 /* Preparatory work for running nested-guest code, this may force us to return to
5021 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
5022 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
5023 rc = hmR0SvmPreRunGuestNested(pVCpu, &SvmTransient);
5024 if ( rc != VINF_SUCCESS
5025 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5026 {
5027 break;
5028 }
5029
5030 /*
5031 * No longjmps to ring-3 from this point on!!!
5032 *
5033 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
5034 * better than a kernel panic. This also disables flushing of the R0-logger instance.
5035 */
5036 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
5037
5038 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
5039
5040 /* Restore any residual host-state and save any bits shared between host and guest
5041 into the guest-CPU state. Re-enables interrupts! */
5042 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
5043
5044 if (RT_LIKELY( rc == VINF_SUCCESS
5045 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
5046 { /* extremely likely */ }
5047 else
5048 {
5049 /* VMRUN failed, shouldn't really happen, Guru. */
5050 if (rc != VINF_SUCCESS)
5051 break;
5052
5053 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
5054 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
5055 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
5056 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
5057 break;
5058 }
5059
5060 /* Handle the #VMEXIT. */
5061 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
5062 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
5063 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
5064 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
5065 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
5066 if ( rc != VINF_SUCCESS
5067 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
5068 break;
5069 if (++(*pcLoops) >= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
5070 {
5071 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
5072 rc = VINF_EM_RAW_INTERRUPT;
5073 break;
5074 }
5075 /** @todo NSTSVM: Add stat for StatSwitchNstGstVmexit. Re-arrange the above code to
5076 * be accurate when doing so, see the corresponding VT-x code. */
5077
5078 /** @todo handle single-stepping */
5079 }
5080
5081 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
5082 return rc;
5083}
5084#endif
5085
5086
5087/**
5088 * Runs the guest code using AMD-V.
5089 *
5090 * @returns Strict VBox status code.
5091 * @param pVCpu The cross context virtual CPU structure.
5092 */
5093VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPU pVCpu)
5094{
5095 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5096 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
5097 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, NULL /* pvUser */);
5098
5099 uint32_t cLoops = 0;
5100 int rc;
5101#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5102 if (!CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
5103#endif
5104 {
5105 if (!pVCpu->hm.s.fSingleInstruction)
5106 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
5107 else
5108 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
5109 }
5110#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5111 else
5112 {
5113 rc = VINF_SVM_VMRUN;
5114 }
5115
5116 /* Re-check the nested-guest condition here as we may be transitioning from the normal
5117 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
5118 if (rc == VINF_SVM_VMRUN)
5119 {
5120 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
5121 if (rc == VINF_SVM_VMEXIT)
5122 rc = VINF_SUCCESS;
5123 }
5124#endif
5125
5126 /** @todo NSTSVM: Continue in ring-0 after nested-guest \#VMEXIT. See VT-x code for
5127 * reference. */
5128
5129 /* Fixup error codes. */
5130 if (rc == VERR_EM_INTERPRETER)
5131 rc = VINF_EM_RAW_EMULATE_INSTR;
5132 else if (rc == VINF_EM_RESET)
5133 rc = VINF_EM_TRIPLE_FAULT;
5134
5135 /* Prepare to return to ring-3. This will remove longjmp notifications. */
5136 rc = hmR0SvmExitToRing3(pVCpu, rc);
5137 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
5138 return rc;
5139}
5140
5141
5142#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5143/**
5144 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
5145 *
5146 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
5147 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
5148 */
5149static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
5150{
5151 const uint16_t u16Port = pIoExitInfo->n.u16Port;
5152 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
5153 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
5154 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
5155 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
5156 const bool fRep = pIoExitInfo->n.u1Rep;
5157 const bool fStrIo = pIoExitInfo->n.u1Str;
5158
5159 return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
5160 NULL /* pIoExitInfo */);
5161}
5162
5163
5164/**
5165 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
5166 * SVM_EXIT_INVALID).
5167 *
5168 * @returns VBox status code (informational status codes included).
5169 * @param pVCpu The cross context virtual CPU structure.
5170 * @param pSvmTransient Pointer to the SVM transient structure.
5171 */
5172static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5173{
5174 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
5175 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5176 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5177
5178 /*
5179 * We import the complete state here because we use separate VMCBs for the guest and the
5180 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
5181 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
5182 */
5183#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5184 do { \
5185 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5186 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2))); \
5187 } while (0)
5188
5189 /*
5190 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
5191 * nested-guest. If it isn't, it should be handled by the (outer) guest.
5192 */
5193 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
5194 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5195 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
5196 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
5197 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
5198 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
5199
5200 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
5201 switch (uExitCode)
5202 {
5203 case SVM_EXIT_CPUID:
5204 {
5205 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
5206 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5207 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
5208 }
5209
5210 case SVM_EXIT_RDTSC:
5211 {
5212 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
5213 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5214 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
5215 }
5216
5217 case SVM_EXIT_RDTSCP:
5218 {
5219 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
5220 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5221 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
5222 }
5223
5224 case SVM_EXIT_MONITOR:
5225 {
5226 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
5227 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5228 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
5229 }
5230
5231 case SVM_EXIT_MWAIT:
5232 {
5233 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
5234 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5235 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
5236 }
5237
5238 case SVM_EXIT_HLT:
5239 {
5240 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
5241 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5242 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
5243 }
5244
5245 case SVM_EXIT_MSR:
5246 {
5247 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
5248 {
5249 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
5250 uint16_t offMsrpm;
5251 uint8_t uMsrpmBit;
5252 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
5253 if (RT_SUCCESS(rc))
5254 {
5255 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
5256 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
5257
5258 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
5259 pbMsrBitmap += offMsrpm;
5260 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
5261 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
5262
5263 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
5264 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
5265 {
5266 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5267 }
5268 }
5269 else
5270 {
5271 /*
5272 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
5273 * See AMD-V spec. "15.11 MSR Intercepts".
5274 */
5275 Assert(rc == VERR_OUT_OF_RANGE);
5276 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5277 }
5278 }
5279 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
5280 }
5281
5282 case SVM_EXIT_IOIO:
5283 {
5284 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
5285 {
5286 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
5287 SVMIOIOEXITINFO IoExitInfo;
5288 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
5289 bool const fIntercept = hmR0SvmIsIoInterceptSet(pvIoBitmap, &IoExitInfo);
5290 if (fIntercept)
5291 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5292 }
5293 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
5294 }
5295
5296 case SVM_EXIT_XCPT_PF:
5297 {
5298 PVM pVM = pVCpu->CTX_SUFF(pVM);
5299 if (pVM->hm.s.fNestedPaging)
5300 {
5301 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
5302 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
5303
5304 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
5305 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
5306 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
5307
5308 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
5309 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5310 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
5311 return VINF_SUCCESS;
5312 }
5313 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
5314 }
5315
5316 case SVM_EXIT_XCPT_UD:
5317 {
5318 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
5319 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5320 hmR0SvmSetPendingXcptUD(pVCpu);
5321 return VINF_SUCCESS;
5322 }
5323
5324 case SVM_EXIT_XCPT_MF:
5325 {
5326 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
5327 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5328 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
5329 }
5330
5331 case SVM_EXIT_XCPT_DB:
5332 {
5333 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
5334 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5335 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5336 }
5337
5338 case SVM_EXIT_XCPT_AC:
5339 {
5340 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
5341 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5342 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5343 }
5344
5345 case SVM_EXIT_XCPT_BP:
5346 {
5347 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
5348 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5349 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5350 }
5351
5352 case SVM_EXIT_READ_CR0:
5353 case SVM_EXIT_READ_CR3:
5354 case SVM_EXIT_READ_CR4:
5355 {
5356 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5357 if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
5358 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5359 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5360 }
5361
5362 case SVM_EXIT_CR0_SEL_WRITE:
5363 {
5364 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5365 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5366 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5367 }
5368
5369 case SVM_EXIT_WRITE_CR0:
5370 case SVM_EXIT_WRITE_CR3:
5371 case SVM_EXIT_WRITE_CR4:
5372 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5373 {
5374 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5375 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5376
5377 if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
5378 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5379 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5380 }
5381
5382 case SVM_EXIT_PAUSE:
5383 {
5384 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
5385 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5386 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5387 }
5388
5389 case SVM_EXIT_VINTR:
5390 {
5391 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
5392 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5393 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5394 }
5395
5396 case SVM_EXIT_INTR:
5397 case SVM_EXIT_NMI:
5398 case SVM_EXIT_SMI:
5399 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5400 {
5401 /*
5402 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5403 *
5404 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5405 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5406 * nested-guest #VMEXIT.
5407 *
5408 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5409 * while trying to inject interrupts, see comment at the top of this function.
5410 */
5411 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5412 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5413 }
5414
5415 case SVM_EXIT_FERR_FREEZE:
5416 {
5417 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5418 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5419 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5420 }
5421
5422 case SVM_EXIT_INVLPG:
5423 {
5424 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5425 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5426 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5427 }
5428
5429 case SVM_EXIT_WBINVD:
5430 {
5431 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5432 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5433 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5434 }
5435
5436 case SVM_EXIT_INVD:
5437 {
5438 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5439 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5440 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5441 }
5442
5443 case SVM_EXIT_RDPMC:
5444 {
5445 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5446 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5447 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5448 }
5449
5450 default:
5451 {
5452 switch (uExitCode)
5453 {
5454 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5455 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5456 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5457 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5458 {
5459 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5460 if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5461 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5462 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5463 }
5464
5465 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5466 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5467 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5468 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5469 {
5470 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5471 if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5472 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5473 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5474 }
5475
5476 case SVM_EXIT_XCPT_DE:
5477 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5478 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5479 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5480 case SVM_EXIT_XCPT_OF:
5481 case SVM_EXIT_XCPT_BR:
5482 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5483 case SVM_EXIT_XCPT_NM:
5484 case SVM_EXIT_XCPT_DF:
5485 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5486 case SVM_EXIT_XCPT_TS:
5487 case SVM_EXIT_XCPT_NP:
5488 case SVM_EXIT_XCPT_SS:
5489 case SVM_EXIT_XCPT_GP:
5490 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5491 case SVM_EXIT_XCPT_15: /* Reserved. */
5492 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5493 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5494 case SVM_EXIT_XCPT_MC:
5495 case SVM_EXIT_XCPT_XF:
5496 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5497 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5498 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5499 {
5500 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5501 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5502 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5503 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5504 }
5505
5506 case SVM_EXIT_XSETBV:
5507 {
5508 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5509 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5510 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5511 }
5512
5513 case SVM_EXIT_TASK_SWITCH:
5514 {
5515 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5516 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5517 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5518 }
5519
5520 case SVM_EXIT_IRET:
5521 {
5522 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5523 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5524 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5525 }
5526
5527 case SVM_EXIT_SHUTDOWN:
5528 {
5529 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5530 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5531 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5532 }
5533
5534 case SVM_EXIT_VMMCALL:
5535 {
5536 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5537 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5538 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5539 }
5540
5541 case SVM_EXIT_CLGI:
5542 {
5543 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5544 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5545 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5546 }
5547
5548 case SVM_EXIT_STGI:
5549 {
5550 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5551 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5552 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5553 }
5554
5555 case SVM_EXIT_VMLOAD:
5556 {
5557 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5558 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5559 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5560 }
5561
5562 case SVM_EXIT_VMSAVE:
5563 {
5564 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5565 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5566 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5567 }
5568
5569 case SVM_EXIT_INVLPGA:
5570 {
5571 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5572 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5573 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5574 }
5575
5576 case SVM_EXIT_VMRUN:
5577 {
5578 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5579 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5580 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5581 }
5582
5583 case SVM_EXIT_RSM:
5584 {
5585 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5586 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5587 hmR0SvmSetPendingXcptUD(pVCpu);
5588 return VINF_SUCCESS;
5589 }
5590
5591 case SVM_EXIT_SKINIT:
5592 {
5593 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5594 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5595 hmR0SvmSetPendingXcptUD(pVCpu);
5596 return VINF_SUCCESS;
5597 }
5598
5599 case SVM_EXIT_NPF:
5600 {
5601 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5602 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5603 }
5604
5605 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5606 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5607
5608 default:
5609 {
5610 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5611 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5612 return VERR_SVM_UNKNOWN_EXIT;
5613 }
5614 }
5615 }
5616 }
5617 /* not reached */
5618
5619#undef NST_GST_VMEXIT_CALL_RET
5620}
5621#endif
5622
5623
5624/**
5625 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5626 *
5627 * @returns VBox status code (informational status codes included).
5628 * @param pVCpu The cross context virtual CPU structure.
5629 * @param pSvmTransient Pointer to the SVM transient structure.
5630 */
5631static int hmR0SvmHandleExit(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5632{
5633 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5634 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5635
5636#ifdef DEBUG_ramshankar
5637# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5638 do { \
5639 if ((a_fDbg) == 1) \
5640 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5641 int rc = a_CallExpr; \
5642 if ((a_fDbg) == 1) \
5643 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5644 return rc; \
5645 } while (0)
5646#else
5647# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5648#endif
5649
5650 /*
5651 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5652 * for most guests under normal workloads (for some definition of "normal").
5653 */
5654 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5655 switch (uExitCode)
5656 {
5657 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5658 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5659 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5660 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5661 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5662 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5663 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5664 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5665 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5666 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5667
5668 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5669 case SVM_EXIT_INTR:
5670 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5671
5672 case SVM_EXIT_READ_CR0:
5673 case SVM_EXIT_READ_CR3:
5674 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5675
5676 case SVM_EXIT_CR0_SEL_WRITE:
5677 case SVM_EXIT_WRITE_CR0:
5678 case SVM_EXIT_WRITE_CR3:
5679 case SVM_EXIT_WRITE_CR4:
5680 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5681
5682 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5683 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5684 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5685 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5686 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5687 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5688 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5689 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5690 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5691 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5692 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5693 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5694 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5695 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5696 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5697 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5698
5699 default:
5700 {
5701 switch (pSvmTransient->u64ExitCode)
5702 {
5703 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5704 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5705 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5706 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5707 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5708
5709 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5710 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5711 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5712 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5713 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5714
5715 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5716 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5717
5718 case SVM_EXIT_SMI:
5719 case SVM_EXIT_INIT:
5720 {
5721 /*
5722 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5723 * If it ever does, we want to know about it so log the exit code and bail.
5724 */
5725 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5726 }
5727
5728#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5729 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5730 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5731 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5732 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5733 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5734 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5735#else
5736 case SVM_EXIT_CLGI:
5737 case SVM_EXIT_STGI:
5738 case SVM_EXIT_VMLOAD:
5739 case SVM_EXIT_VMSAVE:
5740 case SVM_EXIT_INVLPGA:
5741 case SVM_EXIT_VMRUN:
5742#endif
5743 case SVM_EXIT_RSM:
5744 case SVM_EXIT_SKINIT:
5745 {
5746 hmR0SvmSetPendingXcptUD(pVCpu);
5747 return VINF_SUCCESS;
5748 }
5749
5750#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5751 case SVM_EXIT_XCPT_DE:
5752 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5753 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5754 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5755 case SVM_EXIT_XCPT_OF:
5756 case SVM_EXIT_XCPT_BR:
5757 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5758 case SVM_EXIT_XCPT_NM:
5759 case SVM_EXIT_XCPT_DF:
5760 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5761 case SVM_EXIT_XCPT_TS:
5762 case SVM_EXIT_XCPT_NP:
5763 case SVM_EXIT_XCPT_SS:
5764 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5765 /* SVM_EXIT_XCPT_PF: */
5766 case SVM_EXIT_XCPT_15: /* Reserved. */
5767 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5768 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5769 case SVM_EXIT_XCPT_MC:
5770 case SVM_EXIT_XCPT_XF:
5771 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5772 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5773 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5774 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5775#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5776
5777 default:
5778 {
5779 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5780 pVCpu->hm.s.u32HMError = uExitCode;
5781 return VERR_SVM_UNKNOWN_EXIT;
5782 }
5783 }
5784 }
5785 }
5786 /* not reached */
5787#undef VMEXIT_CALL_RET
5788}
5789
5790
5791#ifdef VBOX_STRICT
5792/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5793# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5794 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5795
5796# define HMSVM_ASSERT_PREEMPT_CPUID() \
5797 do \
5798 { \
5799 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5800 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5801 } while (0)
5802
5803# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5804 do { \
5805 AssertPtr((a_pVCpu)); \
5806 AssertPtr((a_pSvmTransient)); \
5807 Assert(ASMIntAreEnabled()); \
5808 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5809 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5810 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5811 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5812 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5813 HMSVM_ASSERT_PREEMPT_CPUID(); \
5814 } while (0)
5815#else
5816# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5817 do { \
5818 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5819 } while (0)
5820#endif
5821
5822
5823/**
5824 * Gets the IEM exception flags for the specified SVM event.
5825 *
5826 * @returns The IEM exception flags.
5827 * @param pEvent Pointer to the SVM event.
5828 *
5829 * @remarks This function currently only constructs flags required for
5830 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5831 * and CR2 aspects of an exception are not included).
5832 */
5833static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5834{
5835 uint8_t const uEventType = pEvent->n.u3Type;
5836 uint32_t fIemXcptFlags;
5837 switch (uEventType)
5838 {
5839 case SVM_EVENT_EXCEPTION:
5840 /*
5841 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5842 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5843 */
5844 if (pEvent->n.u8Vector == X86_XCPT_BP)
5845 {
5846 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5847 break;
5848 }
5849 if (pEvent->n.u8Vector == X86_XCPT_OF)
5850 {
5851 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5852 break;
5853 }
5854 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5855 RT_FALL_THRU();
5856 case SVM_EVENT_NMI:
5857 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5858 break;
5859
5860 case SVM_EVENT_EXTERNAL_IRQ:
5861 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5862 break;
5863
5864 case SVM_EVENT_SOFTWARE_INT:
5865 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5866 break;
5867
5868 default:
5869 fIemXcptFlags = 0;
5870 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5871 break;
5872 }
5873 return fIemXcptFlags;
5874}
5875
5876
5877/**
5878 * Handle a condition that occurred while delivering an event through the guest
5879 * IDT.
5880 *
5881 * @returns VBox status code (informational error codes included).
5882 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5883 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5884 * continue execution of the guest which will delivery the \#DF.
5885 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5886 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5887 *
5888 * @param pVCpu The cross context virtual CPU structure.
5889 * @param pSvmTransient Pointer to the SVM transient structure.
5890 *
5891 * @remarks No-long-jump zone!!!
5892 */
5893static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
5894{
5895 int rc = VINF_SUCCESS;
5896 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5897 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5898
5899 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5900 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5901 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5902
5903 /*
5904 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5905 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5906 *
5907 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5908 */
5909 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5910 {
5911 IEMXCPTRAISE enmRaise;
5912 IEMXCPTRAISEINFO fRaiseInfo;
5913 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5914 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5915 if (fExitIsHwXcpt)
5916 {
5917 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5918 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5919 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5920 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5921 }
5922 else
5923 {
5924 /*
5925 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5926 * then we end up here.
5927 *
5928 * If the event was:
5929 * - a software interrupt, we can re-execute the instruction which will
5930 * regenerate the event.
5931 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5932 * - a hardware exception or external interrupt, we re-inject it.
5933 */
5934 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5935 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5936 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5937 else
5938 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5939 }
5940
5941 switch (enmRaise)
5942 {
5943 case IEMXCPTRAISE_CURRENT_XCPT:
5944 case IEMXCPTRAISE_PREV_EVENT:
5945 {
5946 /* For software interrupts, we shall re-execute the instruction. */
5947 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5948 {
5949 RTGCUINTPTR GCPtrFaultAddress = 0;
5950
5951 /* If we are re-injecting an NMI, clear NMI blocking. */
5952 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5953 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5954
5955 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5956 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5957 {
5958 pSvmTransient->fVectoringPF = true;
5959 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5960 pVCpu->cpum.GstCtx.cr2));
5961 }
5962 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5963 && uIdtVector == X86_XCPT_PF)
5964 {
5965 /*
5966 * If the previous exception was a #PF, we need to recover the CR2 value.
5967 * This can't happen with shadow paging.
5968 */
5969 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5970 }
5971
5972 /*
5973 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5974 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5975 */
5976 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5977 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
5978 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5979
5980 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5981 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5982 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5983 }
5984 break;
5985 }
5986
5987 case IEMXCPTRAISE_REEXEC_INSTR:
5988 {
5989 Assert(rc == VINF_SUCCESS);
5990 break;
5991 }
5992
5993 case IEMXCPTRAISE_DOUBLE_FAULT:
5994 {
5995 /*
5996 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5997 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5998 * converted into a #DF.
5999 */
6000 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6001 {
6002 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
6003 pSvmTransient->fVectoringDoublePF = true;
6004 Assert(rc == VINF_SUCCESS);
6005 }
6006 else
6007 {
6008 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
6009 hmR0SvmSetPendingXcptDF(pVCpu);
6010 rc = VINF_HM_DOUBLE_FAULT;
6011 }
6012 break;
6013 }
6014
6015 case IEMXCPTRAISE_TRIPLE_FAULT:
6016 {
6017 rc = VINF_EM_RESET;
6018 break;
6019 }
6020
6021 case IEMXCPTRAISE_CPU_HANG:
6022 {
6023 rc = VERR_EM_GUEST_CPU_HANG;
6024 break;
6025 }
6026
6027 default:
6028 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
6029 }
6030 }
6031 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
6032 return rc;
6033}
6034
6035
6036/**
6037 * Advances the guest RIP by the number of bytes specified in @a cb.
6038 *
6039 * @param pVCpu The cross context virtual CPU structure.
6040 * @param cb RIP increment value in bytes.
6041 */
6042DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPU pVCpu, uint32_t cb)
6043{
6044 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6045 pCtx->rip += cb;
6046
6047 /* Update interrupt shadow. */
6048 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
6049 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
6050 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6051}
6052
6053
6054/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6055/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6056/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6057
6058/** @name \#VMEXIT handlers.
6059 * @{
6060 */
6061
6062/**
6063 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
6064 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
6065 */
6066HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6067{
6068 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6069
6070 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
6071 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
6072 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
6073 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6074
6075 /*
6076 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
6077 * signal -before- the timer fires if the current interrupt is our own timer or a some
6078 * other host interrupt. We also cannot examine what interrupt it is until the host
6079 * actually take the interrupt.
6080 *
6081 * Going back to executing guest code here unconditionally causes random scheduling
6082 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
6083 */
6084 return VINF_EM_RAW_INTERRUPT;
6085}
6086
6087
6088/**
6089 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
6090 */
6091HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6092{
6093 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6094
6095 VBOXSTRICTRC rcStrict;
6096 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6097 if (fSupportsNextRipSave)
6098 {
6099 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6100 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6101 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6102 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
6103 }
6104 else
6105 {
6106 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6107 rcStrict = IEMExecOne(pVCpu);
6108 }
6109
6110 if (rcStrict == VINF_IEM_RAISED_XCPT)
6111 {
6112 rcStrict = VINF_SUCCESS;
6113 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6114 }
6115 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6116 return VBOXSTRICTRC_TODO(rcStrict);
6117}
6118
6119
6120/**
6121 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
6122 */
6123HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6124{
6125 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6126
6127 VBOXSTRICTRC rcStrict;
6128 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6129 if (fSupportsNextRipSave)
6130 {
6131 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6132 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6133 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6134 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
6135 }
6136 else
6137 {
6138 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6139 rcStrict = IEMExecOne(pVCpu);
6140 }
6141
6142 if (rcStrict == VINF_IEM_RAISED_XCPT)
6143 {
6144 rcStrict = VINF_SUCCESS;
6145 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6146 }
6147 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6148 return VBOXSTRICTRC_TODO(rcStrict);
6149}
6150
6151
6152/**
6153 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6154 */
6155HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6156{
6157 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6158
6159 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
6160 VBOXSTRICTRC rcStrict;
6161 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6162 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
6163 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6164 if (!pExitRec)
6165 {
6166 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6167 if (fSupportsNextRipSave)
6168 {
6169 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6170 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6171 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
6172 }
6173 else
6174 {
6175 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6176 rcStrict = IEMExecOne(pVCpu);
6177 }
6178
6179 if (rcStrict == VINF_IEM_RAISED_XCPT)
6180 {
6181 rcStrict = VINF_SUCCESS;
6182 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6183 }
6184 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6185 }
6186 else
6187 {
6188 /*
6189 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6190 */
6191 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6192
6193 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
6194 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
6195
6196 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6197
6198 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6199 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6200 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6201 }
6202 return VBOXSTRICTRC_TODO(rcStrict);
6203}
6204
6205
6206/**
6207 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6208 */
6209HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6210{
6211 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6212
6213 VBOXSTRICTRC rcStrict;
6214 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6215 if (fSupportsNextRipSave)
6216 {
6217 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6218 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6219 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6220 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
6221 }
6222 else
6223 {
6224 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6225 rcStrict = IEMExecOne(pVCpu);
6226 }
6227
6228 if (rcStrict == VINF_SUCCESS)
6229 pSvmTransient->fUpdateTscOffsetting = true;
6230 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6231 {
6232 rcStrict = VINF_SUCCESS;
6233 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6234 }
6235 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6236 return VBOXSTRICTRC_TODO(rcStrict);
6237}
6238
6239
6240/**
6241 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6242 */
6243HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6244{
6245 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6246
6247 VBOXSTRICTRC rcStrict;
6248 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6249 if (fSupportsNextRipSave)
6250 {
6251 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
6252 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6253 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6254 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
6255 }
6256 else
6257 {
6258 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6259 rcStrict = IEMExecOne(pVCpu);
6260 }
6261
6262 if (rcStrict == VINF_SUCCESS)
6263 pSvmTransient->fUpdateTscOffsetting = true;
6264 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6265 {
6266 rcStrict = VINF_SUCCESS;
6267 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6268 }
6269 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6270 return VBOXSTRICTRC_TODO(rcStrict);
6271}
6272
6273
6274/**
6275 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6276 */
6277HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6278{
6279 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6280
6281 VBOXSTRICTRC rcStrict;
6282 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6283 if (fSupportsNextRipSave)
6284 {
6285 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
6286 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6287 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6288 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
6289 }
6290 else
6291 {
6292 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6293 rcStrict = IEMExecOne(pVCpu);
6294 }
6295
6296 if (rcStrict == VINF_IEM_RAISED_XCPT)
6297 {
6298 rcStrict = VINF_SUCCESS;
6299 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6300 }
6301 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6302 return VBOXSTRICTRC_TODO(rcStrict);
6303}
6304
6305
6306/**
6307 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6308 */
6309HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6310{
6311 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6312 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6313
6314 VBOXSTRICTRC rcStrict;
6315 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6316 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6317 if ( fSupportsDecodeAssists
6318 && fSupportsNextRipSave)
6319 {
6320 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
6321 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6322 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6323 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6324 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6325 }
6326 else
6327 {
6328 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6329 rcStrict = IEMExecOne(pVCpu);
6330 }
6331
6332 if (rcStrict == VINF_IEM_RAISED_XCPT)
6333 {
6334 rcStrict = VINF_SUCCESS;
6335 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6336 }
6337 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6338 return VBOXSTRICTRC_VAL(rcStrict);
6339}
6340
6341
6342/**
6343 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6344 */
6345HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6346{
6347 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6348
6349 VBOXSTRICTRC rcStrict;
6350 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6351 if (fSupportsNextRipSave)
6352 {
6353 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6354 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6355 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6356 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6357 }
6358 else
6359 {
6360 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6361 rcStrict = IEMExecOne(pVCpu);
6362 }
6363
6364 if ( rcStrict == VINF_EM_HALT
6365 || rcStrict == VINF_SUCCESS)
6366 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6367 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6368 {
6369 rcStrict = VINF_SUCCESS;
6370 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6371 }
6372 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6373 if (rcStrict != VINF_SUCCESS)
6374 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6375 return VBOXSTRICTRC_VAL(rcStrict);;
6376}
6377
6378
6379/**
6380 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6381 */
6382HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6383{
6384 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6385
6386 /*
6387 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6388 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6389 * segment override prefix or other prefixes might be used, in which case we fallback to
6390 * IEMExecOne() to figure out.
6391 */
6392 VBOXSTRICTRC rcStrict;
6393 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6394 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6395 if (cbInstr)
6396 {
6397 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6398 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6399 }
6400 else
6401 {
6402 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6403 rcStrict = IEMExecOne(pVCpu);
6404 }
6405
6406 if (rcStrict == VINF_IEM_RAISED_XCPT)
6407 {
6408 rcStrict = VINF_SUCCESS;
6409 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6410 }
6411 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6412 return VBOXSTRICTRC_TODO(rcStrict);
6413}
6414
6415
6416/**
6417 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6418 */
6419HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6420{
6421 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6422
6423 VBOXSTRICTRC rcStrict;
6424 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6425 if (fSupportsNextRipSave)
6426 {
6427 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6428 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6429 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6430 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6431 }
6432 else
6433 {
6434 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6435 rcStrict = IEMExecOne(pVCpu);
6436 }
6437
6438 if ( rcStrict == VINF_EM_HALT
6439 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6440 rcStrict = VINF_SUCCESS;
6441 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6442 {
6443 rcStrict = VINF_SUCCESS;
6444 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6445 }
6446 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6447 return VBOXSTRICTRC_TODO(rcStrict);
6448}
6449
6450
6451/**
6452 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6453 * \#VMEXIT.
6454 */
6455HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6456{
6457 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6458 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6459 return VINF_EM_RESET;
6460}
6461
6462
6463/**
6464 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6465 */
6466HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6467{
6468 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6469 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6470 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6471 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6472 RT_NOREF(pVmcb);
6473 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6474 return VERR_SVM_UNEXPECTED_EXIT;
6475}
6476
6477
6478/**
6479 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6480 */
6481HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6482{
6483 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6484
6485 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6486 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6487#ifdef VBOX_WITH_STATISTICS
6488 switch (pSvmTransient->u64ExitCode)
6489 {
6490 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6491 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6492 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6493 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6494 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6495 }
6496#endif
6497
6498 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6499 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6500 if ( fSupportsDecodeAssists
6501 && fSupportsNextRipSave)
6502 {
6503 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6504 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6505 if (fMovCRx)
6506 {
6507 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6508 | CPUMCTX_EXTRN_APIC_TPR);
6509 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6510 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6511 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6512 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6513 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6514 return VBOXSTRICTRC_VAL(rcStrict);
6515 }
6516 /* else: SMSW instruction, fall back below to IEM for this. */
6517 }
6518
6519 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6520 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6521 AssertMsg( rcStrict == VINF_SUCCESS
6522 || rcStrict == VINF_PGM_SYNC_CR3
6523 || rcStrict == VINF_IEM_RAISED_XCPT,
6524 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6525 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6526 if (rcStrict == VINF_IEM_RAISED_XCPT)
6527 {
6528 rcStrict = VINF_SUCCESS;
6529 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6530 }
6531 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6532 return VBOXSTRICTRC_TODO(rcStrict);
6533}
6534
6535
6536/**
6537 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6538 */
6539HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6540{
6541 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6542
6543 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6544 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6545 Assert(iCrReg <= 15);
6546
6547 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6548 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6549 bool fDecodedInstr = false;
6550 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6551 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6552 if ( fSupportsDecodeAssists
6553 && fSupportsNextRipSave)
6554 {
6555 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6556 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6557 if (fMovCRx)
6558 {
6559 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6560 | CPUMCTX_EXTRN_APIC_TPR);
6561 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6562 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6563 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6564 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6565 fDecodedInstr = true;
6566 }
6567 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6568 }
6569
6570 if (!fDecodedInstr)
6571 {
6572 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6573 Log4Func(("iCrReg=%#x\n", iCrReg));
6574 rcStrict = IEMExecOne(pVCpu);
6575 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6576 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6577 rcStrict = VERR_EM_INTERPRETER;
6578 }
6579
6580 if (rcStrict == VINF_SUCCESS)
6581 {
6582 switch (iCrReg)
6583 {
6584 case 0:
6585 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6586 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6587 break;
6588
6589 case 2:
6590 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6591 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6592 break;
6593
6594 case 3:
6595 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6596 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6597 break;
6598
6599 case 4:
6600 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6601 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6602 break;
6603
6604 case 8:
6605 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6606 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6607 break;
6608
6609 default:
6610 {
6611 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6612 pSvmTransient->u64ExitCode, iCrReg));
6613 break;
6614 }
6615 }
6616 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6617 }
6618 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6619 {
6620 rcStrict = VINF_SUCCESS;
6621 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6622 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6623 }
6624 else
6625 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6626 return VBOXSTRICTRC_TODO(rcStrict);
6627}
6628
6629
6630/**
6631 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6632 *
6633 * @returns Strict VBox status code.
6634 * @param pVCpu The cross context virtual CPU structure.
6635 * @param pVmcb Pointer to the VM control block.
6636 */
6637static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPU pVCpu, PSVMVMCB pVmcb)
6638{
6639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6640 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6641
6642 VBOXSTRICTRC rcStrict;
6643 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6644 if (fSupportsNextRipSave)
6645 {
6646 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6647 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6648 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6649 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6650 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6651 }
6652 else
6653 {
6654 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6655 rcStrict = IEMExecOne(pVCpu);
6656 }
6657
6658 AssertMsg( rcStrict == VINF_SUCCESS
6659 || rcStrict == VINF_IEM_RAISED_XCPT
6660 || rcStrict == VINF_CPUM_R3_MSR_READ,
6661 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6662
6663 if (rcStrict == VINF_IEM_RAISED_XCPT)
6664 {
6665 rcStrict = VINF_SUCCESS;
6666 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6667 }
6668 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6669 return rcStrict;
6670}
6671
6672
6673/**
6674 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6675 *
6676 * @returns Strict VBox status code.
6677 * @param pVCpu The cross context virtual CPU structure.
6678 * @param pVmcb Pointer to the VM control block.
6679 * @param pSvmTransient Pointer to the SVM-transient structure.
6680 */
6681static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPU pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6682{
6683 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6684 uint32_t const idMsr = pCtx->ecx;
6685 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6686 Log4Func(("idMsr=%#RX32\n", idMsr));
6687
6688 /*
6689 * Handle TPR patching MSR writes.
6690 * We utilitize the LSTAR MSR for patching.
6691 */
6692 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6693 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
6694 && idMsr == MSR_K8_LSTAR)
6695 {
6696 unsigned cbInstr;
6697 if (fSupportsNextRipSave)
6698 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6699 else
6700 {
6701 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6702 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6703 if ( rc == VINF_SUCCESS
6704 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6705 Assert(cbInstr > 0);
6706 else
6707 cbInstr = 0;
6708 }
6709
6710 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6711 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6712 {
6713 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6714 AssertRCReturn(rc, rc);
6715 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6716 }
6717
6718 int rc = VINF_SUCCESS;
6719 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6720 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6721 return rc;
6722 }
6723
6724 /*
6725 * Handle regular MSR writes.
6726 */
6727 VBOXSTRICTRC rcStrict;
6728 if (fSupportsNextRipSave)
6729 {
6730 /** @todo Optimize this: We don't need to get much of the MSR state here
6731 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6732 * clear the applicable extern flags. */
6733 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6734 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6735 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6736 }
6737 else
6738 {
6739 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6740 rcStrict = IEMExecOne(pVCpu);
6741 }
6742
6743 AssertMsg( rcStrict == VINF_SUCCESS
6744 || rcStrict == VINF_IEM_RAISED_XCPT
6745 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6746 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6747
6748 if (rcStrict == VINF_SUCCESS)
6749 {
6750 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6751 if ( idMsr >= MSR_IA32_X2APIC_START
6752 && idMsr <= MSR_IA32_X2APIC_END)
6753 {
6754 /*
6755 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6756 * When full APIC register virtualization is implemented we'll have to make sure
6757 * APIC state is saved from the VMCB before IEM changes it.
6758 */
6759 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6760 }
6761 else
6762 {
6763 switch (idMsr)
6764 {
6765 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6766 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6767 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6768 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6769 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6770 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6771 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6772 }
6773 }
6774 }
6775 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6776 {
6777 rcStrict = VINF_SUCCESS;
6778 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6779 }
6780 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6781 return rcStrict;
6782}
6783
6784
6785/**
6786 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6787 * \#VMEXIT.
6788 */
6789HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6790{
6791 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6792
6793 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6794 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6795 return VBOXSTRICTRC_TODO(hmR0SvmExitReadMsr(pVCpu, pVmcb));
6796
6797 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6798 return VBOXSTRICTRC_TODO(hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient));
6799}
6800
6801
6802/**
6803 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6804 */
6805HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6806{
6807 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6808 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6809
6810 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6811
6812 /** @todo Stepping with nested-guest. */
6813 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6814 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6815 {
6816 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6817 if (pSvmTransient->fWasGuestDebugStateActive)
6818 {
6819 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6820 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6821 return VERR_SVM_UNEXPECTED_EXIT;
6822 }
6823
6824 /*
6825 * Lazy DR0-3 loading.
6826 */
6827 if (!pSvmTransient->fWasHyperDebugStateActive)
6828 {
6829 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6830 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6831
6832 /* Don't intercept DRx read and writes. */
6833 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6834 pVmcb->ctrl.u16InterceptRdDRx = 0;
6835 pVmcb->ctrl.u16InterceptWrDRx = 0;
6836 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6837
6838 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6839 VMMRZCallRing3Disable(pVCpu);
6840 HM_DISABLE_PREEMPT(pVCpu);
6841
6842 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6843 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6844 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6845
6846 HM_RESTORE_PREEMPT();
6847 VMMRZCallRing3Enable(pVCpu);
6848
6849 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6850 return VINF_SUCCESS;
6851 }
6852 }
6853
6854 /*
6855 * Interpret the read/writing of DRx.
6856 */
6857 /** @todo Decode assist. */
6858 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6859 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6860 if (RT_LIKELY(rc == VINF_SUCCESS))
6861 {
6862 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6863 /** @todo CPUM should set this flag! */
6864 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6865 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6866 }
6867 else
6868 Assert(rc == VERR_EM_INTERPRETER);
6869 return VBOXSTRICTRC_TODO(rc);
6870}
6871
6872
6873/**
6874 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6875 */
6876HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6877{
6878 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6879 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6880 int rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6881 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6882 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6883 return rc;
6884}
6885
6886
6887/**
6888 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6889 */
6890HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6891{
6892 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6893 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6894
6895 /** @todo decode assists... */
6896 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6897 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6898 {
6899 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6900 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6901 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0,
6902 pCtx->cr4));
6903 }
6904 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6905 {
6906 rcStrict = VINF_SUCCESS;
6907 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6908 }
6909 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6910 return VBOXSTRICTRC_TODO(rcStrict);
6911}
6912
6913
6914/**
6915 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6916 */
6917HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
6918{
6919 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6920 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6921
6922 /* I/O operation lookup arrays. */
6923 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6924 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6925 the result (in AL/AX/EAX). */
6926 PVM pVM = pVCpu->CTX_SUFF(pVM);
6927 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6928 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6929
6930 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6931
6932 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6933 SVMIOIOEXITINFO IoExitInfo;
6934 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6935 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6936 uint32_t cbValue = s_aIOSize[uIOWidth];
6937 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6938
6939 if (RT_UNLIKELY(!cbValue))
6940 {
6941 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6942 return VERR_EM_INTERPRETER;
6943 }
6944
6945 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6946 VBOXSTRICTRC rcStrict;
6947 PCEMEXITREC pExitRec = NULL;
6948 if ( !pVCpu->hm.s.fSingleInstruction
6949 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6950 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6951 !IoExitInfo.n.u1Str
6952 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6953 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6954 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6955 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6956 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6957 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6958 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6959 if (!pExitRec)
6960 {
6961 bool fUpdateRipAlready = false;
6962 if (IoExitInfo.n.u1Str)
6963 {
6964 /* INS/OUTS - I/O String instruction. */
6965 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6966 * in EXITINFO1? Investigate once this thing is up and running. */
6967 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6968 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6969 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6970 static IEMMODE const s_aenmAddrMode[8] =
6971 {
6972 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6973 };
6974 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6975 if (enmAddrMode != (IEMMODE)-1)
6976 {
6977 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6978 if (cbInstr <= 15 && cbInstr >= 1)
6979 {
6980 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6981 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6982 {
6983 /* Don't know exactly how to detect whether u3Seg is valid, currently
6984 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6985 2384 Opterons when only checking NRIP. */
6986 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6987 if ( fSupportsNextRipSave
6988 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6989 {
6990 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6991 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6992 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6993 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6994 }
6995 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6996 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6997 X86_SREG_DS, true /*fIoChecked*/);
6998 else
6999 rcStrict = IEMExecOne(pVCpu);
7000 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
7001 }
7002 else
7003 {
7004 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
7005 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
7006 true /*fIoChecked*/);
7007 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
7008 }
7009 }
7010 else
7011 {
7012 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
7013 rcStrict = IEMExecOne(pVCpu);
7014 }
7015 }
7016 else
7017 {
7018 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
7019 rcStrict = IEMExecOne(pVCpu);
7020 }
7021 fUpdateRipAlready = true;
7022 }
7023 else
7024 {
7025 /* IN/OUT - I/O instruction. */
7026 Assert(!IoExitInfo.n.u1Rep);
7027
7028 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
7029 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
7030 {
7031 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
7032 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7033 && !pCtx->eflags.Bits.u1TF)
7034 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
7035 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
7036 }
7037 else
7038 {
7039 uint32_t u32Val = 0;
7040 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
7041 if (IOM_SUCCESS(rcStrict))
7042 {
7043 /* Save result of I/O IN instr. in AL/AX/EAX. */
7044 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
7045 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
7046 }
7047 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7048 && !pCtx->eflags.Bits.u1TF)
7049 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
7050
7051 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
7052 }
7053 }
7054
7055 if (IOM_SUCCESS(rcStrict))
7056 {
7057 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
7058 if (!fUpdateRipAlready)
7059 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
7060
7061 /*
7062 * If any I/O breakpoints are armed, we need to check if one triggered
7063 * and take appropriate action.
7064 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
7065 */
7066 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
7067 * execution engines about whether hyper BPs and such are pending. */
7068 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
7069 uint32_t const uDr7 = pCtx->dr[7];
7070 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
7071 && X86_DR7_ANY_RW_IO(uDr7)
7072 && (pCtx->cr4 & X86_CR4_DE))
7073 || DBGFBpIsHwIoArmed(pVM)))
7074 {
7075 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7076 VMMRZCallRing3Disable(pVCpu);
7077 HM_DISABLE_PREEMPT(pVCpu);
7078
7079 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
7080 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
7081
7082 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
7083 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
7084 {
7085 /* Raise #DB. */
7086 pVmcb->guest.u64DR6 = pCtx->dr[6];
7087 pVmcb->guest.u64DR7 = pCtx->dr[7];
7088 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7089 hmR0SvmSetPendingXcptDB(pVCpu);
7090 }
7091 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
7092 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
7093 else if ( rcStrict2 != VINF_SUCCESS
7094 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
7095 rcStrict = rcStrict2;
7096 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
7097
7098 HM_RESTORE_PREEMPT();
7099 VMMRZCallRing3Enable(pVCpu);
7100 }
7101
7102 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7103 }
7104
7105#ifdef VBOX_STRICT
7106 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
7107 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
7108 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
7109 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
7110 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
7111 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
7112 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
7113 else
7114 {
7115 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
7116 * statuses, that the VMM device and some others may return. See
7117 * IOM_SUCCESS() for guidance. */
7118 AssertMsg( RT_FAILURE(rcStrict)
7119 || rcStrict == VINF_SUCCESS
7120 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
7121 || rcStrict == VINF_EM_DBG_BREAKPOINT
7122 || rcStrict == VINF_EM_RAW_GUEST_TRAP
7123 || rcStrict == VINF_EM_RAW_TO_R3
7124 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
7125 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7126 }
7127#endif
7128 }
7129 else
7130 {
7131 /*
7132 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7133 */
7134 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7135 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
7136 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
7137 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
7138 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
7139 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
7140 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
7141
7142 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7143 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7144
7145 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7146 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7147 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7148 }
7149 return VBOXSTRICTRC_TODO(rcStrict);
7150}
7151
7152
7153/**
7154 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
7155 */
7156HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7157{
7158 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7159 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7160 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7161
7162 PVM pVM = pVCpu->CTX_SUFF(pVM);
7163 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7164 Assert(pVM->hm.s.fNestedPaging);
7165
7166 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
7167 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7168 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
7169 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
7170 thus intentionally not copied into u32ErrCode. */
7171
7172 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
7173 u32ErrCode));
7174
7175 /*
7176 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
7177 */
7178 if ( pVM->hm.s.fTprPatchingAllowed
7179 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
7180 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
7181 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
7182 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7183 && !CPUMIsGuestInLongModeEx(pCtx)
7184 && !CPUMGetGuestCPL(pVCpu)
7185 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7186 {
7187 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7188 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7189
7190 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
7191 {
7192 /* Only attempt to patch the instruction once. */
7193 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7194 if (!pPatch)
7195 return VINF_EM_HM_PATCH_TPR_INSTR;
7196 }
7197 }
7198
7199 /*
7200 * Determine the nested paging mode.
7201 */
7202/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
7203 PGMMODE enmNestedPagingMode;
7204#if HC_ARCH_BITS == 32
7205 if (CPUMIsGuestInLongModeEx(pCtx))
7206 enmNestedPagingMode = PGMMODE_AMD64_NX;
7207 else
7208#endif
7209 enmNestedPagingMode = PGMGetHostMode(pVM);
7210
7211 /*
7212 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
7213 */
7214 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
7215 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
7216 {
7217 /*
7218 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
7219 * injecting the original pending event would most likely cause the same MMIO #NPF.
7220 */
7221 if (pVCpu->hm.s.Event.fPending)
7222 {
7223 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7224 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7225 }
7226
7227 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
7228 VBOXSTRICTRC rcStrict;
7229 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
7230 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
7231 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
7232 if (!pExitRec)
7233 {
7234
7235 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
7236 u32ErrCode);
7237
7238 /*
7239 * If we succeed, resume guest execution.
7240 *
7241 * If we fail in interpreting the instruction because we couldn't get the guest
7242 * physical address of the page containing the instruction via the guest's page
7243 * tables (we would invalidate the guest page in the host TLB), resume execution
7244 * which would cause a guest page fault to let the guest handle this weird case.
7245 *
7246 * See @bugref{6043}.
7247 */
7248 if ( rcStrict == VINF_SUCCESS
7249 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
7250 || rcStrict == VERR_PAGE_NOT_PRESENT)
7251 {
7252 /* Successfully handled MMIO operation. */
7253 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
7254 rcStrict = VINF_SUCCESS;
7255 }
7256 }
7257 else
7258 {
7259 /*
7260 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
7261 */
7262 Assert(pCtx == &pVCpu->cpum.GstCtx);
7263 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7264 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
7265 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
7266
7267 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
7268 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7269
7270 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
7271 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
7272 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7273 }
7274 return VBOXSTRICTRC_TODO(rcStrict);
7275 }
7276
7277 /*
7278 * Nested page-fault.
7279 */
7280 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
7281 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
7282 TRPMResetTrap(pVCpu);
7283
7284 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
7285
7286 /*
7287 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
7288 */
7289 if ( rc == VINF_SUCCESS
7290 || rc == VERR_PAGE_TABLE_NOT_PRESENT
7291 || rc == VERR_PAGE_NOT_PRESENT)
7292 {
7293 /* We've successfully synced our shadow page tables. */
7294 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7295 rc = VINF_SUCCESS;
7296 }
7297
7298 /*
7299 * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and
7300 * re-inject the original event.
7301 */
7302 if (pVCpu->hm.s.Event.fPending)
7303 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
7304
7305 return rc;
7306}
7307
7308
7309/**
7310 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
7311 * \#VMEXIT.
7312 */
7313HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7314{
7315 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7316 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7317
7318 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7319 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7320 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
7321
7322 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7323 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7324 return VINF_SUCCESS;
7325}
7326
7327
7328/**
7329 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7330 * \#VMEXIT.
7331 */
7332HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7333{
7334 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7335 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7336
7337#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7338 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7339#endif
7340
7341 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7342 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7343 {
7344 /*
7345 * AMD-V provides us with the exception which caused the TS; we collect
7346 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7347 */
7348 Log4Func(("TS occurred during event delivery\n"));
7349 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7350 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7351 }
7352
7353 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7354 * emulation. */
7355 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7356 return VERR_EM_INTERPRETER;
7357}
7358
7359
7360/**
7361 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7362 */
7363HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7364{
7365 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7366 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7367
7368 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingAllowed)
7369 {
7370 int rc = hmEmulateSvmMovTpr(pVCpu);
7371 if (rc != VERR_NOT_FOUND)
7372 {
7373 Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc));
7374 return rc;
7375 }
7376 }
7377
7378 if (EMAreHypercallInstructionsEnabled(pVCpu))
7379 {
7380 unsigned cbInstr;
7381 if (hmR0SvmSupportsNextRipSave(pVCpu))
7382 {
7383 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7384 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7385 }
7386 else
7387 {
7388 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7389 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7390 if ( rc == VINF_SUCCESS
7391 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7392 Assert(cbInstr > 0);
7393 else
7394 cbInstr = 0;
7395 }
7396
7397 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7398 if (RT_SUCCESS(rcStrict))
7399 {
7400 /* Only update the RIP if we're continuing guest execution and not in the case
7401 of say VINF_GIM_R3_HYPERCALL. */
7402 if (rcStrict == VINF_SUCCESS)
7403 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7404
7405 return VBOXSTRICTRC_VAL(rcStrict);
7406 }
7407 else
7408 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7409 }
7410
7411 hmR0SvmSetPendingXcptUD(pVCpu);
7412 return VINF_SUCCESS;
7413}
7414
7415
7416/**
7417 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7418 */
7419HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7420{
7421 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7422
7423 unsigned cbInstr;
7424 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7425 if (fSupportsNextRipSave)
7426 {
7427 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7428 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7429 }
7430 else
7431 {
7432 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7433 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7434 if ( rc == VINF_SUCCESS
7435 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7436 Assert(cbInstr > 0);
7437 else
7438 cbInstr = 0;
7439 }
7440
7441 /** @todo The guest has likely hit a contended spinlock. We might want to
7442 * poke a schedule different guest VCPU. */
7443 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7444 return VINF_EM_RAW_INTERRUPT;
7445}
7446
7447
7448/**
7449 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7450 * \#VMEXIT.
7451 */
7452HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7453{
7454 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7455 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7456 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7457
7458 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7459 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7460}
7461
7462
7463/**
7464 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7465 */
7466HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7467{
7468 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7469
7470 /* Clear NMI blocking. */
7471 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7472 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7473
7474 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7475 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7476 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7477
7478 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7479 return VINF_SUCCESS;
7480}
7481
7482
7483/**
7484 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7485 * Conditional \#VMEXIT.
7486 */
7487HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7488{
7489 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7490 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7491 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7492
7493 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7494 PVM pVM = pVCpu->CTX_SUFF(pVM);
7495 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7496 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7497 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7498 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7499
7500#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7501 if (pVM->hm.s.fNestedPaging)
7502 {
7503 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7504 if ( !pSvmTransient->fVectoringDoublePF
7505 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7506 {
7507 /* A genuine guest #PF, reflect it to the guest. */
7508 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7509 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7510 uFaultAddress, uErrCode));
7511 }
7512 else
7513 {
7514 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7515 hmR0SvmSetPendingXcptDF(pVCpu);
7516 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7517 }
7518 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7519 return VINF_SUCCESS;
7520 }
7521#endif
7522
7523 Assert(!pVM->hm.s.fNestedPaging);
7524
7525 /*
7526 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7527 */
7528 if ( pVM->hm.s.fTprPatchingAllowed
7529 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7530 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7531 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7532 && !CPUMIsGuestInLongModeEx(pCtx)
7533 && !CPUMGetGuestCPL(pVCpu)
7534 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7535 {
7536 RTGCPHYS GCPhysApicBase;
7537 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7538 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7539
7540 /* Check if the page at the fault-address is the APIC base. */
7541 RTGCPHYS GCPhysPage;
7542 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7543 if ( rc2 == VINF_SUCCESS
7544 && GCPhysPage == GCPhysApicBase)
7545 {
7546 /* Only attempt to patch the instruction once. */
7547 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7548 if (!pPatch)
7549 return VINF_EM_HM_PATCH_TPR_INSTR;
7550 }
7551 }
7552
7553 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7554 pCtx->rip, uErrCode, pCtx->cr3));
7555
7556 /*
7557 * If it's a vectoring #PF, emulate injecting the original event injection as
7558 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7559 * event injection that caused a #PF. See @bugref{6607}.
7560 */
7561 if (pSvmTransient->fVectoringPF)
7562 {
7563 Assert(pVCpu->hm.s.Event.fPending);
7564 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7565 }
7566
7567 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7568 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7569
7570 Log4Func(("#PF: rc=%Rrc\n", rc));
7571
7572 if (rc == VINF_SUCCESS)
7573 {
7574 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7575 TRPMResetTrap(pVCpu);
7576 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7577 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7578 return rc;
7579 }
7580
7581 if (rc == VINF_EM_RAW_GUEST_TRAP)
7582 {
7583 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7584
7585 /*
7586 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7587 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7588 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7589 */
7590 if ( !pSvmTransient->fVectoringDoublePF
7591 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7592 {
7593 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7594 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7595 TRPMResetTrap(pVCpu);
7596
7597#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7598 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7599 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7600 && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
7601 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress));
7602#endif
7603
7604 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7605 }
7606 else
7607 {
7608 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7609 TRPMResetTrap(pVCpu);
7610 hmR0SvmSetPendingXcptDF(pVCpu);
7611 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7612 }
7613
7614 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7615 return VINF_SUCCESS;
7616 }
7617
7618 TRPMResetTrap(pVCpu);
7619 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7620 return rc;
7621}
7622
7623
7624/**
7625 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7626 * Conditional \#VMEXIT.
7627 */
7628HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7629{
7630 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7631 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7632 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7633
7634 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7635 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7636 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7637
7638 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7639 if (pVCpu->hm.s.fGIMTrapXcptUD)
7640 {
7641 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7642 uint8_t cbInstr = 0;
7643 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7644 if (rcStrict == VINF_SUCCESS)
7645 {
7646 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7647 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7648 rc = VINF_SUCCESS;
7649 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7650 }
7651 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7652 rc = VINF_SUCCESS;
7653 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7654 rc = VINF_GIM_R3_HYPERCALL;
7655 else
7656 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7657 }
7658
7659 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7660 if (RT_FAILURE(rc))
7661 {
7662 hmR0SvmSetPendingXcptUD(pVCpu);
7663 rc = VINF_SUCCESS;
7664 }
7665
7666 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7667 return rc;
7668}
7669
7670
7671/**
7672 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7673 * Conditional \#VMEXIT.
7674 */
7675HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7676{
7677 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7678 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7679 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7680
7681 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7682 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7683
7684 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7685 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7686
7687 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7688
7689 if (!(pCtx->cr0 & X86_CR0_NE))
7690 {
7691 PVM pVM = pVCpu->CTX_SUFF(pVM);
7692 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7693 unsigned cbInstr;
7694 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7695 if (RT_SUCCESS(rc))
7696 {
7697 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7698 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7699 if (RT_SUCCESS(rc))
7700 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7701 }
7702 else
7703 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7704 return rc;
7705 }
7706
7707 hmR0SvmSetPendingXcptMF(pVCpu);
7708 return VINF_SUCCESS;
7709}
7710
7711
7712/**
7713 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7714 * \#VMEXIT.
7715 */
7716HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7717{
7718 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7719 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7720 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7721 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7722
7723 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7724 {
7725 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7726 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7727 }
7728
7729 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7730
7731 /*
7732 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7733 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7734 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7735 */
7736 PVM pVM = pVCpu->CTX_SUFF(pVM);
7737 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7738 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7739 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7740 if (rc == VINF_EM_RAW_GUEST_TRAP)
7741 {
7742 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7743 if (CPUMIsHyperDebugStateActive(pVCpu))
7744 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7745
7746 /* Reflect the exception back to the guest. */
7747 hmR0SvmSetPendingXcptDB(pVCpu);
7748 rc = VINF_SUCCESS;
7749 }
7750
7751 /*
7752 * Update DR6.
7753 */
7754 if (CPUMIsHyperDebugStateActive(pVCpu))
7755 {
7756 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7757 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7758 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7759 }
7760 else
7761 {
7762 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7763 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7764 }
7765
7766 return rc;
7767}
7768
7769
7770/**
7771 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7772 * Conditional \#VMEXIT.
7773 */
7774HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7775{
7776 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7777 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7778 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
7779
7780 SVMEVENT Event;
7781 Event.u = 0;
7782 Event.n.u1Valid = 1;
7783 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7784 Event.n.u8Vector = X86_XCPT_AC;
7785 Event.n.u1ErrorCodeValid = 1;
7786 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7787 return VINF_SUCCESS;
7788}
7789
7790
7791/**
7792 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7793 * Conditional \#VMEXIT.
7794 */
7795HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7796{
7797 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7798 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7799 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7800 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
7801
7802 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7803 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7804 if (rc == VINF_EM_RAW_GUEST_TRAP)
7805 {
7806 SVMEVENT Event;
7807 Event.u = 0;
7808 Event.n.u1Valid = 1;
7809 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7810 Event.n.u8Vector = X86_XCPT_BP;
7811 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7812 }
7813
7814 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7815 return rc;
7816}
7817
7818
7819/**
7820 * Hacks its way around the lovely mesa driver's backdoor accesses.
7821 *
7822 * @sa hmR0VmxHandleMesaDrvGp
7823 */
7824static int hmR0SvmHandleMesaDrvGp(PVMCPU pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7825{
7826 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7827 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7828 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7829 RT_NOREF(pCtx, pVmcb);
7830
7831 /* For now we'll just skip the instruction. */
7832 hmR0SvmAdvanceRip(pVCpu, 1);
7833 return VINF_SUCCESS;
7834}
7835
7836
7837/**
7838 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7839 * backdoor logging w/o checking what it is running inside.
7840 *
7841 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7842 * backdoor port and magic numbers loaded in registers.
7843 *
7844 * @returns true if it is, false if it isn't.
7845 * @sa hmR0VmxIsMesaDrvGp
7846 */
7847DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPU pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7848{
7849 /* Check magic and port. */
7850 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7851 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7852 if (pCtx->dx != UINT32_C(0x5658))
7853 return false;
7854 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7855 return false;
7856
7857 /* Check that it is #GP(0). */
7858 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7859 return false;
7860
7861 /* Flat ring-3 CS. */
7862 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7863 if (pVmcb->guest.u8CPL != 3)
7864 return false;
7865 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7866 return false;
7867
7868 /* 0xed: IN eAX,dx */
7869 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7870 {
7871 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7872 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7873 uint8_t abInstr[1];
7874 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7875 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7876 if (RT_FAILURE(rc))
7877 return false;
7878 if (abInstr[0] != 0xed)
7879 return false;
7880 }
7881 else
7882 {
7883 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7884 if (pVmcb->ctrl.abInstr[0] != 0xed)
7885 return false;
7886 }
7887 return true;
7888}
7889
7890
7891/**
7892 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7893 * Conditional \#VMEXIT.
7894 */
7895HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7896{
7897 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7898 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7899 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
7900
7901 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7902 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7903
7904 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7905 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7906 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7907 {
7908 SVMEVENT Event;
7909 Event.u = 0;
7910 Event.n.u1Valid = 1;
7911 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7912 Event.n.u8Vector = X86_XCPT_GP;
7913 Event.n.u1ErrorCodeValid = 1;
7914 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7915 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7916 return VINF_SUCCESS;
7917 }
7918 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7919}
7920
7921
7922#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7923/**
7924 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7925 */
7926HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7927{
7928 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7929 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7930
7931 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7932 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7933 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7934 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7935 Assert(uVector <= X86_XCPT_LAST);
7936 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7937
7938 SVMEVENT Event;
7939 Event.u = 0;
7940 Event.n.u1Valid = 1;
7941 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7942 Event.n.u8Vector = uVector;
7943 switch (uVector)
7944 {
7945 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7946 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7947 case X86_XCPT_DF:
7948 case X86_XCPT_TS:
7949 case X86_XCPT_NP:
7950 case X86_XCPT_SS:
7951 case X86_XCPT_GP:
7952 case X86_XCPT_AC:
7953 {
7954 Event.n.u1ErrorCodeValid = 1;
7955 Event.n.u32ErrorCode = uErrCode;
7956 break;
7957 }
7958 }
7959
7960#ifdef VBOX_WITH_STATISTICS
7961 switch (uVector)
7962 {
7963 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
7964 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
7965 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
7966 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7967 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
7968 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
7969 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7970 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
7971 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
7972 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
7973 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
7974 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
7975 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
7976 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
7977 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
7978 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
7979 default:
7980 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
7981 break;
7982 }
7983#endif
7984
7985 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7986 return VINF_SUCCESS;
7987}
7988#endif
7989
7990#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7991/**
7992 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7993 */
7994HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
7995{
7996 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7997
7998 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7999 Assert(pVmcb);
8000 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
8001
8002 VBOXSTRICTRC rcStrict;
8003 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8004 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
8005 if (fSupportsNextRipSave)
8006 {
8007 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
8008 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8009 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
8010 }
8011 else
8012 {
8013 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
8014 rcStrict = IEMExecOne(pVCpu);
8015 }
8016
8017 if (rcStrict == VINF_SUCCESS)
8018 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
8019 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8020 {
8021 rcStrict = VINF_SUCCESS;
8022 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8023 }
8024 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8025 return VBOXSTRICTRC_TODO(rcStrict);
8026}
8027
8028
8029/**
8030 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
8031 */
8032HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8033{
8034 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8035
8036 /*
8037 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
8038 * we only intercept STGI when events are pending for GIF to become 1.
8039 */
8040 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8041 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
8042 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
8043
8044 VBOXSTRICTRC rcStrict;
8045 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8046 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
8047 if (fSupportsNextRipSave)
8048 {
8049 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
8050 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8051 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
8052 }
8053 else
8054 {
8055 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
8056 rcStrict = IEMExecOne(pVCpu);
8057 }
8058
8059 if (rcStrict == VINF_SUCCESS)
8060 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
8061 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8062 {
8063 rcStrict = VINF_SUCCESS;
8064 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8065 }
8066 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8067 return VBOXSTRICTRC_TODO(rcStrict);
8068}
8069
8070
8071/**
8072 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
8073 */
8074HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8075{
8076 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8077
8078 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8079 Assert(pVmcb);
8080 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
8081
8082 VBOXSTRICTRC rcStrict;
8083 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8084 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
8085 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
8086 | CPUMCTX_EXTRN_SYSENTER_MSRS;
8087 if (fSupportsNextRipSave)
8088 {
8089 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
8090 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8091 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
8092 }
8093 else
8094 {
8095 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
8096 rcStrict = IEMExecOne(pVCpu);
8097 }
8098
8099 if (rcStrict == VINF_SUCCESS)
8100 {
8101 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
8102 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
8103 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
8104 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
8105 }
8106 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8107 {
8108 rcStrict = VINF_SUCCESS;
8109 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8110 }
8111 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8112 return VBOXSTRICTRC_TODO(rcStrict);
8113}
8114
8115
8116/**
8117 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
8118 */
8119HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8120{
8121 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8122
8123 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8124 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
8125
8126 VBOXSTRICTRC rcStrict;
8127 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8128 if (fSupportsNextRipSave)
8129 {
8130 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
8131 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8132 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
8133 }
8134 else
8135 {
8136 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8137 rcStrict = IEMExecOne(pVCpu);
8138 }
8139
8140 if (rcStrict == VINF_IEM_RAISED_XCPT)
8141 {
8142 rcStrict = VINF_SUCCESS;
8143 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8144 }
8145 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8146 return VBOXSTRICTRC_TODO(rcStrict);
8147}
8148
8149
8150/**
8151 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
8152 */
8153HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8154{
8155 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8156
8157 VBOXSTRICTRC rcStrict;
8158 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8159 if (fSupportsNextRipSave)
8160 {
8161 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
8162 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8163 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8164 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
8165 }
8166 else
8167 {
8168 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
8169 rcStrict = IEMExecOne(pVCpu);
8170 }
8171
8172 if (rcStrict == VINF_IEM_RAISED_XCPT)
8173 {
8174 rcStrict = VINF_SUCCESS;
8175 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8176 }
8177 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8178 return VBOXSTRICTRC_TODO(rcStrict);
8179}
8180
8181
8182/**
8183 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
8184 */
8185HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8186{
8187 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8188 /* We shall import the entire state here, just in case we enter and continue execution of
8189 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
8190 could lose lose part of CPU state. */
8191 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
8192
8193 VBOXSTRICTRC rcStrict;
8194 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
8195 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
8196 if (fSupportsNextRipSave)
8197 {
8198 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
8199 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
8200 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
8201 }
8202 else
8203 {
8204 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
8205 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
8206 instruction itself, see @bugref{7243#c126} */
8207 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
8208 }
8209 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
8210
8211 if (rcStrict == VINF_SUCCESS)
8212 {
8213 rcStrict = VINF_SVM_VMRUN;
8214 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
8215 }
8216 else if (rcStrict == VINF_IEM_RAISED_XCPT)
8217 {
8218 rcStrict = VINF_SUCCESS;
8219 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
8220 }
8221 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
8222 return VBOXSTRICTRC_TODO(rcStrict);
8223}
8224
8225
8226/**
8227 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
8228 * Unconditional \#VMEXIT.
8229 */
8230HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8231{
8232 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8233 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8234
8235 if (pVCpu->hm.s.Event.fPending)
8236 {
8237 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
8238 return VINF_EM_RAW_INJECT_TRPM_EVENT;
8239 }
8240
8241 hmR0SvmSetPendingXcptDB(pVCpu);
8242 return VINF_SUCCESS;
8243}
8244
8245
8246/**
8247 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
8248 * Conditional \#VMEXIT.
8249 */
8250HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PSVMTRANSIENT pSvmTransient)
8251{
8252 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
8253 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
8254
8255 SVMEVENT Event;
8256 Event.u = 0;
8257 Event.n.u1Valid = 1;
8258 Event.n.u3Type = SVM_EVENT_EXCEPTION;
8259 Event.n.u8Vector = X86_XCPT_BP;
8260 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
8261 return VINF_SUCCESS;
8262}
8263#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
8264
8265/** @} */
8266
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette