VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 83029

Last change on this file since 83029 was 83029, checked in by vboxsync, 5 years ago

HM: Always use the 64-bit SVM context switcher for 64-bit capable VMs (see bugref:6208).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 312.0 KB
Line 
1/* $Id: HMSVMR0.cpp 83029 2020-02-10 09:18:24Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vmcc.h>
37#include <VBox/err.h>
38#include "HMSVMR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMSVM_SYNC_FULL_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60
61# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
65 if ((u64ExitCode) == SVM_EXIT_NPF) \
66 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
67 else \
68 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
69 } while (0)
70# endif
71#else
72# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
74# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
75# endif
76#endif /* !VBOX_WITH_STATISTICS */
77
78/** If we decide to use a function table approach this can be useful to
79 * switch to a "static DECLCALLBACK(int)". */
80#define HMSVM_EXIT_DECL static int
81
82/**
83 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
84 * guest using hardware-assisted SVM.
85 *
86 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
87 * are swapped and restored across the world-switch and also registers like
88 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
89 * \#VMEXIT.
90 */
91#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
92 | CPUMCTX_EXTRN_RFLAGS \
93 | CPUMCTX_EXTRN_RAX \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_CR0 \
97 | CPUMCTX_EXTRN_CR2 \
98 | CPUMCTX_EXTRN_CR3 \
99 | CPUMCTX_EXTRN_TABLE_MASK \
100 | CPUMCTX_EXTRN_DR6 \
101 | CPUMCTX_EXTRN_DR7 \
102 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
103 | CPUMCTX_EXTRN_SYSCALL_MSRS \
104 | CPUMCTX_EXTRN_SYSENTER_MSRS \
105 | CPUMCTX_EXTRN_HWVIRT \
106 | CPUMCTX_EXTRN_HM_SVM_MASK)
107
108/**
109 * Subset of the guest-CPU state that is shared between the guest and host.
110 */
111#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
112
113/** Macro for importing guest state from the VMCB back into CPUMCTX. */
114#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
115 do { \
116 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
117 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
118 } while (0)
119
120/** Assert that the required state bits are fetched. */
121#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
122 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
123 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
124
125/** Assert that preemption is disabled or covered by thread-context hooks. */
126#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
127 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
128
129/** Assert that we haven't migrated CPUs when thread-context hooks are not
130 * used. */
131#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
132 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
133 ("Illegal migration! Entered on CPU %u Current %u\n", \
134 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()));
135
136/** Assert that we're not executing a nested-guest. */
137#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
139#else
140# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
141#endif
142
143/** Assert that we're executing a nested-guest. */
144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
146#else
147# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
148#endif
149
150/** Macro for checking and returning from the using function for
151 * \#VMEXIT intercepts that maybe caused during delivering of another
152 * event in the guest. */
153#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
154# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
155 do \
156 { \
157 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
158 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
159 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
160 else if ( rc == VINF_EM_RESET \
161 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
162 { \
163 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
164 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0)); \
165 } \
166 else \
167 return rc; \
168 } while (0)
169#else
170# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
171 do \
172 { \
173 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
174 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
175 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
176 else \
177 return rc; \
178 } while (0)
179#endif
180
181/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
182 * instruction that exited. */
183#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
184 do { \
185 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
186 (a_rc) = VINF_EM_DBG_STEPPED; \
187 } while (0)
188
189/** Validate segment descriptor granularity bit. */
190#ifdef VBOX_STRICT
191# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
192 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
193 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
194 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
195 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
196 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
197 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
198#else
199# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
200#endif
201
202/**
203 * Exception bitmap mask for all contributory exceptions.
204 *
205 * Page fault is deliberately excluded here as it's conditional as to whether
206 * it's contributory or benign. Page faults are handled separately.
207 */
208#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
209 | RT_BIT(X86_XCPT_DE))
210
211/**
212 * Mandatory/unconditional guest control intercepts.
213 *
214 * SMIs can and do happen in normal operation. We need not intercept them
215 * while executing the guest (or nested-guest).
216 */
217#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
218 | SVM_CTRL_INTERCEPT_NMI \
219 | SVM_CTRL_INTERCEPT_INIT \
220 | SVM_CTRL_INTERCEPT_RDPMC \
221 | SVM_CTRL_INTERCEPT_CPUID \
222 | SVM_CTRL_INTERCEPT_RSM \
223 | SVM_CTRL_INTERCEPT_HLT \
224 | SVM_CTRL_INTERCEPT_IOIO_PROT \
225 | SVM_CTRL_INTERCEPT_MSR_PROT \
226 | SVM_CTRL_INTERCEPT_INVLPGA \
227 | SVM_CTRL_INTERCEPT_SHUTDOWN \
228 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
229 | SVM_CTRL_INTERCEPT_VMRUN \
230 | SVM_CTRL_INTERCEPT_SKINIT \
231 | SVM_CTRL_INTERCEPT_WBINVD \
232 | SVM_CTRL_INTERCEPT_MONITOR \
233 | SVM_CTRL_INTERCEPT_MWAIT \
234 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
235 | SVM_CTRL_INTERCEPT_XSETBV)
236
237/** @name VMCB Clean Bits.
238 *
239 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
240 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
241 * memory.
242 *
243 * @{ */
244/** All intercepts vectors, TSC offset, PAUSE filter counter. */
245#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
246/** I/O permission bitmap, MSR permission bitmap. */
247#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
248/** ASID. */
249#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
250/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
251V_INTR_VECTOR. */
252#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
253/** Nested Paging: Nested CR3 (nCR3), PAT. */
254#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
255/** Control registers (CR0, CR3, CR4, EFER). */
256#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
257/** Debug registers (DR6, DR7). */
258#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
259/** GDT, IDT limit and base. */
260#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
261/** Segment register: CS, SS, DS, ES limit and base. */
262#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
263/** CR2.*/
264#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
265/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
266#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
267/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
268PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
269#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
270/** Mask of all valid VMCB Clean bits. */
271#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
272 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
273 | HMSVM_VMCB_CLEAN_ASID \
274 | HMSVM_VMCB_CLEAN_INT_CTRL \
275 | HMSVM_VMCB_CLEAN_NP \
276 | HMSVM_VMCB_CLEAN_CRX_EFER \
277 | HMSVM_VMCB_CLEAN_DRX \
278 | HMSVM_VMCB_CLEAN_DT \
279 | HMSVM_VMCB_CLEAN_SEG \
280 | HMSVM_VMCB_CLEAN_CR2 \
281 | HMSVM_VMCB_CLEAN_LBR \
282 | HMSVM_VMCB_CLEAN_AVIC)
283/** @} */
284
285/** @name SVM transient.
286 *
287 * A state structure for holding miscellaneous information across AMD-V
288 * VMRUN/\#VMEXIT operation, restored after the transition.
289 *
290 * @{ */
291typedef struct SVMTRANSIENT
292{
293 /** The host's rflags/eflags. */
294 RTCCUINTREG fEFlags;
295 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
296 uint64_t u64ExitCode;
297
298 /** The guest's TPR value used for TPR shadowing. */
299 uint8_t u8GuestTpr;
300 /** Alignment. */
301 uint8_t abAlignment0[7];
302
303 /** Pointer to the currently executing VMCB. */
304 PSVMVMCB pVmcb;
305
306 /** Whether we are currently executing a nested-guest. */
307 bool fIsNestedGuest;
308 /** Whether the guest debug state was active at the time of \#VMEXIT. */
309 bool fWasGuestDebugStateActive;
310 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
311 bool fWasHyperDebugStateActive;
312 /** Whether the TSC offset mode needs to be updated. */
313 bool fUpdateTscOffsetting;
314 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
315 bool fRestoreTscAuxMsr;
316 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
317 * contributary exception or a page-fault. */
318 bool fVectoringDoublePF;
319 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
320 * external interrupt or NMI. */
321 bool fVectoringPF;
322 /** Padding. */
323 bool afPadding0;
324} SVMTRANSIENT;
325/** Pointer to SVM transient state. */
326typedef SVMTRANSIENT *PSVMTRANSIENT;
327/** Pointer to a const SVM transient state. */
328typedef const SVMTRANSIENT *PCSVMTRANSIENT;
329
330AssertCompileSizeAlignment(SVMTRANSIENT, sizeof(uint64_t));
331AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
332AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
333/** @} */
334
335/**
336 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
337 */
338typedef enum SVMMSREXITREAD
339{
340 /** Reading this MSR causes a \#VMEXIT. */
341 SVMMSREXIT_INTERCEPT_READ = 0xb,
342 /** Reading this MSR does not cause a \#VMEXIT. */
343 SVMMSREXIT_PASSTHRU_READ
344} SVMMSREXITREAD;
345
346/**
347 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
348 */
349typedef enum SVMMSREXITWRITE
350{
351 /** Writing to this MSR causes a \#VMEXIT. */
352 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
353 /** Writing to this MSR does not cause a \#VMEXIT. */
354 SVMMSREXIT_PASSTHRU_WRITE
355} SVMMSREXITWRITE;
356
357/**
358 * SVM \#VMEXIT handler.
359 *
360 * @returns VBox status code.
361 * @param pVCpu The cross context virtual CPU structure.
362 * @param pSvmTransient Pointer to the SVM-transient structure.
363 */
364typedef int FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
365
366
367/*********************************************************************************************************************************
368* Internal Functions *
369*********************************************************************************************************************************/
370static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
371static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
372
373
374/** @name \#VMEXIT handlers.
375 * @{
376 */
377static FNSVMEXITHANDLER hmR0SvmExitIntr;
378static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
379static FNSVMEXITHANDLER hmR0SvmExitInvd;
380static FNSVMEXITHANDLER hmR0SvmExitCpuid;
381static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
382static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
383static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
384static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
385static FNSVMEXITHANDLER hmR0SvmExitHlt;
386static FNSVMEXITHANDLER hmR0SvmExitMonitor;
387static FNSVMEXITHANDLER hmR0SvmExitMwait;
388static FNSVMEXITHANDLER hmR0SvmExitShutdown;
389static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
390static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
391static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
392static FNSVMEXITHANDLER hmR0SvmExitMsr;
393static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
394static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
395static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
396static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
397static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
398static FNSVMEXITHANDLER hmR0SvmExitVIntr;
399static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
400static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
401static FNSVMEXITHANDLER hmR0SvmExitPause;
402static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
403static FNSVMEXITHANDLER hmR0SvmExitIret;
404static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
405static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
406static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
407static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
408static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
409static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
410static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
411#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
412static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
413#endif
414#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
415static FNSVMEXITHANDLER hmR0SvmExitClgi;
416static FNSVMEXITHANDLER hmR0SvmExitStgi;
417static FNSVMEXITHANDLER hmR0SvmExitVmload;
418static FNSVMEXITHANDLER hmR0SvmExitVmsave;
419static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
420static FNSVMEXITHANDLER hmR0SvmExitVmrun;
421static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
422static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
423#endif
424/** @} */
425
426static int hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
427#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
428static int hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
429#endif
430
431
432/*********************************************************************************************************************************
433* Global Variables *
434*********************************************************************************************************************************/
435/** Ring-0 memory object for the IO bitmap. */
436static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
437/** Physical address of the IO bitmap. */
438static RTHCPHYS g_HCPhysIOBitmap;
439/** Pointer to the IO bitmap. */
440static R0PTRTYPE(void *) g_pvIOBitmap;
441
442#ifdef VBOX_STRICT
443# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
444# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
445# define HMSVM_LOG_CS RT_BIT_32(2)
446# define HMSVM_LOG_SS RT_BIT_32(3)
447# define HMSVM_LOG_FS RT_BIT_32(4)
448# define HMSVM_LOG_GS RT_BIT_32(5)
449# define HMSVM_LOG_LBR RT_BIT_32(6)
450# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
451 | HMSVM_LOG_CR_REGS \
452 | HMSVM_LOG_CS \
453 | HMSVM_LOG_SS \
454 | HMSVM_LOG_FS \
455 | HMSVM_LOG_GS \
456 | HMSVM_LOG_LBR)
457
458/**
459 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
460 *
461 * @param pVCpu The cross context virtual CPU structure.
462 * @param pVmcb Pointer to the VM control block.
463 * @param pszPrefix Log prefix.
464 * @param fFlags Log flags, see HMSVM_LOG_XXX.
465 * @param uVerbose The verbosity level, currently unused.
466 */
467static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
468{
469 RT_NOREF2(pVCpu, uVerbose);
470 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
471
472 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
473 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
474
475 if (fFlags & HMSVM_LOG_RBP_RSP)
476 {
477 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
478 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
479 }
480
481 if (fFlags & HMSVM_LOG_CR_REGS)
482 {
483 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
484 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
485 }
486
487 if (fFlags & HMSVM_LOG_CS)
488 {
489 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
490 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
491 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
492 }
493 if (fFlags & HMSVM_LOG_SS)
494 {
495 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
496 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
497 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
498 }
499 if (fFlags & HMSVM_LOG_FS)
500 {
501 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
502 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
503 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
504 }
505 if (fFlags & HMSVM_LOG_GS)
506 {
507 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
508 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
509 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
510 }
511
512 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
513 if (fFlags & HMSVM_LOG_LBR)
514 {
515 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
516 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
517 }
518 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
519}
520#endif /* VBOX_STRICT */
521
522
523/**
524 * Sets up and activates AMD-V on the current CPU.
525 *
526 * @returns VBox status code.
527 * @param pHostCpu The HM physical-CPU structure.
528 * @param pVM The cross context VM structure. Can be
529 * NULL after a resume!
530 * @param pvCpuPage Pointer to the global CPU page.
531 * @param HCPhysCpuPage Physical address of the global CPU page.
532 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
533 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
534 * unused).
535 */
536VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
537 PCSUPHWVIRTMSRS pHwvirtMsrs)
538{
539 Assert(!fEnabledByHost);
540 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
541 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
542 Assert(pvCpuPage); NOREF(pvCpuPage);
543 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
544
545 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
546
547 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
548 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
549
550 /*
551 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
552 */
553 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
554 if (u64HostEfer & MSR_K6_EFER_SVME)
555 {
556 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
557 if ( pVM
558 && pVM->hm.s.svm.fIgnoreInUseError)
559 pHostCpu->fIgnoreAMDVInUseError = true;
560
561 if (!pHostCpu->fIgnoreAMDVInUseError)
562 {
563 ASMSetFlags(fEFlags);
564 return VERR_SVM_IN_USE;
565 }
566 }
567
568 /* Turn on AMD-V in the EFER MSR. */
569 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
570
571 /* Write the physical page address where the CPU will store the host state while executing the VM. */
572 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
573
574 /* Restore interrupts. */
575 ASMSetFlags(fEFlags);
576
577 /*
578 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
579 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
580 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
581 * entirely with before executing any guest code.
582 */
583 pHostCpu->fFlushAsidBeforeUse = true;
584
585 /*
586 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
587 */
588 ++pHostCpu->cTlbFlushes;
589
590 return VINF_SUCCESS;
591}
592
593
594/**
595 * Deactivates AMD-V on the current CPU.
596 *
597 * @returns VBox status code.
598 * @param pHostCpu The HM physical-CPU structure.
599 * @param pvCpuPage Pointer to the global CPU page.
600 * @param HCPhysCpuPage Physical address of the global CPU page.
601 */
602VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
603{
604 RT_NOREF1(pHostCpu);
605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
606 AssertReturn( HCPhysCpuPage
607 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
608 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
609
610 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
611 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
612
613 /* Turn off AMD-V in the EFER MSR. */
614 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
615 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
616
617 /* Invalidate host state physical address. */
618 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
619
620 /* Restore interrupts. */
621 ASMSetFlags(fEFlags);
622
623 return VINF_SUCCESS;
624}
625
626
627/**
628 * Does global AMD-V initialization (called during module initialization).
629 *
630 * @returns VBox status code.
631 */
632VMMR0DECL(int) SVMR0GlobalInit(void)
633{
634 /*
635 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
636 * intercept all IO accesses, it's done once globally here instead of per-VM.
637 */
638 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
639 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
640 if (RT_FAILURE(rc))
641 return rc;
642
643 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
644 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
645
646 /* Set all bits to intercept all IO accesses. */
647 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
648
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Does global AMD-V termination (called during module termination).
655 */
656VMMR0DECL(void) SVMR0GlobalTerm(void)
657{
658 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
659 {
660 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
661 g_pvIOBitmap = NULL;
662 g_HCPhysIOBitmap = 0;
663 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
664 }
665}
666
667
668/**
669 * Frees any allocated per-VCPU structures for a VM.
670 *
671 * @param pVM The cross context VM structure.
672 */
673DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
674{
675 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
676 {
677 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
678 AssertPtr(pVCpu);
679
680 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
683 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
684 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
690 pVCpu->hm.s.svm.pVmcb = NULL;
691 pVCpu->hm.s.svm.HCPhysVmcb = 0;
692 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
693 }
694
695 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
696 {
697 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
698 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
699 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
700 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
701 }
702 }
703}
704
705
706/**
707 * Does per-VM AMD-V initialization.
708 *
709 * @returns VBox status code.
710 * @param pVM The cross context VM structure.
711 */
712VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
713{
714 int rc = VERR_INTERNAL_ERROR_5;
715
716 /*
717 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
718 */
719 uint32_t u32Family;
720 uint32_t u32Model;
721 uint32_t u32Stepping;
722 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
723 {
724 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
725 pVM->hm.s.svm.fAlwaysFlushTLB = true;
726 }
727
728 /*
729 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
730 */
731 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
732 {
733 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
734 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
735 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
736 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
737 }
738
739 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
740 {
741 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
742
743 /*
744 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
745 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
746 */
747 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
748 if (RT_FAILURE(rc))
749 goto failure_cleanup;
750
751 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
752 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
753 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
754 ASMMemZeroPage(pvVmcbHost);
755
756 /*
757 * Allocate one page for the guest-state VMCB.
758 */
759 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
760 if (RT_FAILURE(rc))
761 goto failure_cleanup;
762
763 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
764 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
765 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
766 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
767
768 /*
769 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
770 * SVM to not require one.
771 */
772 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
773 false /* fExecutable */);
774 if (RT_FAILURE(rc))
775 goto failure_cleanup;
776
777 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
778 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
779 /* Set all bits to intercept all MSR accesses (changed later on). */
780 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
781 }
782
783 return VINF_SUCCESS;
784
785failure_cleanup:
786 hmR0SvmFreeStructs(pVM);
787 return rc;
788}
789
790
791/**
792 * Does per-VM AMD-V termination.
793 *
794 * @returns VBox status code.
795 * @param pVM The cross context VM structure.
796 */
797VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
798{
799 hmR0SvmFreeStructs(pVM);
800 return VINF_SUCCESS;
801}
802
803
804/**
805 * Returns whether the VMCB Clean Bits feature is supported.
806 *
807 * @returns @c true if supported, @c false otherwise.
808 * @param pVCpu The cross context virtual CPU structure.
809 * @param fIsNestedGuest Whether we are currently executing the nested-guest.
810 */
811DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
812{
813 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
814 bool const fHostVmcbCleanBits = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
815 if (!fIsNestedGuest)
816 return fHostVmcbCleanBits;
817 return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
818}
819
820
821/**
822 * Returns whether the decode assists feature is supported.
823 *
824 * @returns @c true if supported, @c false otherwise.
825 * @param pVCpu The cross context virtual CPU structure.
826 */
827DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
828{
829 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
830#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
831 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
832 {
833 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
834 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
835 }
836#endif
837 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
838}
839
840
841/**
842 * Returns whether the NRIP_SAVE feature is supported.
843 *
844 * @returns @c true if supported, @c false otherwise.
845 * @param pVCpu The cross context virtual CPU structure.
846 */
847DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
848{
849 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
850#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
851 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
852 {
853 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
854 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
855 }
856#endif
857 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
858}
859
860
861/**
862 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
863 *
864 * @param pVCpu The cross context virtual CPU structure.
865 * @param pbMsrBitmap Pointer to the MSR bitmap.
866 * @param idMsr The MSR for which the permissions are being set.
867 * @param enmRead MSR read permissions.
868 * @param enmWrite MSR write permissions.
869 *
870 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
871 * caller needs to take care of this.
872 */
873static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
874 SVMMSREXITWRITE enmWrite)
875{
876 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
877 uint16_t offMsrpm;
878 uint8_t uMsrpmBit;
879 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
880 AssertRC(rc);
881
882 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
883 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
884
885 pbMsrBitmap += offMsrpm;
886 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
887 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
888 else
889 {
890 if (!fInNestedGuestMode)
891 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
892#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
893 else
894 {
895 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
896 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
897 pbNstGstMsrBitmap += offMsrpm;
898 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
899 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
900 else
901 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
902 }
903#endif
904 }
905
906 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
907 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
908 else
909 {
910 if (!fInNestedGuestMode)
911 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
912#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
913 else
914 {
915 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
916 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
917 pbNstGstMsrBitmap += offMsrpm;
918 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
919 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
920 else
921 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
922 }
923#endif
924 }
925}
926
927
928/**
929 * Sets up AMD-V for the specified VM.
930 * This function is only called once per-VM during initalization.
931 *
932 * @returns VBox status code.
933 * @param pVM The cross context VM structure.
934 */
935VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
936{
937 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
938 AssertReturn(pVM, VERR_INVALID_PARAMETER);
939 Assert(pVM->hm.s.svm.fSupported);
940
941 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
942 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
943 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
944
945 bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
946 bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
947
948#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
949 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
950 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
951
952 bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
953 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
954#endif
955
956 PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
957 PSVMVMCB pVmcb0 = pVCpu0->hm.s.svm.pVmcb;
958 AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
959 PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
960
961 /* Always trap #AC for reasons of security. */
962 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
963
964 /* Always trap #DB for reasons of security. */
965 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
966
967 /* Trap exceptions unconditionally (debug purposes). */
968#ifdef HMSVM_ALWAYS_TRAP_PF
969 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
970#endif
971#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
972 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
973 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
974 | RT_BIT_32(X86_XCPT_DE)
975 | RT_BIT_32(X86_XCPT_NM)
976 | RT_BIT_32(X86_XCPT_UD)
977 | RT_BIT_32(X86_XCPT_NP)
978 | RT_BIT_32(X86_XCPT_SS)
979 | RT_BIT_32(X86_XCPT_GP)
980 | RT_BIT_32(X86_XCPT_PF)
981 | RT_BIT_32(X86_XCPT_MF)
982 ;
983#endif
984
985 /* Apply the exceptions intercepts needed by the GIM provider. */
986 if (pVCpu0->hm.s.fGIMTrapXcptUD)
987 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
988
989 /* The mesa 3d driver hack needs #GP. */
990 if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
991 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
992
993 /* Set up unconditional intercepts and conditions. */
994 pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
995 | SVM_CTRL_INTERCEPT_VMMCALL;
996
997#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
998 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
999#endif
1000
1001#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1002 /* Virtualized VMSAVE/VMLOAD. */
1003 pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
1004 if (!fUseVirtVmsaveVmload)
1005 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
1006 | SVM_CTRL_INTERCEPT_VMLOAD;
1007
1008 /* Virtual GIF. */
1009 pVmcbCtrl0->IntCtrl.n.u1VGifEnable = fUseVGif;
1010 if (!fUseVGif)
1011 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
1012 | SVM_CTRL_INTERCEPT_STGI;
1013#endif
1014
1015 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1016 pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
1017
1018 /* Intercept all DRx reads and writes by default. Changed later on. */
1019 pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
1020 pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
1021
1022 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1023 pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
1024
1025 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1026 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1027 pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
1028
1029 /* Set the IO permission bitmap physical addresses. */
1030 pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1031
1032 /* LBR virtualization. */
1033 pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1034
1035 /* The host ASID MBZ, for the guest start with 1. */
1036 pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
1037
1038 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1039 pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
1040
1041 /* Without Nested Paging, we need additionally intercepts. */
1042 if (!pVM->hm.s.fNestedPaging)
1043 {
1044 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1045 pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
1046 pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
1047
1048 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1049 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1050 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1051
1052 /* Page faults must be intercepted to implement shadow paging. */
1053 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1054 }
1055
1056 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1057 if (fUsePauseFilter)
1058 {
1059 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1060 pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1061 if (fPauseFilterThreshold)
1062 pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1063 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1064 }
1065
1066 /*
1067 * Setup the MSR permission bitmap.
1068 * The following MSRs are saved/restored automatically during the world-switch.
1069 * Don't intercept guest read/write accesses to these MSRs.
1070 */
1071 uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hm.s.svm.pvMsrBitmap;
1072 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1073 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1074 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1075 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1076 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1077 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1078 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1079 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1080 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1081 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1082 pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hm.s.svm.HCPhysMsrBitmap;
1083
1084 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1085 Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
1086
1087 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
1088 {
1089 PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
1090 PSVMVMCB pVmcbCur = pVCpuCur->hm.s.svm.pVmcb;
1091 AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
1092 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1093
1094 /* Copy the VMCB control area. */
1095 memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
1096
1097 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1098 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
1099 memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1100 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
1101
1102 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1103 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1104
1105 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1106 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
1107 }
1108
1109#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1110 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1111 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1112#else
1113 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1114#endif
1115 return VINF_SUCCESS;
1116}
1117
1118
1119/**
1120 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1121 *
1122 * @returns Pointer to the current context VMCB.
1123 * @param pVCpu The cross context virtual CPU structure.
1124 */
1125DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
1126{
1127#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1128 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1129 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1130#endif
1131 return pVCpu->hm.s.svm.pVmcb;
1132}
1133
1134
1135/**
1136 * Gets a pointer to the nested-guest VMCB cache.
1137 *
1138 * @returns Pointer to the nested-guest VMCB cache.
1139 * @param pVCpu The cross context virtual CPU structure.
1140 */
1141DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
1142{
1143#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1144 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1145 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1146#else
1147 RT_NOREF(pVCpu);
1148 return NULL;
1149#endif
1150}
1151
1152
1153/**
1154 * Invalidates a guest page by guest virtual address.
1155 *
1156 * @returns VBox status code.
1157 * @param pVCpu The cross context virtual CPU structure.
1158 * @param GCVirt Guest virtual address of the page to invalidate.
1159 */
1160VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1161{
1162 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1163
1164 bool const fFlushPending = pVCpu->CTX_SUFF(pVM)->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1165
1166 /* Skip it if a TLB flush is already pending. */
1167 if (!fFlushPending)
1168 {
1169 Log4Func(("%#RGv\n", GCVirt));
1170
1171 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1172 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1173
1174 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1175 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1176 }
1177 return VINF_SUCCESS;
1178}
1179
1180
1181/**
1182 * Flushes the appropriate tagged-TLB entries.
1183 *
1184 * @param pHostCpu The HM physical-CPU structure.
1185 * @param pVCpu The cross context virtual CPU structure.
1186 * @param pVmcb Pointer to the VM control block.
1187 */
1188static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1189{
1190 /*
1191 * Force a TLB flush for the first world switch if the current CPU differs from the one
1192 * we ran on last. This can happen both for start & resume due to long jumps back to
1193 * ring-3.
1194 *
1195 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1196 * correlation between it and the physical CPU.
1197 *
1198 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1199 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1200 */
1201 bool fNewAsid = false;
1202 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1203 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1204 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
1205#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1206 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1207#endif
1208 )
1209 {
1210 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1211 pVCpu->hm.s.fForceTLBFlush = true;
1212 fNewAsid = true;
1213 }
1214
1215 /* Set TLB flush state as checked until we return from the world switch. */
1216 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1217
1218 /* Check for explicit TLB flushes. */
1219 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1220 {
1221 pVCpu->hm.s.fForceTLBFlush = true;
1222 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1223 }
1224
1225 /*
1226 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1227 * This Host CPU requirement takes precedence.
1228 */
1229 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1230 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1231 {
1232 pHostCpu->uCurrentAsid = 1;
1233 pVCpu->hm.s.uCurrentAsid = 1;
1234 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1235 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1236 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1237
1238 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1239 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1240 }
1241 else
1242 {
1243 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1244 if (pVCpu->hm.s.fForceTLBFlush)
1245 {
1246 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1247 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1248
1249 if (fNewAsid)
1250 {
1251 ++pHostCpu->uCurrentAsid;
1252
1253 bool fHitASIDLimit = false;
1254 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1255 {
1256 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1257 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1258 fHitASIDLimit = true;
1259 }
1260
1261 if ( fHitASIDLimit
1262 || pHostCpu->fFlushAsidBeforeUse)
1263 {
1264 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1265 pHostCpu->fFlushAsidBeforeUse = false;
1266 }
1267
1268 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1269 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1270 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1271 }
1272 else
1273 {
1274 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1275 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1276 else
1277 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1278 }
1279
1280 pVCpu->hm.s.fForceTLBFlush = false;
1281 }
1282 }
1283
1284 /* Update VMCB with the ASID. */
1285 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1286 {
1287 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1288 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1289 }
1290
1291 AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
1292 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
1293 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1294 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1295 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1296 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1297 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1298 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1299
1300#ifdef VBOX_WITH_STATISTICS
1301 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1302 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1303 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1304 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1305 {
1306 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1307 }
1308 else
1309 {
1310 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1311 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1312 }
1313#endif
1314}
1315
1316
1317/**
1318 * Sets an exception intercept in the specified VMCB.
1319 *
1320 * @param pVmcb Pointer to the VM control block.
1321 * @param uXcpt The exception (X86_XCPT_*).
1322 */
1323DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1324{
1325 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1326 {
1327 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1328 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1329 }
1330}
1331
1332
1333/**
1334 * Clears an exception intercept in the specified VMCB.
1335 *
1336 * @param pVCpu The cross context virtual CPU structure.
1337 * @param pVmcb Pointer to the VM control block.
1338 * @param uXcpt The exception (X86_XCPT_*).
1339 *
1340 * @remarks This takes into account if we're executing a nested-guest and only
1341 * removes the exception intercept if both the guest -and- nested-guest
1342 * are not intercepting it.
1343 */
1344DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1345{
1346 Assert(uXcpt != X86_XCPT_DB);
1347 Assert(uXcpt != X86_XCPT_AC);
1348 Assert(uXcpt != X86_XCPT_GP);
1349#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1350 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1351 {
1352 bool fRemove = true;
1353# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1354 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1355 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1356 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1357 {
1358 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1359 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1360 }
1361# else
1362 RT_NOREF(pVCpu);
1363# endif
1364 if (fRemove)
1365 {
1366 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1367 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1368 }
1369 }
1370#else
1371 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1372#endif
1373}
1374
1375
1376/**
1377 * Sets a control intercept in the specified VMCB.
1378 *
1379 * @param pVmcb Pointer to the VM control block.
1380 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1381 */
1382DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1383{
1384 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1385 {
1386 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1387 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1388 }
1389}
1390
1391
1392/**
1393 * Clears a control intercept in the specified VMCB.
1394 *
1395 * @returns @c true if the intercept is still set, @c false otherwise.
1396 * @param pVCpu The cross context virtual CPU structure.
1397 * @param pVmcb Pointer to the VM control block.
1398 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1399 *
1400 * @remarks This takes into account if we're executing a nested-guest and only
1401 * removes the control intercept if both the guest -and- nested-guest
1402 * are not intercepting it.
1403 */
1404static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1405{
1406 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1407 {
1408 bool fRemove = true;
1409#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1410 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1411 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1412 {
1413 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1414 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1415 }
1416#else
1417 RT_NOREF(pVCpu);
1418#endif
1419 if (fRemove)
1420 {
1421 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1422 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1423 }
1424 }
1425
1426 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1427}
1428
1429
1430/**
1431 * Exports the guest (or nested-guest) CR0 into the VMCB.
1432 *
1433 * @param pVCpu The cross context virtual CPU structure.
1434 * @param pVmcb Pointer to the VM control block.
1435 *
1436 * @remarks This assumes we always pre-load the guest FPU.
1437 * @remarks No-long-jump zone!!!
1438 */
1439static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1440{
1441 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1442
1443 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1444 uint64_t const uGuestCr0 = pCtx->cr0;
1445 uint64_t uShadowCr0 = uGuestCr0;
1446
1447 /* Always enable caching. */
1448 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1449
1450 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1451 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1452 {
1453 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1454 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1455 }
1456
1457 /*
1458 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1459 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1460 * see @bugref{7243#c103}.
1461 */
1462 if (!(uGuestCr0 & X86_CR0_NE))
1463 {
1464 uShadowCr0 |= X86_CR0_NE;
1465 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1466 }
1467 else
1468 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1469
1470 /*
1471 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1472 *
1473 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1474 * see @bugref{6944}.
1475 *
1476 * We also don't ever want to honor weird things like cache disable from the guest.
1477 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1478 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1479 */
1480 if (uShadowCr0 == uGuestCr0)
1481 {
1482 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1483 {
1484 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1485 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1486 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1487 }
1488 else
1489 {
1490 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1491 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1492 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1493 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1494 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1495 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1496 }
1497 }
1498 else
1499 {
1500 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1501 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1502 }
1503 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1504
1505 Assert(!RT_HI_U32(uShadowCr0));
1506 if (pVmcb->guest.u64CR0 != uShadowCr0)
1507 {
1508 pVmcb->guest.u64CR0 = uShadowCr0;
1509 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1510 }
1511}
1512
1513
1514/**
1515 * Exports the guest (or nested-guest) CR3 into the VMCB.
1516 *
1517 * @param pVCpu The cross context virtual CPU structure.
1518 * @param pVmcb Pointer to the VM control block.
1519 *
1520 * @remarks No-long-jump zone!!!
1521 */
1522static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1523{
1524 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1525
1526 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1527 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1528 if (pVM->hm.s.fNestedPaging)
1529 {
1530 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
1531 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1532 pVmcb->guest.u64CR3 = pCtx->cr3;
1533 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1534 }
1535 else
1536 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1537
1538 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1539}
1540
1541
1542/**
1543 * Exports the guest (or nested-guest) CR4 into the VMCB.
1544 *
1545 * @param pVCpu The cross context virtual CPU structure.
1546 * @param pVmcb Pointer to the VM control block.
1547 *
1548 * @remarks No-long-jump zone!!!
1549 */
1550static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1551{
1552 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1553
1554 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1555 uint64_t uShadowCr4 = pCtx->cr4;
1556 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1557 {
1558 switch (pVCpu->hm.s.enmShadowMode)
1559 {
1560 case PGMMODE_REAL:
1561 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1562 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1563
1564 case PGMMODE_32_BIT: /* 32-bit paging. */
1565 uShadowCr4 &= ~X86_CR4_PAE;
1566 break;
1567
1568 case PGMMODE_PAE: /* PAE paging. */
1569 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1570 /** Must use PAE paging as we could use physical memory > 4 GB */
1571 uShadowCr4 |= X86_CR4_PAE;
1572 break;
1573
1574 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1575 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1576#ifdef VBOX_WITH_64_BITS_GUESTS
1577 break;
1578#else
1579 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1580#endif
1581
1582 default: /* shut up gcc */
1583 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1584 }
1585 }
1586
1587 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1588 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1589
1590 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1591 if (uShadowCr4 == pCtx->cr4)
1592 {
1593 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1594 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1595 else
1596 {
1597 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1598 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1599 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1600 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1601 }
1602 }
1603 else
1604 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1605
1606 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1607 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1608
1609 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1610 Assert(!RT_HI_U32(uShadowCr4));
1611 pVmcb->guest.u64CR4 = uShadowCr4;
1612 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1613
1614 return VINF_SUCCESS;
1615}
1616
1617
1618/**
1619 * Exports the guest (or nested-guest) control registers into the VMCB.
1620 *
1621 * @returns VBox status code.
1622 * @param pVCpu The cross context virtual CPU structure.
1623 * @param pVmcb Pointer to the VM control block.
1624 *
1625 * @remarks No-long-jump zone!!!
1626 */
1627static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1628{
1629 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1630
1631 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1632 {
1633 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1634 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1635
1636 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1637 {
1638 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1639 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1640 }
1641
1642 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1643 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1644
1645 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1646 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1647 {
1648 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1649 if (RT_FAILURE(rc))
1650 return rc;
1651 }
1652
1653 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1654 }
1655 return VINF_SUCCESS;
1656}
1657
1658
1659/**
1660 * Exports the guest (or nested-guest) segment registers into the VMCB.
1661 *
1662 * @returns VBox status code.
1663 * @param pVCpu The cross context virtual CPU structure.
1664 * @param pVmcb Pointer to the VM control block.
1665 *
1666 * @remarks No-long-jump zone!!!
1667 */
1668static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1669{
1670 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1671 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1672
1673 /* Guest segment registers. */
1674 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1675 {
1676 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1677 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1678
1679 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1680 {
1681 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1682 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1683 }
1684
1685 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1686 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1687
1688 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1689 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1690
1691 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1692 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1693
1694 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1695 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1696
1697 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1698 }
1699
1700 /* Guest TR. */
1701 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1702 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1703
1704 /* Guest LDTR. */
1705 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1706 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1707
1708 /* Guest GDTR. */
1709 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1710 {
1711 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1712 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1713 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1714 }
1715
1716 /* Guest IDTR. */
1717 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1718 {
1719 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1720 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1721 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1722 }
1723
1724 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1725 | HM_CHANGED_GUEST_TABLE_MASK);
1726}
1727
1728
1729/**
1730 * Exports the guest (or nested-guest) MSRs into the VMCB.
1731 *
1732 * @param pVCpu The cross context virtual CPU structure.
1733 * @param pVmcb Pointer to the VM control block.
1734 *
1735 * @remarks No-long-jump zone!!!
1736 */
1737static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1738{
1739 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1740 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1741
1742 /* Guest Sysenter MSRs. */
1743 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1744 {
1745 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1746 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1747
1748 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1749 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1750
1751 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1752 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1753 }
1754
1755 /*
1756 * Guest EFER MSR.
1757 * AMD-V requires guest EFER.SVME to be set. Weird.
1758 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1759 */
1760 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1761 {
1762 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1763 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1764 }
1765
1766 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1767 if ( !CPUMIsGuestInLongModeEx(pCtx)
1768 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1769 {
1770 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1771 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1772 }
1773
1774 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1775 {
1776 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1777 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1778 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1779 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1780 }
1781
1782 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1783 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1784
1785 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1786 | HM_CHANGED_GUEST_EFER_MSR
1787 | HM_CHANGED_GUEST_SYSCALL_MSRS
1788 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1789
1790 /*
1791 * Setup the PAT MSR (applicable for Nested Paging only).
1792 *
1793 * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
1794 * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
1795 *
1796 * While guests can modify and see the modified values through the shadow values,
1797 * we shall not honor any guest modifications of this MSR to ensure caching is always
1798 * enabled similar to how we clear CR0.CD and NW bits.
1799 *
1800 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1801 */
1802 pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
1803
1804 /* Enable the last branch record bit if LBR virtualization is enabled. */
1805 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1806 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1807}
1808
1809
1810/**
1811 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1812 * the necessary intercepts accordingly.
1813 *
1814 * @param pVCpu The cross context virtual CPU structure.
1815 * @param pVmcb Pointer to the VM control block.
1816 *
1817 * @remarks No-long-jump zone!!!
1818 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1819 */
1820static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1821{
1822 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1823
1824 /*
1825 * Anyone single stepping on the host side? If so, we'll have to use the
1826 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1827 * the VMM level like the VT-x implementations does.
1828 */
1829 bool fInterceptMovDRx = false;
1830 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1831 if (fStepping)
1832 {
1833 pVCpu->hm.s.fClearTrapFlag = true;
1834 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1835 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1836 }
1837
1838 if ( fStepping
1839 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1840 {
1841 /*
1842 * Use the combined guest and host DRx values found in the hypervisor
1843 * register set because the debugger has breakpoints active or someone
1844 * is single stepping on the host side.
1845 *
1846 * Note! DBGF expects a clean DR6 state before executing guest code.
1847 */
1848 if (!CPUMIsHyperDebugStateActive(pVCpu))
1849 {
1850 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1851 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1852 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1853 }
1854
1855 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1856 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1857 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1858 {
1859 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1860 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1861 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1862 }
1863
1864 /** @todo If we cared, we could optimize to allow the guest to read registers
1865 * with the same values. */
1866 fInterceptMovDRx = true;
1867 pVCpu->hm.s.fUsingHyperDR7 = true;
1868 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1869 }
1870 else
1871 {
1872 /*
1873 * Update DR6, DR7 with the guest values if necessary.
1874 */
1875 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1876 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1877 {
1878 pVmcb->guest.u64DR7 = pCtx->dr[7];
1879 pVmcb->guest.u64DR6 = pCtx->dr[6];
1880 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1881 }
1882 pVCpu->hm.s.fUsingHyperDR7 = false;
1883
1884 /*
1885 * If the guest has enabled debug registers, we need to load them prior to
1886 * executing guest code so they'll trigger at the right time.
1887 */
1888 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1889 {
1890 if (!CPUMIsGuestDebugStateActive(pVCpu))
1891 {
1892 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1893 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1894 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1895 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1896 }
1897 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
1898 }
1899 /*
1900 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1901 * intercept #DB as DR6 is updated in the VMCB.
1902 *
1903 * Note! If we cared and dared, we could skip intercepting \#DB here.
1904 * However, \#DB shouldn't be performance critical, so we'll play safe
1905 * and keep the code similar to the VT-x code and always intercept it.
1906 */
1907 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1908 fInterceptMovDRx = true;
1909 }
1910
1911 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
1912 if (fInterceptMovDRx)
1913 {
1914 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1915 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1916 {
1917 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1918 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1919 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1920 }
1921 }
1922 else
1923 {
1924 if ( pVmcb->ctrl.u16InterceptRdDRx
1925 || pVmcb->ctrl.u16InterceptWrDRx)
1926 {
1927 pVmcb->ctrl.u16InterceptRdDRx = 0;
1928 pVmcb->ctrl.u16InterceptWrDRx = 0;
1929 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1930 }
1931 }
1932 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
1933}
1934
1935/**
1936 * Exports the hardware virtualization state into the nested-guest
1937 * VMCB.
1938 *
1939 * @param pVCpu The cross context virtual CPU structure.
1940 * @param pVmcb Pointer to the VM control block.
1941 *
1942 * @remarks No-long-jump zone!!!
1943 */
1944static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1945{
1946 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1947
1948 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
1949 {
1950 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
1951 {
1952 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1953 PCVM pVM = pVCpu->CTX_SUFF(pVM);
1954
1955 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
1956 Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
1957 Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
1958 NOREF(pVM);
1959
1960 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
1961 }
1962
1963 /*
1964 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
1965 * since SVM doesn't have a preemption timer.
1966 *
1967 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
1968 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
1969 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
1970 */
1971 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1972 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
1973 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1974 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1975 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
1976 {
1977 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1978 pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
1979 pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
1980 }
1981 else
1982 {
1983 /** @todo r=ramshankar: We can turn these assignments into assertions. */
1984 pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
1985 pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
1986 }
1987 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1988
1989 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
1990 }
1991}
1992
1993
1994/**
1995 * Exports the guest APIC TPR state into the VMCB.
1996 *
1997 * @returns VBox status code.
1998 * @param pVCpu The cross context virtual CPU structure.
1999 * @param pVmcb Pointer to the VM control block.
2000 */
2001static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2002{
2003 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2004
2005 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2006 {
2007 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2008 if ( PDMHasApic(pVM)
2009 && APICIsEnabled(pVCpu))
2010 {
2011 bool fPendingIntr;
2012 uint8_t u8Tpr;
2013 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2014 AssertRCReturn(rc, rc);
2015
2016 /* Assume that we need to trap all TPR accesses and thus need not check on
2017 every #VMEXIT if we should update the TPR. */
2018 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2019 pVCpu->hm.s.svm.fSyncVTpr = false;
2020
2021 if (!pVM->hm.s.fTPRPatchingActive)
2022 {
2023 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2024 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2025
2026 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2027 can deliver the interrupt to the guest. */
2028 if (fPendingIntr)
2029 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2030 else
2031 {
2032 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2033 pVCpu->hm.s.svm.fSyncVTpr = true;
2034 }
2035
2036 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2037 }
2038 else
2039 {
2040 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2041 pVmcb->guest.u64LSTAR = u8Tpr;
2042 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
2043
2044 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2045 if (fPendingIntr)
2046 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2047 else
2048 {
2049 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2050 pVCpu->hm.s.svm.fSyncVTpr = true;
2051 }
2052 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2053 }
2054 }
2055 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2056 }
2057 return VINF_SUCCESS;
2058}
2059
2060
2061/**
2062 * Sets up the exception interrupts required for guest execution in the VMCB.
2063 *
2064 * @param pVCpu The cross context virtual CPU structure.
2065 * @param pVmcb Pointer to the VM control block.
2066 *
2067 * @remarks No-long-jump zone!!!
2068 */
2069static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2070{
2071 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2072
2073 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2074 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
2075 {
2076 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2077 if (pVCpu->hm.s.fGIMTrapXcptUD)
2078 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2079 else
2080 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2081
2082 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2083 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2084 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2085 else
2086 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2087
2088 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2089 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
2090 }
2091}
2092
2093
2094#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2095/**
2096 * Merges guest and nested-guest intercepts for executing the nested-guest using
2097 * hardware-assisted SVM.
2098 *
2099 * This merges the guest and nested-guest intercepts in a way that if the outer
2100 * guest intercept is set we need to intercept it in the nested-guest as
2101 * well.
2102 *
2103 * @param pVCpu The cross context virtual CPU structure.
2104 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2105 */
2106static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
2107{
2108 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2109 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2110 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2111 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2112
2113 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2114 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2115 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2116
2117 /* Always intercept CR4 writes for tracking PGM mode changes. */
2118 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2119
2120 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2121 if (!pVM->hm.s.fNestedPaging)
2122 {
2123 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2124 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2125 }
2126
2127 /** @todo Figure out debugging with nested-guests, till then just intercept
2128 * all DR[0-15] accesses. */
2129 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2130 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2131
2132 /*
2133 * Merge the guest's exception intercepts into the nested-guest VMCB.
2134 *
2135 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2136 * while executing the nested-guest.
2137 *
2138 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2139 * be tweaked later depending on how we wish to implement breakpoints.
2140 *
2141 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2142 * loaded into their guests, not ours.
2143 *
2144 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2145 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2146 */
2147#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2148 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2149 & ~( RT_BIT(X86_XCPT_UD)
2150 | RT_BIT(X86_XCPT_BP)
2151 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2152#else
2153 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2154#endif
2155
2156 /*
2157 * Adjust intercepts while executing the nested-guest that differ from the
2158 * outer guest intercepts.
2159 *
2160 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2161 * that belong to the nested-guest to the outer guest.
2162 *
2163 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2164 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2165 */
2166 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2167 | SVM_CTRL_INTERCEPT_VMMCALL))
2168 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2169
2170 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2171 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2172
2173 /* Finally, update the VMCB clean bits. */
2174 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2175}
2176#endif
2177
2178
2179/**
2180 * Selects the appropriate function to run guest code.
2181 *
2182 * @param pVCpu The cross context virtual CPU structure.
2183 *
2184 * @remarks No-long-jump zone!!!
2185 */
2186DECLINLINE(void) hmR0SvmSelectVMRunHandler(PVMCPUCC pVCpu)
2187{
2188 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2189 {
2190# if HC_ARCH_BITS != 64 || ARCH_BITS != 64
2191# error "Only 64-bit hosts are supported!"
2192# endif
2193 /* Guest may enter long mode, always use 64-bit handler. */
2194 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
2195 }
2196 else
2197 {
2198 /* Guest is 32-bit only, use the 32-bit handler. */
2199 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun32;
2200 }
2201}
2202
2203
2204/**
2205 * Enters the AMD-V session.
2206 *
2207 * @returns VBox status code.
2208 * @param pVCpu The cross context virtual CPU structure.
2209 */
2210VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
2211{
2212 AssertPtr(pVCpu);
2213 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2214 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2215
2216 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2217 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2218 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2219
2220 pVCpu->hm.s.fLeaveDone = false;
2221 return VINF_SUCCESS;
2222}
2223
2224
2225/**
2226 * Thread-context callback for AMD-V.
2227 *
2228 * @param enmEvent The thread-context event.
2229 * @param pVCpu The cross context virtual CPU structure.
2230 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2231 * @thread EMT(pVCpu)
2232 */
2233VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
2234{
2235 NOREF(fGlobalInit);
2236
2237 switch (enmEvent)
2238 {
2239 case RTTHREADCTXEVENT_OUT:
2240 {
2241 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2242 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2243 VMCPU_ASSERT_EMT(pVCpu);
2244
2245 /* No longjmps (log-flush, locks) in this fragile context. */
2246 VMMRZCallRing3Disable(pVCpu);
2247
2248 if (!pVCpu->hm.s.fLeaveDone)
2249 {
2250 hmR0SvmLeave(pVCpu, false /* fImportState */);
2251 pVCpu->hm.s.fLeaveDone = true;
2252 }
2253
2254 /* Leave HM context, takes care of local init (term). */
2255 int rc = HMR0LeaveCpu(pVCpu);
2256 AssertRC(rc); NOREF(rc);
2257
2258 /* Restore longjmp state. */
2259 VMMRZCallRing3Enable(pVCpu);
2260 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2261 break;
2262 }
2263
2264 case RTTHREADCTXEVENT_IN:
2265 {
2266 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2267 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2268 VMCPU_ASSERT_EMT(pVCpu);
2269
2270 /* No longjmps (log-flush, locks) in this fragile context. */
2271 VMMRZCallRing3Disable(pVCpu);
2272
2273 /*
2274 * Initialize the bare minimum state required for HM. This takes care of
2275 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2276 */
2277 int rc = hmR0EnterCpu(pVCpu);
2278 AssertRC(rc); NOREF(rc);
2279 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2280 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2281
2282 pVCpu->hm.s.fLeaveDone = false;
2283
2284 /* Restore longjmp state. */
2285 VMMRZCallRing3Enable(pVCpu);
2286 break;
2287 }
2288
2289 default:
2290 break;
2291 }
2292}
2293
2294
2295/**
2296 * Saves the host state.
2297 *
2298 * @returns VBox status code.
2299 * @param pVCpu The cross context virtual CPU structure.
2300 *
2301 * @remarks No-long-jump zone!!!
2302 */
2303VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
2304{
2305 NOREF(pVCpu);
2306
2307 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2308 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2309 return VINF_SUCCESS;
2310}
2311
2312
2313/**
2314 * Exports the guest or nested-guest state from the virtual-CPU context into the
2315 * VMCB.
2316 *
2317 * Also sets up the appropriate VMRUN function to execute guest or nested-guest
2318 * code based on the virtual-CPU mode.
2319 *
2320 * @returns VBox status code.
2321 * @param pVCpu The cross context virtual CPU structure.
2322 * @param pSvmTransient Pointer to the SVM-transient structure.
2323 *
2324 * @remarks No-long-jump zone!!!
2325 */
2326static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
2327{
2328 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2329
2330 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2331 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2332 Assert(pVmcb);
2333
2334 pVmcb->guest.u64RIP = pCtx->rip;
2335 pVmcb->guest.u64RSP = pCtx->rsp;
2336 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2337 pVmcb->guest.u64RAX = pCtx->rax;
2338
2339 bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
2340 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2341
2342 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2343 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2344 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2345 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2346 hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
2347
2348 ASMSetFlags(fEFlags);
2349
2350 if (!fIsNestedGuest)
2351 {
2352 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2353 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2354 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2355 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2356 }
2357
2358 hmR0SvmSelectVMRunHandler(pVCpu);
2359
2360 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2361 uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
2362 | HM_CHANGED_GUEST_RFLAGS
2363 | HM_CHANGED_GUEST_GPRS_MASK
2364 | HM_CHANGED_GUEST_X87
2365 | HM_CHANGED_GUEST_SSE_AVX
2366 | HM_CHANGED_GUEST_OTHER_XSAVE
2367 | HM_CHANGED_GUEST_XCRx
2368 | HM_CHANGED_GUEST_TSC_AUX
2369 | HM_CHANGED_GUEST_OTHER_MSRS;
2370 if (fIsNestedGuest)
2371 fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
2372 | HM_CHANGED_GUEST_APIC_TPR;
2373
2374 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
2375 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2376
2377#ifdef VBOX_STRICT
2378 /*
2379 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2380 * except for the host-context and/or shared host-guest context bits.
2381 */
2382 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2383 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2384 ("fCtxChanged=%#RX64\n", fCtxChanged));
2385
2386 /*
2387 * If we need to log state that isn't always imported, we'll need to import them here.
2388 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2389 */
2390 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2391#endif
2392
2393 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2394 return VINF_SUCCESS;
2395}
2396
2397
2398#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2399/**
2400 * Merges the guest and nested-guest MSR permission bitmap.
2401 *
2402 * If the guest is intercepting an MSR we need to intercept it regardless of
2403 * whether the nested-guest is intercepting it or not.
2404 *
2405 * @param pHostCpu The HM physical-CPU structure.
2406 * @param pVCpu The cross context virtual CPU structure.
2407 *
2408 * @remarks No-long-jmp zone!!!
2409 */
2410DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2411{
2412 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
2413 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2414 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2415
2416 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2417 uint32_t const offRsvdQwords = 0x1800 >> 3;
2418 for (uint32_t i = 0; i < offRsvdQwords; i++)
2419 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2420}
2421
2422
2423/**
2424 * Caches the nested-guest VMCB fields before we modify them for execution using
2425 * hardware-assisted SVM.
2426 *
2427 * @returns true if the VMCB was previously already cached, false otherwise.
2428 * @param pVCpu The cross context virtual CPU structure.
2429 *
2430 * @sa HMNotifySvmNstGstVmexit.
2431 */
2432static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
2433{
2434 /*
2435 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2436 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2437 *
2438 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2439 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2440 */
2441 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2442 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2443 if (!fWasCached)
2444 {
2445 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2446 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2447 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2448 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2449 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2450 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2451 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2452 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2453 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2454 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2455 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2456 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2457 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2458 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2459 pVmcbNstGstCache->fCacheValid = true;
2460 Log4Func(("Cached VMCB fields\n"));
2461 }
2462
2463 return fWasCached;
2464}
2465
2466
2467/**
2468 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2469 *
2470 * This is done the first time we enter nested-guest execution using SVM R0
2471 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2472 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2473 *
2474 * @param pVCpu The cross context virtual CPU structure.
2475 */
2476static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
2477{
2478 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2479 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2480
2481 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2482
2483 /*
2484 * First cache the nested-guest VMCB fields we may potentially modify.
2485 */
2486 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2487 if (!fVmcbCached)
2488 {
2489 /*
2490 * The IOPM of the nested-guest can be ignored because the the guest always
2491 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2492 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2493 */
2494 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2495
2496 /*
2497 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2498 * nested-paging suddenly while executing a VM (see assertion at the end of
2499 * Trap0eHandler() in PGMAllBth.h).
2500 */
2501 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2502
2503 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2504 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2505
2506 /*
2507 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2508 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2509 */
2510 pVCpu->hm.s.svm.fSyncVTpr = false;
2511
2512#ifdef DEBUG_ramshankar
2513 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2514 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2515#endif
2516
2517 /*
2518 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2519 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2520 */
2521 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2522 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2523 | SVM_CTRL_INTERCEPT_VMLOAD;
2524
2525 /*
2526 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2527 * CLGI/STGI instructions executed by the nested-guest.
2528 */
2529 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2530 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2531 | SVM_CTRL_INTERCEPT_STGI;
2532
2533 /* Merge the guest and nested-guest intercepts. */
2534 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2535
2536 /* Update the VMCB clean bits. */
2537 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2538 }
2539 else
2540 {
2541 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
2542 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2543 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2544 }
2545}
2546#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2547
2548
2549/**
2550 * Exports the state shared between the host and guest (or nested-guest) into
2551 * the VMCB.
2552 *
2553 * @param pVCpu The cross context virtual CPU structure.
2554 * @param pVmcb Pointer to the VM control block.
2555 *
2556 * @remarks No-long-jump zone!!!
2557 */
2558static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2559{
2560 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2561 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2562
2563 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2564 {
2565 /** @todo Figure out stepping with nested-guest. */
2566 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2567 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2568 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2569 else
2570 {
2571 pVmcb->guest.u64DR6 = pCtx->dr[6];
2572 pVmcb->guest.u64DR7 = pCtx->dr[7];
2573 }
2574 }
2575
2576 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2577 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2578 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2579}
2580
2581
2582/**
2583 * Worker for SVMR0ImportStateOnDemand.
2584 *
2585 * @param pVCpu The cross context virtual CPU structure.
2586 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2587 */
2588static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
2589{
2590 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2591
2592 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2593 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2594 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2595 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2596
2597 /*
2598 * We disable interrupts to make the updating of the state and in particular
2599 * the fExtrn modification atomic wrt to preemption hooks.
2600 */
2601 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2602
2603 fWhat &= pCtx->fExtrn;
2604 if (fWhat)
2605 {
2606#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2607 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2608 {
2609 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2610 {
2611 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2612 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2613 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2614 }
2615 }
2616
2617 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2618 {
2619 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2620 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2621 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2622 }
2623#endif
2624
2625 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2626 {
2627 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2628 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2629 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2630 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2631 }
2632
2633 if (fWhat & CPUMCTX_EXTRN_RIP)
2634 pCtx->rip = pVmcbGuest->u64RIP;
2635
2636 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2637 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2638
2639 if (fWhat & CPUMCTX_EXTRN_RSP)
2640 pCtx->rsp = pVmcbGuest->u64RSP;
2641
2642 if (fWhat & CPUMCTX_EXTRN_RAX)
2643 pCtx->rax = pVmcbGuest->u64RAX;
2644
2645 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2646 {
2647 if (fWhat & CPUMCTX_EXTRN_CS)
2648 {
2649 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2650 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2651 /** @todo SELM might need to be fixed as it too should not care about the
2652 * granularity bit. See @bugref{6785}. */
2653 if ( !pCtx->cs.Attr.n.u1Granularity
2654 && pCtx->cs.Attr.n.u1Present
2655 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2656 {
2657 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2658 pCtx->cs.Attr.n.u1Granularity = 1;
2659 }
2660 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2661 }
2662 if (fWhat & CPUMCTX_EXTRN_SS)
2663 {
2664 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2665 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2666 /*
2667 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2668 * VMCB and uses that and thus it's possible that when the CPL changes during
2669 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2670 * AMD Fusion CPUs with 64-bit guests.
2671 *
2672 * See AMD spec. 15.5.1 "Basic operation".
2673 */
2674 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2675 uint8_t const uCpl = pVmcbGuest->u8CPL;
2676 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2677 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2678 }
2679 if (fWhat & CPUMCTX_EXTRN_DS)
2680 {
2681 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2682 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2683 }
2684 if (fWhat & CPUMCTX_EXTRN_ES)
2685 {
2686 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2687 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2688 }
2689 if (fWhat & CPUMCTX_EXTRN_FS)
2690 {
2691 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2692 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2693 }
2694 if (fWhat & CPUMCTX_EXTRN_GS)
2695 {
2696 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2697 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2698 }
2699 }
2700
2701 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2702 {
2703 if (fWhat & CPUMCTX_EXTRN_TR)
2704 {
2705 /*
2706 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2707 * are used between Intel and AMD, see @bugref{6208#c39}.
2708 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2709 */
2710 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2711 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2712 {
2713 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2714 || CPUMIsGuestInLongModeEx(pCtx))
2715 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2716 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2717 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2718 }
2719 }
2720
2721 if (fWhat & CPUMCTX_EXTRN_LDTR)
2722 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2723
2724 if (fWhat & CPUMCTX_EXTRN_GDTR)
2725 {
2726 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2727 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2728 }
2729
2730 if (fWhat & CPUMCTX_EXTRN_IDTR)
2731 {
2732 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2733 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2734 }
2735 }
2736
2737 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2738 {
2739 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2740 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2741 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2742 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2743 }
2744
2745 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2746 {
2747 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2748 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2749 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2750 }
2751
2752 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2753 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2754
2755 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2756 {
2757 if (fWhat & CPUMCTX_EXTRN_DR6)
2758 {
2759 if (!pVCpu->hm.s.fUsingHyperDR7)
2760 pCtx->dr[6] = pVmcbGuest->u64DR6;
2761 else
2762 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2763 }
2764
2765 if (fWhat & CPUMCTX_EXTRN_DR7)
2766 {
2767 if (!pVCpu->hm.s.fUsingHyperDR7)
2768 pCtx->dr[7] = pVmcbGuest->u64DR7;
2769 else
2770 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2771 }
2772 }
2773
2774 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2775 {
2776 if (fWhat & CPUMCTX_EXTRN_CR0)
2777 {
2778 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2779 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2780 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2781 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2782 CPUMSetGuestCR0(pVCpu, uCr0);
2783 VMMRZCallRing3Enable(pVCpu);
2784 }
2785
2786 if (fWhat & CPUMCTX_EXTRN_CR2)
2787 pCtx->cr2 = pVmcbGuest->u64CR2;
2788
2789 if (fWhat & CPUMCTX_EXTRN_CR3)
2790 {
2791 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2792 && pCtx->cr3 != pVmcbGuest->u64CR3)
2793 {
2794 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2795 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2796 }
2797 }
2798
2799 /* Changes to CR4 are always intercepted. */
2800 }
2801
2802 /* Update fExtrn. */
2803 pCtx->fExtrn &= ~fWhat;
2804
2805 /* If everything has been imported, clear the HM keeper bit. */
2806 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2807 {
2808 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2809 Assert(!pCtx->fExtrn);
2810 }
2811 }
2812 else
2813 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
2814
2815 ASMSetFlags(fEFlags);
2816
2817 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
2818
2819 /*
2820 * Honor any pending CR3 updates.
2821 *
2822 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
2823 * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
2824 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
2825 * handling -> hmR0SvmImportGuestState() and here we are.
2826 *
2827 * The reason for such complicated handling is because VM-exits that call into PGM expect
2828 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
2829 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
2830 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
2831 *
2832 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
2833 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
2834 */
2835 if ( VMMRZCallRing3IsEnabled(pVCpu)
2836 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
2837 {
2838 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
2839 PGMUpdateCR3(pVCpu, pCtx->cr3);
2840 }
2841}
2842
2843
2844/**
2845 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
2846 * context.
2847 *
2848 * Currently there is no residual state left in the CPU that is not updated in the
2849 * VMCB.
2850 *
2851 * @returns VBox status code.
2852 * @param pVCpu The cross context virtual CPU structure.
2853 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2854 */
2855VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
2856{
2857 hmR0SvmImportGuestState(pVCpu, fWhat);
2858 return VINF_SUCCESS;
2859}
2860
2861
2862/**
2863 * Does the necessary state syncing before returning to ring-3 for any reason
2864 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2865 *
2866 * @param pVCpu The cross context virtual CPU structure.
2867 * @param fImportState Whether to import the guest state from the VMCB back
2868 * to the guest-CPU context.
2869 *
2870 * @remarks No-long-jmp zone!!!
2871 */
2872static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
2873{
2874 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2875 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2876 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2877
2878 /*
2879 * !!! IMPORTANT !!!
2880 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
2881 */
2882
2883 /* Save the guest state if necessary. */
2884 if (fImportState)
2885 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
2886
2887 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2888 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2889 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2890
2891 /*
2892 * Restore host debug registers if necessary and resync on next R0 reentry.
2893 */
2894#ifdef VBOX_STRICT
2895 if (CPUMIsHyperDebugStateActive(pVCpu))
2896 {
2897 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
2898 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2899 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2900 }
2901#endif
2902 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2903 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2904 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2905
2906 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2907 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
2908 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
2909 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
2910 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
2911 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
2912 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2913
2914 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2915}
2916
2917
2918/**
2919 * Leaves the AMD-V session.
2920 *
2921 * Only used while returning to ring-3 either due to longjump or exits to
2922 * ring-3.
2923 *
2924 * @returns VBox status code.
2925 * @param pVCpu The cross context virtual CPU structure.
2926 */
2927static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
2928{
2929 HM_DISABLE_PREEMPT(pVCpu);
2930 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2931 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2932
2933 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
2934 and done this from the SVMR0ThreadCtxCallback(). */
2935 if (!pVCpu->hm.s.fLeaveDone)
2936 {
2937 hmR0SvmLeave(pVCpu, true /* fImportState */);
2938 pVCpu->hm.s.fLeaveDone = true;
2939 }
2940
2941 /*
2942 * !!! IMPORTANT !!!
2943 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
2944 */
2945
2946 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2947 /* Deregister hook now that we've left HM context before re-enabling preemption. */
2948 VMMR0ThreadCtxHookDisable(pVCpu);
2949
2950 /* Leave HM context. This takes care of local init (term). */
2951 int rc = HMR0LeaveCpu(pVCpu);
2952
2953 HM_RESTORE_PREEMPT();
2954 return rc;
2955}
2956
2957
2958/**
2959 * Does the necessary state syncing before doing a longjmp to ring-3.
2960 *
2961 * @returns VBox status code.
2962 * @param pVCpu The cross context virtual CPU structure.
2963 *
2964 * @remarks No-long-jmp zone!!!
2965 */
2966static int hmR0SvmLongJmpToRing3(PVMCPUCC pVCpu)
2967{
2968 return hmR0SvmLeaveSession(pVCpu);
2969}
2970
2971
2972/**
2973 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2974 * any remaining host state) before we longjump to ring-3 and possibly get
2975 * preempted.
2976 *
2977 * @param pVCpu The cross context virtual CPU structure.
2978 * @param enmOperation The operation causing the ring-3 longjump.
2979 */
2980VMMR0DECL(int) SVMR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
2981{
2982 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
2983 {
2984 /*
2985 * !!! IMPORTANT !!!
2986 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
2987 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
2988 */
2989 VMMRZCallRing3RemoveNotification(pVCpu);
2990 VMMRZCallRing3Disable(pVCpu);
2991 HM_DISABLE_PREEMPT(pVCpu);
2992
2993 /* Import the entire guest state. */
2994 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
2995
2996 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2997 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2998
2999 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3000 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3001
3002 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3003 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3004 VMMR0ThreadCtxHookDisable(pVCpu);
3005
3006 /* Leave HM context. This takes care of local init (term). */
3007 HMR0LeaveCpu(pVCpu);
3008
3009 HM_RESTORE_PREEMPT();
3010 return VINF_SUCCESS;
3011 }
3012
3013 Assert(pVCpu);
3014 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3015 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3016
3017 VMMRZCallRing3Disable(pVCpu);
3018 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3019
3020 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3021 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3022 AssertRCReturn(rc, rc);
3023
3024 VMMRZCallRing3Enable(pVCpu);
3025 return VINF_SUCCESS;
3026}
3027
3028
3029/**
3030 * Take necessary actions before going back to ring-3.
3031 *
3032 * An action requires us to go back to ring-3. This function does the necessary
3033 * steps before we can safely return to ring-3. This is not the same as longjmps
3034 * to ring-3, this is voluntary.
3035 *
3036 * @returns VBox status code.
3037 * @param pVCpu The cross context virtual CPU structure.
3038 * @param rcExit The reason for exiting to ring-3. Can be
3039 * VINF_VMM_UNKNOWN_RING3_CALL.
3040 */
3041static int hmR0SvmExitToRing3(PVMCPUCC pVCpu, int rcExit)
3042{
3043 Assert(pVCpu);
3044 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3045
3046 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3047 VMMRZCallRing3Disable(pVCpu);
3048 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", rcExit, (uint64_t)pVCpu->fLocalForcedActions,
3049 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3050
3051 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3052 if (pVCpu->hm.s.Event.fPending)
3053 {
3054 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3055 Assert(!pVCpu->hm.s.Event.fPending);
3056 }
3057
3058 /* Sync. the necessary state for going back to ring-3. */
3059 hmR0SvmLeaveSession(pVCpu);
3060 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3061
3062 /* Thread-context hooks are unregistered at this point!!! */
3063 /* Ring-3 callback notifications are unregistered at this point!!! */
3064
3065 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3066 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3067 | CPUM_CHANGED_LDTR
3068 | CPUM_CHANGED_GDTR
3069 | CPUM_CHANGED_IDTR
3070 | CPUM_CHANGED_TR
3071 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3072 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
3073 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3074 {
3075 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3076 }
3077
3078 /* Update the exit-to-ring 3 reason. */
3079 pVCpu->hm.s.rcLastExitToR3 = rcExit;
3080
3081 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3082 if ( rcExit != VINF_EM_RAW_INTERRUPT
3083 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3084 {
3085 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3086 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3087 }
3088
3089 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3090 VMMRZCallRing3Enable(pVCpu);
3091
3092 /*
3093 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3094 * and if we're injecting an event we should have a TRPM trap pending.
3095 */
3096 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3097 pVCpu->hm.s.u32HMError = rcExit,
3098 VERR_SVM_IPE_5);
3099 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3100 pVCpu->hm.s.u32HMError = rcExit,
3101 VERR_SVM_IPE_4);
3102
3103 return rcExit;
3104}
3105
3106
3107/**
3108 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3109 * intercepts.
3110 *
3111 * @param pVCpu The cross context virtual CPU structure.
3112 * @param pVmcb Pointer to the VM control block.
3113 *
3114 * @remarks No-long-jump zone!!!
3115 */
3116static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3117{
3118 /*
3119 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3120 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3121 * RDTSC/RDTSCP as well.
3122 */
3123 bool fParavirtTsc;
3124 uint64_t uTscOffset;
3125 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3126
3127 bool fIntercept;
3128 if (fCanUseRealTsc)
3129 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3130 else
3131 {
3132 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3133 fIntercept = true;
3134 }
3135
3136 if (!fIntercept)
3137 {
3138#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3139 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3140 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3141 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
3142#endif
3143
3144 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3145 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3146 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3147 }
3148
3149 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3150 information before every VM-entry, hence we have nothing to do here at the moment. */
3151 if (fParavirtTsc)
3152 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3153}
3154
3155
3156/**
3157 * Sets an event as a pending event to be injected into the guest.
3158 *
3159 * @param pVCpu The cross context virtual CPU structure.
3160 * @param pEvent Pointer to the SVM event.
3161 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3162 * page-fault.
3163 *
3164 * @remarks Statistics counter assumes this is a guest event being reflected to
3165 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3166 */
3167DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3168{
3169 Assert(!pVCpu->hm.s.Event.fPending);
3170 Assert(pEvent->n.u1Valid);
3171
3172 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3173 pVCpu->hm.s.Event.fPending = true;
3174 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3175
3176 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3177 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3178}
3179
3180
3181/**
3182 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3183 *
3184 * @param pVCpu The cross context virtual CPU structure.
3185 */
3186DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
3187{
3188 SVMEVENT Event;
3189 Event.u = 0;
3190 Event.n.u1Valid = 1;
3191 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3192 Event.n.u8Vector = X86_XCPT_UD;
3193 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3194}
3195
3196
3197/**
3198 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3199 *
3200 * @param pVCpu The cross context virtual CPU structure.
3201 */
3202DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
3203{
3204 SVMEVENT Event;
3205 Event.u = 0;
3206 Event.n.u1Valid = 1;
3207 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3208 Event.n.u8Vector = X86_XCPT_DB;
3209 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3210}
3211
3212
3213/**
3214 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3215 *
3216 * @param pVCpu The cross context virtual CPU structure.
3217 * @param u32ErrCode The error-code for the page-fault.
3218 * @param uFaultAddress The page fault address (CR2).
3219 *
3220 * @remarks This updates the guest CR2 with @a uFaultAddress!
3221 */
3222DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3223{
3224 SVMEVENT Event;
3225 Event.u = 0;
3226 Event.n.u1Valid = 1;
3227 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3228 Event.n.u8Vector = X86_XCPT_PF;
3229 Event.n.u1ErrorCodeValid = 1;
3230 Event.n.u32ErrorCode = u32ErrCode;
3231
3232 /* Update CR2 of the guest. */
3233 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3234 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3235 {
3236 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3237 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3238 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3239 }
3240
3241 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3242}
3243
3244
3245/**
3246 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3247 *
3248 * @param pVCpu The cross context virtual CPU structure.
3249 */
3250DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
3251{
3252 SVMEVENT Event;
3253 Event.u = 0;
3254 Event.n.u1Valid = 1;
3255 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3256 Event.n.u8Vector = X86_XCPT_MF;
3257 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3258}
3259
3260
3261/**
3262 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3263 *
3264 * @param pVCpu The cross context virtual CPU structure.
3265 */
3266DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
3267{
3268 SVMEVENT Event;
3269 Event.u = 0;
3270 Event.n.u1Valid = 1;
3271 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3272 Event.n.u8Vector = X86_XCPT_DF;
3273 Event.n.u1ErrorCodeValid = 1;
3274 Event.n.u32ErrorCode = 0;
3275 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3276}
3277
3278
3279/**
3280 * Injects an event into the guest upon VMRUN by updating the relevant field
3281 * in the VMCB.
3282 *
3283 * @param pVCpu The cross context virtual CPU structure.
3284 * @param pVmcb Pointer to the guest VM control block.
3285 * @param pEvent Pointer to the event.
3286 *
3287 * @remarks No-long-jump zone!!!
3288 * @remarks Requires CR0!
3289 */
3290DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3291{
3292 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3293 pVmcb->ctrl.EventInject.u = pEvent->u;
3294 if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
3295 || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
3296 {
3297 Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
3298 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedXcptsR0[pEvent->n.u8Vector]);
3299 }
3300 else
3301 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3302 RT_NOREF(pVCpu);
3303
3304 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3305 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3306}
3307
3308
3309
3310/**
3311 * Converts any TRPM trap into a pending HM event. This is typically used when
3312 * entering from ring-3 (not longjmp returns).
3313 *
3314 * @param pVCpu The cross context virtual CPU structure.
3315 */
3316static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
3317{
3318 Assert(TRPMHasTrap(pVCpu));
3319 Assert(!pVCpu->hm.s.Event.fPending);
3320
3321 uint8_t uVector;
3322 TRPMEVENT enmTrpmEvent;
3323 uint32_t uErrCode;
3324 RTGCUINTPTR GCPtrFaultAddress;
3325 uint8_t cbInstr;
3326
3327 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
3328 AssertRC(rc);
3329
3330 SVMEVENT Event;
3331 Event.u = 0;
3332 Event.n.u1Valid = 1;
3333 Event.n.u8Vector = uVector;
3334
3335 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3336 if (enmTrpmEvent == TRPM_TRAP)
3337 {
3338 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3339 switch (uVector)
3340 {
3341 case X86_XCPT_NMI:
3342 {
3343 Event.n.u3Type = SVM_EVENT_NMI;
3344 break;
3345 }
3346
3347 case X86_XCPT_BP:
3348 case X86_XCPT_OF:
3349 AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
3350 RT_FALL_THRU();
3351
3352 case X86_XCPT_PF:
3353 case X86_XCPT_DF:
3354 case X86_XCPT_TS:
3355 case X86_XCPT_NP:
3356 case X86_XCPT_SS:
3357 case X86_XCPT_GP:
3358 case X86_XCPT_AC:
3359 {
3360 Event.n.u1ErrorCodeValid = 1;
3361 Event.n.u32ErrorCode = uErrCode;
3362 break;
3363 }
3364 }
3365 }
3366 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3367 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3368 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3369 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3370 else
3371 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3372
3373 rc = TRPMResetTrap(pVCpu);
3374 AssertRC(rc);
3375
3376 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3377 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3378
3379 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3380}
3381
3382
3383/**
3384 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3385 * AMD-V to execute any instruction.
3386 *
3387 * @param pVCpu The cross context virtual CPU structure.
3388 */
3389static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
3390{
3391 Assert(pVCpu->hm.s.Event.fPending);
3392 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3393
3394 SVMEVENT Event;
3395 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3396
3397 uint8_t uVector = Event.n.u8Vector;
3398 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
3399
3400 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
3401
3402 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3403 AssertRC(rc);
3404
3405 if (Event.n.u1ErrorCodeValid)
3406 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3407
3408 if ( enmTrapType == TRPM_TRAP
3409 && uVector == X86_XCPT_PF)
3410 {
3411 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3412 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3413 }
3414 else if (enmTrapType == TRPM_SOFTWARE_INT)
3415 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3416 pVCpu->hm.s.Event.fPending = false;
3417}
3418
3419
3420/**
3421 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3422 * now.
3423 *
3424 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3425 * @param pVCpu The cross context virtual CPU structure.
3426 *
3427 * @remarks No-long-jump zone!!!
3428 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3429 */
3430static bool hmR0SvmIsIntrShadowActive(PVMCPUCC pVCpu)
3431{
3432 /*
3433 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3434 * completes. Check if we should inhibit interrupts or clear any existing
3435 * interrupt inhibition.
3436 */
3437 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3438 {
3439 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3440 {
3441 /*
3442 * We can clear the inhibit force flag as even if we go back to the recompiler
3443 * without executing guest code in AMD-V, the flag's condition to be cleared is
3444 * met and thus the cleared state is correct.
3445 */
3446 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3447 return false;
3448 }
3449 return true;
3450 }
3451 return false;
3452}
3453
3454
3455/**
3456 * Sets the virtual interrupt intercept control in the VMCB.
3457 *
3458 * @param pVCpu The cross context virtual CPU structure.
3459 * @param pVmcb Pointer to the VM control block.
3460 */
3461static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3462{
3463 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3464
3465 /*
3466 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3467 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3468 * (updating ISR at the right time) and inject the interrupt.
3469 *
3470 * With AVIC is supported, we could make use of the asynchronously delivery without
3471 * #VMEXIT and we would be passing the AVIC page to SVM.
3472 *
3473 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3474 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3475 */
3476 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3477 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3478 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3479 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3480 Log4(("Set VINTR intercept\n"));
3481}
3482
3483
3484/**
3485 * Clears the virtual interrupt intercept control in the VMCB as
3486 * we are figured the guest is unable process any interrupts
3487 * at this point of time.
3488 *
3489 * @param pVCpu The cross context virtual CPU structure.
3490 * @param pVmcb Pointer to the VM control block.
3491 */
3492static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3493{
3494 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3495
3496 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3497 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3498 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3499 {
3500 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3501 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3502 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3503 Log4(("Cleared VINTR intercept\n"));
3504 }
3505}
3506
3507
3508/**
3509 * Evaluates the event to be delivered to the guest and sets it as the pending
3510 * event.
3511 *
3512 * @returns Strict VBox status code.
3513 * @param pVCpu The cross context virtual CPU structure.
3514 * @param pSvmTransient Pointer to the SVM transient structure.
3515 */
3516static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
3517{
3518 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3519 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3520 | CPUMCTX_EXTRN_RFLAGS
3521 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3522 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3523
3524 Assert(!pVCpu->hm.s.Event.fPending);
3525 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3526 Assert(pVmcb);
3527
3528 bool const fGif = CPUMGetGuestGif(pCtx);
3529 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3530 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3531
3532 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3533 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3534 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3535
3536 /** @todo SMI. SMIs take priority over NMIs. */
3537
3538 /*
3539 * Check if the guest or nested-guest can receive NMIs.
3540 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3541 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3542 */
3543 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3544 && !fBlockNmi)
3545 {
3546 if ( fGif
3547 && !fIntShadow)
3548 {
3549#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3550 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3551 {
3552 Log4(("Intercepting NMI -> #VMEXIT\n"));
3553 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3554 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3555 }
3556#endif
3557 Log4(("Setting NMI pending for injection\n"));
3558 SVMEVENT Event;
3559 Event.u = 0;
3560 Event.n.u1Valid = 1;
3561 Event.n.u8Vector = X86_XCPT_NMI;
3562 Event.n.u3Type = SVM_EVENT_NMI;
3563 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3564 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3565 }
3566 else if (!fGif)
3567 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3568 else if (!pSvmTransient->fIsNestedGuest)
3569 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3570 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3571 }
3572 /*
3573 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3574 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3575 * it from the APIC device.
3576 *
3577 * For nested-guests, physical interrupts always take priority over virtual interrupts.
3578 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3579 * do that work when we execute nested-guest code esp. since all the required information
3580 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3581 * the virtual interrupt controller.
3582 *
3583 * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3584 */
3585 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3586 && !pVCpu->hm.s.fSingleInstruction)
3587 {
3588 bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u32 & X86_EFL_IF)
3589 : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
3590 if ( fGif
3591 && !fBlockInt
3592 && !fIntShadow)
3593 {
3594#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3595 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3596 {
3597 Log4(("Intercepting INTR -> #VMEXIT\n"));
3598 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3599 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3600 }
3601#endif
3602 uint8_t u8Interrupt;
3603 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3604 if (RT_SUCCESS(rc))
3605 {
3606 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3607 SVMEVENT Event;
3608 Event.u = 0;
3609 Event.n.u1Valid = 1;
3610 Event.n.u8Vector = u8Interrupt;
3611 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3612 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3613 }
3614 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3615 {
3616 /*
3617 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3618 * updated eventually when the TPR is written by the guest.
3619 */
3620 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3621 }
3622 else
3623 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3624 }
3625 else if (!fGif)
3626 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3627 else if (!pSvmTransient->fIsNestedGuest)
3628 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3629 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3630 }
3631
3632 return VINF_SUCCESS;
3633}
3634
3635
3636/**
3637 * Injects any pending events into the guest (or nested-guest).
3638 *
3639 * @param pVCpu The cross context virtual CPU structure.
3640 * @param pVmcb Pointer to the VM control block.
3641 *
3642 * @remarks Must only be called when we are guaranteed to enter
3643 * hardware-assisted SVM execution and not return to ring-3
3644 * prematurely.
3645 */
3646static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3647{
3648 Assert(!TRPMHasTrap(pVCpu));
3649 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3650
3651 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3652#ifdef VBOX_STRICT
3653 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3654 bool const fGif = CPUMGetGuestGif(pCtx);
3655 bool fAllowInt = fGif;
3656 if (fGif)
3657 {
3658 /*
3659 * For nested-guests we have no way to determine if we're injecting a physical or
3660 * virtual interrupt at this point. Hence the partial verification below.
3661 */
3662 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3663 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3664 else
3665 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3666 }
3667#endif
3668
3669 if (pVCpu->hm.s.Event.fPending)
3670 {
3671 SVMEVENT Event;
3672 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3673 Assert(Event.n.u1Valid);
3674
3675 /*
3676 * Validate event injection pre-conditions.
3677 */
3678 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3679 {
3680 Assert(fAllowInt);
3681 Assert(!fIntShadow);
3682 }
3683 else if (Event.n.u3Type == SVM_EVENT_NMI)
3684 {
3685 Assert(fGif);
3686 Assert(!fIntShadow);
3687 }
3688
3689 /*
3690 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3691 * do this only when we are surely going to inject the NMI as otherwise if we return
3692 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3693 * SVM R0.
3694 *
3695 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3696 * which will set the VMCS field after actually delivering the NMI which we read on
3697 * VM-exit to determine the state.
3698 */
3699 if ( Event.n.u3Type == SVM_EVENT_NMI
3700 && Event.n.u8Vector == X86_XCPT_NMI
3701 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3702 {
3703 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3704 }
3705
3706 /*
3707 * Inject it (update VMCB for injection by the hardware).
3708 */
3709 Log4(("Injecting pending HM event\n"));
3710 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
3711 pVCpu->hm.s.Event.fPending = false;
3712
3713 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3714 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3715 else
3716 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3717 }
3718 else
3719 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
3720
3721 /*
3722 * We could have injected an NMI through IEM and continue guest execution using
3723 * hardware-assisted SVM. In which case, we would not have any events pending (above)
3724 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
3725 */
3726 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3727 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
3728
3729 /*
3730 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
3731 *
3732 * For nested-guests: We need to update it too for the scenario where IEM executes
3733 * the nested-guest but execution later continues here with an interrupt shadow active.
3734 */
3735 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
3736}
3737
3738
3739/**
3740 * Reports world-switch error and dumps some useful debug info.
3741 *
3742 * @param pVCpu The cross context virtual CPU structure.
3743 * @param rcVMRun The return code from VMRUN (or
3744 * VERR_SVM_INVALID_GUEST_STATE for invalid
3745 * guest-state).
3746 */
3747static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
3748{
3749 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3750 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
3751 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3752
3753 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3754 {
3755#ifdef VBOX_STRICT
3756 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
3757 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3758 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
3759 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3760 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3761 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3762 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3763 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3764 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3765 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3766 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3767 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3768
3769 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3770 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3771 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3772
3773 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3774 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3775 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
3776 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3777 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3778 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3779 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3780 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3781 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
3782 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
3783 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3784 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3785
3786 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
3787 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
3788 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3789 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3790 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3791 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3792 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3793 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3794 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3795 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3796 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3797 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
3798 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
3799 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
3800 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3801 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3802 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3803 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3804 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3805 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3806
3807 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3808
3809 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
3810 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
3811
3812 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3813 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3814 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3815 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3816 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3817 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3818 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3819 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3820 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3821 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3822 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3823 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3824 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3825 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3826 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3827 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3828 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3829 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3830 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3831 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3832
3833 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3834 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3835
3836 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3837 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3838 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3839 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3840
3841 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3842 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3843
3844 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3845 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3846 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3847 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3848
3849 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3850 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3851 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3852 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3853 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3854 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3855 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3856
3857 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3858 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3859 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3860 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3861
3862 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3863 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3864 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3865
3866 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3867 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3868 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3869 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3870 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3871 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3872 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
3873 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3874 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3875 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3876 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3877 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3878
3879 NOREF(pVmcb);
3880#endif /* VBOX_STRICT */
3881 }
3882 else
3883 Log4Func(("rcVMRun=%d\n", rcVMRun));
3884}
3885
3886
3887/**
3888 * Check per-VM and per-VCPU force flag actions that require us to go back to
3889 * ring-3 for one reason or another.
3890 *
3891 * @returns VBox status code (information status code included).
3892 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3893 * ring-3.
3894 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3895 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3896 * interrupts)
3897 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3898 * all EMTs to be in ring-3.
3899 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3900 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3901 * to the EM loop.
3902 *
3903 * @param pVCpu The cross context virtual CPU structure.
3904 */
3905static int hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
3906{
3907 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3908 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
3909
3910 /* Could happen as a result of longjump. */
3911 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3912 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
3913
3914 /* Update pending interrupts into the APIC's IRR. */
3915 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3916 APICUpdatePendingInterrupts(pVCpu);
3917
3918 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3919 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
3920 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3921 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
3922 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3923 {
3924 /* Pending PGM C3 sync. */
3925 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
3926 {
3927 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
3928 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3929 if (rc != VINF_SUCCESS)
3930 {
3931 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
3932 return rc;
3933 }
3934 }
3935
3936 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
3937 /* -XXX- what was that about single stepping? */
3938 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
3939 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3940 {
3941 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3942 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
3943 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
3944 return rc;
3945 }
3946
3947 /* Pending VM request packets, such as hardware interrupts. */
3948 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
3949 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
3950 {
3951 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
3952 Log4Func(("Pending VM request forcing us back to ring-3\n"));
3953 return VINF_EM_PENDING_REQUEST;
3954 }
3955
3956 /* Pending PGM pool flushes. */
3957 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
3958 {
3959 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
3960 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
3961 return VINF_PGM_POOL_FLUSH_PENDING;
3962 }
3963
3964 /* Pending DMA requests. */
3965 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
3966 {
3967 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
3968 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
3969 return VINF_EM_RAW_TO_R3;
3970 }
3971 }
3972
3973 return VINF_SUCCESS;
3974}
3975
3976
3977/**
3978 * Does the preparations before executing guest code in AMD-V.
3979 *
3980 * This may cause longjmps to ring-3 and may even result in rescheduling to the
3981 * recompiler. We must be cautious what we do here regarding committing
3982 * guest-state information into the VMCB assuming we assuredly execute the guest
3983 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
3984 * clearing the common-state (TRPM/forceflags), we must undo those changes so
3985 * that the recompiler can (and should) use them when it resumes guest
3986 * execution. Otherwise such operations must be done when we can no longer
3987 * exit to ring-3.
3988 *
3989 * @returns VBox status code (informational status codes included).
3990 * @retval VINF_SUCCESS if we can proceed with running the guest.
3991 * @retval VINF_* scheduling changes, we have to go back to ring-3.
3992 *
3993 * @param pVCpu The cross context virtual CPU structure.
3994 * @param pSvmTransient Pointer to the SVM transient structure.
3995 */
3996static int hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
3997{
3998 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3999
4000#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4001 if (pSvmTransient->fIsNestedGuest)
4002 {
4003 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4004 return VINF_EM_RESCHEDULE_REM;
4005 }
4006#endif
4007
4008 /* Check force flag actions that might require us to go back to ring-3. */
4009 int rc = hmR0SvmCheckForceFlags(pVCpu);
4010 if (rc != VINF_SUCCESS)
4011 return rc;
4012
4013 if (TRPMHasTrap(pVCpu))
4014 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4015 else if (!pVCpu->hm.s.Event.fPending)
4016 {
4017 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
4018 if ( rcStrict != VINF_SUCCESS
4019 || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4020 {
4021 /* If a nested-guest VM-exit occurred, bail. */
4022 if (pSvmTransient->fIsNestedGuest)
4023 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4024 return VBOXSTRICTRC_VAL(rcStrict);
4025 }
4026 }
4027
4028 /*
4029 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4030 * Just do it in software, see @bugref{8411}.
4031 * NB: If we could continue a task switch exit we wouldn't need to do this.
4032 */
4033 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4034 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
4035 && pVCpu->hm.s.Event.fPending
4036 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4037 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4038
4039#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4040 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4041 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4042#endif
4043
4044#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4045 /*
4046 * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
4047 */
4048 if (pSvmTransient->fIsNestedGuest)
4049 hmR0SvmSetupVmcbNested(pVCpu);
4050#endif
4051
4052 /*
4053 * Export the guest state bits that are not shared with the host in any way as we can
4054 * longjmp or get preempted in the midst of exporting some of the state.
4055 */
4056 rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
4057 AssertRCReturn(rc, rc);
4058 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4059
4060 /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
4061 Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4062
4063 /*
4064 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4065 * world-switch so we can update it on the way back if the guest changed the TPR.
4066 */
4067 if (pVCpu->hm.s.svm.fSyncVTpr)
4068 {
4069 Assert(!pSvmTransient->fIsNestedGuest);
4070 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4071 if (pVM->hm.s.fTPRPatchingActive)
4072 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4073 else
4074 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4075 }
4076
4077 /*
4078 * No longjmps to ring-3 from this point on!!!
4079 *
4080 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4081 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4082 */
4083 VMMRZCallRing3Disable(pVCpu);
4084
4085 /*
4086 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4087 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4088 * preemption disabled for a while. Since this is purly to aid the
4089 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4090 * disable interrupt on NT.
4091 *
4092 * We need to check for force-flags that could've possible been altered since we last
4093 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4094 * see @bugref{6398}).
4095 *
4096 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4097 * to ring-3 before executing guest code.
4098 */
4099 pSvmTransient->fEFlags = ASMIntDisableFlags();
4100 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4101 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4102 {
4103 ASMSetFlags(pSvmTransient->fEFlags);
4104 VMMRZCallRing3Enable(pVCpu);
4105 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4106 return VINF_EM_RAW_TO_R3;
4107 }
4108 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4109 {
4110 ASMSetFlags(pSvmTransient->fEFlags);
4111 VMMRZCallRing3Enable(pVCpu);
4112 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4113 return VINF_EM_RAW_INTERRUPT;
4114 }
4115
4116 return VINF_SUCCESS;
4117}
4118
4119
4120/**
4121 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4122 * doing so.
4123 *
4124 * This means there is no backing out to ring-3 or anywhere else at this point.
4125 *
4126 * @param pVCpu The cross context virtual CPU structure.
4127 * @param pSvmTransient Pointer to the SVM transient structure.
4128 *
4129 * @remarks Called with preemption disabled.
4130 * @remarks No-long-jump zone!!!
4131 */
4132static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4133{
4134 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4135 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4136 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4137
4138 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4139 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4140
4141 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4142 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4143
4144 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4145
4146 if (!CPUMIsGuestFPUStateActive(pVCpu))
4147 {
4148 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4149 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4150 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4151 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4152 }
4153
4154 /* Load the state shared between host and guest (FPU, debug). */
4155 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4156 hmR0SvmExportSharedState(pVCpu, pVmcb);
4157
4158 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4159 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4160
4161 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4162 RTCPUID const idHostCpu = pHostCpu->idCpu;
4163 bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
4164
4165 /* Setup TSC offsetting. */
4166 if ( pSvmTransient->fUpdateTscOffsetting
4167 || fMigratedHostCpu)
4168 {
4169 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4170 pSvmTransient->fUpdateTscOffsetting = false;
4171 }
4172
4173 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
4174 if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
4175 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4176 else
4177 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4178
4179 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4180 if (fMigratedHostCpu)
4181 pVmcb->ctrl.u32VmcbCleanBits = 0;
4182
4183 /* Store status of the shared guest-host state at the time of VMRUN. */
4184 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4185 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4186
4187#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4188 uint8_t *pbMsrBitmap;
4189 if (!pSvmTransient->fIsNestedGuest)
4190 pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4191 else
4192 {
4193 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4194
4195 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4196 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4197 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4198 }
4199#else
4200 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4201#endif
4202
4203 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4204 /* Flush the appropriate tagged-TLB entries. */
4205 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4206 Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
4207
4208 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4209
4210 TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
4211 to start executing. */
4212
4213 /*
4214 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4215 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4216 *
4217 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4218 */
4219 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4220 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4221 {
4222 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4223 pVCpu->hm.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4224 if (uGuestTscAux != pVCpu->hm.s.svm.u64HostTscAux)
4225 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4226 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4227 pSvmTransient->fRestoreTscAuxMsr = true;
4228 }
4229 else
4230 {
4231 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4232 pSvmTransient->fRestoreTscAuxMsr = false;
4233 }
4234 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4235
4236 /*
4237 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4238 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4239 * from the VMCB.
4240 */
4241 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
4242 if (!fSupportsVmcbCleanBits)
4243 pVmcb->ctrl.u32VmcbCleanBits = 0;
4244}
4245
4246
4247/**
4248 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4249 *
4250 * @returns VBox strict status code.
4251 * @param pVCpu The cross context virtual CPU structure.
4252 * @param HCPhysVmcb The host physical address of the VMCB.
4253 *
4254 * @remarks No-long-jump zone!!!
4255 */
4256DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
4257{
4258 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4259 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4260 pCtx->fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4261
4262 /*
4263 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4264 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4265 * callee-saved and thus the need for this XMM wrapper.
4266 *
4267 * Refer MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4268 */
4269 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4270#ifdef VBOX_WITH_KERNEL_USING_XMM
4271 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun);
4272#else
4273 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, HCPhysVmcb, pCtx, pVM, pVCpu);
4274#endif
4275}
4276
4277
4278/**
4279 * Performs some essential restoration of state after running guest (or
4280 * nested-guest) code in AMD-V.
4281 *
4282 * @param pVCpu The cross context virtual CPU structure.
4283 * @param pSvmTransient Pointer to the SVM transient structure.
4284 * @param rcVMRun Return code of VMRUN.
4285 *
4286 * @remarks Called with interrupts disabled.
4287 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4288 * unconditionally when it is safe to do so.
4289 */
4290static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4291{
4292 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4293
4294 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4295 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4296 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4297
4298 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4299 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4300
4301 /* TSC read must be done early for maximum accuracy. */
4302 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4303 {
4304 if (!pSvmTransient->fIsNestedGuest)
4305 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4306#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4307 else
4308 {
4309 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4310 uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4311 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4312 }
4313#endif
4314 }
4315
4316 if (pSvmTransient->fRestoreTscAuxMsr)
4317 {
4318 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4319 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4320 if (u64GuestTscAuxMsr != pVCpu->hm.s.svm.u64HostTscAux)
4321 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.svm.u64HostTscAux);
4322 }
4323
4324 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4325 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4326 TMNotifyEndOfExecution(pVM, pVCpu); /* Notify TM that the guest is no longer running. */
4327 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4328
4329 Assert(!(ASMGetFlags() & X86_EFL_IF));
4330 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4331 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4332
4333 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4334 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4335 {
4336 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4337 return;
4338 }
4339
4340 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4341 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4342 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4343 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4344
4345#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4346 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4347 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4348#else
4349 /*
4350 * Always import the following:
4351 *
4352 * - RIP for exit optimizations and evaluating event injection on re-entry.
4353 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4354 * state on preemption.
4355 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4356 * - CS for exit optimizations.
4357 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4358 * assembly switcher code.
4359 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4360 */
4361 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4362 | CPUMCTX_EXTRN_RFLAGS
4363 | CPUMCTX_EXTRN_RAX
4364 | CPUMCTX_EXTRN_RSP
4365 | CPUMCTX_EXTRN_CS
4366 | CPUMCTX_EXTRN_HWVIRT
4367 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4368 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4369 | HMSVM_CPUMCTX_SHARED_STATE);
4370#endif
4371
4372 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4373 && pVCpu->hm.s.svm.fSyncVTpr)
4374 {
4375 Assert(!pSvmTransient->fIsNestedGuest);
4376 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4377 if ( pVM->hm.s.fTPRPatchingActive
4378 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4379 {
4380 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4381 AssertRC(rc);
4382 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4383 }
4384 /* Sync TPR when we aren't intercepting CR8 writes. */
4385 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4386 {
4387 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4388 AssertRC(rc);
4389 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4390 }
4391 }
4392
4393#ifdef DEBUG_ramshankar
4394 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4395 {
4396 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4397 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4398 0 /* uVerbose */);
4399 }
4400#endif
4401
4402 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4403 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4404 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4405}
4406
4407
4408/**
4409 * Runs the guest code using AMD-V.
4410 *
4411 * @returns VBox status code.
4412 * @param pVCpu The cross context virtual CPU structure.
4413 * @param pcLoops Pointer to the number of executed loops.
4414 */
4415static int hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
4416{
4417 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4418 Assert(pcLoops);
4419 Assert(*pcLoops <= cMaxResumeLoops);
4420
4421 SVMTRANSIENT SvmTransient;
4422 RT_ZERO(SvmTransient);
4423 SvmTransient.fUpdateTscOffsetting = true;
4424 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4425
4426 int rc = VERR_INTERNAL_ERROR_5;
4427 for (;;)
4428 {
4429 Assert(!HMR0SuspendPending());
4430 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4431
4432 /* Preparatory work for running nested-guest code, this may force us to return to
4433 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4434 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4435 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4436 if (rc != VINF_SUCCESS)
4437 break;
4438
4439 /*
4440 * No longjmps to ring-3 from this point on!!!
4441 *
4442 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4443 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4444 */
4445 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4446 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4447
4448 /* Restore any residual host-state and save any bits shared between host and guest
4449 into the guest-CPU state. Re-enables interrupts! */
4450 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4451
4452 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4453 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4454 {
4455 if (rc == VINF_SUCCESS)
4456 rc = VERR_SVM_INVALID_GUEST_STATE;
4457 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4458 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4459 break;
4460 }
4461
4462 /* Handle the #VMEXIT. */
4463 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4464 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4465 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4466 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4467 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4468 if (rc != VINF_SUCCESS)
4469 break;
4470 if (++(*pcLoops) >= cMaxResumeLoops)
4471 {
4472 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4473 rc = VINF_EM_RAW_INTERRUPT;
4474 break;
4475 }
4476 }
4477
4478 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4479 return rc;
4480}
4481
4482
4483/**
4484 * Runs the guest code using AMD-V in single step mode.
4485 *
4486 * @returns VBox status code.
4487 * @param pVCpu The cross context virtual CPU structure.
4488 * @param pcLoops Pointer to the number of executed loops.
4489 */
4490static int hmR0SvmRunGuestCodeStep(PVMCPUCC pVCpu, uint32_t *pcLoops)
4491{
4492 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
4493 Assert(pcLoops);
4494 Assert(*pcLoops <= cMaxResumeLoops);
4495
4496 SVMTRANSIENT SvmTransient;
4497 RT_ZERO(SvmTransient);
4498 SvmTransient.fUpdateTscOffsetting = true;
4499 SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
4500
4501 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4502 uint16_t uCsStart = pCtx->cs.Sel;
4503 uint64_t uRipStart = pCtx->rip;
4504
4505 int rc = VERR_INTERNAL_ERROR_5;
4506 for (;;)
4507 {
4508 Assert(!HMR0SuspendPending());
4509 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4510 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4511 (unsigned)RTMpCpuId(), *pcLoops));
4512
4513 /* Preparatory work for running nested-guest code, this may force us to return to
4514 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4515 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4516 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4517 if (rc != VINF_SUCCESS)
4518 break;
4519
4520 /*
4521 * No longjmps to ring-3 from this point on!!!
4522 *
4523 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4524 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4525 */
4526 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4527
4528 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hm.s.svm.HCPhysVmcb);
4529
4530 /* Restore any residual host-state and save any bits shared between host and guest
4531 into the guest-CPU state. Re-enables interrupts! */
4532 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4533
4534 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4535 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4536 {
4537 if (rc == VINF_SUCCESS)
4538 rc = VERR_SVM_INVALID_GUEST_STATE;
4539 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4540 hmR0SvmReportWorldSwitchError(pVCpu, rc);
4541 return rc;
4542 }
4543
4544 /* Handle the #VMEXIT. */
4545 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4546 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4547 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4548 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4549 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4550 if (rc != VINF_SUCCESS)
4551 break;
4552 if (++(*pcLoops) >= cMaxResumeLoops)
4553 {
4554 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4555 rc = VINF_EM_RAW_INTERRUPT;
4556 break;
4557 }
4558
4559 /*
4560 * Did the RIP change, if so, consider it a single step.
4561 * Otherwise, make sure one of the TFs gets set.
4562 */
4563 if ( pCtx->rip != uRipStart
4564 || pCtx->cs.Sel != uCsStart)
4565 {
4566 rc = VINF_EM_DBG_STEPPED;
4567 break;
4568 }
4569 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4570 }
4571
4572 /*
4573 * Clear the X86_EFL_TF if necessary.
4574 */
4575 if (pVCpu->hm.s.fClearTrapFlag)
4576 {
4577 pVCpu->hm.s.fClearTrapFlag = false;
4578 pCtx->eflags.Bits.u1TF = 0;
4579 }
4580
4581 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4582 return rc;
4583}
4584
4585#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4586/**
4587 * Runs the nested-guest code using AMD-V.
4588 *
4589 * @returns VBox status code.
4590 * @param pVCpu The cross context virtual CPU structure.
4591 * @param pcLoops Pointer to the number of executed loops. If we're switching
4592 * from the guest-code execution loop to this nested-guest
4593 * execution loop pass the remainder value, else pass 0.
4594 */
4595static int hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
4596{
4597 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4598 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4599 Assert(pcLoops);
4600 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops);
4601
4602 SVMTRANSIENT SvmTransient;
4603 RT_ZERO(SvmTransient);
4604 SvmTransient.fUpdateTscOffsetting = true;
4605 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4606 SvmTransient.fIsNestedGuest = true;
4607
4608 int rc = VERR_INTERNAL_ERROR_4;
4609 for (;;)
4610 {
4611 Assert(!HMR0SuspendPending());
4612 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4613
4614 /* Preparatory work for running nested-guest code, this may force us to return to
4615 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4616 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4617 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4618 if ( rc != VINF_SUCCESS
4619 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4620 break;
4621
4622 /*
4623 * No longjmps to ring-3 from this point on!!!
4624 *
4625 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4626 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4627 */
4628 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4629
4630 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
4631
4632 /* Restore any residual host-state and save any bits shared between host and guest
4633 into the guest-CPU state. Re-enables interrupts! */
4634 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4635
4636 if (RT_LIKELY( rc == VINF_SUCCESS
4637 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
4638 { /* extremely likely */ }
4639 else
4640 {
4641 /* VMRUN failed, shouldn't really happen, Guru. */
4642 if (rc != VINF_SUCCESS)
4643 break;
4644
4645 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
4646 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4647 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
4648 rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
4649 break;
4650 }
4651
4652 /* Handle the #VMEXIT. */
4653 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4654 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4655 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
4656 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
4657 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4658 if (rc == VINF_SUCCESS)
4659 {
4660 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4661 {
4662 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4663 rc = VINF_SVM_VMEXIT;
4664 }
4665 else
4666 {
4667 if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
4668 continue;
4669 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4670 rc = VINF_EM_RAW_INTERRUPT;
4671 }
4672 }
4673 else
4674 Assert(rc != VINF_SVM_VMEXIT);
4675 break;
4676 /** @todo NSTSVM: handle single-stepping. */
4677 }
4678
4679 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4680 return rc;
4681}
4682#endif
4683
4684
4685/**
4686 * Runs the guest code using AMD-V.
4687 *
4688 * @returns Strict VBox status code.
4689 * @param pVCpu The cross context virtual CPU structure.
4690 */
4691VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
4692{
4693 AssertPtr(pVCpu);
4694 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4695 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4696 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4697 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4698
4699 uint32_t cLoops = 0;
4700 int rc;
4701 for (;;)
4702 {
4703#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4704 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
4705#else
4706 NOREF(pCtx);
4707 bool const fInNestedGuestMode = false;
4708#endif
4709 if (!fInNestedGuestMode)
4710 {
4711 if (!pVCpu->hm.s.fSingleInstruction)
4712 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
4713 else
4714 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
4715 }
4716#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4717 else
4718 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
4719
4720 if (rc == VINF_SVM_VMRUN)
4721 {
4722 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4723 continue;
4724 }
4725 if (rc == VINF_SVM_VMEXIT)
4726 {
4727 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4728 continue;
4729 }
4730#endif
4731 break;
4732 }
4733
4734 /* Fixup error codes. */
4735 if (rc == VERR_EM_INTERPRETER)
4736 rc = VINF_EM_RAW_EMULATE_INSTR;
4737 else if (rc == VINF_EM_RESET)
4738 rc = VINF_EM_TRIPLE_FAULT;
4739
4740 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4741 rc = hmR0SvmExitToRing3(pVCpu, rc);
4742 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4743 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
4744 return rc;
4745}
4746
4747
4748#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4749/**
4750 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
4751 *
4752 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4753 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4754 */
4755static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4756{
4757 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4758 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4759 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4760 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4761 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
4762 const bool fRep = pIoExitInfo->n.u1Rep;
4763 const bool fStrIo = pIoExitInfo->n.u1Str;
4764
4765 return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4766 NULL /* pIoExitInfo */);
4767}
4768
4769
4770/**
4771 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4772 * SVM_EXIT_INVALID).
4773 *
4774 * @returns VBox status code (informational status codes included).
4775 * @param pVCpu The cross context virtual CPU structure.
4776 * @param pSvmTransient Pointer to the SVM transient structure.
4777 */
4778static int hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4779{
4780 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4781 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4782 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4783
4784 /*
4785 * We import the complete state here because we use separate VMCBs for the guest and the
4786 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
4787 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
4788 */
4789#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4790 do { \
4791 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
4792 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2))); \
4793 } while (0)
4794
4795 /*
4796 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
4797 * nested-guest. If it isn't, it should be handled by the (outer) guest.
4798 */
4799 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
4800 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4801 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4802 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4803 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4804 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4805
4806 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4807 switch (uExitCode)
4808 {
4809 case SVM_EXIT_CPUID:
4810 {
4811 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
4812 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4813 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
4814 }
4815
4816 case SVM_EXIT_RDTSC:
4817 {
4818 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
4819 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4820 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
4821 }
4822
4823 case SVM_EXIT_RDTSCP:
4824 {
4825 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
4826 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4827 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
4828 }
4829
4830 case SVM_EXIT_MONITOR:
4831 {
4832 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
4833 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4834 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
4835 }
4836
4837 case SVM_EXIT_MWAIT:
4838 {
4839 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
4840 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4841 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
4842 }
4843
4844 case SVM_EXIT_HLT:
4845 {
4846 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
4847 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4848 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
4849 }
4850
4851 case SVM_EXIT_MSR:
4852 {
4853 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
4854 {
4855 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
4856 uint16_t offMsrpm;
4857 uint8_t uMsrpmBit;
4858 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4859 if (RT_SUCCESS(rc))
4860 {
4861 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
4862 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
4863
4864 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4865 pbMsrBitmap += offMsrpm;
4866 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
4867 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
4868
4869 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4870 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4871 {
4872 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4873 }
4874 }
4875 else
4876 {
4877 /*
4878 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4879 * See AMD-V spec. "15.11 MSR Intercepts".
4880 */
4881 Assert(rc == VERR_OUT_OF_RANGE);
4882 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4883 }
4884 }
4885 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
4886 }
4887
4888 case SVM_EXIT_IOIO:
4889 {
4890 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
4891 {
4892 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
4893 SVMIOIOEXITINFO IoExitInfo;
4894 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4895 bool const fIntercept = hmR0SvmIsIoInterceptSet(pvIoBitmap, &IoExitInfo);
4896 if (fIntercept)
4897 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4898 }
4899 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
4900 }
4901
4902 case SVM_EXIT_XCPT_PF:
4903 {
4904 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4905 if (pVM->hm.s.fNestedPaging)
4906 {
4907 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4908 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4909
4910 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4911 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
4912 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4913
4914 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
4915 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
4916 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
4917 return VINF_SUCCESS;
4918 }
4919 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
4920 }
4921
4922 case SVM_EXIT_XCPT_UD:
4923 {
4924 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
4925 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4926 hmR0SvmSetPendingXcptUD(pVCpu);
4927 return VINF_SUCCESS;
4928 }
4929
4930 case SVM_EXIT_XCPT_MF:
4931 {
4932 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
4933 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4934 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
4935 }
4936
4937 case SVM_EXIT_XCPT_DB:
4938 {
4939 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
4940 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4941 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
4942 }
4943
4944 case SVM_EXIT_XCPT_AC:
4945 {
4946 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
4947 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4948 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
4949 }
4950
4951 case SVM_EXIT_XCPT_BP:
4952 {
4953 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
4954 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4955 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
4956 }
4957
4958 case SVM_EXIT_READ_CR0:
4959 case SVM_EXIT_READ_CR3:
4960 case SVM_EXIT_READ_CR4:
4961 {
4962 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
4963 if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
4964 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4965 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
4966 }
4967
4968 case SVM_EXIT_CR0_SEL_WRITE:
4969 {
4970 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
4971 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4972 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
4973 }
4974
4975 case SVM_EXIT_WRITE_CR0:
4976 case SVM_EXIT_WRITE_CR3:
4977 case SVM_EXIT_WRITE_CR4:
4978 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
4979 {
4980 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
4981 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
4982
4983 if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
4984 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4985 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
4986 }
4987
4988 case SVM_EXIT_PAUSE:
4989 {
4990 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
4991 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4992 return hmR0SvmExitPause(pVCpu, pSvmTransient);
4993 }
4994
4995 case SVM_EXIT_VINTR:
4996 {
4997 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
4998 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4999 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5000 }
5001
5002 case SVM_EXIT_INTR:
5003 case SVM_EXIT_NMI:
5004 case SVM_EXIT_SMI:
5005 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5006 {
5007 /*
5008 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5009 *
5010 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5011 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5012 * nested-guest #VMEXIT.
5013 *
5014 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5015 * while trying to inject interrupts, see comment at the top of this function.
5016 */
5017 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5018 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5019 }
5020
5021 case SVM_EXIT_FERR_FREEZE:
5022 {
5023 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5024 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5025 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5026 }
5027
5028 case SVM_EXIT_INVLPG:
5029 {
5030 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5031 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5032 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5033 }
5034
5035 case SVM_EXIT_WBINVD:
5036 {
5037 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5038 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5039 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5040 }
5041
5042 case SVM_EXIT_INVD:
5043 {
5044 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5045 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5046 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5047 }
5048
5049 case SVM_EXIT_RDPMC:
5050 {
5051 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5052 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5053 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5054 }
5055
5056 default:
5057 {
5058 switch (uExitCode)
5059 {
5060 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5061 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5062 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5063 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5064 {
5065 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5066 if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5067 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5068 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5069 }
5070
5071 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5072 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5073 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5074 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5075 {
5076 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5077 if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5078 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5079 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5080 }
5081
5082 case SVM_EXIT_XCPT_DE:
5083 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5084 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5085 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5086 case SVM_EXIT_XCPT_OF:
5087 case SVM_EXIT_XCPT_BR:
5088 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5089 case SVM_EXIT_XCPT_NM:
5090 case SVM_EXIT_XCPT_DF:
5091 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5092 case SVM_EXIT_XCPT_TS:
5093 case SVM_EXIT_XCPT_NP:
5094 case SVM_EXIT_XCPT_SS:
5095 case SVM_EXIT_XCPT_GP:
5096 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5097 case SVM_EXIT_XCPT_15: /* Reserved. */
5098 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5099 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5100 case SVM_EXIT_XCPT_MC:
5101 case SVM_EXIT_XCPT_XF:
5102 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5103 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5104 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5105 {
5106 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5107 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5108 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5109 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5110 }
5111
5112 case SVM_EXIT_XSETBV:
5113 {
5114 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5115 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5116 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5117 }
5118
5119 case SVM_EXIT_TASK_SWITCH:
5120 {
5121 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5122 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5123 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5124 }
5125
5126 case SVM_EXIT_IRET:
5127 {
5128 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5129 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5130 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5131 }
5132
5133 case SVM_EXIT_SHUTDOWN:
5134 {
5135 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5136 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5137 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5138 }
5139
5140 case SVM_EXIT_VMMCALL:
5141 {
5142 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5143 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5144 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5145 }
5146
5147 case SVM_EXIT_CLGI:
5148 {
5149 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5150 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5151 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5152 }
5153
5154 case SVM_EXIT_STGI:
5155 {
5156 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5157 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5158 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5159 }
5160
5161 case SVM_EXIT_VMLOAD:
5162 {
5163 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5164 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5165 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5166 }
5167
5168 case SVM_EXIT_VMSAVE:
5169 {
5170 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5171 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5172 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5173 }
5174
5175 case SVM_EXIT_INVLPGA:
5176 {
5177 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5178 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5179 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5180 }
5181
5182 case SVM_EXIT_VMRUN:
5183 {
5184 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5185 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5186 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5187 }
5188
5189 case SVM_EXIT_RSM:
5190 {
5191 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5192 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5193 hmR0SvmSetPendingXcptUD(pVCpu);
5194 return VINF_SUCCESS;
5195 }
5196
5197 case SVM_EXIT_SKINIT:
5198 {
5199 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5200 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5201 hmR0SvmSetPendingXcptUD(pVCpu);
5202 return VINF_SUCCESS;
5203 }
5204
5205 case SVM_EXIT_NPF:
5206 {
5207 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5208 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5209 }
5210
5211 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5212 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5213
5214 default:
5215 {
5216 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5217 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5218 return VERR_SVM_UNKNOWN_EXIT;
5219 }
5220 }
5221 }
5222 }
5223 /* not reached */
5224
5225#undef NST_GST_VMEXIT_CALL_RET
5226}
5227#endif
5228
5229
5230/**
5231 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5232 *
5233 * @returns VBox status code (informational status codes included).
5234 * @param pVCpu The cross context virtual CPU structure.
5235 * @param pSvmTransient Pointer to the SVM transient structure.
5236 */
5237static int hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5238{
5239 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5240 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5241
5242#ifdef DEBUG_ramshankar
5243# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5244 do { \
5245 if ((a_fDbg) == 1) \
5246 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5247 int rc = a_CallExpr; \
5248 if ((a_fDbg) == 1) \
5249 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5250 return rc; \
5251 } while (0)
5252#else
5253# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5254#endif
5255
5256 /*
5257 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5258 * for most guests under normal workloads (for some definition of "normal").
5259 */
5260 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5261 switch (uExitCode)
5262 {
5263 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5264 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5265 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5266 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5267 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5268 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5269 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5270 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5271 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5272 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5273
5274 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5275 case SVM_EXIT_INTR:
5276 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5277
5278 case SVM_EXIT_READ_CR0:
5279 case SVM_EXIT_READ_CR3:
5280 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5281
5282 case SVM_EXIT_CR0_SEL_WRITE:
5283 case SVM_EXIT_WRITE_CR0:
5284 case SVM_EXIT_WRITE_CR3:
5285 case SVM_EXIT_WRITE_CR4:
5286 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5287
5288 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5289 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5290 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5291 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5292 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5293 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5294 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5295 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5296 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5297 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5298 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5299 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5300 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5301 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5302 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5303 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5304
5305 default:
5306 {
5307 switch (pSvmTransient->u64ExitCode)
5308 {
5309 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5310 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5311 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5312 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5313 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5314
5315 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5316 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5317 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5318 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5319 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5320
5321 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5322 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5323
5324 case SVM_EXIT_SMI:
5325 case SVM_EXIT_INIT:
5326 {
5327 /*
5328 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5329 * If it ever does, we want to know about it so log the exit code and bail.
5330 */
5331 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5332 }
5333
5334#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5335 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5336 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5337 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5338 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5339 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5340 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5341#else
5342 case SVM_EXIT_CLGI:
5343 case SVM_EXIT_STGI:
5344 case SVM_EXIT_VMLOAD:
5345 case SVM_EXIT_VMSAVE:
5346 case SVM_EXIT_INVLPGA:
5347 case SVM_EXIT_VMRUN:
5348#endif
5349 case SVM_EXIT_RSM:
5350 case SVM_EXIT_SKINIT:
5351 {
5352 hmR0SvmSetPendingXcptUD(pVCpu);
5353 return VINF_SUCCESS;
5354 }
5355
5356#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5357 case SVM_EXIT_XCPT_DE:
5358 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5359 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5360 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5361 case SVM_EXIT_XCPT_OF:
5362 case SVM_EXIT_XCPT_BR:
5363 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5364 case SVM_EXIT_XCPT_NM:
5365 case SVM_EXIT_XCPT_DF:
5366 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5367 case SVM_EXIT_XCPT_TS:
5368 case SVM_EXIT_XCPT_NP:
5369 case SVM_EXIT_XCPT_SS:
5370 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5371 /* SVM_EXIT_XCPT_PF: */
5372 case SVM_EXIT_XCPT_15: /* Reserved. */
5373 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5374 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5375 case SVM_EXIT_XCPT_MC:
5376 case SVM_EXIT_XCPT_XF:
5377 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5378 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5379 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5380 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5381#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5382
5383 default:
5384 {
5385 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5386 pVCpu->hm.s.u32HMError = uExitCode;
5387 return VERR_SVM_UNKNOWN_EXIT;
5388 }
5389 }
5390 }
5391 }
5392 /* not reached */
5393#undef VMEXIT_CALL_RET
5394}
5395
5396
5397#ifdef VBOX_STRICT
5398/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5399# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5400 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5401
5402# define HMSVM_ASSERT_PREEMPT_CPUID() \
5403 do \
5404 { \
5405 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5406 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5407 } while (0)
5408
5409# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5410 do { \
5411 AssertPtr((a_pVCpu)); \
5412 AssertPtr((a_pSvmTransient)); \
5413 Assert(ASMIntAreEnabled()); \
5414 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5415 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5416 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5417 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5418 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5419 HMSVM_ASSERT_PREEMPT_CPUID(); \
5420 } while (0)
5421#else
5422# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5423 do { \
5424 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5425 } while (0)
5426#endif
5427
5428
5429/**
5430 * Gets the IEM exception flags for the specified SVM event.
5431 *
5432 * @returns The IEM exception flags.
5433 * @param pEvent Pointer to the SVM event.
5434 *
5435 * @remarks This function currently only constructs flags required for
5436 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5437 * and CR2 aspects of an exception are not included).
5438 */
5439static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5440{
5441 uint8_t const uEventType = pEvent->n.u3Type;
5442 uint32_t fIemXcptFlags;
5443 switch (uEventType)
5444 {
5445 case SVM_EVENT_EXCEPTION:
5446 /*
5447 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5448 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5449 */
5450 if (pEvent->n.u8Vector == X86_XCPT_BP)
5451 {
5452 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5453 break;
5454 }
5455 if (pEvent->n.u8Vector == X86_XCPT_OF)
5456 {
5457 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5458 break;
5459 }
5460 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5461 RT_FALL_THRU();
5462 case SVM_EVENT_NMI:
5463 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5464 break;
5465
5466 case SVM_EVENT_EXTERNAL_IRQ:
5467 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5468 break;
5469
5470 case SVM_EVENT_SOFTWARE_INT:
5471 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5472 break;
5473
5474 default:
5475 fIemXcptFlags = 0;
5476 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5477 break;
5478 }
5479 return fIemXcptFlags;
5480}
5481
5482
5483/**
5484 * Handle a condition that occurred while delivering an event through the guest
5485 * IDT.
5486 *
5487 * @returns VBox status code (informational error codes included).
5488 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5489 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5490 * continue execution of the guest which will delivery the \#DF.
5491 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5492 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5493 *
5494 * @param pVCpu The cross context virtual CPU structure.
5495 * @param pSvmTransient Pointer to the SVM transient structure.
5496 *
5497 * @remarks No-long-jump zone!!!
5498 */
5499static int hmR0SvmCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5500{
5501 int rc = VINF_SUCCESS;
5502 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5503 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5504
5505 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5506 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5507 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5508
5509 /*
5510 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5511 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5512 *
5513 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5514 */
5515 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5516 {
5517 IEMXCPTRAISE enmRaise;
5518 IEMXCPTRAISEINFO fRaiseInfo;
5519 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5520 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5521 if (fExitIsHwXcpt)
5522 {
5523 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5524 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5525 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5526 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5527 }
5528 else
5529 {
5530 /*
5531 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5532 * then we end up here.
5533 *
5534 * If the event was:
5535 * - a software interrupt, we can re-execute the instruction which will
5536 * regenerate the event.
5537 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5538 * - a hardware exception or external interrupt, we re-inject it.
5539 */
5540 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5541 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5542 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5543 else
5544 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5545 }
5546
5547 switch (enmRaise)
5548 {
5549 case IEMXCPTRAISE_CURRENT_XCPT:
5550 case IEMXCPTRAISE_PREV_EVENT:
5551 {
5552 /* For software interrupts, we shall re-execute the instruction. */
5553 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5554 {
5555 RTGCUINTPTR GCPtrFaultAddress = 0;
5556
5557 /* If we are re-injecting an NMI, clear NMI blocking. */
5558 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5559 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5560
5561 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5562 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5563 {
5564 pSvmTransient->fVectoringPF = true;
5565 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5566 pVCpu->cpum.GstCtx.cr2));
5567 }
5568 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5569 && uIdtVector == X86_XCPT_PF)
5570 {
5571 /*
5572 * If the previous exception was a #PF, we need to recover the CR2 value.
5573 * This can't happen with shadow paging.
5574 */
5575 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5576 }
5577
5578 /*
5579 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5580 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5581 */
5582 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5583 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
5584 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5585
5586 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5587 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5588 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5589 }
5590 break;
5591 }
5592
5593 case IEMXCPTRAISE_REEXEC_INSTR:
5594 {
5595 Assert(rc == VINF_SUCCESS);
5596 break;
5597 }
5598
5599 case IEMXCPTRAISE_DOUBLE_FAULT:
5600 {
5601 /*
5602 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5603 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5604 * converted into a #DF.
5605 */
5606 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5607 {
5608 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
5609 pSvmTransient->fVectoringDoublePF = true;
5610 Assert(rc == VINF_SUCCESS);
5611 }
5612 else
5613 {
5614 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
5615 hmR0SvmSetPendingXcptDF(pVCpu);
5616 rc = VINF_HM_DOUBLE_FAULT;
5617 }
5618 break;
5619 }
5620
5621 case IEMXCPTRAISE_TRIPLE_FAULT:
5622 {
5623 rc = VINF_EM_RESET;
5624 break;
5625 }
5626
5627 case IEMXCPTRAISE_CPU_HANG:
5628 {
5629 rc = VERR_EM_GUEST_CPU_HANG;
5630 break;
5631 }
5632
5633 default:
5634 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
5635 }
5636 }
5637 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
5638 return rc;
5639}
5640
5641
5642/**
5643 * Advances the guest RIP by the number of bytes specified in @a cb.
5644 *
5645 * @param pVCpu The cross context virtual CPU structure.
5646 * @param cb RIP increment value in bytes.
5647 */
5648DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPUCC pVCpu, uint32_t cb)
5649{
5650 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5651 pCtx->rip += cb;
5652
5653 /* Update interrupt shadow. */
5654 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
5655 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
5656 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5657}
5658
5659
5660/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5661/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
5662/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5663
5664/** @name \#VMEXIT handlers.
5665 * @{
5666 */
5667
5668/**
5669 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
5670 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
5671 */
5672HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5673{
5674 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5675
5676 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
5677 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
5678 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
5679 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
5680
5681 /*
5682 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
5683 * signal -before- the timer fires if the current interrupt is our own timer or a some
5684 * other host interrupt. We also cannot examine what interrupt it is until the host
5685 * actually take the interrupt.
5686 *
5687 * Going back to executing guest code here unconditionally causes random scheduling
5688 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
5689 */
5690 return VINF_EM_RAW_INTERRUPT;
5691}
5692
5693
5694/**
5695 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
5696 */
5697HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5698{
5699 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5700
5701 VBOXSTRICTRC rcStrict;
5702 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5703 if (fSupportsNextRipSave)
5704 {
5705 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5706 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5707 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5708 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
5709 }
5710 else
5711 {
5712 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5713 rcStrict = IEMExecOne(pVCpu);
5714 }
5715
5716 if (rcStrict == VINF_IEM_RAISED_XCPT)
5717 {
5718 rcStrict = VINF_SUCCESS;
5719 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5720 }
5721 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5722 return VBOXSTRICTRC_TODO(rcStrict);
5723}
5724
5725
5726/**
5727 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
5728 */
5729HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5730{
5731 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5732
5733 VBOXSTRICTRC rcStrict;
5734 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5735 if (fSupportsNextRipSave)
5736 {
5737 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5738 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5739 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5740 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
5741 }
5742 else
5743 {
5744 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5745 rcStrict = IEMExecOne(pVCpu);
5746 }
5747
5748 if (rcStrict == VINF_IEM_RAISED_XCPT)
5749 {
5750 rcStrict = VINF_SUCCESS;
5751 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5752 }
5753 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5754 return VBOXSTRICTRC_TODO(rcStrict);
5755}
5756
5757
5758/**
5759 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
5760 */
5761HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5762{
5763 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5764
5765 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
5766 VBOXSTRICTRC rcStrict;
5767 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
5768 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
5769 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
5770 if (!pExitRec)
5771 {
5772 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5773 if (fSupportsNextRipSave)
5774 {
5775 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5776 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5777 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
5778 }
5779 else
5780 {
5781 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5782 rcStrict = IEMExecOne(pVCpu);
5783 }
5784
5785 if (rcStrict == VINF_IEM_RAISED_XCPT)
5786 {
5787 rcStrict = VINF_SUCCESS;
5788 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5789 }
5790 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5791 }
5792 else
5793 {
5794 /*
5795 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
5796 */
5797 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5798
5799 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
5800 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
5801
5802 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
5803
5804 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
5805 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
5806 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
5807 }
5808 return VBOXSTRICTRC_TODO(rcStrict);
5809}
5810
5811
5812/**
5813 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
5814 */
5815HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5816{
5817 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5818
5819 VBOXSTRICTRC rcStrict;
5820 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5821 if (fSupportsNextRipSave)
5822 {
5823 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5824 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5825 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5826 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
5827 }
5828 else
5829 {
5830 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5831 rcStrict = IEMExecOne(pVCpu);
5832 }
5833
5834 if (rcStrict == VINF_SUCCESS)
5835 pSvmTransient->fUpdateTscOffsetting = true;
5836 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5837 {
5838 rcStrict = VINF_SUCCESS;
5839 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5840 }
5841 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5842 return VBOXSTRICTRC_TODO(rcStrict);
5843}
5844
5845
5846/**
5847 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
5848 */
5849HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5850{
5851 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5852
5853 VBOXSTRICTRC rcStrict;
5854 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5855 if (fSupportsNextRipSave)
5856 {
5857 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
5858 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5859 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5860 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
5861 }
5862 else
5863 {
5864 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5865 rcStrict = IEMExecOne(pVCpu);
5866 }
5867
5868 if (rcStrict == VINF_SUCCESS)
5869 pSvmTransient->fUpdateTscOffsetting = true;
5870 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5871 {
5872 rcStrict = VINF_SUCCESS;
5873 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5874 }
5875 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5876 return VBOXSTRICTRC_TODO(rcStrict);
5877}
5878
5879
5880/**
5881 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
5882 */
5883HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5884{
5885 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5886
5887 VBOXSTRICTRC rcStrict;
5888 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5889 if (fSupportsNextRipSave)
5890 {
5891 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5892 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5893 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5894 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
5895 }
5896 else
5897 {
5898 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5899 rcStrict = IEMExecOne(pVCpu);
5900 }
5901
5902 if (rcStrict == VINF_IEM_RAISED_XCPT)
5903 {
5904 rcStrict = VINF_SUCCESS;
5905 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5906 }
5907 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5908 return VBOXSTRICTRC_TODO(rcStrict);
5909}
5910
5911
5912/**
5913 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
5914 */
5915HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5916{
5917 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5918 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5919
5920 VBOXSTRICTRC rcStrict;
5921 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
5922 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5923 if ( fSupportsDecodeAssists
5924 && fSupportsNextRipSave)
5925 {
5926 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
5927 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5928 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5929 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
5930 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
5931 }
5932 else
5933 {
5934 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5935 rcStrict = IEMExecOne(pVCpu);
5936 }
5937
5938 if (rcStrict == VINF_IEM_RAISED_XCPT)
5939 {
5940 rcStrict = VINF_SUCCESS;
5941 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5942 }
5943 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5944 return VBOXSTRICTRC_VAL(rcStrict);
5945}
5946
5947
5948/**
5949 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
5950 */
5951HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5952{
5953 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5954
5955 VBOXSTRICTRC rcStrict;
5956 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5957 if (fSupportsNextRipSave)
5958 {
5959 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5960 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5961 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5962 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
5963 }
5964 else
5965 {
5966 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5967 rcStrict = IEMExecOne(pVCpu);
5968 }
5969
5970 if ( rcStrict == VINF_EM_HALT
5971 || rcStrict == VINF_SUCCESS)
5972 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
5973 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5974 {
5975 rcStrict = VINF_SUCCESS;
5976 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5977 }
5978 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5979 if (rcStrict != VINF_SUCCESS)
5980 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
5981 return VBOXSTRICTRC_VAL(rcStrict);;
5982}
5983
5984
5985/**
5986 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
5987 */
5988HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5989{
5990 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5991
5992 /*
5993 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
5994 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
5995 * segment override prefix or other prefixes might be used, in which case we fallback to
5996 * IEMExecOne() to figure out.
5997 */
5998 VBOXSTRICTRC rcStrict;
5999 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6000 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6001 if (cbInstr)
6002 {
6003 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6004 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6005 }
6006 else
6007 {
6008 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6009 rcStrict = IEMExecOne(pVCpu);
6010 }
6011
6012 if (rcStrict == VINF_IEM_RAISED_XCPT)
6013 {
6014 rcStrict = VINF_SUCCESS;
6015 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6016 }
6017 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6018 return VBOXSTRICTRC_TODO(rcStrict);
6019}
6020
6021
6022/**
6023 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6024 */
6025HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6026{
6027 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6028
6029 VBOXSTRICTRC rcStrict;
6030 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6031 if (fSupportsNextRipSave)
6032 {
6033 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6034 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6035 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6036 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6037 }
6038 else
6039 {
6040 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6041 rcStrict = IEMExecOne(pVCpu);
6042 }
6043
6044 if ( rcStrict == VINF_EM_HALT
6045 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6046 rcStrict = VINF_SUCCESS;
6047 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6048 {
6049 rcStrict = VINF_SUCCESS;
6050 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6051 }
6052 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6053 return VBOXSTRICTRC_TODO(rcStrict);
6054}
6055
6056
6057/**
6058 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6059 * \#VMEXIT.
6060 */
6061HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6062{
6063 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6064 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6065 return VINF_EM_RESET;
6066}
6067
6068
6069/**
6070 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6071 */
6072HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6073{
6074 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6075 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6076 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6077 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6078 RT_NOREF(pVmcb);
6079 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6080 return VERR_SVM_UNEXPECTED_EXIT;
6081}
6082
6083
6084/**
6085 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6086 */
6087HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6088{
6089 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6090
6091 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6092 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6093#ifdef VBOX_WITH_STATISTICS
6094 switch (pSvmTransient->u64ExitCode)
6095 {
6096 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6097 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6098 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6099 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6100 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6101 }
6102#endif
6103
6104 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6105 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6106 if ( fSupportsDecodeAssists
6107 && fSupportsNextRipSave)
6108 {
6109 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6110 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6111 if (fMovCRx)
6112 {
6113 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6114 | CPUMCTX_EXTRN_APIC_TPR);
6115 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6116 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6117 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6118 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6119 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6120 return VBOXSTRICTRC_VAL(rcStrict);
6121 }
6122 /* else: SMSW instruction, fall back below to IEM for this. */
6123 }
6124
6125 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6126 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6127 AssertMsg( rcStrict == VINF_SUCCESS
6128 || rcStrict == VINF_PGM_SYNC_CR3
6129 || rcStrict == VINF_IEM_RAISED_XCPT,
6130 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6131 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6132 if (rcStrict == VINF_IEM_RAISED_XCPT)
6133 {
6134 rcStrict = VINF_SUCCESS;
6135 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6136 }
6137 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6138 return VBOXSTRICTRC_TODO(rcStrict);
6139}
6140
6141
6142/**
6143 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6144 */
6145HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6146{
6147 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6148
6149 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6150 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6151 Assert(iCrReg <= 15);
6152
6153 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6154 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6155 bool fDecodedInstr = false;
6156 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6157 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6158 if ( fSupportsDecodeAssists
6159 && fSupportsNextRipSave)
6160 {
6161 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6162 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6163 if (fMovCRx)
6164 {
6165 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6166 | CPUMCTX_EXTRN_APIC_TPR);
6167 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6168 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6169 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6170 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6171 fDecodedInstr = true;
6172 }
6173 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6174 }
6175
6176 if (!fDecodedInstr)
6177 {
6178 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6179 Log4Func(("iCrReg=%#x\n", iCrReg));
6180 rcStrict = IEMExecOne(pVCpu);
6181 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6182 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6183 rcStrict = VERR_EM_INTERPRETER;
6184 }
6185
6186 if (rcStrict == VINF_SUCCESS)
6187 {
6188 switch (iCrReg)
6189 {
6190 case 0:
6191 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6192 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6193 break;
6194
6195 case 2:
6196 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6197 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6198 break;
6199
6200 case 3:
6201 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6202 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6203 break;
6204
6205 case 4:
6206 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6207 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6208 break;
6209
6210 case 8:
6211 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6212 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6213 break;
6214
6215 default:
6216 {
6217 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6218 pSvmTransient->u64ExitCode, iCrReg));
6219 break;
6220 }
6221 }
6222 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6223 }
6224 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6225 {
6226 rcStrict = VINF_SUCCESS;
6227 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6228 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6229 }
6230 else
6231 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6232 return VBOXSTRICTRC_TODO(rcStrict);
6233}
6234
6235
6236/**
6237 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6238 *
6239 * @returns Strict VBox status code.
6240 * @param pVCpu The cross context virtual CPU structure.
6241 * @param pVmcb Pointer to the VM control block.
6242 */
6243static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
6244{
6245 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6246 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6247
6248 VBOXSTRICTRC rcStrict;
6249 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6250 if (fSupportsNextRipSave)
6251 {
6252 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6253 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6254 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6255 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6256 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6257 }
6258 else
6259 {
6260 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6261 rcStrict = IEMExecOne(pVCpu);
6262 }
6263
6264 AssertMsg( rcStrict == VINF_SUCCESS
6265 || rcStrict == VINF_IEM_RAISED_XCPT
6266 || rcStrict == VINF_CPUM_R3_MSR_READ,
6267 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6268
6269 if (rcStrict == VINF_IEM_RAISED_XCPT)
6270 {
6271 rcStrict = VINF_SUCCESS;
6272 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6273 }
6274 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6275 return rcStrict;
6276}
6277
6278
6279/**
6280 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6281 *
6282 * @returns Strict VBox status code.
6283 * @param pVCpu The cross context virtual CPU structure.
6284 * @param pVmcb Pointer to the VM control block.
6285 * @param pSvmTransient Pointer to the SVM-transient structure.
6286 */
6287static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6288{
6289 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6290 uint32_t const idMsr = pCtx->ecx;
6291 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6292 Log4Func(("idMsr=%#RX32\n", idMsr));
6293
6294 /*
6295 * Handle TPR patching MSR writes.
6296 * We utilitize the LSTAR MSR for patching.
6297 */
6298 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6299 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
6300 && idMsr == MSR_K8_LSTAR)
6301 {
6302 unsigned cbInstr;
6303 if (fSupportsNextRipSave)
6304 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6305 else
6306 {
6307 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6308 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6309 if ( rc == VINF_SUCCESS
6310 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6311 Assert(cbInstr > 0);
6312 else
6313 cbInstr = 0;
6314 }
6315
6316 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6317 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6318 {
6319 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6320 AssertRCReturn(rc, rc);
6321 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6322 }
6323
6324 int rc = VINF_SUCCESS;
6325 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6326 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6327 return rc;
6328 }
6329
6330 /*
6331 * Handle regular MSR writes.
6332 */
6333 VBOXSTRICTRC rcStrict;
6334 if (fSupportsNextRipSave)
6335 {
6336 /** @todo Optimize this: We don't need to get much of the MSR state here
6337 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6338 * clear the applicable extern flags. */
6339 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6340 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6341 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6342 }
6343 else
6344 {
6345 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6346 rcStrict = IEMExecOne(pVCpu);
6347 }
6348
6349 AssertMsg( rcStrict == VINF_SUCCESS
6350 || rcStrict == VINF_IEM_RAISED_XCPT
6351 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6352 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6353
6354 if (rcStrict == VINF_SUCCESS)
6355 {
6356 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6357 if ( idMsr >= MSR_IA32_X2APIC_START
6358 && idMsr <= MSR_IA32_X2APIC_END)
6359 {
6360 /*
6361 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6362 * When full APIC register virtualization is implemented we'll have to make sure
6363 * APIC state is saved from the VMCB before IEM changes it.
6364 */
6365 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6366 }
6367 else
6368 {
6369 switch (idMsr)
6370 {
6371 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6372 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6373 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6374 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6375 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6376 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6377 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6378 }
6379 }
6380 }
6381 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6382 {
6383 rcStrict = VINF_SUCCESS;
6384 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6385 }
6386 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6387 return rcStrict;
6388}
6389
6390
6391/**
6392 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6393 * \#VMEXIT.
6394 */
6395HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6396{
6397 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6398
6399 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6400 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6401 return VBOXSTRICTRC_TODO(hmR0SvmExitReadMsr(pVCpu, pVmcb));
6402
6403 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6404 return VBOXSTRICTRC_TODO(hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient));
6405}
6406
6407
6408/**
6409 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6410 */
6411HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6412{
6413 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6414 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6415
6416 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6417
6418 /** @todo Stepping with nested-guest. */
6419 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6420 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6421 {
6422 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6423 if (pSvmTransient->fWasGuestDebugStateActive)
6424 {
6425 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6426 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6427 return VERR_SVM_UNEXPECTED_EXIT;
6428 }
6429
6430 /*
6431 * Lazy DR0-3 loading.
6432 */
6433 if (!pSvmTransient->fWasHyperDebugStateActive)
6434 {
6435 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6436 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6437
6438 /* Don't intercept DRx read and writes. */
6439 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6440 pVmcb->ctrl.u16InterceptRdDRx = 0;
6441 pVmcb->ctrl.u16InterceptWrDRx = 0;
6442 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6443
6444 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6445 VMMRZCallRing3Disable(pVCpu);
6446 HM_DISABLE_PREEMPT(pVCpu);
6447
6448 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6449 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6450 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6451
6452 HM_RESTORE_PREEMPT();
6453 VMMRZCallRing3Enable(pVCpu);
6454
6455 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6456 return VINF_SUCCESS;
6457 }
6458 }
6459
6460 /*
6461 * Interpret the read/writing of DRx.
6462 */
6463 /** @todo Decode assist. */
6464 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6465 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6466 if (RT_LIKELY(rc == VINF_SUCCESS))
6467 {
6468 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6469 /** @todo CPUM should set this flag! */
6470 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6471 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6472 }
6473 else
6474 Assert(rc == VERR_EM_INTERPRETER);
6475 return VBOXSTRICTRC_TODO(rc);
6476}
6477
6478
6479/**
6480 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6481 */
6482HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6483{
6484 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6485 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6486 int rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6487 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6488 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6489 return rc;
6490}
6491
6492
6493/**
6494 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6495 */
6496HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6497{
6498 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6499 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6500
6501 /** @todo decode assists... */
6502 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6503 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6504 {
6505 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6506 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6507 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0,
6508 pCtx->cr4));
6509 }
6510 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6511 {
6512 rcStrict = VINF_SUCCESS;
6513 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6514 }
6515 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6516 return VBOXSTRICTRC_TODO(rcStrict);
6517}
6518
6519
6520/**
6521 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6522 */
6523HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6524{
6525 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6526 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6527
6528 /* I/O operation lookup arrays. */
6529 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6530 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6531 the result (in AL/AX/EAX). */
6532 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6533 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6534 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6535
6536 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6537
6538 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6539 SVMIOIOEXITINFO IoExitInfo;
6540 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6541 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6542 uint32_t cbValue = s_aIOSize[uIOWidth];
6543 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6544
6545 if (RT_UNLIKELY(!cbValue))
6546 {
6547 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6548 return VERR_EM_INTERPRETER;
6549 }
6550
6551 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6552 VBOXSTRICTRC rcStrict;
6553 PCEMEXITREC pExitRec = NULL;
6554 if ( !pVCpu->hm.s.fSingleInstruction
6555 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6556 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6557 !IoExitInfo.n.u1Str
6558 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6559 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6560 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6561 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6562 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6563 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6564 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6565 if (!pExitRec)
6566 {
6567 bool fUpdateRipAlready = false;
6568 if (IoExitInfo.n.u1Str)
6569 {
6570 /* INS/OUTS - I/O String instruction. */
6571 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6572 * in EXITINFO1? Investigate once this thing is up and running. */
6573 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6574 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6575 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6576 static IEMMODE const s_aenmAddrMode[8] =
6577 {
6578 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6579 };
6580 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6581 if (enmAddrMode != (IEMMODE)-1)
6582 {
6583 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6584 if (cbInstr <= 15 && cbInstr >= 1)
6585 {
6586 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6587 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6588 {
6589 /* Don't know exactly how to detect whether u3Seg is valid, currently
6590 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6591 2384 Opterons when only checking NRIP. */
6592 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6593 if ( fSupportsNextRipSave
6594 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6595 {
6596 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6597 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6598 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6599 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6600 }
6601 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6602 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6603 X86_SREG_DS, true /*fIoChecked*/);
6604 else
6605 rcStrict = IEMExecOne(pVCpu);
6606 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6607 }
6608 else
6609 {
6610 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
6611 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6612 true /*fIoChecked*/);
6613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6614 }
6615 }
6616 else
6617 {
6618 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6619 rcStrict = IEMExecOne(pVCpu);
6620 }
6621 }
6622 else
6623 {
6624 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6625 rcStrict = IEMExecOne(pVCpu);
6626 }
6627 fUpdateRipAlready = true;
6628 }
6629 else
6630 {
6631 /* IN/OUT - I/O instruction. */
6632 Assert(!IoExitInfo.n.u1Rep);
6633
6634 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6635 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6636 {
6637 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6638 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6639 && !pCtx->eflags.Bits.u1TF)
6640 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
6641 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6642 }
6643 else
6644 {
6645 uint32_t u32Val = 0;
6646 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6647 if (IOM_SUCCESS(rcStrict))
6648 {
6649 /* Save result of I/O IN instr. in AL/AX/EAX. */
6650 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6651 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6652 }
6653 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6654 && !pCtx->eflags.Bits.u1TF)
6655 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
6656
6657 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6658 }
6659 }
6660
6661 if (IOM_SUCCESS(rcStrict))
6662 {
6663 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6664 if (!fUpdateRipAlready)
6665 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6666
6667 /*
6668 * If any I/O breakpoints are armed, we need to check if one triggered
6669 * and take appropriate action.
6670 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6671 */
6672 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6673 * execution engines about whether hyper BPs and such are pending. */
6674 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
6675 uint32_t const uDr7 = pCtx->dr[7];
6676 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6677 && X86_DR7_ANY_RW_IO(uDr7)
6678 && (pCtx->cr4 & X86_CR4_DE))
6679 || DBGFBpIsHwIoArmed(pVM)))
6680 {
6681 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6682 VMMRZCallRing3Disable(pVCpu);
6683 HM_DISABLE_PREEMPT(pVCpu);
6684
6685 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6686 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6687
6688 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
6689 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6690 {
6691 /* Raise #DB. */
6692 pVmcb->guest.u64DR6 = pCtx->dr[6];
6693 pVmcb->guest.u64DR7 = pCtx->dr[7];
6694 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6695 hmR0SvmSetPendingXcptDB(pVCpu);
6696 }
6697 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6698 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6699 else if ( rcStrict2 != VINF_SUCCESS
6700 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6701 rcStrict = rcStrict2;
6702 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6703
6704 HM_RESTORE_PREEMPT();
6705 VMMRZCallRing3Enable(pVCpu);
6706 }
6707
6708 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6709 }
6710
6711#ifdef VBOX_STRICT
6712 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6713 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
6714 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6715 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6716 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
6717 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
6718 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6719 else
6720 {
6721 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6722 * statuses, that the VMM device and some others may return. See
6723 * IOM_SUCCESS() for guidance. */
6724 AssertMsg( RT_FAILURE(rcStrict)
6725 || rcStrict == VINF_SUCCESS
6726 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6727 || rcStrict == VINF_EM_DBG_BREAKPOINT
6728 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6729 || rcStrict == VINF_EM_RAW_TO_R3
6730 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
6731 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6732 }
6733#endif
6734 }
6735 else
6736 {
6737 /*
6738 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6739 */
6740 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6741 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
6742 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
6743 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
6744 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
6745 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
6746 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
6747
6748 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6749 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6750
6751 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6752 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6753 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6754 }
6755 return VBOXSTRICTRC_TODO(rcStrict);
6756}
6757
6758
6759/**
6760 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6761 */
6762HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6763{
6764 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6765 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6766 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
6767
6768 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6769 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6770 Assert(pVM->hm.s.fNestedPaging);
6771
6772 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
6773 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6774 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
6775 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
6776 thus intentionally not copied into u32ErrCode. */
6777
6778 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
6779 u32ErrCode));
6780
6781 /*
6782 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
6783 */
6784 if ( pVM->hm.s.fTprPatchingAllowed
6785 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
6786 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
6787 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
6788 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
6789 && !CPUMIsGuestInLongModeEx(pCtx)
6790 && !CPUMGetGuestCPL(pVCpu)
6791 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6792 {
6793 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6794 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6795
6796 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
6797 {
6798 /* Only attempt to patch the instruction once. */
6799 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6800 if (!pPatch)
6801 return VINF_EM_HM_PATCH_TPR_INSTR;
6802 }
6803 }
6804
6805 /*
6806 * Determine the nested paging mode.
6807 */
6808/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
6809 PGMMODE const enmNestedPagingMode = PGMGetHostMode(pVM);
6810
6811 /*
6812 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
6813 */
6814 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
6815 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
6816 {
6817 /*
6818 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
6819 * injecting the original pending event would most likely cause the same MMIO #NPF.
6820 */
6821 if (pVCpu->hm.s.Event.fPending)
6822 {
6823 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
6824 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6825 }
6826
6827 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
6828 VBOXSTRICTRC rcStrict;
6829 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6830 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
6831 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6832 if (!pExitRec)
6833 {
6834
6835 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
6836 u32ErrCode);
6837
6838 /*
6839 * If we succeed, resume guest execution.
6840 *
6841 * If we fail in interpreting the instruction because we couldn't get the guest
6842 * physical address of the page containing the instruction via the guest's page
6843 * tables (we would invalidate the guest page in the host TLB), resume execution
6844 * which would cause a guest page fault to let the guest handle this weird case.
6845 *
6846 * See @bugref{6043}.
6847 */
6848 if ( rcStrict == VINF_SUCCESS
6849 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
6850 || rcStrict == VERR_PAGE_NOT_PRESENT)
6851 {
6852 /* Successfully handled MMIO operation. */
6853 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6854 rcStrict = VINF_SUCCESS;
6855 }
6856 }
6857 else
6858 {
6859 /*
6860 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6861 */
6862 Assert(pCtx == &pVCpu->cpum.GstCtx);
6863 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6864 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
6865 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
6866
6867 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6868 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6869
6870 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6871 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6872 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6873 }
6874 return VBOXSTRICTRC_TODO(rcStrict);
6875 }
6876
6877 /*
6878 * Nested page-fault.
6879 */
6880 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
6881 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
6882 TRPMResetTrap(pVCpu);
6883
6884 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
6885
6886 /*
6887 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
6888 */
6889 if ( rc == VINF_SUCCESS
6890 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6891 || rc == VERR_PAGE_NOT_PRESENT)
6892 {
6893 /* We've successfully synced our shadow page tables. */
6894 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6895 rc = VINF_SUCCESS;
6896 }
6897
6898 /*
6899 * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and
6900 * re-inject the original event.
6901 */
6902 if (pVCpu->hm.s.Event.fPending)
6903 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
6904
6905 return rc;
6906}
6907
6908
6909/**
6910 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
6911 * \#VMEXIT.
6912 */
6913HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6914{
6915 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6916 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
6917
6918 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
6919 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6920 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
6921
6922 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6923 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
6924 return VINF_SUCCESS;
6925}
6926
6927
6928/**
6929 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
6930 * \#VMEXIT.
6931 */
6932HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6933{
6934 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6935 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
6936
6937#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
6938 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6939#endif
6940
6941 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
6942 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
6943 {
6944 /*
6945 * AMD-V provides us with the exception which caused the TS; we collect
6946 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
6947 */
6948 Log4Func(("TS occurred during event delivery\n"));
6949 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
6950 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6951 }
6952
6953 /** @todo Emulate task switch someday, currently just going back to ring-3 for
6954 * emulation. */
6955 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
6956 return VERR_EM_INTERPRETER;
6957}
6958
6959
6960/**
6961 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
6962 */
6963HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6964{
6965 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6966 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6967
6968 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6969 if (pVM->hm.s.fTprPatchingAllowed)
6970 {
6971 int rc = hmEmulateSvmMovTpr(pVM, pVCpu);
6972 if (rc != VERR_NOT_FOUND)
6973 {
6974 Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc));
6975 return rc;
6976 }
6977 }
6978
6979 if (EMAreHypercallInstructionsEnabled(pVCpu))
6980 {
6981 unsigned cbInstr;
6982 if (hmR0SvmSupportsNextRipSave(pVCpu))
6983 {
6984 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6985 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6986 }
6987 else
6988 {
6989 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6990 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6991 if ( rc == VINF_SUCCESS
6992 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
6993 Assert(cbInstr > 0);
6994 else
6995 cbInstr = 0;
6996 }
6997
6998 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
6999 if (RT_SUCCESS(rcStrict))
7000 {
7001 /* Only update the RIP if we're continuing guest execution and not in the case
7002 of say VINF_GIM_R3_HYPERCALL. */
7003 if (rcStrict == VINF_SUCCESS)
7004 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7005
7006 return VBOXSTRICTRC_VAL(rcStrict);
7007 }
7008 else
7009 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7010 }
7011
7012 hmR0SvmSetPendingXcptUD(pVCpu);
7013 return VINF_SUCCESS;
7014}
7015
7016
7017/**
7018 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7019 */
7020HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7021{
7022 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7023
7024 unsigned cbInstr;
7025 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7026 if (fSupportsNextRipSave)
7027 {
7028 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7029 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7030 }
7031 else
7032 {
7033 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7034 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7035 if ( rc == VINF_SUCCESS
7036 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7037 Assert(cbInstr > 0);
7038 else
7039 cbInstr = 0;
7040 }
7041
7042 /** @todo The guest has likely hit a contended spinlock. We might want to
7043 * poke a schedule different guest VCPU. */
7044 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7045 return VINF_EM_RAW_INTERRUPT;
7046}
7047
7048
7049/**
7050 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7051 * \#VMEXIT.
7052 */
7053HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7054{
7055 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7056 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7057 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7058
7059 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7060 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7061}
7062
7063
7064/**
7065 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7066 */
7067HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7068{
7069 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7070
7071 /* Clear NMI blocking. */
7072 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7073 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7074
7075 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
7076 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7077 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7078
7079 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7080 return VINF_SUCCESS;
7081}
7082
7083
7084/**
7085 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7086 * Conditional \#VMEXIT.
7087 */
7088HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7089{
7090 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7091 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7092 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7093
7094 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7095 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7096 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7097 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7098 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7099 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7100
7101#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7102 if (pVM->hm.s.fNestedPaging)
7103 {
7104 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7105 if ( !pSvmTransient->fVectoringDoublePF
7106 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7107 {
7108 /* A genuine guest #PF, reflect it to the guest. */
7109 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7110 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7111 uFaultAddress, uErrCode));
7112 }
7113 else
7114 {
7115 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7116 hmR0SvmSetPendingXcptDF(pVCpu);
7117 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7118 }
7119 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7120 return VINF_SUCCESS;
7121 }
7122#endif
7123
7124 Assert(!pVM->hm.s.fNestedPaging);
7125
7126 /*
7127 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7128 */
7129 if ( pVM->hm.s.fTprPatchingAllowed
7130 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7131 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7132 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7133 && !CPUMIsGuestInLongModeEx(pCtx)
7134 && !CPUMGetGuestCPL(pVCpu)
7135 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7136 {
7137 RTGCPHYS GCPhysApicBase;
7138 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7139 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7140
7141 /* Check if the page at the fault-address is the APIC base. */
7142 RTGCPHYS GCPhysPage;
7143 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7144 if ( rc2 == VINF_SUCCESS
7145 && GCPhysPage == GCPhysApicBase)
7146 {
7147 /* Only attempt to patch the instruction once. */
7148 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7149 if (!pPatch)
7150 return VINF_EM_HM_PATCH_TPR_INSTR;
7151 }
7152 }
7153
7154 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7155 pCtx->rip, uErrCode, pCtx->cr3));
7156
7157 /*
7158 * If it's a vectoring #PF, emulate injecting the original event injection as
7159 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7160 * event injection that caused a #PF. See @bugref{6607}.
7161 */
7162 if (pSvmTransient->fVectoringPF)
7163 {
7164 Assert(pVCpu->hm.s.Event.fPending);
7165 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7166 }
7167
7168 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7169 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7170
7171 Log4Func(("#PF: rc=%Rrc\n", rc));
7172
7173 if (rc == VINF_SUCCESS)
7174 {
7175 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7176 TRPMResetTrap(pVCpu);
7177 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7178 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7179 return rc;
7180 }
7181
7182 if (rc == VINF_EM_RAW_GUEST_TRAP)
7183 {
7184 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7185
7186 /*
7187 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7188 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7189 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7190 */
7191 if ( !pSvmTransient->fVectoringDoublePF
7192 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7193 {
7194 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7195 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7196 TRPMResetTrap(pVCpu);
7197
7198#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7199 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7200 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7201 && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
7202 return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress));
7203#endif
7204
7205 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7206 }
7207 else
7208 {
7209 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7210 TRPMResetTrap(pVCpu);
7211 hmR0SvmSetPendingXcptDF(pVCpu);
7212 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7213 }
7214
7215 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7216 return VINF_SUCCESS;
7217 }
7218
7219 TRPMResetTrap(pVCpu);
7220 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7221 return rc;
7222}
7223
7224
7225/**
7226 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7227 * Conditional \#VMEXIT.
7228 */
7229HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7230{
7231 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7232 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7233 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7234
7235 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7236 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7237 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7238
7239 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7240 if (pVCpu->hm.s.fGIMTrapXcptUD)
7241 {
7242 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7243 uint8_t cbInstr = 0;
7244 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7245 if (rcStrict == VINF_SUCCESS)
7246 {
7247 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7248 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7249 rc = VINF_SUCCESS;
7250 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7251 }
7252 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7253 rc = VINF_SUCCESS;
7254 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7255 rc = VINF_GIM_R3_HYPERCALL;
7256 else
7257 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7258 }
7259
7260 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7261 if (RT_FAILURE(rc))
7262 {
7263 hmR0SvmSetPendingXcptUD(pVCpu);
7264 rc = VINF_SUCCESS;
7265 }
7266
7267 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7268 return rc;
7269}
7270
7271
7272/**
7273 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7274 * Conditional \#VMEXIT.
7275 */
7276HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7277{
7278 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7279 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7280 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7281
7282 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7283 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7284
7285 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7286 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7287
7288 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7289
7290 if (!(pCtx->cr0 & X86_CR0_NE))
7291 {
7292 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7293 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7294 unsigned cbInstr;
7295 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7296 if (RT_SUCCESS(rc))
7297 {
7298 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7299 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7300 if (RT_SUCCESS(rc))
7301 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7302 }
7303 else
7304 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7305 return rc;
7306 }
7307
7308 hmR0SvmSetPendingXcptMF(pVCpu);
7309 return VINF_SUCCESS;
7310}
7311
7312
7313/**
7314 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7315 * \#VMEXIT.
7316 */
7317HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7318{
7319 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7320 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7321 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7322 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7323
7324 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7325 {
7326 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7327 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7328 }
7329
7330 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7331
7332 /*
7333 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7334 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7335 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7336 */
7337 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7338 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7339 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7340 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7341 if (rc == VINF_EM_RAW_GUEST_TRAP)
7342 {
7343 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7344 if (CPUMIsHyperDebugStateActive(pVCpu))
7345 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7346
7347 /* Reflect the exception back to the guest. */
7348 hmR0SvmSetPendingXcptDB(pVCpu);
7349 rc = VINF_SUCCESS;
7350 }
7351
7352 /*
7353 * Update DR6.
7354 */
7355 if (CPUMIsHyperDebugStateActive(pVCpu))
7356 {
7357 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7358 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7359 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7360 }
7361 else
7362 {
7363 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7364 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7365 }
7366
7367 return rc;
7368}
7369
7370
7371/**
7372 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7373 * Conditional \#VMEXIT.
7374 */
7375HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7376{
7377 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7378 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7379 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
7380
7381 SVMEVENT Event;
7382 Event.u = 0;
7383 Event.n.u1Valid = 1;
7384 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7385 Event.n.u8Vector = X86_XCPT_AC;
7386 Event.n.u1ErrorCodeValid = 1;
7387 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7388 return VINF_SUCCESS;
7389}
7390
7391
7392/**
7393 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7394 * Conditional \#VMEXIT.
7395 */
7396HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7397{
7398 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7399 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7400 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7401 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
7402
7403 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7404 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7405 if (rc == VINF_EM_RAW_GUEST_TRAP)
7406 {
7407 SVMEVENT Event;
7408 Event.u = 0;
7409 Event.n.u1Valid = 1;
7410 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7411 Event.n.u8Vector = X86_XCPT_BP;
7412 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7413 rc = VINF_SUCCESS;
7414 }
7415
7416 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
7417 return rc;
7418}
7419
7420
7421/**
7422 * Hacks its way around the lovely mesa driver's backdoor accesses.
7423 *
7424 * @sa hmR0VmxHandleMesaDrvGp
7425 */
7426static int hmR0SvmHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7427{
7428 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7429 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7430 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7431 RT_NOREF(pCtx, pVmcb);
7432
7433 /* For now we'll just skip the instruction. */
7434 hmR0SvmAdvanceRip(pVCpu, 1);
7435 return VINF_SUCCESS;
7436}
7437
7438
7439/**
7440 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7441 * backdoor logging w/o checking what it is running inside.
7442 *
7443 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7444 * backdoor port and magic numbers loaded in registers.
7445 *
7446 * @returns true if it is, false if it isn't.
7447 * @sa hmR0VmxIsMesaDrvGp
7448 */
7449DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7450{
7451 /* Check magic and port. */
7452 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7453 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7454 if (pCtx->dx != UINT32_C(0x5658))
7455 return false;
7456 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7457 return false;
7458
7459 /* Check that it is #GP(0). */
7460 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7461 return false;
7462
7463 /* Flat ring-3 CS. */
7464 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7465 if (pVmcb->guest.u8CPL != 3)
7466 return false;
7467 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7468 return false;
7469
7470 /* 0xed: IN eAX,dx */
7471 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7472 {
7473 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7474 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7475 uint8_t abInstr[1];
7476 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7477 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7478 if (RT_FAILURE(rc))
7479 return false;
7480 if (abInstr[0] != 0xed)
7481 return false;
7482 }
7483 else
7484 {
7485 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7486 if (pVmcb->ctrl.abInstr[0] != 0xed)
7487 return false;
7488 }
7489 return true;
7490}
7491
7492
7493/**
7494 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7495 * Conditional \#VMEXIT.
7496 */
7497HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7498{
7499 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7500 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7501 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
7502
7503 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7504 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7505
7506 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7507 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7508 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7509 {
7510 SVMEVENT Event;
7511 Event.u = 0;
7512 Event.n.u1Valid = 1;
7513 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7514 Event.n.u8Vector = X86_XCPT_GP;
7515 Event.n.u1ErrorCodeValid = 1;
7516 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7517 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7518 return VINF_SUCCESS;
7519 }
7520 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7521}
7522
7523
7524#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7525/**
7526 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7527 */
7528HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7529{
7530 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7531 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7532
7533 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7534 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7535 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7536 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7537 Assert(uVector <= X86_XCPT_LAST);
7538 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7539
7540 SVMEVENT Event;
7541 Event.u = 0;
7542 Event.n.u1Valid = 1;
7543 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7544 Event.n.u8Vector = uVector;
7545 switch (uVector)
7546 {
7547 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7548 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7549 case X86_XCPT_DF:
7550 case X86_XCPT_TS:
7551 case X86_XCPT_NP:
7552 case X86_XCPT_SS:
7553 case X86_XCPT_GP:
7554 case X86_XCPT_AC:
7555 {
7556 Event.n.u1ErrorCodeValid = 1;
7557 Event.n.u32ErrorCode = uErrCode;
7558 break;
7559 }
7560 }
7561
7562#ifdef VBOX_WITH_STATISTICS
7563 switch (uVector)
7564 {
7565 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
7566 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
7567 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
7568 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7569 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
7570 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
7571 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7572 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
7573 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
7574 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
7575 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
7576 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
7577 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
7578 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
7579 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
7580 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
7581 default:
7582 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
7583 break;
7584 }
7585#endif
7586
7587 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7588 return VINF_SUCCESS;
7589}
7590#endif
7591
7592#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7593/**
7594 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7595 */
7596HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7597{
7598 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7599
7600 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7601 Assert(pVmcb);
7602 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7603
7604 VBOXSTRICTRC rcStrict;
7605 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7606 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7607 if (fSupportsNextRipSave)
7608 {
7609 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7610 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7611 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7612 }
7613 else
7614 {
7615 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7616 rcStrict = IEMExecOne(pVCpu);
7617 }
7618
7619 if (rcStrict == VINF_SUCCESS)
7620 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7621 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7622 {
7623 rcStrict = VINF_SUCCESS;
7624 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7625 }
7626 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7627 return VBOXSTRICTRC_TODO(rcStrict);
7628}
7629
7630
7631/**
7632 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7633 */
7634HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7635{
7636 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7637
7638 /*
7639 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7640 * we only intercept STGI when events are pending for GIF to become 1.
7641 */
7642 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7643 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7644 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7645
7646 VBOXSTRICTRC rcStrict;
7647 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7648 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7649 if (fSupportsNextRipSave)
7650 {
7651 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7652 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7653 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7654 }
7655 else
7656 {
7657 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7658 rcStrict = IEMExecOne(pVCpu);
7659 }
7660
7661 if (rcStrict == VINF_SUCCESS)
7662 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7663 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7664 {
7665 rcStrict = VINF_SUCCESS;
7666 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7667 }
7668 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7669 return VBOXSTRICTRC_TODO(rcStrict);
7670}
7671
7672
7673/**
7674 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7675 */
7676HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7677{
7678 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7679
7680 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7681 Assert(pVmcb);
7682 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7683
7684 VBOXSTRICTRC rcStrict;
7685 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7686 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
7687 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
7688 | CPUMCTX_EXTRN_SYSENTER_MSRS;
7689 if (fSupportsNextRipSave)
7690 {
7691 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7692 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7693 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7694 }
7695 else
7696 {
7697 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7698 rcStrict = IEMExecOne(pVCpu);
7699 }
7700
7701 if (rcStrict == VINF_SUCCESS)
7702 {
7703 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7704 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7705 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7706 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7707 }
7708 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7709 {
7710 rcStrict = VINF_SUCCESS;
7711 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7712 }
7713 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7714 return VBOXSTRICTRC_TODO(rcStrict);
7715}
7716
7717
7718/**
7719 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7720 */
7721HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7722{
7723 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7724
7725 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7726 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7727
7728 VBOXSTRICTRC rcStrict;
7729 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7730 if (fSupportsNextRipSave)
7731 {
7732 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7733 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7734 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7735 }
7736 else
7737 {
7738 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7739 rcStrict = IEMExecOne(pVCpu);
7740 }
7741
7742 if (rcStrict == VINF_IEM_RAISED_XCPT)
7743 {
7744 rcStrict = VINF_SUCCESS;
7745 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7746 }
7747 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7748 return VBOXSTRICTRC_TODO(rcStrict);
7749}
7750
7751
7752/**
7753 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7754 */
7755HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7756{
7757 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7758
7759 VBOXSTRICTRC rcStrict;
7760 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7761 if (fSupportsNextRipSave)
7762 {
7763 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7764 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7765 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7766 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7767 }
7768 else
7769 {
7770 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7771 rcStrict = IEMExecOne(pVCpu);
7772 }
7773
7774 if (rcStrict == VINF_IEM_RAISED_XCPT)
7775 {
7776 rcStrict = VINF_SUCCESS;
7777 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7778 }
7779 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7780 return VBOXSTRICTRC_TODO(rcStrict);
7781}
7782
7783
7784/**
7785 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7786 */
7787HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7788{
7789 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7790 /* We shall import the entire state here, just in case we enter and continue execution of
7791 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
7792 could lose lose part of CPU state. */
7793 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7794
7795 VBOXSTRICTRC rcStrict;
7796 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7797 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
7798 if (fSupportsNextRipSave)
7799 {
7800 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7801 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7802 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7803 }
7804 else
7805 {
7806 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
7807 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
7808 instruction itself, see @bugref{7243#c126} */
7809 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
7810 }
7811 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
7812
7813 if (rcStrict == VINF_SUCCESS)
7814 {
7815 rcStrict = VINF_SVM_VMRUN;
7816 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
7817 }
7818 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7819 {
7820 rcStrict = VINF_SUCCESS;
7821 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7822 }
7823 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7824 return VBOXSTRICTRC_TODO(rcStrict);
7825}
7826
7827
7828/**
7829 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
7830 * Unconditional \#VMEXIT.
7831 */
7832HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7833{
7834 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7835 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7836
7837 if (pVCpu->hm.s.Event.fPending)
7838 {
7839 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7840 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7841 }
7842
7843 hmR0SvmSetPendingXcptDB(pVCpu);
7844 return VINF_SUCCESS;
7845}
7846
7847
7848/**
7849 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7850 * Conditional \#VMEXIT.
7851 */
7852HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7853{
7854 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7855 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7856
7857 SVMEVENT Event;
7858 Event.u = 0;
7859 Event.n.u1Valid = 1;
7860 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7861 Event.n.u8Vector = X86_XCPT_BP;
7862 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7863 return VINF_SUCCESS;
7864}
7865#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
7866
7867/** @} */
7868
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette