VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 87522

Last change on this file since 87522 was 87522, checked in by vboxsync, 4 years ago

VMM/HM: Moved CPUMCTX::fWorldSwitcher to HMR0PERVCPU::fWorldSwitcher. bugref:9453 bugref:9087

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 319.5 KB
Line 
1/* $Id: HMSVMR0.cpp 87522 2021-02-01 22:32:33Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vmcc.h>
37#include <VBox/err.h>
38#include "HMSVMR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMSVM_SYNC_FULL_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60
61# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
65 if ((u64ExitCode) == SVM_EXIT_NPF) \
66 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
67 else \
68 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
69 } while (0)
70# endif
71#else
72# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
74# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
75# endif
76#endif /* !VBOX_WITH_STATISTICS */
77
78/** If we decide to use a function table approach this can be useful to
79 * switch to a "static DECLCALLBACK(int)". */
80#define HMSVM_EXIT_DECL static VBOXSTRICTRC
81
82/**
83 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
84 * guest using hardware-assisted SVM.
85 *
86 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
87 * are swapped and restored across the world-switch and also registers like
88 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
89 * \#VMEXIT.
90 */
91#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
92 | CPUMCTX_EXTRN_RFLAGS \
93 | CPUMCTX_EXTRN_RAX \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_CR0 \
97 | CPUMCTX_EXTRN_CR2 \
98 | CPUMCTX_EXTRN_CR3 \
99 | CPUMCTX_EXTRN_TABLE_MASK \
100 | CPUMCTX_EXTRN_DR6 \
101 | CPUMCTX_EXTRN_DR7 \
102 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
103 | CPUMCTX_EXTRN_SYSCALL_MSRS \
104 | CPUMCTX_EXTRN_SYSENTER_MSRS \
105 | CPUMCTX_EXTRN_HWVIRT \
106 | CPUMCTX_EXTRN_HM_SVM_MASK)
107
108/**
109 * Subset of the guest-CPU state that is shared between the guest and host.
110 */
111#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
112
113/** Macro for importing guest state from the VMCB back into CPUMCTX. */
114#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
115 do { \
116 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
117 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
118 } while (0)
119
120/** Assert that the required state bits are fetched. */
121#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
122 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
123 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
124
125/** Assert that preemption is disabled or covered by thread-context hooks. */
126#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
127 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
128
129/** Assert that we haven't migrated CPUs when thread-context hooks are not
130 * used. */
131#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
132 || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
133 ("Illegal migration! Entered on CPU %u Current %u\n", \
134 (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()));
135
136/** Assert that we're not executing a nested-guest. */
137#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
139#else
140# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
141#endif
142
143/** Assert that we're executing a nested-guest. */
144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
146#else
147# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
148#endif
149
150/** Macro for checking and returning from the using function for
151 * \#VMEXIT intercepts that maybe caused during delivering of another
152 * event in the guest. */
153#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
154# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
155 do \
156 { \
157 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
158 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
159 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
160 else if ( rc == VINF_EM_RESET \
161 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
162 { \
163 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
164 return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \
165 } \
166 else \
167 return rc; \
168 } while (0)
169#else
170# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
171 do \
172 { \
173 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
174 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
175 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
176 else \
177 return rc; \
178 } while (0)
179#endif
180
181/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
182 * instruction that exited. */
183#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
184 do { \
185 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
186 (a_rc) = VINF_EM_DBG_STEPPED; \
187 } while (0)
188
189/** Validate segment descriptor granularity bit. */
190#ifdef VBOX_STRICT
191# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
192 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
193 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
194 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
195 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
196 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
197 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
198#else
199# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
200#endif
201
202/**
203 * Exception bitmap mask for all contributory exceptions.
204 *
205 * Page fault is deliberately excluded here as it's conditional as to whether
206 * it's contributory or benign. Page faults are handled separately.
207 */
208#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
209 | RT_BIT(X86_XCPT_DE))
210
211/**
212 * Mandatory/unconditional guest control intercepts.
213 *
214 * SMIs can and do happen in normal operation. We need not intercept them
215 * while executing the guest (or nested-guest).
216 */
217#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
218 | SVM_CTRL_INTERCEPT_NMI \
219 | SVM_CTRL_INTERCEPT_INIT \
220 | SVM_CTRL_INTERCEPT_RDPMC \
221 | SVM_CTRL_INTERCEPT_CPUID \
222 | SVM_CTRL_INTERCEPT_RSM \
223 | SVM_CTRL_INTERCEPT_HLT \
224 | SVM_CTRL_INTERCEPT_IOIO_PROT \
225 | SVM_CTRL_INTERCEPT_MSR_PROT \
226 | SVM_CTRL_INTERCEPT_INVLPGA \
227 | SVM_CTRL_INTERCEPT_SHUTDOWN \
228 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
229 | SVM_CTRL_INTERCEPT_VMRUN \
230 | SVM_CTRL_INTERCEPT_SKINIT \
231 | SVM_CTRL_INTERCEPT_WBINVD \
232 | SVM_CTRL_INTERCEPT_MONITOR \
233 | SVM_CTRL_INTERCEPT_MWAIT \
234 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
235 | SVM_CTRL_INTERCEPT_XSETBV)
236
237/** @name VMCB Clean Bits.
238 *
239 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
240 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
241 * memory.
242 *
243 * @{ */
244/** All intercepts vectors, TSC offset, PAUSE filter counter. */
245#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
246/** I/O permission bitmap, MSR permission bitmap. */
247#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
248/** ASID. */
249#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
250/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
251V_INTR_VECTOR. */
252#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
253/** Nested Paging: Nested CR3 (nCR3), PAT. */
254#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
255/** Control registers (CR0, CR3, CR4, EFER). */
256#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
257/** Debug registers (DR6, DR7). */
258#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
259/** GDT, IDT limit and base. */
260#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
261/** Segment register: CS, SS, DS, ES limit and base. */
262#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
263/** CR2.*/
264#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
265/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
266#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
267/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
268PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
269#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
270/** Mask of all valid VMCB Clean bits. */
271#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
272 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
273 | HMSVM_VMCB_CLEAN_ASID \
274 | HMSVM_VMCB_CLEAN_INT_CTRL \
275 | HMSVM_VMCB_CLEAN_NP \
276 | HMSVM_VMCB_CLEAN_CRX_EFER \
277 | HMSVM_VMCB_CLEAN_DRX \
278 | HMSVM_VMCB_CLEAN_DT \
279 | HMSVM_VMCB_CLEAN_SEG \
280 | HMSVM_VMCB_CLEAN_CR2 \
281 | HMSVM_VMCB_CLEAN_LBR \
282 | HMSVM_VMCB_CLEAN_AVIC)
283/** @} */
284
285/** @name SVM transient.
286 *
287 * A state structure for holding miscellaneous information across AMD-V
288 * VMRUN/\#VMEXIT operation, restored after the transition.
289 *
290 * @{ */
291typedef struct SVMTRANSIENT
292{
293 /** The host's rflags/eflags. */
294 RTCCUINTREG fEFlags;
295 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
296 uint64_t u64ExitCode;
297
298 /** The guest's TPR value used for TPR shadowing. */
299 uint8_t u8GuestTpr;
300 /** Alignment. */
301 uint8_t abAlignment0[7];
302
303 /** Pointer to the currently executing VMCB. */
304 PSVMVMCB pVmcb;
305
306 /** Whether we are currently executing a nested-guest. */
307 bool fIsNestedGuest;
308 /** Whether the guest debug state was active at the time of \#VMEXIT. */
309 bool fWasGuestDebugStateActive;
310 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
311 bool fWasHyperDebugStateActive;
312 /** Whether the TSC offset mode needs to be updated. */
313 bool fUpdateTscOffsetting;
314 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
315 bool fRestoreTscAuxMsr;
316 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
317 * contributary exception or a page-fault. */
318 bool fVectoringDoublePF;
319 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
320 * external interrupt or NMI. */
321 bool fVectoringPF;
322 /** Padding. */
323 bool afPadding0;
324} SVMTRANSIENT;
325/** Pointer to SVM transient state. */
326typedef SVMTRANSIENT *PSVMTRANSIENT;
327/** Pointer to a const SVM transient state. */
328typedef const SVMTRANSIENT *PCSVMTRANSIENT;
329
330AssertCompileSizeAlignment(SVMTRANSIENT, sizeof(uint64_t));
331AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
332AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
333/** @} */
334
335/**
336 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
337 */
338typedef enum SVMMSREXITREAD
339{
340 /** Reading this MSR causes a \#VMEXIT. */
341 SVMMSREXIT_INTERCEPT_READ = 0xb,
342 /** Reading this MSR does not cause a \#VMEXIT. */
343 SVMMSREXIT_PASSTHRU_READ
344} SVMMSREXITREAD;
345
346/**
347 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
348 */
349typedef enum SVMMSREXITWRITE
350{
351 /** Writing to this MSR causes a \#VMEXIT. */
352 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
353 /** Writing to this MSR does not cause a \#VMEXIT. */
354 SVMMSREXIT_PASSTHRU_WRITE
355} SVMMSREXITWRITE;
356
357/**
358 * SVM \#VMEXIT handler.
359 *
360 * @returns Strict VBox status code.
361 * @param pVCpu The cross context virtual CPU structure.
362 * @param pSvmTransient Pointer to the SVM-transient structure.
363 */
364typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
365
366
367/*********************************************************************************************************************************
368* Internal Functions *
369*********************************************************************************************************************************/
370static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
371static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
372
373
374/** @name \#VMEXIT handlers.
375 * @{
376 */
377static FNSVMEXITHANDLER hmR0SvmExitIntr;
378static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
379static FNSVMEXITHANDLER hmR0SvmExitInvd;
380static FNSVMEXITHANDLER hmR0SvmExitCpuid;
381static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
382static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
383static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
384static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
385static FNSVMEXITHANDLER hmR0SvmExitHlt;
386static FNSVMEXITHANDLER hmR0SvmExitMonitor;
387static FNSVMEXITHANDLER hmR0SvmExitMwait;
388static FNSVMEXITHANDLER hmR0SvmExitShutdown;
389static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
390static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
391static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
392static FNSVMEXITHANDLER hmR0SvmExitMsr;
393static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
394static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
395static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
396static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
397static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
398static FNSVMEXITHANDLER hmR0SvmExitVIntr;
399static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
400static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
401static FNSVMEXITHANDLER hmR0SvmExitPause;
402static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
403static FNSVMEXITHANDLER hmR0SvmExitIret;
404static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
405static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
406static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
407static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
408static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
409static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
410static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
411#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
412static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
413#endif
414#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
415static FNSVMEXITHANDLER hmR0SvmExitClgi;
416static FNSVMEXITHANDLER hmR0SvmExitStgi;
417static FNSVMEXITHANDLER hmR0SvmExitVmload;
418static FNSVMEXITHANDLER hmR0SvmExitVmsave;
419static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
420static FNSVMEXITHANDLER hmR0SvmExitVmrun;
421static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
422static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
423#endif
424/** @} */
425
426static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
427#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
428static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
429#endif
430
431
432/*********************************************************************************************************************************
433* Global Variables *
434*********************************************************************************************************************************/
435/** Ring-0 memory object for the IO bitmap. */
436static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
437/** Physical address of the IO bitmap. */
438static RTHCPHYS g_HCPhysIOBitmap;
439/** Pointer to the IO bitmap. */
440static R0PTRTYPE(void *) g_pvIOBitmap;
441
442#ifdef VBOX_STRICT
443# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
444# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
445# define HMSVM_LOG_CS RT_BIT_32(2)
446# define HMSVM_LOG_SS RT_BIT_32(3)
447# define HMSVM_LOG_FS RT_BIT_32(4)
448# define HMSVM_LOG_GS RT_BIT_32(5)
449# define HMSVM_LOG_LBR RT_BIT_32(6)
450# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
451 | HMSVM_LOG_CR_REGS \
452 | HMSVM_LOG_CS \
453 | HMSVM_LOG_SS \
454 | HMSVM_LOG_FS \
455 | HMSVM_LOG_GS \
456 | HMSVM_LOG_LBR)
457
458/**
459 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
460 *
461 * @param pVCpu The cross context virtual CPU structure.
462 * @param pVmcb Pointer to the VM control block.
463 * @param pszPrefix Log prefix.
464 * @param fFlags Log flags, see HMSVM_LOG_XXX.
465 * @param uVerbose The verbosity level, currently unused.
466 */
467static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
468{
469 RT_NOREF2(pVCpu, uVerbose);
470 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
471
472 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
473 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
474
475 if (fFlags & HMSVM_LOG_RBP_RSP)
476 {
477 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
478 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
479 }
480
481 if (fFlags & HMSVM_LOG_CR_REGS)
482 {
483 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
484 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
485 }
486
487 if (fFlags & HMSVM_LOG_CS)
488 {
489 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
490 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
491 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
492 }
493 if (fFlags & HMSVM_LOG_SS)
494 {
495 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
496 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
497 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
498 }
499 if (fFlags & HMSVM_LOG_FS)
500 {
501 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
502 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
503 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
504 }
505 if (fFlags & HMSVM_LOG_GS)
506 {
507 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
508 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
509 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
510 }
511
512 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
513 if (fFlags & HMSVM_LOG_LBR)
514 {
515 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
516 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
517 }
518 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
519}
520#endif /* VBOX_STRICT */
521
522
523/**
524 * Sets up and activates AMD-V on the current CPU.
525 *
526 * @returns VBox status code.
527 * @param pHostCpu The HM physical-CPU structure.
528 * @param pVM The cross context VM structure. Can be
529 * NULL after a resume!
530 * @param pvCpuPage Pointer to the global CPU page.
531 * @param HCPhysCpuPage Physical address of the global CPU page.
532 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
533 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
534 * unused).
535 */
536VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
537 PCSUPHWVIRTMSRS pHwvirtMsrs)
538{
539 Assert(!fEnabledByHost);
540 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
541 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
542 Assert(pvCpuPage); NOREF(pvCpuPage);
543 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
544
545 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
546
547 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
548 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
549
550 /*
551 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
552 */
553 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
554 if (u64HostEfer & MSR_K6_EFER_SVME)
555 {
556 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
557 if ( pVM
558 && pVM->hm.s.svm.fIgnoreInUseError)
559 pHostCpu->fIgnoreAMDVInUseError = true;
560
561 if (!pHostCpu->fIgnoreAMDVInUseError)
562 {
563 ASMSetFlags(fEFlags);
564 return VERR_SVM_IN_USE;
565 }
566 }
567
568 /* Turn on AMD-V in the EFER MSR. */
569 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
570
571 /* Write the physical page address where the CPU will store the host state while executing the VM. */
572 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
573
574 /* Restore interrupts. */
575 ASMSetFlags(fEFlags);
576
577 /*
578 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
579 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
580 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
581 * entirely with before executing any guest code.
582 */
583 pHostCpu->fFlushAsidBeforeUse = true;
584
585 /*
586 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
587 */
588 ++pHostCpu->cTlbFlushes;
589
590 return VINF_SUCCESS;
591}
592
593
594/**
595 * Deactivates AMD-V on the current CPU.
596 *
597 * @returns VBox status code.
598 * @param pHostCpu The HM physical-CPU structure.
599 * @param pvCpuPage Pointer to the global CPU page.
600 * @param HCPhysCpuPage Physical address of the global CPU page.
601 */
602VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
603{
604 RT_NOREF1(pHostCpu);
605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
606 AssertReturn( HCPhysCpuPage
607 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
608 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
609
610 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
611 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
612
613 /* Turn off AMD-V in the EFER MSR. */
614 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
615 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
616
617 /* Invalidate host state physical address. */
618 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
619
620 /* Restore interrupts. */
621 ASMSetFlags(fEFlags);
622
623 return VINF_SUCCESS;
624}
625
626
627/**
628 * Does global AMD-V initialization (called during module initialization).
629 *
630 * @returns VBox status code.
631 */
632VMMR0DECL(int) SVMR0GlobalInit(void)
633{
634 /*
635 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
636 * intercept all IO accesses, it's done once globally here instead of per-VM.
637 */
638 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
639 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
640 if (RT_FAILURE(rc))
641 return rc;
642
643 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
644 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
645
646 /* Set all bits to intercept all IO accesses. */
647 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
648
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Does global AMD-V termination (called during module termination).
655 */
656VMMR0DECL(void) SVMR0GlobalTerm(void)
657{
658 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
659 {
660 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
661 g_pvIOBitmap = NULL;
662 g_HCPhysIOBitmap = 0;
663 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
664 }
665}
666
667
668/**
669 * Frees any allocated per-VCPU structures for a VM.
670 *
671 * @param pVM The cross context VM structure.
672 */
673DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
674{
675 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
676 {
677 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
678 AssertPtr(pVCpu);
679
680 if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false);
683 pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0;
684 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false);
690 pVCpu->hmr0.s.svm.pVmcb = NULL;
691 pVCpu->hmr0.s.svm.HCPhysVmcb = 0;
692 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
693 }
694
695 if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
696 {
697 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false);
698 pVCpu->hmr0.s.svm.pvMsrBitmap = NULL;
699 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0;
700 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
701 }
702 }
703}
704
705
706/**
707 * Sets pfnVMRun to the best suited variant.
708 *
709 * This must be called whenever anything changes relative to the SVMR0VMRun
710 * variant selection:
711 * - pVCpu->hm.s.fLoadSaveGuestXcr0
712 * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher
713 * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher
714 * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
715 * - Perhaps: CPUMCTX.fXStateMask (windows only)
716 *
717 * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor
718 * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime.
719 */
720static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu)
721{
722 static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] =
723 {
724 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit },
725 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit },
726 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit },
727 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit },
728 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit },
729 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit },
730 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit },
731 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit },
732 };
733 uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
734 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
735 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0);
736 PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn;
737 if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun)
738 pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun;
739}
740
741
742/**
743 * Selector FNHMSVMVMRUN implementation.
744 */
745static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB)
746{
747 hmR0SvmUpdateVmRunFunction(pVCpu);
748 return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB);
749}
750
751
752/**
753 * Does per-VM AMD-V initialization.
754 *
755 * @returns VBox status code.
756 * @param pVM The cross context VM structure.
757 */
758VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
759{
760 int rc = VERR_INTERNAL_ERROR_5;
761
762 /*
763 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
764 */
765 uint32_t u32Family;
766 uint32_t u32Model;
767 uint32_t u32Stepping;
768 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
769 {
770 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
771 pVM->hmr0.s.svm.fAlwaysFlushTLB = true;
772 }
773
774 /*
775 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
776 */
777 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
778 {
779 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
780 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
781 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
782 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
783 }
784
785 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
786 {
787 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
788
789 /*
790 * Initialize the hardware-assisted SVM guest-execution handler.
791 * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}.
792 */
793 pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector;
794
795 /*
796 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
797 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
798 */
799/** @todo Does this need to be below 4G? */
800 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
801 if (RT_FAILURE(rc))
802 goto failure_cleanup;
803
804 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost);
805 pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */);
806 Assert(pVCpu->hmr0.s.svm.HCPhysVmcbHost < _4G);
807 ASMMemZeroPage(pvVmcbHost);
808
809 /*
810 * Allocate one page for the guest-state VMCB.
811 */
812/** @todo Does this need to be below 4G? */
813 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
814 if (RT_FAILURE(rc))
815 goto failure_cleanup;
816
817 pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb);
818 pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */);
819 Assert(pVCpu->hmr0.s.svm.HCPhysVmcb < _4G);
820 ASMMemZeroPage(pVCpu->hmr0.s.svm.pVmcb);
821
822 /*
823 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
824 * SVM to not require one.
825 */
826/** @todo Does this need to be below 4G? */
827 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
828 false /* fExecutable */);
829 if (RT_FAILURE(rc))
830 goto failure_cleanup;
831
832 pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap);
833 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
834 /* Set all bits to intercept all MSR accesses (changed later on). */
835 ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
836 }
837
838 return VINF_SUCCESS;
839
840failure_cleanup:
841 hmR0SvmFreeStructs(pVM);
842 return rc;
843}
844
845
846/**
847 * Does per-VM AMD-V termination.
848 *
849 * @returns VBox status code.
850 * @param pVM The cross context VM structure.
851 */
852VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
853{
854 hmR0SvmFreeStructs(pVM);
855 return VINF_SUCCESS;
856}
857
858
859/**
860 * Returns whether the VMCB Clean Bits feature is supported.
861 *
862 * @returns @c true if supported, @c false otherwise.
863 * @param pVCpu The cross context virtual CPU structure.
864 * @param fIsNestedGuest Whether we are currently executing the nested-guest.
865 */
866DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
867{
868 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
869 bool const fHostVmcbCleanBits = RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
870 if (!fIsNestedGuest)
871 return fHostVmcbCleanBits;
872 return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
873}
874
875
876/**
877 * Returns whether the decode assists feature is supported.
878 *
879 * @returns @c true if supported, @c false otherwise.
880 * @param pVCpu The cross context virtual CPU structure.
881 */
882DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
883{
884 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
885#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
886 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
887 return (pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
888 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
889#endif
890 return RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
891}
892
893
894/**
895 * Returns whether the NRIP_SAVE feature is supported.
896 *
897 * @returns @c true if supported, @c false otherwise.
898 * @param pVCpu The cross context virtual CPU structure.
899 */
900DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
901{
902 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
903#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
904 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
905 return (pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
906 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
907#endif
908 return RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
909}
910
911
912/**
913 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
914 *
915 * @param pVCpu The cross context virtual CPU structure.
916 * @param pbMsrBitmap Pointer to the MSR bitmap.
917 * @param idMsr The MSR for which the permissions are being set.
918 * @param enmRead MSR read permissions.
919 * @param enmWrite MSR write permissions.
920 *
921 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
922 * caller needs to take care of this.
923 */
924static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
925 SVMMSREXITWRITE enmWrite)
926{
927 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
928 uint16_t offMsrpm;
929 uint8_t uMsrpmBit;
930 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
931 AssertRC(rc);
932
933 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
934 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
935
936 pbMsrBitmap += offMsrpm;
937 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
938 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
939 else
940 {
941 if (!fInNestedGuestMode)
942 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
943#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
944 else
945 {
946 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
947 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
948 pbNstGstMsrBitmap += offMsrpm;
949 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
950 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
951 else
952 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
953 }
954#endif
955 }
956
957 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
958 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
959 else
960 {
961 if (!fInNestedGuestMode)
962 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
963#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
964 else
965 {
966 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
967 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
968 pbNstGstMsrBitmap += offMsrpm;
969 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
970 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
971 else
972 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
973 }
974#endif
975 }
976}
977
978
979/**
980 * Sets up AMD-V for the specified VM.
981 * This function is only called once per-VM during initalization.
982 *
983 * @returns VBox status code.
984 * @param pVM The cross context VM structure.
985 */
986VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
987{
988 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
989 AssertReturn(pVM, VERR_INVALID_PARAMETER);
990
991 /*
992 * Validate and copy over some parameters.
993 */
994 AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG);
995 bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
996 AssertReturn( !fNestedPaging
997 || (pVM->hm.s.svm.fFeaturesForRing3 & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
998 VERR_INCOMPATIBLE_CONFIG);
999 pVM->hmr0.s.fNestedPaging = fNestedPaging;
1000 pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
1001
1002 /*
1003 * Determin some configuration parameters.
1004 */
1005 bool const fPauseFilter = RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
1006 bool const fPauseFilterThreshold = RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
1007 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
1008
1009 bool const fLbrVirt = RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
1010 bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
1011
1012#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1013 bool const fVirtVmsaveVmload = RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
1014 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging;
1015
1016 bool const fVGif = RT_BOOL(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF);
1017 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
1018#endif
1019
1020 PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
1021 PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb;
1022 AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
1023 PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
1024
1025 /* Always trap #AC for reasons of security. */
1026 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
1027
1028 /* Always trap #DB for reasons of security. */
1029 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
1030
1031 /* Trap exceptions unconditionally (debug purposes). */
1032#ifdef HMSVM_ALWAYS_TRAP_PF
1033 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
1034#endif
1035#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1036 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
1037 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
1038 | RT_BIT_32(X86_XCPT_DE)
1039 | RT_BIT_32(X86_XCPT_NM)
1040 | RT_BIT_32(X86_XCPT_UD)
1041 | RT_BIT_32(X86_XCPT_NP)
1042 | RT_BIT_32(X86_XCPT_SS)
1043 | RT_BIT_32(X86_XCPT_GP)
1044 | RT_BIT_32(X86_XCPT_PF)
1045 | RT_BIT_32(X86_XCPT_MF)
1046 ;
1047#endif
1048
1049 /* Apply the exceptions intercepts needed by the GIM provider. */
1050 if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1051 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
1052
1053 /* The mesa 3d driver hack needs #GP. */
1054 if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
1055 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
1056
1057 /* Set up unconditional intercepts and conditions. */
1058 pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
1059 | SVM_CTRL_INTERCEPT_VMMCALL
1060 | SVM_CTRL_INTERCEPT_VMSAVE
1061 | SVM_CTRL_INTERCEPT_VMLOAD
1062 | SVM_CTRL_INTERCEPT_CLGI
1063 | SVM_CTRL_INTERCEPT_STGI;
1064
1065#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
1066 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
1067#endif
1068
1069#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1070 if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm)
1071 {
1072 /* Virtualized VMSAVE/VMLOAD. */
1073 if (fUseVirtVmsaveVmload)
1074 {
1075 pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1;
1076 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE
1077 | SVM_CTRL_INTERCEPT_VMLOAD);
1078 }
1079 else
1080 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1081
1082 /* Virtual GIF. */
1083 if (fUseVGif)
1084 {
1085 pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1;
1086 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI
1087 | SVM_CTRL_INTERCEPT_STGI);
1088 }
1089 else
1090 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1091 }
1092 else
1093#endif
1094 {
1095 Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm);
1096 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1097 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1098 }
1099
1100 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1101 pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
1102
1103 /* Intercept all DRx reads and writes by default. Changed later on. */
1104 pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
1105 pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
1106
1107 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1108 pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
1109
1110 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1111 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1112 pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
1113
1114 /* Set the IO permission bitmap physical addresses. */
1115 pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1116
1117 /* LBR virtualization. */
1118 pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1119
1120 /* The host ASID MBZ, for the guest start with 1. */
1121 pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
1122
1123 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1124 pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging;
1125
1126 /* Without Nested Paging, we need additionally intercepts. */
1127 if (!fNestedPaging)
1128 {
1129 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1130 pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
1131 pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
1132
1133 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1134 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1135 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1136
1137 /* Page faults must be intercepted to implement shadow paging. */
1138 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1139 }
1140
1141 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1142 if (fUsePauseFilter)
1143 {
1144 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1145 pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1146 if (fPauseFilterThreshold)
1147 pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1148 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1149 }
1150
1151 /*
1152 * Setup the MSR permission bitmap.
1153 * The following MSRs are saved/restored automatically during the world-switch.
1154 * Don't intercept guest read/write accesses to these MSRs.
1155 */
1156 uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap;
1157 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1158 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1159 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1160 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1161 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1162 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1163 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1164 if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1165 {
1166 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1167 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1168 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1169 }
1170 else
1171 {
1172 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1173 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1174 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1175 }
1176 pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap;
1177
1178 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1179 Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
1180
1181 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
1182 {
1183 PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
1184 PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb;
1185 AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
1186 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1187
1188 /* Copy the VMCB control area. */
1189 memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
1190
1191 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1192 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap;
1193 memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1194 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap;
1195
1196 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1197 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1198
1199 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1200 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
1201 }
1202
1203#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1204 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1205 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1206#else
1207 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1208#endif
1209 return VINF_SUCCESS;
1210}
1211
1212
1213/**
1214 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1215 *
1216 * @returns Pointer to the current context VMCB.
1217 * @param pVCpu The cross context virtual CPU structure.
1218 */
1219DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
1220{
1221#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1222 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1223 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1224#endif
1225 return pVCpu->hmr0.s.svm.pVmcb;
1226}
1227
1228
1229/**
1230 * Gets a pointer to the nested-guest VMCB cache.
1231 *
1232 * @returns Pointer to the nested-guest VMCB cache.
1233 * @param pVCpu The cross context virtual CPU structure.
1234 */
1235DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
1236{
1237#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1238 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1239 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1240#else
1241 RT_NOREF(pVCpu);
1242 return NULL;
1243#endif
1244}
1245
1246
1247/**
1248 * Invalidates a guest page by guest virtual address.
1249 *
1250 * @returns VBox status code.
1251 * @param pVCpu The cross context virtual CPU structure.
1252 * @param GCVirt Guest virtual address of the page to invalidate.
1253 */
1254VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1255{
1256 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1257
1258 bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB;
1259
1260 /* Skip it if a TLB flush is already pending. */
1261 if (!fFlushPending)
1262 {
1263 Log4Func(("%#RGv\n", GCVirt));
1264
1265 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1266 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1267
1268 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1269 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1270 }
1271 return VINF_SUCCESS;
1272}
1273
1274
1275/**
1276 * Flushes the appropriate tagged-TLB entries.
1277 *
1278 * @param pHostCpu The HM physical-CPU structure.
1279 * @param pVCpu The cross context virtual CPU structure.
1280 * @param pVmcb Pointer to the VM control block.
1281 */
1282static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1283{
1284 /*
1285 * Force a TLB flush for the first world switch if the current CPU differs from the one
1286 * we ran on last. This can happen both for start & resume due to long jumps back to
1287 * ring-3.
1288 *
1289 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1290 * correlation between it and the physical CPU.
1291 *
1292 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1293 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1294 */
1295 bool fNewAsid = false;
1296 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1297 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
1298 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes
1299#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1300 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1301#endif
1302 )
1303 {
1304 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1305 pVCpu->hmr0.s.fForceTLBFlush = true;
1306 fNewAsid = true;
1307 }
1308
1309 /* Set TLB flush state as checked until we return from the world switch. */
1310 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1311
1312 /* Check for explicit TLB flushes. */
1313 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1314 {
1315 pVCpu->hmr0.s.fForceTLBFlush = true;
1316 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1317 }
1318
1319 /*
1320 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1321 * This Host CPU requirement takes precedence.
1322 */
1323 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1324 if (pVM->hmr0.s.svm.fAlwaysFlushTLB)
1325 {
1326 pHostCpu->uCurrentAsid = 1;
1327 pVCpu->hmr0.s.uCurrentAsid = 1;
1328 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1329 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1330 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1331
1332 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1333 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1334 }
1335 else
1336 {
1337 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1338 if (pVCpu->hmr0.s.fForceTLBFlush)
1339 {
1340 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1341 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1342
1343 if (fNewAsid)
1344 {
1345 ++pHostCpu->uCurrentAsid;
1346
1347 bool fHitASIDLimit = false;
1348 if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
1349 {
1350 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1351 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1352 fHitASIDLimit = true;
1353 }
1354
1355 if ( fHitASIDLimit
1356 || pHostCpu->fFlushAsidBeforeUse)
1357 {
1358 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1359 pHostCpu->fFlushAsidBeforeUse = false;
1360 }
1361
1362 pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1363 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1364 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1365 }
1366 else
1367 {
1368 if (pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1369 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1370 else
1371 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1372 }
1373
1374 pVCpu->hmr0.s.fForceTLBFlush = false;
1375 }
1376 }
1377
1378 /* Update VMCB with the ASID. */
1379 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid)
1380 {
1381 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid;
1382 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1383 }
1384
1385 AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu,
1386 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu));
1387 AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1388 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1389 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
1390 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1391 AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
1392 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
1393
1394#ifdef VBOX_WITH_STATISTICS
1395 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1396 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1397 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1398 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1399 {
1400 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1401 }
1402 else
1403 {
1404 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1405 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1406 }
1407#endif
1408}
1409
1410
1411/**
1412 * Sets an exception intercept in the specified VMCB.
1413 *
1414 * @param pVmcb Pointer to the VM control block.
1415 * @param uXcpt The exception (X86_XCPT_*).
1416 */
1417DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1418{
1419 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1420 {
1421 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1422 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1423 }
1424}
1425
1426
1427/**
1428 * Clears an exception intercept in the specified VMCB.
1429 *
1430 * @param pVCpu The cross context virtual CPU structure.
1431 * @param pVmcb Pointer to the VM control block.
1432 * @param uXcpt The exception (X86_XCPT_*).
1433 *
1434 * @remarks This takes into account if we're executing a nested-guest and only
1435 * removes the exception intercept if both the guest -and- nested-guest
1436 * are not intercepting it.
1437 */
1438DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1439{
1440 Assert(uXcpt != X86_XCPT_DB);
1441 Assert(uXcpt != X86_XCPT_AC);
1442 Assert(uXcpt != X86_XCPT_GP);
1443#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1444 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1445 {
1446 bool fRemove = true;
1447# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1448 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1449 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1450 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1451 {
1452 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1453 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1454 }
1455# else
1456 RT_NOREF(pVCpu);
1457# endif
1458 if (fRemove)
1459 {
1460 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1461 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1462 }
1463 }
1464#else
1465 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1466#endif
1467}
1468
1469
1470/**
1471 * Sets a control intercept in the specified VMCB.
1472 *
1473 * @param pVmcb Pointer to the VM control block.
1474 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1475 */
1476DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1477{
1478 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1479 {
1480 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1481 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1482 }
1483}
1484
1485
1486/**
1487 * Clears a control intercept in the specified VMCB.
1488 *
1489 * @returns @c true if the intercept is still set, @c false otherwise.
1490 * @param pVCpu The cross context virtual CPU structure.
1491 * @param pVmcb Pointer to the VM control block.
1492 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1493 *
1494 * @remarks This takes into account if we're executing a nested-guest and only
1495 * removes the control intercept if both the guest -and- nested-guest
1496 * are not intercepting it.
1497 */
1498static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1499{
1500 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1501 {
1502 bool fRemove = true;
1503#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1504 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1505 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1506 {
1507 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1508 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1509 }
1510#else
1511 RT_NOREF(pVCpu);
1512#endif
1513 if (fRemove)
1514 {
1515 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1516 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1517 }
1518 }
1519
1520 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1521}
1522
1523
1524/**
1525 * Exports the guest (or nested-guest) CR0 into the VMCB.
1526 *
1527 * @param pVCpu The cross context virtual CPU structure.
1528 * @param pVmcb Pointer to the VM control block.
1529 *
1530 * @remarks This assumes we always pre-load the guest FPU.
1531 * @remarks No-long-jump zone!!!
1532 */
1533static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1534{
1535 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1536
1537 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1538 uint64_t const uGuestCr0 = pCtx->cr0;
1539 uint64_t uShadowCr0 = uGuestCr0;
1540
1541 /* Always enable caching. */
1542 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1543
1544 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1545 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1546 {
1547 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1548 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1549 }
1550
1551 /*
1552 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1553 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1554 * see @bugref{7243#c103}.
1555 */
1556 if (!(uGuestCr0 & X86_CR0_NE))
1557 {
1558 uShadowCr0 |= X86_CR0_NE;
1559 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1560 }
1561 else
1562 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1563
1564 /*
1565 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1566 *
1567 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1568 * see @bugref{6944}.
1569 *
1570 * We also don't ever want to honor weird things like cache disable from the guest.
1571 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1572 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1573 */
1574 if (uShadowCr0 == uGuestCr0)
1575 {
1576 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1577 {
1578 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1579 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1580 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1581 }
1582 else
1583 {
1584 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1585 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1586 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1587 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1588 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1589 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1590 }
1591 }
1592 else
1593 {
1594 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1595 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1596 }
1597 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1598
1599 Assert(!RT_HI_U32(uShadowCr0));
1600 if (pVmcb->guest.u64CR0 != uShadowCr0)
1601 {
1602 pVmcb->guest.u64CR0 = uShadowCr0;
1603 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1604 }
1605}
1606
1607
1608/**
1609 * Exports the guest (or nested-guest) CR3 into the VMCB.
1610 *
1611 * @param pVCpu The cross context virtual CPU structure.
1612 * @param pVmcb Pointer to the VM control block.
1613 *
1614 * @remarks No-long-jump zone!!!
1615 */
1616static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1617{
1618 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1619
1620 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1621 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1622 if (pVM->hmr0.s.fNestedPaging)
1623 {
1624 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
1625 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1626 pVmcb->guest.u64CR3 = pCtx->cr3;
1627 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1628 }
1629 else
1630 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1631
1632 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1633}
1634
1635
1636/**
1637 * Exports the guest (or nested-guest) CR4 into the VMCB.
1638 *
1639 * @param pVCpu The cross context virtual CPU structure.
1640 * @param pVmcb Pointer to the VM control block.
1641 *
1642 * @remarks No-long-jump zone!!!
1643 */
1644static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1645{
1646 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1647
1648 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1649 uint64_t uShadowCr4 = pCtx->cr4;
1650 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1651 {
1652 switch (pVCpu->hm.s.enmShadowMode)
1653 {
1654 case PGMMODE_REAL:
1655 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1656 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1657
1658 case PGMMODE_32_BIT: /* 32-bit paging. */
1659 uShadowCr4 &= ~X86_CR4_PAE;
1660 break;
1661
1662 case PGMMODE_PAE: /* PAE paging. */
1663 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1664 /** Must use PAE paging as we could use physical memory > 4 GB */
1665 uShadowCr4 |= X86_CR4_PAE;
1666 break;
1667
1668 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1669 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1670#ifdef VBOX_WITH_64_BITS_GUESTS
1671 break;
1672#else
1673 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1674#endif
1675
1676 default: /* shut up gcc */
1677 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1678 }
1679 }
1680
1681 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1682 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1683 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
1684 {
1685 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
1686 hmR0SvmUpdateVmRunFunction(pVCpu);
1687 }
1688
1689 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1690 if (uShadowCr4 == pCtx->cr4)
1691 {
1692 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1693 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1694 else
1695 {
1696 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1697 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1698 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1699 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1700 }
1701 }
1702 else
1703 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1704
1705 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1706 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1707
1708 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1709 Assert(!RT_HI_U32(uShadowCr4));
1710 pVmcb->guest.u64CR4 = uShadowCr4;
1711 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1712
1713 return VINF_SUCCESS;
1714}
1715
1716
1717/**
1718 * Exports the guest (or nested-guest) control registers into the VMCB.
1719 *
1720 * @returns VBox status code.
1721 * @param pVCpu The cross context virtual CPU structure.
1722 * @param pVmcb Pointer to the VM control block.
1723 *
1724 * @remarks No-long-jump zone!!!
1725 */
1726static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1727{
1728 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1729
1730 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1731 {
1732 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1733 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1734
1735 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1736 {
1737 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1738 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1739 }
1740
1741 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1742 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1743
1744 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1745 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1746 {
1747 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1748 if (RT_FAILURE(rc))
1749 return rc;
1750 }
1751
1752 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1753 }
1754 return VINF_SUCCESS;
1755}
1756
1757
1758/**
1759 * Exports the guest (or nested-guest) segment registers into the VMCB.
1760 *
1761 * @returns VBox status code.
1762 * @param pVCpu The cross context virtual CPU structure.
1763 * @param pVmcb Pointer to the VM control block.
1764 *
1765 * @remarks No-long-jump zone!!!
1766 */
1767static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1768{
1769 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1770 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1771
1772 /* Guest segment registers. */
1773 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1774 {
1775 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1776 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1777
1778 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1779 {
1780 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1781 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1782 }
1783
1784 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1785 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1786
1787 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1788 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1789
1790 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1791 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1792
1793 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1794 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1795
1796 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1797 }
1798
1799 /* Guest TR. */
1800 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1801 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1802
1803 /* Guest LDTR. */
1804 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1805 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1806
1807 /* Guest GDTR. */
1808 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1809 {
1810 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1811 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1812 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1813 }
1814
1815 /* Guest IDTR. */
1816 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1817 {
1818 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1819 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1820 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1821 }
1822
1823 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1824 | HM_CHANGED_GUEST_TABLE_MASK);
1825}
1826
1827
1828/**
1829 * Exports the guest (or nested-guest) MSRs into the VMCB.
1830 *
1831 * @param pVCpu The cross context virtual CPU structure.
1832 * @param pVmcb Pointer to the VM control block.
1833 *
1834 * @remarks No-long-jump zone!!!
1835 */
1836static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1837{
1838 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1839 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1840
1841 /* Guest Sysenter MSRs. */
1842 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1843 {
1844 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1845 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1846
1847 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1848 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1849
1850 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1851 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1852 }
1853
1854 /*
1855 * Guest EFER MSR.
1856 * AMD-V requires guest EFER.SVME to be set. Weird.
1857 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1858 */
1859 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1860 {
1861 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1862 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1863 }
1864
1865 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1866 if ( !CPUMIsGuestInLongModeEx(pCtx)
1867 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1868 {
1869 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1870 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1871 }
1872
1873 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1874 {
1875 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1876 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1877 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1878 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1879 }
1880
1881 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1882 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1883
1884 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1885 | HM_CHANGED_GUEST_EFER_MSR
1886 | HM_CHANGED_GUEST_SYSCALL_MSRS
1887 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1888
1889 /*
1890 * Setup the PAT MSR (applicable for Nested Paging only).
1891 *
1892 * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
1893 * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
1894 *
1895 * While guests can modify and see the modified values through the shadow values,
1896 * we shall not honor any guest modifications of this MSR to ensure caching is always
1897 * enabled similar to how we clear CR0.CD and NW bits.
1898 *
1899 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1900 */
1901 pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
1902
1903 /* Enable the last branch record bit if LBR virtualization is enabled. */
1904 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1905 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1906}
1907
1908
1909/**
1910 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1911 * the necessary intercepts accordingly.
1912 *
1913 * @param pVCpu The cross context virtual CPU structure.
1914 * @param pVmcb Pointer to the VM control block.
1915 *
1916 * @remarks No-long-jump zone!!!
1917 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1918 */
1919static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1920{
1921 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1922
1923 /*
1924 * Anyone single stepping on the host side? If so, we'll have to use the
1925 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1926 * the VMM level like the VT-x implementations does.
1927 */
1928 bool fInterceptMovDRx = false;
1929 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1930 if (fStepping)
1931 {
1932 pVCpu->hmr0.s.fClearTrapFlag = true;
1933 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1934 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1935 }
1936
1937 if ( fStepping
1938 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1939 {
1940 /*
1941 * Use the combined guest and host DRx values found in the hypervisor
1942 * register set because the debugger has breakpoints active or someone
1943 * is single stepping on the host side.
1944 *
1945 * Note! DBGF expects a clean DR6 state before executing guest code.
1946 */
1947 if (!CPUMIsHyperDebugStateActive(pVCpu))
1948 {
1949 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1950 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1951 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1952 }
1953
1954 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1955 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1956 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1957 {
1958 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1959 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1960 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1961 }
1962
1963 /** @todo If we cared, we could optimize to allow the guest to read registers
1964 * with the same values. */
1965 fInterceptMovDRx = true;
1966 pVCpu->hmr0.s.fUsingHyperDR7 = true;
1967 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1968 }
1969 else
1970 {
1971 /*
1972 * Update DR6, DR7 with the guest values if necessary.
1973 */
1974 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1975 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1976 {
1977 pVmcb->guest.u64DR7 = pCtx->dr[7];
1978 pVmcb->guest.u64DR6 = pCtx->dr[6];
1979 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1980 }
1981 pVCpu->hmr0.s.fUsingHyperDR7 = false;
1982
1983 /*
1984 * If the guest has enabled debug registers, we need to load them prior to
1985 * executing guest code so they'll trigger at the right time.
1986 */
1987 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1988 {
1989 if (!CPUMIsGuestDebugStateActive(pVCpu))
1990 {
1991 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1992 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1993 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1994 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1995 }
1996 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
1997 }
1998 /*
1999 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2000 * intercept #DB as DR6 is updated in the VMCB.
2001 *
2002 * Note! If we cared and dared, we could skip intercepting \#DB here.
2003 * However, \#DB shouldn't be performance critical, so we'll play safe
2004 * and keep the code similar to the VT-x code and always intercept it.
2005 */
2006 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2007 fInterceptMovDRx = true;
2008 }
2009
2010 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2011 if (fInterceptMovDRx)
2012 {
2013 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2014 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2015 {
2016 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2017 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2018 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2019 }
2020 }
2021 else
2022 {
2023 if ( pVmcb->ctrl.u16InterceptRdDRx
2024 || pVmcb->ctrl.u16InterceptWrDRx)
2025 {
2026 pVmcb->ctrl.u16InterceptRdDRx = 0;
2027 pVmcb->ctrl.u16InterceptWrDRx = 0;
2028 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2029 }
2030 }
2031 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2032}
2033
2034/**
2035 * Exports the hardware virtualization state into the nested-guest
2036 * VMCB.
2037 *
2038 * @param pVCpu The cross context virtual CPU structure.
2039 * @param pVmcb Pointer to the VM control block.
2040 *
2041 * @remarks No-long-jump zone!!!
2042 */
2043static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2044{
2045 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2046
2047 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2048 {
2049 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2050 {
2051 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2052 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
2053
2054 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
2055 Assert(pVM->hmr0.s.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
2056 Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
2057 NOREF(pVM);
2058
2059 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2060 }
2061
2062 /*
2063 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2064 * since SVM doesn't have a preemption timer.
2065 *
2066 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2067 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2068 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2069 */
2070 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2071 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2072 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2073 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2074 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
2075 {
2076 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2077 pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2078 pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2079 }
2080 else
2081 {
2082 /** @todo r=ramshankar: We can turn these assignments into assertions. */
2083 pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2084 pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2085 }
2086 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2087
2088 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2089 }
2090}
2091
2092
2093/**
2094 * Exports the guest APIC TPR state into the VMCB.
2095 *
2096 * @returns VBox status code.
2097 * @param pVCpu The cross context virtual CPU structure.
2098 * @param pVmcb Pointer to the VM control block.
2099 */
2100static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2101{
2102 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2103
2104 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2105 {
2106 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2107 if ( PDMHasApic(pVM)
2108 && APICIsEnabled(pVCpu))
2109 {
2110 bool fPendingIntr;
2111 uint8_t u8Tpr;
2112 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2113 AssertRCReturn(rc, rc);
2114
2115 /* Assume that we need to trap all TPR accesses and thus need not check on
2116 every #VMEXIT if we should update the TPR. */
2117 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2118 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2119
2120 if (!pVM->hm.s.fTPRPatchingActive)
2121 {
2122 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2123 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2124
2125 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2126 can deliver the interrupt to the guest. */
2127 if (fPendingIntr)
2128 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2129 else
2130 {
2131 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2132 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2133 }
2134
2135 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2136 }
2137 else
2138 {
2139 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2140 pVmcb->guest.u64LSTAR = u8Tpr;
2141 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2142
2143 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2144 if (fPendingIntr)
2145 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2146 else
2147 {
2148 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2149 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2150 }
2151 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2152 }
2153 }
2154 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2155 }
2156 return VINF_SUCCESS;
2157}
2158
2159
2160/**
2161 * Sets up the exception interrupts required for guest execution in the VMCB.
2162 *
2163 * @param pVCpu The cross context virtual CPU structure.
2164 * @param pVmcb Pointer to the VM control block.
2165 *
2166 * @remarks No-long-jump zone!!!
2167 */
2168static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2169{
2170 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2171
2172 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2173 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
2174 {
2175 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2176 if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
2177 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2178 else
2179 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2180
2181 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2182 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2183 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2184 else
2185 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2186
2187 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2188 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
2189 }
2190}
2191
2192
2193#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2194/**
2195 * Merges guest and nested-guest intercepts for executing the nested-guest using
2196 * hardware-assisted SVM.
2197 *
2198 * This merges the guest and nested-guest intercepts in a way that if the outer
2199 * guest intercept is set we need to intercept it in the nested-guest as
2200 * well.
2201 *
2202 * @param pVCpu The cross context virtual CPU structure.
2203 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2204 */
2205static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
2206{
2207 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2208 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
2209 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2210 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2211
2212 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2213 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2214 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2215
2216 /* Always intercept CR4 writes for tracking PGM mode changes. */
2217 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2218
2219 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2220 if (!pVM->hmr0.s.fNestedPaging)
2221 {
2222 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2223 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2224 }
2225
2226 /** @todo Figure out debugging with nested-guests, till then just intercept
2227 * all DR[0-15] accesses. */
2228 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2229 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2230
2231 /*
2232 * Merge the guest's exception intercepts into the nested-guest VMCB.
2233 *
2234 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2235 * while executing the nested-guest.
2236 *
2237 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2238 * be tweaked later depending on how we wish to implement breakpoints.
2239 *
2240 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2241 * loaded into their guests, not ours.
2242 *
2243 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2244 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2245 */
2246#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2247 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2248 & ~( RT_BIT(X86_XCPT_UD)
2249 | RT_BIT(X86_XCPT_BP)
2250 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2251#else
2252 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2253#endif
2254
2255 /*
2256 * Adjust intercepts while executing the nested-guest that differ from the
2257 * outer guest intercepts.
2258 *
2259 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2260 * that belong to the nested-guest to the outer guest.
2261 *
2262 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2263 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2264 */
2265 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2266 | SVM_CTRL_INTERCEPT_VMMCALL))
2267 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2268
2269 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2270 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2271
2272 /* Finally, update the VMCB clean bits. */
2273 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2274}
2275#endif
2276
2277
2278/**
2279 * Enters the AMD-V session.
2280 *
2281 * @returns VBox status code.
2282 * @param pVCpu The cross context virtual CPU structure.
2283 */
2284VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
2285{
2286 AssertPtr(pVCpu);
2287 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2288 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2289
2290 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2291 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2292 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2293
2294 pVCpu->hmr0.s.fLeaveDone = false;
2295 return VINF_SUCCESS;
2296}
2297
2298
2299/**
2300 * Thread-context callback for AMD-V.
2301 *
2302 * @param enmEvent The thread-context event.
2303 * @param pVCpu The cross context virtual CPU structure.
2304 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2305 * @thread EMT(pVCpu)
2306 */
2307VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
2308{
2309 NOREF(fGlobalInit);
2310
2311 switch (enmEvent)
2312 {
2313 case RTTHREADCTXEVENT_OUT:
2314 {
2315 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2316 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2317 VMCPU_ASSERT_EMT(pVCpu);
2318
2319 /* No longjmps (log-flush, locks) in this fragile context. */
2320 VMMRZCallRing3Disable(pVCpu);
2321
2322 if (!pVCpu->hmr0.s.fLeaveDone)
2323 {
2324 hmR0SvmLeave(pVCpu, false /* fImportState */);
2325 pVCpu->hmr0.s.fLeaveDone = true;
2326 }
2327
2328 /* Leave HM context, takes care of local init (term). */
2329 int rc = HMR0LeaveCpu(pVCpu);
2330 AssertRC(rc); NOREF(rc);
2331
2332 /* Restore longjmp state. */
2333 VMMRZCallRing3Enable(pVCpu);
2334 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2335 break;
2336 }
2337
2338 case RTTHREADCTXEVENT_IN:
2339 {
2340 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2341 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2342 VMCPU_ASSERT_EMT(pVCpu);
2343
2344 /* No longjmps (log-flush, locks) in this fragile context. */
2345 VMMRZCallRing3Disable(pVCpu);
2346
2347 /*
2348 * Initialize the bare minimum state required for HM. This takes care of
2349 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2350 */
2351 int rc = hmR0EnterCpu(pVCpu);
2352 AssertRC(rc); NOREF(rc);
2353 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2354 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2355
2356 pVCpu->hmr0.s.fLeaveDone = false;
2357
2358 /* Restore longjmp state. */
2359 VMMRZCallRing3Enable(pVCpu);
2360 break;
2361 }
2362
2363 default:
2364 break;
2365 }
2366}
2367
2368
2369/**
2370 * Saves the host state.
2371 *
2372 * @returns VBox status code.
2373 * @param pVCpu The cross context virtual CPU structure.
2374 *
2375 * @remarks No-long-jump zone!!!
2376 */
2377VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
2378{
2379 NOREF(pVCpu);
2380
2381 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2382 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2383 return VINF_SUCCESS;
2384}
2385
2386
2387/**
2388 * Exports the guest or nested-guest state from the virtual-CPU context into the
2389 * VMCB.
2390 *
2391 * Also sets up the appropriate VMRUN function to execute guest or nested-guest
2392 * code based on the virtual-CPU mode.
2393 *
2394 * @returns VBox status code.
2395 * @param pVCpu The cross context virtual CPU structure.
2396 * @param pSvmTransient Pointer to the SVM-transient structure.
2397 *
2398 * @remarks No-long-jump zone!!!
2399 */
2400static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
2401{
2402 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2403
2404 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2405 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2406 Assert(pVmcb);
2407
2408 pVmcb->guest.u64RIP = pCtx->rip;
2409 pVmcb->guest.u64RSP = pCtx->rsp;
2410 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2411 pVmcb->guest.u64RAX = pCtx->rax;
2412
2413 bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
2414 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2415
2416 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2417 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2418 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2419 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2420 hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
2421
2422 ASMSetFlags(fEFlags);
2423
2424 if (!fIsNestedGuest)
2425 {
2426 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2427 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2428 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2429 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2430 }
2431
2432 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2433 uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
2434 | HM_CHANGED_GUEST_RFLAGS
2435 | HM_CHANGED_GUEST_GPRS_MASK
2436 | HM_CHANGED_GUEST_X87
2437 | HM_CHANGED_GUEST_SSE_AVX
2438 | HM_CHANGED_GUEST_OTHER_XSAVE
2439 | HM_CHANGED_GUEST_XCRx
2440 | HM_CHANGED_GUEST_TSC_AUX
2441 | HM_CHANGED_GUEST_OTHER_MSRS;
2442 if (fIsNestedGuest)
2443 fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
2444 | HM_CHANGED_GUEST_APIC_TPR;
2445
2446 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
2447 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2448
2449#ifdef VBOX_STRICT
2450 /*
2451 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2452 * except for the host-context and/or shared host-guest context bits.
2453 */
2454 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2455 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2456 ("fCtxChanged=%#RX64\n", fCtxChanged));
2457
2458 /*
2459 * If we need to log state that isn't always imported, we'll need to import them here.
2460 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2461 */
2462 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2463#endif
2464
2465 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2466 return VINF_SUCCESS;
2467}
2468
2469
2470#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2471/**
2472 * Merges the guest and nested-guest MSR permission bitmap.
2473 *
2474 * If the guest is intercepting an MSR we need to intercept it regardless of
2475 * whether the nested-guest is intercepting it or not.
2476 *
2477 * @param pHostCpu The HM physical-CPU structure.
2478 * @param pVCpu The cross context virtual CPU structure.
2479 *
2480 * @remarks No-long-jmp zone!!!
2481 */
2482DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2483{
2484 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2485 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2486 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2487
2488 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2489 uint32_t const offRsvdQwords = 0x1800 >> 3;
2490 for (uint32_t i = 0; i < offRsvdQwords; i++)
2491 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2492}
2493
2494
2495/**
2496 * Caches the nested-guest VMCB fields before we modify them for execution using
2497 * hardware-assisted SVM.
2498 *
2499 * @returns true if the VMCB was previously already cached, false otherwise.
2500 * @param pVCpu The cross context virtual CPU structure.
2501 *
2502 * @sa HMNotifySvmNstGstVmexit.
2503 */
2504static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
2505{
2506 /*
2507 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2508 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2509 *
2510 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2511 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2512 */
2513 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2514 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2515 if (!fWasCached)
2516 {
2517 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2518 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2519 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2520 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2521 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2522 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2523 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2524 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2525 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2526 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2527 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2528 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2529 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2530 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2531 pVmcbNstGstCache->fCacheValid = true;
2532 Log4Func(("Cached VMCB fields\n"));
2533 }
2534
2535 return fWasCached;
2536}
2537
2538
2539/**
2540 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2541 *
2542 * This is done the first time we enter nested-guest execution using SVM R0
2543 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2544 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2545 *
2546 * @param pVCpu The cross context virtual CPU structure.
2547 */
2548static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
2549{
2550 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2551 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2552
2553 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2554
2555 /*
2556 * First cache the nested-guest VMCB fields we may potentially modify.
2557 */
2558 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2559 if (!fVmcbCached)
2560 {
2561 /*
2562 * The IOPM of the nested-guest can be ignored because the the guest always
2563 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2564 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2565 */
2566 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2567
2568 /*
2569 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2570 * nested-paging suddenly while executing a VM (see assertion at the end of
2571 * Trap0eHandler() in PGMAllBth.h).
2572 */
2573 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
2574
2575 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2576 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2577
2578 /*
2579 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2580 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2581 */
2582 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2583
2584#ifdef DEBUG_ramshankar
2585 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2586 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2587#endif
2588
2589 /*
2590 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2591 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2592 */
2593 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2594 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2595 | SVM_CTRL_INTERCEPT_VMLOAD;
2596
2597 /*
2598 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2599 * CLGI/STGI instructions executed by the nested-guest.
2600 */
2601 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2602 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2603 | SVM_CTRL_INTERCEPT_STGI;
2604
2605 /* Merge the guest and nested-guest intercepts. */
2606 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2607
2608 /* Update the VMCB clean bits. */
2609 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2610 }
2611 else
2612 {
2613 Assert(!pVCpu->hmr0.s.svm.fSyncVTpr);
2614 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2615 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2616 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2617 }
2618}
2619#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2620
2621
2622/**
2623 * Exports the state shared between the host and guest (or nested-guest) into
2624 * the VMCB.
2625 *
2626 * @param pVCpu The cross context virtual CPU structure.
2627 * @param pVmcb Pointer to the VM control block.
2628 *
2629 * @remarks No-long-jump zone!!!
2630 */
2631static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2632{
2633 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2634 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2635
2636 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2637 {
2638 /** @todo Figure out stepping with nested-guest. */
2639 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2640 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2641 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2642 else
2643 {
2644 pVmcb->guest.u64DR6 = pCtx->dr[6];
2645 pVmcb->guest.u64DR7 = pCtx->dr[7];
2646 }
2647 }
2648
2649 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2650 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2651 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2652}
2653
2654
2655/**
2656 * Worker for SVMR0ImportStateOnDemand.
2657 *
2658 * @param pVCpu The cross context virtual CPU structure.
2659 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2660 */
2661static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
2662{
2663 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2664
2665 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2666 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2667 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2668 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2669
2670 /*
2671 * We disable interrupts to make the updating of the state and in particular
2672 * the fExtrn modification atomic wrt to preemption hooks.
2673 */
2674 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2675
2676 fWhat &= pCtx->fExtrn;
2677 if (fWhat)
2678 {
2679#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2680 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2681 {
2682 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2683 {
2684 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2685 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2686 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2687 }
2688 }
2689
2690 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2691 {
2692 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2693 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2694 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2695 }
2696#endif
2697
2698 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2699 {
2700 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2701 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2702 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2703 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2704 }
2705
2706 if (fWhat & CPUMCTX_EXTRN_RIP)
2707 pCtx->rip = pVmcbGuest->u64RIP;
2708
2709 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2710 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2711
2712 if (fWhat & CPUMCTX_EXTRN_RSP)
2713 pCtx->rsp = pVmcbGuest->u64RSP;
2714
2715 if (fWhat & CPUMCTX_EXTRN_RAX)
2716 pCtx->rax = pVmcbGuest->u64RAX;
2717
2718 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2719 {
2720 if (fWhat & CPUMCTX_EXTRN_CS)
2721 {
2722 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2723 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2724 /** @todo SELM might need to be fixed as it too should not care about the
2725 * granularity bit. See @bugref{6785}. */
2726 if ( !pCtx->cs.Attr.n.u1Granularity
2727 && pCtx->cs.Attr.n.u1Present
2728 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2729 {
2730 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2731 pCtx->cs.Attr.n.u1Granularity = 1;
2732 }
2733 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2734 }
2735 if (fWhat & CPUMCTX_EXTRN_SS)
2736 {
2737 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2738 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2739 /*
2740 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2741 * VMCB and uses that and thus it's possible that when the CPL changes during
2742 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2743 * AMD Fusion CPUs with 64-bit guests.
2744 *
2745 * See AMD spec. 15.5.1 "Basic operation".
2746 */
2747 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2748 uint8_t const uCpl = pVmcbGuest->u8CPL;
2749 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2750 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2751 }
2752 if (fWhat & CPUMCTX_EXTRN_DS)
2753 {
2754 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2755 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2756 }
2757 if (fWhat & CPUMCTX_EXTRN_ES)
2758 {
2759 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2760 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2761 }
2762 if (fWhat & CPUMCTX_EXTRN_FS)
2763 {
2764 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2765 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2766 }
2767 if (fWhat & CPUMCTX_EXTRN_GS)
2768 {
2769 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2770 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2771 }
2772 }
2773
2774 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2775 {
2776 if (fWhat & CPUMCTX_EXTRN_TR)
2777 {
2778 /*
2779 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2780 * are used between Intel and AMD, see @bugref{6208#c39}.
2781 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2782 */
2783 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2784 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2785 {
2786 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2787 || CPUMIsGuestInLongModeEx(pCtx))
2788 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2789 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2790 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2791 }
2792 }
2793
2794 if (fWhat & CPUMCTX_EXTRN_LDTR)
2795 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2796
2797 if (fWhat & CPUMCTX_EXTRN_GDTR)
2798 {
2799 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2800 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2801 }
2802
2803 if (fWhat & CPUMCTX_EXTRN_IDTR)
2804 {
2805 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2806 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2807 }
2808 }
2809
2810 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2811 {
2812 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2813 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2814 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2815 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2816 }
2817
2818 if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2819 && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */)
2820 {
2821 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2822 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2823 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2824 }
2825
2826 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2827 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2828
2829 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2830 {
2831 if (fWhat & CPUMCTX_EXTRN_DR6)
2832 {
2833 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2834 pCtx->dr[6] = pVmcbGuest->u64DR6;
2835 else
2836 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2837 }
2838
2839 if (fWhat & CPUMCTX_EXTRN_DR7)
2840 {
2841 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2842 pCtx->dr[7] = pVmcbGuest->u64DR7;
2843 else
2844 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2845 }
2846 }
2847
2848 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2849 {
2850 if (fWhat & CPUMCTX_EXTRN_CR0)
2851 {
2852 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2853 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2854 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2855 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2856 CPUMSetGuestCR0(pVCpu, uCr0);
2857 VMMRZCallRing3Enable(pVCpu);
2858 }
2859
2860 if (fWhat & CPUMCTX_EXTRN_CR2)
2861 pCtx->cr2 = pVmcbGuest->u64CR2;
2862
2863 if (fWhat & CPUMCTX_EXTRN_CR3)
2864 {
2865 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2866 && pCtx->cr3 != pVmcbGuest->u64CR3)
2867 {
2868 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2869 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2870 }
2871 }
2872
2873 /* Changes to CR4 are always intercepted. */
2874 }
2875
2876 /* Update fExtrn. */
2877 pCtx->fExtrn &= ~fWhat;
2878
2879 /* If everything has been imported, clear the HM keeper bit. */
2880 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2881 {
2882 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2883 Assert(!pCtx->fExtrn);
2884 }
2885 }
2886 else
2887 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
2888
2889 ASMSetFlags(fEFlags);
2890
2891 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
2892
2893 /*
2894 * Honor any pending CR3 updates.
2895 *
2896 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
2897 * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
2898 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
2899 * handling -> hmR0SvmImportGuestState() and here we are.
2900 *
2901 * The reason for such complicated handling is because VM-exits that call into PGM expect
2902 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
2903 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
2904 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
2905 *
2906 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
2907 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
2908 */
2909 if ( VMMRZCallRing3IsEnabled(pVCpu)
2910 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
2911 {
2912 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
2913 PGMUpdateCR3(pVCpu, pCtx->cr3);
2914 }
2915}
2916
2917
2918/**
2919 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
2920 * context.
2921 *
2922 * Currently there is no residual state left in the CPU that is not updated in the
2923 * VMCB.
2924 *
2925 * @returns VBox status code.
2926 * @param pVCpu The cross context virtual CPU structure.
2927 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2928 */
2929VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
2930{
2931 hmR0SvmImportGuestState(pVCpu, fWhat);
2932 return VINF_SUCCESS;
2933}
2934
2935
2936/**
2937 * Does the necessary state syncing before returning to ring-3 for any reason
2938 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2939 *
2940 * @param pVCpu The cross context virtual CPU structure.
2941 * @param fImportState Whether to import the guest state from the VMCB back
2942 * to the guest-CPU context.
2943 *
2944 * @remarks No-long-jmp zone!!!
2945 */
2946static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
2947{
2948 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2949 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2950 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2951
2952 /*
2953 * !!! IMPORTANT !!!
2954 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
2955 */
2956
2957 /* Save the guest state if necessary. */
2958 if (fImportState)
2959 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
2960
2961 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2962 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2963 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2964
2965 /*
2966 * Restore host debug registers if necessary and resync on next R0 reentry.
2967 */
2968#ifdef VBOX_STRICT
2969 if (CPUMIsHyperDebugStateActive(pVCpu))
2970 {
2971 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */
2972 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2973 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2974 }
2975#endif
2976 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2977 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2978 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2979
2980 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2981 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
2982 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
2983 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
2984 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
2985 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
2986 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2987
2988 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2989}
2990
2991
2992/**
2993 * Leaves the AMD-V session.
2994 *
2995 * Only used while returning to ring-3 either due to longjump or exits to
2996 * ring-3.
2997 *
2998 * @returns VBox status code.
2999 * @param pVCpu The cross context virtual CPU structure.
3000 */
3001static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
3002{
3003 HM_DISABLE_PREEMPT(pVCpu);
3004 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3005 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3006
3007 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3008 and done this from the SVMR0ThreadCtxCallback(). */
3009 if (!pVCpu->hmr0.s.fLeaveDone)
3010 {
3011 hmR0SvmLeave(pVCpu, true /* fImportState */);
3012 pVCpu->hmr0.s.fLeaveDone = true;
3013 }
3014
3015 /*
3016 * !!! IMPORTANT !!!
3017 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
3018 */
3019
3020 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3021 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3022 VMMR0ThreadCtxHookDisable(pVCpu);
3023
3024 /* Leave HM context. This takes care of local init (term). */
3025 int rc = HMR0LeaveCpu(pVCpu);
3026
3027 HM_RESTORE_PREEMPT();
3028 return rc;
3029}
3030
3031
3032/**
3033 * Does the necessary state syncing before doing a longjmp to ring-3.
3034 *
3035 * @returns VBox status code.
3036 * @param pVCpu The cross context virtual CPU structure.
3037 *
3038 * @remarks No-long-jmp zone!!!
3039 */
3040static int hmR0SvmLongJmpToRing3(PVMCPUCC pVCpu)
3041{
3042 return hmR0SvmLeaveSession(pVCpu);
3043}
3044
3045
3046/**
3047 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3048 * any remaining host state) before we longjump to ring-3 and possibly get
3049 * preempted.
3050 *
3051 * @param pVCpu The cross context virtual CPU structure.
3052 * @param enmOperation The operation causing the ring-3 longjump.
3053 */
3054VMMR0DECL(int) SVMR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
3055{
3056 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3057 {
3058 /*
3059 * !!! IMPORTANT !!!
3060 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3061 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3062 */
3063 VMMRZCallRing3RemoveNotification(pVCpu);
3064 VMMRZCallRing3Disable(pVCpu);
3065 HM_DISABLE_PREEMPT(pVCpu);
3066
3067 /* Import the entire guest state. */
3068 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3069
3070 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3071 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3072
3073 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3074 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3075
3076 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3077 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3078 VMMR0ThreadCtxHookDisable(pVCpu);
3079
3080 /* Leave HM context. This takes care of local init (term). */
3081 HMR0LeaveCpu(pVCpu);
3082
3083 HM_RESTORE_PREEMPT();
3084 return VINF_SUCCESS;
3085 }
3086
3087 Assert(pVCpu);
3088 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3089 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3090
3091 VMMRZCallRing3Disable(pVCpu);
3092 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3093
3094 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3095 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3096 AssertRCReturn(rc, rc);
3097
3098 VMMRZCallRing3Enable(pVCpu);
3099 return VINF_SUCCESS;
3100}
3101
3102
3103/**
3104 * Take necessary actions before going back to ring-3.
3105 *
3106 * An action requires us to go back to ring-3. This function does the necessary
3107 * steps before we can safely return to ring-3. This is not the same as longjmps
3108 * to ring-3, this is voluntary.
3109 *
3110 * @returns Strict VBox status code.
3111 * @param pVCpu The cross context virtual CPU structure.
3112 * @param rcExit The reason for exiting to ring-3. Can be
3113 * VINF_VMM_UNKNOWN_RING3_CALL.
3114 */
3115static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
3116{
3117 Assert(pVCpu);
3118 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3119
3120 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3121 VMMRZCallRing3Disable(pVCpu);
3122 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions,
3123 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3124
3125 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3126 if (pVCpu->hm.s.Event.fPending)
3127 {
3128 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3129 Assert(!pVCpu->hm.s.Event.fPending);
3130 }
3131
3132 /* Sync. the necessary state for going back to ring-3. */
3133 hmR0SvmLeaveSession(pVCpu);
3134 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3135
3136 /* Thread-context hooks are unregistered at this point!!! */
3137 /* Ring-3 callback notifications are unregistered at this point!!! */
3138
3139 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3140 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3141 | CPUM_CHANGED_LDTR
3142 | CPUM_CHANGED_GDTR
3143 | CPUM_CHANGED_IDTR
3144 | CPUM_CHANGED_TR
3145 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3146 if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
3147 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3148 {
3149 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3150 }
3151
3152 /* Update the exit-to-ring 3 reason. */
3153 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
3154
3155 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3156 if ( rcExit != VINF_EM_RAW_INTERRUPT
3157 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3158 {
3159 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3160 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3161 }
3162
3163 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3164 VMMRZCallRing3Enable(pVCpu);
3165
3166 /*
3167 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3168 * and if we're injecting an event we should have a TRPM trap pending.
3169 */
3170 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3171 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3172 VERR_SVM_IPE_5);
3173 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3174 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3175 VERR_SVM_IPE_4);
3176
3177 return rcExit;
3178}
3179
3180
3181/**
3182 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3183 * intercepts.
3184 *
3185 * @param pVCpu The cross context virtual CPU structure.
3186 * @param pVmcb Pointer to the VM control block.
3187 *
3188 * @remarks No-long-jump zone!!!
3189 */
3190static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3191{
3192 /*
3193 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3194 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3195 * RDTSC/RDTSCP as well.
3196 */
3197 bool fParavirtTsc;
3198 uint64_t uTscOffset;
3199 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3200
3201 bool fIntercept;
3202 if (fCanUseRealTsc)
3203 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3204 else
3205 {
3206 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3207 fIntercept = true;
3208 }
3209
3210 if (!fIntercept)
3211 {
3212#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3213 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3214 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3215 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
3216#endif
3217
3218 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3219 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3220 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3221 }
3222
3223 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3224 information before every VM-entry, hence we have nothing to do here at the moment. */
3225 if (fParavirtTsc)
3226 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3227}
3228
3229
3230/**
3231 * Sets an event as a pending event to be injected into the guest.
3232 *
3233 * @param pVCpu The cross context virtual CPU structure.
3234 * @param pEvent Pointer to the SVM event.
3235 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3236 * page-fault.
3237 *
3238 * @remarks Statistics counter assumes this is a guest event being reflected to
3239 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3240 */
3241DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3242{
3243 Assert(!pVCpu->hm.s.Event.fPending);
3244 Assert(pEvent->n.u1Valid);
3245
3246 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3247 pVCpu->hm.s.Event.fPending = true;
3248 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3249
3250 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3251 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3252}
3253
3254
3255/**
3256 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3257 *
3258 * @param pVCpu The cross context virtual CPU structure.
3259 */
3260DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
3261{
3262 SVMEVENT Event;
3263 Event.u = 0;
3264 Event.n.u1Valid = 1;
3265 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3266 Event.n.u8Vector = X86_XCPT_UD;
3267 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3268}
3269
3270
3271/**
3272 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3273 *
3274 * @param pVCpu The cross context virtual CPU structure.
3275 */
3276DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
3277{
3278 SVMEVENT Event;
3279 Event.u = 0;
3280 Event.n.u1Valid = 1;
3281 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3282 Event.n.u8Vector = X86_XCPT_DB;
3283 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3284}
3285
3286
3287/**
3288 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3289 *
3290 * @param pVCpu The cross context virtual CPU structure.
3291 * @param u32ErrCode The error-code for the page-fault.
3292 * @param uFaultAddress The page fault address (CR2).
3293 *
3294 * @remarks This updates the guest CR2 with @a uFaultAddress!
3295 */
3296DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3297{
3298 SVMEVENT Event;
3299 Event.u = 0;
3300 Event.n.u1Valid = 1;
3301 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3302 Event.n.u8Vector = X86_XCPT_PF;
3303 Event.n.u1ErrorCodeValid = 1;
3304 Event.n.u32ErrorCode = u32ErrCode;
3305
3306 /* Update CR2 of the guest. */
3307 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3308 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3309 {
3310 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3311 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3312 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3313 }
3314
3315 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3316}
3317
3318
3319/**
3320 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3321 *
3322 * @param pVCpu The cross context virtual CPU structure.
3323 */
3324DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
3325{
3326 SVMEVENT Event;
3327 Event.u = 0;
3328 Event.n.u1Valid = 1;
3329 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3330 Event.n.u8Vector = X86_XCPT_MF;
3331 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3332}
3333
3334
3335/**
3336 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3337 *
3338 * @param pVCpu The cross context virtual CPU structure.
3339 */
3340DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
3341{
3342 SVMEVENT Event;
3343 Event.u = 0;
3344 Event.n.u1Valid = 1;
3345 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3346 Event.n.u8Vector = X86_XCPT_DF;
3347 Event.n.u1ErrorCodeValid = 1;
3348 Event.n.u32ErrorCode = 0;
3349 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3350}
3351
3352
3353/**
3354 * Injects an event into the guest upon VMRUN by updating the relevant field
3355 * in the VMCB.
3356 *
3357 * @param pVCpu The cross context virtual CPU structure.
3358 * @param pVmcb Pointer to the guest VM control block.
3359 * @param pEvent Pointer to the event.
3360 *
3361 * @remarks No-long-jump zone!!!
3362 * @remarks Requires CR0!
3363 */
3364DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3365{
3366 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3367 pVmcb->ctrl.EventInject.u = pEvent->u;
3368 if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
3369 || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
3370 {
3371 Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
3372 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedXcptsR0[pEvent->n.u8Vector]);
3373 }
3374 else
3375 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3376 RT_NOREF(pVCpu);
3377
3378 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3379 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3380}
3381
3382
3383
3384/**
3385 * Converts any TRPM trap into a pending HM event. This is typically used when
3386 * entering from ring-3 (not longjmp returns).
3387 *
3388 * @param pVCpu The cross context virtual CPU structure.
3389 */
3390static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
3391{
3392 Assert(TRPMHasTrap(pVCpu));
3393 Assert(!pVCpu->hm.s.Event.fPending);
3394
3395 uint8_t uVector;
3396 TRPMEVENT enmTrpmEvent;
3397 uint32_t uErrCode;
3398 RTGCUINTPTR GCPtrFaultAddress;
3399 uint8_t cbInstr;
3400
3401 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
3402 AssertRC(rc);
3403
3404 SVMEVENT Event;
3405 Event.u = 0;
3406 Event.n.u1Valid = 1;
3407 Event.n.u8Vector = uVector;
3408
3409 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3410 if (enmTrpmEvent == TRPM_TRAP)
3411 {
3412 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3413 switch (uVector)
3414 {
3415 case X86_XCPT_NMI:
3416 {
3417 Event.n.u3Type = SVM_EVENT_NMI;
3418 break;
3419 }
3420
3421 case X86_XCPT_BP:
3422 case X86_XCPT_OF:
3423 AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
3424 RT_FALL_THRU();
3425
3426 case X86_XCPT_PF:
3427 case X86_XCPT_DF:
3428 case X86_XCPT_TS:
3429 case X86_XCPT_NP:
3430 case X86_XCPT_SS:
3431 case X86_XCPT_GP:
3432 case X86_XCPT_AC:
3433 {
3434 Event.n.u1ErrorCodeValid = 1;
3435 Event.n.u32ErrorCode = uErrCode;
3436 break;
3437 }
3438 }
3439 }
3440 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3441 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3442 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3443 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3444 else
3445 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3446
3447 rc = TRPMResetTrap(pVCpu);
3448 AssertRC(rc);
3449
3450 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3451 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3452
3453 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3454}
3455
3456
3457/**
3458 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3459 * AMD-V to execute any instruction.
3460 *
3461 * @param pVCpu The cross context virtual CPU structure.
3462 */
3463static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
3464{
3465 Assert(pVCpu->hm.s.Event.fPending);
3466 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3467
3468 SVMEVENT Event;
3469 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3470
3471 uint8_t uVector = Event.n.u8Vector;
3472 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
3473
3474 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
3475
3476 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3477 AssertRC(rc);
3478
3479 if (Event.n.u1ErrorCodeValid)
3480 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3481
3482 if ( enmTrapType == TRPM_TRAP
3483 && uVector == X86_XCPT_PF)
3484 {
3485 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3486 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3487 }
3488 else if (enmTrapType == TRPM_SOFTWARE_INT)
3489 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3490 pVCpu->hm.s.Event.fPending = false;
3491}
3492
3493
3494/**
3495 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3496 * now.
3497 *
3498 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3499 * @param pVCpu The cross context virtual CPU structure.
3500 *
3501 * @remarks No-long-jump zone!!!
3502 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3503 */
3504static bool hmR0SvmIsIntrShadowActive(PVMCPUCC pVCpu)
3505{
3506 /*
3507 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3508 * completes. Check if we should inhibit interrupts or clear any existing
3509 * interrupt inhibition.
3510 */
3511 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3512 {
3513 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3514 {
3515 /*
3516 * We can clear the inhibit force flag as even if we go back to the recompiler
3517 * without executing guest code in AMD-V, the flag's condition to be cleared is
3518 * met and thus the cleared state is correct.
3519 */
3520 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3521 return false;
3522 }
3523 return true;
3524 }
3525 return false;
3526}
3527
3528
3529/**
3530 * Sets the virtual interrupt intercept control in the VMCB.
3531 *
3532 * @param pVCpu The cross context virtual CPU structure.
3533 * @param pVmcb Pointer to the VM control block.
3534 */
3535static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3536{
3537 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3538
3539 /*
3540 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3541 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3542 * (updating ISR at the right time) and inject the interrupt.
3543 *
3544 * With AVIC is supported, we could make use of the asynchronously delivery without
3545 * #VMEXIT and we would be passing the AVIC page to SVM.
3546 *
3547 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3548 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3549 */
3550 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3551 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3552 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3553 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3554 Log4(("Set VINTR intercept\n"));
3555}
3556
3557
3558/**
3559 * Clears the virtual interrupt intercept control in the VMCB as
3560 * we are figured the guest is unable process any interrupts
3561 * at this point of time.
3562 *
3563 * @param pVCpu The cross context virtual CPU structure.
3564 * @param pVmcb Pointer to the VM control block.
3565 */
3566static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3567{
3568 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3569
3570 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3571 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3572 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3573 {
3574 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3575 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3576 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3577 Log4(("Cleared VINTR intercept\n"));
3578 }
3579}
3580
3581
3582/**
3583 * Evaluates the event to be delivered to the guest and sets it as the pending
3584 * event.
3585 *
3586 * @returns Strict VBox status code.
3587 * @param pVCpu The cross context virtual CPU structure.
3588 * @param pSvmTransient Pointer to the SVM transient structure.
3589 */
3590static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
3591{
3592 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3593 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3594 | CPUMCTX_EXTRN_RFLAGS
3595 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3596 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3597
3598 Assert(!pVCpu->hm.s.Event.fPending);
3599 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3600 Assert(pVmcb);
3601
3602 bool const fGif = CPUMGetGuestGif(pCtx);
3603 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3604 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3605
3606 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3607 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3608 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3609
3610 /** @todo SMI. SMIs take priority over NMIs. */
3611
3612 /*
3613 * Check if the guest or nested-guest can receive NMIs.
3614 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3615 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3616 */
3617 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3618 && !fBlockNmi)
3619 {
3620 if ( fGif
3621 && !fIntShadow)
3622 {
3623#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3624 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3625 {
3626 Log4(("Intercepting NMI -> #VMEXIT\n"));
3627 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3628 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3629 }
3630#endif
3631 Log4(("Setting NMI pending for injection\n"));
3632 SVMEVENT Event;
3633 Event.u = 0;
3634 Event.n.u1Valid = 1;
3635 Event.n.u8Vector = X86_XCPT_NMI;
3636 Event.n.u3Type = SVM_EVENT_NMI;
3637 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3638 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3639 }
3640 else if (!fGif)
3641 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3642 else if (!pSvmTransient->fIsNestedGuest)
3643 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3644 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3645 }
3646 /*
3647 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3648 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3649 * it from the APIC device.
3650 *
3651 * For nested-guests, physical interrupts always take priority over virtual interrupts.
3652 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3653 * do that work when we execute nested-guest code esp. since all the required information
3654 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3655 * the virtual interrupt controller.
3656 *
3657 * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3658 */
3659 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3660 && !pVCpu->hm.s.fSingleInstruction)
3661 {
3662 bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u32 & X86_EFL_IF)
3663 : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
3664 if ( fGif
3665 && !fBlockInt
3666 && !fIntShadow)
3667 {
3668#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3669 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3670 {
3671 Log4(("Intercepting INTR -> #VMEXIT\n"));
3672 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3673 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3674 }
3675#endif
3676 uint8_t u8Interrupt;
3677 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3678 if (RT_SUCCESS(rc))
3679 {
3680 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3681 SVMEVENT Event;
3682 Event.u = 0;
3683 Event.n.u1Valid = 1;
3684 Event.n.u8Vector = u8Interrupt;
3685 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3686 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3687 }
3688 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3689 {
3690 /*
3691 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3692 * updated eventually when the TPR is written by the guest.
3693 */
3694 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3695 }
3696 else
3697 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3698 }
3699 else if (!fGif)
3700 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3701 else if (!pSvmTransient->fIsNestedGuest)
3702 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3703 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3704 }
3705
3706 return VINF_SUCCESS;
3707}
3708
3709
3710/**
3711 * Injects any pending events into the guest (or nested-guest).
3712 *
3713 * @param pVCpu The cross context virtual CPU structure.
3714 * @param pVmcb Pointer to the VM control block.
3715 *
3716 * @remarks Must only be called when we are guaranteed to enter
3717 * hardware-assisted SVM execution and not return to ring-3
3718 * prematurely.
3719 */
3720static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3721{
3722 Assert(!TRPMHasTrap(pVCpu));
3723 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3724
3725 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3726#ifdef VBOX_STRICT
3727 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3728 bool const fGif = CPUMGetGuestGif(pCtx);
3729 bool fAllowInt = fGif;
3730 if (fGif)
3731 {
3732 /*
3733 * For nested-guests we have no way to determine if we're injecting a physical or
3734 * virtual interrupt at this point. Hence the partial verification below.
3735 */
3736 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3737 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3738 else
3739 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3740 }
3741#endif
3742
3743 if (pVCpu->hm.s.Event.fPending)
3744 {
3745 SVMEVENT Event;
3746 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3747 Assert(Event.n.u1Valid);
3748
3749 /*
3750 * Validate event injection pre-conditions.
3751 */
3752 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3753 {
3754 Assert(fAllowInt);
3755 Assert(!fIntShadow);
3756 }
3757 else if (Event.n.u3Type == SVM_EVENT_NMI)
3758 {
3759 Assert(fGif);
3760 Assert(!fIntShadow);
3761 }
3762
3763 /*
3764 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3765 * do this only when we are surely going to inject the NMI as otherwise if we return
3766 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3767 * SVM R0.
3768 *
3769 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3770 * which will set the VMCS field after actually delivering the NMI which we read on
3771 * VM-exit to determine the state.
3772 */
3773 if ( Event.n.u3Type == SVM_EVENT_NMI
3774 && Event.n.u8Vector == X86_XCPT_NMI
3775 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3776 {
3777 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3778 }
3779
3780 /*
3781 * Inject it (update VMCB for injection by the hardware).
3782 */
3783 Log4(("Injecting pending HM event\n"));
3784 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
3785 pVCpu->hm.s.Event.fPending = false;
3786
3787 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3788 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3789 else
3790 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3791 }
3792 else
3793 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
3794
3795 /*
3796 * We could have injected an NMI through IEM and continue guest execution using
3797 * hardware-assisted SVM. In which case, we would not have any events pending (above)
3798 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
3799 */
3800 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3801 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
3802
3803 /*
3804 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
3805 *
3806 * For nested-guests: We need to update it too for the scenario where IEM executes
3807 * the nested-guest but execution later continues here with an interrupt shadow active.
3808 */
3809 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
3810}
3811
3812
3813/**
3814 * Reports world-switch error and dumps some useful debug info.
3815 *
3816 * @param pVCpu The cross context virtual CPU structure.
3817 * @param rcVMRun The return code from VMRUN (or
3818 * VERR_SVM_INVALID_GUEST_STATE for invalid
3819 * guest-state).
3820 */
3821static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
3822{
3823 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3824 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
3825 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3826
3827 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3828 {
3829#ifdef VBOX_STRICT
3830 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
3831 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3832 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
3833 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3834 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3835 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3836 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3837 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3838 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3839 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3840 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3841 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3842
3843 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3844 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3845 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3846
3847 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3848 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3849 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
3850 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3851 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3852 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3853 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3854 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3855 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
3856 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
3857 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3858 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3859
3860 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
3861 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
3862 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3863 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3864 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3865 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3866 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3867 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3868 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3869 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3870 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3871 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
3872 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
3873 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
3874 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3875 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3876 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3877 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3878 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3879 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3880
3881 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3882
3883 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
3884 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
3885
3886 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3887 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3888 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3889 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3890 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3891 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3892 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3893 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3894 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3895 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3896 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3897 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3898 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3899 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3900 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3901 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3902 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3903 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3904 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3905 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3906
3907 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3908 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3909
3910 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3911 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3912 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3913 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3914
3915 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3916 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3917
3918 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3919 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3920 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3921 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3922
3923 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3924 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3925 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3926 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3927 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3928 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3929 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3930
3931 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3932 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3933 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3934 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3935
3936 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3937 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3938 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3939
3940 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3941 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3942 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3943 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3944 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3945 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3946 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
3947 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3948 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3949 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3950 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3951 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3952
3953 NOREF(pVmcb);
3954#endif /* VBOX_STRICT */
3955 }
3956 else
3957 Log4Func(("rcVMRun=%d\n", rcVMRun));
3958}
3959
3960
3961/**
3962 * Check per-VM and per-VCPU force flag actions that require us to go back to
3963 * ring-3 for one reason or another.
3964 *
3965 * @returns Strict VBox status code (information status code included).
3966 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3967 * ring-3.
3968 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3969 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3970 * interrupts)
3971 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3972 * all EMTs to be in ring-3.
3973 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3974 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3975 * to the EM loop.
3976 *
3977 * @param pVCpu The cross context virtual CPU structure.
3978 */
3979static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
3980{
3981 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3982 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
3983
3984 /* Could happen as a result of longjump. */
3985 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3986 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
3987
3988 /* Update pending interrupts into the APIC's IRR. */
3989 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3990 APICUpdatePendingInterrupts(pVCpu);
3991
3992 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3993 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
3994 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3995 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
3996 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3997 {
3998 /* Pending PGM C3 sync. */
3999 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4000 {
4001 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4002 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4003 if (rc != VINF_SUCCESS)
4004 {
4005 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4006 return rc;
4007 }
4008 }
4009
4010 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4011 /* -XXX- what was that about single stepping? */
4012 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
4013 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4014 {
4015 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4016 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
4017 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4018 return rc;
4019 }
4020
4021 /* Pending VM request packets, such as hardware interrupts. */
4022 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
4023 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
4024 {
4025 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
4026 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4027 return VINF_EM_PENDING_REQUEST;
4028 }
4029
4030 /* Pending PGM pool flushes. */
4031 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4032 {
4033 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
4034 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4035 return VINF_PGM_POOL_FLUSH_PENDING;
4036 }
4037
4038 /* Pending DMA requests. */
4039 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4040 {
4041 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
4042 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4043 return VINF_EM_RAW_TO_R3;
4044 }
4045 }
4046
4047 return VINF_SUCCESS;
4048}
4049
4050
4051/**
4052 * Does the preparations before executing guest code in AMD-V.
4053 *
4054 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4055 * recompiler. We must be cautious what we do here regarding committing
4056 * guest-state information into the VMCB assuming we assuredly execute the guest
4057 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4058 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4059 * that the recompiler can (and should) use them when it resumes guest
4060 * execution. Otherwise such operations must be done when we can no longer
4061 * exit to ring-3.
4062 *
4063 * @returns Strict VBox status code (informational status codes included).
4064 * @retval VINF_SUCCESS if we can proceed with running the guest.
4065 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4066 *
4067 * @param pVCpu The cross context virtual CPU structure.
4068 * @param pSvmTransient Pointer to the SVM transient structure.
4069 */
4070static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4071{
4072 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4073
4074#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4075 if (pSvmTransient->fIsNestedGuest)
4076 {
4077 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4078 return VINF_EM_RESCHEDULE_REM;
4079 }
4080#endif
4081
4082 /* Check force flag actions that might require us to go back to ring-3. */
4083 VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu);
4084 if (rc != VINF_SUCCESS)
4085 return rc;
4086
4087 if (TRPMHasTrap(pVCpu))
4088 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4089 else if (!pVCpu->hm.s.Event.fPending)
4090 {
4091 rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
4092 if ( rc != VINF_SUCCESS
4093 || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4094 {
4095 /* If a nested-guest VM-exit occurred, bail. */
4096 if (pSvmTransient->fIsNestedGuest)
4097 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4098 return rc;
4099 }
4100 }
4101
4102 /*
4103 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4104 * Just do it in software, see @bugref{8411}.
4105 * NB: If we could continue a task switch exit we wouldn't need to do this.
4106 */
4107 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4108 if (RT_UNLIKELY( !pVM->hmr0.s.svm.fFeatures
4109 && pVCpu->hm.s.Event.fPending
4110 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4111 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4112
4113#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4114 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4115 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4116#endif
4117
4118#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4119 /*
4120 * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
4121 */
4122 if (pSvmTransient->fIsNestedGuest)
4123 hmR0SvmSetupVmcbNested(pVCpu);
4124#endif
4125
4126 /*
4127 * Export the guest state bits that are not shared with the host in any way as we can
4128 * longjmp or get preempted in the midst of exporting some of the state.
4129 */
4130 rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
4131 AssertRCReturn(rc, rc);
4132 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4133
4134 /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
4135 Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4136
4137 /*
4138 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4139 * world-switch so we can update it on the way back if the guest changed the TPR.
4140 */
4141 if (pVCpu->hmr0.s.svm.fSyncVTpr)
4142 {
4143 Assert(!pSvmTransient->fIsNestedGuest);
4144 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4145 if (pVM->hm.s.fTPRPatchingActive)
4146 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4147 else
4148 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4149 }
4150
4151 /*
4152 * No longjmps to ring-3 from this point on!!!
4153 *
4154 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4155 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4156 */
4157 VMMRZCallRing3Disable(pVCpu);
4158
4159 /*
4160 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4161 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4162 * preemption disabled for a while. Since this is purly to aid the
4163 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4164 * disable interrupt on NT.
4165 *
4166 * We need to check for force-flags that could've possible been altered since we last
4167 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4168 * see @bugref{6398}).
4169 *
4170 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4171 * to ring-3 before executing guest code.
4172 */
4173 pSvmTransient->fEFlags = ASMIntDisableFlags();
4174 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4175 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4176 {
4177 ASMSetFlags(pSvmTransient->fEFlags);
4178 VMMRZCallRing3Enable(pVCpu);
4179 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4180 return VINF_EM_RAW_TO_R3;
4181 }
4182 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4183 {
4184 ASMSetFlags(pSvmTransient->fEFlags);
4185 VMMRZCallRing3Enable(pVCpu);
4186 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4187 return VINF_EM_RAW_INTERRUPT;
4188 }
4189
4190 return VINF_SUCCESS;
4191}
4192
4193
4194/**
4195 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4196 * doing so.
4197 *
4198 * This means there is no backing out to ring-3 or anywhere else at this point.
4199 *
4200 * @param pVCpu The cross context virtual CPU structure.
4201 * @param pSvmTransient Pointer to the SVM transient structure.
4202 *
4203 * @remarks Called with preemption disabled.
4204 * @remarks No-long-jump zone!!!
4205 */
4206static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4207{
4208 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4209 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4210 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4211
4212 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4213 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4214
4215 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4216 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4217
4218 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4219
4220 if (!CPUMIsGuestFPUStateActive(pVCpu))
4221 {
4222 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4223 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4224 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4225 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4226 }
4227
4228 /* Load the state shared between host and guest (FPU, debug). */
4229 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4230 hmR0SvmExportSharedState(pVCpu, pVmcb);
4231
4232 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4233 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4234
4235 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4236 RTCPUID const idHostCpu = pHostCpu->idCpu;
4237 bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu;
4238
4239 /* Setup TSC offsetting. */
4240 if ( pSvmTransient->fUpdateTscOffsetting
4241 || fMigratedHostCpu)
4242 {
4243 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4244 pSvmTransient->fUpdateTscOffsetting = false;
4245 }
4246
4247 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
4248 if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
4249 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4250 else
4251 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4252
4253 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4254 if (fMigratedHostCpu)
4255 pVmcb->ctrl.u32VmcbCleanBits = 0;
4256
4257 /* Store status of the shared guest-host state at the time of VMRUN. */
4258 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4259 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4260
4261#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4262 uint8_t *pbMsrBitmap;
4263 if (!pSvmTransient->fIsNestedGuest)
4264 pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
4265 else
4266 {
4267 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4268
4269 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4270 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4271 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4272 }
4273#else
4274 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4275#endif
4276
4277 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4278 /* Flush the appropriate tagged-TLB entries. */
4279 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4280 Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu);
4281
4282 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4283
4284 TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
4285 to start executing. */
4286
4287 /*
4288 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4289 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4290 *
4291 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4292 */
4293 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4294 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4295 {
4296 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4297 pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4298 if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux)
4299 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4300 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4301 pSvmTransient->fRestoreTscAuxMsr = true;
4302 }
4303 else
4304 {
4305 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4306 pSvmTransient->fRestoreTscAuxMsr = false;
4307 }
4308 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4309
4310 /*
4311 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4312 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4313 * from the VMCB.
4314 */
4315 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
4316 if (!fSupportsVmcbCleanBits)
4317 pVmcb->ctrl.u32VmcbCleanBits = 0;
4318}
4319
4320
4321/**
4322 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4323 *
4324 * @returns VBox strict status code.
4325 * @param pVCpu The cross context virtual CPU structure.
4326 * @param HCPhysVmcb The host physical address of the VMCB.
4327 *
4328 * @remarks No-long-jump zone!!!
4329 */
4330DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
4331{
4332 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4333 pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4334 return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb);
4335}
4336
4337
4338/**
4339 * Performs some essential restoration of state after running guest (or
4340 * nested-guest) code in AMD-V.
4341 *
4342 * @param pVCpu The cross context virtual CPU structure.
4343 * @param pSvmTransient Pointer to the SVM transient structure.
4344 * @param rcVMRun Return code of VMRUN.
4345 *
4346 * @remarks Called with interrupts disabled.
4347 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4348 * unconditionally when it is safe to do so.
4349 */
4350static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun)
4351{
4352 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4353
4354 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4355 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4356 ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4357
4358 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4359 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4360
4361 /* TSC read must be done early for maximum accuracy. */
4362 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4363 {
4364 if (!pSvmTransient->fIsNestedGuest)
4365 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4366#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4367 else
4368 {
4369 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4370 uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4371 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4372 }
4373#endif
4374 }
4375
4376 if (pSvmTransient->fRestoreTscAuxMsr)
4377 {
4378 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4379 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4380 if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux)
4381 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux);
4382 }
4383
4384 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4385 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4386 TMNotifyEndOfExecution(pVM, pVCpu); /* Notify TM that the guest is no longer running. */
4387 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4388
4389 Assert(!(ASMGetFlags() & X86_EFL_IF));
4390 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4391 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4392
4393 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4394 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4395 {
4396 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun)));
4397 return;
4398 }
4399
4400 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4401 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4402 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4403 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4404
4405#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4406 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4407 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4408#else
4409 /*
4410 * Always import the following:
4411 *
4412 * - RIP for exit optimizations and evaluating event injection on re-entry.
4413 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4414 * state on preemption.
4415 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4416 * - CS for exit optimizations.
4417 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4418 * assembly switcher code.
4419 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4420 */
4421 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4422 | CPUMCTX_EXTRN_RFLAGS
4423 | CPUMCTX_EXTRN_RAX
4424 | CPUMCTX_EXTRN_RSP
4425 | CPUMCTX_EXTRN_CS
4426 | CPUMCTX_EXTRN_HWVIRT
4427 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4428 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4429 | HMSVM_CPUMCTX_SHARED_STATE);
4430#endif
4431
4432 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4433 && pVCpu->hmr0.s.svm.fSyncVTpr)
4434 {
4435 Assert(!pSvmTransient->fIsNestedGuest);
4436 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4437 if ( pVM->hm.s.fTPRPatchingActive
4438 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4439 {
4440 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4441 AssertRC(rc);
4442 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4443 }
4444 /* Sync TPR when we aren't intercepting CR8 writes. */
4445 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4446 {
4447 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4448 AssertRC(rc);
4449 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4450 }
4451 }
4452
4453#ifdef DEBUG_ramshankar
4454 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4455 {
4456 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4457 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4458 0 /* uVerbose */);
4459 }
4460#endif
4461
4462 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4463 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4464 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4465}
4466
4467
4468/**
4469 * Runs the guest code using AMD-V.
4470 *
4471 * @returns Strict VBox status code.
4472 * @param pVCpu The cross context virtual CPU structure.
4473 * @param pcLoops Pointer to the number of executed loops.
4474 */
4475static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
4476{
4477 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4478 Assert(pcLoops);
4479 Assert(*pcLoops <= cMaxResumeLoops);
4480
4481 SVMTRANSIENT SvmTransient;
4482 RT_ZERO(SvmTransient);
4483 SvmTransient.fUpdateTscOffsetting = true;
4484 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4485
4486 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4487 for (;;)
4488 {
4489 Assert(!HMR0SuspendPending());
4490 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4491
4492 /* Preparatory work for running nested-guest code, this may force us to return to
4493 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4494 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4495 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4496 if (rc != VINF_SUCCESS)
4497 break;
4498
4499 /*
4500 * No longjmps to ring-3 from this point on!!!
4501 *
4502 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4503 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4504 */
4505 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4506 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4507
4508 /* Restore any residual host-state and save any bits shared between host and guest
4509 into the guest-CPU state. Re-enables interrupts! */
4510 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4511
4512 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4513 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4514 {
4515 if (rc == VINF_SUCCESS)
4516 rc = VERR_SVM_INVALID_GUEST_STATE;
4517 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4518 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4519 break;
4520 }
4521
4522 /* Handle the #VMEXIT. */
4523 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4524 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4525 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4526 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4527 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4528 if (rc != VINF_SUCCESS)
4529 break;
4530 if (++(*pcLoops) >= cMaxResumeLoops)
4531 {
4532 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4533 rc = VINF_EM_RAW_INTERRUPT;
4534 break;
4535 }
4536 }
4537
4538 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4539 return rc;
4540}
4541
4542
4543/**
4544 * Runs the guest code using AMD-V in single step mode.
4545 *
4546 * @returns Strict VBox status code.
4547 * @param pVCpu The cross context virtual CPU structure.
4548 * @param pcLoops Pointer to the number of executed loops.
4549 */
4550static VBOXSTRICTRC hmR0SvmRunGuestCodeStep(PVMCPUCC pVCpu, uint32_t *pcLoops)
4551{
4552 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4553 Assert(pcLoops);
4554 Assert(*pcLoops <= cMaxResumeLoops);
4555
4556 SVMTRANSIENT SvmTransient;
4557 RT_ZERO(SvmTransient);
4558 SvmTransient.fUpdateTscOffsetting = true;
4559 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4560
4561 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4562 uint16_t uCsStart = pCtx->cs.Sel;
4563 uint64_t uRipStart = pCtx->rip;
4564
4565 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4566 for (;;)
4567 {
4568 Assert(!HMR0SuspendPending());
4569 AssertMsg(pVCpu->hmr0.s.idEnteredCpu == RTMpCpuId(),
4570 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hmr0.s.idEnteredCpu,
4571 (unsigned)RTMpCpuId(), *pcLoops));
4572
4573 /* Preparatory work for running nested-guest code, this may force us to return to
4574 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4575 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4576 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4577 if (rc != VINF_SUCCESS)
4578 break;
4579
4580 /*
4581 * No longjmps to ring-3 from this point on!!!
4582 *
4583 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4584 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4585 */
4586 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4587
4588 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4589
4590 /* Restore any residual host-state and save any bits shared between host and guest
4591 into the guest-CPU state. Re-enables interrupts! */
4592 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4593
4594 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4595 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4596 {
4597 if (rc == VINF_SUCCESS)
4598 rc = VERR_SVM_INVALID_GUEST_STATE;
4599 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4600 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4601 return rc;
4602 }
4603
4604 /* Handle the #VMEXIT. */
4605 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4606 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4607 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4608 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4609 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4610 if (rc != VINF_SUCCESS)
4611 break;
4612 if (++(*pcLoops) >= cMaxResumeLoops)
4613 {
4614 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4615 rc = VINF_EM_RAW_INTERRUPT;
4616 break;
4617 }
4618
4619 /*
4620 * Did the RIP change, if so, consider it a single step.
4621 * Otherwise, make sure one of the TFs gets set.
4622 */
4623 if ( pCtx->rip != uRipStart
4624 || pCtx->cs.Sel != uCsStart)
4625 {
4626 rc = VINF_EM_DBG_STEPPED;
4627 break;
4628 }
4629 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4630 }
4631
4632 /*
4633 * Clear the X86_EFL_TF if necessary.
4634 */
4635 if (pVCpu->hmr0.s.fClearTrapFlag)
4636 {
4637 pVCpu->hmr0.s.fClearTrapFlag = false;
4638 pCtx->eflags.Bits.u1TF = 0;
4639 }
4640
4641 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4642 return rc;
4643}
4644
4645#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4646/**
4647 * Runs the nested-guest code using AMD-V.
4648 *
4649 * @returns Strict VBox status code.
4650 * @param pVCpu The cross context virtual CPU structure.
4651 * @param pcLoops Pointer to the number of executed loops. If we're switching
4652 * from the guest-code execution loop to this nested-guest
4653 * execution loop pass the remainder value, else pass 0.
4654 */
4655static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
4656{
4657 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4658 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4659 Assert(pcLoops);
4660 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops);
4661
4662 SVMTRANSIENT SvmTransient;
4663 RT_ZERO(SvmTransient);
4664 SvmTransient.fUpdateTscOffsetting = true;
4665 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4666 SvmTransient.fIsNestedGuest = true;
4667
4668 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4;
4669 for (;;)
4670 {
4671 Assert(!HMR0SuspendPending());
4672 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4673
4674 /* Preparatory work for running nested-guest code, this may force us to return to
4675 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4676 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4677 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4678 if ( rc != VINF_SUCCESS
4679 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4680 break;
4681
4682 /*
4683 * No longjmps to ring-3 from this point on!!!
4684 *
4685 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4686 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4687 */
4688 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4689
4690 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
4691
4692 /* Restore any residual host-state and save any bits shared between host and guest
4693 into the guest-CPU state. Re-enables interrupts! */
4694 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4695
4696 if (RT_LIKELY( rc == VINF_SUCCESS
4697 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
4698 { /* extremely likely */ }
4699 else
4700 {
4701 /* VMRUN failed, shouldn't really happen, Guru. */
4702 if (rc != VINF_SUCCESS)
4703 break;
4704
4705 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
4706 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4707 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
4708 rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0);
4709 break;
4710 }
4711
4712 /* Handle the #VMEXIT. */
4713 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4714 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4715 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
4716 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
4717 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4718 if (rc == VINF_SUCCESS)
4719 {
4720 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4721 {
4722 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4723 rc = VINF_SVM_VMEXIT;
4724 }
4725 else
4726 {
4727 if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops)
4728 continue;
4729 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4730 rc = VINF_EM_RAW_INTERRUPT;
4731 }
4732 }
4733 else
4734 Assert(rc != VINF_SVM_VMEXIT);
4735 break;
4736 /** @todo NSTSVM: handle single-stepping. */
4737 }
4738
4739 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4740 return rc;
4741}
4742#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
4743
4744
4745/**
4746 * Runs the guest code using AMD-V.
4747 *
4748 * @returns Strict VBox status code.
4749 * @param pVCpu The cross context virtual CPU structure.
4750 */
4751VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
4752{
4753 AssertPtr(pVCpu);
4754 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4755 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4756 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4757 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4758
4759 uint32_t cLoops = 0;
4760 VBOXSTRICTRC rc;
4761 for (;;)
4762 {
4763#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4764 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
4765#else
4766 NOREF(pCtx);
4767 bool const fInNestedGuestMode = false;
4768#endif
4769 if (!fInNestedGuestMode)
4770 {
4771 if (!pVCpu->hm.s.fSingleInstruction)
4772 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
4773 else
4774 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
4775 }
4776#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4777 else
4778 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
4779
4780 if (rc == VINF_SVM_VMRUN)
4781 {
4782 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4783 continue;
4784 }
4785 if (rc == VINF_SVM_VMEXIT)
4786 {
4787 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4788 continue;
4789 }
4790#endif
4791 break;
4792 }
4793
4794 /* Fixup error codes. */
4795 if (rc == VERR_EM_INTERPRETER)
4796 rc = VINF_EM_RAW_EMULATE_INSTR;
4797 else if (rc == VINF_EM_RESET)
4798 rc = VINF_EM_TRIPLE_FAULT;
4799
4800 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4801 rc = hmR0SvmExitToRing3(pVCpu, rc);
4802 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4803 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
4804 return rc;
4805}
4806
4807
4808#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4809/**
4810 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
4811 *
4812 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4813 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4814 */
4815static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4816{
4817 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4818 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4819 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4820 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4821 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
4822 const bool fRep = pIoExitInfo->n.u1Rep;
4823 const bool fStrIo = pIoExitInfo->n.u1Str;
4824
4825 return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4826 NULL /* pIoExitInfo */);
4827}
4828
4829
4830/**
4831 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4832 * SVM_EXIT_INVALID).
4833 *
4834 * @returns VBox status code (informational status codes included).
4835 * @param pVCpu The cross context virtual CPU structure.
4836 * @param pSvmTransient Pointer to the SVM transient structure.
4837 */
4838static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4839{
4840 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4841 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4842 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4843
4844 /*
4845 * We import the complete state here because we use separate VMCBs for the guest and the
4846 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
4847 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
4848 */
4849#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4850 do { \
4851 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
4852 return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \
4853 } while (0)
4854
4855 /*
4856 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
4857 * nested-guest. If it isn't, it should be handled by the (outer) guest.
4858 */
4859 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
4860 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4861 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4862 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4863 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4864 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4865
4866 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4867 switch (uExitCode)
4868 {
4869 case SVM_EXIT_CPUID:
4870 {
4871 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
4872 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4873 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
4874 }
4875
4876 case SVM_EXIT_RDTSC:
4877 {
4878 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
4879 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4880 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
4881 }
4882
4883 case SVM_EXIT_RDTSCP:
4884 {
4885 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
4886 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4887 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
4888 }
4889
4890 case SVM_EXIT_MONITOR:
4891 {
4892 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
4893 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4894 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
4895 }
4896
4897 case SVM_EXIT_MWAIT:
4898 {
4899 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
4900 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4901 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
4902 }
4903
4904 case SVM_EXIT_HLT:
4905 {
4906 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
4907 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4908 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
4909 }
4910
4911 case SVM_EXIT_MSR:
4912 {
4913 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
4914 {
4915 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
4916 uint16_t offMsrpm;
4917 uint8_t uMsrpmBit;
4918 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4919 if (RT_SUCCESS(rc))
4920 {
4921 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
4922 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
4923
4924 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4925 pbMsrBitmap += offMsrpm;
4926 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
4927 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
4928
4929 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4930 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4931 {
4932 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4933 }
4934 }
4935 else
4936 {
4937 /*
4938 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4939 * See AMD-V spec. "15.11 MSR Intercepts".
4940 */
4941 Assert(rc == VERR_OUT_OF_RANGE);
4942 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4943 }
4944 }
4945 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
4946 }
4947
4948 case SVM_EXIT_IOIO:
4949 {
4950 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
4951 {
4952 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
4953 SVMIOIOEXITINFO IoExitInfo;
4954 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4955 bool const fIntercept = hmR0SvmIsIoInterceptSet(pvIoBitmap, &IoExitInfo);
4956 if (fIntercept)
4957 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4958 }
4959 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
4960 }
4961
4962 case SVM_EXIT_XCPT_PF:
4963 {
4964 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4965 if (pVM->hmr0.s.fNestedPaging)
4966 {
4967 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4968 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4969
4970 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4971 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
4972 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4973
4974 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
4975 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
4976 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
4977 return VINF_SUCCESS;
4978 }
4979 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
4980 }
4981
4982 case SVM_EXIT_XCPT_UD:
4983 {
4984 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
4985 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4986 hmR0SvmSetPendingXcptUD(pVCpu);
4987 return VINF_SUCCESS;
4988 }
4989
4990 case SVM_EXIT_XCPT_MF:
4991 {
4992 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
4993 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4994 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
4995 }
4996
4997 case SVM_EXIT_XCPT_DB:
4998 {
4999 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
5000 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5001 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5002 }
5003
5004 case SVM_EXIT_XCPT_AC:
5005 {
5006 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
5007 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5008 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5009 }
5010
5011 case SVM_EXIT_XCPT_BP:
5012 {
5013 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
5014 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5015 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5016 }
5017
5018 case SVM_EXIT_READ_CR0:
5019 case SVM_EXIT_READ_CR3:
5020 case SVM_EXIT_READ_CR4:
5021 {
5022 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5023 if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
5024 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5025 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5026 }
5027
5028 case SVM_EXIT_CR0_SEL_WRITE:
5029 {
5030 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5031 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5032 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5033 }
5034
5035 case SVM_EXIT_WRITE_CR0:
5036 case SVM_EXIT_WRITE_CR3:
5037 case SVM_EXIT_WRITE_CR4:
5038 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5039 {
5040 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5041 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5042
5043 if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
5044 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5045 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5046 }
5047
5048 case SVM_EXIT_PAUSE:
5049 {
5050 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
5051 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5052 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5053 }
5054
5055 case SVM_EXIT_VINTR:
5056 {
5057 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
5058 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5059 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5060 }
5061
5062 case SVM_EXIT_INTR:
5063 case SVM_EXIT_NMI:
5064 case SVM_EXIT_SMI:
5065 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5066 {
5067 /*
5068 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5069 *
5070 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5071 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5072 * nested-guest #VMEXIT.
5073 *
5074 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5075 * while trying to inject interrupts, see comment at the top of this function.
5076 */
5077 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5078 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5079 }
5080
5081 case SVM_EXIT_FERR_FREEZE:
5082 {
5083 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5084 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5085 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5086 }
5087
5088 case SVM_EXIT_INVLPG:
5089 {
5090 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5091 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5092 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5093 }
5094
5095 case SVM_EXIT_WBINVD:
5096 {
5097 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5098 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5099 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5100 }
5101
5102 case SVM_EXIT_INVD:
5103 {
5104 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5105 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5106 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5107 }
5108
5109 case SVM_EXIT_RDPMC:
5110 {
5111 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5112 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5113 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5114 }
5115
5116 default:
5117 {
5118 switch (uExitCode)
5119 {
5120 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5121 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5122 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5123 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5124 {
5125 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5126 if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5127 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5128 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5129 }
5130
5131 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5132 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5133 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5134 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5135 {
5136 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5137 if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5138 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5139 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5140 }
5141
5142 case SVM_EXIT_XCPT_DE:
5143 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5144 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5145 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5146 case SVM_EXIT_XCPT_OF:
5147 case SVM_EXIT_XCPT_BR:
5148 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5149 case SVM_EXIT_XCPT_NM:
5150 case SVM_EXIT_XCPT_DF:
5151 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5152 case SVM_EXIT_XCPT_TS:
5153 case SVM_EXIT_XCPT_NP:
5154 case SVM_EXIT_XCPT_SS:
5155 case SVM_EXIT_XCPT_GP:
5156 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5157 case SVM_EXIT_XCPT_15: /* Reserved. */
5158 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5159 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5160 case SVM_EXIT_XCPT_MC:
5161 case SVM_EXIT_XCPT_XF:
5162 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5163 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5164 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5165 {
5166 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5167 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5168 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5169 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5170 }
5171
5172 case SVM_EXIT_XSETBV:
5173 {
5174 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5175 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5176 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5177 }
5178
5179 case SVM_EXIT_TASK_SWITCH:
5180 {
5181 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5182 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5183 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5184 }
5185
5186 case SVM_EXIT_IRET:
5187 {
5188 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5189 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5190 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5191 }
5192
5193 case SVM_EXIT_SHUTDOWN:
5194 {
5195 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5196 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5197 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5198 }
5199
5200 case SVM_EXIT_VMMCALL:
5201 {
5202 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5203 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5204 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5205 }
5206
5207 case SVM_EXIT_CLGI:
5208 {
5209 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5210 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5211 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5212 }
5213
5214 case SVM_EXIT_STGI:
5215 {
5216 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5217 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5218 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5219 }
5220
5221 case SVM_EXIT_VMLOAD:
5222 {
5223 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5224 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5225 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5226 }
5227
5228 case SVM_EXIT_VMSAVE:
5229 {
5230 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5231 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5232 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5233 }
5234
5235 case SVM_EXIT_INVLPGA:
5236 {
5237 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5238 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5239 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5240 }
5241
5242 case SVM_EXIT_VMRUN:
5243 {
5244 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5245 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5246 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5247 }
5248
5249 case SVM_EXIT_RSM:
5250 {
5251 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5252 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5253 hmR0SvmSetPendingXcptUD(pVCpu);
5254 return VINF_SUCCESS;
5255 }
5256
5257 case SVM_EXIT_SKINIT:
5258 {
5259 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5260 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5261 hmR0SvmSetPendingXcptUD(pVCpu);
5262 return VINF_SUCCESS;
5263 }
5264
5265 case SVM_EXIT_NPF:
5266 {
5267 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5268 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5269 }
5270
5271 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5272 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5273
5274 default:
5275 {
5276 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5277 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5278 return VERR_SVM_UNKNOWN_EXIT;
5279 }
5280 }
5281 }
5282 }
5283 /* not reached */
5284
5285#undef NST_GST_VMEXIT_CALL_RET
5286}
5287#endif
5288
5289
5290/**
5291 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5292 *
5293 * @returns Strict VBox status code (informational status codes included).
5294 * @param pVCpu The cross context virtual CPU structure.
5295 * @param pSvmTransient Pointer to the SVM transient structure.
5296 */
5297static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5298{
5299 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5300 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5301
5302#ifdef DEBUG_ramshankar
5303# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5304 do { \
5305 if ((a_fDbg) == 1) \
5306 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5307 int rc = a_CallExpr; \
5308 if ((a_fDbg) == 1) \
5309 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5310 return rc; \
5311 } while (0)
5312#else
5313# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5314#endif
5315
5316 /*
5317 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5318 * for most guests under normal workloads (for some definition of "normal").
5319 */
5320 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5321 switch (uExitCode)
5322 {
5323 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5324 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5325 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5326 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5327 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5328 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5329 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5330 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5331 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5332 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5333
5334 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5335 case SVM_EXIT_INTR:
5336 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5337
5338 case SVM_EXIT_READ_CR0:
5339 case SVM_EXIT_READ_CR3:
5340 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5341
5342 case SVM_EXIT_CR0_SEL_WRITE:
5343 case SVM_EXIT_WRITE_CR0:
5344 case SVM_EXIT_WRITE_CR3:
5345 case SVM_EXIT_WRITE_CR4:
5346 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5347
5348 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5349 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5350 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5351 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5352 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5353 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5354 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5355 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5356 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5357 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5358 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5359 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5360 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5361 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5362 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5363 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5364
5365 default:
5366 {
5367 switch (pSvmTransient->u64ExitCode)
5368 {
5369 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5370 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5371 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5372 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5373 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5374
5375 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5376 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5377 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5378 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5379 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5380
5381 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5382 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5383
5384 case SVM_EXIT_SMI:
5385 case SVM_EXIT_INIT:
5386 {
5387 /*
5388 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5389 * If it ever does, we want to know about it so log the exit code and bail.
5390 */
5391 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5392 }
5393
5394#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5395 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5396 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5397 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5398 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5399 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5400 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5401#else
5402 case SVM_EXIT_CLGI:
5403 case SVM_EXIT_STGI:
5404 case SVM_EXIT_VMLOAD:
5405 case SVM_EXIT_VMSAVE:
5406 case SVM_EXIT_INVLPGA:
5407 case SVM_EXIT_VMRUN:
5408#endif
5409 case SVM_EXIT_RSM:
5410 case SVM_EXIT_SKINIT:
5411 {
5412 hmR0SvmSetPendingXcptUD(pVCpu);
5413 return VINF_SUCCESS;
5414 }
5415
5416#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5417 case SVM_EXIT_XCPT_DE:
5418 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5419 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5420 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5421 case SVM_EXIT_XCPT_OF:
5422 case SVM_EXIT_XCPT_BR:
5423 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5424 case SVM_EXIT_XCPT_NM:
5425 case SVM_EXIT_XCPT_DF:
5426 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5427 case SVM_EXIT_XCPT_TS:
5428 case SVM_EXIT_XCPT_NP:
5429 case SVM_EXIT_XCPT_SS:
5430 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5431 /* SVM_EXIT_XCPT_PF: */
5432 case SVM_EXIT_XCPT_15: /* Reserved. */
5433 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5434 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5435 case SVM_EXIT_XCPT_MC:
5436 case SVM_EXIT_XCPT_XF:
5437 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5438 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5439 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5440 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5441#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5442
5443 default:
5444 {
5445 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5446 pVCpu->hm.s.u32HMError = uExitCode;
5447 return VERR_SVM_UNKNOWN_EXIT;
5448 }
5449 }
5450 }
5451 }
5452 /* not reached */
5453#undef VMEXIT_CALL_RET
5454}
5455
5456
5457#ifdef VBOX_STRICT
5458/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5459# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5460 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5461
5462# define HMSVM_ASSERT_PREEMPT_CPUID() \
5463 do \
5464 { \
5465 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5466 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5467 } while (0)
5468
5469# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5470 do { \
5471 AssertPtr((a_pVCpu)); \
5472 AssertPtr((a_pSvmTransient)); \
5473 Assert(ASMIntAreEnabled()); \
5474 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5475 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5476 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5477 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5478 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5479 HMSVM_ASSERT_PREEMPT_CPUID(); \
5480 } while (0)
5481#else
5482# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5483 do { \
5484 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5485 } while (0)
5486#endif
5487
5488
5489/**
5490 * Gets the IEM exception flags for the specified SVM event.
5491 *
5492 * @returns The IEM exception flags.
5493 * @param pEvent Pointer to the SVM event.
5494 *
5495 * @remarks This function currently only constructs flags required for
5496 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5497 * and CR2 aspects of an exception are not included).
5498 */
5499static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5500{
5501 uint8_t const uEventType = pEvent->n.u3Type;
5502 uint32_t fIemXcptFlags;
5503 switch (uEventType)
5504 {
5505 case SVM_EVENT_EXCEPTION:
5506 /*
5507 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5508 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5509 */
5510 if (pEvent->n.u8Vector == X86_XCPT_BP)
5511 {
5512 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5513 break;
5514 }
5515 if (pEvent->n.u8Vector == X86_XCPT_OF)
5516 {
5517 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5518 break;
5519 }
5520 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5521 RT_FALL_THRU();
5522 case SVM_EVENT_NMI:
5523 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5524 break;
5525
5526 case SVM_EVENT_EXTERNAL_IRQ:
5527 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5528 break;
5529
5530 case SVM_EVENT_SOFTWARE_INT:
5531 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5532 break;
5533
5534 default:
5535 fIemXcptFlags = 0;
5536 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5537 break;
5538 }
5539 return fIemXcptFlags;
5540}
5541
5542
5543/**
5544 * Handle a condition that occurred while delivering an event through the guest
5545 * IDT.
5546 *
5547 * @returns VBox status code (informational error codes included).
5548 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5549 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5550 * continue execution of the guest which will delivery the \#DF.
5551 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5552 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5553 *
5554 * @param pVCpu The cross context virtual CPU structure.
5555 * @param pSvmTransient Pointer to the SVM transient structure.
5556 *
5557 * @remarks No-long-jump zone!!!
5558 */
5559static int hmR0SvmCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5560{
5561 int rc = VINF_SUCCESS;
5562 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5563 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5564
5565 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5566 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5567 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5568
5569 /*
5570 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5571 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5572 *
5573 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5574 */
5575 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5576 {
5577 IEMXCPTRAISE enmRaise;
5578 IEMXCPTRAISEINFO fRaiseInfo;
5579 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5580 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5581 if (fExitIsHwXcpt)
5582 {
5583 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5584 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5585 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5586 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5587 }
5588 else
5589 {
5590 /*
5591 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5592 * then we end up here.
5593 *
5594 * If the event was:
5595 * - a software interrupt, we can re-execute the instruction which will
5596 * regenerate the event.
5597 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5598 * - a hardware exception or external interrupt, we re-inject it.
5599 */
5600 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5601 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5602 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5603 else
5604 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5605 }
5606
5607 switch (enmRaise)
5608 {
5609 case IEMXCPTRAISE_CURRENT_XCPT:
5610 case IEMXCPTRAISE_PREV_EVENT:
5611 {
5612 /* For software interrupts, we shall re-execute the instruction. */
5613 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5614 {
5615 RTGCUINTPTR GCPtrFaultAddress = 0;
5616
5617 /* If we are re-injecting an NMI, clear NMI blocking. */
5618 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5619 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5620
5621 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5622 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5623 {
5624 pSvmTransient->fVectoringPF = true;
5625 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5626 pVCpu->cpum.GstCtx.cr2));
5627 }
5628 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5629 && uIdtVector == X86_XCPT_PF)
5630 {
5631 /*
5632 * If the previous exception was a #PF, we need to recover the CR2 value.
5633 * This can't happen with shadow paging.
5634 */
5635 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5636 }
5637
5638 /*
5639 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5640 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5641 */
5642 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5643 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
5644 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5645
5646 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5647 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5648 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5649 }
5650 break;
5651 }
5652
5653 case IEMXCPTRAISE_REEXEC_INSTR:
5654 {
5655 Assert(rc == VINF_SUCCESS);
5656 break;
5657 }
5658
5659 case IEMXCPTRAISE_DOUBLE_FAULT:
5660 {
5661 /*
5662 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5663 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5664 * converted into a #DF.
5665 */
5666 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5667 {
5668 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
5669 pSvmTransient->fVectoringDoublePF = true;
5670 Assert(rc == VINF_SUCCESS);
5671 }
5672 else
5673 {
5674 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
5675 hmR0SvmSetPendingXcptDF(pVCpu);
5676 rc = VINF_HM_DOUBLE_FAULT;
5677 }
5678 break;
5679 }
5680
5681 case IEMXCPTRAISE_TRIPLE_FAULT:
5682 {
5683 rc = VINF_EM_RESET;
5684 break;
5685 }
5686
5687 case IEMXCPTRAISE_CPU_HANG:
5688 {
5689 rc = VERR_EM_GUEST_CPU_HANG;
5690 break;
5691 }
5692
5693 default:
5694 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
5695 }
5696 }
5697 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
5698 return rc;
5699}
5700
5701
5702/**
5703 * Advances the guest RIP by the number of bytes specified in @a cb.
5704 *
5705 * @param pVCpu The cross context virtual CPU structure.
5706 * @param cb RIP increment value in bytes.
5707 */
5708DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPUCC pVCpu, uint32_t cb)
5709{
5710 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5711 pCtx->rip += cb;
5712
5713 /* Update interrupt shadow. */
5714 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
5715 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
5716 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5717}
5718
5719
5720/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5721/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
5722/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5723
5724/** @name \#VMEXIT handlers.
5725 * @{
5726 */
5727
5728/**
5729 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
5730 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
5731 */
5732HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5733{
5734 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5735
5736 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
5737 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
5738 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
5739 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
5740
5741 /*
5742 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
5743 * signal -before- the timer fires if the current interrupt is our own timer or a some
5744 * other host interrupt. We also cannot examine what interrupt it is until the host
5745 * actually take the interrupt.
5746 *
5747 * Going back to executing guest code here unconditionally causes random scheduling
5748 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
5749 */
5750 return VINF_EM_RAW_INTERRUPT;
5751}
5752
5753
5754/**
5755 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
5756 */
5757HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5758{
5759 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5760
5761 VBOXSTRICTRC rcStrict;
5762 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5763 if (fSupportsNextRipSave)
5764 {
5765 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5766 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5767 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5768 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
5769 }
5770 else
5771 {
5772 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5773 rcStrict = IEMExecOne(pVCpu);
5774 }
5775
5776 if (rcStrict == VINF_IEM_RAISED_XCPT)
5777 {
5778 rcStrict = VINF_SUCCESS;
5779 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5780 }
5781 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5782 return rcStrict;
5783}
5784
5785
5786/**
5787 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
5788 */
5789HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5790{
5791 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5792
5793 VBOXSTRICTRC rcStrict;
5794 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5795 if (fSupportsNextRipSave)
5796 {
5797 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5798 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5799 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5800 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
5801 }
5802 else
5803 {
5804 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5805 rcStrict = IEMExecOne(pVCpu);
5806 }
5807
5808 if (rcStrict == VINF_IEM_RAISED_XCPT)
5809 {
5810 rcStrict = VINF_SUCCESS;
5811 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5812 }
5813 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5814 return rcStrict;
5815}
5816
5817
5818/**
5819 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
5820 */
5821HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5822{
5823 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5824
5825 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
5826 VBOXSTRICTRC rcStrict;
5827 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
5828 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
5829 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
5830 if (!pExitRec)
5831 {
5832 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5833 if (fSupportsNextRipSave)
5834 {
5835 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5836 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5837 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
5838 }
5839 else
5840 {
5841 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5842 rcStrict = IEMExecOne(pVCpu);
5843 }
5844
5845 if (rcStrict == VINF_IEM_RAISED_XCPT)
5846 {
5847 rcStrict = VINF_SUCCESS;
5848 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5849 }
5850 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5851 }
5852 else
5853 {
5854 /*
5855 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
5856 */
5857 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5858
5859 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
5860 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
5861
5862 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
5863
5864 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
5865 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
5866 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
5867 }
5868 return rcStrict;
5869}
5870
5871
5872/**
5873 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
5874 */
5875HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5876{
5877 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5878
5879 VBOXSTRICTRC rcStrict;
5880 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5881 if (fSupportsNextRipSave)
5882 {
5883 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5884 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5885 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5886 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
5887 }
5888 else
5889 {
5890 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5891 rcStrict = IEMExecOne(pVCpu);
5892 }
5893
5894 if (rcStrict == VINF_SUCCESS)
5895 pSvmTransient->fUpdateTscOffsetting = true;
5896 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5897 {
5898 rcStrict = VINF_SUCCESS;
5899 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5900 }
5901 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5902 return rcStrict;
5903}
5904
5905
5906/**
5907 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
5908 */
5909HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5910{
5911 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5912
5913 VBOXSTRICTRC rcStrict;
5914 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5915 if (fSupportsNextRipSave)
5916 {
5917 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
5918 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5919 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5920 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
5921 }
5922 else
5923 {
5924 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5925 rcStrict = IEMExecOne(pVCpu);
5926 }
5927
5928 if (rcStrict == VINF_SUCCESS)
5929 pSvmTransient->fUpdateTscOffsetting = true;
5930 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5931 {
5932 rcStrict = VINF_SUCCESS;
5933 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5934 }
5935 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5936 return rcStrict;
5937}
5938
5939
5940/**
5941 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
5942 */
5943HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5944{
5945 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5946
5947 VBOXSTRICTRC rcStrict;
5948 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5949 if (fSupportsNextRipSave)
5950 {
5951 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5952 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5953 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5954 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
5955 }
5956 else
5957 {
5958 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5959 rcStrict = IEMExecOne(pVCpu);
5960 }
5961
5962 if (rcStrict == VINF_IEM_RAISED_XCPT)
5963 {
5964 rcStrict = VINF_SUCCESS;
5965 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5966 }
5967 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5968 return rcStrict;
5969}
5970
5971
5972/**
5973 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
5974 */
5975HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5976{
5977 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5978 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5979
5980 VBOXSTRICTRC rcStrict;
5981 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
5982 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5983 if ( fSupportsDecodeAssists
5984 && fSupportsNextRipSave)
5985 {
5986 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
5987 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5988 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5989 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
5990 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
5991 }
5992 else
5993 {
5994 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5995 rcStrict = IEMExecOne(pVCpu);
5996 }
5997
5998 if (rcStrict == VINF_IEM_RAISED_XCPT)
5999 {
6000 rcStrict = VINF_SUCCESS;
6001 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6002 }
6003 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6004 return VBOXSTRICTRC_VAL(rcStrict);
6005}
6006
6007
6008/**
6009 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6010 */
6011HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6012{
6013 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6014
6015 VBOXSTRICTRC rcStrict;
6016 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6017 if (fSupportsNextRipSave)
6018 {
6019 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6020 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6021 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6022 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6023 }
6024 else
6025 {
6026 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6027 rcStrict = IEMExecOne(pVCpu);
6028 }
6029
6030 if ( rcStrict == VINF_EM_HALT
6031 || rcStrict == VINF_SUCCESS)
6032 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6033 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6034 {
6035 rcStrict = VINF_SUCCESS;
6036 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6037 }
6038 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6039 if (rcStrict != VINF_SUCCESS)
6040 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6041 return VBOXSTRICTRC_VAL(rcStrict);;
6042}
6043
6044
6045/**
6046 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6047 */
6048HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6049{
6050 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6051
6052 /*
6053 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6054 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6055 * segment override prefix or other prefixes might be used, in which case we fallback to
6056 * IEMExecOne() to figure out.
6057 */
6058 VBOXSTRICTRC rcStrict;
6059 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6060 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6061 if (cbInstr)
6062 {
6063 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6064 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6065 }
6066 else
6067 {
6068 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6069 rcStrict = IEMExecOne(pVCpu);
6070 }
6071
6072 if (rcStrict == VINF_IEM_RAISED_XCPT)
6073 {
6074 rcStrict = VINF_SUCCESS;
6075 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6076 }
6077 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6078 return rcStrict;
6079}
6080
6081
6082/**
6083 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6084 */
6085HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6086{
6087 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6088
6089 VBOXSTRICTRC rcStrict;
6090 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6091 if (fSupportsNextRipSave)
6092 {
6093 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6094 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6095 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6096 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6097 }
6098 else
6099 {
6100 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6101 rcStrict = IEMExecOne(pVCpu);
6102 }
6103
6104 if ( rcStrict == VINF_EM_HALT
6105 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6106 rcStrict = VINF_SUCCESS;
6107 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6108 {
6109 rcStrict = VINF_SUCCESS;
6110 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6111 }
6112 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6113 return rcStrict;
6114}
6115
6116
6117/**
6118 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6119 * \#VMEXIT.
6120 */
6121HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6122{
6123 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6124 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6125 return VINF_EM_RESET;
6126}
6127
6128
6129/**
6130 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6131 */
6132HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6133{
6134 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6135 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6136 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6137 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6138 RT_NOREF(pVmcb);
6139 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6140 return VERR_SVM_UNEXPECTED_EXIT;
6141}
6142
6143
6144/**
6145 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6146 */
6147HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6148{
6149 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6150
6151 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6152 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6153#ifdef VBOX_WITH_STATISTICS
6154 switch (pSvmTransient->u64ExitCode)
6155 {
6156 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6157 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6158 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6159 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6160 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6161 }
6162#endif
6163
6164 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6165 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6166 if ( fSupportsDecodeAssists
6167 && fSupportsNextRipSave)
6168 {
6169 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6170 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6171 if (fMovCRx)
6172 {
6173 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6174 | CPUMCTX_EXTRN_APIC_TPR);
6175 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6176 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6177 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6178 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6179 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6180 return VBOXSTRICTRC_VAL(rcStrict);
6181 }
6182 /* else: SMSW instruction, fall back below to IEM for this. */
6183 }
6184
6185 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6186 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6187 AssertMsg( rcStrict == VINF_SUCCESS
6188 || rcStrict == VINF_PGM_SYNC_CR3
6189 || rcStrict == VINF_IEM_RAISED_XCPT,
6190 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6191 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6192 if (rcStrict == VINF_IEM_RAISED_XCPT)
6193 {
6194 rcStrict = VINF_SUCCESS;
6195 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6196 }
6197 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6198 return rcStrict;
6199}
6200
6201
6202/**
6203 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6204 */
6205HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6206{
6207 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6208
6209 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6210 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6211 Assert(iCrReg <= 15);
6212
6213 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6214 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6215 bool fDecodedInstr = false;
6216 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6217 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6218 if ( fSupportsDecodeAssists
6219 && fSupportsNextRipSave)
6220 {
6221 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6222 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6223 if (fMovCRx)
6224 {
6225 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6226 | CPUMCTX_EXTRN_APIC_TPR);
6227 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6228 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6229 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6230 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6231 fDecodedInstr = true;
6232 }
6233 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6234 }
6235
6236 if (!fDecodedInstr)
6237 {
6238 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6239 Log4Func(("iCrReg=%#x\n", iCrReg));
6240 rcStrict = IEMExecOne(pVCpu);
6241 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6242 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6243 rcStrict = VERR_EM_INTERPRETER;
6244 }
6245
6246 if (rcStrict == VINF_SUCCESS)
6247 {
6248 switch (iCrReg)
6249 {
6250 case 0:
6251 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6252 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6253 break;
6254
6255 case 2:
6256 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6257 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6258 break;
6259
6260 case 3:
6261 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6262 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6263 break;
6264
6265 case 4:
6266 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6267 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6268 break;
6269
6270 case 8:
6271 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6272 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6273 break;
6274
6275 default:
6276 {
6277 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6278 pSvmTransient->u64ExitCode, iCrReg));
6279 break;
6280 }
6281 }
6282 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6283 }
6284 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6285 {
6286 rcStrict = VINF_SUCCESS;
6287 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6288 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6289 }
6290 else
6291 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6292 return rcStrict;
6293}
6294
6295
6296/**
6297 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6298 *
6299 * @returns Strict VBox status code.
6300 * @param pVCpu The cross context virtual CPU structure.
6301 * @param pVmcb Pointer to the VM control block.
6302 */
6303static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
6304{
6305 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6306 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6307
6308 VBOXSTRICTRC rcStrict;
6309 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6310 if (fSupportsNextRipSave)
6311 {
6312 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6313 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6314 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6315 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6316 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6317 }
6318 else
6319 {
6320 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6321 rcStrict = IEMExecOne(pVCpu);
6322 }
6323
6324 AssertMsg( rcStrict == VINF_SUCCESS
6325 || rcStrict == VINF_IEM_RAISED_XCPT
6326 || rcStrict == VINF_CPUM_R3_MSR_READ,
6327 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6328
6329 if (rcStrict == VINF_IEM_RAISED_XCPT)
6330 {
6331 rcStrict = VINF_SUCCESS;
6332 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6333 }
6334 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6335 return rcStrict;
6336}
6337
6338
6339/**
6340 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6341 *
6342 * @returns Strict VBox status code.
6343 * @param pVCpu The cross context virtual CPU structure.
6344 * @param pVmcb Pointer to the VM control block.
6345 * @param pSvmTransient Pointer to the SVM-transient structure.
6346 */
6347static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6348{
6349 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6350 uint32_t const idMsr = pCtx->ecx;
6351 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6352 Log4Func(("idMsr=%#RX32\n", idMsr));
6353
6354 /*
6355 * Handle TPR patching MSR writes.
6356 * We utilitize the LSTAR MSR for patching.
6357 */
6358 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6359 if ( idMsr == MSR_K8_LSTAR
6360 && pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
6361 {
6362 unsigned cbInstr;
6363 if (fSupportsNextRipSave)
6364 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6365 else
6366 {
6367 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
6368 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6369 if ( rc == VINF_SUCCESS
6370 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6371 Assert(cbInstr > 0);
6372 else
6373 cbInstr = 0;
6374 }
6375
6376 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6377 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6378 {
6379 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6380 AssertRCReturn(rc, rc);
6381 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6382 }
6383
6384 int rc = VINF_SUCCESS;
6385 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6386 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6387 return rc;
6388 }
6389
6390 /*
6391 * Handle regular MSR writes.
6392 */
6393 VBOXSTRICTRC rcStrict;
6394 if (fSupportsNextRipSave)
6395 {
6396 /** @todo Optimize this: We don't need to get much of the MSR state here
6397 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6398 * clear the applicable extern flags. */
6399 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6400 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6401 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6402 }
6403 else
6404 {
6405 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6406 rcStrict = IEMExecOne(pVCpu);
6407 }
6408
6409 AssertMsg( rcStrict == VINF_SUCCESS
6410 || rcStrict == VINF_IEM_RAISED_XCPT
6411 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6412 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6413
6414 if (rcStrict == VINF_SUCCESS)
6415 {
6416 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6417 if ( idMsr >= MSR_IA32_X2APIC_START
6418 && idMsr <= MSR_IA32_X2APIC_END)
6419 {
6420 /*
6421 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6422 * When full APIC register virtualization is implemented we'll have to make sure
6423 * APIC state is saved from the VMCB before IEM changes it.
6424 */
6425 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6426 }
6427 else
6428 {
6429 switch (idMsr)
6430 {
6431 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6432 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6433 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6434 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6435 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6436 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6437 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6438 }
6439 }
6440 }
6441 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6442 {
6443 rcStrict = VINF_SUCCESS;
6444 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6445 }
6446 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6447 return rcStrict;
6448}
6449
6450
6451/**
6452 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6453 * \#VMEXIT.
6454 */
6455HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6456{
6457 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6458
6459 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6460 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6461 return hmR0SvmExitReadMsr(pVCpu, pVmcb);
6462
6463 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6464 return hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient);
6465}
6466
6467
6468/**
6469 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6470 */
6471HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6472{
6473 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6474 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6475
6476 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6477
6478 /** @todo Stepping with nested-guest. */
6479 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6480 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6481 {
6482 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6483 if (pSvmTransient->fWasGuestDebugStateActive)
6484 {
6485 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6486 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6487 return VERR_SVM_UNEXPECTED_EXIT;
6488 }
6489
6490 /*
6491 * Lazy DR0-3 loading.
6492 */
6493 if (!pSvmTransient->fWasHyperDebugStateActive)
6494 {
6495 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6496 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6497
6498 /* Don't intercept DRx read and writes. */
6499 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
6500 pVmcb->ctrl.u16InterceptRdDRx = 0;
6501 pVmcb->ctrl.u16InterceptWrDRx = 0;
6502 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6503
6504 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6505 VMMRZCallRing3Disable(pVCpu);
6506 HM_DISABLE_PREEMPT(pVCpu);
6507
6508 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6509 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6510 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6511
6512 HM_RESTORE_PREEMPT();
6513 VMMRZCallRing3Enable(pVCpu);
6514
6515 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6516 return VINF_SUCCESS;
6517 }
6518 }
6519
6520 /*
6521 * Interpret the read/writing of DRx.
6522 */
6523 /** @todo Decode assist. */
6524 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6525 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6526 if (RT_LIKELY(rc == VINF_SUCCESS))
6527 {
6528 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6529 /** @todo CPUM should set this flag! */
6530 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6531 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6532 }
6533 else
6534 Assert(rc == VERR_EM_INTERPRETER);
6535 return rc;
6536}
6537
6538
6539/**
6540 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6541 */
6542HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6543{
6544 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6545 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6546 VBOXSTRICTRC rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6547 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6548 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6549 return rc;
6550}
6551
6552
6553/**
6554 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6555 */
6556HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6557{
6558 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6559 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6560
6561 /** @todo decode assists... */
6562 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6563 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6564 {
6565 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6566 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6567 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], fLoadSaveGuestXcr0, pCtx->cr4));
6568 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
6569 {
6570 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
6571 hmR0SvmUpdateVmRunFunction(pVCpu);
6572 }
6573 }
6574 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6575 {
6576 rcStrict = VINF_SUCCESS;
6577 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6578 }
6579 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6580 return rcStrict;
6581}
6582
6583
6584/**
6585 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6586 */
6587HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6588{
6589 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6590 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6591
6592 /* I/O operation lookup arrays. */
6593 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6594 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6595 the result (in AL/AX/EAX). */
6596 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6597 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6598 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6599
6600 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6601
6602 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6603 SVMIOIOEXITINFO IoExitInfo;
6604 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6605 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6606 uint32_t cbValue = s_aIOSize[uIOWidth];
6607 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6608
6609 if (RT_UNLIKELY(!cbValue))
6610 {
6611 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6612 return VERR_EM_INTERPRETER;
6613 }
6614
6615 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6616 VBOXSTRICTRC rcStrict;
6617 PCEMEXITREC pExitRec = NULL;
6618 if ( !pVCpu->hm.s.fSingleInstruction
6619 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6620 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6621 !IoExitInfo.n.u1Str
6622 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6623 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6624 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6625 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6626 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6627 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6628 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6629 if (!pExitRec)
6630 {
6631 bool fUpdateRipAlready = false;
6632 if (IoExitInfo.n.u1Str)
6633 {
6634 /* INS/OUTS - I/O String instruction. */
6635 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6636 * in EXITINFO1? Investigate once this thing is up and running. */
6637 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6638 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6639 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6640 static IEMMODE const s_aenmAddrMode[8] =
6641 {
6642 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6643 };
6644 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6645 if (enmAddrMode != (IEMMODE)-1)
6646 {
6647 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6648 if (cbInstr <= 15 && cbInstr >= 1)
6649 {
6650 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6651 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6652 {
6653 /* Don't know exactly how to detect whether u3Seg is valid, currently
6654 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6655 2384 Opterons when only checking NRIP. */
6656 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6657 if ( fSupportsNextRipSave
6658 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6659 {
6660 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6661 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6662 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6663 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6664 }
6665 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6666 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6667 X86_SREG_DS, true /*fIoChecked*/);
6668 else
6669 rcStrict = IEMExecOne(pVCpu);
6670 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6671 }
6672 else
6673 {
6674 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
6675 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6676 true /*fIoChecked*/);
6677 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6678 }
6679 }
6680 else
6681 {
6682 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6683 rcStrict = IEMExecOne(pVCpu);
6684 }
6685 }
6686 else
6687 {
6688 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6689 rcStrict = IEMExecOne(pVCpu);
6690 }
6691 fUpdateRipAlready = true;
6692 }
6693 else
6694 {
6695 /* IN/OUT - I/O instruction. */
6696 Assert(!IoExitInfo.n.u1Rep);
6697
6698 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6699 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6700 {
6701 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6702 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6703 && !pCtx->eflags.Bits.u1TF)
6704 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
6705 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6706 }
6707 else
6708 {
6709 uint32_t u32Val = 0;
6710 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6711 if (IOM_SUCCESS(rcStrict))
6712 {
6713 /* Save result of I/O IN instr. in AL/AX/EAX. */
6714 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6715 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6716 }
6717 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6718 && !pCtx->eflags.Bits.u1TF)
6719 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
6720
6721 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6722 }
6723 }
6724
6725 if (IOM_SUCCESS(rcStrict))
6726 {
6727 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6728 if (!fUpdateRipAlready)
6729 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6730
6731 /*
6732 * If any I/O breakpoints are armed, we need to check if one triggered
6733 * and take appropriate action.
6734 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6735 */
6736 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6737 * execution engines about whether hyper BPs and such are pending. */
6738 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
6739 uint32_t const uDr7 = pCtx->dr[7];
6740 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6741 && X86_DR7_ANY_RW_IO(uDr7)
6742 && (pCtx->cr4 & X86_CR4_DE))
6743 || DBGFBpIsHwIoArmed(pVM)))
6744 {
6745 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6746 VMMRZCallRing3Disable(pVCpu);
6747 HM_DISABLE_PREEMPT(pVCpu);
6748
6749 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6750 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6751
6752 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
6753 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6754 {
6755 /* Raise #DB. */
6756 pVmcb->guest.u64DR6 = pCtx->dr[6];
6757 pVmcb->guest.u64DR7 = pCtx->dr[7];
6758 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6759 hmR0SvmSetPendingXcptDB(pVCpu);
6760 }
6761 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6762 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6763 else if ( rcStrict2 != VINF_SUCCESS
6764 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6765 rcStrict = rcStrict2;
6766 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6767
6768 HM_RESTORE_PREEMPT();
6769 VMMRZCallRing3Enable(pVCpu);
6770 }
6771
6772 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6773 }
6774
6775#ifdef VBOX_STRICT
6776 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6777 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
6778 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6779 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6780 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
6781 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
6782 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6783 else
6784 {
6785 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6786 * statuses, that the VMM device and some others may return. See
6787 * IOM_SUCCESS() for guidance. */
6788 AssertMsg( RT_FAILURE(rcStrict)
6789 || rcStrict == VINF_SUCCESS
6790 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6791 || rcStrict == VINF_EM_DBG_BREAKPOINT
6792 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6793 || rcStrict == VINF_EM_DBG_STEPPED
6794 || rcStrict == VINF_EM_RAW_TO_R3
6795 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
6796 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6797 }
6798#endif
6799 }
6800 else
6801 {
6802 /*
6803 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6804 */
6805 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6806 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
6807 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
6808 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
6809 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
6810 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
6811 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
6812
6813 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6814 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6815
6816 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6817 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6818 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6819 }
6820 return rcStrict;
6821}
6822
6823
6824/**
6825 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6826 */
6827HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6828{
6829 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6830 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6831 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
6832
6833 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6834 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6835 Assert(pVM->hmr0.s.fNestedPaging);
6836
6837 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
6838 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6839 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
6840 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
6841 thus intentionally not copied into u32ErrCode. */
6842
6843 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x cbInstrFetched=%u %.15Rhxs\n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
6844 u32ErrCode, pVmcb->ctrl.cbInstrFetched, pVmcb->ctrl.abInstr));
6845
6846 /*
6847 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
6848 */
6849 if ( pVM->hm.s.fTprPatchingAllowed
6850 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
6851 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
6852 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
6853 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
6854 && !CPUMIsGuestInLongModeEx(pCtx)
6855 && !CPUMGetGuestCPL(pVCpu)
6856 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6857 {
6858 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6859 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6860
6861 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
6862 {
6863 /* Only attempt to patch the instruction once. */
6864 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6865 if (!pPatch)
6866 return VINF_EM_HM_PATCH_TPR_INSTR;
6867 }
6868 }
6869
6870 /*
6871 * Determine the nested paging mode.
6872 */
6873/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
6874 PGMMODE const enmNestedPagingMode = PGMGetHostMode(pVM);
6875
6876 /*
6877 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
6878 */
6879 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
6880 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
6881 {
6882 /*
6883 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
6884 * injecting the original pending event would most likely cause the same MMIO #NPF.
6885 */
6886 if (pVCpu->hm.s.Event.fPending)
6887 {
6888 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
6889 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6890 }
6891
6892 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
6893 VBOXSTRICTRC rcStrict;
6894 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6895 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
6896 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6897 if (!pExitRec)
6898 {
6899
6900 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
6901 u32ErrCode);
6902
6903 /*
6904 * If we succeed, resume guest execution.
6905 *
6906 * If we fail in interpreting the instruction because we couldn't get the guest
6907 * physical address of the page containing the instruction via the guest's page
6908 * tables (we would invalidate the guest page in the host TLB), resume execution
6909 * which would cause a guest page fault to let the guest handle this weird case.
6910 *
6911 * See @bugref{6043}.
6912 */
6913 if ( rcStrict == VINF_SUCCESS
6914 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
6915 || rcStrict == VERR_PAGE_NOT_PRESENT)
6916 {
6917 /* Successfully handled MMIO operation. */
6918 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6919 rcStrict = VINF_SUCCESS;
6920 }
6921 }
6922 else
6923 {
6924 /*
6925 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6926 */
6927 Assert(pCtx == &pVCpu->cpum.GstCtx);
6928 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6929 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
6930 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
6931
6932 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6933 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6934
6935 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6936 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6937 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6938 }
6939 return rcStrict;
6940 }
6941
6942 /*
6943 * Nested page-fault.
6944 */
6945 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
6946 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
6947 TRPMResetTrap(pVCpu);
6948
6949 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
6950
6951 /*
6952 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
6953 */
6954 if ( rc == VINF_SUCCESS
6955 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6956 || rc == VERR_PAGE_NOT_PRESENT)
6957 {
6958 /* We've successfully synced our shadow page tables. */
6959 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6960 rc = VINF_SUCCESS;
6961 }
6962
6963 /*
6964 * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and
6965 * re-inject the original event.
6966 */
6967 if (pVCpu->hm.s.Event.fPending)
6968 {
6969 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
6970
6971 /*
6972 * If the #NPF handler requested emulation of the instruction, ignore it.
6973 * We need to re-inject the original event so as to not lose it.
6974 * Reproducible when booting ReactOS 0.4.12 with BTRFS (installed using BootCD,
6975 * LiveCD is broken for other reasons).
6976 */
6977 if (rc == VINF_EM_RAW_EMULATE_INSTR)
6978 rc = VINF_EM_RAW_INJECT_TRPM_EVENT;
6979 }
6980
6981 return rc;
6982}
6983
6984
6985/**
6986 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
6987 * \#VMEXIT.
6988 */
6989HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6990{
6991 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6992 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
6993
6994 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
6995 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6996 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
6997
6998 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6999 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7000 return VINF_SUCCESS;
7001}
7002
7003
7004/**
7005 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7006 * \#VMEXIT.
7007 */
7008HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7009{
7010 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7011 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7012
7013#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7014 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
7015#endif
7016
7017 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7018 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7019 {
7020 /*
7021 * AMD-V provides us with the exception which caused the TS; we collect
7022 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7023 */
7024 Log4Func(("TS occurred during event delivery\n"));
7025 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7026 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7027 }
7028
7029 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7030 * emulation. */
7031 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7032 return VERR_EM_INTERPRETER;
7033}
7034
7035
7036/**
7037 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7038 */
7039HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7040{
7041 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7042 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7043
7044 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7045 if (pVM->hm.s.fTprPatchingAllowed)
7046 {
7047 int rc = hmEmulateSvmMovTpr(pVM, pVCpu);
7048 if (rc != VERR_NOT_FOUND)
7049 {
7050 Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc));
7051 return rc;
7052 }
7053 }
7054
7055 if (EMAreHypercallInstructionsEnabled(pVCpu))
7056 {
7057 unsigned cbInstr;
7058 if (hmR0SvmSupportsNextRipSave(pVCpu))
7059 {
7060 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7061 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7062 }
7063 else
7064 {
7065 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7066 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7067 if ( rc == VINF_SUCCESS
7068 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7069 Assert(cbInstr > 0);
7070 else
7071 cbInstr = 0;
7072 }
7073
7074 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7075 if (RT_SUCCESS(rcStrict))
7076 {
7077 /* Only update the RIP if we're continuing guest execution and not in the case
7078 of say VINF_GIM_R3_HYPERCALL. */
7079 if (rcStrict == VINF_SUCCESS)
7080 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7081
7082 return VBOXSTRICTRC_VAL(rcStrict);
7083 }
7084 else
7085 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7086 }
7087
7088 hmR0SvmSetPendingXcptUD(pVCpu);
7089 return VINF_SUCCESS;
7090}
7091
7092
7093/**
7094 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7095 */
7096HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7097{
7098 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7099
7100 unsigned cbInstr;
7101 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7102 if (fSupportsNextRipSave)
7103 {
7104 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7105 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7106 }
7107 else
7108 {
7109 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7110 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7111 if ( rc == VINF_SUCCESS
7112 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7113 Assert(cbInstr > 0);
7114 else
7115 cbInstr = 0;
7116 }
7117
7118 /** @todo The guest has likely hit a contended spinlock. We might want to
7119 * poke a schedule different guest VCPU. */
7120 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7121 return VINF_EM_RAW_INTERRUPT;
7122}
7123
7124
7125/**
7126 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7127 * \#VMEXIT.
7128 */
7129HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7130{
7131 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7132 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7133 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7134
7135 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7136 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7137}
7138
7139
7140/**
7141 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7142 */
7143HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7144{
7145 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7146
7147 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now (almost) ready. */
7148 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7149 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7150
7151 /* Emulate the IRET. We have to execute the IRET before an NMI, but must potentially
7152 * deliver a pending NMI right after. If the IRET faults, an NMI can come before the
7153 * handler executes. Yes, x86 is ugly.
7154 */
7155 return VINF_EM_RAW_EMULATE_INSTR;
7156}
7157
7158
7159/**
7160 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7161 * Conditional \#VMEXIT.
7162 */
7163HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7164{
7165 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7166 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7167 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7168
7169 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7170 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7171 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7172 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7173 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7174 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7175
7176#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7177 if (pVM->hmr0.s.fNestedPaging)
7178 {
7179 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7180 if ( !pSvmTransient->fVectoringDoublePF
7181 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7182 {
7183 /* A genuine guest #PF, reflect it to the guest. */
7184 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7185 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7186 uFaultAddress, uErrCode));
7187 }
7188 else
7189 {
7190 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7191 hmR0SvmSetPendingXcptDF(pVCpu);
7192 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7193 }
7194 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7195 return VINF_SUCCESS;
7196 }
7197#endif
7198
7199 Assert(!pVM->hmr0.s.fNestedPaging);
7200
7201 /*
7202 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7203 */
7204 if ( pVM->hm.s.fTprPatchingAllowed
7205 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7206 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7207 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7208 && !CPUMIsGuestInLongModeEx(pCtx)
7209 && !CPUMGetGuestCPL(pVCpu)
7210 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7211 {
7212 RTGCPHYS GCPhysApicBase;
7213 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7214 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7215
7216 /* Check if the page at the fault-address is the APIC base. */
7217 RTGCPHYS GCPhysPage;
7218 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7219 if ( rc2 == VINF_SUCCESS
7220 && GCPhysPage == GCPhysApicBase)
7221 {
7222 /* Only attempt to patch the instruction once. */
7223 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7224 if (!pPatch)
7225 return VINF_EM_HM_PATCH_TPR_INSTR;
7226 }
7227 }
7228
7229 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7230 pCtx->rip, uErrCode, pCtx->cr3));
7231
7232 /*
7233 * If it's a vectoring #PF, emulate injecting the original event injection as
7234 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7235 * event injection that caused a #PF. See @bugref{6607}.
7236 */
7237 if (pSvmTransient->fVectoringPF)
7238 {
7239 Assert(pVCpu->hm.s.Event.fPending);
7240 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7241 }
7242
7243 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7244 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7245
7246 Log4Func(("#PF: rc=%Rrc\n", rc));
7247
7248 if (rc == VINF_SUCCESS)
7249 {
7250 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7251 TRPMResetTrap(pVCpu);
7252 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7253 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7254 return rc;
7255 }
7256
7257 if (rc == VINF_EM_RAW_GUEST_TRAP)
7258 {
7259 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7260
7261 /*
7262 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7263 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7264 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7265 */
7266 if ( !pSvmTransient->fVectoringDoublePF
7267 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7268 {
7269 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7270 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7271 TRPMResetTrap(pVCpu);
7272
7273#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7274 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7275 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7276 && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
7277 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress);
7278#endif
7279
7280 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7281 }
7282 else
7283 {
7284 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7285 TRPMResetTrap(pVCpu);
7286 hmR0SvmSetPendingXcptDF(pVCpu);
7287 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7288 }
7289
7290 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7291 return VINF_SUCCESS;
7292 }
7293
7294 TRPMResetTrap(pVCpu);
7295 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7296 return rc;
7297}
7298
7299
7300/**
7301 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7302 * Conditional \#VMEXIT.
7303 */
7304HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7305{
7306 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7307 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7308 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7309
7310 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7311 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7312 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7313
7314 /** @todo if we accumulate more optional stuff here, we ought to combine the
7315 * reading of opcode bytes to avoid doing more than once. */
7316
7317 VBOXSTRICTRC rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7318 if (pVCpu->hm.s.fGIMTrapXcptUD)
7319 {
7320 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7321 uint8_t cbInstr = 0;
7322 rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7323 if (rcStrict == VINF_SUCCESS)
7324 {
7325 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7326 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7327 rcStrict = VINF_SUCCESS;
7328 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7329 }
7330 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7331 rcStrict = VINF_SUCCESS;
7332 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7333 rcStrict = VINF_GIM_R3_HYPERCALL;
7334 else
7335 {
7336 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7337 rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7338 }
7339 }
7340
7341 if (pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
7342 {
7343 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
7344 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7345 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
7346 {
7347 /* Ideally, IEM should just handle all these special #UD situations, but
7348 we don't quite trust things to behave optimially when doing that. So,
7349 for now we'll restrict ourselves to a handful of possible sysenter and
7350 sysexit encodings that we filter right here. */
7351 uint8_t abInstr[SVM_CTRL_GUEST_INSTR_BYTES_MAX];
7352 uint8_t cbInstr = pVmcb->ctrl.cbInstrFetched;
7353 uint32_t const uCpl = CPUMGetGuestCPL(pVCpu);
7354 uint8_t const cbMin = uCpl != 0 ? 2 : 1 + 2;
7355 RTGCPTR const GCPtrInstr = pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base;
7356 if (cbInstr < cbMin || cbInstr > SVM_CTRL_GUEST_INSTR_BYTES_MAX)
7357 {
7358 cbInstr = cbMin;
7359 int rc2 = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, GCPtrInstr, cbInstr);
7360 AssertRCStmt(rc2, cbInstr = 0);
7361 }
7362 else
7363 memcpy(abInstr, pVmcb->ctrl.abInstr, cbInstr); /* unlikely */
7364 if ( cbInstr == 0 /* read error */
7365 || (cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x34) /* sysenter */
7366 || ( uCpl == 0
7367 && ( ( cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x35) /* sysexit */
7368 || ( cbInstr >= 3 && abInstr[1] == 0x0f && abInstr[2] == 0x35 /* rex.w sysexit */
7369 && (abInstr[0] & (X86_OP_REX_W | 0xf0)) == X86_OP_REX_W))))
7370 {
7371 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK
7372 | CPUMCTX_EXTRN_SREG_MASK /* without ES+DS+GS the app will #GP later - go figure */);
7373 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7374 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), GCPtrInstr, abInstr, cbInstr);
7375 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: rcStrict=%Rrc %04x:%08RX64 %08RX64 %04x:%08RX64\n",
7376 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u,
7377 pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp));
7378 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7379 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); /** @todo Lazy bird. */
7380 if (rcStrict == VINF_IEM_RAISED_XCPT)
7381 rcStrict = VINF_SUCCESS;
7382 return rcStrict;
7383 }
7384 Log6(("hmR0SvmExitXcptUD: not sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7385 }
7386 else
7387 Log6(("hmR0SvmExitXcptUD: not in long mode at %04x:%llx\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7388 }
7389
7390 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7391 if (RT_FAILURE(rcStrict))
7392 {
7393 hmR0SvmSetPendingXcptUD(pVCpu);
7394 rcStrict = VINF_SUCCESS;
7395 }
7396
7397 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7398 return rcStrict;
7399}
7400
7401
7402/**
7403 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7404 * Conditional \#VMEXIT.
7405 */
7406HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7407{
7408 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7409 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7410 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7411
7412 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7413 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7414
7415 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7416 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7417
7418 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7419
7420 if (!(pCtx->cr0 & X86_CR0_NE))
7421 {
7422 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7423 PDISSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7424 unsigned cbInstr;
7425 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7426 if (RT_SUCCESS(rc))
7427 {
7428 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7429 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7430 if (RT_SUCCESS(rc))
7431 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7432 }
7433 else
7434 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7435 return rc;
7436 }
7437
7438 hmR0SvmSetPendingXcptMF(pVCpu);
7439 return VINF_SUCCESS;
7440}
7441
7442
7443/**
7444 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7445 * \#VMEXIT.
7446 */
7447HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7448{
7449 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7450 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7451 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7452 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7453
7454 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7455 {
7456 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7457 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7458 }
7459
7460 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7461
7462 /*
7463 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7464 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7465 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7466 */
7467 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7468 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7469 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7470 int rc = DBGFTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7471 if (rc == VINF_EM_RAW_GUEST_TRAP)
7472 {
7473 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7474 if (CPUMIsHyperDebugStateActive(pVCpu))
7475 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7476
7477 /* Reflect the exception back to the guest. */
7478 hmR0SvmSetPendingXcptDB(pVCpu);
7479 rc = VINF_SUCCESS;
7480 }
7481
7482 /*
7483 * Update DR6.
7484 */
7485 if (CPUMIsHyperDebugStateActive(pVCpu))
7486 {
7487 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7488 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7489 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7490 }
7491 else
7492 {
7493 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7494 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7495 }
7496
7497 return rc;
7498}
7499
7500
7501/**
7502 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7503 * Conditional \#VMEXIT.
7504 */
7505HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7506{
7507 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7508 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7509 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
7510
7511 SVMEVENT Event;
7512 Event.u = 0;
7513 Event.n.u1Valid = 1;
7514 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7515 Event.n.u8Vector = X86_XCPT_AC;
7516 Event.n.u1ErrorCodeValid = 1;
7517 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7518 return VINF_SUCCESS;
7519}
7520
7521
7522/**
7523 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7524 * Conditional \#VMEXIT.
7525 */
7526HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7527{
7528 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7529 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7530 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7531 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
7532
7533 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7534 int rc = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7535 if (rc == VINF_EM_RAW_GUEST_TRAP)
7536 {
7537 SVMEVENT Event;
7538 Event.u = 0;
7539 Event.n.u1Valid = 1;
7540 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7541 Event.n.u8Vector = X86_XCPT_BP;
7542 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7543 rc = VINF_SUCCESS;
7544 }
7545
7546 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
7547 return rc;
7548}
7549
7550
7551/**
7552 * Hacks its way around the lovely mesa driver's backdoor accesses.
7553 *
7554 * @sa hmR0VmxHandleMesaDrvGp
7555 */
7556static int hmR0SvmHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7557{
7558 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7559 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7560 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7561 RT_NOREF(pCtx, pVmcb);
7562
7563 /* For now we'll just skip the instruction. */
7564 hmR0SvmAdvanceRip(pVCpu, 1);
7565 return VINF_SUCCESS;
7566}
7567
7568
7569/**
7570 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7571 * backdoor logging w/o checking what it is running inside.
7572 *
7573 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7574 * backdoor port and magic numbers loaded in registers.
7575 *
7576 * @returns true if it is, false if it isn't.
7577 * @sa hmR0VmxIsMesaDrvGp
7578 */
7579DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7580{
7581 /* Check magic and port. */
7582 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7583 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7584 if (pCtx->dx != UINT32_C(0x5658))
7585 return false;
7586 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7587 return false;
7588
7589 /* Check that it is #GP(0). */
7590 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7591 return false;
7592
7593 /* Flat ring-3 CS. */
7594 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7595 if (pVmcb->guest.u8CPL != 3)
7596 return false;
7597 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7598 return false;
7599
7600 /* 0xed: IN eAX,dx */
7601 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7602 {
7603 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7604 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7605 uint8_t abInstr[1];
7606 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7607 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7608 if (RT_FAILURE(rc))
7609 return false;
7610 if (abInstr[0] != 0xed)
7611 return false;
7612 }
7613 else
7614 {
7615 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7616 if (pVmcb->ctrl.abInstr[0] != 0xed)
7617 return false;
7618 }
7619 return true;
7620}
7621
7622
7623/**
7624 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7625 * Conditional \#VMEXIT.
7626 */
7627HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7628{
7629 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7630 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7631 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
7632
7633 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7634 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7635
7636 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7637 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7638 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7639 {
7640 SVMEVENT Event;
7641 Event.u = 0;
7642 Event.n.u1Valid = 1;
7643 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7644 Event.n.u8Vector = X86_XCPT_GP;
7645 Event.n.u1ErrorCodeValid = 1;
7646 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7647 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7648 return VINF_SUCCESS;
7649 }
7650 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7651}
7652
7653
7654#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7655/**
7656 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7657 */
7658HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7659{
7660 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7661 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7662
7663 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7664 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7665 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7666 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7667 Assert(uVector <= X86_XCPT_LAST);
7668 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7669
7670 SVMEVENT Event;
7671 Event.u = 0;
7672 Event.n.u1Valid = 1;
7673 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7674 Event.n.u8Vector = uVector;
7675 switch (uVector)
7676 {
7677 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7678 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7679 case X86_XCPT_DF:
7680 case X86_XCPT_TS:
7681 case X86_XCPT_NP:
7682 case X86_XCPT_SS:
7683 case X86_XCPT_GP:
7684 case X86_XCPT_AC:
7685 {
7686 Event.n.u1ErrorCodeValid = 1;
7687 Event.n.u32ErrorCode = uErrCode;
7688 break;
7689 }
7690 }
7691
7692#ifdef VBOX_WITH_STATISTICS
7693 switch (uVector)
7694 {
7695 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
7696 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
7697 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
7698 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7699 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
7700 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
7701 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7702 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
7703 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
7704 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
7705 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
7706 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
7707 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
7708 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
7709 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
7710 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
7711 default:
7712 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
7713 break;
7714 }
7715#endif
7716
7717 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7718 return VINF_SUCCESS;
7719}
7720#endif
7721
7722#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7723/**
7724 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7725 */
7726HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7727{
7728 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7729
7730 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7731 Assert(pVmcb);
7732 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7733
7734 VBOXSTRICTRC rcStrict;
7735 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7736 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7737 if (fSupportsNextRipSave)
7738 {
7739 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7740 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7741 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7742 }
7743 else
7744 {
7745 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7746 rcStrict = IEMExecOne(pVCpu);
7747 }
7748
7749 if (rcStrict == VINF_SUCCESS)
7750 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7751 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7752 {
7753 rcStrict = VINF_SUCCESS;
7754 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7755 }
7756 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7757 return rcStrict;
7758}
7759
7760
7761/**
7762 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7763 */
7764HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7765{
7766 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7767
7768 /*
7769 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7770 * we only intercept STGI when events are pending for GIF to become 1.
7771 */
7772 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7773 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7774 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7775
7776 VBOXSTRICTRC rcStrict;
7777 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7778 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7779 if (fSupportsNextRipSave)
7780 {
7781 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7782 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7783 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7784 }
7785 else
7786 {
7787 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7788 rcStrict = IEMExecOne(pVCpu);
7789 }
7790
7791 if (rcStrict == VINF_SUCCESS)
7792 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7793 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7794 {
7795 rcStrict = VINF_SUCCESS;
7796 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7797 }
7798 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7799 return rcStrict;
7800}
7801
7802
7803/**
7804 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7805 */
7806HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7807{
7808 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7809
7810 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7811 Assert(pVmcb);
7812 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7813
7814 VBOXSTRICTRC rcStrict;
7815 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7816 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
7817 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
7818 | CPUMCTX_EXTRN_SYSENTER_MSRS;
7819 if (fSupportsNextRipSave)
7820 {
7821 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7822 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7823 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7824 }
7825 else
7826 {
7827 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7828 rcStrict = IEMExecOne(pVCpu);
7829 }
7830
7831 if (rcStrict == VINF_SUCCESS)
7832 {
7833 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7834 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7835 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7836 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7837 }
7838 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7839 {
7840 rcStrict = VINF_SUCCESS;
7841 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7842 }
7843 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7844 return rcStrict;
7845}
7846
7847
7848/**
7849 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7850 */
7851HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7852{
7853 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7854
7855 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7856 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7857
7858 VBOXSTRICTRC rcStrict;
7859 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7860 if (fSupportsNextRipSave)
7861 {
7862 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7863 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7864 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7865 }
7866 else
7867 {
7868 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7869 rcStrict = IEMExecOne(pVCpu);
7870 }
7871
7872 if (rcStrict == VINF_IEM_RAISED_XCPT)
7873 {
7874 rcStrict = VINF_SUCCESS;
7875 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7876 }
7877 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7878 return rcStrict;
7879}
7880
7881
7882/**
7883 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7884 */
7885HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7886{
7887 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7888
7889 VBOXSTRICTRC rcStrict;
7890 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7891 if (fSupportsNextRipSave)
7892 {
7893 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7894 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7895 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7896 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7897 }
7898 else
7899 {
7900 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7901 rcStrict = IEMExecOne(pVCpu);
7902 }
7903
7904 if (rcStrict == VINF_IEM_RAISED_XCPT)
7905 {
7906 rcStrict = VINF_SUCCESS;
7907 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7908 }
7909 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7910 return rcStrict;
7911}
7912
7913
7914/**
7915 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7916 */
7917HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7918{
7919 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7920 /* We shall import the entire state here, just in case we enter and continue execution of
7921 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
7922 could lose lose part of CPU state. */
7923 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7924
7925 VBOXSTRICTRC rcStrict;
7926 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7927 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
7928 if (fSupportsNextRipSave)
7929 {
7930 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7931 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7932 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7933 }
7934 else
7935 {
7936 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
7937 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
7938 instruction itself, see @bugref{7243#c126} */
7939 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
7940 }
7941 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
7942
7943 if (rcStrict == VINF_SUCCESS)
7944 {
7945 rcStrict = VINF_SVM_VMRUN;
7946 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
7947 }
7948 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7949 {
7950 rcStrict = VINF_SUCCESS;
7951 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7952 }
7953 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7954 return rcStrict;
7955}
7956
7957
7958/**
7959 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
7960 * Unconditional \#VMEXIT.
7961 */
7962HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7963{
7964 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7965 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7966
7967 if (pVCpu->hm.s.Event.fPending)
7968 {
7969 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7970 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7971 }
7972
7973 hmR0SvmSetPendingXcptDB(pVCpu);
7974 return VINF_SUCCESS;
7975}
7976
7977
7978/**
7979 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7980 * Conditional \#VMEXIT.
7981 */
7982HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7983{
7984 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7985 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7986
7987 SVMEVENT Event;
7988 Event.u = 0;
7989 Event.n.u1Valid = 1;
7990 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7991 Event.n.u8Vector = X86_XCPT_BP;
7992 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7993 return VINF_SUCCESS;
7994}
7995#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
7996
7997/** @} */
7998
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette