VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 87563

Last change on this file since 87563 was 87563, checked in by vboxsync, 4 years ago

VMM/HM: Moved the 'ForRing3' and 'ForLog' bits to the back of the HM structure. Configuration bits too, except for VMX/SVM specific ones as those fit in alignment space (can be moved later if needed). bugref:9217

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 319.3 KB
Line 
1/* $Id: HMSVMR0.cpp 87563 2021-02-03 13:23:13Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vmcc.h>
37#include <VBox/err.h>
38#include "HMSVMR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMSVM_SYNC_FULL_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60
61# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
65 if ((u64ExitCode) == SVM_EXIT_NPF) \
66 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
67 else \
68 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
69 } while (0)
70# endif
71#else
72# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
74# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
75# endif
76#endif /* !VBOX_WITH_STATISTICS */
77
78/** If we decide to use a function table approach this can be useful to
79 * switch to a "static DECLCALLBACK(int)". */
80#define HMSVM_EXIT_DECL static VBOXSTRICTRC
81
82/**
83 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
84 * guest using hardware-assisted SVM.
85 *
86 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
87 * are swapped and restored across the world-switch and also registers like
88 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
89 * \#VMEXIT.
90 */
91#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
92 | CPUMCTX_EXTRN_RFLAGS \
93 | CPUMCTX_EXTRN_RAX \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_CR0 \
97 | CPUMCTX_EXTRN_CR2 \
98 | CPUMCTX_EXTRN_CR3 \
99 | CPUMCTX_EXTRN_TABLE_MASK \
100 | CPUMCTX_EXTRN_DR6 \
101 | CPUMCTX_EXTRN_DR7 \
102 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
103 | CPUMCTX_EXTRN_SYSCALL_MSRS \
104 | CPUMCTX_EXTRN_SYSENTER_MSRS \
105 | CPUMCTX_EXTRN_HWVIRT \
106 | CPUMCTX_EXTRN_HM_SVM_MASK)
107
108/**
109 * Subset of the guest-CPU state that is shared between the guest and host.
110 */
111#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
112
113/** Macro for importing guest state from the VMCB back into CPUMCTX. */
114#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
115 do { \
116 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
117 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
118 } while (0)
119
120/** Assert that the required state bits are fetched. */
121#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
122 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
123 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
124
125/** Assert that preemption is disabled or covered by thread-context hooks. */
126#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
127 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
128
129/** Assert that we haven't migrated CPUs when thread-context hooks are not
130 * used. */
131#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
132 || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
133 ("Illegal migration! Entered on CPU %u Current %u\n", \
134 (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()));
135
136/** Assert that we're not executing a nested-guest. */
137#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
139#else
140# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
141#endif
142
143/** Assert that we're executing a nested-guest. */
144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
146#else
147# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
148#endif
149
150/** Macro for checking and returning from the using function for
151 * \#VMEXIT intercepts that maybe caused during delivering of another
152 * event in the guest. */
153#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
154# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
155 do \
156 { \
157 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
158 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
159 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
160 else if ( rc == VINF_EM_RESET \
161 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
162 { \
163 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
164 return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \
165 } \
166 else \
167 return rc; \
168 } while (0)
169#else
170# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
171 do \
172 { \
173 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
174 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
175 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
176 else \
177 return rc; \
178 } while (0)
179#endif
180
181/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
182 * instruction that exited. */
183#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
184 do { \
185 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
186 (a_rc) = VINF_EM_DBG_STEPPED; \
187 } while (0)
188
189/** Validate segment descriptor granularity bit. */
190#ifdef VBOX_STRICT
191# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
192 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
193 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
194 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
195 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
196 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
197 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
198#else
199# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
200#endif
201
202/**
203 * Exception bitmap mask for all contributory exceptions.
204 *
205 * Page fault is deliberately excluded here as it's conditional as to whether
206 * it's contributory or benign. Page faults are handled separately.
207 */
208#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
209 | RT_BIT(X86_XCPT_DE))
210
211/**
212 * Mandatory/unconditional guest control intercepts.
213 *
214 * SMIs can and do happen in normal operation. We need not intercept them
215 * while executing the guest (or nested-guest).
216 */
217#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
218 | SVM_CTRL_INTERCEPT_NMI \
219 | SVM_CTRL_INTERCEPT_INIT \
220 | SVM_CTRL_INTERCEPT_RDPMC \
221 | SVM_CTRL_INTERCEPT_CPUID \
222 | SVM_CTRL_INTERCEPT_RSM \
223 | SVM_CTRL_INTERCEPT_HLT \
224 | SVM_CTRL_INTERCEPT_IOIO_PROT \
225 | SVM_CTRL_INTERCEPT_MSR_PROT \
226 | SVM_CTRL_INTERCEPT_INVLPGA \
227 | SVM_CTRL_INTERCEPT_SHUTDOWN \
228 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
229 | SVM_CTRL_INTERCEPT_VMRUN \
230 | SVM_CTRL_INTERCEPT_SKINIT \
231 | SVM_CTRL_INTERCEPT_WBINVD \
232 | SVM_CTRL_INTERCEPT_MONITOR \
233 | SVM_CTRL_INTERCEPT_MWAIT \
234 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
235 | SVM_CTRL_INTERCEPT_XSETBV)
236
237/** @name VMCB Clean Bits.
238 *
239 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
240 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
241 * memory.
242 *
243 * @{ */
244/** All intercepts vectors, TSC offset, PAUSE filter counter. */
245#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
246/** I/O permission bitmap, MSR permission bitmap. */
247#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
248/** ASID. */
249#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
250/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
251V_INTR_VECTOR. */
252#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
253/** Nested Paging: Nested CR3 (nCR3), PAT. */
254#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
255/** Control registers (CR0, CR3, CR4, EFER). */
256#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
257/** Debug registers (DR6, DR7). */
258#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
259/** GDT, IDT limit and base. */
260#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
261/** Segment register: CS, SS, DS, ES limit and base. */
262#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
263/** CR2.*/
264#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
265/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
266#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
267/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
268PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
269#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
270/** Mask of all valid VMCB Clean bits. */
271#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
272 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
273 | HMSVM_VMCB_CLEAN_ASID \
274 | HMSVM_VMCB_CLEAN_INT_CTRL \
275 | HMSVM_VMCB_CLEAN_NP \
276 | HMSVM_VMCB_CLEAN_CRX_EFER \
277 | HMSVM_VMCB_CLEAN_DRX \
278 | HMSVM_VMCB_CLEAN_DT \
279 | HMSVM_VMCB_CLEAN_SEG \
280 | HMSVM_VMCB_CLEAN_CR2 \
281 | HMSVM_VMCB_CLEAN_LBR \
282 | HMSVM_VMCB_CLEAN_AVIC)
283/** @} */
284
285/** @name SVM transient.
286 *
287 * A state structure for holding miscellaneous information across AMD-V
288 * VMRUN/\#VMEXIT operation, restored after the transition.
289 *
290 * @{ */
291typedef struct SVMTRANSIENT
292{
293 /** The host's rflags/eflags. */
294 RTCCUINTREG fEFlags;
295 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
296 uint64_t u64ExitCode;
297
298 /** The guest's TPR value used for TPR shadowing. */
299 uint8_t u8GuestTpr;
300 /** Alignment. */
301 uint8_t abAlignment0[7];
302
303 /** Pointer to the currently executing VMCB. */
304 PSVMVMCB pVmcb;
305
306 /** Whether we are currently executing a nested-guest. */
307 bool fIsNestedGuest;
308 /** Whether the guest debug state was active at the time of \#VMEXIT. */
309 bool fWasGuestDebugStateActive;
310 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
311 bool fWasHyperDebugStateActive;
312 /** Whether the TSC offset mode needs to be updated. */
313 bool fUpdateTscOffsetting;
314 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
315 bool fRestoreTscAuxMsr;
316 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
317 * contributary exception or a page-fault. */
318 bool fVectoringDoublePF;
319 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
320 * external interrupt or NMI. */
321 bool fVectoringPF;
322 /** Padding. */
323 bool afPadding0;
324} SVMTRANSIENT;
325/** Pointer to SVM transient state. */
326typedef SVMTRANSIENT *PSVMTRANSIENT;
327/** Pointer to a const SVM transient state. */
328typedef const SVMTRANSIENT *PCSVMTRANSIENT;
329
330AssertCompileSizeAlignment(SVMTRANSIENT, sizeof(uint64_t));
331AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
332AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
333/** @} */
334
335/**
336 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
337 */
338typedef enum SVMMSREXITREAD
339{
340 /** Reading this MSR causes a \#VMEXIT. */
341 SVMMSREXIT_INTERCEPT_READ = 0xb,
342 /** Reading this MSR does not cause a \#VMEXIT. */
343 SVMMSREXIT_PASSTHRU_READ
344} SVMMSREXITREAD;
345
346/**
347 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
348 */
349typedef enum SVMMSREXITWRITE
350{
351 /** Writing to this MSR causes a \#VMEXIT. */
352 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
353 /** Writing to this MSR does not cause a \#VMEXIT. */
354 SVMMSREXIT_PASSTHRU_WRITE
355} SVMMSREXITWRITE;
356
357/**
358 * SVM \#VMEXIT handler.
359 *
360 * @returns Strict VBox status code.
361 * @param pVCpu The cross context virtual CPU structure.
362 * @param pSvmTransient Pointer to the SVM-transient structure.
363 */
364typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
365
366
367/*********************************************************************************************************************************
368* Internal Functions *
369*********************************************************************************************************************************/
370static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
371static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
372
373
374/** @name \#VMEXIT handlers.
375 * @{
376 */
377static FNSVMEXITHANDLER hmR0SvmExitIntr;
378static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
379static FNSVMEXITHANDLER hmR0SvmExitInvd;
380static FNSVMEXITHANDLER hmR0SvmExitCpuid;
381static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
382static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
383static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
384static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
385static FNSVMEXITHANDLER hmR0SvmExitHlt;
386static FNSVMEXITHANDLER hmR0SvmExitMonitor;
387static FNSVMEXITHANDLER hmR0SvmExitMwait;
388static FNSVMEXITHANDLER hmR0SvmExitShutdown;
389static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
390static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
391static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
392static FNSVMEXITHANDLER hmR0SvmExitMsr;
393static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
394static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
395static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
396static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
397static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
398static FNSVMEXITHANDLER hmR0SvmExitVIntr;
399static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
400static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
401static FNSVMEXITHANDLER hmR0SvmExitPause;
402static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
403static FNSVMEXITHANDLER hmR0SvmExitIret;
404static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
405static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
406static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
407static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
408static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
409static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
410static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
411#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
412static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
413#endif
414#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
415static FNSVMEXITHANDLER hmR0SvmExitClgi;
416static FNSVMEXITHANDLER hmR0SvmExitStgi;
417static FNSVMEXITHANDLER hmR0SvmExitVmload;
418static FNSVMEXITHANDLER hmR0SvmExitVmsave;
419static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
420static FNSVMEXITHANDLER hmR0SvmExitVmrun;
421static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
422static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
423#endif
424/** @} */
425
426static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
427#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
428static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
429#endif
430
431
432/*********************************************************************************************************************************
433* Global Variables *
434*********************************************************************************************************************************/
435/** Ring-0 memory object for the IO bitmap. */
436static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
437/** Physical address of the IO bitmap. */
438static RTHCPHYS g_HCPhysIOBitmap;
439/** Pointer to the IO bitmap. */
440static R0PTRTYPE(void *) g_pvIOBitmap;
441
442#ifdef VBOX_STRICT
443# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
444# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
445# define HMSVM_LOG_CS RT_BIT_32(2)
446# define HMSVM_LOG_SS RT_BIT_32(3)
447# define HMSVM_LOG_FS RT_BIT_32(4)
448# define HMSVM_LOG_GS RT_BIT_32(5)
449# define HMSVM_LOG_LBR RT_BIT_32(6)
450# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
451 | HMSVM_LOG_CR_REGS \
452 | HMSVM_LOG_CS \
453 | HMSVM_LOG_SS \
454 | HMSVM_LOG_FS \
455 | HMSVM_LOG_GS \
456 | HMSVM_LOG_LBR)
457
458/**
459 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
460 *
461 * @param pVCpu The cross context virtual CPU structure.
462 * @param pVmcb Pointer to the VM control block.
463 * @param pszPrefix Log prefix.
464 * @param fFlags Log flags, see HMSVM_LOG_XXX.
465 * @param uVerbose The verbosity level, currently unused.
466 */
467static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
468{
469 RT_NOREF2(pVCpu, uVerbose);
470 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
471
472 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
473 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
474
475 if (fFlags & HMSVM_LOG_RBP_RSP)
476 {
477 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
478 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
479 }
480
481 if (fFlags & HMSVM_LOG_CR_REGS)
482 {
483 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
484 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
485 }
486
487 if (fFlags & HMSVM_LOG_CS)
488 {
489 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
490 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
491 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
492 }
493 if (fFlags & HMSVM_LOG_SS)
494 {
495 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
496 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
497 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
498 }
499 if (fFlags & HMSVM_LOG_FS)
500 {
501 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
502 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
503 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
504 }
505 if (fFlags & HMSVM_LOG_GS)
506 {
507 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
508 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
509 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
510 }
511
512 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
513 if (fFlags & HMSVM_LOG_LBR)
514 {
515 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
516 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
517 }
518 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
519}
520#endif /* VBOX_STRICT */
521
522
523/**
524 * Sets up and activates AMD-V on the current CPU.
525 *
526 * @returns VBox status code.
527 * @param pHostCpu The HM physical-CPU structure.
528 * @param pVM The cross context VM structure. Can be
529 * NULL after a resume!
530 * @param pvCpuPage Pointer to the global CPU page.
531 * @param HCPhysCpuPage Physical address of the global CPU page.
532 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
533 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
534 * unused).
535 */
536VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
537 PCSUPHWVIRTMSRS pHwvirtMsrs)
538{
539 Assert(!fEnabledByHost);
540 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
541 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
542 Assert(pvCpuPage); NOREF(pvCpuPage);
543 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
544
545 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
546
547 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
548 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
549
550 /*
551 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
552 */
553 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
554 if (u64HostEfer & MSR_K6_EFER_SVME)
555 {
556 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
557 if ( pVM
558 && pVM->hm.s.svm.fIgnoreInUseError)
559 pHostCpu->fIgnoreAMDVInUseError = true;
560
561 if (!pHostCpu->fIgnoreAMDVInUseError)
562 {
563 ASMSetFlags(fEFlags);
564 return VERR_SVM_IN_USE;
565 }
566 }
567
568 /* Turn on AMD-V in the EFER MSR. */
569 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
570
571 /* Write the physical page address where the CPU will store the host state while executing the VM. */
572 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
573
574 /* Restore interrupts. */
575 ASMSetFlags(fEFlags);
576
577 /*
578 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
579 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
580 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
581 * entirely with before executing any guest code.
582 */
583 pHostCpu->fFlushAsidBeforeUse = true;
584
585 /*
586 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
587 */
588 ++pHostCpu->cTlbFlushes;
589
590 return VINF_SUCCESS;
591}
592
593
594/**
595 * Deactivates AMD-V on the current CPU.
596 *
597 * @returns VBox status code.
598 * @param pHostCpu The HM physical-CPU structure.
599 * @param pvCpuPage Pointer to the global CPU page.
600 * @param HCPhysCpuPage Physical address of the global CPU page.
601 */
602VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
603{
604 RT_NOREF1(pHostCpu);
605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
606 AssertReturn( HCPhysCpuPage
607 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
608 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
609
610 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
611 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
612
613 /* Turn off AMD-V in the EFER MSR. */
614 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
615 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
616
617 /* Invalidate host state physical address. */
618 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
619
620 /* Restore interrupts. */
621 ASMSetFlags(fEFlags);
622
623 return VINF_SUCCESS;
624}
625
626
627/**
628 * Does global AMD-V initialization (called during module initialization).
629 *
630 * @returns VBox status code.
631 */
632VMMR0DECL(int) SVMR0GlobalInit(void)
633{
634 /*
635 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
636 * intercept all IO accesses, it's done once globally here instead of per-VM.
637 */
638 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
639 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
640 if (RT_FAILURE(rc))
641 return rc;
642
643 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
644 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
645
646 /* Set all bits to intercept all IO accesses. */
647 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
648
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Does global AMD-V termination (called during module termination).
655 */
656VMMR0DECL(void) SVMR0GlobalTerm(void)
657{
658 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
659 {
660 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
661 g_pvIOBitmap = NULL;
662 g_HCPhysIOBitmap = 0;
663 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
664 }
665}
666
667
668/**
669 * Frees any allocated per-VCPU structures for a VM.
670 *
671 * @param pVM The cross context VM structure.
672 */
673DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
674{
675 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
676 {
677 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
678 AssertPtr(pVCpu);
679
680 if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false);
683 pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0;
684 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false);
690 pVCpu->hmr0.s.svm.pVmcb = NULL;
691 pVCpu->hmr0.s.svm.HCPhysVmcb = 0;
692 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
693 }
694
695 if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
696 {
697 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false);
698 pVCpu->hmr0.s.svm.pvMsrBitmap = NULL;
699 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0;
700 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
701 }
702 }
703}
704
705
706/**
707 * Sets pfnVMRun to the best suited variant.
708 *
709 * This must be called whenever anything changes relative to the SVMR0VMRun
710 * variant selection:
711 * - pVCpu->hm.s.fLoadSaveGuestXcr0
712 * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher
713 * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher
714 * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
715 * - Perhaps: CPUMCTX.fXStateMask (windows only)
716 *
717 * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor
718 * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime.
719 */
720static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu)
721{
722 static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] =
723 {
724 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit },
725 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit },
726 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit },
727 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit },
728 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit },
729 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit },
730 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit },
731 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit },
732 };
733 uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
734 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
735 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0);
736 PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn;
737 if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun)
738 pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun;
739}
740
741
742/**
743 * Selector FNHMSVMVMRUN implementation.
744 */
745static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB)
746{
747 hmR0SvmUpdateVmRunFunction(pVCpu);
748 return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB);
749}
750
751
752/**
753 * Does per-VM AMD-V initialization.
754 *
755 * @returns VBox status code.
756 * @param pVM The cross context VM structure.
757 */
758VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
759{
760 int rc = VERR_INTERNAL_ERROR_5;
761
762 /*
763 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
764 */
765 uint32_t u32Family;
766 uint32_t u32Model;
767 uint32_t u32Stepping;
768 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
769 {
770 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
771 pVM->hmr0.s.svm.fAlwaysFlushTLB = true;
772 }
773
774 /*
775 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
776 */
777 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
778 {
779 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
780 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
781 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
782 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
783 }
784
785 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
786 {
787 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
788
789 /*
790 * Initialize the hardware-assisted SVM guest-execution handler.
791 * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}.
792 */
793 pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector;
794
795 /*
796 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
797 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
798 */
799/** @todo Does this need to be below 4G? */
800 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
801 if (RT_FAILURE(rc))
802 goto failure_cleanup;
803
804 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost);
805 pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */);
806 Assert(pVCpu->hmr0.s.svm.HCPhysVmcbHost < _4G);
807 ASMMemZeroPage(pvVmcbHost);
808
809 /*
810 * Allocate one page for the guest-state VMCB.
811 */
812/** @todo Does this need to be below 4G? */
813 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
814 if (RT_FAILURE(rc))
815 goto failure_cleanup;
816
817 pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb);
818 pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */);
819 Assert(pVCpu->hmr0.s.svm.HCPhysVmcb < _4G);
820 ASMMemZeroPage(pVCpu->hmr0.s.svm.pVmcb);
821
822 /*
823 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
824 * SVM to not require one.
825 */
826/** @todo Does this need to be below 4G? */
827 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
828 false /* fExecutable */);
829 if (RT_FAILURE(rc))
830 goto failure_cleanup;
831
832 pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap);
833 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
834 /* Set all bits to intercept all MSR accesses (changed later on). */
835 ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
836 }
837
838 return VINF_SUCCESS;
839
840failure_cleanup:
841 hmR0SvmFreeStructs(pVM);
842 return rc;
843}
844
845
846/**
847 * Does per-VM AMD-V termination.
848 *
849 * @returns VBox status code.
850 * @param pVM The cross context VM structure.
851 */
852VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
853{
854 hmR0SvmFreeStructs(pVM);
855 return VINF_SUCCESS;
856}
857
858
859/**
860 * Returns whether the VMCB Clean Bits feature is supported.
861 *
862 * @returns @c true if supported, @c false otherwise.
863 * @param pVCpu The cross context virtual CPU structure.
864 * @param fIsNestedGuest Whether we are currently executing the nested-guest.
865 */
866DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
867{
868 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
869 bool const fHostVmcbCleanBits = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
870 if (!fIsNestedGuest)
871 return fHostVmcbCleanBits;
872 return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
873}
874
875
876/**
877 * Returns whether the decode assists feature is supported.
878 *
879 * @returns @c true if supported, @c false otherwise.
880 * @param pVCpu The cross context virtual CPU structure.
881 */
882DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
883{
884 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
885#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
886 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
887 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
888 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
889#endif
890 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
891}
892
893
894/**
895 * Returns whether the NRIP_SAVE feature is supported.
896 *
897 * @returns @c true if supported, @c false otherwise.
898 * @param pVCpu The cross context virtual CPU structure.
899 */
900DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
901{
902 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
903#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
904 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
905 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
906 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
907#endif
908 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
909}
910
911
912/**
913 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
914 *
915 * @param pVCpu The cross context virtual CPU structure.
916 * @param pbMsrBitmap Pointer to the MSR bitmap.
917 * @param idMsr The MSR for which the permissions are being set.
918 * @param enmRead MSR read permissions.
919 * @param enmWrite MSR write permissions.
920 *
921 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
922 * caller needs to take care of this.
923 */
924static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
925 SVMMSREXITWRITE enmWrite)
926{
927 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
928 uint16_t offMsrpm;
929 uint8_t uMsrpmBit;
930 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
931 AssertRC(rc);
932
933 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
934 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
935
936 pbMsrBitmap += offMsrpm;
937 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
938 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
939 else
940 {
941 if (!fInNestedGuestMode)
942 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
943#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
944 else
945 {
946 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
947 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
948 pbNstGstMsrBitmap += offMsrpm;
949 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
950 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
951 else
952 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
953 }
954#endif
955 }
956
957 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
958 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
959 else
960 {
961 if (!fInNestedGuestMode)
962 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
963#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
964 else
965 {
966 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
967 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
968 pbNstGstMsrBitmap += offMsrpm;
969 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
970 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
971 else
972 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
973 }
974#endif
975 }
976}
977
978
979/**
980 * Sets up AMD-V for the specified VM.
981 * This function is only called once per-VM during initalization.
982 *
983 * @returns VBox status code.
984 * @param pVM The cross context VM structure.
985 */
986VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
987{
988 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
989 AssertReturn(pVM, VERR_INVALID_PARAMETER);
990
991 /*
992 * Validate and copy over some parameters.
993 */
994 AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG);
995 bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
996 AssertReturn(!fNestedPaging || (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_INCOMPATIBLE_CONFIG);
997 pVM->hmr0.s.fNestedPaging = fNestedPaging;
998 pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
999
1000 /*
1001 * Determin some configuration parameters.
1002 */
1003 bool const fPauseFilter = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
1004 bool const fPauseFilterThreshold = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
1005 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
1006
1007 bool const fLbrVirt = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
1008 bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
1009
1010#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1011 bool const fVirtVmsaveVmload = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
1012 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging;
1013
1014 bool const fVGif = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF);
1015 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
1016#endif
1017
1018 PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
1019 PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb;
1020 AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
1021 PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
1022
1023 /* Always trap #AC for reasons of security. */
1024 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
1025
1026 /* Always trap #DB for reasons of security. */
1027 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
1028
1029 /* Trap exceptions unconditionally (debug purposes). */
1030#ifdef HMSVM_ALWAYS_TRAP_PF
1031 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
1032#endif
1033#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1034 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
1035 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
1036 | RT_BIT_32(X86_XCPT_DE)
1037 | RT_BIT_32(X86_XCPT_NM)
1038 | RT_BIT_32(X86_XCPT_UD)
1039 | RT_BIT_32(X86_XCPT_NP)
1040 | RT_BIT_32(X86_XCPT_SS)
1041 | RT_BIT_32(X86_XCPT_GP)
1042 | RT_BIT_32(X86_XCPT_PF)
1043 | RT_BIT_32(X86_XCPT_MF)
1044 ;
1045#endif
1046
1047 /* Apply the exceptions intercepts needed by the GIM provider. */
1048 if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1049 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
1050
1051 /* The mesa 3d driver hack needs #GP. */
1052 if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
1053 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
1054
1055 /* Set up unconditional intercepts and conditions. */
1056 pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
1057 | SVM_CTRL_INTERCEPT_VMMCALL
1058 | SVM_CTRL_INTERCEPT_VMSAVE
1059 | SVM_CTRL_INTERCEPT_VMLOAD
1060 | SVM_CTRL_INTERCEPT_CLGI
1061 | SVM_CTRL_INTERCEPT_STGI;
1062
1063#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
1064 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
1065#endif
1066
1067#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1068 if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm)
1069 {
1070 /* Virtualized VMSAVE/VMLOAD. */
1071 if (fUseVirtVmsaveVmload)
1072 {
1073 pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1;
1074 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE
1075 | SVM_CTRL_INTERCEPT_VMLOAD);
1076 }
1077 else
1078 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1079
1080 /* Virtual GIF. */
1081 if (fUseVGif)
1082 {
1083 pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1;
1084 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI
1085 | SVM_CTRL_INTERCEPT_STGI);
1086 }
1087 else
1088 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1089 }
1090 else
1091#endif
1092 {
1093 Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm);
1094 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1095 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1096 }
1097
1098 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1099 pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
1100
1101 /* Intercept all DRx reads and writes by default. Changed later on. */
1102 pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
1103 pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
1104
1105 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1106 pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
1107
1108 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1109 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1110 pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
1111
1112 /* Set the IO permission bitmap physical addresses. */
1113 pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1114
1115 /* LBR virtualization. */
1116 pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1117
1118 /* The host ASID MBZ, for the guest start with 1. */
1119 pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
1120
1121 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1122 pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging;
1123
1124 /* Without Nested Paging, we need additionally intercepts. */
1125 if (!fNestedPaging)
1126 {
1127 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1128 pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
1129 pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
1130
1131 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1132 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1133 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1134
1135 /* Page faults must be intercepted to implement shadow paging. */
1136 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1137 }
1138
1139 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1140 if (fUsePauseFilter)
1141 {
1142 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1143 pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1144 if (fPauseFilterThreshold)
1145 pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1146 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1147 }
1148
1149 /*
1150 * Setup the MSR permission bitmap.
1151 * The following MSRs are saved/restored automatically during the world-switch.
1152 * Don't intercept guest read/write accesses to these MSRs.
1153 */
1154 uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap;
1155 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1156 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1157 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1158 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1159 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1160 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1161 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1162 if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1163 {
1164 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1165 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1166 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1167 }
1168 else
1169 {
1170 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1171 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1172 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1173 }
1174 pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap;
1175
1176 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1177 Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
1178
1179 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
1180 {
1181 PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
1182 PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb;
1183 AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
1184 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1185
1186 /* Copy the VMCB control area. */
1187 memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
1188
1189 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1190 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap;
1191 memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1192 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap;
1193
1194 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1195 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1196
1197 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1198 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
1199 }
1200
1201#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1202 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1203 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1204#else
1205 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1206#endif
1207 return VINF_SUCCESS;
1208}
1209
1210
1211/**
1212 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1213 *
1214 * @returns Pointer to the current context VMCB.
1215 * @param pVCpu The cross context virtual CPU structure.
1216 */
1217DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
1218{
1219#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1220 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1221 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1222#endif
1223 return pVCpu->hmr0.s.svm.pVmcb;
1224}
1225
1226
1227/**
1228 * Gets a pointer to the nested-guest VMCB cache.
1229 *
1230 * @returns Pointer to the nested-guest VMCB cache.
1231 * @param pVCpu The cross context virtual CPU structure.
1232 */
1233DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
1234{
1235#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1236 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1237 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1238#else
1239 RT_NOREF(pVCpu);
1240 return NULL;
1241#endif
1242}
1243
1244
1245/**
1246 * Invalidates a guest page by guest virtual address.
1247 *
1248 * @returns VBox status code.
1249 * @param pVCpu The cross context virtual CPU structure.
1250 * @param GCVirt Guest virtual address of the page to invalidate.
1251 */
1252VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1253{
1254 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1255
1256 bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB;
1257
1258 /* Skip it if a TLB flush is already pending. */
1259 if (!fFlushPending)
1260 {
1261 Log4Func(("%#RGv\n", GCVirt));
1262
1263 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1264 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1265
1266 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1267 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1268 }
1269 return VINF_SUCCESS;
1270}
1271
1272
1273/**
1274 * Flushes the appropriate tagged-TLB entries.
1275 *
1276 * @param pHostCpu The HM physical-CPU structure.
1277 * @param pVCpu The cross context virtual CPU structure.
1278 * @param pVmcb Pointer to the VM control block.
1279 */
1280static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1281{
1282 /*
1283 * Force a TLB flush for the first world switch if the current CPU differs from the one
1284 * we ran on last. This can happen both for start & resume due to long jumps back to
1285 * ring-3.
1286 *
1287 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1288 * correlation between it and the physical CPU.
1289 *
1290 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1291 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1292 */
1293 bool fNewAsid = false;
1294 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1295 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
1296 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes
1297#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1298 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1299#endif
1300 )
1301 {
1302 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1303 pVCpu->hmr0.s.fForceTLBFlush = true;
1304 fNewAsid = true;
1305 }
1306
1307 /* Set TLB flush state as checked until we return from the world switch. */
1308 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1309
1310 /* Check for explicit TLB flushes. */
1311 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1312 {
1313 pVCpu->hmr0.s.fForceTLBFlush = true;
1314 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1315 }
1316
1317 /*
1318 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1319 * This Host CPU requirement takes precedence.
1320 */
1321 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1322 if (pVM->hmr0.s.svm.fAlwaysFlushTLB)
1323 {
1324 pHostCpu->uCurrentAsid = 1;
1325 pVCpu->hmr0.s.uCurrentAsid = 1;
1326 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1327 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1328 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1329
1330 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1331 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1332 }
1333 else
1334 {
1335 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1336 if (pVCpu->hmr0.s.fForceTLBFlush)
1337 {
1338 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1339 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1340
1341 if (fNewAsid)
1342 {
1343 ++pHostCpu->uCurrentAsid;
1344
1345 bool fHitASIDLimit = false;
1346 if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
1347 {
1348 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1349 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1350 fHitASIDLimit = true;
1351 }
1352
1353 if ( fHitASIDLimit
1354 || pHostCpu->fFlushAsidBeforeUse)
1355 {
1356 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1357 pHostCpu->fFlushAsidBeforeUse = false;
1358 }
1359
1360 pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1361 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1362 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1363 }
1364 else
1365 {
1366 if (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1367 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1368 else
1369 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1370 }
1371
1372 pVCpu->hmr0.s.fForceTLBFlush = false;
1373 }
1374 }
1375
1376 /* Update VMCB with the ASID. */
1377 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid)
1378 {
1379 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid;
1380 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1381 }
1382
1383 AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu,
1384 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu));
1385 AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1386 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1387 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
1388 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1389 AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
1390 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
1391
1392#ifdef VBOX_WITH_STATISTICS
1393 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1394 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1395 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1396 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1397 {
1398 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1399 }
1400 else
1401 {
1402 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1403 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1404 }
1405#endif
1406}
1407
1408
1409/**
1410 * Sets an exception intercept in the specified VMCB.
1411 *
1412 * @param pVmcb Pointer to the VM control block.
1413 * @param uXcpt The exception (X86_XCPT_*).
1414 */
1415DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1416{
1417 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1418 {
1419 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1420 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1421 }
1422}
1423
1424
1425/**
1426 * Clears an exception intercept in the specified VMCB.
1427 *
1428 * @param pVCpu The cross context virtual CPU structure.
1429 * @param pVmcb Pointer to the VM control block.
1430 * @param uXcpt The exception (X86_XCPT_*).
1431 *
1432 * @remarks This takes into account if we're executing a nested-guest and only
1433 * removes the exception intercept if both the guest -and- nested-guest
1434 * are not intercepting it.
1435 */
1436DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1437{
1438 Assert(uXcpt != X86_XCPT_DB);
1439 Assert(uXcpt != X86_XCPT_AC);
1440 Assert(uXcpt != X86_XCPT_GP);
1441#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1442 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1443 {
1444 bool fRemove = true;
1445# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1446 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1447 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1448 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1449 {
1450 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1451 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1452 }
1453# else
1454 RT_NOREF(pVCpu);
1455# endif
1456 if (fRemove)
1457 {
1458 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1459 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1460 }
1461 }
1462#else
1463 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1464#endif
1465}
1466
1467
1468/**
1469 * Sets a control intercept in the specified VMCB.
1470 *
1471 * @param pVmcb Pointer to the VM control block.
1472 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1473 */
1474DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1475{
1476 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1477 {
1478 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1479 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1480 }
1481}
1482
1483
1484/**
1485 * Clears a control intercept in the specified VMCB.
1486 *
1487 * @returns @c true if the intercept is still set, @c false otherwise.
1488 * @param pVCpu The cross context virtual CPU structure.
1489 * @param pVmcb Pointer to the VM control block.
1490 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1491 *
1492 * @remarks This takes into account if we're executing a nested-guest and only
1493 * removes the control intercept if both the guest -and- nested-guest
1494 * are not intercepting it.
1495 */
1496static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1497{
1498 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1499 {
1500 bool fRemove = true;
1501#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1502 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1503 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1504 {
1505 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1506 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1507 }
1508#else
1509 RT_NOREF(pVCpu);
1510#endif
1511 if (fRemove)
1512 {
1513 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1514 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1515 }
1516 }
1517
1518 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1519}
1520
1521
1522/**
1523 * Exports the guest (or nested-guest) CR0 into the VMCB.
1524 *
1525 * @param pVCpu The cross context virtual CPU structure.
1526 * @param pVmcb Pointer to the VM control block.
1527 *
1528 * @remarks This assumes we always pre-load the guest FPU.
1529 * @remarks No-long-jump zone!!!
1530 */
1531static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1532{
1533 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1534
1535 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1536 uint64_t const uGuestCr0 = pCtx->cr0;
1537 uint64_t uShadowCr0 = uGuestCr0;
1538
1539 /* Always enable caching. */
1540 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1541
1542 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1543 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1544 {
1545 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1546 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1547 }
1548
1549 /*
1550 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1551 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1552 * see @bugref{7243#c103}.
1553 */
1554 if (!(uGuestCr0 & X86_CR0_NE))
1555 {
1556 uShadowCr0 |= X86_CR0_NE;
1557 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1558 }
1559 else
1560 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1561
1562 /*
1563 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1564 *
1565 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1566 * see @bugref{6944}.
1567 *
1568 * We also don't ever want to honor weird things like cache disable from the guest.
1569 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1570 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1571 */
1572 if (uShadowCr0 == uGuestCr0)
1573 {
1574 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1575 {
1576 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1577 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1578 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1579 }
1580 else
1581 {
1582 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1583 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1584 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1585 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1586 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1587 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1588 }
1589 }
1590 else
1591 {
1592 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1593 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1594 }
1595 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1596
1597 Assert(!RT_HI_U32(uShadowCr0));
1598 if (pVmcb->guest.u64CR0 != uShadowCr0)
1599 {
1600 pVmcb->guest.u64CR0 = uShadowCr0;
1601 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1602 }
1603}
1604
1605
1606/**
1607 * Exports the guest (or nested-guest) CR3 into the VMCB.
1608 *
1609 * @param pVCpu The cross context virtual CPU structure.
1610 * @param pVmcb Pointer to the VM control block.
1611 *
1612 * @remarks No-long-jump zone!!!
1613 */
1614static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1615{
1616 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1617
1618 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1619 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1620 if (pVM->hmr0.s.fNestedPaging)
1621 {
1622 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
1623 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1624 pVmcb->guest.u64CR3 = pCtx->cr3;
1625 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1626 }
1627 else
1628 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1629
1630 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1631}
1632
1633
1634/**
1635 * Exports the guest (or nested-guest) CR4 into the VMCB.
1636 *
1637 * @param pVCpu The cross context virtual CPU structure.
1638 * @param pVmcb Pointer to the VM control block.
1639 *
1640 * @remarks No-long-jump zone!!!
1641 */
1642static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1643{
1644 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1645
1646 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1647 uint64_t uShadowCr4 = pCtx->cr4;
1648 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1649 {
1650 switch (pVCpu->hm.s.enmShadowMode)
1651 {
1652 case PGMMODE_REAL:
1653 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1654 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1655
1656 case PGMMODE_32_BIT: /* 32-bit paging. */
1657 uShadowCr4 &= ~X86_CR4_PAE;
1658 break;
1659
1660 case PGMMODE_PAE: /* PAE paging. */
1661 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1662 /** Must use PAE paging as we could use physical memory > 4 GB */
1663 uShadowCr4 |= X86_CR4_PAE;
1664 break;
1665
1666 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1667 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1668#ifdef VBOX_WITH_64_BITS_GUESTS
1669 break;
1670#else
1671 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1672#endif
1673
1674 default: /* shut up gcc */
1675 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1676 }
1677 }
1678
1679 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1680 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1681 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
1682 {
1683 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
1684 hmR0SvmUpdateVmRunFunction(pVCpu);
1685 }
1686
1687 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1688 if (uShadowCr4 == pCtx->cr4)
1689 {
1690 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1691 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1692 else
1693 {
1694 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1695 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1696 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1697 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1698 }
1699 }
1700 else
1701 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1702
1703 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1704 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1705
1706 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1707 Assert(!RT_HI_U32(uShadowCr4));
1708 pVmcb->guest.u64CR4 = uShadowCr4;
1709 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1710
1711 return VINF_SUCCESS;
1712}
1713
1714
1715/**
1716 * Exports the guest (or nested-guest) control registers into the VMCB.
1717 *
1718 * @returns VBox status code.
1719 * @param pVCpu The cross context virtual CPU structure.
1720 * @param pVmcb Pointer to the VM control block.
1721 *
1722 * @remarks No-long-jump zone!!!
1723 */
1724static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1725{
1726 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1727
1728 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1729 {
1730 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1731 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1732
1733 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1734 {
1735 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1736 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1737 }
1738
1739 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1740 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1741
1742 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1743 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1744 {
1745 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1746 if (RT_FAILURE(rc))
1747 return rc;
1748 }
1749
1750 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1751 }
1752 return VINF_SUCCESS;
1753}
1754
1755
1756/**
1757 * Exports the guest (or nested-guest) segment registers into the VMCB.
1758 *
1759 * @returns VBox status code.
1760 * @param pVCpu The cross context virtual CPU structure.
1761 * @param pVmcb Pointer to the VM control block.
1762 *
1763 * @remarks No-long-jump zone!!!
1764 */
1765static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1766{
1767 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1768 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1769
1770 /* Guest segment registers. */
1771 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1772 {
1773 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1774 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1775
1776 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1777 {
1778 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1779 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1780 }
1781
1782 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1783 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1784
1785 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1786 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1787
1788 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1789 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1790
1791 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1792 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1793
1794 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1795 }
1796
1797 /* Guest TR. */
1798 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1799 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1800
1801 /* Guest LDTR. */
1802 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1803 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1804
1805 /* Guest GDTR. */
1806 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1807 {
1808 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1809 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1810 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1811 }
1812
1813 /* Guest IDTR. */
1814 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1815 {
1816 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1817 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1818 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1819 }
1820
1821 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1822 | HM_CHANGED_GUEST_TABLE_MASK);
1823}
1824
1825
1826/**
1827 * Exports the guest (or nested-guest) MSRs into the VMCB.
1828 *
1829 * @param pVCpu The cross context virtual CPU structure.
1830 * @param pVmcb Pointer to the VM control block.
1831 *
1832 * @remarks No-long-jump zone!!!
1833 */
1834static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1835{
1836 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1837 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1838
1839 /* Guest Sysenter MSRs. */
1840 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1841 {
1842 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1843 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1844
1845 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1846 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1847
1848 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1849 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1850 }
1851
1852 /*
1853 * Guest EFER MSR.
1854 * AMD-V requires guest EFER.SVME to be set. Weird.
1855 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1856 */
1857 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1858 {
1859 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1860 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1861 }
1862
1863 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1864 if ( !CPUMIsGuestInLongModeEx(pCtx)
1865 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1866 {
1867 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1868 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1869 }
1870
1871 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1872 {
1873 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1874 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1875 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1876 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1877 }
1878
1879 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1880 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1881
1882 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1883 | HM_CHANGED_GUEST_EFER_MSR
1884 | HM_CHANGED_GUEST_SYSCALL_MSRS
1885 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1886
1887 /*
1888 * Setup the PAT MSR (applicable for Nested Paging only).
1889 *
1890 * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
1891 * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
1892 *
1893 * While guests can modify and see the modified values through the shadow values,
1894 * we shall not honor any guest modifications of this MSR to ensure caching is always
1895 * enabled similar to how we clear CR0.CD and NW bits.
1896 *
1897 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1898 */
1899 pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
1900
1901 /* Enable the last branch record bit if LBR virtualization is enabled. */
1902 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1903 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1904}
1905
1906
1907/**
1908 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1909 * the necessary intercepts accordingly.
1910 *
1911 * @param pVCpu The cross context virtual CPU structure.
1912 * @param pVmcb Pointer to the VM control block.
1913 *
1914 * @remarks No-long-jump zone!!!
1915 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1916 */
1917static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1918{
1919 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1920
1921 /*
1922 * Anyone single stepping on the host side? If so, we'll have to use the
1923 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1924 * the VMM level like the VT-x implementations does.
1925 */
1926 bool fInterceptMovDRx = false;
1927 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1928 if (fStepping)
1929 {
1930 pVCpu->hmr0.s.fClearTrapFlag = true;
1931 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1932 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1933 }
1934
1935 if ( fStepping
1936 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1937 {
1938 /*
1939 * Use the combined guest and host DRx values found in the hypervisor
1940 * register set because the debugger has breakpoints active or someone
1941 * is single stepping on the host side.
1942 *
1943 * Note! DBGF expects a clean DR6 state before executing guest code.
1944 */
1945 if (!CPUMIsHyperDebugStateActive(pVCpu))
1946 {
1947 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1948 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1949 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1950 }
1951
1952 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1953 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1954 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1955 {
1956 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1957 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1958 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1959 }
1960
1961 /** @todo If we cared, we could optimize to allow the guest to read registers
1962 * with the same values. */
1963 fInterceptMovDRx = true;
1964 pVCpu->hmr0.s.fUsingHyperDR7 = true;
1965 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1966 }
1967 else
1968 {
1969 /*
1970 * Update DR6, DR7 with the guest values if necessary.
1971 */
1972 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1973 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1974 {
1975 pVmcb->guest.u64DR7 = pCtx->dr[7];
1976 pVmcb->guest.u64DR6 = pCtx->dr[6];
1977 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1978 }
1979 pVCpu->hmr0.s.fUsingHyperDR7 = false;
1980
1981 /*
1982 * If the guest has enabled debug registers, we need to load them prior to
1983 * executing guest code so they'll trigger at the right time.
1984 */
1985 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1986 {
1987 if (!CPUMIsGuestDebugStateActive(pVCpu))
1988 {
1989 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1990 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1991 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1992 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1993 }
1994 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
1995 }
1996 /*
1997 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1998 * intercept #DB as DR6 is updated in the VMCB.
1999 *
2000 * Note! If we cared and dared, we could skip intercepting \#DB here.
2001 * However, \#DB shouldn't be performance critical, so we'll play safe
2002 * and keep the code similar to the VT-x code and always intercept it.
2003 */
2004 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2005 fInterceptMovDRx = true;
2006 }
2007
2008 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2009 if (fInterceptMovDRx)
2010 {
2011 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2012 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2013 {
2014 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2015 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2016 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2017 }
2018 }
2019 else
2020 {
2021 if ( pVmcb->ctrl.u16InterceptRdDRx
2022 || pVmcb->ctrl.u16InterceptWrDRx)
2023 {
2024 pVmcb->ctrl.u16InterceptRdDRx = 0;
2025 pVmcb->ctrl.u16InterceptWrDRx = 0;
2026 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2027 }
2028 }
2029 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2030}
2031
2032/**
2033 * Exports the hardware virtualization state into the nested-guest
2034 * VMCB.
2035 *
2036 * @param pVCpu The cross context virtual CPU structure.
2037 * @param pVmcb Pointer to the VM control block.
2038 *
2039 * @remarks No-long-jump zone!!!
2040 */
2041static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2042{
2043 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2044
2045 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2046 {
2047 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2048 {
2049 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2050 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
2051
2052 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
2053 Assert(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
2054 Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
2055 NOREF(pVM);
2056
2057 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2058 }
2059
2060 /*
2061 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2062 * since SVM doesn't have a preemption timer.
2063 *
2064 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2065 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2066 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2067 */
2068 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2069 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2070 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2071 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2072 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
2073 {
2074 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2075 pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2076 pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2077 }
2078 else
2079 {
2080 /** @todo r=ramshankar: We can turn these assignments into assertions. */
2081 pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2082 pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2083 }
2084 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2085
2086 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2087 }
2088}
2089
2090
2091/**
2092 * Exports the guest APIC TPR state into the VMCB.
2093 *
2094 * @returns VBox status code.
2095 * @param pVCpu The cross context virtual CPU structure.
2096 * @param pVmcb Pointer to the VM control block.
2097 */
2098static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2099{
2100 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2101
2102 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2103 {
2104 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2105 if ( PDMHasApic(pVM)
2106 && APICIsEnabled(pVCpu))
2107 {
2108 bool fPendingIntr;
2109 uint8_t u8Tpr;
2110 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2111 AssertRCReturn(rc, rc);
2112
2113 /* Assume that we need to trap all TPR accesses and thus need not check on
2114 every #VMEXIT if we should update the TPR. */
2115 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2116 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2117
2118 if (!pVM->hm.s.fTprPatchingActive)
2119 {
2120 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2121 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2122
2123 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2124 can deliver the interrupt to the guest. */
2125 if (fPendingIntr)
2126 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2127 else
2128 {
2129 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2130 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2131 }
2132
2133 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2134 }
2135 else
2136 {
2137 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2138 pVmcb->guest.u64LSTAR = u8Tpr;
2139 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2140
2141 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2142 if (fPendingIntr)
2143 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2144 else
2145 {
2146 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2147 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2148 }
2149 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2150 }
2151 }
2152 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2153 }
2154 return VINF_SUCCESS;
2155}
2156
2157
2158/**
2159 * Sets up the exception interrupts required for guest execution in the VMCB.
2160 *
2161 * @param pVCpu The cross context virtual CPU structure.
2162 * @param pVmcb Pointer to the VM control block.
2163 *
2164 * @remarks No-long-jump zone!!!
2165 */
2166static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2167{
2168 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2169
2170 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2171 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
2172 {
2173 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2174 if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
2175 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2176 else
2177 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2178
2179 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2180 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2181 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2182 else
2183 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2184
2185 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2186 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
2187 }
2188}
2189
2190
2191#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2192/**
2193 * Merges guest and nested-guest intercepts for executing the nested-guest using
2194 * hardware-assisted SVM.
2195 *
2196 * This merges the guest and nested-guest intercepts in a way that if the outer
2197 * guest intercept is set we need to intercept it in the nested-guest as
2198 * well.
2199 *
2200 * @param pVCpu The cross context virtual CPU structure.
2201 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2202 */
2203static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
2204{
2205 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2206 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
2207 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2208 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2209
2210 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2211 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2212 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2213
2214 /* Always intercept CR4 writes for tracking PGM mode changes. */
2215 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2216
2217 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2218 if (!pVM->hmr0.s.fNestedPaging)
2219 {
2220 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2221 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2222 }
2223
2224 /** @todo Figure out debugging with nested-guests, till then just intercept
2225 * all DR[0-15] accesses. */
2226 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2227 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2228
2229 /*
2230 * Merge the guest's exception intercepts into the nested-guest VMCB.
2231 *
2232 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2233 * while executing the nested-guest.
2234 *
2235 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2236 * be tweaked later depending on how we wish to implement breakpoints.
2237 *
2238 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2239 * loaded into their guests, not ours.
2240 *
2241 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2242 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2243 */
2244#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2245 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2246 & ~( RT_BIT(X86_XCPT_UD)
2247 | RT_BIT(X86_XCPT_BP)
2248 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2249#else
2250 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2251#endif
2252
2253 /*
2254 * Adjust intercepts while executing the nested-guest that differ from the
2255 * outer guest intercepts.
2256 *
2257 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2258 * that belong to the nested-guest to the outer guest.
2259 *
2260 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2261 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2262 */
2263 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2264 | SVM_CTRL_INTERCEPT_VMMCALL))
2265 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2266
2267 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2268 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2269
2270 /* Finally, update the VMCB clean bits. */
2271 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2272}
2273#endif
2274
2275
2276/**
2277 * Enters the AMD-V session.
2278 *
2279 * @returns VBox status code.
2280 * @param pVCpu The cross context virtual CPU structure.
2281 */
2282VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
2283{
2284 AssertPtr(pVCpu);
2285 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2286 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2287
2288 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2289 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2290 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2291
2292 pVCpu->hmr0.s.fLeaveDone = false;
2293 return VINF_SUCCESS;
2294}
2295
2296
2297/**
2298 * Thread-context callback for AMD-V.
2299 *
2300 * @param enmEvent The thread-context event.
2301 * @param pVCpu The cross context virtual CPU structure.
2302 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2303 * @thread EMT(pVCpu)
2304 */
2305VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
2306{
2307 NOREF(fGlobalInit);
2308
2309 switch (enmEvent)
2310 {
2311 case RTTHREADCTXEVENT_OUT:
2312 {
2313 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2314 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2315 VMCPU_ASSERT_EMT(pVCpu);
2316
2317 /* No longjmps (log-flush, locks) in this fragile context. */
2318 VMMRZCallRing3Disable(pVCpu);
2319
2320 if (!pVCpu->hmr0.s.fLeaveDone)
2321 {
2322 hmR0SvmLeave(pVCpu, false /* fImportState */);
2323 pVCpu->hmr0.s.fLeaveDone = true;
2324 }
2325
2326 /* Leave HM context, takes care of local init (term). */
2327 int rc = HMR0LeaveCpu(pVCpu);
2328 AssertRC(rc); NOREF(rc);
2329
2330 /* Restore longjmp state. */
2331 VMMRZCallRing3Enable(pVCpu);
2332 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2333 break;
2334 }
2335
2336 case RTTHREADCTXEVENT_IN:
2337 {
2338 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2339 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2340 VMCPU_ASSERT_EMT(pVCpu);
2341
2342 /* No longjmps (log-flush, locks) in this fragile context. */
2343 VMMRZCallRing3Disable(pVCpu);
2344
2345 /*
2346 * Initialize the bare minimum state required for HM. This takes care of
2347 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2348 */
2349 int rc = hmR0EnterCpu(pVCpu);
2350 AssertRC(rc); NOREF(rc);
2351 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2352 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2353
2354 pVCpu->hmr0.s.fLeaveDone = false;
2355
2356 /* Restore longjmp state. */
2357 VMMRZCallRing3Enable(pVCpu);
2358 break;
2359 }
2360
2361 default:
2362 break;
2363 }
2364}
2365
2366
2367/**
2368 * Saves the host state.
2369 *
2370 * @returns VBox status code.
2371 * @param pVCpu The cross context virtual CPU structure.
2372 *
2373 * @remarks No-long-jump zone!!!
2374 */
2375VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
2376{
2377 NOREF(pVCpu);
2378
2379 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2380 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2381 return VINF_SUCCESS;
2382}
2383
2384
2385/**
2386 * Exports the guest or nested-guest state from the virtual-CPU context into the
2387 * VMCB.
2388 *
2389 * Also sets up the appropriate VMRUN function to execute guest or nested-guest
2390 * code based on the virtual-CPU mode.
2391 *
2392 * @returns VBox status code.
2393 * @param pVCpu The cross context virtual CPU structure.
2394 * @param pSvmTransient Pointer to the SVM-transient structure.
2395 *
2396 * @remarks No-long-jump zone!!!
2397 */
2398static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
2399{
2400 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2401
2402 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2403 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2404 Assert(pVmcb);
2405
2406 pVmcb->guest.u64RIP = pCtx->rip;
2407 pVmcb->guest.u64RSP = pCtx->rsp;
2408 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2409 pVmcb->guest.u64RAX = pCtx->rax;
2410
2411 bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
2412 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2413
2414 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2415 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2416 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2417 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2418 hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
2419
2420 ASMSetFlags(fEFlags);
2421
2422 if (!fIsNestedGuest)
2423 {
2424 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2425 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2426 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2427 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2428 }
2429
2430 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2431 uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
2432 | HM_CHANGED_GUEST_RFLAGS
2433 | HM_CHANGED_GUEST_GPRS_MASK
2434 | HM_CHANGED_GUEST_X87
2435 | HM_CHANGED_GUEST_SSE_AVX
2436 | HM_CHANGED_GUEST_OTHER_XSAVE
2437 | HM_CHANGED_GUEST_XCRx
2438 | HM_CHANGED_GUEST_TSC_AUX
2439 | HM_CHANGED_GUEST_OTHER_MSRS;
2440 if (fIsNestedGuest)
2441 fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
2442 | HM_CHANGED_GUEST_APIC_TPR;
2443
2444 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
2445 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2446
2447#ifdef VBOX_STRICT
2448 /*
2449 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2450 * except for the host-context and/or shared host-guest context bits.
2451 */
2452 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2453 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2454 ("fCtxChanged=%#RX64\n", fCtxChanged));
2455
2456 /*
2457 * If we need to log state that isn't always imported, we'll need to import them here.
2458 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2459 */
2460 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2461#endif
2462
2463 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2464 return VINF_SUCCESS;
2465}
2466
2467
2468#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2469/**
2470 * Merges the guest and nested-guest MSR permission bitmap.
2471 *
2472 * If the guest is intercepting an MSR we need to intercept it regardless of
2473 * whether the nested-guest is intercepting it or not.
2474 *
2475 * @param pHostCpu The HM physical-CPU structure.
2476 * @param pVCpu The cross context virtual CPU structure.
2477 *
2478 * @remarks No-long-jmp zone!!!
2479 */
2480DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2481{
2482 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2483 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2484 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2485
2486 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2487 uint32_t const offRsvdQwords = 0x1800 >> 3;
2488 for (uint32_t i = 0; i < offRsvdQwords; i++)
2489 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2490}
2491
2492
2493/**
2494 * Caches the nested-guest VMCB fields before we modify them for execution using
2495 * hardware-assisted SVM.
2496 *
2497 * @returns true if the VMCB was previously already cached, false otherwise.
2498 * @param pVCpu The cross context virtual CPU structure.
2499 *
2500 * @sa HMNotifySvmNstGstVmexit.
2501 */
2502static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
2503{
2504 /*
2505 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2506 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2507 *
2508 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2509 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2510 */
2511 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2512 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2513 if (!fWasCached)
2514 {
2515 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2516 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2517 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2518 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2519 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2520 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2521 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2522 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2523 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2524 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2525 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2526 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2527 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2528 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2529 pVmcbNstGstCache->fCacheValid = true;
2530 Log4Func(("Cached VMCB fields\n"));
2531 }
2532
2533 return fWasCached;
2534}
2535
2536
2537/**
2538 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2539 *
2540 * This is done the first time we enter nested-guest execution using SVM R0
2541 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2542 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2543 *
2544 * @param pVCpu The cross context virtual CPU structure.
2545 */
2546static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
2547{
2548 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2549 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2550
2551 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2552
2553 /*
2554 * First cache the nested-guest VMCB fields we may potentially modify.
2555 */
2556 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2557 if (!fVmcbCached)
2558 {
2559 /*
2560 * The IOPM of the nested-guest can be ignored because the the guest always
2561 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2562 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2563 */
2564 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2565
2566 /*
2567 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2568 * nested-paging suddenly while executing a VM (see assertion at the end of
2569 * Trap0eHandler() in PGMAllBth.h).
2570 */
2571 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
2572
2573 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2574 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2575
2576 /*
2577 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2578 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2579 */
2580 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2581
2582#ifdef DEBUG_ramshankar
2583 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2584 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2585#endif
2586
2587 /*
2588 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2589 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2590 */
2591 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2592 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2593 | SVM_CTRL_INTERCEPT_VMLOAD;
2594
2595 /*
2596 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2597 * CLGI/STGI instructions executed by the nested-guest.
2598 */
2599 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2600 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2601 | SVM_CTRL_INTERCEPT_STGI;
2602
2603 /* Merge the guest and nested-guest intercepts. */
2604 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2605
2606 /* Update the VMCB clean bits. */
2607 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2608 }
2609 else
2610 {
2611 Assert(!pVCpu->hmr0.s.svm.fSyncVTpr);
2612 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2613 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2614 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2615 }
2616}
2617#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2618
2619
2620/**
2621 * Exports the state shared between the host and guest (or nested-guest) into
2622 * the VMCB.
2623 *
2624 * @param pVCpu The cross context virtual CPU structure.
2625 * @param pVmcb Pointer to the VM control block.
2626 *
2627 * @remarks No-long-jump zone!!!
2628 */
2629static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2630{
2631 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2632 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2633
2634 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2635 {
2636 /** @todo Figure out stepping with nested-guest. */
2637 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2638 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2639 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2640 else
2641 {
2642 pVmcb->guest.u64DR6 = pCtx->dr[6];
2643 pVmcb->guest.u64DR7 = pCtx->dr[7];
2644 }
2645 }
2646
2647 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2648 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2649 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2650}
2651
2652
2653/**
2654 * Worker for SVMR0ImportStateOnDemand.
2655 *
2656 * @param pVCpu The cross context virtual CPU structure.
2657 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2658 */
2659static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
2660{
2661 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2662
2663 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2664 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2665 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2666 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2667
2668 /*
2669 * We disable interrupts to make the updating of the state and in particular
2670 * the fExtrn modification atomic wrt to preemption hooks.
2671 */
2672 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2673
2674 fWhat &= pCtx->fExtrn;
2675 if (fWhat)
2676 {
2677#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2678 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2679 {
2680 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2681 {
2682 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2683 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2684 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2685 }
2686 }
2687
2688 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2689 {
2690 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2691 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2692 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2693 }
2694#endif
2695
2696 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2697 {
2698 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2699 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2700 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2701 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2702 }
2703
2704 if (fWhat & CPUMCTX_EXTRN_RIP)
2705 pCtx->rip = pVmcbGuest->u64RIP;
2706
2707 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2708 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2709
2710 if (fWhat & CPUMCTX_EXTRN_RSP)
2711 pCtx->rsp = pVmcbGuest->u64RSP;
2712
2713 if (fWhat & CPUMCTX_EXTRN_RAX)
2714 pCtx->rax = pVmcbGuest->u64RAX;
2715
2716 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2717 {
2718 if (fWhat & CPUMCTX_EXTRN_CS)
2719 {
2720 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2721 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2722 /** @todo SELM might need to be fixed as it too should not care about the
2723 * granularity bit. See @bugref{6785}. */
2724 if ( !pCtx->cs.Attr.n.u1Granularity
2725 && pCtx->cs.Attr.n.u1Present
2726 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2727 {
2728 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2729 pCtx->cs.Attr.n.u1Granularity = 1;
2730 }
2731 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2732 }
2733 if (fWhat & CPUMCTX_EXTRN_SS)
2734 {
2735 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2736 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2737 /*
2738 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2739 * VMCB and uses that and thus it's possible that when the CPL changes during
2740 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2741 * AMD Fusion CPUs with 64-bit guests.
2742 *
2743 * See AMD spec. 15.5.1 "Basic operation".
2744 */
2745 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2746 uint8_t const uCpl = pVmcbGuest->u8CPL;
2747 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2748 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2749 }
2750 if (fWhat & CPUMCTX_EXTRN_DS)
2751 {
2752 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2753 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2754 }
2755 if (fWhat & CPUMCTX_EXTRN_ES)
2756 {
2757 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2758 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2759 }
2760 if (fWhat & CPUMCTX_EXTRN_FS)
2761 {
2762 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2763 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2764 }
2765 if (fWhat & CPUMCTX_EXTRN_GS)
2766 {
2767 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2768 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2769 }
2770 }
2771
2772 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2773 {
2774 if (fWhat & CPUMCTX_EXTRN_TR)
2775 {
2776 /*
2777 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2778 * are used between Intel and AMD, see @bugref{6208#c39}.
2779 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2780 */
2781 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2782 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2783 {
2784 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2785 || CPUMIsGuestInLongModeEx(pCtx))
2786 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2787 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2788 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2789 }
2790 }
2791
2792 if (fWhat & CPUMCTX_EXTRN_LDTR)
2793 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2794
2795 if (fWhat & CPUMCTX_EXTRN_GDTR)
2796 {
2797 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2798 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2799 }
2800
2801 if (fWhat & CPUMCTX_EXTRN_IDTR)
2802 {
2803 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2804 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2805 }
2806 }
2807
2808 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2809 {
2810 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2811 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2812 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2813 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2814 }
2815
2816 if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2817 && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */)
2818 {
2819 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2820 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2821 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2822 }
2823
2824 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2825 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2826
2827 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2828 {
2829 if (fWhat & CPUMCTX_EXTRN_DR6)
2830 {
2831 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2832 pCtx->dr[6] = pVmcbGuest->u64DR6;
2833 else
2834 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2835 }
2836
2837 if (fWhat & CPUMCTX_EXTRN_DR7)
2838 {
2839 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2840 pCtx->dr[7] = pVmcbGuest->u64DR7;
2841 else
2842 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2843 }
2844 }
2845
2846 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2847 {
2848 if (fWhat & CPUMCTX_EXTRN_CR0)
2849 {
2850 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2851 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2852 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2853 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2854 CPUMSetGuestCR0(pVCpu, uCr0);
2855 VMMRZCallRing3Enable(pVCpu);
2856 }
2857
2858 if (fWhat & CPUMCTX_EXTRN_CR2)
2859 pCtx->cr2 = pVmcbGuest->u64CR2;
2860
2861 if (fWhat & CPUMCTX_EXTRN_CR3)
2862 {
2863 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2864 && pCtx->cr3 != pVmcbGuest->u64CR3)
2865 {
2866 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2867 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2868 }
2869 }
2870
2871 /* Changes to CR4 are always intercepted. */
2872 }
2873
2874 /* Update fExtrn. */
2875 pCtx->fExtrn &= ~fWhat;
2876
2877 /* If everything has been imported, clear the HM keeper bit. */
2878 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2879 {
2880 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2881 Assert(!pCtx->fExtrn);
2882 }
2883 }
2884 else
2885 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
2886
2887 ASMSetFlags(fEFlags);
2888
2889 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
2890
2891 /*
2892 * Honor any pending CR3 updates.
2893 *
2894 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
2895 * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
2896 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
2897 * handling -> hmR0SvmImportGuestState() and here we are.
2898 *
2899 * The reason for such complicated handling is because VM-exits that call into PGM expect
2900 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
2901 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
2902 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
2903 *
2904 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
2905 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
2906 */
2907 if ( VMMRZCallRing3IsEnabled(pVCpu)
2908 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
2909 {
2910 Assert(pCtx->cr3 == pVmcbGuest->u64CR3);
2911 PGMUpdateCR3(pVCpu, pCtx->cr3);
2912 }
2913}
2914
2915
2916/**
2917 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
2918 * context.
2919 *
2920 * Currently there is no residual state left in the CPU that is not updated in the
2921 * VMCB.
2922 *
2923 * @returns VBox status code.
2924 * @param pVCpu The cross context virtual CPU structure.
2925 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2926 */
2927VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
2928{
2929 hmR0SvmImportGuestState(pVCpu, fWhat);
2930 return VINF_SUCCESS;
2931}
2932
2933
2934/**
2935 * Does the necessary state syncing before returning to ring-3 for any reason
2936 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2937 *
2938 * @param pVCpu The cross context virtual CPU structure.
2939 * @param fImportState Whether to import the guest state from the VMCB back
2940 * to the guest-CPU context.
2941 *
2942 * @remarks No-long-jmp zone!!!
2943 */
2944static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
2945{
2946 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2947 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2948 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2949
2950 /*
2951 * !!! IMPORTANT !!!
2952 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
2953 */
2954
2955 /* Save the guest state if necessary. */
2956 if (fImportState)
2957 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
2958
2959 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2960 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2961 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2962
2963 /*
2964 * Restore host debug registers if necessary and resync on next R0 reentry.
2965 */
2966#ifdef VBOX_STRICT
2967 if (CPUMIsHyperDebugStateActive(pVCpu))
2968 {
2969 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */
2970 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2971 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2972 }
2973#endif
2974 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2975 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2976 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2977
2978 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2979 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
2980 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
2981 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
2982 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
2983 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
2984 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2985
2986 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2987}
2988
2989
2990/**
2991 * Leaves the AMD-V session.
2992 *
2993 * Only used while returning to ring-3 either due to longjump or exits to
2994 * ring-3.
2995 *
2996 * @returns VBox status code.
2997 * @param pVCpu The cross context virtual CPU structure.
2998 */
2999static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
3000{
3001 HM_DISABLE_PREEMPT(pVCpu);
3002 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3003 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3004
3005 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3006 and done this from the SVMR0ThreadCtxCallback(). */
3007 if (!pVCpu->hmr0.s.fLeaveDone)
3008 {
3009 hmR0SvmLeave(pVCpu, true /* fImportState */);
3010 pVCpu->hmr0.s.fLeaveDone = true;
3011 }
3012
3013 /*
3014 * !!! IMPORTANT !!!
3015 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
3016 */
3017
3018 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3019 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3020 VMMR0ThreadCtxHookDisable(pVCpu);
3021
3022 /* Leave HM context. This takes care of local init (term). */
3023 int rc = HMR0LeaveCpu(pVCpu);
3024
3025 HM_RESTORE_PREEMPT();
3026 return rc;
3027}
3028
3029
3030/**
3031 * Does the necessary state syncing before doing a longjmp to ring-3.
3032 *
3033 * @returns VBox status code.
3034 * @param pVCpu The cross context virtual CPU structure.
3035 *
3036 * @remarks No-long-jmp zone!!!
3037 */
3038static int hmR0SvmLongJmpToRing3(PVMCPUCC pVCpu)
3039{
3040 return hmR0SvmLeaveSession(pVCpu);
3041}
3042
3043
3044/**
3045 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3046 * any remaining host state) before we longjump to ring-3 and possibly get
3047 * preempted.
3048 *
3049 * @param pVCpu The cross context virtual CPU structure.
3050 * @param enmOperation The operation causing the ring-3 longjump.
3051 */
3052VMMR0DECL(int) SVMR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
3053{
3054 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3055 {
3056 /*
3057 * !!! IMPORTANT !!!
3058 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3059 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3060 */
3061 VMMRZCallRing3RemoveNotification(pVCpu);
3062 VMMRZCallRing3Disable(pVCpu);
3063 HM_DISABLE_PREEMPT(pVCpu);
3064
3065 /* Import the entire guest state. */
3066 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3067
3068 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3069 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3070
3071 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3072 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3073
3074 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3075 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3076 VMMR0ThreadCtxHookDisable(pVCpu);
3077
3078 /* Leave HM context. This takes care of local init (term). */
3079 HMR0LeaveCpu(pVCpu);
3080
3081 HM_RESTORE_PREEMPT();
3082 return VINF_SUCCESS;
3083 }
3084
3085 Assert(pVCpu);
3086 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3087 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3088
3089 VMMRZCallRing3Disable(pVCpu);
3090 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3091
3092 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3093 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3094 AssertRCReturn(rc, rc);
3095
3096 VMMRZCallRing3Enable(pVCpu);
3097 return VINF_SUCCESS;
3098}
3099
3100
3101/**
3102 * Take necessary actions before going back to ring-3.
3103 *
3104 * An action requires us to go back to ring-3. This function does the necessary
3105 * steps before we can safely return to ring-3. This is not the same as longjmps
3106 * to ring-3, this is voluntary.
3107 *
3108 * @returns Strict VBox status code.
3109 * @param pVCpu The cross context virtual CPU structure.
3110 * @param rcExit The reason for exiting to ring-3. Can be
3111 * VINF_VMM_UNKNOWN_RING3_CALL.
3112 */
3113static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
3114{
3115 Assert(pVCpu);
3116 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3117
3118 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3119 VMMRZCallRing3Disable(pVCpu);
3120 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions,
3121 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3122
3123 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3124 if (pVCpu->hm.s.Event.fPending)
3125 {
3126 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3127 Assert(!pVCpu->hm.s.Event.fPending);
3128 }
3129
3130 /* Sync. the necessary state for going back to ring-3. */
3131 hmR0SvmLeaveSession(pVCpu);
3132 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3133
3134 /* Thread-context hooks are unregistered at this point!!! */
3135 /* Ring-3 callback notifications are unregistered at this point!!! */
3136
3137 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3138 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3139 | CPUM_CHANGED_LDTR
3140 | CPUM_CHANGED_GDTR
3141 | CPUM_CHANGED_IDTR
3142 | CPUM_CHANGED_TR
3143 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3144 if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
3145 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3146 {
3147 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3148 }
3149
3150 /* Update the exit-to-ring 3 reason. */
3151 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
3152
3153 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3154 if ( rcExit != VINF_EM_RAW_INTERRUPT
3155 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3156 {
3157 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3158 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3159 }
3160
3161 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3162 VMMRZCallRing3Enable(pVCpu);
3163
3164 /*
3165 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3166 * and if we're injecting an event we should have a TRPM trap pending.
3167 */
3168 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3169 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3170 VERR_SVM_IPE_5);
3171 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3172 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3173 VERR_SVM_IPE_4);
3174
3175 return rcExit;
3176}
3177
3178
3179/**
3180 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3181 * intercepts.
3182 *
3183 * @param pVCpu The cross context virtual CPU structure.
3184 * @param pVmcb Pointer to the VM control block.
3185 *
3186 * @remarks No-long-jump zone!!!
3187 */
3188static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3189{
3190 /*
3191 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3192 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3193 * RDTSC/RDTSCP as well.
3194 */
3195 bool fParavirtTsc;
3196 uint64_t uTscOffset;
3197 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3198
3199 bool fIntercept;
3200 if (fCanUseRealTsc)
3201 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3202 else
3203 {
3204 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3205 fIntercept = true;
3206 }
3207
3208 if (!fIntercept)
3209 {
3210#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3211 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3212 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3213 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
3214#endif
3215
3216 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3217 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3218 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3219 }
3220
3221 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3222 information before every VM-entry, hence we have nothing to do here at the moment. */
3223 if (fParavirtTsc)
3224 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3225}
3226
3227
3228/**
3229 * Sets an event as a pending event to be injected into the guest.
3230 *
3231 * @param pVCpu The cross context virtual CPU structure.
3232 * @param pEvent Pointer to the SVM event.
3233 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3234 * page-fault.
3235 *
3236 * @remarks Statistics counter assumes this is a guest event being reflected to
3237 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3238 */
3239DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3240{
3241 Assert(!pVCpu->hm.s.Event.fPending);
3242 Assert(pEvent->n.u1Valid);
3243
3244 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3245 pVCpu->hm.s.Event.fPending = true;
3246 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3247
3248 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3249 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3250}
3251
3252
3253/**
3254 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3255 *
3256 * @param pVCpu The cross context virtual CPU structure.
3257 */
3258DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
3259{
3260 SVMEVENT Event;
3261 Event.u = 0;
3262 Event.n.u1Valid = 1;
3263 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3264 Event.n.u8Vector = X86_XCPT_UD;
3265 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3266}
3267
3268
3269/**
3270 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3271 *
3272 * @param pVCpu The cross context virtual CPU structure.
3273 */
3274DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
3275{
3276 SVMEVENT Event;
3277 Event.u = 0;
3278 Event.n.u1Valid = 1;
3279 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3280 Event.n.u8Vector = X86_XCPT_DB;
3281 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3282}
3283
3284
3285/**
3286 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3287 *
3288 * @param pVCpu The cross context virtual CPU structure.
3289 * @param u32ErrCode The error-code for the page-fault.
3290 * @param uFaultAddress The page fault address (CR2).
3291 *
3292 * @remarks This updates the guest CR2 with @a uFaultAddress!
3293 */
3294DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3295{
3296 SVMEVENT Event;
3297 Event.u = 0;
3298 Event.n.u1Valid = 1;
3299 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3300 Event.n.u8Vector = X86_XCPT_PF;
3301 Event.n.u1ErrorCodeValid = 1;
3302 Event.n.u32ErrorCode = u32ErrCode;
3303
3304 /* Update CR2 of the guest. */
3305 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3306 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3307 {
3308 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3309 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3310 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3311 }
3312
3313 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3314}
3315
3316
3317/**
3318 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3319 *
3320 * @param pVCpu The cross context virtual CPU structure.
3321 */
3322DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
3323{
3324 SVMEVENT Event;
3325 Event.u = 0;
3326 Event.n.u1Valid = 1;
3327 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3328 Event.n.u8Vector = X86_XCPT_MF;
3329 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3330}
3331
3332
3333/**
3334 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3335 *
3336 * @param pVCpu The cross context virtual CPU structure.
3337 */
3338DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
3339{
3340 SVMEVENT Event;
3341 Event.u = 0;
3342 Event.n.u1Valid = 1;
3343 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3344 Event.n.u8Vector = X86_XCPT_DF;
3345 Event.n.u1ErrorCodeValid = 1;
3346 Event.n.u32ErrorCode = 0;
3347 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3348}
3349
3350
3351/**
3352 * Injects an event into the guest upon VMRUN by updating the relevant field
3353 * in the VMCB.
3354 *
3355 * @param pVCpu The cross context virtual CPU structure.
3356 * @param pVmcb Pointer to the guest VM control block.
3357 * @param pEvent Pointer to the event.
3358 *
3359 * @remarks No-long-jump zone!!!
3360 * @remarks Requires CR0!
3361 */
3362DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3363{
3364 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3365 pVmcb->ctrl.EventInject.u = pEvent->u;
3366 if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
3367 || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
3368 {
3369 Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
3370 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedXcptsR0[pEvent->n.u8Vector]);
3371 }
3372 else
3373 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3374 RT_NOREF(pVCpu);
3375
3376 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3377 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3378}
3379
3380
3381
3382/**
3383 * Converts any TRPM trap into a pending HM event. This is typically used when
3384 * entering from ring-3 (not longjmp returns).
3385 *
3386 * @param pVCpu The cross context virtual CPU structure.
3387 */
3388static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
3389{
3390 Assert(TRPMHasTrap(pVCpu));
3391 Assert(!pVCpu->hm.s.Event.fPending);
3392
3393 uint8_t uVector;
3394 TRPMEVENT enmTrpmEvent;
3395 uint32_t uErrCode;
3396 RTGCUINTPTR GCPtrFaultAddress;
3397 uint8_t cbInstr;
3398
3399 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
3400 AssertRC(rc);
3401
3402 SVMEVENT Event;
3403 Event.u = 0;
3404 Event.n.u1Valid = 1;
3405 Event.n.u8Vector = uVector;
3406
3407 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3408 if (enmTrpmEvent == TRPM_TRAP)
3409 {
3410 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3411 switch (uVector)
3412 {
3413 case X86_XCPT_NMI:
3414 {
3415 Event.n.u3Type = SVM_EVENT_NMI;
3416 break;
3417 }
3418
3419 case X86_XCPT_BP:
3420 case X86_XCPT_OF:
3421 AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
3422 RT_FALL_THRU();
3423
3424 case X86_XCPT_PF:
3425 case X86_XCPT_DF:
3426 case X86_XCPT_TS:
3427 case X86_XCPT_NP:
3428 case X86_XCPT_SS:
3429 case X86_XCPT_GP:
3430 case X86_XCPT_AC:
3431 {
3432 Event.n.u1ErrorCodeValid = 1;
3433 Event.n.u32ErrorCode = uErrCode;
3434 break;
3435 }
3436 }
3437 }
3438 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3439 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3440 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3441 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3442 else
3443 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3444
3445 rc = TRPMResetTrap(pVCpu);
3446 AssertRC(rc);
3447
3448 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3449 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3450
3451 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3452}
3453
3454
3455/**
3456 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3457 * AMD-V to execute any instruction.
3458 *
3459 * @param pVCpu The cross context virtual CPU structure.
3460 */
3461static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
3462{
3463 Assert(pVCpu->hm.s.Event.fPending);
3464 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3465
3466 SVMEVENT Event;
3467 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3468
3469 uint8_t uVector = Event.n.u8Vector;
3470 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
3471
3472 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
3473
3474 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3475 AssertRC(rc);
3476
3477 if (Event.n.u1ErrorCodeValid)
3478 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3479
3480 if ( enmTrapType == TRPM_TRAP
3481 && uVector == X86_XCPT_PF)
3482 {
3483 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3484 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3485 }
3486 else if (enmTrapType == TRPM_SOFTWARE_INT)
3487 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3488 pVCpu->hm.s.Event.fPending = false;
3489}
3490
3491
3492/**
3493 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3494 * now.
3495 *
3496 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3497 * @param pVCpu The cross context virtual CPU structure.
3498 *
3499 * @remarks No-long-jump zone!!!
3500 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3501 */
3502static bool hmR0SvmIsIntrShadowActive(PVMCPUCC pVCpu)
3503{
3504 /*
3505 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3506 * completes. Check if we should inhibit interrupts or clear any existing
3507 * interrupt inhibition.
3508 */
3509 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3510 {
3511 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3512 {
3513 /*
3514 * We can clear the inhibit force flag as even if we go back to the recompiler
3515 * without executing guest code in AMD-V, the flag's condition to be cleared is
3516 * met and thus the cleared state is correct.
3517 */
3518 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3519 return false;
3520 }
3521 return true;
3522 }
3523 return false;
3524}
3525
3526
3527/**
3528 * Sets the virtual interrupt intercept control in the VMCB.
3529 *
3530 * @param pVCpu The cross context virtual CPU structure.
3531 * @param pVmcb Pointer to the VM control block.
3532 */
3533static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3534{
3535 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3536
3537 /*
3538 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3539 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3540 * (updating ISR at the right time) and inject the interrupt.
3541 *
3542 * With AVIC is supported, we could make use of the asynchronously delivery without
3543 * #VMEXIT and we would be passing the AVIC page to SVM.
3544 *
3545 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3546 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3547 */
3548 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3549 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3550 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3551 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3552 Log4(("Set VINTR intercept\n"));
3553}
3554
3555
3556/**
3557 * Clears the virtual interrupt intercept control in the VMCB as
3558 * we are figured the guest is unable process any interrupts
3559 * at this point of time.
3560 *
3561 * @param pVCpu The cross context virtual CPU structure.
3562 * @param pVmcb Pointer to the VM control block.
3563 */
3564static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3565{
3566 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3567
3568 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3569 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3570 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3571 {
3572 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3573 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3574 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3575 Log4(("Cleared VINTR intercept\n"));
3576 }
3577}
3578
3579
3580/**
3581 * Evaluates the event to be delivered to the guest and sets it as the pending
3582 * event.
3583 *
3584 * @returns Strict VBox status code.
3585 * @param pVCpu The cross context virtual CPU structure.
3586 * @param pSvmTransient Pointer to the SVM transient structure.
3587 */
3588static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
3589{
3590 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3591 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3592 | CPUMCTX_EXTRN_RFLAGS
3593 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3594 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3595
3596 Assert(!pVCpu->hm.s.Event.fPending);
3597 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3598 Assert(pVmcb);
3599
3600 bool const fGif = CPUMGetGuestGif(pCtx);
3601 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3602 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3603
3604 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3605 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3606 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3607
3608 /** @todo SMI. SMIs take priority over NMIs. */
3609
3610 /*
3611 * Check if the guest or nested-guest can receive NMIs.
3612 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3613 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3614 */
3615 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3616 && !fBlockNmi)
3617 {
3618 if ( fGif
3619 && !fIntShadow)
3620 {
3621#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3622 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3623 {
3624 Log4(("Intercepting NMI -> #VMEXIT\n"));
3625 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3626 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3627 }
3628#endif
3629 Log4(("Setting NMI pending for injection\n"));
3630 SVMEVENT Event;
3631 Event.u = 0;
3632 Event.n.u1Valid = 1;
3633 Event.n.u8Vector = X86_XCPT_NMI;
3634 Event.n.u3Type = SVM_EVENT_NMI;
3635 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3636 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3637 }
3638 else if (!fGif)
3639 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3640 else if (!pSvmTransient->fIsNestedGuest)
3641 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3642 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3643 }
3644 /*
3645 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3646 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3647 * it from the APIC device.
3648 *
3649 * For nested-guests, physical interrupts always take priority over virtual interrupts.
3650 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3651 * do that work when we execute nested-guest code esp. since all the required information
3652 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3653 * the virtual interrupt controller.
3654 *
3655 * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3656 */
3657 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3658 && !pVCpu->hm.s.fSingleInstruction)
3659 {
3660 bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u32 & X86_EFL_IF)
3661 : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
3662 if ( fGif
3663 && !fBlockInt
3664 && !fIntShadow)
3665 {
3666#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3667 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3668 {
3669 Log4(("Intercepting INTR -> #VMEXIT\n"));
3670 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3671 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3672 }
3673#endif
3674 uint8_t u8Interrupt;
3675 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3676 if (RT_SUCCESS(rc))
3677 {
3678 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3679 SVMEVENT Event;
3680 Event.u = 0;
3681 Event.n.u1Valid = 1;
3682 Event.n.u8Vector = u8Interrupt;
3683 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3684 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3685 }
3686 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3687 {
3688 /*
3689 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3690 * updated eventually when the TPR is written by the guest.
3691 */
3692 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3693 }
3694 else
3695 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3696 }
3697 else if (!fGif)
3698 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3699 else if (!pSvmTransient->fIsNestedGuest)
3700 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3701 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3702 }
3703
3704 return VINF_SUCCESS;
3705}
3706
3707
3708/**
3709 * Injects any pending events into the guest (or nested-guest).
3710 *
3711 * @param pVCpu The cross context virtual CPU structure.
3712 * @param pVmcb Pointer to the VM control block.
3713 *
3714 * @remarks Must only be called when we are guaranteed to enter
3715 * hardware-assisted SVM execution and not return to ring-3
3716 * prematurely.
3717 */
3718static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3719{
3720 Assert(!TRPMHasTrap(pVCpu));
3721 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3722
3723 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3724#ifdef VBOX_STRICT
3725 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3726 bool const fGif = CPUMGetGuestGif(pCtx);
3727 bool fAllowInt = fGif;
3728 if (fGif)
3729 {
3730 /*
3731 * For nested-guests we have no way to determine if we're injecting a physical or
3732 * virtual interrupt at this point. Hence the partial verification below.
3733 */
3734 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3735 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3736 else
3737 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3738 }
3739#endif
3740
3741 if (pVCpu->hm.s.Event.fPending)
3742 {
3743 SVMEVENT Event;
3744 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3745 Assert(Event.n.u1Valid);
3746
3747 /*
3748 * Validate event injection pre-conditions.
3749 */
3750 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3751 {
3752 Assert(fAllowInt);
3753 Assert(!fIntShadow);
3754 }
3755 else if (Event.n.u3Type == SVM_EVENT_NMI)
3756 {
3757 Assert(fGif);
3758 Assert(!fIntShadow);
3759 }
3760
3761 /*
3762 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3763 * do this only when we are surely going to inject the NMI as otherwise if we return
3764 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3765 * SVM R0.
3766 *
3767 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3768 * which will set the VMCS field after actually delivering the NMI which we read on
3769 * VM-exit to determine the state.
3770 */
3771 if ( Event.n.u3Type == SVM_EVENT_NMI
3772 && Event.n.u8Vector == X86_XCPT_NMI
3773 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3774 {
3775 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3776 }
3777
3778 /*
3779 * Inject it (update VMCB for injection by the hardware).
3780 */
3781 Log4(("Injecting pending HM event\n"));
3782 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
3783 pVCpu->hm.s.Event.fPending = false;
3784
3785 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3786 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3787 else
3788 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3789 }
3790 else
3791 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
3792
3793 /*
3794 * We could have injected an NMI through IEM and continue guest execution using
3795 * hardware-assisted SVM. In which case, we would not have any events pending (above)
3796 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
3797 */
3798 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3799 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
3800
3801 /*
3802 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
3803 *
3804 * For nested-guests: We need to update it too for the scenario where IEM executes
3805 * the nested-guest but execution later continues here with an interrupt shadow active.
3806 */
3807 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
3808}
3809
3810
3811/**
3812 * Reports world-switch error and dumps some useful debug info.
3813 *
3814 * @param pVCpu The cross context virtual CPU structure.
3815 * @param rcVMRun The return code from VMRUN (or
3816 * VERR_SVM_INVALID_GUEST_STATE for invalid
3817 * guest-state).
3818 */
3819static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
3820{
3821 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3822 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
3823 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3824
3825 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3826 {
3827#ifdef VBOX_STRICT
3828 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
3829 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3830 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
3831 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3832 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3833 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3834 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3835 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3836 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3837 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3838 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3839 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3840
3841 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3842 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3843 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3844
3845 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3846 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3847 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
3848 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3849 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3850 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3851 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3852 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3853 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
3854 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
3855 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3856 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3857
3858 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
3859 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
3860 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3861 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3862 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3863 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3864 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3865 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3866 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3867 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3868 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3869 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
3870 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
3871 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
3872 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3873 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3874 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3875 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3876 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3877 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3878
3879 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3880
3881 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
3882 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
3883
3884 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3885 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3886 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3887 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3888 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3889 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3890 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3891 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3892 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3893 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3894 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3895 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3896 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3897 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3898 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3899 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3900 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3901 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3902 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3903 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3904
3905 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3906 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3907
3908 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3909 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3910 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3911 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3912
3913 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3914 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3915
3916 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3917 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3918 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3919 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3920
3921 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3922 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3923 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3924 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3925 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3926 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3927 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3928
3929 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3930 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3931 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3932 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3933
3934 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3935 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3936 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3937
3938 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3939 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3940 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3941 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3942 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3943 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3944 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
3945 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3946 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3947 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3948 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3949 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3950
3951 NOREF(pVmcb);
3952#endif /* VBOX_STRICT */
3953 }
3954 else
3955 Log4Func(("rcVMRun=%d\n", rcVMRun));
3956}
3957
3958
3959/**
3960 * Check per-VM and per-VCPU force flag actions that require us to go back to
3961 * ring-3 for one reason or another.
3962 *
3963 * @returns Strict VBox status code (information status code included).
3964 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3965 * ring-3.
3966 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3967 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3968 * interrupts)
3969 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3970 * all EMTs to be in ring-3.
3971 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3972 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3973 * to the EM loop.
3974 *
3975 * @param pVCpu The cross context virtual CPU structure.
3976 */
3977static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
3978{
3979 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3980 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
3981
3982 /* Could happen as a result of longjump. */
3983 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3984 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
3985
3986 /* Update pending interrupts into the APIC's IRR. */
3987 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3988 APICUpdatePendingInterrupts(pVCpu);
3989
3990 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3991 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
3992 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3993 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
3994 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3995 {
3996 /* Pending PGM C3 sync. */
3997 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
3998 {
3999 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4000 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4001 if (rc != VINF_SUCCESS)
4002 {
4003 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4004 return rc;
4005 }
4006 }
4007
4008 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4009 /* -XXX- what was that about single stepping? */
4010 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
4011 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4012 {
4013 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4014 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
4015 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4016 return rc;
4017 }
4018
4019 /* Pending VM request packets, such as hardware interrupts. */
4020 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
4021 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
4022 {
4023 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
4024 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4025 return VINF_EM_PENDING_REQUEST;
4026 }
4027
4028 /* Pending PGM pool flushes. */
4029 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4030 {
4031 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
4032 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4033 return VINF_PGM_POOL_FLUSH_PENDING;
4034 }
4035
4036 /* Pending DMA requests. */
4037 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4038 {
4039 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
4040 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4041 return VINF_EM_RAW_TO_R3;
4042 }
4043 }
4044
4045 return VINF_SUCCESS;
4046}
4047
4048
4049/**
4050 * Does the preparations before executing guest code in AMD-V.
4051 *
4052 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4053 * recompiler. We must be cautious what we do here regarding committing
4054 * guest-state information into the VMCB assuming we assuredly execute the guest
4055 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4056 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4057 * that the recompiler can (and should) use them when it resumes guest
4058 * execution. Otherwise such operations must be done when we can no longer
4059 * exit to ring-3.
4060 *
4061 * @returns Strict VBox status code (informational status codes included).
4062 * @retval VINF_SUCCESS if we can proceed with running the guest.
4063 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4064 *
4065 * @param pVCpu The cross context virtual CPU structure.
4066 * @param pSvmTransient Pointer to the SVM transient structure.
4067 */
4068static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4069{
4070 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4071
4072#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4073 if (pSvmTransient->fIsNestedGuest)
4074 {
4075 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4076 return VINF_EM_RESCHEDULE_REM;
4077 }
4078#endif
4079
4080 /* Check force flag actions that might require us to go back to ring-3. */
4081 VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu);
4082 if (rc != VINF_SUCCESS)
4083 return rc;
4084
4085 if (TRPMHasTrap(pVCpu))
4086 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4087 else if (!pVCpu->hm.s.Event.fPending)
4088 {
4089 rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
4090 if ( rc != VINF_SUCCESS
4091 || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4092 {
4093 /* If a nested-guest VM-exit occurred, bail. */
4094 if (pSvmTransient->fIsNestedGuest)
4095 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4096 return rc;
4097 }
4098 }
4099
4100 /*
4101 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4102 * Just do it in software, see @bugref{8411}.
4103 * NB: If we could continue a task switch exit we wouldn't need to do this.
4104 */
4105 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4106 if (RT_UNLIKELY( !g_fHmSvmFeatures
4107 && pVCpu->hm.s.Event.fPending
4108 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4109 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4110
4111#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4112 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4113 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4114#endif
4115
4116#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4117 /*
4118 * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
4119 */
4120 if (pSvmTransient->fIsNestedGuest)
4121 hmR0SvmSetupVmcbNested(pVCpu);
4122#endif
4123
4124 /*
4125 * Export the guest state bits that are not shared with the host in any way as we can
4126 * longjmp or get preempted in the midst of exporting some of the state.
4127 */
4128 rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
4129 AssertRCReturn(rc, rc);
4130 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4131
4132 /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
4133 Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4134
4135 /*
4136 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4137 * world-switch so we can update it on the way back if the guest changed the TPR.
4138 */
4139 if (pVCpu->hmr0.s.svm.fSyncVTpr)
4140 {
4141 Assert(!pSvmTransient->fIsNestedGuest);
4142 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4143 if (pVM->hm.s.fTprPatchingActive)
4144 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4145 else
4146 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4147 }
4148
4149 /*
4150 * No longjmps to ring-3 from this point on!!!
4151 *
4152 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4153 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4154 */
4155 VMMRZCallRing3Disable(pVCpu);
4156
4157 /*
4158 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4159 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4160 * preemption disabled for a while. Since this is purly to aid the
4161 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4162 * disable interrupt on NT.
4163 *
4164 * We need to check for force-flags that could've possible been altered since we last
4165 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4166 * see @bugref{6398}).
4167 *
4168 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4169 * to ring-3 before executing guest code.
4170 */
4171 pSvmTransient->fEFlags = ASMIntDisableFlags();
4172 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4173 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4174 {
4175 ASMSetFlags(pSvmTransient->fEFlags);
4176 VMMRZCallRing3Enable(pVCpu);
4177 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4178 return VINF_EM_RAW_TO_R3;
4179 }
4180 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4181 {
4182 ASMSetFlags(pSvmTransient->fEFlags);
4183 VMMRZCallRing3Enable(pVCpu);
4184 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4185 return VINF_EM_RAW_INTERRUPT;
4186 }
4187
4188 return VINF_SUCCESS;
4189}
4190
4191
4192/**
4193 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4194 * doing so.
4195 *
4196 * This means there is no backing out to ring-3 or anywhere else at this point.
4197 *
4198 * @param pVCpu The cross context virtual CPU structure.
4199 * @param pSvmTransient Pointer to the SVM transient structure.
4200 *
4201 * @remarks Called with preemption disabled.
4202 * @remarks No-long-jump zone!!!
4203 */
4204static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4205{
4206 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4207 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4208 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4209
4210 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4211 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4212
4213 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4214 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4215
4216 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4217
4218 if (!CPUMIsGuestFPUStateActive(pVCpu))
4219 {
4220 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4221 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4222 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4223 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4224 }
4225
4226 /* Load the state shared between host and guest (FPU, debug). */
4227 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4228 hmR0SvmExportSharedState(pVCpu, pVmcb);
4229
4230 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4231 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4232
4233 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4234 RTCPUID const idHostCpu = pHostCpu->idCpu;
4235 bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu;
4236
4237 /* Setup TSC offsetting. */
4238 if ( pSvmTransient->fUpdateTscOffsetting
4239 || fMigratedHostCpu)
4240 {
4241 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4242 pSvmTransient->fUpdateTscOffsetting = false;
4243 }
4244
4245 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
4246 if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
4247 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4248 else
4249 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4250
4251 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4252 if (fMigratedHostCpu)
4253 pVmcb->ctrl.u32VmcbCleanBits = 0;
4254
4255 /* Store status of the shared guest-host state at the time of VMRUN. */
4256 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4257 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4258
4259#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4260 uint8_t *pbMsrBitmap;
4261 if (!pSvmTransient->fIsNestedGuest)
4262 pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
4263 else
4264 {
4265 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4266
4267 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4268 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4269 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4270 }
4271#else
4272 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4273#endif
4274
4275 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4276 /* Flush the appropriate tagged-TLB entries. */
4277 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4278 Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu);
4279
4280 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4281
4282 TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
4283 to start executing. */
4284
4285 /*
4286 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4287 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4288 *
4289 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4290 */
4291 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4292 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4293 {
4294 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4295 pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4296 if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux)
4297 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4298 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4299 pSvmTransient->fRestoreTscAuxMsr = true;
4300 }
4301 else
4302 {
4303 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4304 pSvmTransient->fRestoreTscAuxMsr = false;
4305 }
4306 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4307
4308 /*
4309 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4310 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4311 * from the VMCB.
4312 */
4313 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
4314 if (!fSupportsVmcbCleanBits)
4315 pVmcb->ctrl.u32VmcbCleanBits = 0;
4316}
4317
4318
4319/**
4320 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4321 *
4322 * @returns VBox strict status code.
4323 * @param pVCpu The cross context virtual CPU structure.
4324 * @param HCPhysVmcb The host physical address of the VMCB.
4325 *
4326 * @remarks No-long-jump zone!!!
4327 */
4328DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
4329{
4330 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4331 pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4332 return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb);
4333}
4334
4335
4336/**
4337 * Performs some essential restoration of state after running guest (or
4338 * nested-guest) code in AMD-V.
4339 *
4340 * @param pVCpu The cross context virtual CPU structure.
4341 * @param pSvmTransient Pointer to the SVM transient structure.
4342 * @param rcVMRun Return code of VMRUN.
4343 *
4344 * @remarks Called with interrupts disabled.
4345 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4346 * unconditionally when it is safe to do so.
4347 */
4348static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun)
4349{
4350 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4351
4352 uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
4353 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4354 ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4355
4356 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4357 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4358
4359 /* TSC read must be done early for maximum accuracy. */
4360 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4361 {
4362 if (!pSvmTransient->fIsNestedGuest)
4363 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4364#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4365 else
4366 {
4367 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4368 uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
4369 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4370 }
4371#endif
4372 }
4373
4374 if (pSvmTransient->fRestoreTscAuxMsr)
4375 {
4376 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4377 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4378 if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux)
4379 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux);
4380 }
4381
4382 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4383 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4384 TMNotifyEndOfExecution(pVM, pVCpu); /* Notify TM that the guest is no longer running. */
4385 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4386
4387 Assert(!(ASMGetFlags() & X86_EFL_IF));
4388 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4389 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4390
4391 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4392 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4393 {
4394 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun)));
4395 return;
4396 }
4397
4398 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4399 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4400 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4401 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4402
4403#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4404 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4405 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4406#else
4407 /*
4408 * Always import the following:
4409 *
4410 * - RIP for exit optimizations and evaluating event injection on re-entry.
4411 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4412 * state on preemption.
4413 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4414 * - CS for exit optimizations.
4415 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4416 * assembly switcher code.
4417 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4418 */
4419 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4420 | CPUMCTX_EXTRN_RFLAGS
4421 | CPUMCTX_EXTRN_RAX
4422 | CPUMCTX_EXTRN_RSP
4423 | CPUMCTX_EXTRN_CS
4424 | CPUMCTX_EXTRN_HWVIRT
4425 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4426 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4427 | HMSVM_CPUMCTX_SHARED_STATE);
4428#endif
4429
4430 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4431 && pVCpu->hmr0.s.svm.fSyncVTpr)
4432 {
4433 Assert(!pSvmTransient->fIsNestedGuest);
4434 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4435 if ( pVM->hm.s.fTprPatchingActive
4436 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4437 {
4438 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4439 AssertRC(rc);
4440 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4441 }
4442 /* Sync TPR when we aren't intercepting CR8 writes. */
4443 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4444 {
4445 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4446 AssertRC(rc);
4447 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4448 }
4449 }
4450
4451#ifdef DEBUG_ramshankar
4452 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4453 {
4454 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4455 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4456 0 /* uVerbose */);
4457 }
4458#endif
4459
4460 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4461 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4462 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
4463}
4464
4465
4466/**
4467 * Runs the guest code using AMD-V.
4468 *
4469 * @returns Strict VBox status code.
4470 * @param pVCpu The cross context virtual CPU structure.
4471 * @param pcLoops Pointer to the number of executed loops.
4472 */
4473static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
4474{
4475 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4476 Assert(pcLoops);
4477 Assert(*pcLoops <= cMaxResumeLoops);
4478
4479 SVMTRANSIENT SvmTransient;
4480 RT_ZERO(SvmTransient);
4481 SvmTransient.fUpdateTscOffsetting = true;
4482 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4483
4484 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4485 for (;;)
4486 {
4487 Assert(!HMR0SuspendPending());
4488 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4489
4490 /* Preparatory work for running nested-guest code, this may force us to return to
4491 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4492 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4493 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4494 if (rc != VINF_SUCCESS)
4495 break;
4496
4497 /*
4498 * No longjmps to ring-3 from this point on!!!
4499 *
4500 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4501 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4502 */
4503 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4504 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4505
4506 /* Restore any residual host-state and save any bits shared between host and guest
4507 into the guest-CPU state. Re-enables interrupts! */
4508 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4509
4510 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4511 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4512 {
4513 if (rc == VINF_SUCCESS)
4514 rc = VERR_SVM_INVALID_GUEST_STATE;
4515 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4516 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4517 break;
4518 }
4519
4520 /* Handle the #VMEXIT. */
4521 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4522 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4523 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4524 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4525 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4526 if (rc != VINF_SUCCESS)
4527 break;
4528 if (++(*pcLoops) >= cMaxResumeLoops)
4529 {
4530 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4531 rc = VINF_EM_RAW_INTERRUPT;
4532 break;
4533 }
4534 }
4535
4536 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4537 return rc;
4538}
4539
4540
4541/**
4542 * Runs the guest code using AMD-V in single step mode.
4543 *
4544 * @returns Strict VBox status code.
4545 * @param pVCpu The cross context virtual CPU structure.
4546 * @param pcLoops Pointer to the number of executed loops.
4547 */
4548static VBOXSTRICTRC hmR0SvmRunGuestCodeStep(PVMCPUCC pVCpu, uint32_t *pcLoops)
4549{
4550 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4551 Assert(pcLoops);
4552 Assert(*pcLoops <= cMaxResumeLoops);
4553
4554 SVMTRANSIENT SvmTransient;
4555 RT_ZERO(SvmTransient);
4556 SvmTransient.fUpdateTscOffsetting = true;
4557 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4558
4559 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4560 uint16_t uCsStart = pCtx->cs.Sel;
4561 uint64_t uRipStart = pCtx->rip;
4562
4563 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4564 for (;;)
4565 {
4566 Assert(!HMR0SuspendPending());
4567 AssertMsg(pVCpu->hmr0.s.idEnteredCpu == RTMpCpuId(),
4568 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hmr0.s.idEnteredCpu,
4569 (unsigned)RTMpCpuId(), *pcLoops));
4570
4571 /* Preparatory work for running nested-guest code, this may force us to return to
4572 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4573 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4574 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4575 if (rc != VINF_SUCCESS)
4576 break;
4577
4578 /*
4579 * No longjmps to ring-3 from this point on!!!
4580 *
4581 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4582 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4583 */
4584 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4585
4586 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4587
4588 /* Restore any residual host-state and save any bits shared between host and guest
4589 into the guest-CPU state. Re-enables interrupts! */
4590 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4591
4592 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4593 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4594 {
4595 if (rc == VINF_SUCCESS)
4596 rc = VERR_SVM_INVALID_GUEST_STATE;
4597 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4598 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4599 return rc;
4600 }
4601
4602 /* Handle the #VMEXIT. */
4603 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4604 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4605 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4606 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4607 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4608 if (rc != VINF_SUCCESS)
4609 break;
4610 if (++(*pcLoops) >= cMaxResumeLoops)
4611 {
4612 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4613 rc = VINF_EM_RAW_INTERRUPT;
4614 break;
4615 }
4616
4617 /*
4618 * Did the RIP change, if so, consider it a single step.
4619 * Otherwise, make sure one of the TFs gets set.
4620 */
4621 if ( pCtx->rip != uRipStart
4622 || pCtx->cs.Sel != uCsStart)
4623 {
4624 rc = VINF_EM_DBG_STEPPED;
4625 break;
4626 }
4627 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4628 }
4629
4630 /*
4631 * Clear the X86_EFL_TF if necessary.
4632 */
4633 if (pVCpu->hmr0.s.fClearTrapFlag)
4634 {
4635 pVCpu->hmr0.s.fClearTrapFlag = false;
4636 pCtx->eflags.Bits.u1TF = 0;
4637 }
4638
4639 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4640 return rc;
4641}
4642
4643#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4644/**
4645 * Runs the nested-guest code using AMD-V.
4646 *
4647 * @returns Strict VBox status code.
4648 * @param pVCpu The cross context virtual CPU structure.
4649 * @param pcLoops Pointer to the number of executed loops. If we're switching
4650 * from the guest-code execution loop to this nested-guest
4651 * execution loop pass the remainder value, else pass 0.
4652 */
4653static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
4654{
4655 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4656 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4657 Assert(pcLoops);
4658 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops);
4659
4660 SVMTRANSIENT SvmTransient;
4661 RT_ZERO(SvmTransient);
4662 SvmTransient.fUpdateTscOffsetting = true;
4663 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4664 SvmTransient.fIsNestedGuest = true;
4665
4666 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4;
4667 for (;;)
4668 {
4669 Assert(!HMR0SuspendPending());
4670 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4671
4672 /* Preparatory work for running nested-guest code, this may force us to return to
4673 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4674 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4675 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4676 if ( rc != VINF_SUCCESS
4677 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4678 break;
4679
4680 /*
4681 * No longjmps to ring-3 from this point on!!!
4682 *
4683 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4684 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4685 */
4686 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4687
4688 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
4689
4690 /* Restore any residual host-state and save any bits shared between host and guest
4691 into the guest-CPU state. Re-enables interrupts! */
4692 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4693
4694 if (RT_LIKELY( rc == VINF_SUCCESS
4695 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
4696 { /* extremely likely */ }
4697 else
4698 {
4699 /* VMRUN failed, shouldn't really happen, Guru. */
4700 if (rc != VINF_SUCCESS)
4701 break;
4702
4703 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
4704 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4705 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
4706 rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0);
4707 break;
4708 }
4709
4710 /* Handle the #VMEXIT. */
4711 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4712 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4713 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
4714 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
4715 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4716 if (rc == VINF_SUCCESS)
4717 {
4718 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4719 {
4720 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4721 rc = VINF_SVM_VMEXIT;
4722 }
4723 else
4724 {
4725 if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops)
4726 continue;
4727 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4728 rc = VINF_EM_RAW_INTERRUPT;
4729 }
4730 }
4731 else
4732 Assert(rc != VINF_SVM_VMEXIT);
4733 break;
4734 /** @todo NSTSVM: handle single-stepping. */
4735 }
4736
4737 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4738 return rc;
4739}
4740#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
4741
4742
4743/**
4744 * Runs the guest code using AMD-V.
4745 *
4746 * @returns Strict VBox status code.
4747 * @param pVCpu The cross context virtual CPU structure.
4748 */
4749VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
4750{
4751 AssertPtr(pVCpu);
4752 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4753 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4754 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4755 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4756
4757 uint32_t cLoops = 0;
4758 VBOXSTRICTRC rc;
4759 for (;;)
4760 {
4761#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4762 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
4763#else
4764 NOREF(pCtx);
4765 bool const fInNestedGuestMode = false;
4766#endif
4767 if (!fInNestedGuestMode)
4768 {
4769 if (!pVCpu->hm.s.fSingleInstruction)
4770 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
4771 else
4772 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
4773 }
4774#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4775 else
4776 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
4777
4778 if (rc == VINF_SVM_VMRUN)
4779 {
4780 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4781 continue;
4782 }
4783 if (rc == VINF_SVM_VMEXIT)
4784 {
4785 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4786 continue;
4787 }
4788#endif
4789 break;
4790 }
4791
4792 /* Fixup error codes. */
4793 if (rc == VERR_EM_INTERPRETER)
4794 rc = VINF_EM_RAW_EMULATE_INSTR;
4795 else if (rc == VINF_EM_RESET)
4796 rc = VINF_EM_TRIPLE_FAULT;
4797
4798 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4799 rc = hmR0SvmExitToRing3(pVCpu, rc);
4800 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4801 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
4802 return rc;
4803}
4804
4805
4806#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4807/**
4808 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
4809 *
4810 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4811 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4812 */
4813static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4814{
4815 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4816 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4817 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4818 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4819 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
4820 const bool fRep = pIoExitInfo->n.u1Rep;
4821 const bool fStrIo = pIoExitInfo->n.u1Str;
4822
4823 return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4824 NULL /* pIoExitInfo */);
4825}
4826
4827
4828/**
4829 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4830 * SVM_EXIT_INVALID).
4831 *
4832 * @returns VBox status code (informational status codes included).
4833 * @param pVCpu The cross context virtual CPU structure.
4834 * @param pSvmTransient Pointer to the SVM transient structure.
4835 */
4836static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4837{
4838 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4839 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4840 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4841
4842 /*
4843 * We import the complete state here because we use separate VMCBs for the guest and the
4844 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
4845 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
4846 */
4847#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4848 do { \
4849 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
4850 return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \
4851 } while (0)
4852
4853 /*
4854 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
4855 * nested-guest. If it isn't, it should be handled by the (outer) guest.
4856 */
4857 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
4858 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4859 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4860 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4861 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4862 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4863
4864 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4865 switch (uExitCode)
4866 {
4867 case SVM_EXIT_CPUID:
4868 {
4869 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
4870 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4871 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
4872 }
4873
4874 case SVM_EXIT_RDTSC:
4875 {
4876 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
4877 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4878 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
4879 }
4880
4881 case SVM_EXIT_RDTSCP:
4882 {
4883 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
4884 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4885 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
4886 }
4887
4888 case SVM_EXIT_MONITOR:
4889 {
4890 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
4891 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4892 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
4893 }
4894
4895 case SVM_EXIT_MWAIT:
4896 {
4897 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
4898 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4899 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
4900 }
4901
4902 case SVM_EXIT_HLT:
4903 {
4904 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
4905 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4906 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
4907 }
4908
4909 case SVM_EXIT_MSR:
4910 {
4911 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
4912 {
4913 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
4914 uint16_t offMsrpm;
4915 uint8_t uMsrpmBit;
4916 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4917 if (RT_SUCCESS(rc))
4918 {
4919 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
4920 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
4921
4922 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4923 pbMsrBitmap += offMsrpm;
4924 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
4925 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
4926
4927 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4928 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4929 {
4930 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4931 }
4932 }
4933 else
4934 {
4935 /*
4936 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4937 * See AMD-V spec. "15.11 MSR Intercepts".
4938 */
4939 Assert(rc == VERR_OUT_OF_RANGE);
4940 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4941 }
4942 }
4943 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
4944 }
4945
4946 case SVM_EXIT_IOIO:
4947 {
4948 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
4949 {
4950 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
4951 SVMIOIOEXITINFO IoExitInfo;
4952 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4953 bool const fIntercept = hmR0SvmIsIoInterceptSet(pvIoBitmap, &IoExitInfo);
4954 if (fIntercept)
4955 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4956 }
4957 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
4958 }
4959
4960 case SVM_EXIT_XCPT_PF:
4961 {
4962 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4963 if (pVM->hmr0.s.fNestedPaging)
4964 {
4965 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4966 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4967
4968 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4969 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
4970 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4971
4972 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
4973 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
4974 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
4975 return VINF_SUCCESS;
4976 }
4977 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
4978 }
4979
4980 case SVM_EXIT_XCPT_UD:
4981 {
4982 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
4983 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4984 hmR0SvmSetPendingXcptUD(pVCpu);
4985 return VINF_SUCCESS;
4986 }
4987
4988 case SVM_EXIT_XCPT_MF:
4989 {
4990 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
4991 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4992 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
4993 }
4994
4995 case SVM_EXIT_XCPT_DB:
4996 {
4997 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
4998 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4999 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5000 }
5001
5002 case SVM_EXIT_XCPT_AC:
5003 {
5004 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
5005 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5006 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5007 }
5008
5009 case SVM_EXIT_XCPT_BP:
5010 {
5011 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
5012 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5013 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5014 }
5015
5016 case SVM_EXIT_READ_CR0:
5017 case SVM_EXIT_READ_CR3:
5018 case SVM_EXIT_READ_CR4:
5019 {
5020 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5021 if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
5022 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5023 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5024 }
5025
5026 case SVM_EXIT_CR0_SEL_WRITE:
5027 {
5028 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5029 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5030 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5031 }
5032
5033 case SVM_EXIT_WRITE_CR0:
5034 case SVM_EXIT_WRITE_CR3:
5035 case SVM_EXIT_WRITE_CR4:
5036 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5037 {
5038 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5039 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5040
5041 if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
5042 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5043 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5044 }
5045
5046 case SVM_EXIT_PAUSE:
5047 {
5048 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
5049 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5050 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5051 }
5052
5053 case SVM_EXIT_VINTR:
5054 {
5055 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
5056 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5057 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5058 }
5059
5060 case SVM_EXIT_INTR:
5061 case SVM_EXIT_NMI:
5062 case SVM_EXIT_SMI:
5063 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5064 {
5065 /*
5066 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5067 *
5068 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5069 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5070 * nested-guest #VMEXIT.
5071 *
5072 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5073 * while trying to inject interrupts, see comment at the top of this function.
5074 */
5075 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5076 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5077 }
5078
5079 case SVM_EXIT_FERR_FREEZE:
5080 {
5081 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5082 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5083 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5084 }
5085
5086 case SVM_EXIT_INVLPG:
5087 {
5088 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5089 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5090 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5091 }
5092
5093 case SVM_EXIT_WBINVD:
5094 {
5095 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5096 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5097 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5098 }
5099
5100 case SVM_EXIT_INVD:
5101 {
5102 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5103 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5104 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5105 }
5106
5107 case SVM_EXIT_RDPMC:
5108 {
5109 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5110 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5111 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5112 }
5113
5114 default:
5115 {
5116 switch (uExitCode)
5117 {
5118 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5119 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5120 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5121 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5122 {
5123 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5124 if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5125 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5126 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5127 }
5128
5129 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5130 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5131 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5132 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5133 {
5134 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5135 if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5136 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5137 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5138 }
5139
5140 case SVM_EXIT_XCPT_DE:
5141 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5142 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5143 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5144 case SVM_EXIT_XCPT_OF:
5145 case SVM_EXIT_XCPT_BR:
5146 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5147 case SVM_EXIT_XCPT_NM:
5148 case SVM_EXIT_XCPT_DF:
5149 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5150 case SVM_EXIT_XCPT_TS:
5151 case SVM_EXIT_XCPT_NP:
5152 case SVM_EXIT_XCPT_SS:
5153 case SVM_EXIT_XCPT_GP:
5154 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5155 case SVM_EXIT_XCPT_15: /* Reserved. */
5156 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5157 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5158 case SVM_EXIT_XCPT_MC:
5159 case SVM_EXIT_XCPT_XF:
5160 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5161 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5162 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5163 {
5164 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5165 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5166 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5167 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5168 }
5169
5170 case SVM_EXIT_XSETBV:
5171 {
5172 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5173 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5174 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5175 }
5176
5177 case SVM_EXIT_TASK_SWITCH:
5178 {
5179 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5180 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5181 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5182 }
5183
5184 case SVM_EXIT_IRET:
5185 {
5186 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5187 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5188 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5189 }
5190
5191 case SVM_EXIT_SHUTDOWN:
5192 {
5193 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5194 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5195 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5196 }
5197
5198 case SVM_EXIT_VMMCALL:
5199 {
5200 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5201 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5202 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5203 }
5204
5205 case SVM_EXIT_CLGI:
5206 {
5207 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5208 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5209 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5210 }
5211
5212 case SVM_EXIT_STGI:
5213 {
5214 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5215 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5216 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5217 }
5218
5219 case SVM_EXIT_VMLOAD:
5220 {
5221 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5222 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5223 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5224 }
5225
5226 case SVM_EXIT_VMSAVE:
5227 {
5228 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5229 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5230 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5231 }
5232
5233 case SVM_EXIT_INVLPGA:
5234 {
5235 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5236 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5237 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5238 }
5239
5240 case SVM_EXIT_VMRUN:
5241 {
5242 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5243 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5244 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5245 }
5246
5247 case SVM_EXIT_RSM:
5248 {
5249 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5250 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5251 hmR0SvmSetPendingXcptUD(pVCpu);
5252 return VINF_SUCCESS;
5253 }
5254
5255 case SVM_EXIT_SKINIT:
5256 {
5257 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5258 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5259 hmR0SvmSetPendingXcptUD(pVCpu);
5260 return VINF_SUCCESS;
5261 }
5262
5263 case SVM_EXIT_NPF:
5264 {
5265 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5266 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5267 }
5268
5269 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5270 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5271
5272 default:
5273 {
5274 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5275 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5276 return VERR_SVM_UNKNOWN_EXIT;
5277 }
5278 }
5279 }
5280 }
5281 /* not reached */
5282
5283#undef NST_GST_VMEXIT_CALL_RET
5284}
5285#endif
5286
5287
5288/**
5289 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5290 *
5291 * @returns Strict VBox status code (informational status codes included).
5292 * @param pVCpu The cross context virtual CPU structure.
5293 * @param pSvmTransient Pointer to the SVM transient structure.
5294 */
5295static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5296{
5297 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5298 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5299
5300#ifdef DEBUG_ramshankar
5301# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5302 do { \
5303 if ((a_fDbg) == 1) \
5304 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5305 int rc = a_CallExpr; \
5306 if ((a_fDbg) == 1) \
5307 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5308 return rc; \
5309 } while (0)
5310#else
5311# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5312#endif
5313
5314 /*
5315 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5316 * for most guests under normal workloads (for some definition of "normal").
5317 */
5318 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5319 switch (uExitCode)
5320 {
5321 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5322 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5323 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5324 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5325 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5326 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5327 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5328 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5329 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5330 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5331
5332 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5333 case SVM_EXIT_INTR:
5334 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5335
5336 case SVM_EXIT_READ_CR0:
5337 case SVM_EXIT_READ_CR3:
5338 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5339
5340 case SVM_EXIT_CR0_SEL_WRITE:
5341 case SVM_EXIT_WRITE_CR0:
5342 case SVM_EXIT_WRITE_CR3:
5343 case SVM_EXIT_WRITE_CR4:
5344 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5345
5346 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5347 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5348 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5349 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5350 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5351 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5352 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5353 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5354 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5355 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5356 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5357 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5358 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5359 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5360 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5361 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5362
5363 default:
5364 {
5365 switch (pSvmTransient->u64ExitCode)
5366 {
5367 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5368 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5369 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5370 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5371 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5372
5373 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5374 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5375 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5376 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5377 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5378
5379 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5380 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5381
5382 case SVM_EXIT_SMI:
5383 case SVM_EXIT_INIT:
5384 {
5385 /*
5386 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5387 * If it ever does, we want to know about it so log the exit code and bail.
5388 */
5389 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5390 }
5391
5392#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5393 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5394 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5395 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5396 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5397 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5398 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5399#else
5400 case SVM_EXIT_CLGI:
5401 case SVM_EXIT_STGI:
5402 case SVM_EXIT_VMLOAD:
5403 case SVM_EXIT_VMSAVE:
5404 case SVM_EXIT_INVLPGA:
5405 case SVM_EXIT_VMRUN:
5406#endif
5407 case SVM_EXIT_RSM:
5408 case SVM_EXIT_SKINIT:
5409 {
5410 hmR0SvmSetPendingXcptUD(pVCpu);
5411 return VINF_SUCCESS;
5412 }
5413
5414#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5415 case SVM_EXIT_XCPT_DE:
5416 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5417 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5418 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5419 case SVM_EXIT_XCPT_OF:
5420 case SVM_EXIT_XCPT_BR:
5421 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5422 case SVM_EXIT_XCPT_NM:
5423 case SVM_EXIT_XCPT_DF:
5424 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5425 case SVM_EXIT_XCPT_TS:
5426 case SVM_EXIT_XCPT_NP:
5427 case SVM_EXIT_XCPT_SS:
5428 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5429 /* SVM_EXIT_XCPT_PF: */
5430 case SVM_EXIT_XCPT_15: /* Reserved. */
5431 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5432 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5433 case SVM_EXIT_XCPT_MC:
5434 case SVM_EXIT_XCPT_XF:
5435 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5436 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5437 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5438 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5439#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5440
5441 default:
5442 {
5443 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5444 pVCpu->hm.s.u32HMError = uExitCode;
5445 return VERR_SVM_UNKNOWN_EXIT;
5446 }
5447 }
5448 }
5449 }
5450 /* not reached */
5451#undef VMEXIT_CALL_RET
5452}
5453
5454
5455#ifdef VBOX_STRICT
5456/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5457# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5458 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5459
5460# define HMSVM_ASSERT_PREEMPT_CPUID() \
5461 do \
5462 { \
5463 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5464 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5465 } while (0)
5466
5467# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5468 do { \
5469 AssertPtr((a_pVCpu)); \
5470 AssertPtr((a_pSvmTransient)); \
5471 Assert(ASMIntAreEnabled()); \
5472 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5473 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5474 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5475 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5476 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5477 HMSVM_ASSERT_PREEMPT_CPUID(); \
5478 } while (0)
5479#else
5480# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5481 do { \
5482 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5483 } while (0)
5484#endif
5485
5486
5487/**
5488 * Gets the IEM exception flags for the specified SVM event.
5489 *
5490 * @returns The IEM exception flags.
5491 * @param pEvent Pointer to the SVM event.
5492 *
5493 * @remarks This function currently only constructs flags required for
5494 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5495 * and CR2 aspects of an exception are not included).
5496 */
5497static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5498{
5499 uint8_t const uEventType = pEvent->n.u3Type;
5500 uint32_t fIemXcptFlags;
5501 switch (uEventType)
5502 {
5503 case SVM_EVENT_EXCEPTION:
5504 /*
5505 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5506 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5507 */
5508 if (pEvent->n.u8Vector == X86_XCPT_BP)
5509 {
5510 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5511 break;
5512 }
5513 if (pEvent->n.u8Vector == X86_XCPT_OF)
5514 {
5515 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5516 break;
5517 }
5518 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5519 RT_FALL_THRU();
5520 case SVM_EVENT_NMI:
5521 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5522 break;
5523
5524 case SVM_EVENT_EXTERNAL_IRQ:
5525 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5526 break;
5527
5528 case SVM_EVENT_SOFTWARE_INT:
5529 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5530 break;
5531
5532 default:
5533 fIemXcptFlags = 0;
5534 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5535 break;
5536 }
5537 return fIemXcptFlags;
5538}
5539
5540
5541/**
5542 * Handle a condition that occurred while delivering an event through the guest
5543 * IDT.
5544 *
5545 * @returns VBox status code (informational error codes included).
5546 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5547 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5548 * continue execution of the guest which will delivery the \#DF.
5549 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5550 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5551 *
5552 * @param pVCpu The cross context virtual CPU structure.
5553 * @param pSvmTransient Pointer to the SVM transient structure.
5554 *
5555 * @remarks No-long-jump zone!!!
5556 */
5557static int hmR0SvmCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5558{
5559 int rc = VINF_SUCCESS;
5560 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5561 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5562
5563 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5564 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5565 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5566
5567 /*
5568 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5569 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5570 *
5571 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5572 */
5573 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5574 {
5575 IEMXCPTRAISE enmRaise;
5576 IEMXCPTRAISEINFO fRaiseInfo;
5577 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5578 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5579 if (fExitIsHwXcpt)
5580 {
5581 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5582 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5583 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5584 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5585 }
5586 else
5587 {
5588 /*
5589 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5590 * then we end up here.
5591 *
5592 * If the event was:
5593 * - a software interrupt, we can re-execute the instruction which will
5594 * regenerate the event.
5595 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5596 * - a hardware exception or external interrupt, we re-inject it.
5597 */
5598 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5599 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5600 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5601 else
5602 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5603 }
5604
5605 switch (enmRaise)
5606 {
5607 case IEMXCPTRAISE_CURRENT_XCPT:
5608 case IEMXCPTRAISE_PREV_EVENT:
5609 {
5610 /* For software interrupts, we shall re-execute the instruction. */
5611 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5612 {
5613 RTGCUINTPTR GCPtrFaultAddress = 0;
5614
5615 /* If we are re-injecting an NMI, clear NMI blocking. */
5616 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5617 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5618
5619 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5620 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5621 {
5622 pSvmTransient->fVectoringPF = true;
5623 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5624 pVCpu->cpum.GstCtx.cr2));
5625 }
5626 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5627 && uIdtVector == X86_XCPT_PF)
5628 {
5629 /*
5630 * If the previous exception was a #PF, we need to recover the CR2 value.
5631 * This can't happen with shadow paging.
5632 */
5633 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5634 }
5635
5636 /*
5637 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5638 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5639 */
5640 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5641 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
5642 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5643
5644 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5645 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5646 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5647 }
5648 break;
5649 }
5650
5651 case IEMXCPTRAISE_REEXEC_INSTR:
5652 {
5653 Assert(rc == VINF_SUCCESS);
5654 break;
5655 }
5656
5657 case IEMXCPTRAISE_DOUBLE_FAULT:
5658 {
5659 /*
5660 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5661 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5662 * converted into a #DF.
5663 */
5664 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5665 {
5666 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
5667 pSvmTransient->fVectoringDoublePF = true;
5668 Assert(rc == VINF_SUCCESS);
5669 }
5670 else
5671 {
5672 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
5673 hmR0SvmSetPendingXcptDF(pVCpu);
5674 rc = VINF_HM_DOUBLE_FAULT;
5675 }
5676 break;
5677 }
5678
5679 case IEMXCPTRAISE_TRIPLE_FAULT:
5680 {
5681 rc = VINF_EM_RESET;
5682 break;
5683 }
5684
5685 case IEMXCPTRAISE_CPU_HANG:
5686 {
5687 rc = VERR_EM_GUEST_CPU_HANG;
5688 break;
5689 }
5690
5691 default:
5692 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
5693 }
5694 }
5695 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
5696 return rc;
5697}
5698
5699
5700/**
5701 * Advances the guest RIP by the number of bytes specified in @a cb.
5702 *
5703 * @param pVCpu The cross context virtual CPU structure.
5704 * @param cb RIP increment value in bytes.
5705 */
5706DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPUCC pVCpu, uint32_t cb)
5707{
5708 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5709 pCtx->rip += cb;
5710
5711 /* Update interrupt shadow. */
5712 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
5713 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
5714 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5715}
5716
5717
5718/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5719/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
5720/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5721
5722/** @name \#VMEXIT handlers.
5723 * @{
5724 */
5725
5726/**
5727 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
5728 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
5729 */
5730HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5731{
5732 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5733
5734 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
5735 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
5736 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
5737 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
5738
5739 /*
5740 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
5741 * signal -before- the timer fires if the current interrupt is our own timer or a some
5742 * other host interrupt. We also cannot examine what interrupt it is until the host
5743 * actually take the interrupt.
5744 *
5745 * Going back to executing guest code here unconditionally causes random scheduling
5746 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
5747 */
5748 return VINF_EM_RAW_INTERRUPT;
5749}
5750
5751
5752/**
5753 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
5754 */
5755HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5756{
5757 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5758
5759 VBOXSTRICTRC rcStrict;
5760 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5761 if (fSupportsNextRipSave)
5762 {
5763 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5764 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5765 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5766 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
5767 }
5768 else
5769 {
5770 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5771 rcStrict = IEMExecOne(pVCpu);
5772 }
5773
5774 if (rcStrict == VINF_IEM_RAISED_XCPT)
5775 {
5776 rcStrict = VINF_SUCCESS;
5777 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5778 }
5779 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5780 return rcStrict;
5781}
5782
5783
5784/**
5785 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
5786 */
5787HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5788{
5789 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5790
5791 VBOXSTRICTRC rcStrict;
5792 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5793 if (fSupportsNextRipSave)
5794 {
5795 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5796 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5797 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5798 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
5799 }
5800 else
5801 {
5802 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5803 rcStrict = IEMExecOne(pVCpu);
5804 }
5805
5806 if (rcStrict == VINF_IEM_RAISED_XCPT)
5807 {
5808 rcStrict = VINF_SUCCESS;
5809 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5810 }
5811 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5812 return rcStrict;
5813}
5814
5815
5816/**
5817 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
5818 */
5819HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5820{
5821 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5822
5823 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
5824 VBOXSTRICTRC rcStrict;
5825 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
5826 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
5827 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
5828 if (!pExitRec)
5829 {
5830 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5831 if (fSupportsNextRipSave)
5832 {
5833 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5834 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5835 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
5836 }
5837 else
5838 {
5839 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5840 rcStrict = IEMExecOne(pVCpu);
5841 }
5842
5843 if (rcStrict == VINF_IEM_RAISED_XCPT)
5844 {
5845 rcStrict = VINF_SUCCESS;
5846 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5847 }
5848 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5849 }
5850 else
5851 {
5852 /*
5853 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
5854 */
5855 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5856
5857 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
5858 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
5859
5860 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
5861
5862 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
5863 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
5864 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
5865 }
5866 return rcStrict;
5867}
5868
5869
5870/**
5871 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
5872 */
5873HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5874{
5875 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5876
5877 VBOXSTRICTRC rcStrict;
5878 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5879 if (fSupportsNextRipSave)
5880 {
5881 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5882 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5883 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5884 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
5885 }
5886 else
5887 {
5888 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5889 rcStrict = IEMExecOne(pVCpu);
5890 }
5891
5892 if (rcStrict == VINF_SUCCESS)
5893 pSvmTransient->fUpdateTscOffsetting = true;
5894 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5895 {
5896 rcStrict = VINF_SUCCESS;
5897 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5898 }
5899 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5900 return rcStrict;
5901}
5902
5903
5904/**
5905 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
5906 */
5907HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5908{
5909 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5910
5911 VBOXSTRICTRC rcStrict;
5912 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5913 if (fSupportsNextRipSave)
5914 {
5915 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
5916 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5917 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5918 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
5919 }
5920 else
5921 {
5922 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5923 rcStrict = IEMExecOne(pVCpu);
5924 }
5925
5926 if (rcStrict == VINF_SUCCESS)
5927 pSvmTransient->fUpdateTscOffsetting = true;
5928 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5929 {
5930 rcStrict = VINF_SUCCESS;
5931 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5932 }
5933 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5934 return rcStrict;
5935}
5936
5937
5938/**
5939 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
5940 */
5941HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5942{
5943 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5944
5945 VBOXSTRICTRC rcStrict;
5946 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5947 if (fSupportsNextRipSave)
5948 {
5949 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5950 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5951 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5952 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
5953 }
5954 else
5955 {
5956 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5957 rcStrict = IEMExecOne(pVCpu);
5958 }
5959
5960 if (rcStrict == VINF_IEM_RAISED_XCPT)
5961 {
5962 rcStrict = VINF_SUCCESS;
5963 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5964 }
5965 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5966 return rcStrict;
5967}
5968
5969
5970/**
5971 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
5972 */
5973HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5974{
5975 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5976 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5977
5978 VBOXSTRICTRC rcStrict;
5979 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
5980 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5981 if ( fSupportsDecodeAssists
5982 && fSupportsNextRipSave)
5983 {
5984 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
5985 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5986 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5987 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
5988 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
5989 }
5990 else
5991 {
5992 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5993 rcStrict = IEMExecOne(pVCpu);
5994 }
5995
5996 if (rcStrict == VINF_IEM_RAISED_XCPT)
5997 {
5998 rcStrict = VINF_SUCCESS;
5999 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6000 }
6001 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6002 return VBOXSTRICTRC_VAL(rcStrict);
6003}
6004
6005
6006/**
6007 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6008 */
6009HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6010{
6011 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6012
6013 VBOXSTRICTRC rcStrict;
6014 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6015 if (fSupportsNextRipSave)
6016 {
6017 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6018 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6019 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6020 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6021 }
6022 else
6023 {
6024 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6025 rcStrict = IEMExecOne(pVCpu);
6026 }
6027
6028 if ( rcStrict == VINF_EM_HALT
6029 || rcStrict == VINF_SUCCESS)
6030 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6031 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6032 {
6033 rcStrict = VINF_SUCCESS;
6034 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6035 }
6036 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6037 if (rcStrict != VINF_SUCCESS)
6038 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6039 return VBOXSTRICTRC_VAL(rcStrict);;
6040}
6041
6042
6043/**
6044 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6045 */
6046HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6047{
6048 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6049
6050 /*
6051 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6052 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6053 * segment override prefix or other prefixes might be used, in which case we fallback to
6054 * IEMExecOne() to figure out.
6055 */
6056 VBOXSTRICTRC rcStrict;
6057 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6058 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6059 if (cbInstr)
6060 {
6061 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6062 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6063 }
6064 else
6065 {
6066 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6067 rcStrict = IEMExecOne(pVCpu);
6068 }
6069
6070 if (rcStrict == VINF_IEM_RAISED_XCPT)
6071 {
6072 rcStrict = VINF_SUCCESS;
6073 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6074 }
6075 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6076 return rcStrict;
6077}
6078
6079
6080/**
6081 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6082 */
6083HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6084{
6085 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6086
6087 VBOXSTRICTRC rcStrict;
6088 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6089 if (fSupportsNextRipSave)
6090 {
6091 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6092 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6093 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6094 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6095 }
6096 else
6097 {
6098 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6099 rcStrict = IEMExecOne(pVCpu);
6100 }
6101
6102 if ( rcStrict == VINF_EM_HALT
6103 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6104 rcStrict = VINF_SUCCESS;
6105 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6106 {
6107 rcStrict = VINF_SUCCESS;
6108 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6109 }
6110 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6111 return rcStrict;
6112}
6113
6114
6115/**
6116 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6117 * \#VMEXIT.
6118 */
6119HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6120{
6121 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6122 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6123 return VINF_EM_RESET;
6124}
6125
6126
6127/**
6128 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6129 */
6130HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6131{
6132 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6133 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6134 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6135 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6136 RT_NOREF(pVmcb);
6137 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6138 return VERR_SVM_UNEXPECTED_EXIT;
6139}
6140
6141
6142/**
6143 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6144 */
6145HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6146{
6147 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6148
6149 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6150 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6151#ifdef VBOX_WITH_STATISTICS
6152 switch (pSvmTransient->u64ExitCode)
6153 {
6154 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6155 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6156 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6157 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6158 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6159 }
6160#endif
6161
6162 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6163 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6164 if ( fSupportsDecodeAssists
6165 && fSupportsNextRipSave)
6166 {
6167 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6168 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6169 if (fMovCRx)
6170 {
6171 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6172 | CPUMCTX_EXTRN_APIC_TPR);
6173 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6174 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6175 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6176 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6177 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6178 return VBOXSTRICTRC_VAL(rcStrict);
6179 }
6180 /* else: SMSW instruction, fall back below to IEM for this. */
6181 }
6182
6183 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6184 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6185 AssertMsg( rcStrict == VINF_SUCCESS
6186 || rcStrict == VINF_PGM_SYNC_CR3
6187 || rcStrict == VINF_IEM_RAISED_XCPT,
6188 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6189 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6190 if (rcStrict == VINF_IEM_RAISED_XCPT)
6191 {
6192 rcStrict = VINF_SUCCESS;
6193 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6194 }
6195 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6196 return rcStrict;
6197}
6198
6199
6200/**
6201 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6202 */
6203HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6204{
6205 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6206
6207 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6208 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6209 Assert(iCrReg <= 15);
6210
6211 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6212 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6213 bool fDecodedInstr = false;
6214 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6215 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6216 if ( fSupportsDecodeAssists
6217 && fSupportsNextRipSave)
6218 {
6219 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6220 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6221 if (fMovCRx)
6222 {
6223 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6224 | CPUMCTX_EXTRN_APIC_TPR);
6225 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6226 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6227 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6228 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6229 fDecodedInstr = true;
6230 }
6231 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6232 }
6233
6234 if (!fDecodedInstr)
6235 {
6236 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6237 Log4Func(("iCrReg=%#x\n", iCrReg));
6238 rcStrict = IEMExecOne(pVCpu);
6239 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6240 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6241 rcStrict = VERR_EM_INTERPRETER;
6242 }
6243
6244 if (rcStrict == VINF_SUCCESS)
6245 {
6246 switch (iCrReg)
6247 {
6248 case 0:
6249 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6250 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6251 break;
6252
6253 case 2:
6254 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6255 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6256 break;
6257
6258 case 3:
6259 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6260 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6261 break;
6262
6263 case 4:
6264 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6265 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6266 break;
6267
6268 case 8:
6269 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6270 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6271 break;
6272
6273 default:
6274 {
6275 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6276 pSvmTransient->u64ExitCode, iCrReg));
6277 break;
6278 }
6279 }
6280 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6281 }
6282 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6283 {
6284 rcStrict = VINF_SUCCESS;
6285 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6286 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6287 }
6288 else
6289 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6290 return rcStrict;
6291}
6292
6293
6294/**
6295 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6296 *
6297 * @returns Strict VBox status code.
6298 * @param pVCpu The cross context virtual CPU structure.
6299 * @param pVmcb Pointer to the VM control block.
6300 */
6301static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
6302{
6303 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6304 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6305
6306 VBOXSTRICTRC rcStrict;
6307 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6308 if (fSupportsNextRipSave)
6309 {
6310 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6311 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6312 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6313 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6314 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6315 }
6316 else
6317 {
6318 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6319 rcStrict = IEMExecOne(pVCpu);
6320 }
6321
6322 AssertMsg( rcStrict == VINF_SUCCESS
6323 || rcStrict == VINF_IEM_RAISED_XCPT
6324 || rcStrict == VINF_CPUM_R3_MSR_READ,
6325 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6326
6327 if (rcStrict == VINF_IEM_RAISED_XCPT)
6328 {
6329 rcStrict = VINF_SUCCESS;
6330 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6331 }
6332 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6333 return rcStrict;
6334}
6335
6336
6337/**
6338 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6339 *
6340 * @returns Strict VBox status code.
6341 * @param pVCpu The cross context virtual CPU structure.
6342 * @param pVmcb Pointer to the VM control block.
6343 * @param pSvmTransient Pointer to the SVM-transient structure.
6344 */
6345static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6346{
6347 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6348 uint32_t const idMsr = pCtx->ecx;
6349 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6350 Log4Func(("idMsr=%#RX32\n", idMsr));
6351
6352 /*
6353 * Handle TPR patching MSR writes.
6354 * We utilitize the LSTAR MSR for patching.
6355 */
6356 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6357 if ( idMsr == MSR_K8_LSTAR
6358 && pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingActive)
6359 {
6360 unsigned cbInstr;
6361 if (fSupportsNextRipSave)
6362 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6363 else
6364 {
6365 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
6366 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6367 if ( rc == VINF_SUCCESS
6368 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6369 Assert(cbInstr > 0);
6370 else
6371 cbInstr = 0;
6372 }
6373
6374 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6375 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6376 {
6377 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6378 AssertRCReturn(rc, rc);
6379 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6380 }
6381
6382 int rc = VINF_SUCCESS;
6383 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6384 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6385 return rc;
6386 }
6387
6388 /*
6389 * Handle regular MSR writes.
6390 */
6391 VBOXSTRICTRC rcStrict;
6392 if (fSupportsNextRipSave)
6393 {
6394 /** @todo Optimize this: We don't need to get much of the MSR state here
6395 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6396 * clear the applicable extern flags. */
6397 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6398 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6399 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6400 }
6401 else
6402 {
6403 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6404 rcStrict = IEMExecOne(pVCpu);
6405 }
6406
6407 AssertMsg( rcStrict == VINF_SUCCESS
6408 || rcStrict == VINF_IEM_RAISED_XCPT
6409 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6410 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6411
6412 if (rcStrict == VINF_SUCCESS)
6413 {
6414 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6415 if ( idMsr >= MSR_IA32_X2APIC_START
6416 && idMsr <= MSR_IA32_X2APIC_END)
6417 {
6418 /*
6419 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6420 * When full APIC register virtualization is implemented we'll have to make sure
6421 * APIC state is saved from the VMCB before IEM changes it.
6422 */
6423 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6424 }
6425 else
6426 {
6427 switch (idMsr)
6428 {
6429 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6430 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6431 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6432 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6433 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6434 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6435 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6436 }
6437 }
6438 }
6439 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6440 {
6441 rcStrict = VINF_SUCCESS;
6442 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6443 }
6444 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6445 return rcStrict;
6446}
6447
6448
6449/**
6450 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6451 * \#VMEXIT.
6452 */
6453HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6454{
6455 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6456
6457 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6458 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6459 return hmR0SvmExitReadMsr(pVCpu, pVmcb);
6460
6461 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6462 return hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient);
6463}
6464
6465
6466/**
6467 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6468 */
6469HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6470{
6471 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6472 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6473
6474 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6475
6476 /** @todo Stepping with nested-guest. */
6477 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6478 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6479 {
6480 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6481 if (pSvmTransient->fWasGuestDebugStateActive)
6482 {
6483 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6484 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6485 return VERR_SVM_UNEXPECTED_EXIT;
6486 }
6487
6488 /*
6489 * Lazy DR0-3 loading.
6490 */
6491 if (!pSvmTransient->fWasHyperDebugStateActive)
6492 {
6493 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6494 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6495
6496 /* Don't intercept DRx read and writes. */
6497 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
6498 pVmcb->ctrl.u16InterceptRdDRx = 0;
6499 pVmcb->ctrl.u16InterceptWrDRx = 0;
6500 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6501
6502 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6503 VMMRZCallRing3Disable(pVCpu);
6504 HM_DISABLE_PREEMPT(pVCpu);
6505
6506 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6507 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6508 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6509
6510 HM_RESTORE_PREEMPT();
6511 VMMRZCallRing3Enable(pVCpu);
6512
6513 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6514 return VINF_SUCCESS;
6515 }
6516 }
6517
6518 /*
6519 * Interpret the read/writing of DRx.
6520 */
6521 /** @todo Decode assist. */
6522 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6523 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6524 if (RT_LIKELY(rc == VINF_SUCCESS))
6525 {
6526 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6527 /** @todo CPUM should set this flag! */
6528 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6529 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6530 }
6531 else
6532 Assert(rc == VERR_EM_INTERPRETER);
6533 return rc;
6534}
6535
6536
6537/**
6538 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6539 */
6540HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6541{
6542 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6543 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6544 VBOXSTRICTRC rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6545 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6546 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6547 return rc;
6548}
6549
6550
6551/**
6552 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6553 */
6554HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6555{
6556 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6557 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6558
6559 /** @todo decode assists... */
6560 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6561 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6562 {
6563 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6564 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6565 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], fLoadSaveGuestXcr0, pCtx->cr4));
6566 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
6567 {
6568 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
6569 hmR0SvmUpdateVmRunFunction(pVCpu);
6570 }
6571 }
6572 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6573 {
6574 rcStrict = VINF_SUCCESS;
6575 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6576 }
6577 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6578 return rcStrict;
6579}
6580
6581
6582/**
6583 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6584 */
6585HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6586{
6587 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6588 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6589
6590 /* I/O operation lookup arrays. */
6591 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6592 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6593 the result (in AL/AX/EAX). */
6594 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6595 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6596 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6597
6598 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6599
6600 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6601 SVMIOIOEXITINFO IoExitInfo;
6602 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6603 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6604 uint32_t cbValue = s_aIOSize[uIOWidth];
6605 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6606
6607 if (RT_UNLIKELY(!cbValue))
6608 {
6609 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6610 return VERR_EM_INTERPRETER;
6611 }
6612
6613 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6614 VBOXSTRICTRC rcStrict;
6615 PCEMEXITREC pExitRec = NULL;
6616 if ( !pVCpu->hm.s.fSingleInstruction
6617 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6618 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6619 !IoExitInfo.n.u1Str
6620 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6621 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6622 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6623 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6624 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6625 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6626 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6627 if (!pExitRec)
6628 {
6629 bool fUpdateRipAlready = false;
6630 if (IoExitInfo.n.u1Str)
6631 {
6632 /* INS/OUTS - I/O String instruction. */
6633 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6634 * in EXITINFO1? Investigate once this thing is up and running. */
6635 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6636 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6637 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6638 static IEMMODE const s_aenmAddrMode[8] =
6639 {
6640 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6641 };
6642 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6643 if (enmAddrMode != (IEMMODE)-1)
6644 {
6645 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6646 if (cbInstr <= 15 && cbInstr >= 1)
6647 {
6648 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6649 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6650 {
6651 /* Don't know exactly how to detect whether u3Seg is valid, currently
6652 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6653 2384 Opterons when only checking NRIP. */
6654 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6655 if ( fSupportsNextRipSave
6656 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6657 {
6658 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6659 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6660 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6661 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6662 }
6663 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6664 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6665 X86_SREG_DS, true /*fIoChecked*/);
6666 else
6667 rcStrict = IEMExecOne(pVCpu);
6668 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6669 }
6670 else
6671 {
6672 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
6673 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6674 true /*fIoChecked*/);
6675 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6676 }
6677 }
6678 else
6679 {
6680 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6681 rcStrict = IEMExecOne(pVCpu);
6682 }
6683 }
6684 else
6685 {
6686 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6687 rcStrict = IEMExecOne(pVCpu);
6688 }
6689 fUpdateRipAlready = true;
6690 }
6691 else
6692 {
6693 /* IN/OUT - I/O instruction. */
6694 Assert(!IoExitInfo.n.u1Rep);
6695
6696 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6697 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6698 {
6699 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6700 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6701 && !pCtx->eflags.Bits.u1TF)
6702 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
6703 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6704 }
6705 else
6706 {
6707 uint32_t u32Val = 0;
6708 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6709 if (IOM_SUCCESS(rcStrict))
6710 {
6711 /* Save result of I/O IN instr. in AL/AX/EAX. */
6712 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6713 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6714 }
6715 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6716 && !pCtx->eflags.Bits.u1TF)
6717 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
6718
6719 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6720 }
6721 }
6722
6723 if (IOM_SUCCESS(rcStrict))
6724 {
6725 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6726 if (!fUpdateRipAlready)
6727 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6728
6729 /*
6730 * If any I/O breakpoints are armed, we need to check if one triggered
6731 * and take appropriate action.
6732 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6733 */
6734 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6735 * execution engines about whether hyper BPs and such are pending. */
6736 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
6737 uint32_t const uDr7 = pCtx->dr[7];
6738 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6739 && X86_DR7_ANY_RW_IO(uDr7)
6740 && (pCtx->cr4 & X86_CR4_DE))
6741 || DBGFBpIsHwIoArmed(pVM)))
6742 {
6743 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6744 VMMRZCallRing3Disable(pVCpu);
6745 HM_DISABLE_PREEMPT(pVCpu);
6746
6747 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6748 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6749
6750 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
6751 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6752 {
6753 /* Raise #DB. */
6754 pVmcb->guest.u64DR6 = pCtx->dr[6];
6755 pVmcb->guest.u64DR7 = pCtx->dr[7];
6756 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6757 hmR0SvmSetPendingXcptDB(pVCpu);
6758 }
6759 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6760 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6761 else if ( rcStrict2 != VINF_SUCCESS
6762 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6763 rcStrict = rcStrict2;
6764 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6765
6766 HM_RESTORE_PREEMPT();
6767 VMMRZCallRing3Enable(pVCpu);
6768 }
6769
6770 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6771 }
6772
6773#ifdef VBOX_STRICT
6774 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6775 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
6776 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6777 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6778 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
6779 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
6780 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6781 else
6782 {
6783 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6784 * statuses, that the VMM device and some others may return. See
6785 * IOM_SUCCESS() for guidance. */
6786 AssertMsg( RT_FAILURE(rcStrict)
6787 || rcStrict == VINF_SUCCESS
6788 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6789 || rcStrict == VINF_EM_DBG_BREAKPOINT
6790 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6791 || rcStrict == VINF_EM_DBG_STEPPED
6792 || rcStrict == VINF_EM_RAW_TO_R3
6793 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
6794 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6795 }
6796#endif
6797 }
6798 else
6799 {
6800 /*
6801 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6802 */
6803 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6804 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
6805 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
6806 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
6807 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
6808 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
6809 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
6810
6811 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6812 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6813
6814 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6815 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6816 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6817 }
6818 return rcStrict;
6819}
6820
6821
6822/**
6823 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6824 */
6825HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6826{
6827 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6828 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6829 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
6830
6831 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6832 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6833 Assert(pVM->hmr0.s.fNestedPaging);
6834
6835 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
6836 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6837 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
6838 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
6839 thus intentionally not copied into u32ErrCode. */
6840
6841 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x cbInstrFetched=%u %.15Rhxs\n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
6842 u32ErrCode, pVmcb->ctrl.cbInstrFetched, pVmcb->ctrl.abInstr));
6843
6844 /*
6845 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
6846 */
6847 if ( pVM->hm.s.fTprPatchingAllowed
6848 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
6849 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
6850 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
6851 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
6852 && !CPUMIsGuestInLongModeEx(pCtx)
6853 && !CPUMGetGuestCPL(pVCpu)
6854 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6855 {
6856 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6857 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6858
6859 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
6860 {
6861 /* Only attempt to patch the instruction once. */
6862 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6863 if (!pPatch)
6864 return VINF_EM_HM_PATCH_TPR_INSTR;
6865 }
6866 }
6867
6868 /*
6869 * Determine the nested paging mode.
6870 */
6871/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
6872 PGMMODE const enmNestedPagingMode = PGMGetHostMode(pVM);
6873
6874 /*
6875 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
6876 */
6877 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
6878 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
6879 {
6880 /*
6881 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
6882 * injecting the original pending event would most likely cause the same MMIO #NPF.
6883 */
6884 if (pVCpu->hm.s.Event.fPending)
6885 {
6886 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
6887 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6888 }
6889
6890 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
6891 VBOXSTRICTRC rcStrict;
6892 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6893 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
6894 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6895 if (!pExitRec)
6896 {
6897
6898 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
6899 u32ErrCode);
6900
6901 /*
6902 * If we succeed, resume guest execution.
6903 *
6904 * If we fail in interpreting the instruction because we couldn't get the guest
6905 * physical address of the page containing the instruction via the guest's page
6906 * tables (we would invalidate the guest page in the host TLB), resume execution
6907 * which would cause a guest page fault to let the guest handle this weird case.
6908 *
6909 * See @bugref{6043}.
6910 */
6911 if ( rcStrict == VINF_SUCCESS
6912 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
6913 || rcStrict == VERR_PAGE_NOT_PRESENT)
6914 {
6915 /* Successfully handled MMIO operation. */
6916 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6917 rcStrict = VINF_SUCCESS;
6918 }
6919 }
6920 else
6921 {
6922 /*
6923 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6924 */
6925 Assert(pCtx == &pVCpu->cpum.GstCtx);
6926 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6927 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
6928 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
6929
6930 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6931 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6932
6933 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6934 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6935 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6936 }
6937 return rcStrict;
6938 }
6939
6940 /*
6941 * Nested page-fault.
6942 */
6943 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
6944 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
6945 TRPMResetTrap(pVCpu);
6946
6947 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
6948
6949 /*
6950 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
6951 */
6952 if ( rc == VINF_SUCCESS
6953 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6954 || rc == VERR_PAGE_NOT_PRESENT)
6955 {
6956 /* We've successfully synced our shadow page tables. */
6957 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6958 rc = VINF_SUCCESS;
6959 }
6960
6961 /*
6962 * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and
6963 * re-inject the original event.
6964 */
6965 if (pVCpu->hm.s.Event.fPending)
6966 {
6967 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
6968
6969 /*
6970 * If the #NPF handler requested emulation of the instruction, ignore it.
6971 * We need to re-inject the original event so as to not lose it.
6972 * Reproducible when booting ReactOS 0.4.12 with BTRFS (installed using BootCD,
6973 * LiveCD is broken for other reasons).
6974 */
6975 if (rc == VINF_EM_RAW_EMULATE_INSTR)
6976 rc = VINF_EM_RAW_INJECT_TRPM_EVENT;
6977 }
6978
6979 return rc;
6980}
6981
6982
6983/**
6984 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
6985 * \#VMEXIT.
6986 */
6987HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6988{
6989 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6990 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
6991
6992 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
6993 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6994 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
6995
6996 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6997 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
6998 return VINF_SUCCESS;
6999}
7000
7001
7002/**
7003 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7004 * \#VMEXIT.
7005 */
7006HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7007{
7008 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7009 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7010
7011#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7012 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
7013#endif
7014
7015 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7016 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7017 {
7018 /*
7019 * AMD-V provides us with the exception which caused the TS; we collect
7020 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7021 */
7022 Log4Func(("TS occurred during event delivery\n"));
7023 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7024 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7025 }
7026
7027 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7028 * emulation. */
7029 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7030 return VERR_EM_INTERPRETER;
7031}
7032
7033
7034/**
7035 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7036 */
7037HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7038{
7039 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7040 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7041
7042 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7043 if (pVM->hm.s.fTprPatchingAllowed)
7044 {
7045 int rc = hmEmulateSvmMovTpr(pVM, pVCpu);
7046 if (rc != VERR_NOT_FOUND)
7047 {
7048 Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc));
7049 return rc;
7050 }
7051 }
7052
7053 if (EMAreHypercallInstructionsEnabled(pVCpu))
7054 {
7055 unsigned cbInstr;
7056 if (hmR0SvmSupportsNextRipSave(pVCpu))
7057 {
7058 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7059 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7060 }
7061 else
7062 {
7063 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7064 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7065 if ( rc == VINF_SUCCESS
7066 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7067 Assert(cbInstr > 0);
7068 else
7069 cbInstr = 0;
7070 }
7071
7072 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7073 if (RT_SUCCESS(rcStrict))
7074 {
7075 /* Only update the RIP if we're continuing guest execution and not in the case
7076 of say VINF_GIM_R3_HYPERCALL. */
7077 if (rcStrict == VINF_SUCCESS)
7078 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7079
7080 return VBOXSTRICTRC_VAL(rcStrict);
7081 }
7082 else
7083 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7084 }
7085
7086 hmR0SvmSetPendingXcptUD(pVCpu);
7087 return VINF_SUCCESS;
7088}
7089
7090
7091/**
7092 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7093 */
7094HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7095{
7096 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7097
7098 unsigned cbInstr;
7099 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7100 if (fSupportsNextRipSave)
7101 {
7102 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7103 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7104 }
7105 else
7106 {
7107 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7108 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7109 if ( rc == VINF_SUCCESS
7110 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7111 Assert(cbInstr > 0);
7112 else
7113 cbInstr = 0;
7114 }
7115
7116 /** @todo The guest has likely hit a contended spinlock. We might want to
7117 * poke a schedule different guest VCPU. */
7118 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7119 return VINF_EM_RAW_INTERRUPT;
7120}
7121
7122
7123/**
7124 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7125 * \#VMEXIT.
7126 */
7127HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7128{
7129 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7130 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7131 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7132
7133 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7134 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7135}
7136
7137
7138/**
7139 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7140 */
7141HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7142{
7143 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7144
7145 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now (almost) ready. */
7146 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7147 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7148
7149 /* Emulate the IRET. We have to execute the IRET before an NMI, but must potentially
7150 * deliver a pending NMI right after. If the IRET faults, an NMI can come before the
7151 * handler executes. Yes, x86 is ugly.
7152 */
7153 return VINF_EM_RAW_EMULATE_INSTR;
7154}
7155
7156
7157/**
7158 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7159 * Conditional \#VMEXIT.
7160 */
7161HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7162{
7163 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7164 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7165 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7166
7167 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7168 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7169 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7170 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7171 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7172 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7173
7174#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7175 if (pVM->hmr0.s.fNestedPaging)
7176 {
7177 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7178 if ( !pSvmTransient->fVectoringDoublePF
7179 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7180 {
7181 /* A genuine guest #PF, reflect it to the guest. */
7182 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7183 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7184 uFaultAddress, uErrCode));
7185 }
7186 else
7187 {
7188 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7189 hmR0SvmSetPendingXcptDF(pVCpu);
7190 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7191 }
7192 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7193 return VINF_SUCCESS;
7194 }
7195#endif
7196
7197 Assert(!pVM->hmr0.s.fNestedPaging);
7198
7199 /*
7200 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7201 */
7202 if ( pVM->hm.s.fTprPatchingAllowed
7203 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7204 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7205 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7206 && !CPUMIsGuestInLongModeEx(pCtx)
7207 && !CPUMGetGuestCPL(pVCpu)
7208 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7209 {
7210 RTGCPHYS GCPhysApicBase;
7211 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7212 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7213
7214 /* Check if the page at the fault-address is the APIC base. */
7215 RTGCPHYS GCPhysPage;
7216 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7217 if ( rc2 == VINF_SUCCESS
7218 && GCPhysPage == GCPhysApicBase)
7219 {
7220 /* Only attempt to patch the instruction once. */
7221 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7222 if (!pPatch)
7223 return VINF_EM_HM_PATCH_TPR_INSTR;
7224 }
7225 }
7226
7227 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7228 pCtx->rip, uErrCode, pCtx->cr3));
7229
7230 /*
7231 * If it's a vectoring #PF, emulate injecting the original event injection as
7232 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7233 * event injection that caused a #PF. See @bugref{6607}.
7234 */
7235 if (pSvmTransient->fVectoringPF)
7236 {
7237 Assert(pVCpu->hm.s.Event.fPending);
7238 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7239 }
7240
7241 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7242 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7243
7244 Log4Func(("#PF: rc=%Rrc\n", rc));
7245
7246 if (rc == VINF_SUCCESS)
7247 {
7248 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7249 TRPMResetTrap(pVCpu);
7250 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7251 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7252 return rc;
7253 }
7254
7255 if (rc == VINF_EM_RAW_GUEST_TRAP)
7256 {
7257 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7258
7259 /*
7260 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7261 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7262 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7263 */
7264 if ( !pSvmTransient->fVectoringDoublePF
7265 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7266 {
7267 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7268 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7269 TRPMResetTrap(pVCpu);
7270
7271#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7272 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7273 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7274 && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
7275 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress);
7276#endif
7277
7278 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7279 }
7280 else
7281 {
7282 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7283 TRPMResetTrap(pVCpu);
7284 hmR0SvmSetPendingXcptDF(pVCpu);
7285 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7286 }
7287
7288 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7289 return VINF_SUCCESS;
7290 }
7291
7292 TRPMResetTrap(pVCpu);
7293 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7294 return rc;
7295}
7296
7297
7298/**
7299 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7300 * Conditional \#VMEXIT.
7301 */
7302HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7303{
7304 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7305 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7306 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7307
7308 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7309 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7310 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7311
7312 /** @todo if we accumulate more optional stuff here, we ought to combine the
7313 * reading of opcode bytes to avoid doing more than once. */
7314
7315 VBOXSTRICTRC rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7316 if (pVCpu->hm.s.fGIMTrapXcptUD)
7317 {
7318 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7319 uint8_t cbInstr = 0;
7320 rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7321 if (rcStrict == VINF_SUCCESS)
7322 {
7323 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7324 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7325 rcStrict = VINF_SUCCESS;
7326 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7327 }
7328 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7329 rcStrict = VINF_SUCCESS;
7330 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7331 rcStrict = VINF_GIM_R3_HYPERCALL;
7332 else
7333 {
7334 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7335 rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7336 }
7337 }
7338
7339 if (pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
7340 {
7341 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
7342 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7343 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
7344 {
7345 /* Ideally, IEM should just handle all these special #UD situations, but
7346 we don't quite trust things to behave optimially when doing that. So,
7347 for now we'll restrict ourselves to a handful of possible sysenter and
7348 sysexit encodings that we filter right here. */
7349 uint8_t abInstr[SVM_CTRL_GUEST_INSTR_BYTES_MAX];
7350 uint8_t cbInstr = pVmcb->ctrl.cbInstrFetched;
7351 uint32_t const uCpl = CPUMGetGuestCPL(pVCpu);
7352 uint8_t const cbMin = uCpl != 0 ? 2 : 1 + 2;
7353 RTGCPTR const GCPtrInstr = pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base;
7354 if (cbInstr < cbMin || cbInstr > SVM_CTRL_GUEST_INSTR_BYTES_MAX)
7355 {
7356 cbInstr = cbMin;
7357 int rc2 = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, GCPtrInstr, cbInstr);
7358 AssertRCStmt(rc2, cbInstr = 0);
7359 }
7360 else
7361 memcpy(abInstr, pVmcb->ctrl.abInstr, cbInstr); /* unlikely */
7362 if ( cbInstr == 0 /* read error */
7363 || (cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x34) /* sysenter */
7364 || ( uCpl == 0
7365 && ( ( cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x35) /* sysexit */
7366 || ( cbInstr >= 3 && abInstr[1] == 0x0f && abInstr[2] == 0x35 /* rex.w sysexit */
7367 && (abInstr[0] & (X86_OP_REX_W | 0xf0)) == X86_OP_REX_W))))
7368 {
7369 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK
7370 | CPUMCTX_EXTRN_SREG_MASK /* without ES+DS+GS the app will #GP later - go figure */);
7371 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7372 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), GCPtrInstr, abInstr, cbInstr);
7373 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: rcStrict=%Rrc %04x:%08RX64 %08RX64 %04x:%08RX64\n",
7374 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u,
7375 pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp));
7376 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7377 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); /** @todo Lazy bird. */
7378 if (rcStrict == VINF_IEM_RAISED_XCPT)
7379 rcStrict = VINF_SUCCESS;
7380 return rcStrict;
7381 }
7382 Log6(("hmR0SvmExitXcptUD: not sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7383 }
7384 else
7385 Log6(("hmR0SvmExitXcptUD: not in long mode at %04x:%llx\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7386 }
7387
7388 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7389 if (RT_FAILURE(rcStrict))
7390 {
7391 hmR0SvmSetPendingXcptUD(pVCpu);
7392 rcStrict = VINF_SUCCESS;
7393 }
7394
7395 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7396 return rcStrict;
7397}
7398
7399
7400/**
7401 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7402 * Conditional \#VMEXIT.
7403 */
7404HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7405{
7406 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7407 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7408 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7409
7410 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7411 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7412
7413 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7414 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7415
7416 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7417
7418 if (!(pCtx->cr0 & X86_CR0_NE))
7419 {
7420 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7421 PDISSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7422 unsigned cbInstr;
7423 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7424 if (RT_SUCCESS(rc))
7425 {
7426 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7427 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7428 if (RT_SUCCESS(rc))
7429 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7430 }
7431 else
7432 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7433 return rc;
7434 }
7435
7436 hmR0SvmSetPendingXcptMF(pVCpu);
7437 return VINF_SUCCESS;
7438}
7439
7440
7441/**
7442 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7443 * \#VMEXIT.
7444 */
7445HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7446{
7447 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7448 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7449 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7450 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7451
7452 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7453 {
7454 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7455 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7456 }
7457
7458 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7459
7460 /*
7461 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7462 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7463 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7464 */
7465 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7466 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7467 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7468 int rc = DBGFTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7469 if (rc == VINF_EM_RAW_GUEST_TRAP)
7470 {
7471 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7472 if (CPUMIsHyperDebugStateActive(pVCpu))
7473 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7474
7475 /* Reflect the exception back to the guest. */
7476 hmR0SvmSetPendingXcptDB(pVCpu);
7477 rc = VINF_SUCCESS;
7478 }
7479
7480 /*
7481 * Update DR6.
7482 */
7483 if (CPUMIsHyperDebugStateActive(pVCpu))
7484 {
7485 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7486 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7487 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7488 }
7489 else
7490 {
7491 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7492 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7493 }
7494
7495 return rc;
7496}
7497
7498
7499/**
7500 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7501 * Conditional \#VMEXIT.
7502 */
7503HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7504{
7505 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7506 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7507 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
7508
7509 SVMEVENT Event;
7510 Event.u = 0;
7511 Event.n.u1Valid = 1;
7512 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7513 Event.n.u8Vector = X86_XCPT_AC;
7514 Event.n.u1ErrorCodeValid = 1;
7515 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7516 return VINF_SUCCESS;
7517}
7518
7519
7520/**
7521 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7522 * Conditional \#VMEXIT.
7523 */
7524HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7525{
7526 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7527 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7528 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7529 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
7530
7531 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7532 int rc = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7533 if (rc == VINF_EM_RAW_GUEST_TRAP)
7534 {
7535 SVMEVENT Event;
7536 Event.u = 0;
7537 Event.n.u1Valid = 1;
7538 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7539 Event.n.u8Vector = X86_XCPT_BP;
7540 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7541 rc = VINF_SUCCESS;
7542 }
7543
7544 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
7545 return rc;
7546}
7547
7548
7549/**
7550 * Hacks its way around the lovely mesa driver's backdoor accesses.
7551 *
7552 * @sa hmR0VmxHandleMesaDrvGp
7553 */
7554static int hmR0SvmHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7555{
7556 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7557 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7558 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7559 RT_NOREF(pCtx, pVmcb);
7560
7561 /* For now we'll just skip the instruction. */
7562 hmR0SvmAdvanceRip(pVCpu, 1);
7563 return VINF_SUCCESS;
7564}
7565
7566
7567/**
7568 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7569 * backdoor logging w/o checking what it is running inside.
7570 *
7571 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7572 * backdoor port and magic numbers loaded in registers.
7573 *
7574 * @returns true if it is, false if it isn't.
7575 * @sa hmR0VmxIsMesaDrvGp
7576 */
7577DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7578{
7579 /* Check magic and port. */
7580 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7581 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7582 if (pCtx->dx != UINT32_C(0x5658))
7583 return false;
7584 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7585 return false;
7586
7587 /* Check that it is #GP(0). */
7588 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7589 return false;
7590
7591 /* Flat ring-3 CS. */
7592 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7593 if (pVmcb->guest.u8CPL != 3)
7594 return false;
7595 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7596 return false;
7597
7598 /* 0xed: IN eAX,dx */
7599 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7600 {
7601 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7602 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7603 uint8_t abInstr[1];
7604 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7605 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7606 if (RT_FAILURE(rc))
7607 return false;
7608 if (abInstr[0] != 0xed)
7609 return false;
7610 }
7611 else
7612 {
7613 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7614 if (pVmcb->ctrl.abInstr[0] != 0xed)
7615 return false;
7616 }
7617 return true;
7618}
7619
7620
7621/**
7622 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7623 * Conditional \#VMEXIT.
7624 */
7625HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7626{
7627 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7628 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7629 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
7630
7631 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7632 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7633
7634 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7635 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7636 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7637 {
7638 SVMEVENT Event;
7639 Event.u = 0;
7640 Event.n.u1Valid = 1;
7641 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7642 Event.n.u8Vector = X86_XCPT_GP;
7643 Event.n.u1ErrorCodeValid = 1;
7644 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7645 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7646 return VINF_SUCCESS;
7647 }
7648 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7649}
7650
7651
7652#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7653/**
7654 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7655 */
7656HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7657{
7658 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7659 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7660
7661 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7662 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7663 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7664 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7665 Assert(uVector <= X86_XCPT_LAST);
7666 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7667
7668 SVMEVENT Event;
7669 Event.u = 0;
7670 Event.n.u1Valid = 1;
7671 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7672 Event.n.u8Vector = uVector;
7673 switch (uVector)
7674 {
7675 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7676 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7677 case X86_XCPT_DF:
7678 case X86_XCPT_TS:
7679 case X86_XCPT_NP:
7680 case X86_XCPT_SS:
7681 case X86_XCPT_GP:
7682 case X86_XCPT_AC:
7683 {
7684 Event.n.u1ErrorCodeValid = 1;
7685 Event.n.u32ErrorCode = uErrCode;
7686 break;
7687 }
7688 }
7689
7690#ifdef VBOX_WITH_STATISTICS
7691 switch (uVector)
7692 {
7693 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
7694 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
7695 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
7696 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7697 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
7698 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
7699 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7700 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
7701 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
7702 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
7703 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
7704 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
7705 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
7706 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
7707 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
7708 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
7709 default:
7710 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
7711 break;
7712 }
7713#endif
7714
7715 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7716 return VINF_SUCCESS;
7717}
7718#endif
7719
7720#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7721/**
7722 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7723 */
7724HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7725{
7726 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7727
7728 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7729 Assert(pVmcb);
7730 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7731
7732 VBOXSTRICTRC rcStrict;
7733 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7734 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7735 if (fSupportsNextRipSave)
7736 {
7737 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7738 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7739 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7740 }
7741 else
7742 {
7743 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7744 rcStrict = IEMExecOne(pVCpu);
7745 }
7746
7747 if (rcStrict == VINF_SUCCESS)
7748 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7749 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7750 {
7751 rcStrict = VINF_SUCCESS;
7752 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7753 }
7754 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7755 return rcStrict;
7756}
7757
7758
7759/**
7760 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7761 */
7762HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7763{
7764 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7765
7766 /*
7767 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7768 * we only intercept STGI when events are pending for GIF to become 1.
7769 */
7770 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7771 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7772 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7773
7774 VBOXSTRICTRC rcStrict;
7775 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7776 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7777 if (fSupportsNextRipSave)
7778 {
7779 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7780 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7781 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7782 }
7783 else
7784 {
7785 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7786 rcStrict = IEMExecOne(pVCpu);
7787 }
7788
7789 if (rcStrict == VINF_SUCCESS)
7790 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7791 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7792 {
7793 rcStrict = VINF_SUCCESS;
7794 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7795 }
7796 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7797 return rcStrict;
7798}
7799
7800
7801/**
7802 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7803 */
7804HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7805{
7806 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7807
7808 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7809 Assert(pVmcb);
7810 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7811
7812 VBOXSTRICTRC rcStrict;
7813 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7814 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
7815 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
7816 | CPUMCTX_EXTRN_SYSENTER_MSRS;
7817 if (fSupportsNextRipSave)
7818 {
7819 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7820 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7821 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7822 }
7823 else
7824 {
7825 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7826 rcStrict = IEMExecOne(pVCpu);
7827 }
7828
7829 if (rcStrict == VINF_SUCCESS)
7830 {
7831 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7832 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7833 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7834 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7835 }
7836 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7837 {
7838 rcStrict = VINF_SUCCESS;
7839 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7840 }
7841 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7842 return rcStrict;
7843}
7844
7845
7846/**
7847 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7848 */
7849HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7850{
7851 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7852
7853 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7854 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7855
7856 VBOXSTRICTRC rcStrict;
7857 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7858 if (fSupportsNextRipSave)
7859 {
7860 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7861 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7862 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7863 }
7864 else
7865 {
7866 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7867 rcStrict = IEMExecOne(pVCpu);
7868 }
7869
7870 if (rcStrict == VINF_IEM_RAISED_XCPT)
7871 {
7872 rcStrict = VINF_SUCCESS;
7873 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7874 }
7875 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7876 return rcStrict;
7877}
7878
7879
7880/**
7881 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7882 */
7883HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7884{
7885 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7886
7887 VBOXSTRICTRC rcStrict;
7888 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7889 if (fSupportsNextRipSave)
7890 {
7891 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7892 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7893 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7894 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7895 }
7896 else
7897 {
7898 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7899 rcStrict = IEMExecOne(pVCpu);
7900 }
7901
7902 if (rcStrict == VINF_IEM_RAISED_XCPT)
7903 {
7904 rcStrict = VINF_SUCCESS;
7905 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7906 }
7907 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7908 return rcStrict;
7909}
7910
7911
7912/**
7913 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7914 */
7915HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7916{
7917 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7918 /* We shall import the entire state here, just in case we enter and continue execution of
7919 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
7920 could lose lose part of CPU state. */
7921 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7922
7923 VBOXSTRICTRC rcStrict;
7924 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7925 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
7926 if (fSupportsNextRipSave)
7927 {
7928 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7929 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7930 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7931 }
7932 else
7933 {
7934 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
7935 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
7936 instruction itself, see @bugref{7243#c126} */
7937 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
7938 }
7939 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
7940
7941 if (rcStrict == VINF_SUCCESS)
7942 {
7943 rcStrict = VINF_SVM_VMRUN;
7944 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
7945 }
7946 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7947 {
7948 rcStrict = VINF_SUCCESS;
7949 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7950 }
7951 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7952 return rcStrict;
7953}
7954
7955
7956/**
7957 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
7958 * Unconditional \#VMEXIT.
7959 */
7960HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7961{
7962 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7963 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7964
7965 if (pVCpu->hm.s.Event.fPending)
7966 {
7967 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7968 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7969 }
7970
7971 hmR0SvmSetPendingXcptDB(pVCpu);
7972 return VINF_SUCCESS;
7973}
7974
7975
7976/**
7977 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7978 * Conditional \#VMEXIT.
7979 */
7980HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7981{
7982 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7983 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7984
7985 SVMEVENT Event;
7986 Event.u = 0;
7987 Event.n.u1Valid = 1;
7988 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7989 Event.n.u8Vector = X86_XCPT_BP;
7990 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7991 return VINF_SUCCESS;
7992}
7993#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
7994
7995/** @} */
7996
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette