VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 90379

Last change on this file since 90379 was 90379, checked in by vboxsync, 3 years ago

VMM: Implementing blocking on critical sections in ring-0 HM context (actual code is disabled). bugref:6695

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 319.6 KB
Line 
1/* $Id: HMSVMR0.cpp 90379 2021-07-28 20:00:43Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vmcc.h>
37#include <VBox/err.h>
38#include "HMSVMR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMSVM_SYNC_FULL_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60
61# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
65 if ((u64ExitCode) == SVM_EXIT_NPF) \
66 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
67 else \
68 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
69 } while (0)
70# endif
71#else
72# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
74# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
75# endif
76#endif /* !VBOX_WITH_STATISTICS */
77
78/** If we decide to use a function table approach this can be useful to
79 * switch to a "static DECLCALLBACK(int)". */
80#define HMSVM_EXIT_DECL static VBOXSTRICTRC
81
82/**
83 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
84 * guest using hardware-assisted SVM.
85 *
86 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
87 * are swapped and restored across the world-switch and also registers like
88 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
89 * \#VMEXIT.
90 */
91#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
92 | CPUMCTX_EXTRN_RFLAGS \
93 | CPUMCTX_EXTRN_RAX \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_CR0 \
97 | CPUMCTX_EXTRN_CR2 \
98 | CPUMCTX_EXTRN_CR3 \
99 | CPUMCTX_EXTRN_TABLE_MASK \
100 | CPUMCTX_EXTRN_DR6 \
101 | CPUMCTX_EXTRN_DR7 \
102 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
103 | CPUMCTX_EXTRN_SYSCALL_MSRS \
104 | CPUMCTX_EXTRN_SYSENTER_MSRS \
105 | CPUMCTX_EXTRN_HWVIRT \
106 | CPUMCTX_EXTRN_HM_SVM_MASK)
107
108/**
109 * Subset of the guest-CPU state that is shared between the guest and host.
110 */
111#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
112
113/** Macro for importing guest state from the VMCB back into CPUMCTX. */
114#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
115 do { \
116 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
117 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
118 } while (0)
119
120/** Assert that the required state bits are fetched. */
121#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
122 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
123 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
124
125/** Assert that preemption is disabled or covered by thread-context hooks. */
126#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
127 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
128
129/** Assert that we haven't migrated CPUs when thread-context hooks are not
130 * used. */
131#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
132 || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
133 ("Illegal migration! Entered on CPU %u Current %u\n", \
134 (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()));
135
136/** Assert that we're not executing a nested-guest. */
137#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
139#else
140# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
141#endif
142
143/** Assert that we're executing a nested-guest. */
144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
146#else
147# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
148#endif
149
150/** Macro for checking and returning from the using function for
151 * \#VMEXIT intercepts that maybe caused during delivering of another
152 * event in the guest. */
153#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
154# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
155 do \
156 { \
157 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
158 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
159 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
160 else if ( rc == VINF_EM_RESET \
161 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
162 { \
163 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
164 return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \
165 } \
166 else \
167 return rc; \
168 } while (0)
169#else
170# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
171 do \
172 { \
173 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
174 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
175 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
176 else \
177 return rc; \
178 } while (0)
179#endif
180
181/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
182 * instruction that exited. */
183#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
184 do { \
185 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
186 (a_rc) = VINF_EM_DBG_STEPPED; \
187 } while (0)
188
189/** Validate segment descriptor granularity bit. */
190#ifdef VBOX_STRICT
191# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
192 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
193 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
194 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
195 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
196 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
197 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
198#else
199# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
200#endif
201
202/**
203 * Exception bitmap mask for all contributory exceptions.
204 *
205 * Page fault is deliberately excluded here as it's conditional as to whether
206 * it's contributory or benign. Page faults are handled separately.
207 */
208#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
209 | RT_BIT(X86_XCPT_DE))
210
211/**
212 * Mandatory/unconditional guest control intercepts.
213 *
214 * SMIs can and do happen in normal operation. We need not intercept them
215 * while executing the guest (or nested-guest).
216 */
217#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
218 | SVM_CTRL_INTERCEPT_NMI \
219 | SVM_CTRL_INTERCEPT_INIT \
220 | SVM_CTRL_INTERCEPT_RDPMC \
221 | SVM_CTRL_INTERCEPT_CPUID \
222 | SVM_CTRL_INTERCEPT_RSM \
223 | SVM_CTRL_INTERCEPT_HLT \
224 | SVM_CTRL_INTERCEPT_IOIO_PROT \
225 | SVM_CTRL_INTERCEPT_MSR_PROT \
226 | SVM_CTRL_INTERCEPT_INVLPGA \
227 | SVM_CTRL_INTERCEPT_SHUTDOWN \
228 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
229 | SVM_CTRL_INTERCEPT_VMRUN \
230 | SVM_CTRL_INTERCEPT_SKINIT \
231 | SVM_CTRL_INTERCEPT_WBINVD \
232 | SVM_CTRL_INTERCEPT_MONITOR \
233 | SVM_CTRL_INTERCEPT_MWAIT \
234 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
235 | SVM_CTRL_INTERCEPT_XSETBV)
236
237/** @name VMCB Clean Bits.
238 *
239 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
240 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
241 * memory.
242 *
243 * @{ */
244/** All intercepts vectors, TSC offset, PAUSE filter counter. */
245#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
246/** I/O permission bitmap, MSR permission bitmap. */
247#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
248/** ASID. */
249#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
250/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
251V_INTR_VECTOR. */
252#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
253/** Nested Paging: Nested CR3 (nCR3), PAT. */
254#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
255/** Control registers (CR0, CR3, CR4, EFER). */
256#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
257/** Debug registers (DR6, DR7). */
258#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
259/** GDT, IDT limit and base. */
260#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
261/** Segment register: CS, SS, DS, ES limit and base. */
262#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
263/** CR2.*/
264#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
265/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
266#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
267/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
268PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
269#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
270/** Mask of all valid VMCB Clean bits. */
271#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
272 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
273 | HMSVM_VMCB_CLEAN_ASID \
274 | HMSVM_VMCB_CLEAN_INT_CTRL \
275 | HMSVM_VMCB_CLEAN_NP \
276 | HMSVM_VMCB_CLEAN_CRX_EFER \
277 | HMSVM_VMCB_CLEAN_DRX \
278 | HMSVM_VMCB_CLEAN_DT \
279 | HMSVM_VMCB_CLEAN_SEG \
280 | HMSVM_VMCB_CLEAN_CR2 \
281 | HMSVM_VMCB_CLEAN_LBR \
282 | HMSVM_VMCB_CLEAN_AVIC)
283/** @} */
284
285/** @name SVM transient.
286 *
287 * A state structure for holding miscellaneous information across AMD-V
288 * VMRUN/\#VMEXIT operation, restored after the transition.
289 *
290 * @{ */
291typedef struct SVMTRANSIENT
292{
293 /** The host's rflags/eflags. */
294 RTCCUINTREG fEFlags;
295 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
296 uint64_t u64ExitCode;
297
298 /** The guest's TPR value used for TPR shadowing. */
299 uint8_t u8GuestTpr;
300 /** Alignment. */
301 uint8_t abAlignment0[7];
302
303 /** Pointer to the currently executing VMCB. */
304 PSVMVMCB pVmcb;
305
306 /** Whether we are currently executing a nested-guest. */
307 bool fIsNestedGuest;
308 /** Whether the guest debug state was active at the time of \#VMEXIT. */
309 bool fWasGuestDebugStateActive;
310 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
311 bool fWasHyperDebugStateActive;
312 /** Whether the TSC offset mode needs to be updated. */
313 bool fUpdateTscOffsetting;
314 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
315 bool fRestoreTscAuxMsr;
316 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
317 * contributary exception or a page-fault. */
318 bool fVectoringDoublePF;
319 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
320 * external interrupt or NMI. */
321 bool fVectoringPF;
322 /** Padding. */
323 bool afPadding0;
324} SVMTRANSIENT;
325/** Pointer to SVM transient state. */
326typedef SVMTRANSIENT *PSVMTRANSIENT;
327/** Pointer to a const SVM transient state. */
328typedef const SVMTRANSIENT *PCSVMTRANSIENT;
329
330AssertCompileSizeAlignment(SVMTRANSIENT, sizeof(uint64_t));
331AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
332AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
333/** @} */
334
335/**
336 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
337 */
338typedef enum SVMMSREXITREAD
339{
340 /** Reading this MSR causes a \#VMEXIT. */
341 SVMMSREXIT_INTERCEPT_READ = 0xb,
342 /** Reading this MSR does not cause a \#VMEXIT. */
343 SVMMSREXIT_PASSTHRU_READ
344} SVMMSREXITREAD;
345
346/**
347 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
348 */
349typedef enum SVMMSREXITWRITE
350{
351 /** Writing to this MSR causes a \#VMEXIT. */
352 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
353 /** Writing to this MSR does not cause a \#VMEXIT. */
354 SVMMSREXIT_PASSTHRU_WRITE
355} SVMMSREXITWRITE;
356
357/**
358 * SVM \#VMEXIT handler.
359 *
360 * @returns Strict VBox status code.
361 * @param pVCpu The cross context virtual CPU structure.
362 * @param pSvmTransient Pointer to the SVM-transient structure.
363 */
364typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
365
366
367/*********************************************************************************************************************************
368* Internal Functions *
369*********************************************************************************************************************************/
370static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
371static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
372
373
374/** @name \#VMEXIT handlers.
375 * @{
376 */
377static FNSVMEXITHANDLER hmR0SvmExitIntr;
378static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
379static FNSVMEXITHANDLER hmR0SvmExitInvd;
380static FNSVMEXITHANDLER hmR0SvmExitCpuid;
381static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
382static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
383static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
384static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
385static FNSVMEXITHANDLER hmR0SvmExitHlt;
386static FNSVMEXITHANDLER hmR0SvmExitMonitor;
387static FNSVMEXITHANDLER hmR0SvmExitMwait;
388static FNSVMEXITHANDLER hmR0SvmExitShutdown;
389static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
390static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
391static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
392static FNSVMEXITHANDLER hmR0SvmExitMsr;
393static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
394static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
395static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
396static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
397static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
398static FNSVMEXITHANDLER hmR0SvmExitVIntr;
399static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
400static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
401static FNSVMEXITHANDLER hmR0SvmExitPause;
402static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
403static FNSVMEXITHANDLER hmR0SvmExitIret;
404static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
405static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
406static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
407static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
408static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
409static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
410static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
411#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
412static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
413#endif
414#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
415static FNSVMEXITHANDLER hmR0SvmExitClgi;
416static FNSVMEXITHANDLER hmR0SvmExitStgi;
417static FNSVMEXITHANDLER hmR0SvmExitVmload;
418static FNSVMEXITHANDLER hmR0SvmExitVmsave;
419static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
420static FNSVMEXITHANDLER hmR0SvmExitVmrun;
421static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
422static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
423#endif
424/** @} */
425
426static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
427#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
428static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
429#endif
430
431
432/*********************************************************************************************************************************
433* Global Variables *
434*********************************************************************************************************************************/
435/** Ring-0 memory object for the IO bitmap. */
436static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
437/** Physical address of the IO bitmap. */
438static RTHCPHYS g_HCPhysIOBitmap;
439/** Pointer to the IO bitmap. */
440static R0PTRTYPE(void *) g_pvIOBitmap;
441
442#ifdef VBOX_STRICT
443# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
444# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
445# define HMSVM_LOG_CS RT_BIT_32(2)
446# define HMSVM_LOG_SS RT_BIT_32(3)
447# define HMSVM_LOG_FS RT_BIT_32(4)
448# define HMSVM_LOG_GS RT_BIT_32(5)
449# define HMSVM_LOG_LBR RT_BIT_32(6)
450# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
451 | HMSVM_LOG_CR_REGS \
452 | HMSVM_LOG_CS \
453 | HMSVM_LOG_SS \
454 | HMSVM_LOG_FS \
455 | HMSVM_LOG_GS \
456 | HMSVM_LOG_LBR)
457
458/**
459 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
460 *
461 * @param pVCpu The cross context virtual CPU structure.
462 * @param pVmcb Pointer to the VM control block.
463 * @param pszPrefix Log prefix.
464 * @param fFlags Log flags, see HMSVM_LOG_XXX.
465 * @param uVerbose The verbosity level, currently unused.
466 */
467static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
468{
469 RT_NOREF2(pVCpu, uVerbose);
470 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
471
472 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
473 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
474
475 if (fFlags & HMSVM_LOG_RBP_RSP)
476 {
477 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
478 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
479 }
480
481 if (fFlags & HMSVM_LOG_CR_REGS)
482 {
483 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
484 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
485 }
486
487 if (fFlags & HMSVM_LOG_CS)
488 {
489 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
490 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
491 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
492 }
493 if (fFlags & HMSVM_LOG_SS)
494 {
495 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
496 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
497 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
498 }
499 if (fFlags & HMSVM_LOG_FS)
500 {
501 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
502 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
503 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
504 }
505 if (fFlags & HMSVM_LOG_GS)
506 {
507 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
508 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
509 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
510 }
511
512 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
513 if (fFlags & HMSVM_LOG_LBR)
514 {
515 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
516 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
517 }
518 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
519}
520#endif /* VBOX_STRICT */
521
522
523/**
524 * Sets up and activates AMD-V on the current CPU.
525 *
526 * @returns VBox status code.
527 * @param pHostCpu The HM physical-CPU structure.
528 * @param pVM The cross context VM structure. Can be
529 * NULL after a resume!
530 * @param pvCpuPage Pointer to the global CPU page.
531 * @param HCPhysCpuPage Physical address of the global CPU page.
532 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
533 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
534 * unused).
535 */
536VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
537 PCSUPHWVIRTMSRS pHwvirtMsrs)
538{
539 Assert(!fEnabledByHost);
540 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
541 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
542 Assert(pvCpuPage); NOREF(pvCpuPage);
543 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
544
545 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
546
547 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
548 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
549
550 /*
551 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
552 */
553 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
554 if (u64HostEfer & MSR_K6_EFER_SVME)
555 {
556 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
557 if ( pVM
558 && pVM->hm.s.svm.fIgnoreInUseError)
559 pHostCpu->fIgnoreAMDVInUseError = true;
560
561 if (!pHostCpu->fIgnoreAMDVInUseError)
562 {
563 ASMSetFlags(fEFlags);
564 return VERR_SVM_IN_USE;
565 }
566 }
567
568 /* Turn on AMD-V in the EFER MSR. */
569 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
570
571 /* Write the physical page address where the CPU will store the host state while executing the VM. */
572 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
573
574 /* Restore interrupts. */
575 ASMSetFlags(fEFlags);
576
577 /*
578 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
579 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
580 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
581 * entirely with before executing any guest code.
582 */
583 pHostCpu->fFlushAsidBeforeUse = true;
584
585 /*
586 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
587 */
588 ++pHostCpu->cTlbFlushes;
589
590 return VINF_SUCCESS;
591}
592
593
594/**
595 * Deactivates AMD-V on the current CPU.
596 *
597 * @returns VBox status code.
598 * @param pHostCpu The HM physical-CPU structure.
599 * @param pvCpuPage Pointer to the global CPU page.
600 * @param HCPhysCpuPage Physical address of the global CPU page.
601 */
602VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
603{
604 RT_NOREF1(pHostCpu);
605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
606 AssertReturn( HCPhysCpuPage
607 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
608 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
609
610 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
611 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
612
613 /* Turn off AMD-V in the EFER MSR. */
614 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
615 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
616
617 /* Invalidate host state physical address. */
618 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
619
620 /* Restore interrupts. */
621 ASMSetFlags(fEFlags);
622
623 return VINF_SUCCESS;
624}
625
626
627/**
628 * Does global AMD-V initialization (called during module initialization).
629 *
630 * @returns VBox status code.
631 */
632VMMR0DECL(int) SVMR0GlobalInit(void)
633{
634 /*
635 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
636 * intercept all IO accesses, it's done once globally here instead of per-VM.
637 */
638 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
639 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
640 if (RT_FAILURE(rc))
641 return rc;
642
643 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
644 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
645
646 /* Set all bits to intercept all IO accesses. */
647 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
648
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Does global AMD-V termination (called during module termination).
655 */
656VMMR0DECL(void) SVMR0GlobalTerm(void)
657{
658 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
659 {
660 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
661 g_pvIOBitmap = NULL;
662 g_HCPhysIOBitmap = 0;
663 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
664 }
665}
666
667
668/**
669 * Frees any allocated per-VCPU structures for a VM.
670 *
671 * @param pVM The cross context VM structure.
672 */
673DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
674{
675 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
676 {
677 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
678 AssertPtr(pVCpu);
679
680 if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false);
683 pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0;
684 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false);
690 pVCpu->hmr0.s.svm.pVmcb = NULL;
691 pVCpu->hmr0.s.svm.HCPhysVmcb = 0;
692 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
693 }
694
695 if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
696 {
697 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false);
698 pVCpu->hmr0.s.svm.pvMsrBitmap = NULL;
699 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0;
700 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
701 }
702 }
703}
704
705
706/**
707 * Sets pfnVMRun to the best suited variant.
708 *
709 * This must be called whenever anything changes relative to the SVMR0VMRun
710 * variant selection:
711 * - pVCpu->hm.s.fLoadSaveGuestXcr0
712 * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher
713 * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher
714 * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
715 * - Perhaps: CPUMCTX.fXStateMask (windows only)
716 *
717 * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor
718 * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime.
719 */
720static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu)
721{
722 static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] =
723 {
724 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit },
725 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit },
726 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit },
727 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit },
728 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit },
729 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit },
730 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit },
731 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit },
732 };
733 uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
734 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
735 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0);
736 PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn;
737 if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun)
738 pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun;
739}
740
741
742/**
743 * Selector FNHMSVMVMRUN implementation.
744 */
745static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB)
746{
747 hmR0SvmUpdateVmRunFunction(pVCpu);
748 return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB);
749}
750
751
752/**
753 * Does per-VM AMD-V initialization.
754 *
755 * @returns VBox status code.
756 * @param pVM The cross context VM structure.
757 */
758VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
759{
760 int rc = VERR_INTERNAL_ERROR_5;
761
762 /*
763 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
764 */
765 uint32_t u32Family;
766 uint32_t u32Model;
767 uint32_t u32Stepping;
768 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
769 {
770 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
771 pVM->hmr0.s.svm.fAlwaysFlushTLB = true;
772 }
773
774 /*
775 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
776 */
777 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
778 {
779 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
780 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
781 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
782 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
783 }
784
785 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
786 {
787 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
788
789 /*
790 * Initialize the hardware-assisted SVM guest-execution handler.
791 * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}.
792 */
793 pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector;
794
795 /*
796 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
797 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
798 */
799/** @todo Does this need to be below 4G? */
800 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
801 if (RT_FAILURE(rc))
802 goto failure_cleanup;
803
804 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost);
805 pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */);
806 Assert(pVCpu->hmr0.s.svm.HCPhysVmcbHost < _4G);
807 ASMMemZeroPage(pvVmcbHost);
808
809 /*
810 * Allocate one page for the guest-state VMCB.
811 */
812/** @todo Does this need to be below 4G? */
813 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
814 if (RT_FAILURE(rc))
815 goto failure_cleanup;
816
817 pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb);
818 pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */);
819 Assert(pVCpu->hmr0.s.svm.HCPhysVmcb < _4G);
820 ASMMemZeroPage(pVCpu->hmr0.s.svm.pVmcb);
821
822 /*
823 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
824 * SVM to not require one.
825 */
826/** @todo Does this need to be below 4G? */
827 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
828 false /* fExecutable */);
829 if (RT_FAILURE(rc))
830 goto failure_cleanup;
831
832 pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap);
833 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
834 /* Set all bits to intercept all MSR accesses (changed later on). */
835 ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
836 }
837
838 return VINF_SUCCESS;
839
840failure_cleanup:
841 hmR0SvmFreeStructs(pVM);
842 return rc;
843}
844
845
846/**
847 * Does per-VM AMD-V termination.
848 *
849 * @returns VBox status code.
850 * @param pVM The cross context VM structure.
851 */
852VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
853{
854 hmR0SvmFreeStructs(pVM);
855 return VINF_SUCCESS;
856}
857
858
859/**
860 * Returns whether the VMCB Clean Bits feature is supported.
861 *
862 * @returns @c true if supported, @c false otherwise.
863 * @param pVCpu The cross context virtual CPU structure.
864 * @param fIsNestedGuest Whether we are currently executing the nested-guest.
865 */
866DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
867{
868 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
869 bool const fHostVmcbCleanBits = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
870 if (!fIsNestedGuest)
871 return fHostVmcbCleanBits;
872 return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
873}
874
875
876/**
877 * Returns whether the decode assists feature is supported.
878 *
879 * @returns @c true if supported, @c false otherwise.
880 * @param pVCpu The cross context virtual CPU structure.
881 */
882DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
883{
884 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
885#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
886 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
887 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
888 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
889#endif
890 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
891}
892
893
894/**
895 * Returns whether the NRIP_SAVE feature is supported.
896 *
897 * @returns @c true if supported, @c false otherwise.
898 * @param pVCpu The cross context virtual CPU structure.
899 */
900DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
901{
902 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
903#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
904 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
905 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
906 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
907#endif
908 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
909}
910
911
912/**
913 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
914 *
915 * @param pVCpu The cross context virtual CPU structure.
916 * @param pbMsrBitmap Pointer to the MSR bitmap.
917 * @param idMsr The MSR for which the permissions are being set.
918 * @param enmRead MSR read permissions.
919 * @param enmWrite MSR write permissions.
920 *
921 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
922 * caller needs to take care of this.
923 */
924static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
925 SVMMSREXITWRITE enmWrite)
926{
927 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
928 uint16_t offMsrpm;
929 uint8_t uMsrpmBit;
930 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
931 AssertRC(rc);
932
933 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
934 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
935
936 pbMsrBitmap += offMsrpm;
937 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
938 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
939 else
940 {
941 if (!fInNestedGuestMode)
942 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
943#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
944 else
945 {
946 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
947 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
948 pbNstGstMsrBitmap += offMsrpm;
949 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
950 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
951 else
952 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
953 }
954#endif
955 }
956
957 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
958 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
959 else
960 {
961 if (!fInNestedGuestMode)
962 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
963#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
964 else
965 {
966 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
967 uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
968 pbNstGstMsrBitmap += offMsrpm;
969 if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
970 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
971 else
972 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
973 }
974#endif
975 }
976}
977
978
979/**
980 * Sets up AMD-V for the specified VM.
981 * This function is only called once per-VM during initalization.
982 *
983 * @returns VBox status code.
984 * @param pVM The cross context VM structure.
985 */
986VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
987{
988 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
989 AssertReturn(pVM, VERR_INVALID_PARAMETER);
990
991 /*
992 * Validate and copy over some parameters.
993 */
994 AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG);
995 bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
996 AssertReturn(!fNestedPaging || (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_INCOMPATIBLE_CONFIG);
997 pVM->hmr0.s.fNestedPaging = fNestedPaging;
998 pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
999
1000 /*
1001 * Determin some configuration parameters.
1002 */
1003 bool const fPauseFilter = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
1004 bool const fPauseFilterThreshold = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
1005 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
1006
1007 bool const fLbrVirt = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
1008 bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
1009
1010#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1011 bool const fVirtVmsaveVmload = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
1012 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging;
1013
1014 bool const fVGif = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF);
1015 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
1016#endif
1017
1018 PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
1019 PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb;
1020 AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
1021 PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
1022
1023 /* Always trap #AC for reasons of security. */
1024 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
1025
1026 /* Always trap #DB for reasons of security. */
1027 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
1028
1029 /* Trap exceptions unconditionally (debug purposes). */
1030#ifdef HMSVM_ALWAYS_TRAP_PF
1031 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
1032#endif
1033#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1034 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
1035 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
1036 | RT_BIT_32(X86_XCPT_DE)
1037 | RT_BIT_32(X86_XCPT_NM)
1038 | RT_BIT_32(X86_XCPT_UD)
1039 | RT_BIT_32(X86_XCPT_NP)
1040 | RT_BIT_32(X86_XCPT_SS)
1041 | RT_BIT_32(X86_XCPT_GP)
1042 | RT_BIT_32(X86_XCPT_PF)
1043 | RT_BIT_32(X86_XCPT_MF)
1044 ;
1045#endif
1046
1047 /* Apply the exceptions intercepts needed by the GIM provider. */
1048 if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1049 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
1050
1051 /* The mesa 3d driver hack needs #GP. */
1052 if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
1053 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
1054
1055 /* Set up unconditional intercepts and conditions. */
1056 pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
1057 | SVM_CTRL_INTERCEPT_VMMCALL
1058 | SVM_CTRL_INTERCEPT_VMSAVE
1059 | SVM_CTRL_INTERCEPT_VMLOAD
1060 | SVM_CTRL_INTERCEPT_CLGI
1061 | SVM_CTRL_INTERCEPT_STGI;
1062
1063#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
1064 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
1065#endif
1066
1067#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1068 if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm)
1069 {
1070 /* Virtualized VMSAVE/VMLOAD. */
1071 if (fUseVirtVmsaveVmload)
1072 {
1073 pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1;
1074 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE
1075 | SVM_CTRL_INTERCEPT_VMLOAD);
1076 }
1077 else
1078 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1079
1080 /* Virtual GIF. */
1081 if (fUseVGif)
1082 {
1083 pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1;
1084 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI
1085 | SVM_CTRL_INTERCEPT_STGI);
1086 }
1087 else
1088 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1089 }
1090 else
1091#endif
1092 {
1093 Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm);
1094 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1095 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1096 }
1097
1098 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1099 pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
1100
1101 /* Intercept all DRx reads and writes by default. Changed later on. */
1102 pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
1103 pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
1104
1105 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1106 pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
1107
1108 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1109 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1110 pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
1111
1112 /* Set the IO permission bitmap physical addresses. */
1113 pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1114
1115 /* LBR virtualization. */
1116 pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1117
1118 /* The host ASID MBZ, for the guest start with 1. */
1119 pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
1120
1121 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1122 pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging;
1123
1124 /* Without Nested Paging, we need additionally intercepts. */
1125 if (!fNestedPaging)
1126 {
1127 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1128 pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
1129 pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
1130
1131 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1132 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1133 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1134
1135 /* Page faults must be intercepted to implement shadow paging. */
1136 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1137 }
1138
1139 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1140 if (fUsePauseFilter)
1141 {
1142 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1143 pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1144 if (fPauseFilterThreshold)
1145 pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1146 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1147 }
1148
1149 /*
1150 * Setup the MSR permission bitmap.
1151 * The following MSRs are saved/restored automatically during the world-switch.
1152 * Don't intercept guest read/write accesses to these MSRs.
1153 */
1154 uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap;
1155 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1156 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1157 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1158 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1159 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1160 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1161 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1162 if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1163 {
1164 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1165 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1166 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1167 }
1168 else
1169 {
1170 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1171 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1172 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1173 }
1174 pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap;
1175
1176 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1177 Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
1178
1179 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
1180 {
1181 PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
1182 PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb;
1183 AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
1184 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1185
1186 /* Copy the VMCB control area. */
1187 memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
1188
1189 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1190 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap;
1191 memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1192 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap;
1193
1194 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1195 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1196
1197 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1198 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
1199 }
1200
1201#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1202 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1203 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1204#else
1205 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1206#endif
1207 return VINF_SUCCESS;
1208}
1209
1210
1211/**
1212 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1213 *
1214 * @returns Pointer to the current context VMCB.
1215 * @param pVCpu The cross context virtual CPU structure.
1216 */
1217DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
1218{
1219#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1220 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1221 return pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
1222#endif
1223 return pVCpu->hmr0.s.svm.pVmcb;
1224}
1225
1226
1227/**
1228 * Gets a pointer to the nested-guest VMCB cache.
1229 *
1230 * @returns Pointer to the nested-guest VMCB cache.
1231 * @param pVCpu The cross context virtual CPU structure.
1232 */
1233DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
1234{
1235#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1236 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1237 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1238#else
1239 RT_NOREF(pVCpu);
1240 return NULL;
1241#endif
1242}
1243
1244
1245/**
1246 * Invalidates a guest page by guest virtual address.
1247 *
1248 * @returns VBox status code.
1249 * @param pVCpu The cross context virtual CPU structure.
1250 * @param GCVirt Guest virtual address of the page to invalidate.
1251 */
1252VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1253{
1254 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1255
1256 bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB;
1257
1258 /* Skip it if a TLB flush is already pending. */
1259 if (!fFlushPending)
1260 {
1261 Log4Func(("%#RGv\n", GCVirt));
1262
1263 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1264 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1265
1266 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1267 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1268 }
1269 return VINF_SUCCESS;
1270}
1271
1272
1273/**
1274 * Flushes the appropriate tagged-TLB entries.
1275 *
1276 * @param pHostCpu The HM physical-CPU structure.
1277 * @param pVCpu The cross context virtual CPU structure.
1278 * @param pVmcb Pointer to the VM control block.
1279 */
1280static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1281{
1282 /*
1283 * Force a TLB flush for the first world switch if the current CPU differs from the one
1284 * we ran on last. This can happen both for start & resume due to long jumps back to
1285 * ring-3.
1286 *
1287 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1288 * correlation between it and the physical CPU.
1289 *
1290 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1291 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1292 */
1293 bool fNewAsid = false;
1294 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1295 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
1296 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes
1297#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1298 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1299#endif
1300 )
1301 {
1302 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1303 pVCpu->hmr0.s.fForceTLBFlush = true;
1304 fNewAsid = true;
1305 }
1306
1307 /* Set TLB flush state as checked until we return from the world switch. */
1308 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1309
1310 /* Check for explicit TLB flushes. */
1311 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1312 {
1313 pVCpu->hmr0.s.fForceTLBFlush = true;
1314 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1315 }
1316
1317 /*
1318 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1319 * This Host CPU requirement takes precedence.
1320 */
1321 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1322 if (pVM->hmr0.s.svm.fAlwaysFlushTLB)
1323 {
1324 pHostCpu->uCurrentAsid = 1;
1325 pVCpu->hmr0.s.uCurrentAsid = 1;
1326 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1327 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1328 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1329
1330 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1331 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1332 }
1333 else
1334 {
1335 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1336 if (pVCpu->hmr0.s.fForceTLBFlush)
1337 {
1338 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1339 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1340
1341 if (fNewAsid)
1342 {
1343 ++pHostCpu->uCurrentAsid;
1344
1345 bool fHitASIDLimit = false;
1346 if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
1347 {
1348 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1349 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1350 fHitASIDLimit = true;
1351 }
1352
1353 if ( fHitASIDLimit
1354 || pHostCpu->fFlushAsidBeforeUse)
1355 {
1356 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1357 pHostCpu->fFlushAsidBeforeUse = false;
1358 }
1359
1360 pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1361 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1362 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1363 }
1364 else
1365 {
1366 if (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1367 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1368 else
1369 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1370 }
1371
1372 pVCpu->hmr0.s.fForceTLBFlush = false;
1373 }
1374 }
1375
1376 /* Update VMCB with the ASID. */
1377 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid)
1378 {
1379 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid;
1380 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1381 }
1382
1383 AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu,
1384 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu));
1385 AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1386 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1387 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
1388 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1389 AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
1390 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
1391
1392#ifdef VBOX_WITH_STATISTICS
1393 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1394 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1395 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1396 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1397 {
1398 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1399 }
1400 else
1401 {
1402 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1403 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1404 }
1405#endif
1406}
1407
1408
1409/**
1410 * Sets an exception intercept in the specified VMCB.
1411 *
1412 * @param pVmcb Pointer to the VM control block.
1413 * @param uXcpt The exception (X86_XCPT_*).
1414 */
1415DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1416{
1417 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1418 {
1419 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1420 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1421 }
1422}
1423
1424
1425/**
1426 * Clears an exception intercept in the specified VMCB.
1427 *
1428 * @param pVCpu The cross context virtual CPU structure.
1429 * @param pVmcb Pointer to the VM control block.
1430 * @param uXcpt The exception (X86_XCPT_*).
1431 *
1432 * @remarks This takes into account if we're executing a nested-guest and only
1433 * removes the exception intercept if both the guest -and- nested-guest
1434 * are not intercepting it.
1435 */
1436DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1437{
1438 Assert(uXcpt != X86_XCPT_DB);
1439 Assert(uXcpt != X86_XCPT_AC);
1440 Assert(uXcpt != X86_XCPT_GP);
1441#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1442 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1443 {
1444 bool fRemove = true;
1445# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1446 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1447 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1448 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1449 {
1450 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1451 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1452 }
1453# else
1454 RT_NOREF(pVCpu);
1455# endif
1456 if (fRemove)
1457 {
1458 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1459 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1460 }
1461 }
1462#else
1463 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1464#endif
1465}
1466
1467
1468/**
1469 * Sets a control intercept in the specified VMCB.
1470 *
1471 * @param pVmcb Pointer to the VM control block.
1472 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1473 */
1474DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1475{
1476 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1477 {
1478 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1479 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1480 }
1481}
1482
1483
1484/**
1485 * Clears a control intercept in the specified VMCB.
1486 *
1487 * @returns @c true if the intercept is still set, @c false otherwise.
1488 * @param pVCpu The cross context virtual CPU structure.
1489 * @param pVmcb Pointer to the VM control block.
1490 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1491 *
1492 * @remarks This takes into account if we're executing a nested-guest and only
1493 * removes the control intercept if both the guest -and- nested-guest
1494 * are not intercepting it.
1495 */
1496static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1497{
1498 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1499 {
1500 bool fRemove = true;
1501#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1502 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1503 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1504 {
1505 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1506 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1507 }
1508#else
1509 RT_NOREF(pVCpu);
1510#endif
1511 if (fRemove)
1512 {
1513 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1514 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1515 }
1516 }
1517
1518 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1519}
1520
1521
1522/**
1523 * Exports the guest (or nested-guest) CR0 into the VMCB.
1524 *
1525 * @param pVCpu The cross context virtual CPU structure.
1526 * @param pVmcb Pointer to the VM control block.
1527 *
1528 * @remarks This assumes we always pre-load the guest FPU.
1529 * @remarks No-long-jump zone!!!
1530 */
1531static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1532{
1533 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1534
1535 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1536 uint64_t const uGuestCr0 = pCtx->cr0;
1537 uint64_t uShadowCr0 = uGuestCr0;
1538
1539 /* Always enable caching. */
1540 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1541
1542 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1543 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1544 {
1545 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1546 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1547 }
1548
1549 /*
1550 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1551 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1552 * see @bugref{7243#c103}.
1553 */
1554 if (!(uGuestCr0 & X86_CR0_NE))
1555 {
1556 uShadowCr0 |= X86_CR0_NE;
1557 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1558 }
1559 else
1560 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1561
1562 /*
1563 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1564 *
1565 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1566 * see @bugref{6944}.
1567 *
1568 * We also don't ever want to honor weird things like cache disable from the guest.
1569 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1570 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1571 */
1572 if (uShadowCr0 == uGuestCr0)
1573 {
1574 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1575 {
1576 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1577 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1578 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1579 }
1580 else
1581 {
1582 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1583 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1584 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1585 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1586 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1587 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1588 }
1589 }
1590 else
1591 {
1592 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1593 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1594 }
1595 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1596
1597 Assert(!RT_HI_U32(uShadowCr0));
1598 if (pVmcb->guest.u64CR0 != uShadowCr0)
1599 {
1600 pVmcb->guest.u64CR0 = uShadowCr0;
1601 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1602 }
1603}
1604
1605
1606/**
1607 * Exports the guest (or nested-guest) CR3 into the VMCB.
1608 *
1609 * @param pVCpu The cross context virtual CPU structure.
1610 * @param pVmcb Pointer to the VM control block.
1611 *
1612 * @remarks No-long-jump zone!!!
1613 */
1614static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1615{
1616 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1617
1618 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1619 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1620 if (pVM->hmr0.s.fNestedPaging)
1621 {
1622 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
1623 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1624 pVmcb->guest.u64CR3 = pCtx->cr3;
1625 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1626 }
1627 else
1628 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1629
1630 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1631}
1632
1633
1634/**
1635 * Exports the guest (or nested-guest) CR4 into the VMCB.
1636 *
1637 * @param pVCpu The cross context virtual CPU structure.
1638 * @param pVmcb Pointer to the VM control block.
1639 *
1640 * @remarks No-long-jump zone!!!
1641 */
1642static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1643{
1644 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1645
1646 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1647 uint64_t uShadowCr4 = pCtx->cr4;
1648 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1649 {
1650 switch (pVCpu->hm.s.enmShadowMode)
1651 {
1652 case PGMMODE_REAL:
1653 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1654 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1655
1656 case PGMMODE_32_BIT: /* 32-bit paging. */
1657 uShadowCr4 &= ~X86_CR4_PAE;
1658 break;
1659
1660 case PGMMODE_PAE: /* PAE paging. */
1661 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1662 /** Must use PAE paging as we could use physical memory > 4 GB */
1663 uShadowCr4 |= X86_CR4_PAE;
1664 break;
1665
1666 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1667 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1668#ifdef VBOX_WITH_64_BITS_GUESTS
1669 break;
1670#else
1671 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1672#endif
1673
1674 default: /* shut up gcc */
1675 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1676 }
1677 }
1678
1679 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1680 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1681 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
1682 {
1683 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
1684 hmR0SvmUpdateVmRunFunction(pVCpu);
1685 }
1686
1687 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1688 if (uShadowCr4 == pCtx->cr4)
1689 {
1690 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1691 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1692 else
1693 {
1694 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1695 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1696 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1697 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1698 }
1699 }
1700 else
1701 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1702
1703 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1704 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1705
1706 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1707 Assert(!RT_HI_U32(uShadowCr4));
1708 pVmcb->guest.u64CR4 = uShadowCr4;
1709 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1710
1711 return VINF_SUCCESS;
1712}
1713
1714
1715/**
1716 * Exports the guest (or nested-guest) control registers into the VMCB.
1717 *
1718 * @returns VBox status code.
1719 * @param pVCpu The cross context virtual CPU structure.
1720 * @param pVmcb Pointer to the VM control block.
1721 *
1722 * @remarks No-long-jump zone!!!
1723 */
1724static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1725{
1726 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1727
1728 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1729 {
1730 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1731 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1732
1733 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1734 {
1735 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1736 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1737 }
1738
1739 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1740 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1741
1742 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1743 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1744 {
1745 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1746 if (RT_FAILURE(rc))
1747 return rc;
1748 }
1749
1750 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1751 }
1752 return VINF_SUCCESS;
1753}
1754
1755
1756/**
1757 * Exports the guest (or nested-guest) segment registers into the VMCB.
1758 *
1759 * @returns VBox status code.
1760 * @param pVCpu The cross context virtual CPU structure.
1761 * @param pVmcb Pointer to the VM control block.
1762 *
1763 * @remarks No-long-jump zone!!!
1764 */
1765static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1766{
1767 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1768 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1769
1770 /* Guest segment registers. */
1771 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1772 {
1773 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1774 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1775
1776 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1777 {
1778 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1779 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1780 }
1781
1782 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1783 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1784
1785 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1786 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1787
1788 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1789 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1790
1791 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1792 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1793
1794 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1795 }
1796
1797 /* Guest TR. */
1798 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1799 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1800
1801 /* Guest LDTR. */
1802 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1803 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1804
1805 /* Guest GDTR. */
1806 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1807 {
1808 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1809 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1810 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1811 }
1812
1813 /* Guest IDTR. */
1814 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1815 {
1816 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1817 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1818 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1819 }
1820
1821 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1822 | HM_CHANGED_GUEST_TABLE_MASK);
1823}
1824
1825
1826/**
1827 * Exports the guest (or nested-guest) MSRs into the VMCB.
1828 *
1829 * @param pVCpu The cross context virtual CPU structure.
1830 * @param pVmcb Pointer to the VM control block.
1831 *
1832 * @remarks No-long-jump zone!!!
1833 */
1834static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1835{
1836 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1837 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1838
1839 /* Guest Sysenter MSRs. */
1840 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1841 {
1842 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1843 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1844
1845 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1846 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1847
1848 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1849 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1850 }
1851
1852 /*
1853 * Guest EFER MSR.
1854 * AMD-V requires guest EFER.SVME to be set. Weird.
1855 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1856 */
1857 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1858 {
1859 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1860 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1861 }
1862
1863 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1864 if ( !CPUMIsGuestInLongModeEx(pCtx)
1865 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1866 {
1867 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1868 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1869 }
1870
1871 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1872 {
1873 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1874 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1875 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1876 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1877 }
1878
1879 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1880 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1881
1882 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1883 | HM_CHANGED_GUEST_EFER_MSR
1884 | HM_CHANGED_GUEST_SYSCALL_MSRS
1885 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1886
1887 /*
1888 * Setup the PAT MSR (applicable for Nested Paging only).
1889 *
1890 * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
1891 * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
1892 *
1893 * While guests can modify and see the modified values through the shadow values,
1894 * we shall not honor any guest modifications of this MSR to ensure caching is always
1895 * enabled similar to how we clear CR0.CD and NW bits.
1896 *
1897 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1898 */
1899 pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
1900
1901 /* Enable the last branch record bit if LBR virtualization is enabled. */
1902 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1903 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1904}
1905
1906
1907/**
1908 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1909 * the necessary intercepts accordingly.
1910 *
1911 * @param pVCpu The cross context virtual CPU structure.
1912 * @param pVmcb Pointer to the VM control block.
1913 *
1914 * @remarks No-long-jump zone!!!
1915 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1916 */
1917static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1918{
1919 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1920
1921 /*
1922 * Anyone single stepping on the host side? If so, we'll have to use the
1923 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1924 * the VMM level like the VT-x implementations does.
1925 */
1926 bool fInterceptMovDRx = false;
1927 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1928 if (fStepping)
1929 {
1930 pVCpu->hmr0.s.fClearTrapFlag = true;
1931 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1932 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1933 }
1934
1935 if ( fStepping
1936 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1937 {
1938 /*
1939 * Use the combined guest and host DRx values found in the hypervisor
1940 * register set because the debugger has breakpoints active or someone
1941 * is single stepping on the host side.
1942 *
1943 * Note! DBGF expects a clean DR6 state before executing guest code.
1944 */
1945 if (!CPUMIsHyperDebugStateActive(pVCpu))
1946 {
1947 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1948 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1949 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1950 }
1951
1952 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1953 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1954 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1955 {
1956 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1957 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1958 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1959 }
1960
1961 /** @todo If we cared, we could optimize to allow the guest to read registers
1962 * with the same values. */
1963 fInterceptMovDRx = true;
1964 pVCpu->hmr0.s.fUsingHyperDR7 = true;
1965 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1966 }
1967 else
1968 {
1969 /*
1970 * Update DR6, DR7 with the guest values if necessary.
1971 */
1972 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1973 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1974 {
1975 pVmcb->guest.u64DR7 = pCtx->dr[7];
1976 pVmcb->guest.u64DR6 = pCtx->dr[6];
1977 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1978 }
1979 pVCpu->hmr0.s.fUsingHyperDR7 = false;
1980
1981 /*
1982 * If the guest has enabled debug registers, we need to load them prior to
1983 * executing guest code so they'll trigger at the right time.
1984 */
1985 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1986 {
1987 if (!CPUMIsGuestDebugStateActive(pVCpu))
1988 {
1989 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1990 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1991 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1992 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1993 }
1994 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
1995 }
1996 /*
1997 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1998 * intercept #DB as DR6 is updated in the VMCB.
1999 *
2000 * Note! If we cared and dared, we could skip intercepting \#DB here.
2001 * However, \#DB shouldn't be performance critical, so we'll play safe
2002 * and keep the code similar to the VT-x code and always intercept it.
2003 */
2004 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2005 fInterceptMovDRx = true;
2006 }
2007
2008 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2009 if (fInterceptMovDRx)
2010 {
2011 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2012 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2013 {
2014 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2015 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2016 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2017 }
2018 }
2019 else
2020 {
2021 if ( pVmcb->ctrl.u16InterceptRdDRx
2022 || pVmcb->ctrl.u16InterceptWrDRx)
2023 {
2024 pVmcb->ctrl.u16InterceptRdDRx = 0;
2025 pVmcb->ctrl.u16InterceptWrDRx = 0;
2026 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2027 }
2028 }
2029 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2030}
2031
2032/**
2033 * Exports the hardware virtualization state into the nested-guest
2034 * VMCB.
2035 *
2036 * @param pVCpu The cross context virtual CPU structure.
2037 * @param pVmcb Pointer to the VM control block.
2038 *
2039 * @remarks No-long-jump zone!!!
2040 */
2041static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2042{
2043 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2044
2045 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2046 {
2047 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2048 {
2049 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2050 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
2051
2052 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
2053 Assert(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
2054 Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
2055 NOREF(pVM);
2056
2057 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2058 }
2059
2060 /*
2061 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2062 * since SVM doesn't have a preemption timer.
2063 *
2064 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2065 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2066 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2067 */
2068 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2069 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2070 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2071 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2072 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
2073 {
2074 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2075 pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2076 pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2077 }
2078 else
2079 {
2080 /** @todo r=ramshankar: We can turn these assignments into assertions. */
2081 pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2082 pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2083 }
2084 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2085
2086 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2087 }
2088}
2089
2090
2091/**
2092 * Exports the guest APIC TPR state into the VMCB.
2093 *
2094 * @returns VBox status code.
2095 * @param pVCpu The cross context virtual CPU structure.
2096 * @param pVmcb Pointer to the VM control block.
2097 */
2098static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2099{
2100 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2101
2102 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2103 {
2104 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2105 if ( PDMHasApic(pVM)
2106 && APICIsEnabled(pVCpu))
2107 {
2108 bool fPendingIntr;
2109 uint8_t u8Tpr;
2110 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2111 AssertRCReturn(rc, rc);
2112
2113 /* Assume that we need to trap all TPR accesses and thus need not check on
2114 every #VMEXIT if we should update the TPR. */
2115 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2116 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2117
2118 if (!pVM->hm.s.fTprPatchingActive)
2119 {
2120 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2121 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2122
2123 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2124 can deliver the interrupt to the guest. */
2125 if (fPendingIntr)
2126 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2127 else
2128 {
2129 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2130 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2131 }
2132
2133 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2134 }
2135 else
2136 {
2137 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2138 pVmcb->guest.u64LSTAR = u8Tpr;
2139 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2140
2141 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2142 if (fPendingIntr)
2143 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2144 else
2145 {
2146 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2147 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2148 }
2149 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2150 }
2151 }
2152 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2153 }
2154 return VINF_SUCCESS;
2155}
2156
2157
2158/**
2159 * Sets up the exception interrupts required for guest execution in the VMCB.
2160 *
2161 * @param pVCpu The cross context virtual CPU structure.
2162 * @param pVmcb Pointer to the VM control block.
2163 *
2164 * @remarks No-long-jump zone!!!
2165 */
2166static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2167{
2168 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2169
2170 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2171 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
2172 {
2173 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2174 if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
2175 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2176 else
2177 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2178
2179 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2180 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2181 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2182 else
2183 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2184
2185 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2186 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
2187 }
2188}
2189
2190
2191#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2192/**
2193 * Merges guest and nested-guest intercepts for executing the nested-guest using
2194 * hardware-assisted SVM.
2195 *
2196 * This merges the guest and nested-guest intercepts in a way that if the outer
2197 * guest intercept is set we need to intercept it in the nested-guest as
2198 * well.
2199 *
2200 * @param pVCpu The cross context virtual CPU structure.
2201 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2202 */
2203static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
2204{
2205 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2206 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
2207 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2208 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2209
2210 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2211 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2212 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2213
2214 /* Always intercept CR4 writes for tracking PGM mode changes. */
2215 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2216
2217 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2218 if (!pVM->hmr0.s.fNestedPaging)
2219 {
2220 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2221 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2222 }
2223
2224 /** @todo Figure out debugging with nested-guests, till then just intercept
2225 * all DR[0-15] accesses. */
2226 pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
2227 pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
2228
2229 /*
2230 * Merge the guest's exception intercepts into the nested-guest VMCB.
2231 *
2232 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2233 * while executing the nested-guest.
2234 *
2235 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2236 * be tweaked later depending on how we wish to implement breakpoints.
2237 *
2238 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2239 * loaded into their guests, not ours.
2240 *
2241 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2242 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2243 */
2244#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2245 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2246 & ~( RT_BIT(X86_XCPT_UD)
2247 | RT_BIT(X86_XCPT_BP)
2248 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2249#else
2250 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2251#endif
2252
2253 /*
2254 * Adjust intercepts while executing the nested-guest that differ from the
2255 * outer guest intercepts.
2256 *
2257 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2258 * that belong to the nested-guest to the outer guest.
2259 *
2260 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2261 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2262 */
2263 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2264 | SVM_CTRL_INTERCEPT_VMMCALL))
2265 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2266
2267 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2268 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2269
2270 /* Finally, update the VMCB clean bits. */
2271 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2272}
2273#endif
2274
2275
2276/**
2277 * Enters the AMD-V session.
2278 *
2279 * @returns VBox status code.
2280 * @param pVCpu The cross context virtual CPU structure.
2281 */
2282VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
2283{
2284 AssertPtr(pVCpu);
2285 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2286 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2287
2288 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2289 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2290 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2291
2292 pVCpu->hmr0.s.fLeaveDone = false;
2293 return VINF_SUCCESS;
2294}
2295
2296
2297/**
2298 * Thread-context callback for AMD-V.
2299 *
2300 * This is used together with RTThreadCtxHookCreate() on platforms which
2301 * supports it, and directly from VMMR0EmtPrepareForBlocking() and
2302 * VMMR0EmtResumeAfterBlocking() on platforms which don't.
2303 *
2304 * @param enmEvent The thread-context event.
2305 * @param pVCpu The cross context virtual CPU structure.
2306 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2307 * @thread EMT(pVCpu)
2308 */
2309VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
2310{
2311 NOREF(fGlobalInit);
2312
2313 switch (enmEvent)
2314 {
2315 case RTTHREADCTXEVENT_OUT:
2316 {
2317 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2318 VMCPU_ASSERT_EMT(pVCpu);
2319
2320 /* No longjmps (log-flush, locks) in this fragile context. */
2321 VMMRZCallRing3Disable(pVCpu);
2322
2323 if (!pVCpu->hmr0.s.fLeaveDone)
2324 {
2325 hmR0SvmLeave(pVCpu, false /* fImportState */);
2326 pVCpu->hmr0.s.fLeaveDone = true;
2327 }
2328
2329 /* Leave HM context, takes care of local init (term). */
2330 int rc = HMR0LeaveCpu(pVCpu);
2331 AssertRC(rc); NOREF(rc);
2332
2333 /* Restore longjmp state. */
2334 VMMRZCallRing3Enable(pVCpu);
2335 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2336 break;
2337 }
2338
2339 case RTTHREADCTXEVENT_IN:
2340 {
2341 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2342 VMCPU_ASSERT_EMT(pVCpu);
2343
2344 /* No longjmps (log-flush, locks) in this fragile context. */
2345 VMMRZCallRing3Disable(pVCpu);
2346
2347 /*
2348 * Initialize the bare minimum state required for HM. This takes care of
2349 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2350 */
2351 int rc = hmR0EnterCpu(pVCpu);
2352 AssertRC(rc); NOREF(rc);
2353 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2354 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2355
2356 pVCpu->hmr0.s.fLeaveDone = false;
2357
2358 /* Restore longjmp state. */
2359 VMMRZCallRing3Enable(pVCpu);
2360 break;
2361 }
2362
2363 default:
2364 break;
2365 }
2366}
2367
2368
2369/**
2370 * Saves the host state.
2371 *
2372 * @returns VBox status code.
2373 * @param pVCpu The cross context virtual CPU structure.
2374 *
2375 * @remarks No-long-jump zone!!!
2376 */
2377VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
2378{
2379 NOREF(pVCpu);
2380
2381 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2382 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2383 return VINF_SUCCESS;
2384}
2385
2386
2387/**
2388 * Exports the guest or nested-guest state from the virtual-CPU context into the
2389 * VMCB.
2390 *
2391 * Also sets up the appropriate VMRUN function to execute guest or nested-guest
2392 * code based on the virtual-CPU mode.
2393 *
2394 * @returns VBox status code.
2395 * @param pVCpu The cross context virtual CPU structure.
2396 * @param pSvmTransient Pointer to the SVM-transient structure.
2397 *
2398 * @remarks No-long-jump zone!!!
2399 */
2400static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
2401{
2402 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2403
2404 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2405 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2406 Assert(pVmcb);
2407
2408 pVmcb->guest.u64RIP = pCtx->rip;
2409 pVmcb->guest.u64RSP = pCtx->rsp;
2410 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2411 pVmcb->guest.u64RAX = pCtx->rax;
2412
2413 bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
2414 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2415
2416 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2417 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2418 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2419 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2420 hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
2421
2422 ASMSetFlags(fEFlags);
2423
2424 if (!fIsNestedGuest)
2425 {
2426 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2427 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2428 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2429 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2430 }
2431
2432 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2433 uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
2434 | HM_CHANGED_GUEST_RFLAGS
2435 | HM_CHANGED_GUEST_GPRS_MASK
2436 | HM_CHANGED_GUEST_X87
2437 | HM_CHANGED_GUEST_SSE_AVX
2438 | HM_CHANGED_GUEST_OTHER_XSAVE
2439 | HM_CHANGED_GUEST_XCRx
2440 | HM_CHANGED_GUEST_TSC_AUX
2441 | HM_CHANGED_GUEST_OTHER_MSRS;
2442 if (fIsNestedGuest)
2443 fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
2444 | HM_CHANGED_GUEST_APIC_TPR;
2445
2446 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
2447 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2448
2449#ifdef VBOX_STRICT
2450 /*
2451 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2452 * except for the host-context and/or shared host-guest context bits.
2453 */
2454 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2455 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2456 ("fCtxChanged=%#RX64\n", fCtxChanged));
2457
2458 /*
2459 * If we need to log state that isn't always imported, we'll need to import them here.
2460 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2461 */
2462 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2463#endif
2464
2465 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2466 return VINF_SUCCESS;
2467}
2468
2469
2470#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2471/**
2472 * Merges the guest and nested-guest MSR permission bitmap.
2473 *
2474 * If the guest is intercepting an MSR we need to intercept it regardless of
2475 * whether the nested-guest is intercepting it or not.
2476 *
2477 * @param pHostCpu The HM physical-CPU structure.
2478 * @param pVCpu The cross context virtual CPU structure.
2479 *
2480 * @remarks No-long-jmp zone!!!
2481 */
2482DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2483{
2484 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2485 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
2486 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2487
2488 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2489 uint32_t const offRsvdQwords = 0x1800 >> 3;
2490 for (uint32_t i = 0; i < offRsvdQwords; i++)
2491 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2492}
2493
2494
2495/**
2496 * Caches the nested-guest VMCB fields before we modify them for execution using
2497 * hardware-assisted SVM.
2498 *
2499 * @returns true if the VMCB was previously already cached, false otherwise.
2500 * @param pVCpu The cross context virtual CPU structure.
2501 *
2502 * @sa HMNotifySvmNstGstVmexit.
2503 */
2504static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
2505{
2506 /*
2507 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2508 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2509 *
2510 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2511 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2512 */
2513 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2514 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2515 if (!fWasCached)
2516 {
2517 PCSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2518 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2519 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2520 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2521 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2522 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2523 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2524 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2525 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2526 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2527 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2528 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2529 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2530 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2531 pVmcbNstGstCache->fCacheValid = true;
2532 Log4Func(("Cached VMCB fields\n"));
2533 }
2534
2535 return fWasCached;
2536}
2537
2538
2539/**
2540 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2541 *
2542 * This is done the first time we enter nested-guest execution using SVM R0
2543 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2544 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2545 *
2546 * @param pVCpu The cross context virtual CPU structure.
2547 */
2548static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
2549{
2550 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
2551 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2552
2553 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2554
2555 /*
2556 * First cache the nested-guest VMCB fields we may potentially modify.
2557 */
2558 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2559 if (!fVmcbCached)
2560 {
2561 /*
2562 * The IOPM of the nested-guest can be ignored because the the guest always
2563 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2564 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2565 */
2566 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2567
2568 /*
2569 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2570 * nested-paging suddenly while executing a VM (see assertion at the end of
2571 * Trap0eHandler() in PGMAllBth.h).
2572 */
2573 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
2574
2575 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2576 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2577
2578 /*
2579 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2580 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2581 */
2582 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2583
2584#ifdef DEBUG_ramshankar
2585 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2586 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2587#endif
2588
2589 /*
2590 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2591 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2592 */
2593 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2594 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2595 | SVM_CTRL_INTERCEPT_VMLOAD;
2596
2597 /*
2598 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2599 * CLGI/STGI instructions executed by the nested-guest.
2600 */
2601 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2602 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2603 | SVM_CTRL_INTERCEPT_STGI;
2604
2605 /* Merge the guest and nested-guest intercepts. */
2606 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2607
2608 /* Update the VMCB clean bits. */
2609 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2610 }
2611 else
2612 {
2613 Assert(!pVCpu->hmr0.s.svm.fSyncVTpr);
2614 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2615 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2616 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2617 }
2618}
2619#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2620
2621
2622/**
2623 * Exports the state shared between the host and guest (or nested-guest) into
2624 * the VMCB.
2625 *
2626 * @param pVCpu The cross context virtual CPU structure.
2627 * @param pVmcb Pointer to the VM control block.
2628 *
2629 * @remarks No-long-jump zone!!!
2630 */
2631static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2632{
2633 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2634 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2635
2636 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2637 {
2638 /** @todo Figure out stepping with nested-guest. */
2639 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2640 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2641 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2642 else
2643 {
2644 pVmcb->guest.u64DR6 = pCtx->dr[6];
2645 pVmcb->guest.u64DR7 = pCtx->dr[7];
2646 }
2647 }
2648
2649 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2650 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2651 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2652}
2653
2654
2655/**
2656 * Worker for SVMR0ImportStateOnDemand.
2657 *
2658 * @param pVCpu The cross context virtual CPU structure.
2659 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2660 */
2661static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
2662{
2663 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2664
2665 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2666 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2667 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2668 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2669
2670 /*
2671 * We disable interrupts to make the updating of the state and in particular
2672 * the fExtrn modification atomic wrt to preemption hooks.
2673 */
2674 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2675
2676 fWhat &= pCtx->fExtrn;
2677 if (fWhat)
2678 {
2679#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2680 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2681 {
2682 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2683 {
2684 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2685 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2686 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2687 }
2688 }
2689
2690 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2691 {
2692 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2693 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2694 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2695 }
2696#endif
2697
2698 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2699 {
2700 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2701 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2702 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2703 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2704 }
2705
2706 if (fWhat & CPUMCTX_EXTRN_RIP)
2707 pCtx->rip = pVmcbGuest->u64RIP;
2708
2709 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2710 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2711
2712 if (fWhat & CPUMCTX_EXTRN_RSP)
2713 pCtx->rsp = pVmcbGuest->u64RSP;
2714
2715 if (fWhat & CPUMCTX_EXTRN_RAX)
2716 pCtx->rax = pVmcbGuest->u64RAX;
2717
2718 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2719 {
2720 if (fWhat & CPUMCTX_EXTRN_CS)
2721 {
2722 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2723 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2724 /** @todo SELM might need to be fixed as it too should not care about the
2725 * granularity bit. See @bugref{6785}. */
2726 if ( !pCtx->cs.Attr.n.u1Granularity
2727 && pCtx->cs.Attr.n.u1Present
2728 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2729 {
2730 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2731 pCtx->cs.Attr.n.u1Granularity = 1;
2732 }
2733 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2734 }
2735 if (fWhat & CPUMCTX_EXTRN_SS)
2736 {
2737 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2738 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2739 /*
2740 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2741 * VMCB and uses that and thus it's possible that when the CPL changes during
2742 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2743 * AMD Fusion CPUs with 64-bit guests.
2744 *
2745 * See AMD spec. 15.5.1 "Basic operation".
2746 */
2747 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2748 uint8_t const uCpl = pVmcbGuest->u8CPL;
2749 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2750 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2751 }
2752 if (fWhat & CPUMCTX_EXTRN_DS)
2753 {
2754 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2755 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2756 }
2757 if (fWhat & CPUMCTX_EXTRN_ES)
2758 {
2759 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2760 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2761 }
2762 if (fWhat & CPUMCTX_EXTRN_FS)
2763 {
2764 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2765 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2766 }
2767 if (fWhat & CPUMCTX_EXTRN_GS)
2768 {
2769 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2770 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2771 }
2772 }
2773
2774 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2775 {
2776 if (fWhat & CPUMCTX_EXTRN_TR)
2777 {
2778 /*
2779 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2780 * are used between Intel and AMD, see @bugref{6208#c39}.
2781 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2782 */
2783 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2784 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2785 {
2786 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2787 || CPUMIsGuestInLongModeEx(pCtx))
2788 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2789 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2790 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2791 }
2792 }
2793
2794 if (fWhat & CPUMCTX_EXTRN_LDTR)
2795 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2796
2797 if (fWhat & CPUMCTX_EXTRN_GDTR)
2798 {
2799 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2800 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2801 }
2802
2803 if (fWhat & CPUMCTX_EXTRN_IDTR)
2804 {
2805 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2806 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2807 }
2808 }
2809
2810 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2811 {
2812 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2813 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2814 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2815 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2816 }
2817
2818 if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2819 && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */)
2820 {
2821 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2822 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2823 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2824 }
2825
2826 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2827 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2828
2829 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2830 {
2831 if (fWhat & CPUMCTX_EXTRN_DR6)
2832 {
2833 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2834 pCtx->dr[6] = pVmcbGuest->u64DR6;
2835 else
2836 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2837 }
2838
2839 if (fWhat & CPUMCTX_EXTRN_DR7)
2840 {
2841 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2842 pCtx->dr[7] = pVmcbGuest->u64DR7;
2843 else
2844 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2845 }
2846 }
2847
2848 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2849 {
2850 if (fWhat & CPUMCTX_EXTRN_CR0)
2851 {
2852 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2853 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2854 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2855 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2856 CPUMSetGuestCR0(pVCpu, uCr0);
2857 VMMRZCallRing3Enable(pVCpu);
2858 }
2859
2860 if (fWhat & CPUMCTX_EXTRN_CR2)
2861 pCtx->cr2 = pVmcbGuest->u64CR2;
2862
2863 if (fWhat & CPUMCTX_EXTRN_CR3)
2864 {
2865 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2866 && pCtx->cr3 != pVmcbGuest->u64CR3)
2867 {
2868 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2869 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2870 }
2871 }
2872
2873 /* Changes to CR4 are always intercepted. */
2874 }
2875
2876 /* Update fExtrn. */
2877 pCtx->fExtrn &= ~fWhat;
2878
2879 /* If everything has been imported, clear the HM keeper bit. */
2880 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2881 {
2882 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2883 Assert(!pCtx->fExtrn);
2884 }
2885 }
2886 else
2887 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
2888
2889 ASMSetFlags(fEFlags);
2890
2891 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
2892
2893 /*
2894 * Honor any pending CR3 updates.
2895 *
2896 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
2897 * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
2898 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
2899 * handling -> hmR0SvmImportGuestState() and here we are.
2900 *
2901 * The reason for such complicated handling is because VM-exits that call into PGM expect
2902 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
2903 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
2904 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
2905 *
2906 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
2907 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
2908 */
2909 if ( VMMRZCallRing3IsEnabled(pVCpu)
2910 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
2911 {
2912 AssertMsg(pCtx->cr3 == pVmcbGuest->u64CR3, ("cr3=%#RX64 vmcb_cr3=%#RX64\n", pCtx->cr3, pVmcbGuest->u64CR3));
2913 PGMUpdateCR3(pVCpu, pCtx->cr3);
2914 }
2915}
2916
2917
2918/**
2919 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
2920 * context.
2921 *
2922 * Currently there is no residual state left in the CPU that is not updated in the
2923 * VMCB.
2924 *
2925 * @returns VBox status code.
2926 * @param pVCpu The cross context virtual CPU structure.
2927 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2928 */
2929VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
2930{
2931 hmR0SvmImportGuestState(pVCpu, fWhat);
2932 return VINF_SUCCESS;
2933}
2934
2935
2936/**
2937 * Does the necessary state syncing before returning to ring-3 for any reason
2938 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2939 *
2940 * @param pVCpu The cross context virtual CPU structure.
2941 * @param fImportState Whether to import the guest state from the VMCB back
2942 * to the guest-CPU context.
2943 *
2944 * @remarks No-long-jmp zone!!!
2945 */
2946static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
2947{
2948 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2949 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2950 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2951
2952 /*
2953 * !!! IMPORTANT !!!
2954 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
2955 */
2956
2957 /* Save the guest state if necessary. */
2958 if (fImportState)
2959 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
2960
2961 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2962 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2963 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2964
2965 /*
2966 * Restore host debug registers if necessary and resync on next R0 reentry.
2967 */
2968#ifdef VBOX_STRICT
2969 if (CPUMIsHyperDebugStateActive(pVCpu))
2970 {
2971 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */
2972 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2973 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2974 }
2975#endif
2976 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2977 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2978 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2979
2980 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2981 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
2982 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
2983 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
2984 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
2985 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
2986 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2987
2988 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2989}
2990
2991
2992/**
2993 * Leaves the AMD-V session.
2994 *
2995 * Only used while returning to ring-3 either due to longjump or exits to
2996 * ring-3.
2997 *
2998 * @returns VBox status code.
2999 * @param pVCpu The cross context virtual CPU structure.
3000 */
3001static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
3002{
3003 HM_DISABLE_PREEMPT(pVCpu);
3004 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3005 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3006
3007 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3008 and done this from the SVMR0ThreadCtxCallback(). */
3009 if (!pVCpu->hmr0.s.fLeaveDone)
3010 {
3011 hmR0SvmLeave(pVCpu, true /* fImportState */);
3012 pVCpu->hmr0.s.fLeaveDone = true;
3013 }
3014
3015 /*
3016 * !!! IMPORTANT !!!
3017 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
3018 */
3019
3020 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3021 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3022 VMMR0ThreadCtxHookDisable(pVCpu);
3023
3024 /* Leave HM context. This takes care of local init (term). */
3025 int rc = HMR0LeaveCpu(pVCpu);
3026
3027 HM_RESTORE_PREEMPT();
3028 return rc;
3029}
3030
3031
3032/**
3033 * Does the necessary state syncing before doing a longjmp to ring-3.
3034 *
3035 * @returns VBox status code.
3036 * @param pVCpu The cross context virtual CPU structure.
3037 *
3038 * @remarks No-long-jmp zone!!!
3039 */
3040static int hmR0SvmLongJmpToRing3(PVMCPUCC pVCpu)
3041{
3042 return hmR0SvmLeaveSession(pVCpu);
3043}
3044
3045
3046/**
3047 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3048 * any remaining host state) before we longjump to ring-3 and possibly get
3049 * preempted.
3050 *
3051 * @param pVCpu The cross context virtual CPU structure.
3052 * @param enmOperation The operation causing the ring-3 longjump.
3053 */
3054VMMR0DECL(int) SVMR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
3055{
3056 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
3057 {
3058 /*
3059 * !!! IMPORTANT !!!
3060 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3061 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3062 */
3063 VMMRZCallRing3RemoveNotification(pVCpu);
3064 VMMRZCallRing3Disable(pVCpu);
3065 HM_DISABLE_PREEMPT(pVCpu);
3066
3067 /* Import the entire guest state. */
3068 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3069
3070 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3071 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3072
3073 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3074 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3075
3076 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3077 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3078 VMMR0ThreadCtxHookDisable(pVCpu);
3079
3080 /* Leave HM context. This takes care of local init (term). */
3081 HMR0LeaveCpu(pVCpu);
3082
3083 HM_RESTORE_PREEMPT();
3084 return VINF_SUCCESS;
3085 }
3086
3087 Assert(pVCpu);
3088 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3089 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3090
3091 VMMRZCallRing3Disable(pVCpu);
3092 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3093
3094 Log4Func(("Calling hmR0SvmLongJmpToRing3\n"));
3095 int rc = hmR0SvmLongJmpToRing3(pVCpu);
3096 AssertRCReturn(rc, rc);
3097
3098 VMMRZCallRing3Enable(pVCpu);
3099 return VINF_SUCCESS;
3100}
3101
3102
3103/**
3104 * Take necessary actions before going back to ring-3.
3105 *
3106 * An action requires us to go back to ring-3. This function does the necessary
3107 * steps before we can safely return to ring-3. This is not the same as longjmps
3108 * to ring-3, this is voluntary.
3109 *
3110 * @returns Strict VBox status code.
3111 * @param pVCpu The cross context virtual CPU structure.
3112 * @param rcExit The reason for exiting to ring-3. Can be
3113 * VINF_VMM_UNKNOWN_RING3_CALL.
3114 */
3115static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
3116{
3117 Assert(pVCpu);
3118 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3119
3120 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3121 VMMRZCallRing3Disable(pVCpu);
3122 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions,
3123 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3124
3125 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3126 if (pVCpu->hm.s.Event.fPending)
3127 {
3128 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3129 Assert(!pVCpu->hm.s.Event.fPending);
3130 }
3131
3132 /* Sync. the necessary state for going back to ring-3. */
3133 hmR0SvmLeaveSession(pVCpu);
3134 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3135
3136 /* Thread-context hooks are unregistered at this point!!! */
3137 /* Ring-3 callback notifications are unregistered at this point!!! */
3138
3139 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3140 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3141 | CPUM_CHANGED_LDTR
3142 | CPUM_CHANGED_GDTR
3143 | CPUM_CHANGED_IDTR
3144 | CPUM_CHANGED_TR
3145 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3146 if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
3147 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3148 {
3149 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3150 }
3151
3152 /* Update the exit-to-ring 3 reason. */
3153 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
3154
3155 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3156 if ( rcExit != VINF_EM_RAW_INTERRUPT
3157 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3158 {
3159 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3160 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3161 }
3162
3163 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3164 VMMRZCallRing3Enable(pVCpu);
3165
3166 /*
3167 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3168 * and if we're injecting an event we should have a TRPM trap pending.
3169 */
3170 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3171 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3172 VERR_SVM_IPE_5);
3173 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3174 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3175 VERR_SVM_IPE_4);
3176
3177 return rcExit;
3178}
3179
3180
3181/**
3182 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3183 * intercepts.
3184 *
3185 * @param pVCpu The cross context virtual CPU structure.
3186 * @param pVmcb Pointer to the VM control block.
3187 *
3188 * @remarks No-long-jump zone!!!
3189 */
3190static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3191{
3192 /*
3193 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3194 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3195 * RDTSC/RDTSCP as well.
3196 */
3197 bool fParavirtTsc;
3198 uint64_t uTscOffset;
3199 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3200
3201 bool fIntercept;
3202 if (fCanUseRealTsc)
3203 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3204 else
3205 {
3206 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3207 fIntercept = true;
3208 }
3209
3210 if (!fIntercept)
3211 {
3212#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3213 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3214 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3215 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
3216#endif
3217
3218 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3219 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3220 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3221 }
3222
3223 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3224 information before every VM-entry, hence we have nothing to do here at the moment. */
3225 if (fParavirtTsc)
3226 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3227}
3228
3229
3230/**
3231 * Sets an event as a pending event to be injected into the guest.
3232 *
3233 * @param pVCpu The cross context virtual CPU structure.
3234 * @param pEvent Pointer to the SVM event.
3235 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3236 * page-fault.
3237 *
3238 * @remarks Statistics counter assumes this is a guest event being reflected to
3239 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3240 */
3241DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3242{
3243 Assert(!pVCpu->hm.s.Event.fPending);
3244 Assert(pEvent->n.u1Valid);
3245
3246 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3247 pVCpu->hm.s.Event.fPending = true;
3248 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3249
3250 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3251 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3252}
3253
3254
3255/**
3256 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3257 *
3258 * @param pVCpu The cross context virtual CPU structure.
3259 */
3260DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
3261{
3262 SVMEVENT Event;
3263 Event.u = 0;
3264 Event.n.u1Valid = 1;
3265 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3266 Event.n.u8Vector = X86_XCPT_UD;
3267 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3268}
3269
3270
3271/**
3272 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3273 *
3274 * @param pVCpu The cross context virtual CPU structure.
3275 */
3276DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
3277{
3278 SVMEVENT Event;
3279 Event.u = 0;
3280 Event.n.u1Valid = 1;
3281 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3282 Event.n.u8Vector = X86_XCPT_DB;
3283 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3284}
3285
3286
3287/**
3288 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3289 *
3290 * @param pVCpu The cross context virtual CPU structure.
3291 * @param u32ErrCode The error-code for the page-fault.
3292 * @param uFaultAddress The page fault address (CR2).
3293 *
3294 * @remarks This updates the guest CR2 with @a uFaultAddress!
3295 */
3296DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3297{
3298 SVMEVENT Event;
3299 Event.u = 0;
3300 Event.n.u1Valid = 1;
3301 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3302 Event.n.u8Vector = X86_XCPT_PF;
3303 Event.n.u1ErrorCodeValid = 1;
3304 Event.n.u32ErrorCode = u32ErrCode;
3305
3306 /* Update CR2 of the guest. */
3307 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3308 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3309 {
3310 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3311 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3312 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3313 }
3314
3315 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3316}
3317
3318
3319/**
3320 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3321 *
3322 * @param pVCpu The cross context virtual CPU structure.
3323 */
3324DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
3325{
3326 SVMEVENT Event;
3327 Event.u = 0;
3328 Event.n.u1Valid = 1;
3329 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3330 Event.n.u8Vector = X86_XCPT_MF;
3331 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3332}
3333
3334
3335/**
3336 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3337 *
3338 * @param pVCpu The cross context virtual CPU structure.
3339 */
3340DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
3341{
3342 SVMEVENT Event;
3343 Event.u = 0;
3344 Event.n.u1Valid = 1;
3345 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3346 Event.n.u8Vector = X86_XCPT_DF;
3347 Event.n.u1ErrorCodeValid = 1;
3348 Event.n.u32ErrorCode = 0;
3349 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3350}
3351
3352
3353/**
3354 * Injects an event into the guest upon VMRUN by updating the relevant field
3355 * in the VMCB.
3356 *
3357 * @param pVCpu The cross context virtual CPU structure.
3358 * @param pVmcb Pointer to the guest VM control block.
3359 * @param pEvent Pointer to the event.
3360 *
3361 * @remarks No-long-jump zone!!!
3362 * @remarks Requires CR0!
3363 */
3364DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3365{
3366 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3367 pVmcb->ctrl.EventInject.u = pEvent->u;
3368 if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
3369 || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
3370 {
3371 Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
3372 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedXcptsR0[pEvent->n.u8Vector]);
3373 }
3374 else
3375 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3376 RT_NOREF(pVCpu);
3377
3378 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3379 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3380}
3381
3382
3383
3384/**
3385 * Converts any TRPM trap into a pending HM event. This is typically used when
3386 * entering from ring-3 (not longjmp returns).
3387 *
3388 * @param pVCpu The cross context virtual CPU structure.
3389 */
3390static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
3391{
3392 Assert(TRPMHasTrap(pVCpu));
3393 Assert(!pVCpu->hm.s.Event.fPending);
3394
3395 uint8_t uVector;
3396 TRPMEVENT enmTrpmEvent;
3397 uint32_t uErrCode;
3398 RTGCUINTPTR GCPtrFaultAddress;
3399 uint8_t cbInstr;
3400
3401 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
3402 AssertRC(rc);
3403
3404 SVMEVENT Event;
3405 Event.u = 0;
3406 Event.n.u1Valid = 1;
3407 Event.n.u8Vector = uVector;
3408
3409 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3410 if (enmTrpmEvent == TRPM_TRAP)
3411 {
3412 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3413 switch (uVector)
3414 {
3415 case X86_XCPT_NMI:
3416 {
3417 Event.n.u3Type = SVM_EVENT_NMI;
3418 break;
3419 }
3420
3421 case X86_XCPT_BP:
3422 case X86_XCPT_OF:
3423 AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
3424 RT_FALL_THRU();
3425
3426 case X86_XCPT_PF:
3427 case X86_XCPT_DF:
3428 case X86_XCPT_TS:
3429 case X86_XCPT_NP:
3430 case X86_XCPT_SS:
3431 case X86_XCPT_GP:
3432 case X86_XCPT_AC:
3433 {
3434 Event.n.u1ErrorCodeValid = 1;
3435 Event.n.u32ErrorCode = uErrCode;
3436 break;
3437 }
3438 }
3439 }
3440 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3441 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3442 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3443 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3444 else
3445 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3446
3447 rc = TRPMResetTrap(pVCpu);
3448 AssertRC(rc);
3449
3450 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3451 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3452
3453 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3454}
3455
3456
3457/**
3458 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3459 * AMD-V to execute any instruction.
3460 *
3461 * @param pVCpu The cross context virtual CPU structure.
3462 */
3463static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
3464{
3465 Assert(pVCpu->hm.s.Event.fPending);
3466 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3467
3468 SVMEVENT Event;
3469 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3470
3471 uint8_t uVector = Event.n.u8Vector;
3472 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
3473
3474 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
3475
3476 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3477 AssertRC(rc);
3478
3479 if (Event.n.u1ErrorCodeValid)
3480 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3481
3482 if ( enmTrapType == TRPM_TRAP
3483 && uVector == X86_XCPT_PF)
3484 {
3485 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3486 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3487 }
3488 else if (enmTrapType == TRPM_SOFTWARE_INT)
3489 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3490 pVCpu->hm.s.Event.fPending = false;
3491}
3492
3493
3494/**
3495 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3496 * now.
3497 *
3498 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3499 * @param pVCpu The cross context virtual CPU structure.
3500 *
3501 * @remarks No-long-jump zone!!!
3502 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3503 */
3504static bool hmR0SvmIsIntrShadowActive(PVMCPUCC pVCpu)
3505{
3506 /*
3507 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3508 * completes. Check if we should inhibit interrupts or clear any existing
3509 * interrupt inhibition.
3510 */
3511 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3512 {
3513 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3514 {
3515 /*
3516 * We can clear the inhibit force flag as even if we go back to the recompiler
3517 * without executing guest code in AMD-V, the flag's condition to be cleared is
3518 * met and thus the cleared state is correct.
3519 */
3520 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3521 return false;
3522 }
3523 return true;
3524 }
3525 return false;
3526}
3527
3528
3529/**
3530 * Sets the virtual interrupt intercept control in the VMCB.
3531 *
3532 * @param pVCpu The cross context virtual CPU structure.
3533 * @param pVmcb Pointer to the VM control block.
3534 */
3535static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3536{
3537 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3538
3539 /*
3540 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3541 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3542 * (updating ISR at the right time) and inject the interrupt.
3543 *
3544 * With AVIC is supported, we could make use of the asynchronously delivery without
3545 * #VMEXIT and we would be passing the AVIC page to SVM.
3546 *
3547 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3548 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3549 */
3550 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3551 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3552 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3553 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3554 Log4(("Set VINTR intercept\n"));
3555}
3556
3557
3558/**
3559 * Clears the virtual interrupt intercept control in the VMCB as
3560 * we are figured the guest is unable process any interrupts
3561 * at this point of time.
3562 *
3563 * @param pVCpu The cross context virtual CPU structure.
3564 * @param pVmcb Pointer to the VM control block.
3565 */
3566static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3567{
3568 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3569
3570 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3571 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3572 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3573 {
3574 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3575 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3576 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3577 Log4(("Cleared VINTR intercept\n"));
3578 }
3579}
3580
3581
3582/**
3583 * Evaluates the event to be delivered to the guest and sets it as the pending
3584 * event.
3585 *
3586 * @returns Strict VBox status code.
3587 * @param pVCpu The cross context virtual CPU structure.
3588 * @param pSvmTransient Pointer to the SVM transient structure.
3589 */
3590static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
3591{
3592 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3593 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3594 | CPUMCTX_EXTRN_RFLAGS
3595 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3596 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3597
3598 Assert(!pVCpu->hm.s.Event.fPending);
3599 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3600 Assert(pVmcb);
3601
3602 bool const fGif = CPUMGetGuestGif(pCtx);
3603 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3604 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3605
3606 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3607 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3608 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3609
3610 /** @todo SMI. SMIs take priority over NMIs. */
3611
3612 /*
3613 * Check if the guest or nested-guest can receive NMIs.
3614 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3615 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3616 */
3617 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3618 && !fBlockNmi)
3619 {
3620 if ( fGif
3621 && !fIntShadow)
3622 {
3623#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3624 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3625 {
3626 Log4(("Intercepting NMI -> #VMEXIT\n"));
3627 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3628 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3629 }
3630#endif
3631 Log4(("Setting NMI pending for injection\n"));
3632 SVMEVENT Event;
3633 Event.u = 0;
3634 Event.n.u1Valid = 1;
3635 Event.n.u8Vector = X86_XCPT_NMI;
3636 Event.n.u3Type = SVM_EVENT_NMI;
3637 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3638 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3639 }
3640 else if (!fGif)
3641 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3642 else if (!pSvmTransient->fIsNestedGuest)
3643 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3644 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3645 }
3646 /*
3647 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3648 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3649 * it from the APIC device.
3650 *
3651 * For nested-guests, physical interrupts always take priority over virtual interrupts.
3652 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3653 * do that work when we execute nested-guest code esp. since all the required information
3654 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3655 * the virtual interrupt controller.
3656 *
3657 * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3658 */
3659 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3660 && !pVCpu->hm.s.fSingleInstruction)
3661 {
3662 bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u32 & X86_EFL_IF)
3663 : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
3664 if ( fGif
3665 && !fBlockInt
3666 && !fIntShadow)
3667 {
3668#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3669 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3670 {
3671 Log4(("Intercepting INTR -> #VMEXIT\n"));
3672 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3673 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3674 }
3675#endif
3676 uint8_t u8Interrupt;
3677 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3678 if (RT_SUCCESS(rc))
3679 {
3680 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3681 SVMEVENT Event;
3682 Event.u = 0;
3683 Event.n.u1Valid = 1;
3684 Event.n.u8Vector = u8Interrupt;
3685 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3686 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3687 }
3688 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3689 {
3690 /*
3691 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3692 * updated eventually when the TPR is written by the guest.
3693 */
3694 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3695 }
3696 else
3697 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3698 }
3699 else if (!fGif)
3700 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3701 else if (!pSvmTransient->fIsNestedGuest)
3702 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3703 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3704 }
3705
3706 return VINF_SUCCESS;
3707}
3708
3709
3710/**
3711 * Injects any pending events into the guest (or nested-guest).
3712 *
3713 * @param pVCpu The cross context virtual CPU structure.
3714 * @param pVmcb Pointer to the VM control block.
3715 *
3716 * @remarks Must only be called when we are guaranteed to enter
3717 * hardware-assisted SVM execution and not return to ring-3
3718 * prematurely.
3719 */
3720static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3721{
3722 Assert(!TRPMHasTrap(pVCpu));
3723 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3724
3725 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3726#ifdef VBOX_STRICT
3727 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3728 bool const fGif = CPUMGetGuestGif(pCtx);
3729 bool fAllowInt = fGif;
3730 if (fGif)
3731 {
3732 /*
3733 * For nested-guests we have no way to determine if we're injecting a physical or
3734 * virtual interrupt at this point. Hence the partial verification below.
3735 */
3736 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3737 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3738 else
3739 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3740 }
3741#endif
3742
3743 if (pVCpu->hm.s.Event.fPending)
3744 {
3745 SVMEVENT Event;
3746 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3747 Assert(Event.n.u1Valid);
3748
3749 /*
3750 * Validate event injection pre-conditions.
3751 */
3752 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3753 {
3754 Assert(fAllowInt);
3755 Assert(!fIntShadow);
3756 }
3757 else if (Event.n.u3Type == SVM_EVENT_NMI)
3758 {
3759 Assert(fGif);
3760 Assert(!fIntShadow);
3761 }
3762
3763 /*
3764 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3765 * do this only when we are surely going to inject the NMI as otherwise if we return
3766 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3767 * SVM R0.
3768 *
3769 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3770 * which will set the VMCS field after actually delivering the NMI which we read on
3771 * VM-exit to determine the state.
3772 */
3773 if ( Event.n.u3Type == SVM_EVENT_NMI
3774 && Event.n.u8Vector == X86_XCPT_NMI
3775 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3776 {
3777 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3778 }
3779
3780 /*
3781 * Inject it (update VMCB for injection by the hardware).
3782 */
3783 Log4(("Injecting pending HM event\n"));
3784 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
3785 pVCpu->hm.s.Event.fPending = false;
3786
3787 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3788 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3789 else
3790 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3791 }
3792 else
3793 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
3794
3795 /*
3796 * We could have injected an NMI through IEM and continue guest execution using
3797 * hardware-assisted SVM. In which case, we would not have any events pending (above)
3798 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
3799 */
3800 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3801 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
3802
3803 /*
3804 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
3805 *
3806 * For nested-guests: We need to update it too for the scenario where IEM executes
3807 * the nested-guest but execution later continues here with an interrupt shadow active.
3808 */
3809 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
3810}
3811
3812
3813/**
3814 * Reports world-switch error and dumps some useful debug info.
3815 *
3816 * @param pVCpu The cross context virtual CPU structure.
3817 * @param rcVMRun The return code from VMRUN (or
3818 * VERR_SVM_INVALID_GUEST_STATE for invalid
3819 * guest-state).
3820 */
3821static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
3822{
3823 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3824 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
3825 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3826
3827 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3828 {
3829#ifdef VBOX_STRICT
3830 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
3831 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3832 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
3833 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3834 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3835 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3836 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3837 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3838 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3839 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3840 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3841 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3842
3843 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3844 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3845 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3846
3847 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3848 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3849 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
3850 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3851 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3852 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3853 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3854 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3855 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
3856 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
3857 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3858 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3859
3860 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
3861 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
3862 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3863 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3864 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3865 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3866 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3867 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3868 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3869 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3870 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3871 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
3872 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
3873 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
3874 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3875 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3876 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3877 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3878 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3879 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3880
3881 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3882
3883 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
3884 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
3885
3886 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3887 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3888 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3889 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3890 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3891 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3892 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3893 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3894 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3895 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3896 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3897 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3898 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3899 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3900 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3901 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3902 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3903 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3904 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3905 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3906
3907 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3908 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3909
3910 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3911 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3912 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3913 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3914
3915 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3916 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3917
3918 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3919 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3920 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3921 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3922
3923 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3924 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3925 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3926 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3927 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3928 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3929 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3930
3931 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3932 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3933 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3934 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3935
3936 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3937 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3938 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3939
3940 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3941 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3942 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3943 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3944 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3945 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3946 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
3947 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3948 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3949 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3950 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3951 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3952
3953 NOREF(pVmcb);
3954#endif /* VBOX_STRICT */
3955 }
3956 else
3957 Log4Func(("rcVMRun=%d\n", rcVMRun));
3958}
3959
3960
3961/**
3962 * Check per-VM and per-VCPU force flag actions that require us to go back to
3963 * ring-3 for one reason or another.
3964 *
3965 * @returns Strict VBox status code (information status code included).
3966 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3967 * ring-3.
3968 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3969 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3970 * interrupts)
3971 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3972 * all EMTs to be in ring-3.
3973 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3974 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3975 * to the EM loop.
3976 *
3977 * @param pVCpu The cross context virtual CPU structure.
3978 */
3979static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
3980{
3981 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3982 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
3983
3984 /* Could happen as a result of longjump. */
3985 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3986 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
3987
3988 /* Update pending interrupts into the APIC's IRR. */
3989 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3990 APICUpdatePendingInterrupts(pVCpu);
3991
3992 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3993 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
3994 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3995 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
3996 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3997 {
3998 /* Pending PGM C3 sync. */
3999 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
4000 {
4001 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
4002 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4003 if (rc != VINF_SUCCESS)
4004 {
4005 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
4006 return rc;
4007 }
4008 }
4009
4010 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
4011 /* -XXX- what was that about single stepping? */
4012 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
4013 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4014 {
4015 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4016 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
4017 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
4018 return rc;
4019 }
4020
4021 /* Pending VM request packets, such as hardware interrupts. */
4022 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
4023 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
4024 {
4025 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
4026 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4027 return VINF_EM_PENDING_REQUEST;
4028 }
4029
4030 /* Pending PGM pool flushes. */
4031 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4032 {
4033 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
4034 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4035 return VINF_PGM_POOL_FLUSH_PENDING;
4036 }
4037
4038 /* Pending DMA requests. */
4039 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4040 {
4041 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
4042 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4043 return VINF_EM_RAW_TO_R3;
4044 }
4045 }
4046
4047 return VINF_SUCCESS;
4048}
4049
4050
4051/**
4052 * Does the preparations before executing guest code in AMD-V.
4053 *
4054 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4055 * recompiler. We must be cautious what we do here regarding committing
4056 * guest-state information into the VMCB assuming we assuredly execute the guest
4057 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4058 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4059 * that the recompiler can (and should) use them when it resumes guest
4060 * execution. Otherwise such operations must be done when we can no longer
4061 * exit to ring-3.
4062 *
4063 * @returns Strict VBox status code (informational status codes included).
4064 * @retval VINF_SUCCESS if we can proceed with running the guest.
4065 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4066 *
4067 * @param pVCpu The cross context virtual CPU structure.
4068 * @param pSvmTransient Pointer to the SVM transient structure.
4069 */
4070static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4071{
4072 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4073
4074#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4075 if (pSvmTransient->fIsNestedGuest)
4076 {
4077 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4078 return VINF_EM_RESCHEDULE_REM;
4079 }
4080#endif
4081
4082 /* Check force flag actions that might require us to go back to ring-3. */
4083 VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu);
4084 if (rc != VINF_SUCCESS)
4085 return rc;
4086
4087 if (TRPMHasTrap(pVCpu))
4088 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4089 else if (!pVCpu->hm.s.Event.fPending)
4090 {
4091 rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
4092 if ( rc != VINF_SUCCESS
4093 || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4094 {
4095 /* If a nested-guest VM-exit occurred, bail. */
4096 if (pSvmTransient->fIsNestedGuest)
4097 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4098 return rc;
4099 }
4100 }
4101
4102 /*
4103 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4104 * Just do it in software, see @bugref{8411}.
4105 * NB: If we could continue a task switch exit we wouldn't need to do this.
4106 */
4107 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4108 if (RT_UNLIKELY( !g_fHmSvmFeatures
4109 && pVCpu->hm.s.Event.fPending
4110 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4111 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4112
4113#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4114 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4115 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4116#endif
4117
4118#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4119 /*
4120 * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
4121 */
4122 if (pSvmTransient->fIsNestedGuest)
4123 hmR0SvmSetupVmcbNested(pVCpu);
4124#endif
4125
4126 /*
4127 * Export the guest state bits that are not shared with the host in any way as we can
4128 * longjmp or get preempted in the midst of exporting some of the state.
4129 */
4130 rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
4131 AssertRCReturn(rc, rc);
4132 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4133
4134 /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
4135 Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4136
4137 /*
4138 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4139 * world-switch so we can update it on the way back if the guest changed the TPR.
4140 */
4141 if (pVCpu->hmr0.s.svm.fSyncVTpr)
4142 {
4143 Assert(!pSvmTransient->fIsNestedGuest);
4144 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4145 if (pVM->hm.s.fTprPatchingActive)
4146 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4147 else
4148 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4149 }
4150
4151 /*
4152 * No longjmps to ring-3 from this point on!!!
4153 *
4154 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4155 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4156 */
4157 VMMRZCallRing3Disable(pVCpu);
4158
4159 /*
4160 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4161 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4162 * preemption disabled for a while. Since this is purly to aid the
4163 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4164 * disable interrupt on NT.
4165 *
4166 * We need to check for force-flags that could've possible been altered since we last
4167 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4168 * see @bugref{6398}).
4169 *
4170 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4171 * to ring-3 before executing guest code.
4172 */
4173 pSvmTransient->fEFlags = ASMIntDisableFlags();
4174 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4175 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4176 {
4177 ASMSetFlags(pSvmTransient->fEFlags);
4178 VMMRZCallRing3Enable(pVCpu);
4179 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4180 return VINF_EM_RAW_TO_R3;
4181 }
4182 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4183 {
4184 ASMSetFlags(pSvmTransient->fEFlags);
4185 VMMRZCallRing3Enable(pVCpu);
4186 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4187 return VINF_EM_RAW_INTERRUPT;
4188 }
4189
4190 return VINF_SUCCESS;
4191}
4192
4193
4194/**
4195 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4196 * doing so.
4197 *
4198 * This means there is no backing out to ring-3 or anywhere else at this point.
4199 *
4200 * @param pVCpu The cross context virtual CPU structure.
4201 * @param pSvmTransient Pointer to the SVM transient structure.
4202 *
4203 * @remarks Called with preemption disabled.
4204 * @remarks No-long-jump zone!!!
4205 */
4206static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4207{
4208 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4209 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4210 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4211
4212 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4213 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4214
4215 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4216 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4217
4218 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4219
4220 if (!CPUMIsGuestFPUStateActive(pVCpu))
4221 {
4222 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4223 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4224 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4225 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4226 }
4227
4228 /* Load the state shared between host and guest (FPU, debug). */
4229 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4230 hmR0SvmExportSharedState(pVCpu, pVmcb);
4231
4232 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4233 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4234
4235 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4236 RTCPUID const idHostCpu = pHostCpu->idCpu;
4237 bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu;
4238
4239 /* Setup TSC offsetting. */
4240 if ( pSvmTransient->fUpdateTscOffsetting
4241 || fMigratedHostCpu)
4242 {
4243 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4244 pSvmTransient->fUpdateTscOffsetting = false;
4245 }
4246
4247 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
4248 if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
4249 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4250 else
4251 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4252
4253 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4254 if (fMigratedHostCpu)
4255 pVmcb->ctrl.u32VmcbCleanBits = 0;
4256
4257 /* Store status of the shared guest-host state at the time of VMRUN. */
4258 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4259 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4260
4261#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4262 uint8_t *pbMsrBitmap;
4263 if (!pSvmTransient->fIsNestedGuest)
4264 pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
4265 else
4266 {
4267 /** @todo We could perhaps optimize this by monitoring if the guest modifies its
4268 * MSRPM and only perform this if it changed also use EVEX.POR when it
4269 * does. */
4270 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4271
4272 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4273 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4274 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4275 }
4276#else
4277 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4278#endif
4279
4280 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4281 /* Flush the appropriate tagged-TLB entries. */
4282 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4283 Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu);
4284
4285 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4286
4287 TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
4288 to start executing. */
4289
4290 /*
4291 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4292 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4293 *
4294 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4295 */
4296 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4297 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4298 {
4299 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4300 pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4301 if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux)
4302 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4303 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4304 pSvmTransient->fRestoreTscAuxMsr = true;
4305 }
4306 else
4307 {
4308 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4309 pSvmTransient->fRestoreTscAuxMsr = false;
4310 }
4311 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4312
4313 /*
4314 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4315 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4316 * from the VMCB.
4317 */
4318 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
4319 if (!fSupportsVmcbCleanBits)
4320 pVmcb->ctrl.u32VmcbCleanBits = 0;
4321}
4322
4323
4324/**
4325 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4326 *
4327 * @returns VBox strict status code.
4328 * @param pVCpu The cross context virtual CPU structure.
4329 * @param HCPhysVmcb The host physical address of the VMCB.
4330 *
4331 * @remarks No-long-jump zone!!!
4332 */
4333DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
4334{
4335 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4336 pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4337 return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb);
4338}
4339
4340
4341/**
4342 * Performs some essential restoration of state after running guest (or
4343 * nested-guest) code in AMD-V.
4344 *
4345 * @param pVCpu The cross context virtual CPU structure.
4346 * @param pSvmTransient Pointer to the SVM transient structure.
4347 * @param rcVMRun Return code of VMRUN.
4348 *
4349 * @remarks Called with interrupts disabled.
4350 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4351 * unconditionally when it is safe to do so.
4352 */
4353static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun)
4354{
4355 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4356
4357 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4358 ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4359
4360 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4361 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4362
4363 /* TSC read must be done early for maximum accuracy. */
4364 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4365 {
4366 if (!pSvmTransient->fIsNestedGuest)
4367 TMCpuTickSetLastSeen(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
4368#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4369 else
4370 {
4371 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4372 uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
4373 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4374 }
4375#endif
4376 }
4377
4378 if (pSvmTransient->fRestoreTscAuxMsr)
4379 {
4380 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4381 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4382 if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux)
4383 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux);
4384 }
4385
4386 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4387 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4388 TMNotifyEndOfExecution(pVM, pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
4389 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4390
4391 Assert(!(ASMGetFlags() & X86_EFL_IF));
4392 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4393 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4394
4395 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4396 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4397 {
4398 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun)));
4399 return;
4400 }
4401
4402 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4403 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4404 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4405 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4406
4407#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4408 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4409 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4410#else
4411 /*
4412 * Always import the following:
4413 *
4414 * - RIP for exit optimizations and evaluating event injection on re-entry.
4415 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4416 * state on preemption.
4417 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4418 * - CS for exit optimizations.
4419 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4420 * assembly switcher code.
4421 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4422 */
4423 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4424 | CPUMCTX_EXTRN_RFLAGS
4425 | CPUMCTX_EXTRN_RAX
4426 | CPUMCTX_EXTRN_RSP
4427 | CPUMCTX_EXTRN_CS
4428 | CPUMCTX_EXTRN_HWVIRT
4429 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4430 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4431 | HMSVM_CPUMCTX_SHARED_STATE);
4432#endif
4433
4434 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4435 && pVCpu->hmr0.s.svm.fSyncVTpr)
4436 {
4437 Assert(!pSvmTransient->fIsNestedGuest);
4438 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4439 if ( pVM->hm.s.fTprPatchingActive
4440 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4441 {
4442 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4443 AssertRC(rc);
4444 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4445 }
4446 /* Sync TPR when we aren't intercepting CR8 writes. */
4447 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4448 {
4449 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4450 AssertRC(rc);
4451 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4452 }
4453 }
4454
4455#ifdef DEBUG_ramshankar
4456 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4457 {
4458 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4459 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4460 0 /* uVerbose */);
4461 }
4462#endif
4463
4464 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4465 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4466 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, pVCpu->hmr0.s.uTscExit);
4467}
4468
4469
4470/**
4471 * Runs the guest code using AMD-V.
4472 *
4473 * @returns Strict VBox status code.
4474 * @param pVCpu The cross context virtual CPU structure.
4475 * @param pcLoops Pointer to the number of executed loops.
4476 */
4477static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
4478{
4479 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4480 Assert(pcLoops);
4481 Assert(*pcLoops <= cMaxResumeLoops);
4482
4483 SVMTRANSIENT SvmTransient;
4484 RT_ZERO(SvmTransient);
4485 SvmTransient.fUpdateTscOffsetting = true;
4486 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4487
4488 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4489 for (;;)
4490 {
4491 Assert(!HMR0SuspendPending());
4492 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4493
4494 /* Preparatory work for running nested-guest code, this may force us to return to
4495 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4496 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4497 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4498 if (rc != VINF_SUCCESS)
4499 break;
4500
4501 /*
4502 * No longjmps to ring-3 from this point on!!!
4503 *
4504 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4505 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4506 */
4507 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4508 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4509
4510 /* Restore any residual host-state and save any bits shared between host and guest
4511 into the guest-CPU state. Re-enables interrupts! */
4512 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4513
4514 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4515 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4516 {
4517 if (rc == VINF_SUCCESS)
4518 rc = VERR_SVM_INVALID_GUEST_STATE;
4519 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4520 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4521 break;
4522 }
4523
4524 /* Handle the #VMEXIT. */
4525 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4526 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4527 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4528 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4529 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4530 if (rc != VINF_SUCCESS)
4531 break;
4532 if (++(*pcLoops) >= cMaxResumeLoops)
4533 {
4534 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4535 rc = VINF_EM_RAW_INTERRUPT;
4536 break;
4537 }
4538 }
4539
4540 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4541 return rc;
4542}
4543
4544
4545/**
4546 * Runs the guest code using AMD-V in single step mode.
4547 *
4548 * @returns Strict VBox status code.
4549 * @param pVCpu The cross context virtual CPU structure.
4550 * @param pcLoops Pointer to the number of executed loops.
4551 */
4552static VBOXSTRICTRC hmR0SvmRunGuestCodeStep(PVMCPUCC pVCpu, uint32_t *pcLoops)
4553{
4554 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4555 Assert(pcLoops);
4556 Assert(*pcLoops <= cMaxResumeLoops);
4557
4558 SVMTRANSIENT SvmTransient;
4559 RT_ZERO(SvmTransient);
4560 SvmTransient.fUpdateTscOffsetting = true;
4561 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4562
4563 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4564 uint16_t const uCsStart = pCtx->cs.Sel;
4565 uint64_t const uRipStart = pCtx->rip;
4566
4567 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4568 for (;;)
4569 {
4570 Assert(!HMR0SuspendPending());
4571 AssertMsg(pVCpu->hmr0.s.idEnteredCpu == RTMpCpuId(),
4572 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hmr0.s.idEnteredCpu,
4573 (unsigned)RTMpCpuId(), *pcLoops));
4574
4575 /* Preparatory work for running nested-guest code, this may force us to return to
4576 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4577 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4578 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4579 if (rc != VINF_SUCCESS)
4580 break;
4581
4582 /*
4583 * No longjmps to ring-3 from this point on!!!
4584 *
4585 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4586 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4587 */
4588 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4589
4590 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4591
4592 /* Restore any residual host-state and save any bits shared between host and guest
4593 into the guest-CPU state. Re-enables interrupts! */
4594 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4595
4596 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4597 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4598 {
4599 if (rc == VINF_SUCCESS)
4600 rc = VERR_SVM_INVALID_GUEST_STATE;
4601 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4602 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4603 return rc;
4604 }
4605
4606 /* Handle the #VMEXIT. */
4607 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4608 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4609 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4610 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4611 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4612 if (rc != VINF_SUCCESS)
4613 break;
4614 if (++(*pcLoops) >= cMaxResumeLoops)
4615 {
4616 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4617 rc = VINF_EM_RAW_INTERRUPT;
4618 break;
4619 }
4620
4621 /*
4622 * Did the RIP change, if so, consider it a single step.
4623 * Otherwise, make sure one of the TFs gets set.
4624 */
4625 if ( pCtx->rip != uRipStart
4626 || pCtx->cs.Sel != uCsStart)
4627 {
4628 rc = VINF_EM_DBG_STEPPED;
4629 break;
4630 }
4631 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4632 }
4633
4634 /*
4635 * Clear the X86_EFL_TF if necessary.
4636 */
4637 if (pVCpu->hmr0.s.fClearTrapFlag)
4638 {
4639 pVCpu->hmr0.s.fClearTrapFlag = false;
4640 pCtx->eflags.Bits.u1TF = 0;
4641 }
4642
4643 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4644 return rc;
4645}
4646
4647#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4648/**
4649 * Runs the nested-guest code using AMD-V.
4650 *
4651 * @returns Strict VBox status code.
4652 * @param pVCpu The cross context virtual CPU structure.
4653 * @param pcLoops Pointer to the number of executed loops. If we're switching
4654 * from the guest-code execution loop to this nested-guest
4655 * execution loop pass the remainder value, else pass 0.
4656 */
4657static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
4658{
4659 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4660 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4661 Assert(pcLoops);
4662 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops);
4663
4664 SVMTRANSIENT SvmTransient;
4665 RT_ZERO(SvmTransient);
4666 SvmTransient.fUpdateTscOffsetting = true;
4667 SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4668 SvmTransient.fIsNestedGuest = true;
4669
4670 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4;
4671 for (;;)
4672 {
4673 Assert(!HMR0SuspendPending());
4674 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4675
4676 /* Preparatory work for running nested-guest code, this may force us to return to
4677 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4678 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4679 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4680 if ( rc != VINF_SUCCESS
4681 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4682 break;
4683
4684 /*
4685 * No longjmps to ring-3 from this point on!!!
4686 *
4687 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4688 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4689 */
4690 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4691
4692 rc = hmR0SvmRunGuest(pVCpu, pCtx->hwvirt.svm.HCPhysVmcb);
4693
4694 /* Restore any residual host-state and save any bits shared between host and guest
4695 into the guest-CPU state. Re-enables interrupts! */
4696 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4697
4698 if (RT_LIKELY( rc == VINF_SUCCESS
4699 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
4700 { /* extremely likely */ }
4701 else
4702 {
4703 /* VMRUN failed, shouldn't really happen, Guru. */
4704 if (rc != VINF_SUCCESS)
4705 break;
4706
4707 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
4708 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4709 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
4710 rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0);
4711 break;
4712 }
4713
4714 /* Handle the #VMEXIT. */
4715 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4716 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4717 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
4718 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
4719 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4720 if (rc == VINF_SUCCESS)
4721 {
4722 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4723 {
4724 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4725 rc = VINF_SVM_VMEXIT;
4726 }
4727 else
4728 {
4729 if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops)
4730 continue;
4731 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4732 rc = VINF_EM_RAW_INTERRUPT;
4733 }
4734 }
4735 else
4736 Assert(rc != VINF_SVM_VMEXIT);
4737 break;
4738 /** @todo NSTSVM: handle single-stepping. */
4739 }
4740
4741 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4742 return rc;
4743}
4744#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
4745
4746
4747/**
4748 * Runs the guest code using AMD-V.
4749 *
4750 * @returns Strict VBox status code.
4751 * @param pVCpu The cross context virtual CPU structure.
4752 */
4753VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
4754{
4755 AssertPtr(pVCpu);
4756 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4757 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4758 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4759 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4760
4761 uint32_t cLoops = 0;
4762 VBOXSTRICTRC rc;
4763 for (;;)
4764 {
4765#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4766 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
4767#else
4768 NOREF(pCtx);
4769 bool const fInNestedGuestMode = false;
4770#endif
4771 if (!fInNestedGuestMode)
4772 {
4773 if (!pVCpu->hm.s.fSingleInstruction)
4774 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
4775 else
4776 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
4777 }
4778#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4779 else
4780 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
4781
4782 if (rc == VINF_SVM_VMRUN)
4783 {
4784 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4785 continue;
4786 }
4787 if (rc == VINF_SVM_VMEXIT)
4788 {
4789 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4790 continue;
4791 }
4792#endif
4793 break;
4794 }
4795
4796 /* Fixup error codes. */
4797 if (rc == VERR_EM_INTERPRETER)
4798 rc = VINF_EM_RAW_EMULATE_INSTR;
4799 else if (rc == VINF_EM_RESET)
4800 rc = VINF_EM_TRIPLE_FAULT;
4801
4802 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4803 rc = hmR0SvmExitToRing3(pVCpu, rc);
4804 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4805 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
4806 return rc;
4807}
4808
4809
4810#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4811/**
4812 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
4813 *
4814 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4815 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4816 */
4817static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4818{
4819 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4820 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4821 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4822 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4823 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
4824 const bool fRep = pIoExitInfo->n.u1Rep;
4825 const bool fStrIo = pIoExitInfo->n.u1Str;
4826
4827 return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4828 NULL /* pIoExitInfo */);
4829}
4830
4831
4832/**
4833 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4834 * SVM_EXIT_INVALID).
4835 *
4836 * @returns VBox status code (informational status codes included).
4837 * @param pVCpu The cross context virtual CPU structure.
4838 * @param pSvmTransient Pointer to the SVM transient structure.
4839 */
4840static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4841{
4842 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4843 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4844 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4845
4846 /*
4847 * We import the complete state here because we use separate VMCBs for the guest and the
4848 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
4849 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
4850 */
4851#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4852 do { \
4853 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
4854 return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \
4855 } while (0)
4856
4857 /*
4858 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
4859 * nested-guest. If it isn't, it should be handled by the (outer) guest.
4860 */
4861 PSVMVMCB pVmcbNstGst = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pVmcb);
4862 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4863 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4864 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4865 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4866 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4867
4868 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4869 switch (uExitCode)
4870 {
4871 case SVM_EXIT_CPUID:
4872 {
4873 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
4874 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4875 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
4876 }
4877
4878 case SVM_EXIT_RDTSC:
4879 {
4880 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
4881 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4882 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
4883 }
4884
4885 case SVM_EXIT_RDTSCP:
4886 {
4887 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
4888 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4889 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
4890 }
4891
4892 case SVM_EXIT_MONITOR:
4893 {
4894 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
4895 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4896 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
4897 }
4898
4899 case SVM_EXIT_MWAIT:
4900 {
4901 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
4902 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4903 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
4904 }
4905
4906 case SVM_EXIT_HLT:
4907 {
4908 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
4909 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4910 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
4911 }
4912
4913 case SVM_EXIT_MSR:
4914 {
4915 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
4916 {
4917 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
4918 uint16_t offMsrpm;
4919 uint8_t uMsrpmBit;
4920 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4921 if (RT_SUCCESS(rc))
4922 {
4923 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
4924 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
4925
4926 uint8_t const *pbMsrBitmap = (uint8_t const *)pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4927 pbMsrBitmap += offMsrpm;
4928 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
4929 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
4930
4931 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4932 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4933 {
4934 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4935 }
4936 }
4937 else
4938 {
4939 /*
4940 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4941 * See AMD-V spec. "15.11 MSR Intercepts".
4942 */
4943 Assert(rc == VERR_OUT_OF_RANGE);
4944 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4945 }
4946 }
4947 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
4948 }
4949
4950 case SVM_EXIT_IOIO:
4951 {
4952 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
4953 {
4954 void *pvIoBitmap = pVCpu->cpum.GstCtx.hwvirt.svm.CTX_SUFF(pvIoBitmap);
4955 SVMIOIOEXITINFO IoExitInfo;
4956 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4957 bool const fIntercept = hmR0SvmIsIoInterceptSet(pvIoBitmap, &IoExitInfo);
4958 if (fIntercept)
4959 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4960 }
4961 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
4962 }
4963
4964 case SVM_EXIT_XCPT_PF:
4965 {
4966 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4967 if (pVM->hmr0.s.fNestedPaging)
4968 {
4969 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4970 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4971
4972 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4973 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
4974 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4975
4976 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
4977 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
4978 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
4979 return VINF_SUCCESS;
4980 }
4981 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
4982 }
4983
4984 case SVM_EXIT_XCPT_UD:
4985 {
4986 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
4987 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4988 hmR0SvmSetPendingXcptUD(pVCpu);
4989 return VINF_SUCCESS;
4990 }
4991
4992 case SVM_EXIT_XCPT_MF:
4993 {
4994 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
4995 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4996 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
4997 }
4998
4999 case SVM_EXIT_XCPT_DB:
5000 {
5001 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
5002 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5003 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
5004 }
5005
5006 case SVM_EXIT_XCPT_AC:
5007 {
5008 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
5009 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5010 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
5011 }
5012
5013 case SVM_EXIT_XCPT_BP:
5014 {
5015 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
5016 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5017 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
5018 }
5019
5020 case SVM_EXIT_READ_CR0:
5021 case SVM_EXIT_READ_CR3:
5022 case SVM_EXIT_READ_CR4:
5023 {
5024 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5025 if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
5026 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5027 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5028 }
5029
5030 case SVM_EXIT_CR0_SEL_WRITE:
5031 {
5032 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5033 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5034 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5035 }
5036
5037 case SVM_EXIT_WRITE_CR0:
5038 case SVM_EXIT_WRITE_CR3:
5039 case SVM_EXIT_WRITE_CR4:
5040 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5041 {
5042 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5043 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5044
5045 if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
5046 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5047 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5048 }
5049
5050 case SVM_EXIT_PAUSE:
5051 {
5052 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
5053 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5054 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5055 }
5056
5057 case SVM_EXIT_VINTR:
5058 {
5059 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
5060 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5061 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5062 }
5063
5064 case SVM_EXIT_INTR:
5065 case SVM_EXIT_NMI:
5066 case SVM_EXIT_SMI:
5067 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5068 {
5069 /*
5070 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5071 *
5072 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5073 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5074 * nested-guest #VMEXIT.
5075 *
5076 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5077 * while trying to inject interrupts, see comment at the top of this function.
5078 */
5079 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5080 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5081 }
5082
5083 case SVM_EXIT_FERR_FREEZE:
5084 {
5085 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5086 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5087 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5088 }
5089
5090 case SVM_EXIT_INVLPG:
5091 {
5092 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5093 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5094 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5095 }
5096
5097 case SVM_EXIT_WBINVD:
5098 {
5099 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5100 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5101 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5102 }
5103
5104 case SVM_EXIT_INVD:
5105 {
5106 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5107 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5108 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5109 }
5110
5111 case SVM_EXIT_RDPMC:
5112 {
5113 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5114 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5115 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5116 }
5117
5118 default:
5119 {
5120 switch (uExitCode)
5121 {
5122 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5123 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5124 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5125 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5126 {
5127 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5128 if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5129 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5130 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5131 }
5132
5133 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5134 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5135 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5136 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5137 {
5138 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5139 if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5140 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5141 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5142 }
5143
5144 case SVM_EXIT_XCPT_DE:
5145 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5146 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5147 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5148 case SVM_EXIT_XCPT_OF:
5149 case SVM_EXIT_XCPT_BR:
5150 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5151 case SVM_EXIT_XCPT_NM:
5152 case SVM_EXIT_XCPT_DF:
5153 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5154 case SVM_EXIT_XCPT_TS:
5155 case SVM_EXIT_XCPT_NP:
5156 case SVM_EXIT_XCPT_SS:
5157 case SVM_EXIT_XCPT_GP:
5158 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5159 case SVM_EXIT_XCPT_15: /* Reserved. */
5160 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5161 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5162 case SVM_EXIT_XCPT_MC:
5163 case SVM_EXIT_XCPT_XF:
5164 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5165 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5166 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5167 {
5168 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5169 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5170 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5171 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5172 }
5173
5174 case SVM_EXIT_XSETBV:
5175 {
5176 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5177 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5178 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5179 }
5180
5181 case SVM_EXIT_TASK_SWITCH:
5182 {
5183 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5184 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5185 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5186 }
5187
5188 case SVM_EXIT_IRET:
5189 {
5190 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5191 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5192 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5193 }
5194
5195 case SVM_EXIT_SHUTDOWN:
5196 {
5197 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5198 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5199 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5200 }
5201
5202 case SVM_EXIT_VMMCALL:
5203 {
5204 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5205 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5206 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5207 }
5208
5209 case SVM_EXIT_CLGI:
5210 {
5211 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5212 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5213 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5214 }
5215
5216 case SVM_EXIT_STGI:
5217 {
5218 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5219 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5220 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5221 }
5222
5223 case SVM_EXIT_VMLOAD:
5224 {
5225 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5226 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5227 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5228 }
5229
5230 case SVM_EXIT_VMSAVE:
5231 {
5232 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5233 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5234 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5235 }
5236
5237 case SVM_EXIT_INVLPGA:
5238 {
5239 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5240 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5241 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5242 }
5243
5244 case SVM_EXIT_VMRUN:
5245 {
5246 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5247 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5248 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5249 }
5250
5251 case SVM_EXIT_RSM:
5252 {
5253 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5254 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5255 hmR0SvmSetPendingXcptUD(pVCpu);
5256 return VINF_SUCCESS;
5257 }
5258
5259 case SVM_EXIT_SKINIT:
5260 {
5261 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5262 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5263 hmR0SvmSetPendingXcptUD(pVCpu);
5264 return VINF_SUCCESS;
5265 }
5266
5267 case SVM_EXIT_NPF:
5268 {
5269 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5270 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5271 }
5272
5273 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5274 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5275
5276 default:
5277 {
5278 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5279 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5280 return VERR_SVM_UNKNOWN_EXIT;
5281 }
5282 }
5283 }
5284 }
5285 /* not reached */
5286
5287#undef NST_GST_VMEXIT_CALL_RET
5288}
5289#endif
5290
5291
5292/**
5293 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5294 *
5295 * @returns Strict VBox status code (informational status codes included).
5296 * @param pVCpu The cross context virtual CPU structure.
5297 * @param pSvmTransient Pointer to the SVM transient structure.
5298 */
5299static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5300{
5301 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5302 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5303
5304#ifdef DEBUG_ramshankar
5305# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5306 do { \
5307 if ((a_fDbg) == 1) \
5308 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5309 int rc = a_CallExpr; \
5310 if ((a_fDbg) == 1) \
5311 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5312 return rc; \
5313 } while (0)
5314#else
5315# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5316#endif
5317
5318 /*
5319 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5320 * for most guests under normal workloads (for some definition of "normal").
5321 */
5322 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5323 switch (uExitCode)
5324 {
5325 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5326 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5327 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5328 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5329 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5330 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5331 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5332 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5333 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5334 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5335
5336 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5337 case SVM_EXIT_INTR:
5338 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5339
5340 case SVM_EXIT_READ_CR0:
5341 case SVM_EXIT_READ_CR3:
5342 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5343
5344 case SVM_EXIT_CR0_SEL_WRITE:
5345 case SVM_EXIT_WRITE_CR0:
5346 case SVM_EXIT_WRITE_CR3:
5347 case SVM_EXIT_WRITE_CR4:
5348 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5349
5350 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5351 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5352 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5353 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5354 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5355 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5356 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5357 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5358 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5359 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5360 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5361 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5362 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5363 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5364 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5365 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5366
5367 default:
5368 {
5369 switch (pSvmTransient->u64ExitCode)
5370 {
5371 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5372 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5373 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5374 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5375 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5376
5377 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5378 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5379 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5380 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5381 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5382
5383 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5384 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5385
5386 case SVM_EXIT_SMI:
5387 case SVM_EXIT_INIT:
5388 {
5389 /*
5390 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5391 * If it ever does, we want to know about it so log the exit code and bail.
5392 */
5393 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5394 }
5395
5396#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5397 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5398 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5399 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5400 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5401 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5402 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5403#else
5404 case SVM_EXIT_CLGI:
5405 case SVM_EXIT_STGI:
5406 case SVM_EXIT_VMLOAD:
5407 case SVM_EXIT_VMSAVE:
5408 case SVM_EXIT_INVLPGA:
5409 case SVM_EXIT_VMRUN:
5410#endif
5411 case SVM_EXIT_RSM:
5412 case SVM_EXIT_SKINIT:
5413 {
5414 hmR0SvmSetPendingXcptUD(pVCpu);
5415 return VINF_SUCCESS;
5416 }
5417
5418#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5419 case SVM_EXIT_XCPT_DE:
5420 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5421 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5422 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5423 case SVM_EXIT_XCPT_OF:
5424 case SVM_EXIT_XCPT_BR:
5425 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5426 case SVM_EXIT_XCPT_NM:
5427 case SVM_EXIT_XCPT_DF:
5428 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5429 case SVM_EXIT_XCPT_TS:
5430 case SVM_EXIT_XCPT_NP:
5431 case SVM_EXIT_XCPT_SS:
5432 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5433 /* SVM_EXIT_XCPT_PF: */
5434 case SVM_EXIT_XCPT_15: /* Reserved. */
5435 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5436 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5437 case SVM_EXIT_XCPT_MC:
5438 case SVM_EXIT_XCPT_XF:
5439 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5440 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5441 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5442 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5443#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5444
5445 default:
5446 {
5447 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5448 pVCpu->hm.s.u32HMError = uExitCode;
5449 return VERR_SVM_UNKNOWN_EXIT;
5450 }
5451 }
5452 }
5453 }
5454 /* not reached */
5455#undef VMEXIT_CALL_RET
5456}
5457
5458
5459#ifdef VBOX_STRICT
5460/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5461# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5462 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5463
5464# define HMSVM_ASSERT_PREEMPT_CPUID() \
5465 do \
5466 { \
5467 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5468 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5469 } while (0)
5470
5471# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5472 do { \
5473 AssertPtr((a_pVCpu)); \
5474 AssertPtr((a_pSvmTransient)); \
5475 Assert(ASMIntAreEnabled()); \
5476 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5477 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5478 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5479 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5480 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
5481 HMSVM_ASSERT_PREEMPT_CPUID(); \
5482 } while (0)
5483#else
5484# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5485 do { \
5486 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5487 } while (0)
5488#endif
5489
5490
5491/**
5492 * Gets the IEM exception flags for the specified SVM event.
5493 *
5494 * @returns The IEM exception flags.
5495 * @param pEvent Pointer to the SVM event.
5496 *
5497 * @remarks This function currently only constructs flags required for
5498 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5499 * and CR2 aspects of an exception are not included).
5500 */
5501static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5502{
5503 uint8_t const uEventType = pEvent->n.u3Type;
5504 uint32_t fIemXcptFlags;
5505 switch (uEventType)
5506 {
5507 case SVM_EVENT_EXCEPTION:
5508 /*
5509 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5510 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5511 */
5512 if (pEvent->n.u8Vector == X86_XCPT_BP)
5513 {
5514 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5515 break;
5516 }
5517 if (pEvent->n.u8Vector == X86_XCPT_OF)
5518 {
5519 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5520 break;
5521 }
5522 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5523 RT_FALL_THRU();
5524 case SVM_EVENT_NMI:
5525 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5526 break;
5527
5528 case SVM_EVENT_EXTERNAL_IRQ:
5529 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5530 break;
5531
5532 case SVM_EVENT_SOFTWARE_INT:
5533 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5534 break;
5535
5536 default:
5537 fIemXcptFlags = 0;
5538 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5539 break;
5540 }
5541 return fIemXcptFlags;
5542}
5543
5544
5545/**
5546 * Handle a condition that occurred while delivering an event through the guest
5547 * IDT.
5548 *
5549 * @returns VBox status code (informational error codes included).
5550 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5551 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5552 * continue execution of the guest which will delivery the \#DF.
5553 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5554 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5555 *
5556 * @param pVCpu The cross context virtual CPU structure.
5557 * @param pSvmTransient Pointer to the SVM transient structure.
5558 *
5559 * @remarks No-long-jump zone!!!
5560 */
5561static int hmR0SvmCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5562{
5563 int rc = VINF_SUCCESS;
5564 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5565 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5566
5567 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5568 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5569 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5570
5571 /*
5572 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5573 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5574 *
5575 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5576 */
5577 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5578 {
5579 IEMXCPTRAISE enmRaise;
5580 IEMXCPTRAISEINFO fRaiseInfo;
5581 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5582 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5583 if (fExitIsHwXcpt)
5584 {
5585 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5586 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5587 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5588 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5589 }
5590 else
5591 {
5592 /*
5593 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5594 * then we end up here.
5595 *
5596 * If the event was:
5597 * - a software interrupt, we can re-execute the instruction which will
5598 * regenerate the event.
5599 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5600 * - a hardware exception or external interrupt, we re-inject it.
5601 */
5602 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5603 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5604 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5605 else
5606 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5607 }
5608
5609 switch (enmRaise)
5610 {
5611 case IEMXCPTRAISE_CURRENT_XCPT:
5612 case IEMXCPTRAISE_PREV_EVENT:
5613 {
5614 /* For software interrupts, we shall re-execute the instruction. */
5615 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5616 {
5617 RTGCUINTPTR GCPtrFaultAddress = 0;
5618
5619 /* If we are re-injecting an NMI, clear NMI blocking. */
5620 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5621 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5622
5623 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5624 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5625 {
5626 pSvmTransient->fVectoringPF = true;
5627 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5628 pVCpu->cpum.GstCtx.cr2));
5629 }
5630 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5631 && uIdtVector == X86_XCPT_PF)
5632 {
5633 /*
5634 * If the previous exception was a #PF, we need to recover the CR2 value.
5635 * This can't happen with shadow paging.
5636 */
5637 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5638 }
5639
5640 /*
5641 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5642 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5643 */
5644 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5645 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
5646 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5647
5648 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5649 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5650 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5651 }
5652 break;
5653 }
5654
5655 case IEMXCPTRAISE_REEXEC_INSTR:
5656 {
5657 Assert(rc == VINF_SUCCESS);
5658 break;
5659 }
5660
5661 case IEMXCPTRAISE_DOUBLE_FAULT:
5662 {
5663 /*
5664 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5665 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5666 * converted into a #DF.
5667 */
5668 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5669 {
5670 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
5671 pSvmTransient->fVectoringDoublePF = true;
5672 Assert(rc == VINF_SUCCESS);
5673 }
5674 else
5675 {
5676 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
5677 hmR0SvmSetPendingXcptDF(pVCpu);
5678 rc = VINF_HM_DOUBLE_FAULT;
5679 }
5680 break;
5681 }
5682
5683 case IEMXCPTRAISE_TRIPLE_FAULT:
5684 {
5685 rc = VINF_EM_RESET;
5686 break;
5687 }
5688
5689 case IEMXCPTRAISE_CPU_HANG:
5690 {
5691 rc = VERR_EM_GUEST_CPU_HANG;
5692 break;
5693 }
5694
5695 default:
5696 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
5697 }
5698 }
5699 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
5700 return rc;
5701}
5702
5703
5704/**
5705 * Advances the guest RIP by the number of bytes specified in @a cb.
5706 *
5707 * @param pVCpu The cross context virtual CPU structure.
5708 * @param cb RIP increment value in bytes.
5709 */
5710DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPUCC pVCpu, uint32_t cb)
5711{
5712 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5713 pCtx->rip += cb;
5714
5715 /* Update interrupt shadow. */
5716 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
5717 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
5718 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5719}
5720
5721
5722/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5723/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
5724/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5725
5726/** @name \#VMEXIT handlers.
5727 * @{
5728 */
5729
5730/**
5731 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
5732 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
5733 */
5734HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5735{
5736 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5737
5738 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
5739 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
5740 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
5741 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
5742
5743 /*
5744 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
5745 * signal -before- the timer fires if the current interrupt is our own timer or a some
5746 * other host interrupt. We also cannot examine what interrupt it is until the host
5747 * actually take the interrupt.
5748 *
5749 * Going back to executing guest code here unconditionally causes random scheduling
5750 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
5751 */
5752 return VINF_EM_RAW_INTERRUPT;
5753}
5754
5755
5756/**
5757 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
5758 */
5759HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5760{
5761 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5762
5763 VBOXSTRICTRC rcStrict;
5764 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5765 if (fSupportsNextRipSave)
5766 {
5767 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5768 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5769 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5770 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
5771 }
5772 else
5773 {
5774 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5775 rcStrict = IEMExecOne(pVCpu);
5776 }
5777
5778 if (rcStrict == VINF_IEM_RAISED_XCPT)
5779 {
5780 rcStrict = VINF_SUCCESS;
5781 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5782 }
5783 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5784 return rcStrict;
5785}
5786
5787
5788/**
5789 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
5790 */
5791HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5792{
5793 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5794
5795 VBOXSTRICTRC rcStrict;
5796 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5797 if (fSupportsNextRipSave)
5798 {
5799 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5800 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5801 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5802 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
5803 }
5804 else
5805 {
5806 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5807 rcStrict = IEMExecOne(pVCpu);
5808 }
5809
5810 if (rcStrict == VINF_IEM_RAISED_XCPT)
5811 {
5812 rcStrict = VINF_SUCCESS;
5813 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5814 }
5815 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5816 return rcStrict;
5817}
5818
5819
5820/**
5821 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
5822 */
5823HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5824{
5825 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5826
5827 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
5828 VBOXSTRICTRC rcStrict;
5829 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
5830 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
5831 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
5832 if (!pExitRec)
5833 {
5834 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5835 if (fSupportsNextRipSave)
5836 {
5837 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5838 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5839 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
5840 }
5841 else
5842 {
5843 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5844 rcStrict = IEMExecOne(pVCpu);
5845 }
5846
5847 if (rcStrict == VINF_IEM_RAISED_XCPT)
5848 {
5849 rcStrict = VINF_SUCCESS;
5850 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5851 }
5852 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5853 }
5854 else
5855 {
5856 /*
5857 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
5858 */
5859 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5860
5861 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
5862 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
5863
5864 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
5865
5866 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
5867 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
5868 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
5869 }
5870 return rcStrict;
5871}
5872
5873
5874/**
5875 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
5876 */
5877HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5878{
5879 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5880
5881 VBOXSTRICTRC rcStrict;
5882 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5883 if (fSupportsNextRipSave)
5884 {
5885 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5886 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5887 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5888 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
5889 }
5890 else
5891 {
5892 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5893 rcStrict = IEMExecOne(pVCpu);
5894 }
5895
5896 if (rcStrict == VINF_SUCCESS)
5897 pSvmTransient->fUpdateTscOffsetting = true;
5898 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5899 {
5900 rcStrict = VINF_SUCCESS;
5901 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5902 }
5903 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5904 return rcStrict;
5905}
5906
5907
5908/**
5909 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
5910 */
5911HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5912{
5913 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5914
5915 VBOXSTRICTRC rcStrict;
5916 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5917 if (fSupportsNextRipSave)
5918 {
5919 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
5920 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5921 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5922 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
5923 }
5924 else
5925 {
5926 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5927 rcStrict = IEMExecOne(pVCpu);
5928 }
5929
5930 if (rcStrict == VINF_SUCCESS)
5931 pSvmTransient->fUpdateTscOffsetting = true;
5932 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5933 {
5934 rcStrict = VINF_SUCCESS;
5935 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5936 }
5937 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5938 return rcStrict;
5939}
5940
5941
5942/**
5943 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
5944 */
5945HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5946{
5947 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5948
5949 VBOXSTRICTRC rcStrict;
5950 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5951 if (fSupportsNextRipSave)
5952 {
5953 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5954 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5955 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5956 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
5957 }
5958 else
5959 {
5960 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5961 rcStrict = IEMExecOne(pVCpu);
5962 }
5963
5964 if (rcStrict == VINF_IEM_RAISED_XCPT)
5965 {
5966 rcStrict = VINF_SUCCESS;
5967 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5968 }
5969 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5970 return rcStrict;
5971}
5972
5973
5974/**
5975 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
5976 */
5977HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5978{
5979 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5980 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5981
5982 VBOXSTRICTRC rcStrict;
5983 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
5984 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5985 if ( fSupportsDecodeAssists
5986 && fSupportsNextRipSave)
5987 {
5988 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
5989 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5990 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5991 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
5992 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
5993 }
5994 else
5995 {
5996 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5997 rcStrict = IEMExecOne(pVCpu);
5998 }
5999
6000 if (rcStrict == VINF_IEM_RAISED_XCPT)
6001 {
6002 rcStrict = VINF_SUCCESS;
6003 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6004 }
6005 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6006 return VBOXSTRICTRC_VAL(rcStrict);
6007}
6008
6009
6010/**
6011 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6012 */
6013HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6014{
6015 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6016
6017 VBOXSTRICTRC rcStrict;
6018 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6019 if (fSupportsNextRipSave)
6020 {
6021 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6022 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6023 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6024 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6025 }
6026 else
6027 {
6028 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6029 rcStrict = IEMExecOne(pVCpu);
6030 }
6031
6032 if ( rcStrict == VINF_EM_HALT
6033 || rcStrict == VINF_SUCCESS)
6034 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6035 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6036 {
6037 rcStrict = VINF_SUCCESS;
6038 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6039 }
6040 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6041 if (rcStrict != VINF_SUCCESS)
6042 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6043 return VBOXSTRICTRC_VAL(rcStrict);;
6044}
6045
6046
6047/**
6048 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6049 */
6050HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6051{
6052 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6053
6054 /*
6055 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6056 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6057 * segment override prefix or other prefixes might be used, in which case we fallback to
6058 * IEMExecOne() to figure out.
6059 */
6060 VBOXSTRICTRC rcStrict;
6061 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6062 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6063 if (cbInstr)
6064 {
6065 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6066 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6067 }
6068 else
6069 {
6070 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6071 rcStrict = IEMExecOne(pVCpu);
6072 }
6073
6074 if (rcStrict == VINF_IEM_RAISED_XCPT)
6075 {
6076 rcStrict = VINF_SUCCESS;
6077 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6078 }
6079 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6080 return rcStrict;
6081}
6082
6083
6084/**
6085 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6086 */
6087HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6088{
6089 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6090
6091 VBOXSTRICTRC rcStrict;
6092 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6093 if (fSupportsNextRipSave)
6094 {
6095 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6096 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6097 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6098 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6099 }
6100 else
6101 {
6102 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6103 rcStrict = IEMExecOne(pVCpu);
6104 }
6105
6106 if ( rcStrict == VINF_EM_HALT
6107 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6108 rcStrict = VINF_SUCCESS;
6109 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6110 {
6111 rcStrict = VINF_SUCCESS;
6112 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6113 }
6114 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6115 return rcStrict;
6116}
6117
6118
6119/**
6120 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6121 * \#VMEXIT.
6122 */
6123HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6124{
6125 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6126 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6127 return VINF_EM_RESET;
6128}
6129
6130
6131/**
6132 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6133 */
6134HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6135{
6136 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6137 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6138 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6139 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6140 RT_NOREF(pVmcb);
6141 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6142 return VERR_SVM_UNEXPECTED_EXIT;
6143}
6144
6145
6146/**
6147 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6148 */
6149HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6150{
6151 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6152
6153 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6154 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6155#ifdef VBOX_WITH_STATISTICS
6156 switch (pSvmTransient->u64ExitCode)
6157 {
6158 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6159 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6160 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6161 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6162 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6163 }
6164#endif
6165
6166 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6167 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6168 if ( fSupportsDecodeAssists
6169 && fSupportsNextRipSave)
6170 {
6171 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6172 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6173 if (fMovCRx)
6174 {
6175 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6176 | CPUMCTX_EXTRN_APIC_TPR);
6177 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6178 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6179 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6180 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6181 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6182 return VBOXSTRICTRC_VAL(rcStrict);
6183 }
6184 /* else: SMSW instruction, fall back below to IEM for this. */
6185 }
6186
6187 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6188 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6189 AssertMsg( rcStrict == VINF_SUCCESS
6190 || rcStrict == VINF_PGM_SYNC_CR3
6191 || rcStrict == VINF_IEM_RAISED_XCPT,
6192 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6193 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6194 if (rcStrict == VINF_IEM_RAISED_XCPT)
6195 {
6196 rcStrict = VINF_SUCCESS;
6197 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6198 }
6199 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6200 return rcStrict;
6201}
6202
6203
6204/**
6205 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6206 */
6207HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6208{
6209 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6210
6211 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6212 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6213 Assert(iCrReg <= 15);
6214
6215 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6216 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6217 bool fDecodedInstr = false;
6218 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6219 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6220 if ( fSupportsDecodeAssists
6221 && fSupportsNextRipSave)
6222 {
6223 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6224 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6225 if (fMovCRx)
6226 {
6227 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6228 | CPUMCTX_EXTRN_APIC_TPR);
6229 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6230 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6231 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6232 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6233 fDecodedInstr = true;
6234 }
6235 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6236 }
6237
6238 if (!fDecodedInstr)
6239 {
6240 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6241 Log4Func(("iCrReg=%#x\n", iCrReg));
6242 rcStrict = IEMExecOne(pVCpu);
6243 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6244 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6245 rcStrict = VERR_EM_INTERPRETER;
6246 }
6247
6248 if (rcStrict == VINF_SUCCESS)
6249 {
6250 switch (iCrReg)
6251 {
6252 case 0:
6253 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6254 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6255 break;
6256
6257 case 2:
6258 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6259 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6260 break;
6261
6262 case 3:
6263 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6264 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6265 break;
6266
6267 case 4:
6268 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6269 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6270 break;
6271
6272 case 8:
6273 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6274 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6275 break;
6276
6277 default:
6278 {
6279 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6280 pSvmTransient->u64ExitCode, iCrReg));
6281 break;
6282 }
6283 }
6284 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6285 }
6286 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6287 {
6288 rcStrict = VINF_SUCCESS;
6289 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6290 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6291 }
6292 else
6293 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6294 return rcStrict;
6295}
6296
6297
6298/**
6299 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6300 *
6301 * @returns Strict VBox status code.
6302 * @param pVCpu The cross context virtual CPU structure.
6303 * @param pVmcb Pointer to the VM control block.
6304 */
6305static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
6306{
6307 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6308 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6309
6310 VBOXSTRICTRC rcStrict;
6311 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6312 if (fSupportsNextRipSave)
6313 {
6314 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6315 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6316 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6317 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6318 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6319 }
6320 else
6321 {
6322 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6323 rcStrict = IEMExecOne(pVCpu);
6324 }
6325
6326 AssertMsg( rcStrict == VINF_SUCCESS
6327 || rcStrict == VINF_IEM_RAISED_XCPT
6328 || rcStrict == VINF_CPUM_R3_MSR_READ,
6329 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6330
6331 if (rcStrict == VINF_IEM_RAISED_XCPT)
6332 {
6333 rcStrict = VINF_SUCCESS;
6334 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6335 }
6336 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6337 return rcStrict;
6338}
6339
6340
6341/**
6342 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6343 *
6344 * @returns Strict VBox status code.
6345 * @param pVCpu The cross context virtual CPU structure.
6346 * @param pVmcb Pointer to the VM control block.
6347 * @param pSvmTransient Pointer to the SVM-transient structure.
6348 */
6349static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6350{
6351 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6352 uint32_t const idMsr = pCtx->ecx;
6353 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6354 Log4Func(("idMsr=%#RX32\n", idMsr));
6355
6356 /*
6357 * Handle TPR patching MSR writes.
6358 * We utilitize the LSTAR MSR for patching.
6359 */
6360 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6361 if ( idMsr == MSR_K8_LSTAR
6362 && pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingActive)
6363 {
6364 unsigned cbInstr;
6365 if (fSupportsNextRipSave)
6366 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6367 else
6368 {
6369 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
6370 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6371 if ( rc == VINF_SUCCESS
6372 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6373 Assert(cbInstr > 0);
6374 else
6375 cbInstr = 0;
6376 }
6377
6378 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6379 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6380 {
6381 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6382 AssertRCReturn(rc, rc);
6383 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6384 }
6385
6386 int rc = VINF_SUCCESS;
6387 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6388 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6389 return rc;
6390 }
6391
6392 /*
6393 * Handle regular MSR writes.
6394 */
6395 VBOXSTRICTRC rcStrict;
6396 if (fSupportsNextRipSave)
6397 {
6398 /** @todo Optimize this: We don't need to get much of the MSR state here
6399 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6400 * clear the applicable extern flags. */
6401 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6402 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6403 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6404 }
6405 else
6406 {
6407 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6408 rcStrict = IEMExecOne(pVCpu);
6409 }
6410
6411 AssertMsg( rcStrict == VINF_SUCCESS
6412 || rcStrict == VINF_IEM_RAISED_XCPT
6413 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6414 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6415
6416 if (rcStrict == VINF_SUCCESS)
6417 {
6418 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6419 if ( idMsr >= MSR_IA32_X2APIC_START
6420 && idMsr <= MSR_IA32_X2APIC_END)
6421 {
6422 /*
6423 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6424 * When full APIC register virtualization is implemented we'll have to make sure
6425 * APIC state is saved from the VMCB before IEM changes it.
6426 */
6427 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6428 }
6429 else
6430 {
6431 switch (idMsr)
6432 {
6433 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6434 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6435 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6436 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6437 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6438 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6439 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6440 }
6441 }
6442 }
6443 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6444 {
6445 rcStrict = VINF_SUCCESS;
6446 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6447 }
6448 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6449 return rcStrict;
6450}
6451
6452
6453/**
6454 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6455 * \#VMEXIT.
6456 */
6457HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6458{
6459 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6460
6461 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6462 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6463 return hmR0SvmExitReadMsr(pVCpu, pVmcb);
6464
6465 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6466 return hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient);
6467}
6468
6469
6470/**
6471 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6472 */
6473HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6474{
6475 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6476 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6477
6478 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6479
6480 /** @todo Stepping with nested-guest. */
6481 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6482 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6483 {
6484 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6485 if (pSvmTransient->fWasGuestDebugStateActive)
6486 {
6487 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6488 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6489 return VERR_SVM_UNEXPECTED_EXIT;
6490 }
6491
6492 /*
6493 * Lazy DR0-3 loading.
6494 */
6495 if (!pSvmTransient->fWasHyperDebugStateActive)
6496 {
6497 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6498 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6499
6500 /* Don't intercept DRx read and writes. */
6501 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
6502 pVmcb->ctrl.u16InterceptRdDRx = 0;
6503 pVmcb->ctrl.u16InterceptWrDRx = 0;
6504 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6505
6506 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6507 VMMRZCallRing3Disable(pVCpu);
6508 HM_DISABLE_PREEMPT(pVCpu);
6509
6510 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6511 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6512 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6513
6514 HM_RESTORE_PREEMPT();
6515 VMMRZCallRing3Enable(pVCpu);
6516
6517 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6518 return VINF_SUCCESS;
6519 }
6520 }
6521
6522 /*
6523 * Interpret the read/writing of DRx.
6524 */
6525 /** @todo Decode assist. */
6526 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6527 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6528 if (RT_LIKELY(rc == VINF_SUCCESS))
6529 {
6530 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6531 /** @todo CPUM should set this flag! */
6532 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6533 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6534 }
6535 else
6536 Assert(rc == VERR_EM_INTERPRETER);
6537 return rc;
6538}
6539
6540
6541/**
6542 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6543 */
6544HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6545{
6546 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6547 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6548 VBOXSTRICTRC rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6549 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6550 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6551 return rc;
6552}
6553
6554
6555/**
6556 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6557 */
6558HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6559{
6560 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6561 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6562
6563 /** @todo decode assists... */
6564 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6565 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6566 {
6567 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6568 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6569 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], fLoadSaveGuestXcr0, pCtx->cr4));
6570 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
6571 {
6572 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
6573 hmR0SvmUpdateVmRunFunction(pVCpu);
6574 }
6575 }
6576 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6577 {
6578 rcStrict = VINF_SUCCESS;
6579 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6580 }
6581 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6582 return rcStrict;
6583}
6584
6585
6586/**
6587 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6588 */
6589HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6590{
6591 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6592 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6593
6594 /* I/O operation lookup arrays. */
6595 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6596 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6597 the result (in AL/AX/EAX). */
6598 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6599 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6600 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6601
6602 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6603
6604 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6605 SVMIOIOEXITINFO IoExitInfo;
6606 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6607 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6608 uint32_t cbValue = s_aIOSize[uIOWidth];
6609 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6610
6611 if (RT_UNLIKELY(!cbValue))
6612 {
6613 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6614 return VERR_EM_INTERPRETER;
6615 }
6616
6617 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6618 VBOXSTRICTRC rcStrict;
6619 PCEMEXITREC pExitRec = NULL;
6620 if ( !pVCpu->hm.s.fSingleInstruction
6621 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6622 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6623 !IoExitInfo.n.u1Str
6624 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6625 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6626 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6627 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6628 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6629 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6630 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6631 if (!pExitRec)
6632 {
6633 bool fUpdateRipAlready = false;
6634 if (IoExitInfo.n.u1Str)
6635 {
6636 /* INS/OUTS - I/O String instruction. */
6637 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6638 * in EXITINFO1? Investigate once this thing is up and running. */
6639 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6640 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6641 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6642 static IEMMODE const s_aenmAddrMode[8] =
6643 {
6644 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6645 };
6646 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6647 if (enmAddrMode != (IEMMODE)-1)
6648 {
6649 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6650 if (cbInstr <= 15 && cbInstr >= 1)
6651 {
6652 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6653 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6654 {
6655 /* Don't know exactly how to detect whether u3Seg is valid, currently
6656 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6657 2384 Opterons when only checking NRIP. */
6658 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6659 if ( fSupportsNextRipSave
6660 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6661 {
6662 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6663 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6664 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6665 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6666 }
6667 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6668 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6669 X86_SREG_DS, true /*fIoChecked*/);
6670 else
6671 rcStrict = IEMExecOne(pVCpu);
6672 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6673 }
6674 else
6675 {
6676 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
6677 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6678 true /*fIoChecked*/);
6679 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6680 }
6681 }
6682 else
6683 {
6684 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6685 rcStrict = IEMExecOne(pVCpu);
6686 }
6687 }
6688 else
6689 {
6690 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6691 rcStrict = IEMExecOne(pVCpu);
6692 }
6693 fUpdateRipAlready = true;
6694 }
6695 else
6696 {
6697 /* IN/OUT - I/O instruction. */
6698 Assert(!IoExitInfo.n.u1Rep);
6699
6700 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6701 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6702 {
6703 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6704 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6705 && !pCtx->eflags.Bits.u1TF)
6706 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
6707 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6708 }
6709 else
6710 {
6711 uint32_t u32Val = 0;
6712 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6713 if (IOM_SUCCESS(rcStrict))
6714 {
6715 /* Save result of I/O IN instr. in AL/AX/EAX. */
6716 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6717 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6718 }
6719 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6720 && !pCtx->eflags.Bits.u1TF)
6721 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
6722
6723 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6724 }
6725 }
6726
6727 if (IOM_SUCCESS(rcStrict))
6728 {
6729 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6730 if (!fUpdateRipAlready)
6731 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6732
6733 /*
6734 * If any I/O breakpoints are armed, we need to check if one triggered
6735 * and take appropriate action.
6736 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6737 */
6738 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6739 * execution engines about whether hyper BPs and such are pending. */
6740 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
6741 uint32_t const uDr7 = pCtx->dr[7];
6742 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6743 && X86_DR7_ANY_RW_IO(uDr7)
6744 && (pCtx->cr4 & X86_CR4_DE))
6745 || DBGFBpIsHwIoArmed(pVM)))
6746 {
6747 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6748 VMMRZCallRing3Disable(pVCpu);
6749 HM_DISABLE_PREEMPT(pVCpu);
6750
6751 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6752 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6753
6754 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
6755 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6756 {
6757 /* Raise #DB. */
6758 pVmcb->guest.u64DR6 = pCtx->dr[6];
6759 pVmcb->guest.u64DR7 = pCtx->dr[7];
6760 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6761 hmR0SvmSetPendingXcptDB(pVCpu);
6762 }
6763 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6764 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6765 else if ( rcStrict2 != VINF_SUCCESS
6766 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6767 rcStrict = rcStrict2;
6768 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6769
6770 HM_RESTORE_PREEMPT();
6771 VMMRZCallRing3Enable(pVCpu);
6772 }
6773
6774 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6775 }
6776
6777#ifdef VBOX_STRICT
6778 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6779 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
6780 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6781 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6782 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
6783 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
6784 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6785 else
6786 {
6787 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6788 * statuses, that the VMM device and some others may return. See
6789 * IOM_SUCCESS() for guidance. */
6790 AssertMsg( RT_FAILURE(rcStrict)
6791 || rcStrict == VINF_SUCCESS
6792 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6793 || rcStrict == VINF_EM_DBG_BREAKPOINT
6794 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6795 || rcStrict == VINF_EM_DBG_STEPPED
6796 || rcStrict == VINF_EM_RAW_TO_R3
6797 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
6798 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6799 }
6800#endif
6801 }
6802 else
6803 {
6804 /*
6805 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6806 */
6807 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6808 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
6809 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
6810 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
6811 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
6812 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
6813 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
6814
6815 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6816 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6817
6818 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6819 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6820 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6821 }
6822 return rcStrict;
6823}
6824
6825
6826/**
6827 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6828 */
6829HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6830{
6831 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6832 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6833 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
6834
6835 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6836 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6837 Assert(pVM->hmr0.s.fNestedPaging);
6838
6839 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
6840 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6841 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
6842 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
6843 thus intentionally not copied into u32ErrCode. */
6844
6845 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x cbInstrFetched=%u %.15Rhxs\n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
6846 u32ErrCode, pVmcb->ctrl.cbInstrFetched, pVmcb->ctrl.abInstr));
6847
6848 /*
6849 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
6850 */
6851 if ( pVM->hm.s.fTprPatchingAllowed
6852 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
6853 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
6854 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
6855 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
6856 && !CPUMIsGuestInLongModeEx(pCtx)
6857 && !CPUMGetGuestCPL(pVCpu)
6858 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6859 {
6860 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6861 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6862
6863 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
6864 {
6865 /* Only attempt to patch the instruction once. */
6866 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6867 if (!pPatch)
6868 return VINF_EM_HM_PATCH_TPR_INSTR;
6869 }
6870 }
6871
6872 /*
6873 * Determine the nested paging mode.
6874 */
6875/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
6876 PGMMODE const enmNestedPagingMode = PGMGetHostMode(pVM);
6877
6878 /*
6879 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
6880 */
6881 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
6882 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
6883 {
6884 /*
6885 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
6886 * injecting the original pending event would most likely cause the same MMIO #NPF.
6887 */
6888 if (pVCpu->hm.s.Event.fPending)
6889 {
6890 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
6891 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6892 }
6893
6894 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
6895 VBOXSTRICTRC rcStrict;
6896 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6897 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
6898 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6899 if (!pExitRec)
6900 {
6901
6902 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
6903 u32ErrCode);
6904
6905 /*
6906 * If we succeed, resume guest execution.
6907 *
6908 * If we fail in interpreting the instruction because we couldn't get the guest
6909 * physical address of the page containing the instruction via the guest's page
6910 * tables (we would invalidate the guest page in the host TLB), resume execution
6911 * which would cause a guest page fault to let the guest handle this weird case.
6912 *
6913 * See @bugref{6043}.
6914 */
6915 if ( rcStrict == VINF_SUCCESS
6916 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
6917 || rcStrict == VERR_PAGE_NOT_PRESENT)
6918 {
6919 /* Successfully handled MMIO operation. */
6920 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6921 rcStrict = VINF_SUCCESS;
6922 }
6923 }
6924 else
6925 {
6926 /*
6927 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6928 */
6929 Assert(pCtx == &pVCpu->cpum.GstCtx);
6930 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6931 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
6932 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
6933
6934 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6935 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6936
6937 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6938 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6939 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6940 }
6941 return rcStrict;
6942 }
6943
6944 /*
6945 * Nested page-fault.
6946 */
6947 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
6948 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
6949 TRPMResetTrap(pVCpu);
6950
6951 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
6952
6953 /*
6954 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
6955 */
6956 if ( rc == VINF_SUCCESS
6957 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6958 || rc == VERR_PAGE_NOT_PRESENT)
6959 {
6960 /* We've successfully synced our shadow page tables. */
6961 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6962 rc = VINF_SUCCESS;
6963 }
6964
6965 /*
6966 * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and
6967 * re-inject the original event.
6968 */
6969 if (pVCpu->hm.s.Event.fPending)
6970 {
6971 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
6972
6973 /*
6974 * If the #NPF handler requested emulation of the instruction, ignore it.
6975 * We need to re-inject the original event so as to not lose it.
6976 * Reproducible when booting ReactOS 0.4.12 with BTRFS (installed using BootCD,
6977 * LiveCD is broken for other reasons).
6978 */
6979 if (rc == VINF_EM_RAW_EMULATE_INSTR)
6980 rc = VINF_EM_RAW_INJECT_TRPM_EVENT;
6981 }
6982
6983 return rc;
6984}
6985
6986
6987/**
6988 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
6989 * \#VMEXIT.
6990 */
6991HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6992{
6993 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6994 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
6995
6996 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
6997 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6998 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
6999
7000 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
7001 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7002 return VINF_SUCCESS;
7003}
7004
7005
7006/**
7007 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
7008 * \#VMEXIT.
7009 */
7010HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7011{
7012 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7013 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7014
7015#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
7016 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
7017#endif
7018
7019 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
7020 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
7021 {
7022 /*
7023 * AMD-V provides us with the exception which caused the TS; we collect
7024 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7025 */
7026 Log4Func(("TS occurred during event delivery\n"));
7027 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7028 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7029 }
7030
7031 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7032 * emulation. */
7033 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7034 return VERR_EM_INTERPRETER;
7035}
7036
7037
7038/**
7039 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7040 */
7041HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7042{
7043 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7044 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7045
7046 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7047 if (pVM->hm.s.fTprPatchingAllowed)
7048 {
7049 int rc = hmEmulateSvmMovTpr(pVM, pVCpu);
7050 if (rc != VERR_NOT_FOUND)
7051 {
7052 Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc));
7053 return rc;
7054 }
7055 }
7056
7057 if (EMAreHypercallInstructionsEnabled(pVCpu))
7058 {
7059 unsigned cbInstr;
7060 if (hmR0SvmSupportsNextRipSave(pVCpu))
7061 {
7062 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7063 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7064 }
7065 else
7066 {
7067 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7068 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7069 if ( rc == VINF_SUCCESS
7070 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7071 Assert(cbInstr > 0);
7072 else
7073 cbInstr = 0;
7074 }
7075
7076 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7077 if (RT_SUCCESS(rcStrict))
7078 {
7079 /* Only update the RIP if we're continuing guest execution and not in the case
7080 of say VINF_GIM_R3_HYPERCALL. */
7081 if (rcStrict == VINF_SUCCESS)
7082 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7083
7084 return VBOXSTRICTRC_VAL(rcStrict);
7085 }
7086 else
7087 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7088 }
7089
7090 hmR0SvmSetPendingXcptUD(pVCpu);
7091 return VINF_SUCCESS;
7092}
7093
7094
7095/**
7096 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7097 */
7098HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7099{
7100 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7101
7102 unsigned cbInstr;
7103 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7104 if (fSupportsNextRipSave)
7105 {
7106 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7107 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7108 }
7109 else
7110 {
7111 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7112 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7113 if ( rc == VINF_SUCCESS
7114 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7115 Assert(cbInstr > 0);
7116 else
7117 cbInstr = 0;
7118 }
7119
7120 /** @todo The guest has likely hit a contended spinlock. We might want to
7121 * poke a schedule different guest VCPU. */
7122 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7123 return VINF_EM_RAW_INTERRUPT;
7124}
7125
7126
7127/**
7128 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7129 * \#VMEXIT.
7130 */
7131HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7132{
7133 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7134 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7135 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7136
7137 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7138 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7139}
7140
7141
7142/**
7143 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7144 */
7145HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7146{
7147 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7148
7149 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now (almost) ready. */
7150 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7151 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7152
7153 /* Emulate the IRET. We have to execute the IRET before an NMI, but must potentially
7154 * deliver a pending NMI right after. If the IRET faults, an NMI can come before the
7155 * handler executes. Yes, x86 is ugly.
7156 */
7157 return VINF_EM_RAW_EMULATE_INSTR;
7158}
7159
7160
7161/**
7162 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7163 * Conditional \#VMEXIT.
7164 */
7165HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7166{
7167 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7168 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7169 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7170
7171 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7172 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7173 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7174 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7175 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7176 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7177
7178#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7179 if (pVM->hmr0.s.fNestedPaging)
7180 {
7181 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7182 if ( !pSvmTransient->fVectoringDoublePF
7183 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7184 {
7185 /* A genuine guest #PF, reflect it to the guest. */
7186 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7187 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7188 uFaultAddress, uErrCode));
7189 }
7190 else
7191 {
7192 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7193 hmR0SvmSetPendingXcptDF(pVCpu);
7194 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7195 }
7196 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7197 return VINF_SUCCESS;
7198 }
7199#endif
7200
7201 Assert(!pVM->hmr0.s.fNestedPaging);
7202
7203 /*
7204 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7205 */
7206 if ( pVM->hm.s.fTprPatchingAllowed
7207 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7208 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7209 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7210 && !CPUMIsGuestInLongModeEx(pCtx)
7211 && !CPUMGetGuestCPL(pVCpu)
7212 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7213 {
7214 RTGCPHYS GCPhysApicBase;
7215 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7216 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7217
7218 /* Check if the page at the fault-address is the APIC base. */
7219 RTGCPHYS GCPhysPage;
7220 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7221 if ( rc2 == VINF_SUCCESS
7222 && GCPhysPage == GCPhysApicBase)
7223 {
7224 /* Only attempt to patch the instruction once. */
7225 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7226 if (!pPatch)
7227 return VINF_EM_HM_PATCH_TPR_INSTR;
7228 }
7229 }
7230
7231 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7232 pCtx->rip, uErrCode, pCtx->cr3));
7233
7234 /*
7235 * If it's a vectoring #PF, emulate injecting the original event injection as
7236 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7237 * event injection that caused a #PF. See @bugref{6607}.
7238 */
7239 if (pSvmTransient->fVectoringPF)
7240 {
7241 Assert(pVCpu->hm.s.Event.fPending);
7242 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7243 }
7244
7245 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7246 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7247
7248 Log4Func(("#PF: rc=%Rrc\n", rc));
7249
7250 if (rc == VINF_SUCCESS)
7251 {
7252 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7253 TRPMResetTrap(pVCpu);
7254 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7255 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7256 return rc;
7257 }
7258
7259 if (rc == VINF_EM_RAW_GUEST_TRAP)
7260 {
7261 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7262
7263 /*
7264 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7265 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7266 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7267 */
7268 if ( !pSvmTransient->fVectoringDoublePF
7269 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7270 {
7271 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7272 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7273 TRPMResetTrap(pVCpu);
7274
7275#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7276 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7277 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7278 && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
7279 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress);
7280#endif
7281
7282 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7283 }
7284 else
7285 {
7286 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7287 TRPMResetTrap(pVCpu);
7288 hmR0SvmSetPendingXcptDF(pVCpu);
7289 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7290 }
7291
7292 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7293 return VINF_SUCCESS;
7294 }
7295
7296 TRPMResetTrap(pVCpu);
7297 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7298 return rc;
7299}
7300
7301
7302/**
7303 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7304 * Conditional \#VMEXIT.
7305 */
7306HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7307{
7308 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7309 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7310 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7311
7312 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7313 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7314 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7315
7316 /** @todo if we accumulate more optional stuff here, we ought to combine the
7317 * reading of opcode bytes to avoid doing more than once. */
7318
7319 VBOXSTRICTRC rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7320 if (pVCpu->hm.s.fGIMTrapXcptUD)
7321 {
7322 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7323 uint8_t cbInstr = 0;
7324 rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7325 if (rcStrict == VINF_SUCCESS)
7326 {
7327 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7328 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7329 rcStrict = VINF_SUCCESS;
7330 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7331 }
7332 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7333 rcStrict = VINF_SUCCESS;
7334 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7335 rcStrict = VINF_GIM_R3_HYPERCALL;
7336 else
7337 {
7338 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7339 rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7340 }
7341 }
7342
7343 if (pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
7344 {
7345 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
7346 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7347 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
7348 {
7349 /* Ideally, IEM should just handle all these special #UD situations, but
7350 we don't quite trust things to behave optimially when doing that. So,
7351 for now we'll restrict ourselves to a handful of possible sysenter and
7352 sysexit encodings that we filter right here. */
7353 uint8_t abInstr[SVM_CTRL_GUEST_INSTR_BYTES_MAX];
7354 uint8_t cbInstr = pVmcb->ctrl.cbInstrFetched;
7355 uint32_t const uCpl = CPUMGetGuestCPL(pVCpu);
7356 uint8_t const cbMin = uCpl != 0 ? 2 : 1 + 2;
7357 RTGCPTR const GCPtrInstr = pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base;
7358 if (cbInstr < cbMin || cbInstr > SVM_CTRL_GUEST_INSTR_BYTES_MAX)
7359 {
7360 cbInstr = cbMin;
7361 int rc2 = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, GCPtrInstr, cbInstr);
7362 AssertRCStmt(rc2, cbInstr = 0);
7363 }
7364 else
7365 memcpy(abInstr, pVmcb->ctrl.abInstr, cbInstr); /* unlikely */
7366 if ( cbInstr == 0 /* read error */
7367 || (cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x34) /* sysenter */
7368 || ( uCpl == 0
7369 && ( ( cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x35) /* sysexit */
7370 || ( cbInstr >= 3 && abInstr[1] == 0x0f && abInstr[2] == 0x35 /* rex.w sysexit */
7371 && (abInstr[0] & (X86_OP_REX_W | 0xf0)) == X86_OP_REX_W))))
7372 {
7373 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK
7374 | CPUMCTX_EXTRN_SREG_MASK /* without ES+DS+GS the app will #GP later - go figure */);
7375 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7376 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), GCPtrInstr, abInstr, cbInstr);
7377 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: rcStrict=%Rrc %04x:%08RX64 %08RX64 %04x:%08RX64\n",
7378 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u,
7379 pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp));
7380 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7381 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); /** @todo Lazy bird. */
7382 if (rcStrict == VINF_IEM_RAISED_XCPT)
7383 rcStrict = VINF_SUCCESS;
7384 return rcStrict;
7385 }
7386 Log6(("hmR0SvmExitXcptUD: not sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7387 }
7388 else
7389 Log6(("hmR0SvmExitXcptUD: not in long mode at %04x:%llx\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7390 }
7391
7392 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7393 if (RT_FAILURE(rcStrict))
7394 {
7395 hmR0SvmSetPendingXcptUD(pVCpu);
7396 rcStrict = VINF_SUCCESS;
7397 }
7398
7399 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7400 return rcStrict;
7401}
7402
7403
7404/**
7405 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7406 * Conditional \#VMEXIT.
7407 */
7408HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7409{
7410 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7411 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7412 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7413
7414 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7415 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7416
7417 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7418 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7419
7420 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7421
7422 if (!(pCtx->cr0 & X86_CR0_NE))
7423 {
7424 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7425 PDISSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7426 unsigned cbInstr;
7427 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7428 if (RT_SUCCESS(rc))
7429 {
7430 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7431 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7432 if (RT_SUCCESS(rc))
7433 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7434 }
7435 else
7436 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7437 return rc;
7438 }
7439
7440 hmR0SvmSetPendingXcptMF(pVCpu);
7441 return VINF_SUCCESS;
7442}
7443
7444
7445/**
7446 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7447 * \#VMEXIT.
7448 */
7449HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7450{
7451 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7452 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7453 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7454 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7455
7456 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7457 {
7458 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7459 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7460 }
7461
7462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7463
7464 /*
7465 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7466 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7467 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7468 */
7469 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7470 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7471 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7472 int rc = DBGFTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7473 if (rc == VINF_EM_RAW_GUEST_TRAP)
7474 {
7475 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7476 if (CPUMIsHyperDebugStateActive(pVCpu))
7477 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7478
7479 /* Reflect the exception back to the guest. */
7480 hmR0SvmSetPendingXcptDB(pVCpu);
7481 rc = VINF_SUCCESS;
7482 }
7483
7484 /*
7485 * Update DR6.
7486 */
7487 if (CPUMIsHyperDebugStateActive(pVCpu))
7488 {
7489 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7490 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7491 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7492 }
7493 else
7494 {
7495 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7496 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7497 }
7498
7499 return rc;
7500}
7501
7502
7503/**
7504 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7505 * Conditional \#VMEXIT.
7506 */
7507HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7508{
7509 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7510 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7511 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
7512
7513 SVMEVENT Event;
7514 Event.u = 0;
7515 Event.n.u1Valid = 1;
7516 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7517 Event.n.u8Vector = X86_XCPT_AC;
7518 Event.n.u1ErrorCodeValid = 1;
7519 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7520 return VINF_SUCCESS;
7521}
7522
7523
7524/**
7525 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7526 * Conditional \#VMEXIT.
7527 */
7528HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7529{
7530 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7531 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7532 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7533 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
7534
7535 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7536 int rc = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7537 if (rc == VINF_EM_RAW_GUEST_TRAP)
7538 {
7539 SVMEVENT Event;
7540 Event.u = 0;
7541 Event.n.u1Valid = 1;
7542 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7543 Event.n.u8Vector = X86_XCPT_BP;
7544 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7545 rc = VINF_SUCCESS;
7546 }
7547
7548 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
7549 return rc;
7550}
7551
7552
7553/**
7554 * Hacks its way around the lovely mesa driver's backdoor accesses.
7555 *
7556 * @sa hmR0VmxHandleMesaDrvGp
7557 */
7558static int hmR0SvmHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7559{
7560 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7561 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7562 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7563 RT_NOREF(pCtx, pVmcb);
7564
7565 /* For now we'll just skip the instruction. */
7566 hmR0SvmAdvanceRip(pVCpu, 1);
7567 return VINF_SUCCESS;
7568}
7569
7570
7571/**
7572 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7573 * backdoor logging w/o checking what it is running inside.
7574 *
7575 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7576 * backdoor port and magic numbers loaded in registers.
7577 *
7578 * @returns true if it is, false if it isn't.
7579 * @sa hmR0VmxIsMesaDrvGp
7580 */
7581DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7582{
7583 /* Check magic and port. */
7584 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7585 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7586 if (pCtx->dx != UINT32_C(0x5658))
7587 return false;
7588 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7589 return false;
7590
7591 /* Check that it is #GP(0). */
7592 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7593 return false;
7594
7595 /* Flat ring-3 CS. */
7596 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7597 if (pVmcb->guest.u8CPL != 3)
7598 return false;
7599 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7600 return false;
7601
7602 /* 0xed: IN eAX,dx */
7603 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7604 {
7605 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7606 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7607 uint8_t abInstr[1];
7608 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7609 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7610 if (RT_FAILURE(rc))
7611 return false;
7612 if (abInstr[0] != 0xed)
7613 return false;
7614 }
7615 else
7616 {
7617 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7618 if (pVmcb->ctrl.abInstr[0] != 0xed)
7619 return false;
7620 }
7621 return true;
7622}
7623
7624
7625/**
7626 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7627 * Conditional \#VMEXIT.
7628 */
7629HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7630{
7631 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7632 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7633 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
7634
7635 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7636 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7637
7638 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7639 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7640 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7641 {
7642 SVMEVENT Event;
7643 Event.u = 0;
7644 Event.n.u1Valid = 1;
7645 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7646 Event.n.u8Vector = X86_XCPT_GP;
7647 Event.n.u1ErrorCodeValid = 1;
7648 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7649 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7650 return VINF_SUCCESS;
7651 }
7652 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7653}
7654
7655
7656#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7657/**
7658 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7659 */
7660HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7661{
7662 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7663 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7664
7665 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7666 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7667 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7668 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7669 Assert(uVector <= X86_XCPT_LAST);
7670 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7671
7672 SVMEVENT Event;
7673 Event.u = 0;
7674 Event.n.u1Valid = 1;
7675 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7676 Event.n.u8Vector = uVector;
7677 switch (uVector)
7678 {
7679 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7680 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7681 case X86_XCPT_DF:
7682 case X86_XCPT_TS:
7683 case X86_XCPT_NP:
7684 case X86_XCPT_SS:
7685 case X86_XCPT_GP:
7686 case X86_XCPT_AC:
7687 {
7688 Event.n.u1ErrorCodeValid = 1;
7689 Event.n.u32ErrorCode = uErrCode;
7690 break;
7691 }
7692 }
7693
7694#ifdef VBOX_WITH_STATISTICS
7695 switch (uVector)
7696 {
7697 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
7698 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
7699 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
7700 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7701 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
7702 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
7703 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7704 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
7705 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
7706 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
7707 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
7708 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
7709 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
7710 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
7711 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
7712 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
7713 default:
7714 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
7715 break;
7716 }
7717#endif
7718
7719 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7720 return VINF_SUCCESS;
7721}
7722#endif
7723
7724#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7725/**
7726 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7727 */
7728HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7729{
7730 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7731
7732 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7733 Assert(pVmcb);
7734 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7735
7736 VBOXSTRICTRC rcStrict;
7737 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7738 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7739 if (fSupportsNextRipSave)
7740 {
7741 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7742 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7743 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7744 }
7745 else
7746 {
7747 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7748 rcStrict = IEMExecOne(pVCpu);
7749 }
7750
7751 if (rcStrict == VINF_SUCCESS)
7752 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7753 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7754 {
7755 rcStrict = VINF_SUCCESS;
7756 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7757 }
7758 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7759 return rcStrict;
7760}
7761
7762
7763/**
7764 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7765 */
7766HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7767{
7768 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7769
7770 /*
7771 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7772 * we only intercept STGI when events are pending for GIF to become 1.
7773 */
7774 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7775 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7776 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7777
7778 VBOXSTRICTRC rcStrict;
7779 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7780 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7781 if (fSupportsNextRipSave)
7782 {
7783 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7784 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7785 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7786 }
7787 else
7788 {
7789 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7790 rcStrict = IEMExecOne(pVCpu);
7791 }
7792
7793 if (rcStrict == VINF_SUCCESS)
7794 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7795 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7796 {
7797 rcStrict = VINF_SUCCESS;
7798 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7799 }
7800 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7801 return rcStrict;
7802}
7803
7804
7805/**
7806 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7807 */
7808HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7809{
7810 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7811
7812 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7813 Assert(pVmcb);
7814 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7815
7816 VBOXSTRICTRC rcStrict;
7817 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7818 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
7819 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
7820 | CPUMCTX_EXTRN_SYSENTER_MSRS;
7821 if (fSupportsNextRipSave)
7822 {
7823 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7824 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7825 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7826 }
7827 else
7828 {
7829 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7830 rcStrict = IEMExecOne(pVCpu);
7831 }
7832
7833 if (rcStrict == VINF_SUCCESS)
7834 {
7835 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7836 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7837 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7838 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7839 }
7840 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7841 {
7842 rcStrict = VINF_SUCCESS;
7843 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7844 }
7845 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7846 return rcStrict;
7847}
7848
7849
7850/**
7851 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7852 */
7853HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7854{
7855 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7856
7857 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7858 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7859
7860 VBOXSTRICTRC rcStrict;
7861 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7862 if (fSupportsNextRipSave)
7863 {
7864 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7865 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7866 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7867 }
7868 else
7869 {
7870 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7871 rcStrict = IEMExecOne(pVCpu);
7872 }
7873
7874 if (rcStrict == VINF_IEM_RAISED_XCPT)
7875 {
7876 rcStrict = VINF_SUCCESS;
7877 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7878 }
7879 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7880 return rcStrict;
7881}
7882
7883
7884/**
7885 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7886 */
7887HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7888{
7889 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7890
7891 VBOXSTRICTRC rcStrict;
7892 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7893 if (fSupportsNextRipSave)
7894 {
7895 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7896 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7897 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7898 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7899 }
7900 else
7901 {
7902 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7903 rcStrict = IEMExecOne(pVCpu);
7904 }
7905
7906 if (rcStrict == VINF_IEM_RAISED_XCPT)
7907 {
7908 rcStrict = VINF_SUCCESS;
7909 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7910 }
7911 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7912 return rcStrict;
7913}
7914
7915
7916/**
7917 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7918 */
7919HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7920{
7921 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7922 /* We shall import the entire state here, just in case we enter and continue execution of
7923 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
7924 could lose lose part of CPU state. */
7925 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7926
7927 VBOXSTRICTRC rcStrict;
7928 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7929 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
7930 if (fSupportsNextRipSave)
7931 {
7932 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7933 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7934 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7935 }
7936 else
7937 {
7938 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
7939 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
7940 instruction itself, see @bugref{7243#c126} */
7941 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
7942 }
7943 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
7944
7945 if (rcStrict == VINF_SUCCESS)
7946 {
7947 rcStrict = VINF_SVM_VMRUN;
7948 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
7949 }
7950 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7951 {
7952 rcStrict = VINF_SUCCESS;
7953 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7954 }
7955 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7956 return rcStrict;
7957}
7958
7959
7960/**
7961 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
7962 * Unconditional \#VMEXIT.
7963 */
7964HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7965{
7966 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7967 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7968
7969 if (pVCpu->hm.s.Event.fPending)
7970 {
7971 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7972 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7973 }
7974
7975 hmR0SvmSetPendingXcptDB(pVCpu);
7976 return VINF_SUCCESS;
7977}
7978
7979
7980/**
7981 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7982 * Conditional \#VMEXIT.
7983 */
7984HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7985{
7986 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7987 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7988
7989 SVMEVENT Event;
7990 Event.u = 0;
7991 Event.n.u1Valid = 1;
7992 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7993 Event.n.u8Vector = X86_XCPT_BP;
7994 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7995 return VINF_SUCCESS;
7996}
7997#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
7998
7999/** @} */
8000
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette