VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 92392

Last change on this file since 92392 was 92392, checked in by vboxsync, 3 years ago

VMM: Removed the callring-3 API and some of the associated stuff. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 319.2 KB
Line 
1/* $Id: HMSVMR0.cpp 92392 2021-11-12 10:39:56Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/em.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#include "HMInternal.h"
36#include <VBox/vmm/vmcc.h>
37#include <VBox/err.h>
38#include "HMSVMR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMSVM_SYNC_FULL_GUEST_STATE
43# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
44# define HMSVM_ALWAYS_TRAP_PF
45# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
46#endif
47
48
49/*********************************************************************************************************************************
50* Defined Constants And Macros *
51*********************************************************************************************************************************/
52#ifdef VBOX_WITH_STATISTICS
53# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
55 if ((u64ExitCode) == SVM_EXIT_NPF) \
56 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
57 else \
58 STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
59 } while (0)
60
61# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
62# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
63 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
64 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
65 if ((u64ExitCode) == SVM_EXIT_NPF) \
66 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
67 else \
68 STAM_COUNTER_INC(&pVCpu->hm.s.aStatNestedExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
69 } while (0)
70# endif
71#else
72# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
73# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
74# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
75# endif
76#endif /* !VBOX_WITH_STATISTICS */
77
78/** If we decide to use a function table approach this can be useful to
79 * switch to a "static DECLCALLBACK(int)". */
80#define HMSVM_EXIT_DECL static VBOXSTRICTRC
81
82/**
83 * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
84 * guest using hardware-assisted SVM.
85 *
86 * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
87 * are swapped and restored across the world-switch and also registers like
88 * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
89 * \#VMEXIT.
90 */
91#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
92 | CPUMCTX_EXTRN_RFLAGS \
93 | CPUMCTX_EXTRN_RAX \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_CR0 \
97 | CPUMCTX_EXTRN_CR2 \
98 | CPUMCTX_EXTRN_CR3 \
99 | CPUMCTX_EXTRN_TABLE_MASK \
100 | CPUMCTX_EXTRN_DR6 \
101 | CPUMCTX_EXTRN_DR7 \
102 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
103 | CPUMCTX_EXTRN_SYSCALL_MSRS \
104 | CPUMCTX_EXTRN_SYSENTER_MSRS \
105 | CPUMCTX_EXTRN_HWVIRT \
106 | CPUMCTX_EXTRN_HM_SVM_MASK)
107
108/**
109 * Subset of the guest-CPU state that is shared between the guest and host.
110 */
111#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
112
113/** Macro for importing guest state from the VMCB back into CPUMCTX. */
114#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
115 do { \
116 if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
117 hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
118 } while (0)
119
120/** Assert that the required state bits are fetched. */
121#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
122 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
123 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
124
125/** Assert that preemption is disabled or covered by thread-context hooks. */
126#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
127 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
128
129/** Assert that we haven't migrated CPUs when thread-context hooks are not
130 * used. */
131#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
132 || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
133 ("Illegal migration! Entered on CPU %u Current %u\n", \
134 (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()));
135
136/** Assert that we're not executing a nested-guest. */
137#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
138# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
139#else
140# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
141#endif
142
143/** Assert that we're executing a nested-guest. */
144#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
145# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
146#else
147# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
148#endif
149
150/** Macro for checking and returning from the using function for
151 * \#VMEXIT intercepts that maybe caused during delivering of another
152 * event in the guest. */
153#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
154# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
155 do \
156 { \
157 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
158 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
159 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
160 else if ( rc == VINF_EM_RESET \
161 && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
162 { \
163 HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
164 return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \
165 } \
166 else \
167 return rc; \
168 } while (0)
169#else
170# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
171 do \
172 { \
173 int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
174 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
175 else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
176 else \
177 return rc; \
178 } while (0)
179#endif
180
181/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
182 * instruction that exited. */
183#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
184 do { \
185 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
186 (a_rc) = VINF_EM_DBG_STEPPED; \
187 } while (0)
188
189/** Validate segment descriptor granularity bit. */
190#ifdef VBOX_STRICT
191# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
192 AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
193 || ( (a_pCtx)->reg.Attr.n.u1Granularity \
194 ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
195 : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
196 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
197 (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
198#else
199# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
200#endif
201
202/**
203 * Exception bitmap mask for all contributory exceptions.
204 *
205 * Page fault is deliberately excluded here as it's conditional as to whether
206 * it's contributory or benign. Page faults are handled separately.
207 */
208#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
209 | RT_BIT(X86_XCPT_DE))
210
211/**
212 * Mandatory/unconditional guest control intercepts.
213 *
214 * SMIs can and do happen in normal operation. We need not intercept them
215 * while executing the guest (or nested-guest).
216 */
217#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
218 | SVM_CTRL_INTERCEPT_NMI \
219 | SVM_CTRL_INTERCEPT_INIT \
220 | SVM_CTRL_INTERCEPT_RDPMC \
221 | SVM_CTRL_INTERCEPT_CPUID \
222 | SVM_CTRL_INTERCEPT_RSM \
223 | SVM_CTRL_INTERCEPT_HLT \
224 | SVM_CTRL_INTERCEPT_IOIO_PROT \
225 | SVM_CTRL_INTERCEPT_MSR_PROT \
226 | SVM_CTRL_INTERCEPT_INVLPGA \
227 | SVM_CTRL_INTERCEPT_SHUTDOWN \
228 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
229 | SVM_CTRL_INTERCEPT_VMRUN \
230 | SVM_CTRL_INTERCEPT_SKINIT \
231 | SVM_CTRL_INTERCEPT_WBINVD \
232 | SVM_CTRL_INTERCEPT_MONITOR \
233 | SVM_CTRL_INTERCEPT_MWAIT \
234 | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
235 | SVM_CTRL_INTERCEPT_XSETBV)
236
237/** @name VMCB Clean Bits.
238 *
239 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
240 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
241 * memory.
242 *
243 * @{ */
244/** All intercepts vectors, TSC offset, PAUSE filter counter. */
245#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
246/** I/O permission bitmap, MSR permission bitmap. */
247#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
248/** ASID. */
249#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
250/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
251V_INTR_VECTOR. */
252#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
253/** Nested Paging: Nested CR3 (nCR3), PAT. */
254#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
255/** Control registers (CR0, CR3, CR4, EFER). */
256#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
257/** Debug registers (DR6, DR7). */
258#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
259/** GDT, IDT limit and base. */
260#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
261/** Segment register: CS, SS, DS, ES limit and base. */
262#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
263/** CR2.*/
264#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
265/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
266#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
267/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
268PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
269#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
270/** Mask of all valid VMCB Clean bits. */
271#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
272 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
273 | HMSVM_VMCB_CLEAN_ASID \
274 | HMSVM_VMCB_CLEAN_INT_CTRL \
275 | HMSVM_VMCB_CLEAN_NP \
276 | HMSVM_VMCB_CLEAN_CRX_EFER \
277 | HMSVM_VMCB_CLEAN_DRX \
278 | HMSVM_VMCB_CLEAN_DT \
279 | HMSVM_VMCB_CLEAN_SEG \
280 | HMSVM_VMCB_CLEAN_CR2 \
281 | HMSVM_VMCB_CLEAN_LBR \
282 | HMSVM_VMCB_CLEAN_AVIC)
283/** @} */
284
285/** @name SVM transient.
286 *
287 * A state structure for holding miscellaneous information across AMD-V
288 * VMRUN/\#VMEXIT operation, restored after the transition.
289 *
290 * @{ */
291typedef struct SVMTRANSIENT
292{
293 /** The host's rflags/eflags. */
294 RTCCUINTREG fEFlags;
295 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
296 uint64_t u64ExitCode;
297
298 /** The guest's TPR value used for TPR shadowing. */
299 uint8_t u8GuestTpr;
300 /** Alignment. */
301 uint8_t abAlignment0[7];
302
303 /** Pointer to the currently executing VMCB. */
304 PSVMVMCB pVmcb;
305
306 /** Whether we are currently executing a nested-guest. */
307 bool fIsNestedGuest;
308 /** Whether the guest debug state was active at the time of \#VMEXIT. */
309 bool fWasGuestDebugStateActive;
310 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
311 bool fWasHyperDebugStateActive;
312 /** Whether the TSC offset mode needs to be updated. */
313 bool fUpdateTscOffsetting;
314 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
315 bool fRestoreTscAuxMsr;
316 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
317 * contributary exception or a page-fault. */
318 bool fVectoringDoublePF;
319 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
320 * external interrupt or NMI. */
321 bool fVectoringPF;
322 /** Padding. */
323 bool afPadding0;
324} SVMTRANSIENT;
325/** Pointer to SVM transient state. */
326typedef SVMTRANSIENT *PSVMTRANSIENT;
327/** Pointer to a const SVM transient state. */
328typedef const SVMTRANSIENT *PCSVMTRANSIENT;
329
330AssertCompileSizeAlignment(SVMTRANSIENT, sizeof(uint64_t));
331AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
332AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
333/** @} */
334
335/**
336 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
337 */
338typedef enum SVMMSREXITREAD
339{
340 /** Reading this MSR causes a \#VMEXIT. */
341 SVMMSREXIT_INTERCEPT_READ = 0xb,
342 /** Reading this MSR does not cause a \#VMEXIT. */
343 SVMMSREXIT_PASSTHRU_READ
344} SVMMSREXITREAD;
345
346/**
347 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
348 */
349typedef enum SVMMSREXITWRITE
350{
351 /** Writing to this MSR causes a \#VMEXIT. */
352 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
353 /** Writing to this MSR does not cause a \#VMEXIT. */
354 SVMMSREXIT_PASSTHRU_WRITE
355} SVMMSREXITWRITE;
356
357/**
358 * SVM \#VMEXIT handler.
359 *
360 * @returns Strict VBox status code.
361 * @param pVCpu The cross context virtual CPU structure.
362 * @param pSvmTransient Pointer to the SVM-transient structure.
363 */
364typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
365
366
367/*********************************************************************************************************************************
368* Internal Functions *
369*********************************************************************************************************************************/
370static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
371static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
372
373
374/** @name \#VMEXIT handlers.
375 * @{
376 */
377static FNSVMEXITHANDLER hmR0SvmExitIntr;
378static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
379static FNSVMEXITHANDLER hmR0SvmExitInvd;
380static FNSVMEXITHANDLER hmR0SvmExitCpuid;
381static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
382static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
383static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
384static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
385static FNSVMEXITHANDLER hmR0SvmExitHlt;
386static FNSVMEXITHANDLER hmR0SvmExitMonitor;
387static FNSVMEXITHANDLER hmR0SvmExitMwait;
388static FNSVMEXITHANDLER hmR0SvmExitShutdown;
389static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
390static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
391static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
392static FNSVMEXITHANDLER hmR0SvmExitMsr;
393static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
394static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
395static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
396static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
397static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
398static FNSVMEXITHANDLER hmR0SvmExitVIntr;
399static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
400static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
401static FNSVMEXITHANDLER hmR0SvmExitPause;
402static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
403static FNSVMEXITHANDLER hmR0SvmExitIret;
404static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
405static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
406static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
407static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
408static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
409static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
410static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
411#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
412static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
413#endif
414#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
415static FNSVMEXITHANDLER hmR0SvmExitClgi;
416static FNSVMEXITHANDLER hmR0SvmExitStgi;
417static FNSVMEXITHANDLER hmR0SvmExitVmload;
418static FNSVMEXITHANDLER hmR0SvmExitVmsave;
419static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
420static FNSVMEXITHANDLER hmR0SvmExitVmrun;
421static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
422static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
423#endif
424/** @} */
425
426static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
427#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
428static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
429#endif
430
431
432/*********************************************************************************************************************************
433* Global Variables *
434*********************************************************************************************************************************/
435/** Ring-0 memory object for the IO bitmap. */
436static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
437/** Physical address of the IO bitmap. */
438static RTHCPHYS g_HCPhysIOBitmap;
439/** Pointer to the IO bitmap. */
440static R0PTRTYPE(void *) g_pvIOBitmap;
441
442#ifdef VBOX_STRICT
443# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
444# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
445# define HMSVM_LOG_CS RT_BIT_32(2)
446# define HMSVM_LOG_SS RT_BIT_32(3)
447# define HMSVM_LOG_FS RT_BIT_32(4)
448# define HMSVM_LOG_GS RT_BIT_32(5)
449# define HMSVM_LOG_LBR RT_BIT_32(6)
450# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
451 | HMSVM_LOG_CR_REGS \
452 | HMSVM_LOG_CS \
453 | HMSVM_LOG_SS \
454 | HMSVM_LOG_FS \
455 | HMSVM_LOG_GS \
456 | HMSVM_LOG_LBR)
457
458/**
459 * Dumps virtual CPU state and additional info. to the logger for diagnostics.
460 *
461 * @param pVCpu The cross context virtual CPU structure.
462 * @param pVmcb Pointer to the VM control block.
463 * @param pszPrefix Log prefix.
464 * @param fFlags Log flags, see HMSVM_LOG_XXX.
465 * @param uVerbose The verbosity level, currently unused.
466 */
467static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
468{
469 RT_NOREF2(pVCpu, uVerbose);
470 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
471
472 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
473 Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
474
475 if (fFlags & HMSVM_LOG_RBP_RSP)
476 {
477 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
478 Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
479 }
480
481 if (fFlags & HMSVM_LOG_CR_REGS)
482 {
483 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
484 Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
485 }
486
487 if (fFlags & HMSVM_LOG_CS)
488 {
489 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
490 Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
491 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
492 }
493 if (fFlags & HMSVM_LOG_SS)
494 {
495 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
496 Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
497 pCtx->ss.u32Limit, pCtx->ss.Attr.u));
498 }
499 if (fFlags & HMSVM_LOG_FS)
500 {
501 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
502 Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
503 pCtx->fs.u32Limit, pCtx->fs.Attr.u));
504 }
505 if (fFlags & HMSVM_LOG_GS)
506 {
507 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
508 Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
509 pCtx->gs.u32Limit, pCtx->gs.Attr.u));
510 }
511
512 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
513 if (fFlags & HMSVM_LOG_LBR)
514 {
515 Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
516 pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
517 }
518 NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
519}
520#endif /* VBOX_STRICT */
521
522
523/**
524 * Sets up and activates AMD-V on the current CPU.
525 *
526 * @returns VBox status code.
527 * @param pHostCpu The HM physical-CPU structure.
528 * @param pVM The cross context VM structure. Can be
529 * NULL after a resume!
530 * @param pvCpuPage Pointer to the global CPU page.
531 * @param HCPhysCpuPage Physical address of the global CPU page.
532 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
533 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
534 * unused).
535 */
536VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
537 PCSUPHWVIRTMSRS pHwvirtMsrs)
538{
539 Assert(!fEnabledByHost);
540 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
541 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
542 Assert(pvCpuPage); NOREF(pvCpuPage);
543 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
544
545 RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
546
547 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
548 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
549
550 /*
551 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
552 */
553 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
554 if (u64HostEfer & MSR_K6_EFER_SVME)
555 {
556 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
557 if ( pVM
558 && pVM->hm.s.svm.fIgnoreInUseError)
559 pHostCpu->fIgnoreAMDVInUseError = true;
560
561 if (!pHostCpu->fIgnoreAMDVInUseError)
562 {
563 ASMSetFlags(fEFlags);
564 return VERR_SVM_IN_USE;
565 }
566 }
567
568 /* Turn on AMD-V in the EFER MSR. */
569 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
570
571 /* Write the physical page address where the CPU will store the host state while executing the VM. */
572 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
573
574 /* Restore interrupts. */
575 ASMSetFlags(fEFlags);
576
577 /*
578 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
579 * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
580 * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
581 * entirely with before executing any guest code.
582 */
583 pHostCpu->fFlushAsidBeforeUse = true;
584
585 /*
586 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
587 */
588 ++pHostCpu->cTlbFlushes;
589
590 return VINF_SUCCESS;
591}
592
593
594/**
595 * Deactivates AMD-V on the current CPU.
596 *
597 * @returns VBox status code.
598 * @param pHostCpu The HM physical-CPU structure.
599 * @param pvCpuPage Pointer to the global CPU page.
600 * @param HCPhysCpuPage Physical address of the global CPU page.
601 */
602VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
603{
604 RT_NOREF1(pHostCpu);
605 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
606 AssertReturn( HCPhysCpuPage
607 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
608 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
609
610 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
611 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
612
613 /* Turn off AMD-V in the EFER MSR. */
614 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
615 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
616
617 /* Invalidate host state physical address. */
618 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
619
620 /* Restore interrupts. */
621 ASMSetFlags(fEFlags);
622
623 return VINF_SUCCESS;
624}
625
626
627/**
628 * Does global AMD-V initialization (called during module initialization).
629 *
630 * @returns VBox status code.
631 */
632VMMR0DECL(int) SVMR0GlobalInit(void)
633{
634 /*
635 * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
636 * intercept all IO accesses, it's done once globally here instead of per-VM.
637 */
638 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
639 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
640 if (RT_FAILURE(rc))
641 return rc;
642
643 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
644 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
645
646 /* Set all bits to intercept all IO accesses. */
647 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
648
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Does global AMD-V termination (called during module termination).
655 */
656VMMR0DECL(void) SVMR0GlobalTerm(void)
657{
658 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
659 {
660 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
661 g_pvIOBitmap = NULL;
662 g_HCPhysIOBitmap = 0;
663 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
664 }
665}
666
667
668/**
669 * Frees any allocated per-VCPU structures for a VM.
670 *
671 * @param pVM The cross context VM structure.
672 */
673DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
674{
675 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
676 {
677 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
678 AssertPtr(pVCpu);
679
680 if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
681 {
682 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false);
683 pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0;
684 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
685 }
686
687 if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
688 {
689 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false);
690 pVCpu->hmr0.s.svm.pVmcb = NULL;
691 pVCpu->hmr0.s.svm.HCPhysVmcb = 0;
692 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
693 }
694
695 if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
696 {
697 RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false);
698 pVCpu->hmr0.s.svm.pvMsrBitmap = NULL;
699 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0;
700 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
701 }
702 }
703}
704
705
706/**
707 * Sets pfnVMRun to the best suited variant.
708 *
709 * This must be called whenever anything changes relative to the SVMR0VMRun
710 * variant selection:
711 * - pVCpu->hm.s.fLoadSaveGuestXcr0
712 * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher
713 * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher
714 * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
715 * - Perhaps: CPUMCTX.fXStateMask (windows only)
716 *
717 * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor
718 * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime.
719 */
720static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu)
721{
722 static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] =
723 {
724 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit },
725 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit },
726 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit },
727 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit },
728 { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit },
729 { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit },
730 { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit },
731 { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit },
732 };
733 uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
734 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
735 | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0);
736 PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn;
737 if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun)
738 pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun;
739}
740
741
742/**
743 * Selector FNHMSVMVMRUN implementation.
744 */
745static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB)
746{
747 hmR0SvmUpdateVmRunFunction(pVCpu);
748 return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB);
749}
750
751
752/**
753 * Does per-VM AMD-V initialization.
754 *
755 * @returns VBox status code.
756 * @param pVM The cross context VM structure.
757 */
758VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
759{
760 int rc = VERR_INTERNAL_ERROR_5;
761
762 /*
763 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
764 */
765 uint32_t u32Family;
766 uint32_t u32Model;
767 uint32_t u32Stepping;
768 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
769 {
770 Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
771 pVM->hmr0.s.svm.fAlwaysFlushTLB = true;
772 }
773
774 /*
775 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
776 */
777 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
778 {
779 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
780 pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
781 pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
782 pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
783 }
784
785 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
786 {
787 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
788
789 /*
790 * Initialize the hardware-assisted SVM guest-execution handler.
791 * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}.
792 */
793 pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector;
794
795 /*
796 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
797 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
798 */
799/** @todo Does this need to be below 4G? */
800 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
801 if (RT_FAILURE(rc))
802 goto failure_cleanup;
803
804 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost);
805 pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */);
806 Assert(pVCpu->hmr0.s.svm.HCPhysVmcbHost < _4G);
807 ASMMemZeroPage(pvVmcbHost);
808
809 /*
810 * Allocate one page for the guest-state VMCB.
811 */
812/** @todo Does this need to be below 4G? */
813 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
814 if (RT_FAILURE(rc))
815 goto failure_cleanup;
816
817 pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb);
818 pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */);
819 Assert(pVCpu->hmr0.s.svm.HCPhysVmcb < _4G);
820 ASMMemZeroPage(pVCpu->hmr0.s.svm.pVmcb);
821
822 /*
823 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
824 * SVM to not require one.
825 */
826/** @todo Does this need to be below 4G? */
827 rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
828 false /* fExecutable */);
829 if (RT_FAILURE(rc))
830 goto failure_cleanup;
831
832 pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap);
833 pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
834 /* Set all bits to intercept all MSR accesses (changed later on). */
835 ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
836 }
837
838 return VINF_SUCCESS;
839
840failure_cleanup:
841 hmR0SvmFreeStructs(pVM);
842 return rc;
843}
844
845
846/**
847 * Does per-VM AMD-V termination.
848 *
849 * @returns VBox status code.
850 * @param pVM The cross context VM structure.
851 */
852VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
853{
854 hmR0SvmFreeStructs(pVM);
855 return VINF_SUCCESS;
856}
857
858
859/**
860 * Returns whether the VMCB Clean Bits feature is supported.
861 *
862 * @returns @c true if supported, @c false otherwise.
863 * @param pVCpu The cross context virtual CPU structure.
864 * @param fIsNestedGuest Whether we are currently executing the nested-guest.
865 */
866DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
867{
868 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
869 bool const fHostVmcbCleanBits = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
870 if (!fIsNestedGuest)
871 return fHostVmcbCleanBits;
872 return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
873}
874
875
876/**
877 * Returns whether the decode assists feature is supported.
878 *
879 * @returns @c true if supported, @c false otherwise.
880 * @param pVCpu The cross context virtual CPU structure.
881 */
882DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
883{
884 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
885#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
886 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
887 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
888 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
889#endif
890 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
891}
892
893
894/**
895 * Returns whether the NRIP_SAVE feature is supported.
896 *
897 * @returns @c true if supported, @c false otherwise.
898 * @param pVCpu The cross context virtual CPU structure.
899 */
900DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
901{
902 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
903#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
904 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
905 return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
906 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
907#endif
908 return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
909}
910
911
912/**
913 * Sets the permission bits for the specified MSR in the MSRPM bitmap.
914 *
915 * @param pVCpu The cross context virtual CPU structure.
916 * @param pbMsrBitmap Pointer to the MSR bitmap.
917 * @param idMsr The MSR for which the permissions are being set.
918 * @param enmRead MSR read permissions.
919 * @param enmWrite MSR write permissions.
920 *
921 * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
922 * caller needs to take care of this.
923 */
924static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
925 SVMMSREXITWRITE enmWrite)
926{
927 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
928 uint16_t offMsrpm;
929 uint8_t uMsrpmBit;
930 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
931 AssertRC(rc);
932
933 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
934 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
935
936 pbMsrBitmap += offMsrpm;
937 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
938 *pbMsrBitmap |= RT_BIT(uMsrpmBit);
939 else
940 {
941 if (!fInNestedGuestMode)
942 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
943#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
944 else
945 {
946 /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
947 if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit)))
948 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
949 else
950 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
951 }
952#endif
953 }
954
955 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
956 *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
957 else
958 {
959 if (!fInNestedGuestMode)
960 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
961#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
962 else
963 {
964 /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
965 if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit + 1)))
966 *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
967 else
968 Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
969 }
970#endif
971 }
972}
973
974
975/**
976 * Sets up AMD-V for the specified VM.
977 * This function is only called once per-VM during initalization.
978 *
979 * @returns VBox status code.
980 * @param pVM The cross context VM structure.
981 */
982VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
983{
984 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
985 AssertReturn(pVM, VERR_INVALID_PARAMETER);
986
987 /*
988 * Validate and copy over some parameters.
989 */
990 AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG);
991 bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
992 AssertReturn(!fNestedPaging || (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_INCOMPATIBLE_CONFIG);
993 pVM->hmr0.s.fNestedPaging = fNestedPaging;
994 pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
995
996 /*
997 * Determin some configuration parameters.
998 */
999 bool const fPauseFilter = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
1000 bool const fPauseFilterThreshold = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
1001 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
1002
1003 bool const fLbrVirt = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
1004 bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
1005
1006#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1007 bool const fVirtVmsaveVmload = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
1008 bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging;
1009
1010 bool const fVGif = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF);
1011 bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
1012#endif
1013
1014 PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
1015 PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb;
1016 AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
1017 PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
1018
1019 /* Always trap #AC for reasons of security. */
1020 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
1021
1022 /* Always trap #DB for reasons of security. */
1023 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
1024
1025 /* Trap exceptions unconditionally (debug purposes). */
1026#ifdef HMSVM_ALWAYS_TRAP_PF
1027 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
1028#endif
1029#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1030 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
1031 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
1032 | RT_BIT_32(X86_XCPT_DE)
1033 | RT_BIT_32(X86_XCPT_NM)
1034 | RT_BIT_32(X86_XCPT_UD)
1035 | RT_BIT_32(X86_XCPT_NP)
1036 | RT_BIT_32(X86_XCPT_SS)
1037 | RT_BIT_32(X86_XCPT_GP)
1038 | RT_BIT_32(X86_XCPT_PF)
1039 | RT_BIT_32(X86_XCPT_MF)
1040 ;
1041#endif
1042
1043 /* Apply the exceptions intercepts needed by the GIM provider. */
1044 if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1045 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
1046
1047 /* The mesa 3d driver hack needs #GP. */
1048 if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
1049 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
1050
1051 /* Set up unconditional intercepts and conditions. */
1052 pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
1053 | SVM_CTRL_INTERCEPT_VMMCALL
1054 | SVM_CTRL_INTERCEPT_VMSAVE
1055 | SVM_CTRL_INTERCEPT_VMLOAD
1056 | SVM_CTRL_INTERCEPT_CLGI
1057 | SVM_CTRL_INTERCEPT_STGI;
1058
1059#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
1060 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
1061#endif
1062
1063#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1064 if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm)
1065 {
1066 /* Virtualized VMSAVE/VMLOAD. */
1067 if (fUseVirtVmsaveVmload)
1068 {
1069 pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1;
1070 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE
1071 | SVM_CTRL_INTERCEPT_VMLOAD);
1072 }
1073 else
1074 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1075
1076 /* Virtual GIF. */
1077 if (fUseVGif)
1078 {
1079 pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1;
1080 pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI
1081 | SVM_CTRL_INTERCEPT_STGI);
1082 }
1083 else
1084 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1085 }
1086 else
1087#endif
1088 {
1089 Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm);
1090 Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
1091 Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
1092 }
1093
1094 /* CR4 writes must always be intercepted for tracking PGM mode changes. */
1095 pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
1096
1097 /* Intercept all DRx reads and writes by default. Changed later on. */
1098 pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
1099 pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
1100
1101 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
1102 pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
1103
1104 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
1105 and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
1106 pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
1107
1108 /* Set the IO permission bitmap physical addresses. */
1109 pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
1110
1111 /* LBR virtualization. */
1112 pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
1113
1114 /* The host ASID MBZ, for the guest start with 1. */
1115 pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
1116
1117 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
1118 pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging;
1119
1120 /* Without Nested Paging, we need additionally intercepts. */
1121 if (!fNestedPaging)
1122 {
1123 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
1124 pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
1125 pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
1126
1127 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
1128 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
1129 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
1130
1131 /* Page faults must be intercepted to implement shadow paging. */
1132 pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
1133 }
1134
1135 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
1136 if (fUsePauseFilter)
1137 {
1138 Assert(pVM->hm.s.svm.cPauseFilter > 0);
1139 pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
1140 if (fPauseFilterThreshold)
1141 pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
1142 pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
1143 }
1144
1145 /*
1146 * Setup the MSR permission bitmap.
1147 * The following MSRs are saved/restored automatically during the world-switch.
1148 * Don't intercept guest read/write accesses to these MSRs.
1149 */
1150 uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap;
1151 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1152 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1153 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1154 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1155 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1156 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1157 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1158 if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
1159 {
1160 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1161 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1162 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1163 }
1164 else
1165 {
1166 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1167 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1168 hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
1169 }
1170 pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap;
1171
1172 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1173 Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
1174
1175 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
1176 {
1177 PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
1178 PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb;
1179 AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
1180 PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
1181
1182 /* Copy the VMCB control area. */
1183 memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
1184
1185 /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
1186 uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap;
1187 memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1188 pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap;
1189
1190 /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
1191 Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
1192
1193 /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
1194 Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
1195 }
1196
1197#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1198 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
1199 fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
1200#else
1201 LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
1202#endif
1203 return VINF_SUCCESS;
1204}
1205
1206
1207/**
1208 * Gets a pointer to the currently active guest (or nested-guest) VMCB.
1209 *
1210 * @returns Pointer to the current context VMCB.
1211 * @param pVCpu The cross context virtual CPU structure.
1212 */
1213DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
1214{
1215#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1216 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1217 return &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
1218#endif
1219 return pVCpu->hmr0.s.svm.pVmcb;
1220}
1221
1222
1223/**
1224 * Gets a pointer to the nested-guest VMCB cache.
1225 *
1226 * @returns Pointer to the nested-guest VMCB cache.
1227 * @param pVCpu The cross context virtual CPU structure.
1228 */
1229DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
1230{
1231#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1232 Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
1233 return &pVCpu->hm.s.svm.NstGstVmcbCache;
1234#else
1235 RT_NOREF(pVCpu);
1236 return NULL;
1237#endif
1238}
1239
1240
1241/**
1242 * Invalidates a guest page by guest virtual address.
1243 *
1244 * @returns VBox status code.
1245 * @param pVCpu The cross context virtual CPU structure.
1246 * @param GCVirt Guest virtual address of the page to invalidate.
1247 */
1248VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1249{
1250 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
1251
1252 bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB;
1253
1254 /* Skip it if a TLB flush is already pending. */
1255 if (!fFlushPending)
1256 {
1257 Log4Func(("%#RGv\n", GCVirt));
1258
1259 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
1260 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
1261
1262 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
1263 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1264 }
1265 return VINF_SUCCESS;
1266}
1267
1268
1269/**
1270 * Flushes the appropriate tagged-TLB entries.
1271 *
1272 * @param pHostCpu The HM physical-CPU structure.
1273 * @param pVCpu The cross context virtual CPU structure.
1274 * @param pVmcb Pointer to the VM control block.
1275 */
1276static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1277{
1278 /*
1279 * Force a TLB flush for the first world switch if the current CPU differs from the one
1280 * we ran on last. This can happen both for start & resume due to long jumps back to
1281 * ring-3.
1282 *
1283 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
1284 * correlation between it and the physical CPU.
1285 *
1286 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
1287 * flushing the TLB, so we cannot reuse the ASIDs without flushing.
1288 */
1289 bool fNewAsid = false;
1290 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1291 if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
1292 || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes
1293#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1294 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
1295#endif
1296 )
1297 {
1298 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1299 pVCpu->hmr0.s.fForceTLBFlush = true;
1300 fNewAsid = true;
1301 }
1302
1303 /* Set TLB flush state as checked until we return from the world switch. */
1304 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1305
1306 /* Check for explicit TLB flushes. */
1307 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1308 {
1309 pVCpu->hmr0.s.fForceTLBFlush = true;
1310 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1311 }
1312
1313 /*
1314 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1315 * This Host CPU requirement takes precedence.
1316 */
1317 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1318 if (pVM->hmr0.s.svm.fAlwaysFlushTLB)
1319 {
1320 pHostCpu->uCurrentAsid = 1;
1321 pVCpu->hmr0.s.uCurrentAsid = 1;
1322 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1323 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1324 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1325
1326 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1327 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1328 }
1329 else
1330 {
1331 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1332 if (pVCpu->hmr0.s.fForceTLBFlush)
1333 {
1334 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1335 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1336
1337 if (fNewAsid)
1338 {
1339 ++pHostCpu->uCurrentAsid;
1340
1341 bool fHitASIDLimit = false;
1342 if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
1343 {
1344 pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1345 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1346 fHitASIDLimit = true;
1347 }
1348
1349 if ( fHitASIDLimit
1350 || pHostCpu->fFlushAsidBeforeUse)
1351 {
1352 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1353 pHostCpu->fFlushAsidBeforeUse = false;
1354 }
1355
1356 pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1357 pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
1358 pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1359 }
1360 else
1361 {
1362 if (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1363 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1364 else
1365 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1366 }
1367
1368 pVCpu->hmr0.s.fForceTLBFlush = false;
1369 }
1370 }
1371
1372 /* Update VMCB with the ASID. */
1373 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid)
1374 {
1375 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid;
1376 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1377 }
1378
1379 AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu,
1380 ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu));
1381 AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
1382 ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
1383 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
1384 ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
1385 AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
1386 ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
1387
1388#ifdef VBOX_WITH_STATISTICS
1389 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1390 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1391 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1392 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1393 {
1394 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1395 }
1396 else
1397 {
1398 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1399 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1400 }
1401#endif
1402}
1403
1404
1405/**
1406 * Sets an exception intercept in the specified VMCB.
1407 *
1408 * @param pVmcb Pointer to the VM control block.
1409 * @param uXcpt The exception (X86_XCPT_*).
1410 */
1411DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
1412{
1413 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
1414 {
1415 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
1416 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1417 }
1418}
1419
1420
1421/**
1422 * Clears an exception intercept in the specified VMCB.
1423 *
1424 * @param pVCpu The cross context virtual CPU structure.
1425 * @param pVmcb Pointer to the VM control block.
1426 * @param uXcpt The exception (X86_XCPT_*).
1427 *
1428 * @remarks This takes into account if we're executing a nested-guest and only
1429 * removes the exception intercept if both the guest -and- nested-guest
1430 * are not intercepting it.
1431 */
1432DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
1433{
1434 Assert(uXcpt != X86_XCPT_DB);
1435 Assert(uXcpt != X86_XCPT_AC);
1436 Assert(uXcpt != X86_XCPT_GP);
1437#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1438 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
1439 {
1440 bool fRemove = true;
1441# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1442 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1443 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1444 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1445 {
1446 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1447 fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
1448 }
1449# else
1450 RT_NOREF(pVCpu);
1451# endif
1452 if (fRemove)
1453 {
1454 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
1455 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1456 }
1457 }
1458#else
1459 RT_NOREF3(pVCpu, pVmcb, uXcpt);
1460#endif
1461}
1462
1463
1464/**
1465 * Sets a control intercept in the specified VMCB.
1466 *
1467 * @param pVmcb Pointer to the VM control block.
1468 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1469 */
1470DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1471{
1472 if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
1473 {
1474 pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
1475 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1476 }
1477}
1478
1479
1480/**
1481 * Clears a control intercept in the specified VMCB.
1482 *
1483 * @returns @c true if the intercept is still set, @c false otherwise.
1484 * @param pVCpu The cross context virtual CPU structure.
1485 * @param pVmcb Pointer to the VM control block.
1486 * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
1487 *
1488 * @remarks This takes into account if we're executing a nested-guest and only
1489 * removes the control intercept if both the guest -and- nested-guest
1490 * are not intercepting it.
1491 */
1492static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
1493{
1494 if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
1495 {
1496 bool fRemove = true;
1497#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1498 /* Only remove the control intercept if the nested-guest is also not intercepting it! */
1499 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
1500 {
1501 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1502 fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
1503 }
1504#else
1505 RT_NOREF(pVCpu);
1506#endif
1507 if (fRemove)
1508 {
1509 pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
1510 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1511 }
1512 }
1513
1514 return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
1515}
1516
1517
1518/**
1519 * Exports the guest (or nested-guest) CR0 into the VMCB.
1520 *
1521 * @param pVCpu The cross context virtual CPU structure.
1522 * @param pVmcb Pointer to the VM control block.
1523 *
1524 * @remarks This assumes we always pre-load the guest FPU.
1525 * @remarks No-long-jump zone!!!
1526 */
1527static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1528{
1529 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1530
1531 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1532 uint64_t const uGuestCr0 = pCtx->cr0;
1533 uint64_t uShadowCr0 = uGuestCr0;
1534
1535 /* Always enable caching. */
1536 uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1537
1538 /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
1539 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1540 {
1541 uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
1542 | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1543 }
1544
1545 /*
1546 * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
1547 * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
1548 * see @bugref{7243#c103}.
1549 */
1550 if (!(uGuestCr0 & X86_CR0_NE))
1551 {
1552 uShadowCr0 |= X86_CR0_NE;
1553 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
1554 }
1555 else
1556 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
1557
1558 /*
1559 * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
1560 *
1561 * CR0 writes still needs interception as PGM requires tracking paging mode changes,
1562 * see @bugref{6944}.
1563 *
1564 * We also don't ever want to honor weird things like cache disable from the guest.
1565 * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
1566 * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
1567 */
1568 if (uShadowCr0 == uGuestCr0)
1569 {
1570 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1571 {
1572 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
1573 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
1574 Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
1575 }
1576 else
1577 {
1578 /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
1579 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1580 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
1581 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
1582 pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
1583 | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
1584 }
1585 }
1586 else
1587 {
1588 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
1589 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
1590 }
1591 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1592
1593 Assert(!RT_HI_U32(uShadowCr0));
1594 if (pVmcb->guest.u64CR0 != uShadowCr0)
1595 {
1596 pVmcb->guest.u64CR0 = uShadowCr0;
1597 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1598 }
1599}
1600
1601
1602/**
1603 * Exports the guest (or nested-guest) CR3 into the VMCB.
1604 *
1605 * @param pVCpu The cross context virtual CPU structure.
1606 * @param pVmcb Pointer to the VM control block.
1607 *
1608 * @remarks No-long-jump zone!!!
1609 */
1610static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1611{
1612 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1613
1614 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1615 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1616 if (pVM->hmr0.s.fNestedPaging)
1617 {
1618 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
1619 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1620 pVmcb->guest.u64CR3 = pCtx->cr3;
1621 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1622 }
1623 else
1624 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1625
1626 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1627}
1628
1629
1630/**
1631 * Exports the guest (or nested-guest) CR4 into the VMCB.
1632 *
1633 * @param pVCpu The cross context virtual CPU structure.
1634 * @param pVmcb Pointer to the VM control block.
1635 *
1636 * @remarks No-long-jump zone!!!
1637 */
1638static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1639{
1640 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1641
1642 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1643 uint64_t uShadowCr4 = pCtx->cr4;
1644 if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
1645 {
1646 switch (pVCpu->hm.s.enmShadowMode)
1647 {
1648 case PGMMODE_REAL:
1649 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1650 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1651
1652 case PGMMODE_32_BIT: /* 32-bit paging. */
1653 uShadowCr4 &= ~X86_CR4_PAE;
1654 break;
1655
1656 case PGMMODE_PAE: /* PAE paging. */
1657 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1658 /** Must use PAE paging as we could use physical memory > 4 GB */
1659 uShadowCr4 |= X86_CR4_PAE;
1660 break;
1661
1662 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1663 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1664#ifdef VBOX_WITH_64_BITS_GUESTS
1665 break;
1666#else
1667 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1668#endif
1669
1670 default: /* shut up gcc */
1671 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1672 }
1673 }
1674
1675 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1676 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1677 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
1678 {
1679 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
1680 hmR0SvmUpdateVmRunFunction(pVCpu);
1681 }
1682
1683 /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
1684 if (uShadowCr4 == pCtx->cr4)
1685 {
1686 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1687 pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
1688 else
1689 {
1690 /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
1691 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
1692 pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
1693 | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
1694 }
1695 }
1696 else
1697 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
1698
1699 /* CR4 writes are always intercepted (both guest, nested-guest) for tracking PGM mode changes. */
1700 Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
1701
1702 /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
1703 Assert(!RT_HI_U32(uShadowCr4));
1704 pVmcb->guest.u64CR4 = uShadowCr4;
1705 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
1706
1707 return VINF_SUCCESS;
1708}
1709
1710
1711/**
1712 * Exports the guest (or nested-guest) control registers into the VMCB.
1713 *
1714 * @returns VBox status code.
1715 * @param pVCpu The cross context virtual CPU structure.
1716 * @param pVmcb Pointer to the VM control block.
1717 *
1718 * @remarks No-long-jump zone!!!
1719 */
1720static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1721{
1722 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1723
1724 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
1725 {
1726 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
1727 hmR0SvmExportGuestCR0(pVCpu, pVmcb);
1728
1729 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
1730 {
1731 pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
1732 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1733 }
1734
1735 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
1736 hmR0SvmExportGuestCR3(pVCpu, pVmcb);
1737
1738 /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
1739 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
1740 {
1741 int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
1742 if (RT_FAILURE(rc))
1743 return rc;
1744 }
1745
1746 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
1747 }
1748 return VINF_SUCCESS;
1749}
1750
1751
1752/**
1753 * Exports the guest (or nested-guest) segment registers into the VMCB.
1754 *
1755 * @returns VBox status code.
1756 * @param pVCpu The cross context virtual CPU structure.
1757 * @param pVmcb Pointer to the VM control block.
1758 *
1759 * @remarks No-long-jump zone!!!
1760 */
1761static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1762{
1763 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1764 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1765
1766 /* Guest segment registers. */
1767 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
1768 {
1769 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
1770 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1771
1772 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
1773 {
1774 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1775 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1776 }
1777
1778 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
1779 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1780
1781 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
1782 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1783
1784 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
1785 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1786
1787 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
1788 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1789
1790 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1791 }
1792
1793 /* Guest TR. */
1794 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
1795 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1796
1797 /* Guest LDTR. */
1798 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
1799 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1800
1801 /* Guest GDTR. */
1802 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
1803 {
1804 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1805 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1806 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1807 }
1808
1809 /* Guest IDTR. */
1810 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
1811 {
1812 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1813 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1814 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1815 }
1816
1817 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
1818 | HM_CHANGED_GUEST_TABLE_MASK);
1819}
1820
1821
1822/**
1823 * Exports the guest (or nested-guest) MSRs into the VMCB.
1824 *
1825 * @param pVCpu The cross context virtual CPU structure.
1826 * @param pVmcb Pointer to the VM control block.
1827 *
1828 * @remarks No-long-jump zone!!!
1829 */
1830static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1831{
1832 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1833 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1834
1835 /* Guest Sysenter MSRs. */
1836 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
1837 {
1838 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
1839 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1840
1841 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
1842 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1843
1844 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
1845 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1846 }
1847
1848 /*
1849 * Guest EFER MSR.
1850 * AMD-V requires guest EFER.SVME to be set. Weird.
1851 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1852 */
1853 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
1854 {
1855 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1856 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1857 }
1858
1859 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
1860 if ( !CPUMIsGuestInLongModeEx(pCtx)
1861 && (pCtx->msrEFER & MSR_K6_EFER_LME))
1862 {
1863 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1864 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1865 }
1866
1867 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
1868 {
1869 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1870 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1871 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1872 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1873 }
1874
1875 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
1876 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1877
1878 pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
1879 | HM_CHANGED_GUEST_EFER_MSR
1880 | HM_CHANGED_GUEST_SYSCALL_MSRS
1881 | HM_CHANGED_GUEST_KERNEL_GS_BASE);
1882
1883 /*
1884 * Setup the PAT MSR (applicable for Nested Paging only).
1885 *
1886 * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
1887 * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
1888 *
1889 * While guests can modify and see the modified values through the shadow values,
1890 * we shall not honor any guest modifications of this MSR to ensure caching is always
1891 * enabled similar to how we clear CR0.CD and NW bits.
1892 *
1893 * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
1894 */
1895 pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
1896
1897 /* Enable the last branch record bit if LBR virtualization is enabled. */
1898 if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
1899 pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
1900}
1901
1902
1903/**
1904 * Exports the guest (or nested-guest) debug state into the VMCB and programs
1905 * the necessary intercepts accordingly.
1906 *
1907 * @param pVCpu The cross context virtual CPU structure.
1908 * @param pVmcb Pointer to the VM control block.
1909 *
1910 * @remarks No-long-jump zone!!!
1911 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1912 */
1913static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
1914{
1915 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1916
1917 /** @todo Figure out stepping with nested-guest. */
1918 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1919 {
1920 /*
1921 * We don't want to always intercept DRx read/writes for nested-guests as it causes
1922 * problems when the nested hypervisor isn't intercepting them, see @bugref{10080}.
1923 * Instead, they are strictly only requested when the nested hypervisor intercepts
1924 * them -- handled while merging VMCB controls.
1925 *
1926 * If neither the outer nor the nested-hypervisor is intercepting DRx read/writes,
1927 * then the nested-guest debug state should be actively loaded on the host so that
1928 * nested-guest reads/writes its own debug registers without causing VM-exits.
1929 */
1930 if ( ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1931 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1932 && !CPUMIsGuestDebugStateActive(pVCpu))
1933 {
1934 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
1935 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1936 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1937 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1938 }
1939
1940 pVmcb->guest.u64DR6 = pCtx->dr[6];
1941 pVmcb->guest.u64DR7 = pCtx->dr[7];
1942 return;
1943 }
1944
1945 /*
1946 * Anyone single stepping on the host side? If so, we'll have to use the
1947 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1948 * the VMM level like the VT-x implementations does.
1949 */
1950 bool fInterceptMovDRx = false;
1951 bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
1952 if (fStepping)
1953 {
1954 pVCpu->hmr0.s.fClearTrapFlag = true;
1955 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1956 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1957 }
1958
1959 if ( fStepping
1960 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1961 {
1962 /*
1963 * Use the combined guest and host DRx values found in the hypervisor
1964 * register set because the debugger has breakpoints active or someone
1965 * is single stepping on the host side.
1966 *
1967 * Note! DBGF expects a clean DR6 state before executing guest code.
1968 */
1969 if (!CPUMIsHyperDebugStateActive(pVCpu))
1970 {
1971 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1972 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1973 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1974 }
1975
1976 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1977 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1978 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1979 {
1980 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1981 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1982 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1983 }
1984
1985 /** @todo If we cared, we could optimize to allow the guest to read registers
1986 * with the same values. */
1987 fInterceptMovDRx = true;
1988 pVCpu->hmr0.s.fUsingHyperDR7 = true;
1989 Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
1990 }
1991 else
1992 {
1993 /*
1994 * Update DR6, DR7 with the guest values if necessary.
1995 */
1996 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1997 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1998 {
1999 pVmcb->guest.u64DR7 = pCtx->dr[7];
2000 pVmcb->guest.u64DR6 = pCtx->dr[6];
2001 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
2002 }
2003 pVCpu->hmr0.s.fUsingHyperDR7 = false;
2004
2005 /*
2006 * If the guest has enabled debug registers, we need to load them prior to
2007 * executing guest code so they'll trigger at the right time.
2008 */
2009 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
2010 {
2011 if (!CPUMIsGuestDebugStateActive(pVCpu))
2012 {
2013 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
2014 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2015 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2016 Assert(CPUMIsGuestDebugStateActive(pVCpu));
2017 }
2018 Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
2019 }
2020 /*
2021 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
2022 * intercept #DB as DR6 is updated in the VMCB.
2023 *
2024 * Note! If we cared and dared, we could skip intercepting \#DB here.
2025 * However, \#DB shouldn't be performance critical, so we'll play safe
2026 * and keep the code similar to the VT-x code and always intercept it.
2027 */
2028 else if (!CPUMIsGuestDebugStateActive(pVCpu))
2029 fInterceptMovDRx = true;
2030 }
2031
2032 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
2033 if (fInterceptMovDRx)
2034 {
2035 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
2036 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
2037 {
2038 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
2039 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
2040 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2041 }
2042 }
2043 else
2044 {
2045 if ( pVmcb->ctrl.u16InterceptRdDRx
2046 || pVmcb->ctrl.u16InterceptWrDRx)
2047 {
2048 pVmcb->ctrl.u16InterceptRdDRx = 0;
2049 pVmcb->ctrl.u16InterceptWrDRx = 0;
2050 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2051 }
2052 }
2053 Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2054}
2055
2056/**
2057 * Exports the hardware virtualization state into the nested-guest
2058 * VMCB.
2059 *
2060 * @param pVCpu The cross context virtual CPU structure.
2061 * @param pVmcb Pointer to the VM control block.
2062 *
2063 * @remarks No-long-jump zone!!!
2064 */
2065static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2066{
2067 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2068
2069 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
2070 {
2071 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
2072 {
2073 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2074 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
2075
2076 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
2077 Assert(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
2078 Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
2079 NOREF(pVM);
2080
2081 pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
2082 }
2083
2084 /*
2085 * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
2086 * since SVM doesn't have a preemption timer.
2087 *
2088 * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
2089 * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
2090 * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
2091 */
2092 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2093 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2094 uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
2095 uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
2096 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
2097 {
2098 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2099 pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
2100 pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
2101 }
2102 else
2103 {
2104 /** @todo r=ramshankar: We can turn these assignments into assertions. */
2105 pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
2106 pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
2107 }
2108 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2109
2110 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
2111 }
2112}
2113
2114
2115/**
2116 * Exports the guest APIC TPR state into the VMCB.
2117 *
2118 * @returns VBox status code.
2119 * @param pVCpu The cross context virtual CPU structure.
2120 * @param pVmcb Pointer to the VM control block.
2121 */
2122static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2123{
2124 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2125
2126 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
2127 {
2128 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2129 if ( PDMHasApic(pVM)
2130 && APICIsEnabled(pVCpu))
2131 {
2132 bool fPendingIntr;
2133 uint8_t u8Tpr;
2134 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
2135 AssertRCReturn(rc, rc);
2136
2137 /* Assume that we need to trap all TPR accesses and thus need not check on
2138 every #VMEXIT if we should update the TPR. */
2139 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
2140 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2141
2142 if (!pVM->hm.s.fTprPatchingActive)
2143 {
2144 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2145 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
2146
2147 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
2148 can deliver the interrupt to the guest. */
2149 if (fPendingIntr)
2150 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
2151 else
2152 {
2153 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
2154 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2155 }
2156
2157 pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
2158 }
2159 else
2160 {
2161 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2162 pVmcb->guest.u64LSTAR = u8Tpr;
2163 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2164
2165 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
2166 if (fPendingIntr)
2167 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
2168 else
2169 {
2170 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
2171 pVCpu->hmr0.s.svm.fSyncVTpr = true;
2172 }
2173 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
2174 }
2175 }
2176 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
2177 }
2178 return VINF_SUCCESS;
2179}
2180
2181
2182/**
2183 * Sets up the exception interrupts required for guest execution in the VMCB.
2184 *
2185 * @param pVCpu The cross context virtual CPU structure.
2186 * @param pVmcb Pointer to the VM control block.
2187 *
2188 * @remarks No-long-jump zone!!!
2189 */
2190static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2191{
2192 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2193
2194 /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
2195 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
2196 {
2197 /* Trap #UD for GIM provider (e.g. for hypercalls). */
2198 if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
2199 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
2200 else
2201 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
2202
2203 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
2204 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2205 hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
2206 else
2207 hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
2208
2209 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
2210 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
2211 }
2212}
2213
2214
2215#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2216/**
2217 * Merges guest and nested-guest intercepts for executing the nested-guest using
2218 * hardware-assisted SVM.
2219 *
2220 * This merges the guest and nested-guest intercepts in a way that if the outer
2221 * guest intercept is set we need to intercept it in the nested-guest as
2222 * well.
2223 *
2224 * @param pVCpu The cross context virtual CPU structure.
2225 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
2226 */
2227static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
2228{
2229 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2230 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
2231 PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
2232 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2233
2234 /* Merge the guest's CR intercepts into the nested-guest VMCB. */
2235 pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
2236 pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
2237
2238 /* Always intercept CR4 writes for tracking PGM mode changes. */
2239 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
2240
2241 /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
2242 if (!pVM->hmr0.s.fNestedPaging)
2243 {
2244 pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
2245 pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
2246 }
2247
2248 /* Merge the guest's DR intercepts into the nested-guest VMCB. */
2249 pVmcbNstGstCtrl->u16InterceptRdDRx |= pVmcb->ctrl.u16InterceptRdDRx;
2250 pVmcbNstGstCtrl->u16InterceptWrDRx |= pVmcb->ctrl.u16InterceptWrDRx;
2251
2252 /*
2253 * Merge the guest's exception intercepts into the nested-guest VMCB.
2254 *
2255 * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
2256 * while executing the nested-guest.
2257 *
2258 * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
2259 * be tweaked later depending on how we wish to implement breakpoints.
2260 *
2261 * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
2262 * loaded into their guests, not ours.
2263 *
2264 * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
2265 * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
2266 */
2267#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
2268 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
2269 & ~( RT_BIT(X86_XCPT_UD)
2270 | RT_BIT(X86_XCPT_BP)
2271 | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
2272#else
2273 pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
2274#endif
2275
2276 /*
2277 * Adjust intercepts while executing the nested-guest that differ from the
2278 * outer guest intercepts.
2279 *
2280 * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
2281 * that belong to the nested-guest to the outer guest.
2282 *
2283 * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
2284 * the nested-guest, the physical CPU raises a \#UD exception as expected.
2285 */
2286 pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
2287 | SVM_CTRL_INTERCEPT_VMMCALL))
2288 | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
2289
2290 Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
2291 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
2292
2293 /* Finally, update the VMCB clean bits. */
2294 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2295}
2296#endif
2297
2298
2299/**
2300 * Enters the AMD-V session.
2301 *
2302 * @returns VBox status code.
2303 * @param pVCpu The cross context virtual CPU structure.
2304 */
2305VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
2306{
2307 AssertPtr(pVCpu);
2308 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
2309 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2310
2311 LogFlowFunc(("pVCpu=%p\n", pVCpu));
2312 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2313 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2314
2315 pVCpu->hmr0.s.fLeaveDone = false;
2316 return VINF_SUCCESS;
2317}
2318
2319
2320/**
2321 * Thread-context callback for AMD-V.
2322 *
2323 * This is used together with RTThreadCtxHookCreate() on platforms which
2324 * supports it, and directly from VMMR0EmtPrepareForBlocking() and
2325 * VMMR0EmtResumeAfterBlocking() on platforms which don't.
2326 *
2327 * @param enmEvent The thread-context event.
2328 * @param pVCpu The cross context virtual CPU structure.
2329 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
2330 * @thread EMT(pVCpu)
2331 */
2332VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
2333{
2334 NOREF(fGlobalInit);
2335
2336 switch (enmEvent)
2337 {
2338 case RTTHREADCTXEVENT_OUT:
2339 {
2340 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2341 VMCPU_ASSERT_EMT(pVCpu);
2342
2343 /* No longjmps (log-flush, locks) in this fragile context. */
2344 VMMRZCallRing3Disable(pVCpu);
2345
2346 if (!pVCpu->hmr0.s.fLeaveDone)
2347 {
2348 hmR0SvmLeave(pVCpu, false /* fImportState */);
2349 pVCpu->hmr0.s.fLeaveDone = true;
2350 }
2351
2352 /* Leave HM context, takes care of local init (term). */
2353 int rc = HMR0LeaveCpu(pVCpu);
2354 AssertRC(rc); NOREF(rc);
2355
2356 /* Restore longjmp state. */
2357 VMMRZCallRing3Enable(pVCpu);
2358 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2359 break;
2360 }
2361
2362 case RTTHREADCTXEVENT_IN:
2363 {
2364 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2365 VMCPU_ASSERT_EMT(pVCpu);
2366
2367 /* No longjmps (log-flush, locks) in this fragile context. */
2368 VMMRZCallRing3Disable(pVCpu);
2369
2370 /*
2371 * Initialize the bare minimum state required for HM. This takes care of
2372 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2373 */
2374 int rc = hmR0EnterCpu(pVCpu);
2375 AssertRC(rc); NOREF(rc);
2376 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
2377 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
2378
2379 pVCpu->hmr0.s.fLeaveDone = false;
2380
2381 /* Restore longjmp state. */
2382 VMMRZCallRing3Enable(pVCpu);
2383 break;
2384 }
2385
2386 default:
2387 break;
2388 }
2389}
2390
2391
2392/**
2393 * Saves the host state.
2394 *
2395 * @returns VBox status code.
2396 * @param pVCpu The cross context virtual CPU structure.
2397 *
2398 * @remarks No-long-jump zone!!!
2399 */
2400VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
2401{
2402 NOREF(pVCpu);
2403
2404 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2405 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
2406 return VINF_SUCCESS;
2407}
2408
2409
2410/**
2411 * Exports the guest or nested-guest state from the virtual-CPU context into the
2412 * VMCB.
2413 *
2414 * Also sets up the appropriate VMRUN function to execute guest or nested-guest
2415 * code based on the virtual-CPU mode.
2416 *
2417 * @returns VBox status code.
2418 * @param pVCpu The cross context virtual CPU structure.
2419 * @param pSvmTransient Pointer to the SVM-transient structure.
2420 *
2421 * @remarks No-long-jump zone!!!
2422 */
2423static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
2424{
2425 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
2426
2427 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2428 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2429 Assert(pVmcb);
2430
2431 pVmcb->guest.u64RIP = pCtx->rip;
2432 pVmcb->guest.u64RSP = pCtx->rsp;
2433 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2434 pVmcb->guest.u64RAX = pCtx->rax;
2435
2436 bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
2437 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2438
2439 int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
2440 AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
2441 hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
2442 hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
2443 hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
2444
2445 ASMSetFlags(fEFlags);
2446
2447 if (!fIsNestedGuest)
2448 {
2449 /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
2450 otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
2451 hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
2452 hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
2453 }
2454
2455 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
2456 uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
2457 | HM_CHANGED_GUEST_RFLAGS
2458 | HM_CHANGED_GUEST_GPRS_MASK
2459 | HM_CHANGED_GUEST_X87
2460 | HM_CHANGED_GUEST_SSE_AVX
2461 | HM_CHANGED_GUEST_OTHER_XSAVE
2462 | HM_CHANGED_GUEST_XCRx
2463 | HM_CHANGED_GUEST_TSC_AUX
2464 | HM_CHANGED_GUEST_OTHER_MSRS;
2465 if (fIsNestedGuest)
2466 fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
2467 | HM_CHANGED_GUEST_APIC_TPR;
2468
2469 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
2470 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
2471
2472#ifdef VBOX_STRICT
2473 /*
2474 * All of the guest-CPU state and SVM keeper bits should be exported here by now,
2475 * except for the host-context and/or shared host-guest context bits.
2476 */
2477 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
2478 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
2479 ("fCtxChanged=%#RX64\n", fCtxChanged));
2480
2481 /*
2482 * If we need to log state that isn't always imported, we'll need to import them here.
2483 * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
2484 */
2485 hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
2486#endif
2487
2488 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
2489 return VINF_SUCCESS;
2490}
2491
2492#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2493
2494/**
2495 * Merges the guest and nested-guest MSR permission bitmap.
2496 *
2497 * If the guest is intercepting an MSR we need to intercept it regardless of
2498 * whether the nested-guest is intercepting it or not.
2499 *
2500 * @param pHostCpu The HM physical-CPU structure.
2501 * @param pVCpu The cross context virtual CPU structure.
2502 *
2503 * @remarks No-long-jmp zone!!!
2504 */
2505DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2506{
2507 uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap;
2508 uint64_t const *pu64NstGstMsrpm = (uint64_t const *)&pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[0];
2509 uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
2510
2511 /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
2512 uint32_t const offRsvdQwords = 0x1800 >> 3;
2513 for (uint32_t i = 0; i < offRsvdQwords; i++)
2514 pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
2515}
2516
2517
2518/**
2519 * Caches the nested-guest VMCB fields before we modify them for execution using
2520 * hardware-assisted SVM.
2521 *
2522 * @returns true if the VMCB was previously already cached, false otherwise.
2523 * @param pVCpu The cross context virtual CPU structure.
2524 *
2525 * @sa HMNotifySvmNstGstVmexit.
2526 */
2527static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
2528{
2529 /*
2530 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2531 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2532 *
2533 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2534 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2535 */
2536 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2537 bool const fWasCached = pVmcbNstGstCache->fCacheValid;
2538 if (!fWasCached)
2539 {
2540 PCSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
2541 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2542 pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2543 pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2544 pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2545 pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2546 pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
2547 pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
2548 pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2549 pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2550 pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
2551 pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2552 pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
2553 pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
2554 pVmcbNstGstCache->fCacheValid = true;
2555 Log4Func(("Cached VMCB fields\n"));
2556 }
2557
2558 return fWasCached;
2559}
2560
2561
2562/**
2563 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2564 *
2565 * This is done the first time we enter nested-guest execution using SVM R0
2566 * until the nested-guest \#VMEXIT (not to be confused with physical CPU
2567 * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
2568 *
2569 * @param pVCpu The cross context virtual CPU structure.
2570 */
2571static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
2572{
2573 PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
2574 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2575
2576 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
2577
2578 /*
2579 * First cache the nested-guest VMCB fields we may potentially modify.
2580 */
2581 bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
2582 if (!fVmcbCached)
2583 {
2584 /*
2585 * The IOPM of the nested-guest can be ignored because the the guest always
2586 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2587 * than the nested-guest IOPM and swap the field back on the #VMEXIT.
2588 */
2589 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2590
2591 /*
2592 * Use the same nested-paging as the outer guest. We can't dynamically switch off
2593 * nested-paging suddenly while executing a VM (see assertion at the end of
2594 * Trap0eHandler() in PGMAllBth.h).
2595 */
2596 pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
2597
2598 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
2599 pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
2600
2601 /*
2602 * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
2603 * to the nested-guest intercepts and we always run with V_INTR_MASKING.
2604 */
2605 pVCpu->hmr0.s.svm.fSyncVTpr = false;
2606
2607# ifdef DEBUG_ramshankar
2608 /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
2609 pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
2610# endif
2611
2612 /*
2613 * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
2614 * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
2615 */
2616 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
2617 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
2618 | SVM_CTRL_INTERCEPT_VMLOAD;
2619
2620 /*
2621 * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
2622 * CLGI/STGI instructions executed by the nested-guest.
2623 */
2624 if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
2625 pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
2626 | SVM_CTRL_INTERCEPT_STGI;
2627
2628 /* Merge the guest and nested-guest intercepts. */
2629 hmR0SvmMergeVmcbCtrlsNested(pVCpu);
2630
2631 /* Update the VMCB clean bits. */
2632 pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2633 }
2634 else
2635 {
2636 Assert(!pVCpu->hmr0.s.svm.fSyncVTpr);
2637 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2638 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2639 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
2640 }
2641}
2642
2643#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
2644
2645/**
2646 * Exports the state shared between the host and guest (or nested-guest) into
2647 * the VMCB.
2648 *
2649 * @param pVCpu The cross context virtual CPU structure.
2650 * @param pVmcb Pointer to the VM control block.
2651 *
2652 * @remarks No-long-jump zone!!!
2653 */
2654static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
2655{
2656 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2657 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2658
2659 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
2660 hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
2661
2662 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
2663 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
2664 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
2665}
2666
2667
2668/**
2669 * Worker for SVMR0ImportStateOnDemand.
2670 *
2671 * @param pVCpu The cross context virtual CPU structure.
2672 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2673 */
2674static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
2675{
2676 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
2677
2678 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2679 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
2680 PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
2681 PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
2682
2683 /*
2684 * We disable interrupts to make the updating of the state and in particular
2685 * the fExtrn modification atomic wrt to preemption hooks.
2686 */
2687 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
2688
2689 fWhat &= pCtx->fExtrn;
2690 if (fWhat)
2691 {
2692#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
2693 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
2694 {
2695 if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
2696 {
2697 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
2698 Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
2699 CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
2700 }
2701 }
2702
2703 if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
2704 {
2705 if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
2706 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
2707 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
2708 }
2709#endif
2710
2711 if (fWhat & CPUMCTX_EXTRN_HM_SVM_INT_SHADOW)
2712 {
2713 if (pVmcbCtrl->IntShadow.n.u1IntShadow)
2714 EMSetInhibitInterruptsPC(pVCpu, pVmcbGuest->u64RIP);
2715 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2716 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2717 }
2718
2719 if (fWhat & CPUMCTX_EXTRN_RIP)
2720 pCtx->rip = pVmcbGuest->u64RIP;
2721
2722 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2723 pCtx->eflags.u32 = pVmcbGuest->u64RFlags;
2724
2725 if (fWhat & CPUMCTX_EXTRN_RSP)
2726 pCtx->rsp = pVmcbGuest->u64RSP;
2727
2728 if (fWhat & CPUMCTX_EXTRN_RAX)
2729 pCtx->rax = pVmcbGuest->u64RAX;
2730
2731 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2732 {
2733 if (fWhat & CPUMCTX_EXTRN_CS)
2734 {
2735 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
2736 /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
2737 /** @todo SELM might need to be fixed as it too should not care about the
2738 * granularity bit. See @bugref{6785}. */
2739 if ( !pCtx->cs.Attr.n.u1Granularity
2740 && pCtx->cs.Attr.n.u1Present
2741 && pCtx->cs.u32Limit > UINT32_C(0xfffff))
2742 {
2743 Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
2744 pCtx->cs.Attr.n.u1Granularity = 1;
2745 }
2746 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
2747 }
2748 if (fWhat & CPUMCTX_EXTRN_SS)
2749 {
2750 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
2751 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
2752 /*
2753 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
2754 * VMCB and uses that and thus it's possible that when the CPL changes during
2755 * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
2756 * AMD Fusion CPUs with 64-bit guests.
2757 *
2758 * See AMD spec. 15.5.1 "Basic operation".
2759 */
2760 Assert(!(pVmcbGuest->u8CPL & ~0x3));
2761 uint8_t const uCpl = pVmcbGuest->u8CPL;
2762 if (pCtx->ss.Attr.n.u2Dpl != uCpl)
2763 pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
2764 }
2765 if (fWhat & CPUMCTX_EXTRN_DS)
2766 {
2767 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
2768 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
2769 }
2770 if (fWhat & CPUMCTX_EXTRN_ES)
2771 {
2772 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
2773 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
2774 }
2775 if (fWhat & CPUMCTX_EXTRN_FS)
2776 {
2777 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
2778 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
2779 }
2780 if (fWhat & CPUMCTX_EXTRN_GS)
2781 {
2782 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
2783 HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
2784 }
2785 }
2786
2787 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2788 {
2789 if (fWhat & CPUMCTX_EXTRN_TR)
2790 {
2791 /*
2792 * Fixup TR attributes so it's compatible with Intel. Important when saved-states
2793 * are used between Intel and AMD, see @bugref{6208#c39}.
2794 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2795 */
2796 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
2797 if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2798 {
2799 if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2800 || CPUMIsGuestInLongModeEx(pCtx))
2801 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2802 else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2803 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2804 }
2805 }
2806
2807 if (fWhat & CPUMCTX_EXTRN_LDTR)
2808 HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
2809
2810 if (fWhat & CPUMCTX_EXTRN_GDTR)
2811 {
2812 pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
2813 pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
2814 }
2815
2816 if (fWhat & CPUMCTX_EXTRN_IDTR)
2817 {
2818 pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
2819 pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
2820 }
2821 }
2822
2823 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2824 {
2825 pCtx->msrSTAR = pVmcbGuest->u64STAR;
2826 pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
2827 pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
2828 pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
2829 }
2830
2831 if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2832 && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */)
2833 {
2834 pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
2835 pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
2836 pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
2837 }
2838
2839 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2840 pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
2841
2842 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
2843 {
2844 if (fWhat & CPUMCTX_EXTRN_DR6)
2845 {
2846 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2847 pCtx->dr[6] = pVmcbGuest->u64DR6;
2848 else
2849 CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
2850 }
2851
2852 if (fWhat & CPUMCTX_EXTRN_DR7)
2853 {
2854 if (!pVCpu->hmr0.s.fUsingHyperDR7)
2855 pCtx->dr[7] = pVmcbGuest->u64DR7;
2856 else
2857 Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
2858 }
2859 }
2860
2861 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2862 {
2863 if (fWhat & CPUMCTX_EXTRN_CR0)
2864 {
2865 /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
2866 uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
2867 | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
2868 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
2869 CPUMSetGuestCR0(pVCpu, uCr0);
2870 VMMRZCallRing3Enable(pVCpu);
2871 }
2872
2873 if (fWhat & CPUMCTX_EXTRN_CR2)
2874 pCtx->cr2 = pVmcbGuest->u64CR2;
2875
2876 if (fWhat & CPUMCTX_EXTRN_CR3)
2877 {
2878 if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
2879 && pCtx->cr3 != pVmcbGuest->u64CR3)
2880 {
2881 CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
2882 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
2883 }
2884 }
2885
2886 /* Changes to CR4 are always intercepted. */
2887 }
2888
2889 /* Update fExtrn. */
2890 pCtx->fExtrn &= ~fWhat;
2891
2892 /* If everything has been imported, clear the HM keeper bit. */
2893 if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
2894 {
2895 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
2896 Assert(!pCtx->fExtrn);
2897 }
2898 }
2899 else
2900 Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
2901
2902 ASMSetFlags(fEFlags);
2903
2904 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
2905
2906 /*
2907 * Honor any pending CR3 updates.
2908 *
2909 * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
2910 * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
2911 * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
2912 * handling -> hmR0SvmImportGuestState() and here we are.
2913 *
2914 * The reason for such complicated handling is because VM-exits that call into PGM expect
2915 * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
2916 * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
2917 * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
2918 *
2919 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
2920 * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
2921 */
2922 if ( VMMRZCallRing3IsEnabled(pVCpu)
2923 && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
2924 {
2925 AssertMsg(pCtx->cr3 == pVmcbGuest->u64CR3, ("cr3=%#RX64 vmcb_cr3=%#RX64\n", pCtx->cr3, pVmcbGuest->u64CR3));
2926 PGMUpdateCR3(pVCpu, pCtx->cr3, false /* fPdpesMapped */);
2927 }
2928}
2929
2930
2931/**
2932 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
2933 * context.
2934 *
2935 * Currently there is no residual state left in the CPU that is not updated in the
2936 * VMCB.
2937 *
2938 * @returns VBox status code.
2939 * @param pVCpu The cross context virtual CPU structure.
2940 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2941 */
2942VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
2943{
2944 hmR0SvmImportGuestState(pVCpu, fWhat);
2945 return VINF_SUCCESS;
2946}
2947
2948
2949/**
2950 * Does the necessary state syncing before returning to ring-3 for any reason
2951 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2952 *
2953 * @param pVCpu The cross context virtual CPU structure.
2954 * @param fImportState Whether to import the guest state from the VMCB back
2955 * to the guest-CPU context.
2956 *
2957 * @remarks No-long-jmp zone!!!
2958 */
2959static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
2960{
2961 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2962 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2963
2964 /*
2965 * !!! IMPORTANT !!!
2966 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
2967 */
2968
2969 /* Save the guest state if necessary. */
2970 if (fImportState)
2971 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
2972
2973 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2974 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2975 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
2976
2977 /*
2978 * Restore host debug registers if necessary and resync on next R0 reentry.
2979 */
2980#ifdef VBOX_STRICT
2981 if (CPUMIsHyperDebugStateActive(pVCpu))
2982 {
2983 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */
2984 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2985 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2986 }
2987#endif
2988 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2989 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2990 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2991
2992 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2993 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
2994 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
2995 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
2996 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
2997 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
2998 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2999
3000 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
3001}
3002
3003
3004/**
3005 * Leaves the AMD-V session.
3006 *
3007 * Only used while returning to ring-3 either due to longjump or exits to
3008 * ring-3.
3009 *
3010 * @returns VBox status code.
3011 * @param pVCpu The cross context virtual CPU structure.
3012 */
3013static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
3014{
3015 HM_DISABLE_PREEMPT(pVCpu);
3016 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3017 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3018
3019 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
3020 and done this from the SVMR0ThreadCtxCallback(). */
3021 if (!pVCpu->hmr0.s.fLeaveDone)
3022 {
3023 hmR0SvmLeave(pVCpu, true /* fImportState */);
3024 pVCpu->hmr0.s.fLeaveDone = true;
3025 }
3026
3027 /*
3028 * !!! IMPORTANT !!!
3029 * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
3030 */
3031
3032 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3033 /* Deregister hook now that we've left HM context before re-enabling preemption. */
3034 VMMR0ThreadCtxHookDisable(pVCpu);
3035
3036 /* Leave HM context. This takes care of local init (term). */
3037 int rc = HMR0LeaveCpu(pVCpu);
3038
3039 HM_RESTORE_PREEMPT();
3040 return rc;
3041}
3042
3043
3044/**
3045 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
3046 * any remaining host state) before we go back to ring-3 due to an assertion.
3047 *
3048 * @param pVCpu The cross context virtual CPU structure.
3049 */
3050VMMR0DECL(int) SVMR0AssertionCallback(PVMCPUCC pVCpu)
3051{
3052 /*
3053 * !!! IMPORTANT !!!
3054 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
3055 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
3056 */
3057 VMMR0AssertionRemoveNotification(pVCpu);
3058 VMMRZCallRing3Disable(pVCpu);
3059 HM_DISABLE_PREEMPT(pVCpu);
3060
3061 /* Import the entire guest state. */
3062 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3063
3064 /* Restore host FPU state if necessary and resync on next R0 reentry. */
3065 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
3066
3067 /* Restore host debug registers if necessary and resync on next R0 reentry. */
3068 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
3069
3070 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
3071 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
3072 VMMR0ThreadCtxHookDisable(pVCpu);
3073
3074 /* Leave HM context. This takes care of local init (term). */
3075 HMR0LeaveCpu(pVCpu);
3076
3077 HM_RESTORE_PREEMPT();
3078 return VINF_SUCCESS;
3079}
3080
3081
3082/**
3083 * Take necessary actions before going back to ring-3.
3084 *
3085 * An action requires us to go back to ring-3. This function does the necessary
3086 * steps before we can safely return to ring-3. This is not the same as longjmps
3087 * to ring-3, this is voluntary.
3088 *
3089 * @returns Strict VBox status code.
3090 * @param pVCpu The cross context virtual CPU structure.
3091 * @param rcExit The reason for exiting to ring-3. Can be
3092 * VINF_VMM_UNKNOWN_RING3_CALL.
3093 */
3094static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
3095{
3096 Assert(pVCpu);
3097 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3098
3099 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
3100 VMMRZCallRing3Disable(pVCpu);
3101 Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions,
3102 pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
3103
3104 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
3105 if (pVCpu->hm.s.Event.fPending)
3106 {
3107 hmR0SvmPendingEventToTrpmTrap(pVCpu);
3108 Assert(!pVCpu->hm.s.Event.fPending);
3109 }
3110
3111 /* Sync. the necessary state for going back to ring-3. */
3112 hmR0SvmLeaveSession(pVCpu);
3113 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
3114
3115 /* Thread-context hooks are unregistered at this point!!! */
3116 /* Ring-3 callback notifications are unregistered at this point!!! */
3117
3118 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
3119 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
3120 | CPUM_CHANGED_LDTR
3121 | CPUM_CHANGED_GDTR
3122 | CPUM_CHANGED_IDTR
3123 | CPUM_CHANGED_TR
3124 | CPUM_CHANGED_HIDDEN_SEL_REGS);
3125 if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
3126 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
3127 {
3128 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3129 }
3130
3131 /* Update the exit-to-ring 3 reason. */
3132 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
3133
3134 /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
3135 if ( rcExit != VINF_EM_RAW_INTERRUPT
3136 || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3137 {
3138 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
3139 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3140 }
3141
3142 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
3143 VMMRZCallRing3Enable(pVCpu);
3144
3145 /*
3146 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
3147 * and if we're injecting an event we should have a TRPM trap pending.
3148 */
3149 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
3150 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3151 VERR_SVM_IPE_5);
3152 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
3153 pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
3154 VERR_SVM_IPE_4);
3155
3156 return rcExit;
3157}
3158
3159
3160/**
3161 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
3162 * intercepts.
3163 *
3164 * @param pVCpu The cross context virtual CPU structure.
3165 * @param pVmcb Pointer to the VM control block.
3166 *
3167 * @remarks No-long-jump zone!!!
3168 */
3169static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3170{
3171 /*
3172 * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
3173 * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
3174 * RDTSC/RDTSCP as well.
3175 */
3176 bool fParavirtTsc;
3177 uint64_t uTscOffset;
3178 bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
3179
3180 bool fIntercept;
3181 if (fCanUseRealTsc)
3182 fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3183 else
3184 {
3185 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
3186 fIntercept = true;
3187 }
3188
3189 if (!fIntercept)
3190 {
3191#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3192 /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
3193 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
3194 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
3195#endif
3196
3197 /* Update the TSC offset in the VMCB and the relevant clean bits. */
3198 pVmcb->ctrl.u64TSCOffset = uTscOffset;
3199 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3200 }
3201
3202 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
3203 information before every VM-entry, hence we have nothing to do here at the moment. */
3204 if (fParavirtTsc)
3205 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
3206}
3207
3208
3209/**
3210 * Sets an event as a pending event to be injected into the guest.
3211 *
3212 * @param pVCpu The cross context virtual CPU structure.
3213 * @param pEvent Pointer to the SVM event.
3214 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
3215 * page-fault.
3216 *
3217 * @remarks Statistics counter assumes this is a guest event being reflected to
3218 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
3219 */
3220DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
3221{
3222 Assert(!pVCpu->hm.s.Event.fPending);
3223 Assert(pEvent->n.u1Valid);
3224
3225 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
3226 pVCpu->hm.s.Event.fPending = true;
3227 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
3228
3229 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3230 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3231}
3232
3233
3234/**
3235 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3236 *
3237 * @param pVCpu The cross context virtual CPU structure.
3238 */
3239DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
3240{
3241 SVMEVENT Event;
3242 Event.u = 0;
3243 Event.n.u1Valid = 1;
3244 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3245 Event.n.u8Vector = X86_XCPT_UD;
3246 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3247}
3248
3249
3250/**
3251 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3252 *
3253 * @param pVCpu The cross context virtual CPU structure.
3254 */
3255DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
3256{
3257 SVMEVENT Event;
3258 Event.u = 0;
3259 Event.n.u1Valid = 1;
3260 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3261 Event.n.u8Vector = X86_XCPT_DB;
3262 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3263}
3264
3265
3266/**
3267 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3268 *
3269 * @param pVCpu The cross context virtual CPU structure.
3270 * @param u32ErrCode The error-code for the page-fault.
3271 * @param uFaultAddress The page fault address (CR2).
3272 *
3273 * @remarks This updates the guest CR2 with @a uFaultAddress!
3274 */
3275DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3276{
3277 SVMEVENT Event;
3278 Event.u = 0;
3279 Event.n.u1Valid = 1;
3280 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3281 Event.n.u8Vector = X86_XCPT_PF;
3282 Event.n.u1ErrorCodeValid = 1;
3283 Event.n.u32ErrorCode = u32ErrCode;
3284
3285 /* Update CR2 of the guest. */
3286 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
3287 if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
3288 {
3289 pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
3290 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
3291 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
3292 }
3293
3294 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3295}
3296
3297
3298/**
3299 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3300 *
3301 * @param pVCpu The cross context virtual CPU structure.
3302 */
3303DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
3304{
3305 SVMEVENT Event;
3306 Event.u = 0;
3307 Event.n.u1Valid = 1;
3308 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3309 Event.n.u8Vector = X86_XCPT_MF;
3310 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3311}
3312
3313
3314/**
3315 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3316 *
3317 * @param pVCpu The cross context virtual CPU structure.
3318 */
3319DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
3320{
3321 SVMEVENT Event;
3322 Event.u = 0;
3323 Event.n.u1Valid = 1;
3324 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3325 Event.n.u8Vector = X86_XCPT_DF;
3326 Event.n.u1ErrorCodeValid = 1;
3327 Event.n.u32ErrorCode = 0;
3328 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3329}
3330
3331
3332/**
3333 * Injects an event into the guest upon VMRUN by updating the relevant field
3334 * in the VMCB.
3335 *
3336 * @param pVCpu The cross context virtual CPU structure.
3337 * @param pVmcb Pointer to the guest VM control block.
3338 * @param pEvent Pointer to the event.
3339 *
3340 * @remarks No-long-jump zone!!!
3341 * @remarks Requires CR0!
3342 */
3343DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
3344{
3345 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3346 pVmcb->ctrl.EventInject.u = pEvent->u;
3347 if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
3348 || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
3349 {
3350 Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
3351 STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedXcpts[pEvent->n.u8Vector]);
3352 }
3353 else
3354 STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedIrqs[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
3355 RT_NOREF(pVCpu);
3356
3357 Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
3358 (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
3359}
3360
3361
3362
3363/**
3364 * Converts any TRPM trap into a pending HM event. This is typically used when
3365 * entering from ring-3 (not longjmp returns).
3366 *
3367 * @param pVCpu The cross context virtual CPU structure.
3368 */
3369static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
3370{
3371 Assert(TRPMHasTrap(pVCpu));
3372 Assert(!pVCpu->hm.s.Event.fPending);
3373
3374 uint8_t uVector;
3375 TRPMEVENT enmTrpmEvent;
3376 uint32_t uErrCode;
3377 RTGCUINTPTR GCPtrFaultAddress;
3378 uint8_t cbInstr;
3379
3380 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
3381 AssertRC(rc);
3382
3383 SVMEVENT Event;
3384 Event.u = 0;
3385 Event.n.u1Valid = 1;
3386 Event.n.u8Vector = uVector;
3387
3388 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
3389 if (enmTrpmEvent == TRPM_TRAP)
3390 {
3391 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3392 switch (uVector)
3393 {
3394 case X86_XCPT_NMI:
3395 {
3396 Event.n.u3Type = SVM_EVENT_NMI;
3397 break;
3398 }
3399
3400 case X86_XCPT_BP:
3401 case X86_XCPT_OF:
3402 AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
3403 RT_FALL_THRU();
3404
3405 case X86_XCPT_PF:
3406 case X86_XCPT_DF:
3407 case X86_XCPT_TS:
3408 case X86_XCPT_NP:
3409 case X86_XCPT_SS:
3410 case X86_XCPT_GP:
3411 case X86_XCPT_AC:
3412 {
3413 Event.n.u1ErrorCodeValid = 1;
3414 Event.n.u32ErrorCode = uErrCode;
3415 break;
3416 }
3417 }
3418 }
3419 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
3420 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3421 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
3422 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
3423 else
3424 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
3425
3426 rc = TRPMResetTrap(pVCpu);
3427 AssertRC(rc);
3428
3429 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3430 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3431
3432 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3433}
3434
3435
3436/**
3437 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3438 * AMD-V to execute any instruction.
3439 *
3440 * @param pVCpu The cross context virtual CPU structure.
3441 */
3442static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
3443{
3444 Assert(pVCpu->hm.s.Event.fPending);
3445 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3446
3447 SVMEVENT Event;
3448 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3449
3450 uint8_t uVector = Event.n.u8Vector;
3451 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
3452
3453 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
3454
3455 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3456 AssertRC(rc);
3457
3458 if (Event.n.u1ErrorCodeValid)
3459 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3460
3461 if ( enmTrapType == TRPM_TRAP
3462 && uVector == X86_XCPT_PF)
3463 {
3464 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3465 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3466 }
3467 else if (enmTrapType == TRPM_SOFTWARE_INT)
3468 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3469 pVCpu->hm.s.Event.fPending = false;
3470}
3471
3472
3473/**
3474 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3475 * now.
3476 *
3477 * @returns @c true if the interrupt shadow is active, @c false otherwise.
3478 * @param pVCpu The cross context virtual CPU structure.
3479 *
3480 * @remarks No-long-jump zone!!!
3481 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3482 */
3483static bool hmR0SvmIsIntrShadowActive(PVMCPUCC pVCpu)
3484{
3485 /*
3486 * Instructions like STI and MOV SS inhibit interrupts till the next instruction
3487 * completes. Check if we should inhibit interrupts or clear any existing
3488 * interrupt inhibition.
3489 */
3490 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3491 {
3492 if (pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
3493 {
3494 /*
3495 * We can clear the inhibit force flag as even if we go back to the recompiler
3496 * without executing guest code in AMD-V, the flag's condition to be cleared is
3497 * met and thus the cleared state is correct.
3498 */
3499 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3500 return false;
3501 }
3502 return true;
3503 }
3504 return false;
3505}
3506
3507
3508/**
3509 * Sets the virtual interrupt intercept control in the VMCB.
3510 *
3511 * @param pVCpu The cross context virtual CPU structure.
3512 * @param pVmcb Pointer to the VM control block.
3513 */
3514static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3515{
3516 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3517
3518 /*
3519 * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
3520 * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
3521 * (updating ISR at the right time) and inject the interrupt.
3522 *
3523 * With AVIC is supported, we could make use of the asynchronously delivery without
3524 * #VMEXIT and we would be passing the AVIC page to SVM.
3525 *
3526 * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
3527 * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
3528 */
3529 Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
3530 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
3531 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3532 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3533 Log4(("Set VINTR intercept\n"));
3534}
3535
3536
3537/**
3538 * Clears the virtual interrupt intercept control in the VMCB as
3539 * we are figured the guest is unable process any interrupts
3540 * at this point of time.
3541 *
3542 * @param pVCpu The cross context virtual CPU structure.
3543 * @param pVmcb Pointer to the VM control block.
3544 */
3545static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3546{
3547 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
3548
3549 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
3550 if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
3551 || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3552 {
3553 pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
3554 pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
3555 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
3556 Log4(("Cleared VINTR intercept\n"));
3557 }
3558}
3559
3560
3561/**
3562 * Evaluates the event to be delivered to the guest and sets it as the pending
3563 * event.
3564 *
3565 * @returns Strict VBox status code.
3566 * @param pVCpu The cross context virtual CPU structure.
3567 * @param pSvmTransient Pointer to the SVM transient structure.
3568 */
3569static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
3570{
3571 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3572 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
3573 | CPUMCTX_EXTRN_RFLAGS
3574 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
3575 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
3576
3577 Assert(!pVCpu->hm.s.Event.fPending);
3578 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3579 Assert(pVmcb);
3580
3581 bool const fGif = CPUMGetGuestGif(pCtx);
3582 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3583 bool const fBlockNmi = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3584
3585 Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
3586 fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
3587 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
3588
3589 /** @todo SMI. SMIs take priority over NMIs. */
3590
3591 /*
3592 * Check if the guest or nested-guest can receive NMIs.
3593 * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
3594 * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
3595 */
3596 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
3597 && !fBlockNmi)
3598 {
3599 if ( fGif
3600 && !fIntShadow)
3601 {
3602#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3603 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
3604 {
3605 Log4(("Intercepting NMI -> #VMEXIT\n"));
3606 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3607 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
3608 }
3609#endif
3610 Log4(("Setting NMI pending for injection\n"));
3611 SVMEVENT Event;
3612 Event.u = 0;
3613 Event.n.u1Valid = 1;
3614 Event.n.u8Vector = X86_XCPT_NMI;
3615 Event.n.u3Type = SVM_EVENT_NMI;
3616 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3617 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3618 }
3619 else if (!fGif)
3620 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3621 else if (!pSvmTransient->fIsNestedGuest)
3622 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3623 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3624 }
3625 /*
3626 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
3627 * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
3628 * it from the APIC device.
3629 *
3630 * For nested-guests, physical interrupts always take priority over virtual interrupts.
3631 * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
3632 * do that work when we execute nested-guest code esp. since all the required information
3633 * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
3634 * the virtual interrupt controller.
3635 *
3636 * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3637 */
3638 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3639 && !pVCpu->hm.s.fSingleInstruction)
3640 {
3641 bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u32 & X86_EFL_IF)
3642 : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
3643 if ( fGif
3644 && !fBlockInt
3645 && !fIntShadow)
3646 {
3647#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
3648 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
3649 {
3650 Log4(("Intercepting INTR -> #VMEXIT\n"));
3651 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3652 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3653 }
3654#endif
3655 uint8_t u8Interrupt;
3656 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3657 if (RT_SUCCESS(rc))
3658 {
3659 Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
3660 SVMEVENT Event;
3661 Event.u = 0;
3662 Event.n.u1Valid = 1;
3663 Event.n.u8Vector = u8Interrupt;
3664 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3665 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3666 }
3667 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3668 {
3669 /*
3670 * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
3671 * updated eventually when the TPR is written by the guest.
3672 */
3673 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3674 }
3675 else
3676 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3677 }
3678 else if (!fGif)
3679 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
3680 else if (!pSvmTransient->fIsNestedGuest)
3681 hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
3682 /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
3683 }
3684
3685 return VINF_SUCCESS;
3686}
3687
3688
3689/**
3690 * Injects any pending events into the guest (or nested-guest).
3691 *
3692 * @param pVCpu The cross context virtual CPU structure.
3693 * @param pVmcb Pointer to the VM control block.
3694 *
3695 * @remarks Must only be called when we are guaranteed to enter
3696 * hardware-assisted SVM execution and not return to ring-3
3697 * prematurely.
3698 */
3699static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
3700{
3701 Assert(!TRPMHasTrap(pVCpu));
3702 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3703
3704 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu);
3705#ifdef VBOX_STRICT
3706 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3707 bool const fGif = CPUMGetGuestGif(pCtx);
3708 bool fAllowInt = fGif;
3709 if (fGif)
3710 {
3711 /*
3712 * For nested-guests we have no way to determine if we're injecting a physical or
3713 * virtual interrupt at this point. Hence the partial verification below.
3714 */
3715 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3716 fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
3717 else
3718 fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
3719 }
3720#endif
3721
3722 if (pVCpu->hm.s.Event.fPending)
3723 {
3724 SVMEVENT Event;
3725 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3726 Assert(Event.n.u1Valid);
3727
3728 /*
3729 * Validate event injection pre-conditions.
3730 */
3731 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3732 {
3733 Assert(fAllowInt);
3734 Assert(!fIntShadow);
3735 }
3736 else if (Event.n.u3Type == SVM_EVENT_NMI)
3737 {
3738 Assert(fGif);
3739 Assert(!fIntShadow);
3740 }
3741
3742 /*
3743 * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
3744 * do this only when we are surely going to inject the NMI as otherwise if we return
3745 * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
3746 * SVM R0.
3747 *
3748 * With VT-x, this is handled by the Guest interruptibility information VMCS field
3749 * which will set the VMCS field after actually delivering the NMI which we read on
3750 * VM-exit to determine the state.
3751 */
3752 if ( Event.n.u3Type == SVM_EVENT_NMI
3753 && Event.n.u8Vector == X86_XCPT_NMI
3754 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3755 {
3756 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3757 }
3758
3759 /*
3760 * Inject it (update VMCB for injection by the hardware).
3761 */
3762 Log4(("Injecting pending HM event\n"));
3763 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
3764 pVCpu->hm.s.Event.fPending = false;
3765
3766 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3767 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3768 else
3769 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3770 }
3771 else
3772 Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
3773
3774 /*
3775 * We could have injected an NMI through IEM and continue guest execution using
3776 * hardware-assisted SVM. In which case, we would not have any events pending (above)
3777 * but we still need to intercept IRET in order to eventually clear NMI inhibition.
3778 */
3779 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
3780 hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
3781
3782 /*
3783 * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
3784 *
3785 * For nested-guests: We need to update it too for the scenario where IEM executes
3786 * the nested-guest but execution later continues here with an interrupt shadow active.
3787 */
3788 pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
3789}
3790
3791
3792/**
3793 * Reports world-switch error and dumps some useful debug info.
3794 *
3795 * @param pVCpu The cross context virtual CPU structure.
3796 * @param rcVMRun The return code from VMRUN (or
3797 * VERR_SVM_INVALID_GUEST_STATE for invalid
3798 * guest-state).
3799 */
3800static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
3801{
3802 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
3803 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
3804 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
3805
3806 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3807 {
3808#ifdef VBOX_STRICT
3809 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
3810 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
3811 Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
3812 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3813 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3814 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3815 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3816 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3817 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3818 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3819 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3820 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3821
3822 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3823 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3824 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3825
3826 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3827 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3828 Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
3829 Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3830 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3831 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3832 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3833 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3834 Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
3835 Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
3836 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3837 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3838
3839 Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
3840 Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
3841 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3842 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3843 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3844 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3845 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3846 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3847 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3848 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3849 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3850 Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
3851 Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
3852 Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
3853 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3854 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3855 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3856 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3857 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3858 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3859
3860 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3861
3862 Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
3863 Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
3864
3865 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3866 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3867 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3868 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3869 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3870 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3871 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3872 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3873 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3874 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3875 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3876 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3877 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3878 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3879 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3880 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3881 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3882 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3883 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3884 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3885
3886 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3887 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3888
3889 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3890 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3891 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3892 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3893
3894 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3895 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3896
3897 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3898 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3899 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3900 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3901
3902 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3903 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3904 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3905 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3906 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3907 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3908 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3909
3910 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3911 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3912 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3913 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3914
3915 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3916 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3917 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3918
3919 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3920 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3921 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3922 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3923 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3924 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3925 Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
3926 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3927 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3928 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3929 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3930 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3931
3932 NOREF(pVmcb);
3933#endif /* VBOX_STRICT */
3934 }
3935 else
3936 Log4Func(("rcVMRun=%d\n", rcVMRun));
3937}
3938
3939
3940/**
3941 * Check per-VM and per-VCPU force flag actions that require us to go back to
3942 * ring-3 for one reason or another.
3943 *
3944 * @returns Strict VBox status code (information status code included).
3945 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3946 * ring-3.
3947 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3948 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3949 * interrupts)
3950 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3951 * all EMTs to be in ring-3.
3952 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3953 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3954 * to the EM loop.
3955 *
3956 * @param pVCpu The cross context virtual CPU structure.
3957 */
3958static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
3959{
3960 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3961
3962 /* Could happen as a result of longjump. */
3963 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
3964 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu), false /* fPdpesMapped */);
3965
3966 /* Update pending interrupts into the APIC's IRR. */
3967 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3968 APICUpdatePendingInterrupts(pVCpu);
3969
3970 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3971 if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
3972 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3973 || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
3974 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3975 {
3976 /* Pending PGM C3 sync. */
3977 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
3978 {
3979 int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
3980 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3981 if (rc != VINF_SUCCESS)
3982 {
3983 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
3984 return rc;
3985 }
3986 }
3987
3988 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
3989 /* -XXX- what was that about single stepping? */
3990 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
3991 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3992 {
3993 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3994 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
3995 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
3996 return rc;
3997 }
3998
3999 /* Pending VM request packets, such as hardware interrupts. */
4000 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
4001 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
4002 {
4003 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
4004 Log4Func(("Pending VM request forcing us back to ring-3\n"));
4005 return VINF_EM_PENDING_REQUEST;
4006 }
4007
4008 /* Pending PGM pool flushes. */
4009 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
4010 {
4011 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
4012 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
4013 return VINF_PGM_POOL_FLUSH_PENDING;
4014 }
4015
4016 /* Pending DMA requests. */
4017 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
4018 {
4019 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
4020 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
4021 return VINF_EM_RAW_TO_R3;
4022 }
4023 }
4024
4025 return VINF_SUCCESS;
4026}
4027
4028
4029/**
4030 * Does the preparations before executing guest code in AMD-V.
4031 *
4032 * This may cause longjmps to ring-3 and may even result in rescheduling to the
4033 * recompiler. We must be cautious what we do here regarding committing
4034 * guest-state information into the VMCB assuming we assuredly execute the guest
4035 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
4036 * clearing the common-state (TRPM/forceflags), we must undo those changes so
4037 * that the recompiler can (and should) use them when it resumes guest
4038 * execution. Otherwise such operations must be done when we can no longer
4039 * exit to ring-3.
4040 *
4041 * @returns Strict VBox status code (informational status codes included).
4042 * @retval VINF_SUCCESS if we can proceed with running the guest.
4043 * @retval VINF_* scheduling changes, we have to go back to ring-3.
4044 *
4045 * @param pVCpu The cross context virtual CPU structure.
4046 * @param pSvmTransient Pointer to the SVM transient structure.
4047 */
4048static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4049{
4050 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4051
4052#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
4053 if (pSvmTransient->fIsNestedGuest)
4054 {
4055 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
4056 return VINF_EM_RESCHEDULE_REM;
4057 }
4058#endif
4059
4060 /* Check force flag actions that might require us to go back to ring-3. */
4061 VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu);
4062 if (rc != VINF_SUCCESS)
4063 return rc;
4064
4065 if (TRPMHasTrap(pVCpu))
4066 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
4067 else if (!pVCpu->hm.s.Event.fPending)
4068 {
4069 rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
4070 if ( rc != VINF_SUCCESS
4071 || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4072 {
4073 /* If a nested-guest VM-exit occurred, bail. */
4074 if (pSvmTransient->fIsNestedGuest)
4075 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4076 return rc;
4077 }
4078 }
4079
4080 /*
4081 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
4082 * Just do it in software, see @bugref{8411}.
4083 * NB: If we could continue a task switch exit we wouldn't need to do this.
4084 */
4085 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4086 if (RT_UNLIKELY( !g_fHmSvmFeatures
4087 && pVCpu->hm.s.Event.fPending
4088 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
4089 return VINF_EM_RAW_INJECT_TRPM_EVENT;
4090
4091#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4092 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4093 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4094#endif
4095
4096#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4097 /*
4098 * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
4099 */
4100 if (pSvmTransient->fIsNestedGuest)
4101 hmR0SvmSetupVmcbNested(pVCpu);
4102#endif
4103
4104 /*
4105 * Export the guest state bits that are not shared with the host in any way as we can
4106 * longjmp or get preempted in the midst of exporting some of the state.
4107 */
4108 rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
4109 AssertRCReturn(rc, rc);
4110 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
4111
4112 /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
4113 Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
4114
4115 /*
4116 * If we're not intercepting TPR changes in the guest, save the guest TPR before the
4117 * world-switch so we can update it on the way back if the guest changed the TPR.
4118 */
4119 if (pVCpu->hmr0.s.svm.fSyncVTpr)
4120 {
4121 Assert(!pSvmTransient->fIsNestedGuest);
4122 PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4123 if (pVM->hm.s.fTprPatchingActive)
4124 pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
4125 else
4126 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
4127 }
4128
4129 /*
4130 * No longjmps to ring-3 from this point on!!!
4131 *
4132 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4133 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4134 */
4135 VMMRZCallRing3Disable(pVCpu);
4136
4137 /*
4138 * We disable interrupts so that we don't miss any interrupts that would flag preemption
4139 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
4140 * preemption disabled for a while. Since this is purly to aid the
4141 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
4142 * disable interrupt on NT.
4143 *
4144 * We need to check for force-flags that could've possible been altered since we last
4145 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
4146 * see @bugref{6398}).
4147 *
4148 * We also check a couple of other force-flags as a last opportunity to get the EMT back
4149 * to ring-3 before executing guest code.
4150 */
4151 pSvmTransient->fEFlags = ASMIntDisableFlags();
4152 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
4153 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
4154 {
4155 ASMSetFlags(pSvmTransient->fEFlags);
4156 VMMRZCallRing3Enable(pVCpu);
4157 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
4158 return VINF_EM_RAW_TO_R3;
4159 }
4160 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
4161 {
4162 ASMSetFlags(pSvmTransient->fEFlags);
4163 VMMRZCallRing3Enable(pVCpu);
4164 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
4165 return VINF_EM_RAW_INTERRUPT;
4166 }
4167
4168 return VINF_SUCCESS;
4169}
4170
4171
4172/**
4173 * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
4174 * doing so.
4175 *
4176 * This means there is no backing out to ring-3 or anywhere else at this point.
4177 *
4178 * @param pVCpu The cross context virtual CPU structure.
4179 * @param pSvmTransient Pointer to the SVM transient structure.
4180 *
4181 * @remarks Called with preemption disabled.
4182 * @remarks No-long-jump zone!!!
4183 */
4184static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4185{
4186 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4187 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4188
4189 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4190 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4191
4192 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4193 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4194
4195 hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
4196
4197 if (!CPUMIsGuestFPUStateActive(pVCpu))
4198 {
4199 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4200 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4201 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
4202 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
4203 }
4204
4205 /* Load the state shared between host and guest (FPU, debug). */
4206 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
4207 hmR0SvmExportSharedState(pVCpu, pVmcb);
4208
4209 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
4210 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
4211
4212 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
4213 RTCPUID const idHostCpu = pHostCpu->idCpu;
4214 bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu;
4215
4216 /* Setup TSC offsetting. */
4217 if ( pSvmTransient->fUpdateTscOffsetting
4218 || fMigratedHostCpu)
4219 {
4220 hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
4221 pSvmTransient->fUpdateTscOffsetting = false;
4222 }
4223
4224 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
4225 if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
4226 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4227 else
4228 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4229
4230 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4231 if (fMigratedHostCpu)
4232 pVmcb->ctrl.u32VmcbCleanBits = 0;
4233
4234 /* Store status of the shared guest-host state at the time of VMRUN. */
4235 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4236 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4237
4238#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4239 uint8_t *pbMsrBitmap;
4240 if (!pSvmTransient->fIsNestedGuest)
4241 pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
4242 else
4243 {
4244 /** @todo We could perhaps optimize this by monitoring if the guest modifies its
4245 * MSRPM and only perform this if it changed also use EVEX.POR when it
4246 * does. */
4247 hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
4248
4249 /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
4250 pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
4251 pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
4252 }
4253#else
4254 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4255#endif
4256
4257 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4258 /* Flush the appropriate tagged-TLB entries. */
4259 hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
4260 Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu);
4261
4262 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4263
4264 TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
4265 to start executing. */
4266
4267 /*
4268 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
4269 * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
4270 *
4271 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4272 */
4273 if ( pVM->cpum.ro.HostFeatures.fRdTscP
4274 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4275 {
4276 uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
4277 pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4278 if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux)
4279 ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
4280 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4281 pSvmTransient->fRestoreTscAuxMsr = true;
4282 }
4283 else
4284 {
4285 hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4286 pSvmTransient->fRestoreTscAuxMsr = false;
4287 }
4288 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
4289
4290 /*
4291 * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
4292 * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
4293 * from the VMCB.
4294 */
4295 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
4296 if (!fSupportsVmcbCleanBits)
4297 pVmcb->ctrl.u32VmcbCleanBits = 0;
4298}
4299
4300
4301/**
4302 * Wrapper for running the guest (or nested-guest) code in AMD-V.
4303 *
4304 * @returns VBox strict status code.
4305 * @param pVCpu The cross context virtual CPU structure.
4306 * @param HCPhysVmcb The host physical address of the VMCB.
4307 *
4308 * @remarks No-long-jump zone!!!
4309 */
4310DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
4311{
4312 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4313 pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4314 return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb);
4315}
4316
4317
4318/**
4319 * Performs some essential restoration of state after running guest (or
4320 * nested-guest) code in AMD-V.
4321 *
4322 * @param pVCpu The cross context virtual CPU structure.
4323 * @param pSvmTransient Pointer to the SVM transient structure.
4324 * @param rcVMRun Return code of VMRUN.
4325 *
4326 * @remarks Called with interrupts disabled.
4327 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4328 * unconditionally when it is safe to do so.
4329 */
4330static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun)
4331{
4332 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4333
4334 ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4335 ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4336
4337 PSVMVMCB pVmcb = pSvmTransient->pVmcb;
4338 PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
4339
4340 /* TSC read must be done early for maximum accuracy. */
4341 if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4342 {
4343 if (!pSvmTransient->fIsNestedGuest)
4344 TMCpuTickSetLastSeen(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
4345#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4346 else
4347 {
4348 /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
4349 uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
4350 TMCpuTickSetLastSeen(pVCpu, uGstTsc);
4351 }
4352#endif
4353 }
4354
4355 if (pSvmTransient->fRestoreTscAuxMsr)
4356 {
4357 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4358 CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4359 if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux)
4360 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux);
4361 }
4362
4363 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
4364 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4365 TMNotifyEndOfExecution(pVM, pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
4366 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4367
4368 Assert(!(ASMGetFlags() & X86_EFL_IF));
4369 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4370 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4371
4372 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4373 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4374 {
4375 Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun)));
4376 return;
4377 }
4378
4379 pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4380 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4381 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4382 pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4383
4384#ifdef HMSVM_SYNC_FULL_GUEST_STATE
4385 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4386 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
4387#else
4388 /*
4389 * Always import the following:
4390 *
4391 * - RIP for exit optimizations and evaluating event injection on re-entry.
4392 * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
4393 * state on preemption.
4394 * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
4395 * - CS for exit optimizations.
4396 * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
4397 * assembly switcher code.
4398 * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
4399 */
4400 hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
4401 | CPUMCTX_EXTRN_RFLAGS
4402 | CPUMCTX_EXTRN_RAX
4403 | CPUMCTX_EXTRN_RSP
4404 | CPUMCTX_EXTRN_CS
4405 | CPUMCTX_EXTRN_HWVIRT
4406 | CPUMCTX_EXTRN_HM_SVM_INT_SHADOW
4407 | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
4408 | HMSVM_CPUMCTX_SHARED_STATE);
4409#endif
4410
4411 if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
4412 && pVCpu->hmr0.s.svm.fSyncVTpr)
4413 {
4414 Assert(!pSvmTransient->fIsNestedGuest);
4415 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4416 if ( pVM->hm.s.fTprPatchingActive
4417 && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4418 {
4419 int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
4420 AssertRC(rc);
4421 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4422 }
4423 /* Sync TPR when we aren't intercepting CR8 writes. */
4424 else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
4425 {
4426 int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
4427 AssertRC(rc);
4428 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
4429 }
4430 }
4431
4432#ifdef DEBUG_ramshankar
4433 if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
4434 {
4435 hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4436 hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
4437 0 /* uVerbose */);
4438 }
4439#endif
4440
4441 HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4442 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
4443 pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, pVCpu->hmr0.s.uTscExit);
4444}
4445
4446
4447/**
4448 * Runs the guest code using AMD-V.
4449 *
4450 * @returns Strict VBox status code.
4451 * @param pVCpu The cross context virtual CPU structure.
4452 * @param pcLoops Pointer to the number of executed loops.
4453 */
4454static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
4455{
4456 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4457 Assert(pcLoops);
4458 Assert(*pcLoops <= cMaxResumeLoops);
4459
4460 SVMTRANSIENT SvmTransient;
4461 RT_ZERO(SvmTransient);
4462 SvmTransient.fUpdateTscOffsetting = true;
4463 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4464
4465 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4466 for (;;)
4467 {
4468 Assert(!HMR0SuspendPending());
4469 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4470
4471 /* Preparatory work for running nested-guest code, this may force us to return to
4472 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4473 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4474 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4475 if (rc != VINF_SUCCESS)
4476 break;
4477
4478 /*
4479 * No longjmps to ring-3 from this point on!!!
4480 *
4481 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4482 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4483 */
4484 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4485 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4486
4487 /* Restore any residual host-state and save any bits shared between host and guest
4488 into the guest-CPU state. Re-enables interrupts! */
4489 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4490
4491 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4492 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4493 {
4494 if (rc == VINF_SUCCESS)
4495 rc = VERR_SVM_INVALID_GUEST_STATE;
4496 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4497 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4498 break;
4499 }
4500
4501 /* Handle the #VMEXIT. */
4502 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4503 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4504 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4505 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4506 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4507 if (rc != VINF_SUCCESS)
4508 break;
4509 if (++(*pcLoops) >= cMaxResumeLoops)
4510 {
4511 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4512 rc = VINF_EM_RAW_INTERRUPT;
4513 break;
4514 }
4515 }
4516
4517 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4518 return rc;
4519}
4520
4521
4522/**
4523 * Runs the guest code using AMD-V in single step mode.
4524 *
4525 * @returns Strict VBox status code.
4526 * @param pVCpu The cross context virtual CPU structure.
4527 * @param pcLoops Pointer to the number of executed loops.
4528 */
4529static VBOXSTRICTRC hmR0SvmRunGuestCodeStep(PVMCPUCC pVCpu, uint32_t *pcLoops)
4530{
4531 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
4532 Assert(pcLoops);
4533 Assert(*pcLoops <= cMaxResumeLoops);
4534
4535 SVMTRANSIENT SvmTransient;
4536 RT_ZERO(SvmTransient);
4537 SvmTransient.fUpdateTscOffsetting = true;
4538 SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
4539
4540 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4541 uint16_t const uCsStart = pCtx->cs.Sel;
4542 uint64_t const uRipStart = pCtx->rip;
4543
4544 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
4545 for (;;)
4546 {
4547 Assert(!HMR0SuspendPending());
4548 AssertMsg(pVCpu->hmr0.s.idEnteredCpu == RTMpCpuId(),
4549 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hmr0.s.idEnteredCpu,
4550 (unsigned)RTMpCpuId(), *pcLoops));
4551
4552 /* Preparatory work for running nested-guest code, this may force us to return to
4553 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4554 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4555 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4556 if (rc != VINF_SUCCESS)
4557 break;
4558
4559 /*
4560 * No longjmps to ring-3 from this point on!!!
4561 *
4562 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4563 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4564 */
4565 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4566
4567 rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
4568
4569 /* Restore any residual host-state and save any bits shared between host and guest
4570 into the guest-CPU state. Re-enables interrupts! */
4571 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4572
4573 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4574 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4575 {
4576 if (rc == VINF_SUCCESS)
4577 rc = VERR_SVM_INVALID_GUEST_STATE;
4578 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
4579 hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
4580 return rc;
4581 }
4582
4583 /* Handle the #VMEXIT. */
4584 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4585 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4586 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
4587 rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
4588 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4589 if (rc != VINF_SUCCESS)
4590 break;
4591 if (++(*pcLoops) >= cMaxResumeLoops)
4592 {
4593 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4594 rc = VINF_EM_RAW_INTERRUPT;
4595 break;
4596 }
4597
4598 /*
4599 * Did the RIP change, if so, consider it a single step.
4600 * Otherwise, make sure one of the TFs gets set.
4601 */
4602 if ( pCtx->rip != uRipStart
4603 || pCtx->cs.Sel != uCsStart)
4604 {
4605 rc = VINF_EM_DBG_STEPPED;
4606 break;
4607 }
4608 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR_MASK;
4609 }
4610
4611 /*
4612 * Clear the X86_EFL_TF if necessary.
4613 */
4614 if (pVCpu->hmr0.s.fClearTrapFlag)
4615 {
4616 pVCpu->hmr0.s.fClearTrapFlag = false;
4617 pCtx->eflags.Bits.u1TF = 0;
4618 }
4619
4620 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4621 return rc;
4622}
4623
4624#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4625/**
4626 * Runs the nested-guest code using AMD-V.
4627 *
4628 * @returns Strict VBox status code.
4629 * @param pVCpu The cross context virtual CPU structure.
4630 * @param pcLoops Pointer to the number of executed loops. If we're switching
4631 * from the guest-code execution loop to this nested-guest
4632 * execution loop pass the remainder value, else pass 0.
4633 */
4634static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
4635{
4636 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4637 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4638 Assert(pcLoops);
4639 Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops);
4640 /** @todo r=bird: Sharing this with ring-3 isn't safe in the long run, I fear... */
4641 RTHCPHYS const HCPhysVmcb = GVMMR0ConvertGVMPtr2HCPhys(pVCpu->pGVM, &pCtx->hwvirt.svm.Vmcb);
4642
4643 SVMTRANSIENT SvmTransient;
4644 RT_ZERO(SvmTransient);
4645 SvmTransient.fUpdateTscOffsetting = true;
4646 SvmTransient.pVmcb = &pCtx->hwvirt.svm.Vmcb;
4647 SvmTransient.fIsNestedGuest = true;
4648
4649 VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4;
4650 for (;;)
4651 {
4652 Assert(!HMR0SuspendPending());
4653 HMSVM_ASSERT_CPU_SAFE(pVCpu);
4654
4655 /* Preparatory work for running nested-guest code, this may force us to return to
4656 ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4657 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4658 rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
4659 if ( rc != VINF_SUCCESS
4660 || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4661 break;
4662
4663 /*
4664 * No longjmps to ring-3 from this point on!!!
4665 *
4666 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
4667 * better than a kernel panic. This also disables flushing of the R0-logger instance.
4668 */
4669 hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
4670
4671 rc = hmR0SvmRunGuest(pVCpu, HCPhysVmcb);
4672
4673 /* Restore any residual host-state and save any bits shared between host and guest
4674 into the guest-CPU state. Re-enables interrupts! */
4675 hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
4676
4677 if (RT_LIKELY( rc == VINF_SUCCESS
4678 && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
4679 { /* extremely likely */ }
4680 else
4681 {
4682 /* VMRUN failed, shouldn't really happen, Guru. */
4683 if (rc != VINF_SUCCESS)
4684 break;
4685
4686 /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
4687 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
4688 AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
4689 rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0);
4690 break;
4691 }
4692
4693 /* Handle the #VMEXIT. */
4694 HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4695 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
4696 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, &pCtx->hwvirt.svm.Vmcb);
4697 rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
4698 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
4699 if (rc == VINF_SUCCESS)
4700 {
4701 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4702 {
4703 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
4704 rc = VINF_SVM_VMEXIT;
4705 }
4706 else
4707 {
4708 if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops)
4709 continue;
4710 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4711 rc = VINF_EM_RAW_INTERRUPT;
4712 }
4713 }
4714 else
4715 Assert(rc != VINF_SVM_VMEXIT);
4716 break;
4717 /** @todo NSTSVM: handle single-stepping. */
4718 }
4719
4720 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4721 return rc;
4722}
4723#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
4724
4725
4726/**
4727 * Runs the guest code using AMD-V.
4728 *
4729 * @returns Strict VBox status code.
4730 * @param pVCpu The cross context virtual CPU structure.
4731 */
4732VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
4733{
4734 AssertPtr(pVCpu);
4735 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4736 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4737 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4738 HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
4739
4740 uint32_t cLoops = 0;
4741 VBOXSTRICTRC rc;
4742 for (;;)
4743 {
4744#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4745 bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
4746#else
4747 NOREF(pCtx);
4748 bool const fInNestedGuestMode = false;
4749#endif
4750 if (!fInNestedGuestMode)
4751 {
4752 if (!pVCpu->hm.s.fSingleInstruction)
4753 rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
4754 else
4755 rc = hmR0SvmRunGuestCodeStep(pVCpu, &cLoops);
4756 }
4757#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4758 else
4759 rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
4760
4761 if (rc == VINF_SVM_VMRUN)
4762 {
4763 Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4764 continue;
4765 }
4766 if (rc == VINF_SVM_VMEXIT)
4767 {
4768 Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
4769 continue;
4770 }
4771#endif
4772 break;
4773 }
4774
4775 /* Fixup error codes. */
4776 if (rc == VERR_EM_INTERPRETER)
4777 rc = VINF_EM_RAW_EMULATE_INSTR;
4778 else if (rc == VINF_EM_RESET)
4779 rc = VINF_EM_TRIPLE_FAULT;
4780
4781 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4782 rc = hmR0SvmExitToRing3(pVCpu, rc);
4783 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
4784 Assert(!VMMR0AssertionIsNotificationSet(pVCpu));
4785 return rc;
4786}
4787
4788
4789#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4790/**
4791 * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
4792 *
4793 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4794 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4795 */
4796static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4797{
4798 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4799 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4800 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4801 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4802 const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
4803 const bool fRep = pIoExitInfo->n.u1Rep;
4804 const bool fStrIo = pIoExitInfo->n.u1Str;
4805
4806 return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4807 NULL /* pIoExitInfo */);
4808}
4809
4810
4811/**
4812 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4813 * SVM_EXIT_INVALID).
4814 *
4815 * @returns VBox status code (informational status codes included).
4816 * @param pVCpu The cross context virtual CPU structure.
4817 * @param pSvmTransient Pointer to the SVM transient structure.
4818 */
4819static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
4820{
4821 HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
4822 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4823 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4824
4825 /*
4826 * We import the complete state here because we use separate VMCBs for the guest and the
4827 * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
4828 * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
4829 */
4830#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4831 do { \
4832 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
4833 return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \
4834 } while (0)
4835
4836 /*
4837 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
4838 * nested-guest. If it isn't, it should be handled by the (outer) guest.
4839 */
4840 PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
4841 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4842 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4843 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4844 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4845 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4846
4847 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4848 switch (uExitCode)
4849 {
4850 case SVM_EXIT_CPUID:
4851 {
4852 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
4853 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4854 return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
4855 }
4856
4857 case SVM_EXIT_RDTSC:
4858 {
4859 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
4860 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4861 return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
4862 }
4863
4864 case SVM_EXIT_RDTSCP:
4865 {
4866 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
4867 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4868 return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
4869 }
4870
4871 case SVM_EXIT_MONITOR:
4872 {
4873 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
4874 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4875 return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
4876 }
4877
4878 case SVM_EXIT_MWAIT:
4879 {
4880 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
4881 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4882 return hmR0SvmExitMwait(pVCpu, pSvmTransient);
4883 }
4884
4885 case SVM_EXIT_HLT:
4886 {
4887 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
4888 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4889 return hmR0SvmExitHlt(pVCpu, pSvmTransient);
4890 }
4891
4892 case SVM_EXIT_MSR:
4893 {
4894 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
4895 {
4896 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
4897 uint16_t offMsrpm;
4898 uint8_t uMsrpmBit;
4899 int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4900 if (RT_SUCCESS(rc))
4901 {
4902 Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
4903 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
4904
4905 uint8_t const * const pbMsrBitmap = &pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm];
4906 bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
4907 bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
4908
4909 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4910 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4911 {
4912 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4913 }
4914 }
4915 else
4916 {
4917 /*
4918 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4919 * See AMD-V spec. "15.11 MSR Intercepts".
4920 */
4921 Assert(rc == VERR_OUT_OF_RANGE);
4922 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4923 }
4924 }
4925 return hmR0SvmExitMsr(pVCpu, pSvmTransient);
4926 }
4927
4928 case SVM_EXIT_IOIO:
4929 {
4930 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
4931 {
4932 SVMIOIOEXITINFO IoExitInfo;
4933 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4934 bool const fIntercept = hmR0SvmIsIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, &IoExitInfo);
4935 if (fIntercept)
4936 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4937 }
4938 return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
4939 }
4940
4941 case SVM_EXIT_XCPT_PF:
4942 {
4943 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4944 if (pVM->hmr0.s.fNestedPaging)
4945 {
4946 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4947 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4948
4949 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4950 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
4951 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4952
4953 /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
4954 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
4955 hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
4956 return VINF_SUCCESS;
4957 }
4958 return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
4959 }
4960
4961 case SVM_EXIT_XCPT_UD:
4962 {
4963 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
4964 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4965 hmR0SvmSetPendingXcptUD(pVCpu);
4966 return VINF_SUCCESS;
4967 }
4968
4969 case SVM_EXIT_XCPT_MF:
4970 {
4971 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
4972 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4973 return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
4974 }
4975
4976 case SVM_EXIT_XCPT_DB:
4977 {
4978 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
4979 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4980 return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
4981 }
4982
4983 case SVM_EXIT_XCPT_AC:
4984 {
4985 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
4986 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4987 return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
4988 }
4989
4990 case SVM_EXIT_XCPT_BP:
4991 {
4992 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
4993 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4994 return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
4995 }
4996
4997 case SVM_EXIT_READ_CR0:
4998 case SVM_EXIT_READ_CR3:
4999 case SVM_EXIT_READ_CR4:
5000 {
5001 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
5002 if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
5003 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5004 return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
5005 }
5006
5007 case SVM_EXIT_CR0_SEL_WRITE:
5008 {
5009 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
5010 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5011 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5012 }
5013
5014 case SVM_EXIT_WRITE_CR0:
5015 case SVM_EXIT_WRITE_CR3:
5016 case SVM_EXIT_WRITE_CR4:
5017 case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
5018 {
5019 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
5020 Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
5021
5022 if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
5023 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5024 return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
5025 }
5026
5027 case SVM_EXIT_PAUSE:
5028 {
5029 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
5030 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5031 return hmR0SvmExitPause(pVCpu, pSvmTransient);
5032 }
5033
5034 case SVM_EXIT_VINTR:
5035 {
5036 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
5037 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5038 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5039 }
5040
5041 case SVM_EXIT_INTR:
5042 case SVM_EXIT_NMI:
5043 case SVM_EXIT_SMI:
5044 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5045 {
5046 /*
5047 * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
5048 *
5049 * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
5050 * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
5051 * nested-guest #VMEXIT.
5052 *
5053 * We shall import the complete state here as we may cause #VMEXITs from ring-3
5054 * while trying to inject interrupts, see comment at the top of this function.
5055 */
5056 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
5057 return hmR0SvmExitIntr(pVCpu, pSvmTransient);
5058 }
5059
5060 case SVM_EXIT_FERR_FREEZE:
5061 {
5062 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
5063 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5064 return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
5065 }
5066
5067 case SVM_EXIT_INVLPG:
5068 {
5069 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
5070 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5071 return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
5072 }
5073
5074 case SVM_EXIT_WBINVD:
5075 {
5076 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
5077 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5078 return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
5079 }
5080
5081 case SVM_EXIT_INVD:
5082 {
5083 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
5084 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5085 return hmR0SvmExitInvd(pVCpu, pSvmTransient);
5086 }
5087
5088 case SVM_EXIT_RDPMC:
5089 {
5090 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
5091 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5092 return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
5093 }
5094
5095 default:
5096 {
5097 switch (uExitCode)
5098 {
5099 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5100 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5101 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5102 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5103 {
5104 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
5105 if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
5106 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5107 return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
5108 }
5109
5110 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5111 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5112 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5113 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5114 {
5115 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
5116 if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
5117 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5118 return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
5119 }
5120
5121 case SVM_EXIT_XCPT_DE:
5122 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5123 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5124 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5125 case SVM_EXIT_XCPT_OF:
5126 case SVM_EXIT_XCPT_BR:
5127 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5128 case SVM_EXIT_XCPT_NM:
5129 case SVM_EXIT_XCPT_DF:
5130 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5131 case SVM_EXIT_XCPT_TS:
5132 case SVM_EXIT_XCPT_NP:
5133 case SVM_EXIT_XCPT_SS:
5134 case SVM_EXIT_XCPT_GP:
5135 /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
5136 case SVM_EXIT_XCPT_15: /* Reserved. */
5137 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5138 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5139 case SVM_EXIT_XCPT_MC:
5140 case SVM_EXIT_XCPT_XF:
5141 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5142 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5143 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5144 {
5145 uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
5146 if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5147 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5148 return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
5149 }
5150
5151 case SVM_EXIT_XSETBV:
5152 {
5153 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5154 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5155 return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
5156 }
5157
5158 case SVM_EXIT_TASK_SWITCH:
5159 {
5160 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5161 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5162 return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
5163 }
5164
5165 case SVM_EXIT_IRET:
5166 {
5167 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5168 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5169 return hmR0SvmExitIret(pVCpu, pSvmTransient);
5170 }
5171
5172 case SVM_EXIT_SHUTDOWN:
5173 {
5174 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5175 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5176 return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
5177 }
5178
5179 case SVM_EXIT_VMMCALL:
5180 {
5181 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5182 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5183 return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
5184 }
5185
5186 case SVM_EXIT_CLGI:
5187 {
5188 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5189 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5190 return hmR0SvmExitClgi(pVCpu, pSvmTransient);
5191 }
5192
5193 case SVM_EXIT_STGI:
5194 {
5195 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5196 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5197 return hmR0SvmExitStgi(pVCpu, pSvmTransient);
5198 }
5199
5200 case SVM_EXIT_VMLOAD:
5201 {
5202 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5203 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5204 return hmR0SvmExitVmload(pVCpu, pSvmTransient);
5205 }
5206
5207 case SVM_EXIT_VMSAVE:
5208 {
5209 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5210 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5211 return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
5212 }
5213
5214 case SVM_EXIT_INVLPGA:
5215 {
5216 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5217 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5218 return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
5219 }
5220
5221 case SVM_EXIT_VMRUN:
5222 {
5223 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5224 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5225 return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
5226 }
5227
5228 case SVM_EXIT_RSM:
5229 {
5230 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5231 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5232 hmR0SvmSetPendingXcptUD(pVCpu);
5233 return VINF_SUCCESS;
5234 }
5235
5236 case SVM_EXIT_SKINIT:
5237 {
5238 if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5239 NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5240 hmR0SvmSetPendingXcptUD(pVCpu);
5241 return VINF_SUCCESS;
5242 }
5243
5244 case SVM_EXIT_NPF:
5245 {
5246 Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5247 return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
5248 }
5249
5250 case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
5251 return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
5252
5253 default:
5254 {
5255 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5256 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5257 return VERR_SVM_UNKNOWN_EXIT;
5258 }
5259 }
5260 }
5261 }
5262 /* not reached */
5263
5264#undef NST_GST_VMEXIT_CALL_RET
5265}
5266#endif
5267
5268
5269/**
5270 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5271 *
5272 * @returns Strict VBox status code (informational status codes included).
5273 * @param pVCpu The cross context virtual CPU structure.
5274 * @param pSvmTransient Pointer to the SVM transient structure.
5275 */
5276static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5277{
5278 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5279 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5280
5281#ifdef DEBUG_ramshankar
5282# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
5283 do { \
5284 if ((a_fDbg) == 1) \
5285 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
5286 int rc = a_CallExpr; \
5287 if ((a_fDbg) == 1) \
5288 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
5289 return rc; \
5290 } while (0)
5291#else
5292# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
5293#endif
5294
5295 /*
5296 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
5297 * for most guests under normal workloads (for some definition of "normal").
5298 */
5299 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
5300 switch (uExitCode)
5301 {
5302 case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
5303 case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
5304 case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
5305 case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
5306 case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
5307 case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
5308 case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
5309 case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
5310 case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
5311 case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
5312
5313 case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
5314 case SVM_EXIT_INTR:
5315 case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
5316
5317 case SVM_EXIT_READ_CR0:
5318 case SVM_EXIT_READ_CR3:
5319 case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
5320
5321 case SVM_EXIT_CR0_SEL_WRITE:
5322 case SVM_EXIT_WRITE_CR0:
5323 case SVM_EXIT_WRITE_CR3:
5324 case SVM_EXIT_WRITE_CR4:
5325 case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
5326
5327 case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
5328 case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
5329 case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
5330 case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
5331 case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
5332 case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
5333 case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
5334 case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
5335 case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
5336 case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
5337 case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
5338 case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
5339 case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
5340 case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
5341 case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
5342 case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
5343
5344 default:
5345 {
5346 switch (pSvmTransient->u64ExitCode)
5347 {
5348 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5349 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5350 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5351 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5352 VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
5353
5354 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5355 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5356 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5357 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5358 VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
5359
5360 case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
5361 case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
5362
5363 case SVM_EXIT_SMI:
5364 case SVM_EXIT_INIT:
5365 {
5366 /*
5367 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5368 * If it ever does, we want to know about it so log the exit code and bail.
5369 */
5370 VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
5371 }
5372
5373#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5374 case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
5375 case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
5376 case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
5377 case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
5378 case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
5379 case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
5380#else
5381 case SVM_EXIT_CLGI:
5382 case SVM_EXIT_STGI:
5383 case SVM_EXIT_VMLOAD:
5384 case SVM_EXIT_VMSAVE:
5385 case SVM_EXIT_INVLPGA:
5386 case SVM_EXIT_VMRUN:
5387#endif
5388 case SVM_EXIT_RSM:
5389 case SVM_EXIT_SKINIT:
5390 {
5391 hmR0SvmSetPendingXcptUD(pVCpu);
5392 return VINF_SUCCESS;
5393 }
5394
5395#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5396 case SVM_EXIT_XCPT_DE:
5397 /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
5398 /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
5399 /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
5400 case SVM_EXIT_XCPT_OF:
5401 case SVM_EXIT_XCPT_BR:
5402 /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
5403 case SVM_EXIT_XCPT_NM:
5404 case SVM_EXIT_XCPT_DF:
5405 case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
5406 case SVM_EXIT_XCPT_TS:
5407 case SVM_EXIT_XCPT_NP:
5408 case SVM_EXIT_XCPT_SS:
5409 /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
5410 /* SVM_EXIT_XCPT_PF: */
5411 case SVM_EXIT_XCPT_15: /* Reserved. */
5412 /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
5413 /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
5414 case SVM_EXIT_XCPT_MC:
5415 case SVM_EXIT_XCPT_XF:
5416 case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
5417 case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
5418 case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
5419 VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
5420#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5421
5422 default:
5423 {
5424 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
5425 pVCpu->hm.s.u32HMError = uExitCode;
5426 return VERR_SVM_UNKNOWN_EXIT;
5427 }
5428 }
5429 }
5430 }
5431 /* not reached */
5432#undef VMEXIT_CALL_RET
5433}
5434
5435
5436#ifdef VBOX_STRICT
5437/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5438# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5439 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5440
5441# define HMSVM_ASSERT_PREEMPT_CPUID() \
5442 do \
5443 { \
5444 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5445 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5446 } while (0)
5447
5448# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5449 do { \
5450 AssertPtr((a_pVCpu)); \
5451 AssertPtr((a_pSvmTransient)); \
5452 Assert(ASMIntAreEnabled()); \
5453 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5454 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5455 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
5456 HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
5457 if (!VMMRZCallRing3IsEnabled((a_pVCpu))) \
5458 HMSVM_ASSERT_PREEMPT_CPUID(); \
5459 } while (0)
5460#else
5461# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
5462 do { \
5463 RT_NOREF2(a_pVCpu, a_pSvmTransient); \
5464 } while (0)
5465#endif
5466
5467
5468/**
5469 * Gets the IEM exception flags for the specified SVM event.
5470 *
5471 * @returns The IEM exception flags.
5472 * @param pEvent Pointer to the SVM event.
5473 *
5474 * @remarks This function currently only constructs flags required for
5475 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5476 * and CR2 aspects of an exception are not included).
5477 */
5478static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5479{
5480 uint8_t const uEventType = pEvent->n.u3Type;
5481 uint32_t fIemXcptFlags;
5482 switch (uEventType)
5483 {
5484 case SVM_EVENT_EXCEPTION:
5485 /*
5486 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5487 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5488 */
5489 if (pEvent->n.u8Vector == X86_XCPT_BP)
5490 {
5491 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5492 break;
5493 }
5494 if (pEvent->n.u8Vector == X86_XCPT_OF)
5495 {
5496 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5497 break;
5498 }
5499 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5500 RT_FALL_THRU();
5501 case SVM_EVENT_NMI:
5502 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5503 break;
5504
5505 case SVM_EVENT_EXTERNAL_IRQ:
5506 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5507 break;
5508
5509 case SVM_EVENT_SOFTWARE_INT:
5510 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5511 break;
5512
5513 default:
5514 fIemXcptFlags = 0;
5515 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5516 break;
5517 }
5518 return fIemXcptFlags;
5519}
5520
5521
5522/**
5523 * Handle a condition that occurred while delivering an event through the guest
5524 * IDT.
5525 *
5526 * @returns VBox status code (informational error codes included).
5527 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5528 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5529 * continue execution of the guest which will delivery the \#DF.
5530 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5531 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5532 *
5533 * @param pVCpu The cross context virtual CPU structure.
5534 * @param pSvmTransient Pointer to the SVM transient structure.
5535 *
5536 * @remarks No-long-jump zone!!!
5537 */
5538static int hmR0SvmCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5539{
5540 int rc = VINF_SUCCESS;
5541 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5542 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
5543
5544 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5545 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5546 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5547
5548 /*
5549 * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
5550 * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
5551 *
5552 * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
5553 */
5554 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5555 {
5556 IEMXCPTRAISE enmRaise;
5557 IEMXCPTRAISEINFO fRaiseInfo;
5558 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
5559 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5560 if (fExitIsHwXcpt)
5561 {
5562 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
5563 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5564 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5565 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5566 }
5567 else
5568 {
5569 /*
5570 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
5571 * then we end up here.
5572 *
5573 * If the event was:
5574 * - a software interrupt, we can re-execute the instruction which will
5575 * regenerate the event.
5576 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5577 * - a hardware exception or external interrupt, we re-inject it.
5578 */
5579 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5580 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5581 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5582 else
5583 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5584 }
5585
5586 switch (enmRaise)
5587 {
5588 case IEMXCPTRAISE_CURRENT_XCPT:
5589 case IEMXCPTRAISE_PREV_EVENT:
5590 {
5591 /* For software interrupts, we shall re-execute the instruction. */
5592 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5593 {
5594 RTGCUINTPTR GCPtrFaultAddress = 0;
5595
5596 /* If we are re-injecting an NMI, clear NMI blocking. */
5597 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5598 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5599
5600 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5601 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5602 {
5603 pSvmTransient->fVectoringPF = true;
5604 Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
5605 pVCpu->cpum.GstCtx.cr2));
5606 }
5607 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5608 && uIdtVector == X86_XCPT_PF)
5609 {
5610 /*
5611 * If the previous exception was a #PF, we need to recover the CR2 value.
5612 * This can't happen with shadow paging.
5613 */
5614 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
5615 }
5616
5617 /*
5618 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5619 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5620 */
5621 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5622 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
5623 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5624
5625 Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5626 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5627 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5628 }
5629 break;
5630 }
5631
5632 case IEMXCPTRAISE_REEXEC_INSTR:
5633 {
5634 Assert(rc == VINF_SUCCESS);
5635 break;
5636 }
5637
5638 case IEMXCPTRAISE_DOUBLE_FAULT:
5639 {
5640 /*
5641 * Determing a vectoring double #PF condition. Used later, when PGM evaluates
5642 * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
5643 * converted into a #DF.
5644 */
5645 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5646 {
5647 Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
5648 pSvmTransient->fVectoringDoublePF = true;
5649 Assert(rc == VINF_SUCCESS);
5650 }
5651 else
5652 {
5653 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
5654 hmR0SvmSetPendingXcptDF(pVCpu);
5655 rc = VINF_HM_DOUBLE_FAULT;
5656 }
5657 break;
5658 }
5659
5660 case IEMXCPTRAISE_TRIPLE_FAULT:
5661 {
5662 rc = VINF_EM_RESET;
5663 break;
5664 }
5665
5666 case IEMXCPTRAISE_CPU_HANG:
5667 {
5668 rc = VERR_EM_GUEST_CPU_HANG;
5669 break;
5670 }
5671
5672 default:
5673 AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
5674 }
5675 }
5676 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
5677 return rc;
5678}
5679
5680
5681/**
5682 * Advances the guest RIP by the number of bytes specified in @a cb.
5683 *
5684 * @param pVCpu The cross context virtual CPU structure.
5685 * @param cb RIP increment value in bytes.
5686 */
5687DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPUCC pVCpu, uint32_t cb)
5688{
5689 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5690 pCtx->rip += cb;
5691
5692 /* Update interrupt shadow. */
5693 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
5694 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
5695 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5696}
5697
5698
5699/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5700/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
5701/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5702
5703/** @name \#VMEXIT handlers.
5704 * @{
5705 */
5706
5707/**
5708 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
5709 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
5710 */
5711HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5712{
5713 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5714
5715 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
5716 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
5717 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
5718 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
5719
5720 /*
5721 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
5722 * signal -before- the timer fires if the current interrupt is our own timer or a some
5723 * other host interrupt. We also cannot examine what interrupt it is until the host
5724 * actually take the interrupt.
5725 *
5726 * Going back to executing guest code here unconditionally causes random scheduling
5727 * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
5728 */
5729 return VINF_EM_RAW_INTERRUPT;
5730}
5731
5732
5733/**
5734 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
5735 */
5736HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5737{
5738 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5739
5740 VBOXSTRICTRC rcStrict;
5741 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5742 if (fSupportsNextRipSave)
5743 {
5744 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5745 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5746 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5747 rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
5748 }
5749 else
5750 {
5751 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5752 rcStrict = IEMExecOne(pVCpu);
5753 }
5754
5755 if (rcStrict == VINF_IEM_RAISED_XCPT)
5756 {
5757 rcStrict = VINF_SUCCESS;
5758 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5759 }
5760 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5761 return rcStrict;
5762}
5763
5764
5765/**
5766 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
5767 */
5768HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5769{
5770 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5771
5772 VBOXSTRICTRC rcStrict;
5773 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5774 if (fSupportsNextRipSave)
5775 {
5776 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5777 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5778 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5779 rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
5780 }
5781 else
5782 {
5783 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5784 rcStrict = IEMExecOne(pVCpu);
5785 }
5786
5787 if (rcStrict == VINF_IEM_RAISED_XCPT)
5788 {
5789 rcStrict = VINF_SUCCESS;
5790 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5791 }
5792 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5793 return rcStrict;
5794}
5795
5796
5797/**
5798 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
5799 */
5800HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5801{
5802 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5803
5804 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
5805 VBOXSTRICTRC rcStrict;
5806 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
5807 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
5808 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
5809 if (!pExitRec)
5810 {
5811 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5812 if (fSupportsNextRipSave)
5813 {
5814 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5815 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5816 rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
5817 }
5818 else
5819 {
5820 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5821 rcStrict = IEMExecOne(pVCpu);
5822 }
5823
5824 if (rcStrict == VINF_IEM_RAISED_XCPT)
5825 {
5826 rcStrict = VINF_SUCCESS;
5827 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5828 }
5829 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5830 }
5831 else
5832 {
5833 /*
5834 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
5835 */
5836 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5837
5838 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
5839 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
5840
5841 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
5842
5843 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
5844 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
5845 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
5846 }
5847 return rcStrict;
5848}
5849
5850
5851/**
5852 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
5853 */
5854HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5855{
5856 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5857
5858 VBOXSTRICTRC rcStrict;
5859 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5860 if (fSupportsNextRipSave)
5861 {
5862 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5863 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5864 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5865 rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
5866 }
5867 else
5868 {
5869 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5870 rcStrict = IEMExecOne(pVCpu);
5871 }
5872
5873 if (rcStrict == VINF_SUCCESS)
5874 pSvmTransient->fUpdateTscOffsetting = true;
5875 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5876 {
5877 rcStrict = VINF_SUCCESS;
5878 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5879 }
5880 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5881 return rcStrict;
5882}
5883
5884
5885/**
5886 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
5887 */
5888HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5889{
5890 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5891
5892 VBOXSTRICTRC rcStrict;
5893 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5894 if (fSupportsNextRipSave)
5895 {
5896 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
5897 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5898 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5899 rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
5900 }
5901 else
5902 {
5903 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5904 rcStrict = IEMExecOne(pVCpu);
5905 }
5906
5907 if (rcStrict == VINF_SUCCESS)
5908 pSvmTransient->fUpdateTscOffsetting = true;
5909 else if (rcStrict == VINF_IEM_RAISED_XCPT)
5910 {
5911 rcStrict = VINF_SUCCESS;
5912 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5913 }
5914 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5915 return rcStrict;
5916}
5917
5918
5919/**
5920 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
5921 */
5922HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5923{
5924 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5925
5926 VBOXSTRICTRC rcStrict;
5927 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5928 if (fSupportsNextRipSave)
5929 {
5930 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
5931 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5932 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5933 rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
5934 }
5935 else
5936 {
5937 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5938 rcStrict = IEMExecOne(pVCpu);
5939 }
5940
5941 if (rcStrict == VINF_IEM_RAISED_XCPT)
5942 {
5943 rcStrict = VINF_SUCCESS;
5944 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5945 }
5946 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5947 return rcStrict;
5948}
5949
5950
5951/**
5952 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
5953 */
5954HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5955{
5956 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5957 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
5958
5959 VBOXSTRICTRC rcStrict;
5960 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
5961 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5962 if ( fSupportsDecodeAssists
5963 && fSupportsNextRipSave)
5964 {
5965 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
5966 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
5967 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
5968 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
5969 rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
5970 }
5971 else
5972 {
5973 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
5974 rcStrict = IEMExecOne(pVCpu);
5975 }
5976
5977 if (rcStrict == VINF_IEM_RAISED_XCPT)
5978 {
5979 rcStrict = VINF_SUCCESS;
5980 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
5981 }
5982 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5983 return VBOXSTRICTRC_VAL(rcStrict);
5984}
5985
5986
5987/**
5988 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
5989 */
5990HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
5991{
5992 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
5993
5994 VBOXSTRICTRC rcStrict;
5995 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
5996 if (fSupportsNextRipSave)
5997 {
5998 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
5999 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6000 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6001 rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
6002 }
6003 else
6004 {
6005 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6006 rcStrict = IEMExecOne(pVCpu);
6007 }
6008
6009 if ( rcStrict == VINF_EM_HALT
6010 || rcStrict == VINF_SUCCESS)
6011 rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6012 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6013 {
6014 rcStrict = VINF_SUCCESS;
6015 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6016 }
6017 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6018 if (rcStrict != VINF_SUCCESS)
6019 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6020 return VBOXSTRICTRC_VAL(rcStrict);;
6021}
6022
6023
6024/**
6025 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6026 */
6027HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6028{
6029 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6030
6031 /*
6032 * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
6033 * segment override prefix is present (and thus use the default segment DS). Otherwise, a
6034 * segment override prefix or other prefixes might be used, in which case we fallback to
6035 * IEMExecOne() to figure out.
6036 */
6037 VBOXSTRICTRC rcStrict;
6038 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6039 uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
6040 if (cbInstr)
6041 {
6042 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
6043 rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
6044 }
6045 else
6046 {
6047 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6048 rcStrict = IEMExecOne(pVCpu);
6049 }
6050
6051 if (rcStrict == VINF_IEM_RAISED_XCPT)
6052 {
6053 rcStrict = VINF_SUCCESS;
6054 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6055 }
6056 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6057 return rcStrict;
6058}
6059
6060
6061/**
6062 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6063 */
6064HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6065{
6066 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6067
6068 VBOXSTRICTRC rcStrict;
6069 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6070 if (fSupportsNextRipSave)
6071 {
6072 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
6073 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6074 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6075 rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
6076 }
6077 else
6078 {
6079 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6080 rcStrict = IEMExecOne(pVCpu);
6081 }
6082
6083 if ( rcStrict == VINF_EM_HALT
6084 && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
6085 rcStrict = VINF_SUCCESS;
6086 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6087 {
6088 rcStrict = VINF_SUCCESS;
6089 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6090 }
6091 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6092 return rcStrict;
6093}
6094
6095
6096/**
6097 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6098 * \#VMEXIT.
6099 */
6100HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6101{
6102 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6103 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6104 return VINF_EM_RESET;
6105}
6106
6107
6108/**
6109 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6110 */
6111HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6112{
6113 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6114 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6115 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
6116 pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
6117 RT_NOREF(pVmcb);
6118 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6119 return VERR_SVM_UNEXPECTED_EXIT;
6120}
6121
6122
6123/**
6124 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6125 */
6126HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6127{
6128 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6129
6130 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6131 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6132#ifdef VBOX_WITH_STATISTICS
6133 switch (pSvmTransient->u64ExitCode)
6134 {
6135 case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
6136 case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
6137 case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
6138 case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
6139 case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
6140 }
6141#endif
6142
6143 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6144 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6145 if ( fSupportsDecodeAssists
6146 && fSupportsNextRipSave)
6147 {
6148 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6149 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6150 if (fMovCRx)
6151 {
6152 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
6153 | CPUMCTX_EXTRN_APIC_TPR);
6154 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6155 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6156 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6157 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6158 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6159 return VBOXSTRICTRC_VAL(rcStrict);
6160 }
6161 /* else: SMSW instruction, fall back below to IEM for this. */
6162 }
6163
6164 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6165 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6166 AssertMsg( rcStrict == VINF_SUCCESS
6167 || rcStrict == VINF_PGM_SYNC_CR3
6168 || rcStrict == VINF_IEM_RAISED_XCPT,
6169 ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6170 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6171 if (rcStrict == VINF_IEM_RAISED_XCPT)
6172 {
6173 rcStrict = VINF_SUCCESS;
6174 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6175 }
6176 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6177 return rcStrict;
6178}
6179
6180
6181/**
6182 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6183 */
6184HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6185{
6186 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6187
6188 uint64_t const uExitCode = pSvmTransient->u64ExitCode;
6189 uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
6190 Assert(iCrReg <= 15);
6191
6192 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6193 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6194 bool fDecodedInstr = false;
6195 bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
6196 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6197 if ( fSupportsDecodeAssists
6198 && fSupportsNextRipSave)
6199 {
6200 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6201 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6202 if (fMovCRx)
6203 {
6204 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
6205 | CPUMCTX_EXTRN_APIC_TPR);
6206 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6207 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6208 Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6209 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6210 fDecodedInstr = true;
6211 }
6212 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6213 }
6214
6215 if (!fDecodedInstr)
6216 {
6217 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6218 Log4Func(("iCrReg=%#x\n", iCrReg));
6219 rcStrict = IEMExecOne(pVCpu);
6220 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6221 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6222 rcStrict = VERR_EM_INTERPRETER;
6223 }
6224
6225 if (rcStrict == VINF_SUCCESS)
6226 {
6227 switch (iCrReg)
6228 {
6229 case 0:
6230 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
6231 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
6232 break;
6233
6234 case 2:
6235 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
6236 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
6237 break;
6238
6239 case 3:
6240 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
6241 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
6242 break;
6243
6244 case 4:
6245 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
6246 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
6247 break;
6248
6249 case 8:
6250 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6251 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
6252 break;
6253
6254 default:
6255 {
6256 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6257 pSvmTransient->u64ExitCode, iCrReg));
6258 break;
6259 }
6260 }
6261 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6262 }
6263 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6264 {
6265 rcStrict = VINF_SUCCESS;
6266 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6267 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6268 }
6269 else
6270 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
6271 return rcStrict;
6272}
6273
6274
6275/**
6276 * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
6277 *
6278 * @returns Strict VBox status code.
6279 * @param pVCpu The cross context virtual CPU structure.
6280 * @param pVmcb Pointer to the VM control block.
6281 */
6282static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
6283{
6284 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6285 Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
6286
6287 VBOXSTRICTRC rcStrict;
6288 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6289 if (fSupportsNextRipSave)
6290 {
6291 /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
6292 * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
6293 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6294 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6295 rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
6296 }
6297 else
6298 {
6299 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6300 rcStrict = IEMExecOne(pVCpu);
6301 }
6302
6303 AssertMsg( rcStrict == VINF_SUCCESS
6304 || rcStrict == VINF_IEM_RAISED_XCPT
6305 || rcStrict == VINF_CPUM_R3_MSR_READ,
6306 ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6307
6308 if (rcStrict == VINF_IEM_RAISED_XCPT)
6309 {
6310 rcStrict = VINF_SUCCESS;
6311 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6312 }
6313 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6314 return rcStrict;
6315}
6316
6317
6318/**
6319 * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
6320 *
6321 * @returns Strict VBox status code.
6322 * @param pVCpu The cross context virtual CPU structure.
6323 * @param pVmcb Pointer to the VM control block.
6324 * @param pSvmTransient Pointer to the SVM-transient structure.
6325 */
6326static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
6327{
6328 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6329 uint32_t const idMsr = pCtx->ecx;
6330 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6331 Log4Func(("idMsr=%#RX32\n", idMsr));
6332
6333 /*
6334 * Handle TPR patching MSR writes.
6335 * We utilitize the LSTAR MSR for patching.
6336 */
6337 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6338 if ( idMsr == MSR_K8_LSTAR
6339 && pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingActive)
6340 {
6341 unsigned cbInstr;
6342 if (fSupportsNextRipSave)
6343 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6344 else
6345 {
6346 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
6347 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
6348 if ( rc == VINF_SUCCESS
6349 && pDis->pCurInstr->uOpcode == OP_WRMSR)
6350 Assert(cbInstr > 0);
6351 else
6352 cbInstr = 0;
6353 }
6354
6355 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6356 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6357 {
6358 int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6359 AssertRCReturn(rc, rc);
6360 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6361 }
6362
6363 int rc = VINF_SUCCESS;
6364 hmR0SvmAdvanceRip(pVCpu, cbInstr);
6365 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6366 return rc;
6367 }
6368
6369 /*
6370 * Handle regular MSR writes.
6371 */
6372 VBOXSTRICTRC rcStrict;
6373 if (fSupportsNextRipSave)
6374 {
6375 /** @todo Optimize this: We don't need to get much of the MSR state here
6376 * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
6377 * clear the applicable extern flags. */
6378 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6379 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
6380 rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
6381 }
6382 else
6383 {
6384 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
6385 rcStrict = IEMExecOne(pVCpu);
6386 }
6387
6388 AssertMsg( rcStrict == VINF_SUCCESS
6389 || rcStrict == VINF_IEM_RAISED_XCPT
6390 || rcStrict == VINF_CPUM_R3_MSR_WRITE,
6391 ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6392
6393 if (rcStrict == VINF_SUCCESS)
6394 {
6395 /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
6396 if ( idMsr >= MSR_IA32_X2APIC_START
6397 && idMsr <= MSR_IA32_X2APIC_END)
6398 {
6399 /*
6400 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
6401 * When full APIC register virtualization is implemented we'll have to make sure
6402 * APIC state is saved from the VMCB before IEM changes it.
6403 */
6404 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6405 }
6406 else
6407 {
6408 switch (idMsr)
6409 {
6410 case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
6411 case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
6412 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
6413 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
6414 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
6415 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
6416 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
6417 }
6418 }
6419 }
6420 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6421 {
6422 rcStrict = VINF_SUCCESS;
6423 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6424 }
6425 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6426 return rcStrict;
6427}
6428
6429
6430/**
6431 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6432 * \#VMEXIT.
6433 */
6434HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6435{
6436 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6437
6438 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6439 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
6440 return hmR0SvmExitReadMsr(pVCpu, pVmcb);
6441
6442 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
6443 return hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient);
6444}
6445
6446
6447/**
6448 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6449 */
6450HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6451{
6452 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6453 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6454
6455 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6456
6457 /** @todo Stepping with nested-guest. */
6458 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6459 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6460 {
6461 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6462 if (pSvmTransient->fWasGuestDebugStateActive)
6463 {
6464 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6465 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6466 return VERR_SVM_UNEXPECTED_EXIT;
6467 }
6468
6469 /*
6470 * Lazy DR0-3 loading.
6471 */
6472 if (!pSvmTransient->fWasHyperDebugStateActive)
6473 {
6474 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6475 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6476
6477 /* Don't intercept DRx read and writes. */
6478 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
6479 pVmcb->ctrl.u16InterceptRdDRx = 0;
6480 pVmcb->ctrl.u16InterceptWrDRx = 0;
6481 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6482
6483 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6484 VMMRZCallRing3Disable(pVCpu);
6485 HM_DISABLE_PREEMPT(pVCpu);
6486
6487 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6488 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6489 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6490
6491 HM_RESTORE_PREEMPT();
6492 VMMRZCallRing3Enable(pVCpu);
6493
6494 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6495 return VINF_SUCCESS;
6496 }
6497 }
6498
6499 /*
6500 * Interpret the read/writing of DRx.
6501 */
6502 /** @todo Decode assist. */
6503 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6504 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6505 if (RT_LIKELY(rc == VINF_SUCCESS))
6506 {
6507 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6508 /** @todo CPUM should set this flag! */
6509 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
6510 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6511 }
6512 else
6513 Assert(rc == VERR_EM_INTERPRETER);
6514 return rc;
6515}
6516
6517
6518/**
6519 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6520 */
6521HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6522{
6523 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6524 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6525 VBOXSTRICTRC rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
6526 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6527 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6528 return rc;
6529}
6530
6531
6532/**
6533 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6534 */
6535HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6536{
6537 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6538 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
6539
6540 /** @todo decode assists... */
6541 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6542 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
6543 {
6544 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6545 bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6546 Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], fLoadSaveGuestXcr0, pCtx->cr4));
6547 if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
6548 {
6549 pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
6550 hmR0SvmUpdateVmRunFunction(pVCpu);
6551 }
6552 }
6553 else if (rcStrict == VINF_IEM_RAISED_XCPT)
6554 {
6555 rcStrict = VINF_SUCCESS;
6556 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
6557 }
6558 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6559 return rcStrict;
6560}
6561
6562
6563/**
6564 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6565 */
6566HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6567{
6568 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6569 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
6570
6571 /* I/O operation lookup arrays. */
6572 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6573 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6574 the result (in AL/AX/EAX). */
6575 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6576 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6577 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6578
6579 Log4Func(("CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6580
6581 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6582 SVMIOIOEXITINFO IoExitInfo;
6583 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6584 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6585 uint32_t cbValue = s_aIOSize[uIOWidth];
6586 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6587
6588 if (RT_UNLIKELY(!cbValue))
6589 {
6590 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6591 return VERR_EM_INTERPRETER;
6592 }
6593
6594 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
6595 VBOXSTRICTRC rcStrict;
6596 PCEMEXITREC pExitRec = NULL;
6597 if ( !pVCpu->hm.s.fSingleInstruction
6598 && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
6599 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6600 !IoExitInfo.n.u1Str
6601 ? IoExitInfo.n.u1Type == SVM_IOIO_READ
6602 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
6603 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
6604 : IoExitInfo.n.u1Type == SVM_IOIO_READ
6605 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
6606 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
6607 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6608 if (!pExitRec)
6609 {
6610 bool fUpdateRipAlready = false;
6611 if (IoExitInfo.n.u1Str)
6612 {
6613 /* INS/OUTS - I/O String instruction. */
6614 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6615 * in EXITINFO1? Investigate once this thing is up and running. */
6616 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6617 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6618 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6619 static IEMMODE const s_aenmAddrMode[8] =
6620 {
6621 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6622 };
6623 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6624 if (enmAddrMode != (IEMMODE)-1)
6625 {
6626 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6627 if (cbInstr <= 15 && cbInstr >= 1)
6628 {
6629 Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
6630 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6631 {
6632 /* Don't know exactly how to detect whether u3Seg is valid, currently
6633 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6634 2384 Opterons when only checking NRIP. */
6635 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
6636 if ( fSupportsNextRipSave
6637 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6638 {
6639 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
6640 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
6641 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6642 IoExitInfo.n.u3Seg, true /*fIoChecked*/);
6643 }
6644 else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
6645 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6646 X86_SREG_DS, true /*fIoChecked*/);
6647 else
6648 rcStrict = IEMExecOne(pVCpu);
6649 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6650 }
6651 else
6652 {
6653 AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
6654 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
6655 true /*fIoChecked*/);
6656 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6657 }
6658 }
6659 else
6660 {
6661 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6662 rcStrict = IEMExecOne(pVCpu);
6663 }
6664 }
6665 else
6666 {
6667 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6668 rcStrict = IEMExecOne(pVCpu);
6669 }
6670 fUpdateRipAlready = true;
6671 }
6672 else
6673 {
6674 /* IN/OUT - I/O instruction. */
6675 Assert(!IoExitInfo.n.u1Rep);
6676
6677 uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6678 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6679 {
6680 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6681 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6682 && !pCtx->eflags.Bits.u1TF)
6683 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
6684 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6685 }
6686 else
6687 {
6688 uint32_t u32Val = 0;
6689 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6690 if (IOM_SUCCESS(rcStrict))
6691 {
6692 /* Save result of I/O IN instr. in AL/AX/EAX. */
6693 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6694 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6695 }
6696 else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6697 && !pCtx->eflags.Bits.u1TF)
6698 rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
6699
6700 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6701 }
6702 }
6703
6704 if (IOM_SUCCESS(rcStrict))
6705 {
6706 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6707 if (!fUpdateRipAlready)
6708 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6709
6710 /*
6711 * If any I/O breakpoints are armed, we need to check if one triggered
6712 * and take appropriate action.
6713 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6714 */
6715 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6716 * execution engines about whether hyper BPs and such are pending. */
6717 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
6718 uint32_t const uDr7 = pCtx->dr[7];
6719 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6720 && X86_DR7_ANY_RW_IO(uDr7)
6721 && (pCtx->cr4 & X86_CR4_DE))
6722 || DBGFBpIsHwIoArmed(pVM)))
6723 {
6724 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6725 VMMRZCallRing3Disable(pVCpu);
6726 HM_DISABLE_PREEMPT(pVCpu);
6727
6728 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6729 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6730
6731 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
6732 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6733 {
6734 /* Raise #DB. */
6735 pVmcb->guest.u64DR6 = pCtx->dr[6];
6736 pVmcb->guest.u64DR7 = pCtx->dr[7];
6737 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6738 hmR0SvmSetPendingXcptDB(pVCpu);
6739 }
6740 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6741 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6742 else if ( rcStrict2 != VINF_SUCCESS
6743 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6744 rcStrict = rcStrict2;
6745 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6746
6747 HM_RESTORE_PREEMPT();
6748 VMMRZCallRing3Enable(pVCpu);
6749 }
6750
6751 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6752 }
6753
6754#ifdef VBOX_STRICT
6755 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
6756 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
6757 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6758 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
6759 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
6760 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
6761 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6762 else
6763 {
6764 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6765 * statuses, that the VMM device and some others may return. See
6766 * IOM_SUCCESS() for guidance. */
6767 AssertMsg( RT_FAILURE(rcStrict)
6768 || rcStrict == VINF_SUCCESS
6769 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6770 || rcStrict == VINF_EM_DBG_BREAKPOINT
6771 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6772 || rcStrict == VINF_EM_DBG_STEPPED
6773 || rcStrict == VINF_EM_RAW_TO_R3
6774 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6775 }
6776#endif
6777 }
6778 else
6779 {
6780 /*
6781 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6782 */
6783 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6784 STAM_COUNTER_INC(!IoExitInfo.n.u1Str
6785 ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
6786 : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
6787 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
6788 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
6789 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
6790
6791 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6792 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6793
6794 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6795 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6796 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6797 }
6798 return rcStrict;
6799}
6800
6801
6802/**
6803 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6804 */
6805HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6806{
6807 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6808 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6809 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
6810
6811 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6812 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6813 Assert(pVM->hmr0.s.fNestedPaging);
6814
6815 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
6816 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6817 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
6818 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
6819 thus intentionally not copied into u32ErrCode. */
6820
6821 Log4Func(("#NPF at CS:RIP=%04x:%#RX64 GCPhysFaultAddr=%RGp ErrCode=%#x cbInstrFetched=%u %.15Rhxs\n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
6822 u32ErrCode, pVmcb->ctrl.cbInstrFetched, pVmcb->ctrl.abInstr));
6823
6824 /*
6825 * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
6826 */
6827 if ( pVM->hm.s.fTprPatchingAllowed
6828 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
6829 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
6830 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
6831 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
6832 && !CPUMIsGuestInLongModeEx(pCtx)
6833 && !CPUMGetGuestCPL(pVCpu)
6834 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6835 {
6836 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6837 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6838
6839 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
6840 {
6841 /* Only attempt to patch the instruction once. */
6842 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6843 if (!pPatch)
6844 return VINF_EM_HM_PATCH_TPR_INSTR;
6845 }
6846 }
6847
6848 /*
6849 * Determine the nested paging mode.
6850 */
6851/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
6852 PGMMODE const enmNestedPagingMode = PGMGetHostMode(pVM);
6853
6854 /*
6855 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
6856 */
6857 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
6858 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
6859 {
6860 /*
6861 * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
6862 * injecting the original pending event would most likely cause the same MMIO #NPF.
6863 */
6864 if (pVCpu->hm.s.Event.fPending)
6865 {
6866 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
6867 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6868 }
6869
6870 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
6871 VBOXSTRICTRC rcStrict;
6872 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
6873 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
6874 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
6875 if (!pExitRec)
6876 {
6877
6878 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
6879 u32ErrCode);
6880
6881 /*
6882 * If we succeed, resume guest execution.
6883 *
6884 * If we fail in interpreting the instruction because we couldn't get the guest
6885 * physical address of the page containing the instruction via the guest's page
6886 * tables (we would invalidate the guest page in the host TLB), resume execution
6887 * which would cause a guest page fault to let the guest handle this weird case.
6888 *
6889 * See @bugref{6043}.
6890 */
6891 if ( rcStrict == VINF_SUCCESS
6892 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
6893 || rcStrict == VERR_PAGE_NOT_PRESENT)
6894 {
6895 /* Successfully handled MMIO operation. */
6896 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
6897 rcStrict = VINF_SUCCESS;
6898 }
6899 }
6900 else
6901 {
6902 /*
6903 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
6904 */
6905 Assert(pCtx == &pVCpu->cpum.GstCtx);
6906 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
6907 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
6908 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
6909
6910 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
6911 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
6912
6913 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
6914 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
6915 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
6916 }
6917 return rcStrict;
6918 }
6919
6920 /*
6921 * Nested page-fault.
6922 */
6923 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
6924 int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
6925 TRPMResetTrap(pVCpu);
6926
6927 Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
6928
6929 /*
6930 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
6931 */
6932 if ( rc == VINF_SUCCESS
6933 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6934 || rc == VERR_PAGE_NOT_PRESENT)
6935 {
6936 /* We've successfully synced our shadow page tables. */
6937 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6938 rc = VINF_SUCCESS;
6939 }
6940
6941 /*
6942 * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and
6943 * re-inject the original event.
6944 */
6945 if (pVCpu->hm.s.Event.fPending)
6946 {
6947 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
6948
6949 /*
6950 * If the #NPF handler requested emulation of the instruction, ignore it.
6951 * We need to re-inject the original event so as to not lose it.
6952 * Reproducible when booting ReactOS 0.4.12 with BTRFS (installed using BootCD,
6953 * LiveCD is broken for other reasons).
6954 */
6955 if (rc == VINF_EM_RAW_EMULATE_INSTR)
6956 rc = VINF_EM_RAW_INJECT_TRPM_EVENT;
6957 }
6958
6959 return rc;
6960}
6961
6962
6963/**
6964 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
6965 * \#VMEXIT.
6966 */
6967HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6968{
6969 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6970 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
6971
6972 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
6973 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
6974 hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
6975
6976 /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6977 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
6978 return VINF_SUCCESS;
6979}
6980
6981
6982/**
6983 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
6984 * \#VMEXIT.
6985 */
6986HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
6987{
6988 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
6989 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
6990
6991#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
6992 Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
6993#endif
6994
6995 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
6996 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
6997 {
6998 /*
6999 * AMD-V provides us with the exception which caused the TS; we collect
7000 * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
7001 */
7002 Log4Func(("TS occurred during event delivery\n"));
7003 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7004 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7005 }
7006
7007 /** @todo Emulate task switch someday, currently just going back to ring-3 for
7008 * emulation. */
7009 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
7010 return VERR_EM_INTERPRETER;
7011}
7012
7013
7014/**
7015 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7016 */
7017HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7018{
7019 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7020 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7021
7022 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7023 if (pVM->hm.s.fTprPatchingAllowed)
7024 {
7025 int rc = hmEmulateSvmMovTpr(pVM, pVCpu);
7026 if (rc != VERR_NOT_FOUND)
7027 {
7028 Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc));
7029 return rc;
7030 }
7031 }
7032
7033 if (EMAreHypercallInstructionsEnabled(pVCpu))
7034 {
7035 unsigned cbInstr;
7036 if (hmR0SvmSupportsNextRipSave(pVCpu))
7037 {
7038 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7039 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7040 }
7041 else
7042 {
7043 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7044 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7045 if ( rc == VINF_SUCCESS
7046 && pDis->pCurInstr->uOpcode == OP_VMMCALL)
7047 Assert(cbInstr > 0);
7048 else
7049 cbInstr = 0;
7050 }
7051
7052 VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
7053 if (RT_SUCCESS(rcStrict))
7054 {
7055 /* Only update the RIP if we're continuing guest execution and not in the case
7056 of say VINF_GIM_R3_HYPERCALL. */
7057 if (rcStrict == VINF_SUCCESS)
7058 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7059
7060 return VBOXSTRICTRC_VAL(rcStrict);
7061 }
7062 else
7063 Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
7064 }
7065
7066 hmR0SvmSetPendingXcptUD(pVCpu);
7067 return VINF_SUCCESS;
7068}
7069
7070
7071/**
7072 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
7073 */
7074HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7075{
7076 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7077
7078 unsigned cbInstr;
7079 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7080 if (fSupportsNextRipSave)
7081 {
7082 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7083 cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7084 }
7085 else
7086 {
7087 PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7088 int rc = EMInterpretDisasCurrent(pVCpu->CTX_SUFF(pVM), pVCpu, pDis, &cbInstr);
7089 if ( rc == VINF_SUCCESS
7090 && pDis->pCurInstr->uOpcode == OP_PAUSE)
7091 Assert(cbInstr > 0);
7092 else
7093 cbInstr = 0;
7094 }
7095
7096 /** @todo The guest has likely hit a contended spinlock. We might want to
7097 * poke a schedule different guest VCPU. */
7098 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7099 return VINF_EM_RAW_INTERRUPT;
7100}
7101
7102
7103/**
7104 * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
7105 * \#VMEXIT.
7106 */
7107HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7108{
7109 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7110 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
7111 Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
7112
7113 Log4Func(("Raising IRQ 13 in response to #FERR\n"));
7114 return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7115}
7116
7117
7118/**
7119 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
7120 */
7121HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7122{
7123 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7124
7125 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now (almost) ready. */
7126 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7127 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
7128
7129 /* Emulate the IRET. We have to execute the IRET before an NMI, but must potentially
7130 * deliver a pending NMI right after. If the IRET faults, an NMI can come before the
7131 * handler executes. Yes, x86 is ugly.
7132 */
7133 return VINF_EM_RAW_EMULATE_INSTR;
7134}
7135
7136
7137/**
7138 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
7139 * Conditional \#VMEXIT.
7140 */
7141HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7142{
7143 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7144 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7145 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7146
7147 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7148 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7149 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7150 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7151 uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
7152 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7153
7154#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7155 if (pVM->hmr0.s.fNestedPaging)
7156 {
7157 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7158 if ( !pSvmTransient->fVectoringDoublePF
7159 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7160 {
7161 /* A genuine guest #PF, reflect it to the guest. */
7162 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7163 Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7164 uFaultAddress, uErrCode));
7165 }
7166 else
7167 {
7168 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7169 hmR0SvmSetPendingXcptDF(pVCpu);
7170 Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
7171 }
7172 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7173 return VINF_SUCCESS;
7174 }
7175#endif
7176
7177 Assert(!pVM->hmr0.s.fNestedPaging);
7178
7179 /*
7180 * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
7181 */
7182 if ( pVM->hm.s.fTprPatchingAllowed
7183 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7184 && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
7185 && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7186 && !CPUMIsGuestInLongModeEx(pCtx)
7187 && !CPUMGetGuestCPL(pVCpu)
7188 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7189 {
7190 RTGCPHYS GCPhysApicBase;
7191 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7192 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7193
7194 /* Check if the page at the fault-address is the APIC base. */
7195 RTGCPHYS GCPhysPage;
7196 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7197 if ( rc2 == VINF_SUCCESS
7198 && GCPhysPage == GCPhysApicBase)
7199 {
7200 /* Only attempt to patch the instruction once. */
7201 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7202 if (!pPatch)
7203 return VINF_EM_HM_PATCH_TPR_INSTR;
7204 }
7205 }
7206
7207 Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7208 pCtx->rip, uErrCode, pCtx->cr3));
7209
7210 /*
7211 * If it's a vectoring #PF, emulate injecting the original event injection as
7212 * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
7213 * event injection that caused a #PF. See @bugref{6607}.
7214 */
7215 if (pSvmTransient->fVectoringPF)
7216 {
7217 Assert(pVCpu->hm.s.Event.fPending);
7218 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7219 }
7220
7221 TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
7222 int rc = PGMTrap0eHandler(pVCpu, uErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7223
7224 Log4Func(("#PF: rc=%Rrc\n", rc));
7225
7226 if (rc == VINF_SUCCESS)
7227 {
7228 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7229 TRPMResetTrap(pVCpu);
7230 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7231 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7232 return rc;
7233 }
7234
7235 if (rc == VINF_EM_RAW_GUEST_TRAP)
7236 {
7237 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7238
7239 /*
7240 * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
7241 * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
7242 * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
7243 */
7244 if ( !pSvmTransient->fVectoringDoublePF
7245 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
7246 {
7247 /* It's a guest (or nested-guest) page fault and needs to be reflected. */
7248 uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7249 TRPMResetTrap(pVCpu);
7250
7251#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7252 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
7253 if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
7254 && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
7255 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress);
7256#endif
7257
7258 hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
7259 }
7260 else
7261 {
7262 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7263 TRPMResetTrap(pVCpu);
7264 hmR0SvmSetPendingXcptDF(pVCpu);
7265 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
7266 }
7267
7268 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7269 return VINF_SUCCESS;
7270 }
7271
7272 TRPMResetTrap(pVCpu);
7273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7274 return rc;
7275}
7276
7277
7278/**
7279 * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
7280 * Conditional \#VMEXIT.
7281 */
7282HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7283{
7284 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7285 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
7286 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7287
7288 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7289 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7290 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7291
7292 /** @todo if we accumulate more optional stuff here, we ought to combine the
7293 * reading of opcode bytes to avoid doing more than once. */
7294
7295 VBOXSTRICTRC rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7296 if (pVCpu->hm.s.fGIMTrapXcptUD)
7297 {
7298 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7299 uint8_t cbInstr = 0;
7300 rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
7301 if (rcStrict == VINF_SUCCESS)
7302 {
7303 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7304 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7305 rcStrict = VINF_SUCCESS;
7306 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7307 }
7308 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7309 rcStrict = VINF_SUCCESS;
7310 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7311 rcStrict = VINF_GIM_R3_HYPERCALL;
7312 else
7313 {
7314 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7315 rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7316 }
7317 }
7318
7319 if (pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
7320 {
7321 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
7322 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7323 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
7324 {
7325 /* Ideally, IEM should just handle all these special #UD situations, but
7326 we don't quite trust things to behave optimially when doing that. So,
7327 for now we'll restrict ourselves to a handful of possible sysenter and
7328 sysexit encodings that we filter right here. */
7329 uint8_t abInstr[SVM_CTRL_GUEST_INSTR_BYTES_MAX];
7330 uint8_t cbInstr = pVmcb->ctrl.cbInstrFetched;
7331 uint32_t const uCpl = CPUMGetGuestCPL(pVCpu);
7332 uint8_t const cbMin = uCpl != 0 ? 2 : 1 + 2;
7333 RTGCPTR const GCPtrInstr = pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base;
7334 if (cbInstr < cbMin || cbInstr > SVM_CTRL_GUEST_INSTR_BYTES_MAX)
7335 {
7336 cbInstr = cbMin;
7337 int rc2 = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, GCPtrInstr, cbInstr);
7338 AssertRCStmt(rc2, cbInstr = 0);
7339 }
7340 else
7341 memcpy(abInstr, pVmcb->ctrl.abInstr, cbInstr); /* unlikely */
7342 if ( cbInstr == 0 /* read error */
7343 || (cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x34) /* sysenter */
7344 || ( uCpl == 0
7345 && ( ( cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x35) /* sysexit */
7346 || ( cbInstr >= 3 && abInstr[1] == 0x0f && abInstr[2] == 0x35 /* rex.w sysexit */
7347 && (abInstr[0] & (X86_OP_REX_W | 0xf0)) == X86_OP_REX_W))))
7348 {
7349 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK
7350 | CPUMCTX_EXTRN_SREG_MASK /* without ES+DS+GS the app will #GP later - go figure */);
7351 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7352 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), GCPtrInstr, abInstr, cbInstr);
7353 Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: rcStrict=%Rrc %04x:%08RX64 %08RX64 %04x:%08RX64\n",
7354 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u,
7355 pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp));
7356 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7357 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); /** @todo Lazy bird. */
7358 if (rcStrict == VINF_IEM_RAISED_XCPT)
7359 rcStrict = VINF_SUCCESS;
7360 return rcStrict;
7361 }
7362 Log6(("hmR0SvmExitXcptUD: not sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
7363 }
7364 else
7365 Log6(("hmR0SvmExitXcptUD: not in long mode at %04x:%llx\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
7366 }
7367
7368 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7369 if (RT_FAILURE(rcStrict))
7370 {
7371 hmR0SvmSetPendingXcptUD(pVCpu);
7372 rcStrict = VINF_SUCCESS;
7373 }
7374
7375 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7376 return rcStrict;
7377}
7378
7379
7380/**
7381 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
7382 * Conditional \#VMEXIT.
7383 */
7384HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7385{
7386 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7387 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7388 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7389
7390 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7391 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7392
7393 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7394 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7395
7396 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7397
7398 if (!(pCtx->cr0 & X86_CR0_NE))
7399 {
7400 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7401 PDISSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
7402 unsigned cbInstr;
7403 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbInstr);
7404 if (RT_SUCCESS(rc))
7405 {
7406 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7407 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
7408 if (RT_SUCCESS(rc))
7409 hmR0SvmAdvanceRip(pVCpu, cbInstr);
7410 }
7411 else
7412 Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7413 return rc;
7414 }
7415
7416 hmR0SvmSetPendingXcptMF(pVCpu);
7417 return VINF_SUCCESS;
7418}
7419
7420
7421/**
7422 * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
7423 * \#VMEXIT.
7424 */
7425HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7426{
7427 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7428 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7429 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7430 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7431
7432 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7433 {
7434 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7435 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7436 }
7437
7438 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7439
7440 /*
7441 * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
7442 * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
7443 * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
7444 */
7445 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7446 PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
7447 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7448 int rc = DBGFTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7449 if (rc == VINF_EM_RAW_GUEST_TRAP)
7450 {
7451 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7452 if (CPUMIsHyperDebugStateActive(pVCpu))
7453 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7454
7455 /* Reflect the exception back to the guest. */
7456 hmR0SvmSetPendingXcptDB(pVCpu);
7457 rc = VINF_SUCCESS;
7458 }
7459
7460 /*
7461 * Update DR6.
7462 */
7463 if (CPUMIsHyperDebugStateActive(pVCpu))
7464 {
7465 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7466 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7467 pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7468 }
7469 else
7470 {
7471 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7472 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7473 }
7474
7475 return rc;
7476}
7477
7478
7479/**
7480 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
7481 * Conditional \#VMEXIT.
7482 */
7483HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7484{
7485 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7486 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7487 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
7488
7489 SVMEVENT Event;
7490 Event.u = 0;
7491 Event.n.u1Valid = 1;
7492 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7493 Event.n.u8Vector = X86_XCPT_AC;
7494 Event.n.u1ErrorCodeValid = 1;
7495 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7496 return VINF_SUCCESS;
7497}
7498
7499
7500/**
7501 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7502 * Conditional \#VMEXIT.
7503 */
7504HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7505{
7506 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7507 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7508 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7509 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
7510
7511 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7512 int rc = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7513 if (rc == VINF_EM_RAW_GUEST_TRAP)
7514 {
7515 SVMEVENT Event;
7516 Event.u = 0;
7517 Event.n.u1Valid = 1;
7518 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7519 Event.n.u8Vector = X86_XCPT_BP;
7520 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7521 rc = VINF_SUCCESS;
7522 }
7523
7524 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
7525 return rc;
7526}
7527
7528
7529/**
7530 * Hacks its way around the lovely mesa driver's backdoor accesses.
7531 *
7532 * @sa hmR0VmxHandleMesaDrvGp
7533 */
7534static int hmR0SvmHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7535{
7536 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
7537 Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
7538 pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
7539 RT_NOREF(pCtx, pVmcb);
7540
7541 /* For now we'll just skip the instruction. */
7542 hmR0SvmAdvanceRip(pVCpu, 1);
7543 return VINF_SUCCESS;
7544}
7545
7546
7547/**
7548 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
7549 * backdoor logging w/o checking what it is running inside.
7550 *
7551 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
7552 * backdoor port and magic numbers loaded in registers.
7553 *
7554 * @returns true if it is, false if it isn't.
7555 * @sa hmR0VmxIsMesaDrvGp
7556 */
7557DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
7558{
7559 /* Check magic and port. */
7560 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
7561 /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
7562 if (pCtx->dx != UINT32_C(0x5658))
7563 return false;
7564 if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
7565 return false;
7566
7567 /* Check that it is #GP(0). */
7568 if (pVmcb->ctrl.u64ExitInfo1 != 0)
7569 return false;
7570
7571 /* Flat ring-3 CS. */
7572 /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
7573 if (pVmcb->guest.u8CPL != 3)
7574 return false;
7575 if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
7576 return false;
7577
7578 /* 0xed: IN eAX,dx */
7579 if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
7580 {
7581 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
7582 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
7583 uint8_t abInstr[1];
7584 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
7585 /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
7586 if (RT_FAILURE(rc))
7587 return false;
7588 if (abInstr[0] != 0xed)
7589 return false;
7590 }
7591 else
7592 {
7593 /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
7594 if (pVmcb->ctrl.abInstr[0] != 0xed)
7595 return false;
7596 }
7597 return true;
7598}
7599
7600
7601/**
7602 * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
7603 * Conditional \#VMEXIT.
7604 */
7605HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7606{
7607 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7608 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7609 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
7610
7611 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7612 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7613
7614 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7615 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
7616 || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
7617 {
7618 SVMEVENT Event;
7619 Event.u = 0;
7620 Event.n.u1Valid = 1;
7621 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7622 Event.n.u8Vector = X86_XCPT_GP;
7623 Event.n.u1ErrorCodeValid = 1;
7624 Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
7625 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7626 return VINF_SUCCESS;
7627 }
7628 return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
7629}
7630
7631
7632#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
7633/**
7634 * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
7635 */
7636HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7637{
7638 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7639 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7640
7641 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7642 uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
7643 uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
7644 Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
7645 Assert(uVector <= X86_XCPT_LAST);
7646 Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
7647
7648 SVMEVENT Event;
7649 Event.u = 0;
7650 Event.n.u1Valid = 1;
7651 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7652 Event.n.u8Vector = uVector;
7653 switch (uVector)
7654 {
7655 /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
7656 case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
7657 case X86_XCPT_DF:
7658 case X86_XCPT_TS:
7659 case X86_XCPT_NP:
7660 case X86_XCPT_SS:
7661 case X86_XCPT_GP:
7662 case X86_XCPT_AC:
7663 {
7664 Event.n.u1ErrorCodeValid = 1;
7665 Event.n.u32ErrorCode = uErrCode;
7666 break;
7667 }
7668 }
7669
7670#ifdef VBOX_WITH_STATISTICS
7671 switch (uVector)
7672 {
7673 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
7674 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
7675 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
7676 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7677 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
7678 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
7679 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
7680 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
7681 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
7682 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
7683 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
7684 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
7685 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
7686 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
7687 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
7688 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
7689 default:
7690 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
7691 break;
7692 }
7693#endif
7694
7695 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7696 return VINF_SUCCESS;
7697}
7698#endif
7699
7700#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
7701/**
7702 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7703 */
7704HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7705{
7706 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7707
7708 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7709 Assert(pVmcb);
7710 Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
7711
7712 VBOXSTRICTRC rcStrict;
7713 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7714 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7715 if (fSupportsNextRipSave)
7716 {
7717 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7718 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7719 rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7720 }
7721 else
7722 {
7723 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7724 rcStrict = IEMExecOne(pVCpu);
7725 }
7726
7727 if (rcStrict == VINF_SUCCESS)
7728 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7729 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7730 {
7731 rcStrict = VINF_SUCCESS;
7732 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7733 }
7734 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7735 return rcStrict;
7736}
7737
7738
7739/**
7740 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7741 */
7742HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7743{
7744 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7745
7746 /*
7747 * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
7748 * we only intercept STGI when events are pending for GIF to become 1.
7749 */
7750 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7751 if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
7752 hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
7753
7754 VBOXSTRICTRC rcStrict;
7755 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7756 uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
7757 if (fSupportsNextRipSave)
7758 {
7759 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7760 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7761 rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7762 }
7763 else
7764 {
7765 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7766 rcStrict = IEMExecOne(pVCpu);
7767 }
7768
7769 if (rcStrict == VINF_SUCCESS)
7770 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
7771 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7772 {
7773 rcStrict = VINF_SUCCESS;
7774 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7775 }
7776 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7777 return rcStrict;
7778}
7779
7780
7781/**
7782 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7783 */
7784HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7785{
7786 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7787
7788 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7789 Assert(pVmcb);
7790 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7791
7792 VBOXSTRICTRC rcStrict;
7793 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7794 uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
7795 | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
7796 | CPUMCTX_EXTRN_SYSENTER_MSRS;
7797 if (fSupportsNextRipSave)
7798 {
7799 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
7800 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7801 rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7802 }
7803 else
7804 {
7805 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
7806 rcStrict = IEMExecOne(pVCpu);
7807 }
7808
7809 if (rcStrict == VINF_SUCCESS)
7810 {
7811 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
7812 | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
7813 | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
7814 | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
7815 }
7816 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7817 {
7818 rcStrict = VINF_SUCCESS;
7819 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7820 }
7821 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7822 return rcStrict;
7823}
7824
7825
7826/**
7827 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7828 */
7829HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7830{
7831 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7832
7833 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7834 Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
7835
7836 VBOXSTRICTRC rcStrict;
7837 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7838 if (fSupportsNextRipSave)
7839 {
7840 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7841 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7842 rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7843 }
7844 else
7845 {
7846 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7847 rcStrict = IEMExecOne(pVCpu);
7848 }
7849
7850 if (rcStrict == VINF_IEM_RAISED_XCPT)
7851 {
7852 rcStrict = VINF_SUCCESS;
7853 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7854 }
7855 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7856 return rcStrict;
7857}
7858
7859
7860/**
7861 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7862 */
7863HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7864{
7865 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7866
7867 VBOXSTRICTRC rcStrict;
7868 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7869 if (fSupportsNextRipSave)
7870 {
7871 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
7872 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7873 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7874 rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7875 }
7876 else
7877 {
7878 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
7879 rcStrict = IEMExecOne(pVCpu);
7880 }
7881
7882 if (rcStrict == VINF_IEM_RAISED_XCPT)
7883 {
7884 rcStrict = VINF_SUCCESS;
7885 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7886 }
7887 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7888 return rcStrict;
7889}
7890
7891
7892/**
7893 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7894 */
7895HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7896{
7897 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7898 /* We shall import the entire state here, just in case we enter and continue execution of
7899 the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
7900 could lose lose part of CPU state. */
7901 HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
7902
7903 VBOXSTRICTRC rcStrict;
7904 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
7905 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
7906 if (fSupportsNextRipSave)
7907 {
7908 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
7909 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
7910 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7911 }
7912 else
7913 {
7914 /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
7915 instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
7916 instruction itself, see @bugref{7243#c126} */
7917 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), NULL /* pcbWritten */);
7918 }
7919 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
7920
7921 if (rcStrict == VINF_SUCCESS)
7922 {
7923 rcStrict = VINF_SVM_VMRUN;
7924 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
7925 }
7926 else if (rcStrict == VINF_IEM_RAISED_XCPT)
7927 {
7928 rcStrict = VINF_SUCCESS;
7929 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
7930 }
7931 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
7932 return rcStrict;
7933}
7934
7935
7936/**
7937 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
7938 * Unconditional \#VMEXIT.
7939 */
7940HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7941{
7942 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7943 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7944
7945 if (pVCpu->hm.s.Event.fPending)
7946 {
7947 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
7948 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7949 }
7950
7951 hmR0SvmSetPendingXcptDB(pVCpu);
7952 return VINF_SUCCESS;
7953}
7954
7955
7956/**
7957 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
7958 * Conditional \#VMEXIT.
7959 */
7960HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
7961{
7962 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
7963 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
7964
7965 SVMEVENT Event;
7966 Event.u = 0;
7967 Event.n.u1Valid = 1;
7968 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7969 Event.n.u8Vector = X86_XCPT_BP;
7970 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7971 return VINF_SUCCESS;
7972}
7973#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
7974
7975/** @} */
7976
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette