VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 67035

Last change on this file since 67035 was 67026, checked in by vboxsync, 8 years ago

VMM/HMVMXR0: Fixes in event reflection with pending events.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 597.1 KB
Line 
1/* $Id: HMVMXR0.cpp 67026 2017-05-23 07:49:33Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#include "HMInternal.h"
39#include <VBox/vmm/vm.h>
40#include "HMVMXR0.h"
41#include "dtrace/VBoxVMM.h"
42
43#define HMVMX_USE_IEM_EVENT_REFLECTION
44#ifdef DEBUG_ramshankar
45# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
46# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
47# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_CHECK_GUEST_STATE
49# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
50# define HMVMX_ALWAYS_TRAP_PF
51# define HMVMX_ALWAYS_SWAP_FPU_STATE
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name Updated-guest-state flags.
70 * @{ */
71#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
72#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
73#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
74#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
75#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
76#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
77#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
78#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
79#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
80#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
81#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
82#define HMVMX_UPDATED_GUEST_DR7 RT_BIT(11)
83#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
84#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
85#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
86#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
87#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
88#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
89#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
90#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
91#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
92 | HMVMX_UPDATED_GUEST_RSP \
93 | HMVMX_UPDATED_GUEST_RFLAGS \
94 | HMVMX_UPDATED_GUEST_CR0 \
95 | HMVMX_UPDATED_GUEST_CR3 \
96 | HMVMX_UPDATED_GUEST_CR4 \
97 | HMVMX_UPDATED_GUEST_GDTR \
98 | HMVMX_UPDATED_GUEST_IDTR \
99 | HMVMX_UPDATED_GUEST_LDTR \
100 | HMVMX_UPDATED_GUEST_TR \
101 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
102 | HMVMX_UPDATED_GUEST_DR7 \
103 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
104 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
105 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
106 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
107 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
108 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
109 | HMVMX_UPDATED_GUEST_INTR_STATE \
110 | HMVMX_UPDATED_GUEST_APIC_STATE)
111/** @} */
112
113/** @name
114 * Flags to skip redundant reads of some common VMCS fields that are not part of
115 * the guest-CPU state but are in the transient structure.
116 */
117#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
118#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
119#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
124/** @} */
125
126/** @name
127 * States of the VMCS.
128 *
129 * This does not reflect all possible VMCS states but currently only those
130 * needed for maintaining the VMCS consistently even when thread-context hooks
131 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
132 */
133#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
134#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
135#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
136/** @} */
137
138/**
139 * Exception bitmap mask for real-mode guests (real-on-v86).
140 *
141 * We need to intercept all exceptions manually except:
142 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
143 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
144 * due to bugs in Intel CPUs.
145 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
146 * support.
147 */
148#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
149 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
150 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
151 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
152 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
153 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
154 | RT_BIT(X86_XCPT_XF))
155
156/**
157 * Exception bitmap mask for all contributory exceptions.
158 *
159 * Page fault is deliberately excluded here as it's conditional as to whether
160 * it's contributory or benign. Page faults are handled separately.
161 */
162#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
163 | RT_BIT(X86_XCPT_DE))
164
165/** Maximum VM-instruction error number. */
166#define HMVMX_INSTR_ERROR_MAX 28
167
168/** Profiling macro. */
169#ifdef HM_PROFILE_EXIT_DISPATCH
170# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
171# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
172#else
173# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
174# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
175#endif
176
177/** Assert that preemption is disabled or covered by thread-context hooks. */
178#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
179 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
180
181/** Assert that we haven't migrated CPUs when thread-context hooks are not
182 * used. */
183#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
184 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
185 ("Illegal migration! Entered on CPU %u Current %u\n", \
186 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
187
188/** Helper macro for VM-exit handlers called unexpectedly. */
189#define HMVMX_RETURN_UNEXPECTED_EXIT() \
190 do { \
191 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
192 return VERR_VMX_UNEXPECTED_EXIT; \
193 } while (0)
194
195
196/*********************************************************************************************************************************
197* Structures and Typedefs *
198*********************************************************************************************************************************/
199/**
200 * VMX transient state.
201 *
202 * A state structure for holding miscellaneous information across
203 * VMX non-root operation and restored after the transition.
204 */
205typedef struct VMXTRANSIENT
206{
207 /** The host's rflags/eflags. */
208 RTCCUINTREG fEFlags;
209#if HC_ARCH_BITS == 32
210 uint32_t u32Alignment0;
211#endif
212 /** The guest's TPR value used for TPR shadowing. */
213 uint8_t u8GuestTpr;
214 /** Alignment. */
215 uint8_t abAlignment0[7];
216
217 /** The basic VM-exit reason. */
218 uint16_t uExitReason;
219 /** Alignment. */
220 uint16_t u16Alignment0;
221 /** The VM-exit interruption error code. */
222 uint32_t uExitIntErrorCode;
223 /** The VM-exit exit code qualification. */
224 uint64_t uExitQualification;
225
226 /** The VM-exit interruption-information field. */
227 uint32_t uExitIntInfo;
228 /** The VM-exit instruction-length field. */
229 uint32_t cbInstr;
230 /** The VM-exit instruction-information field. */
231 union
232 {
233 /** Plain unsigned int representation. */
234 uint32_t u;
235 /** INS and OUTS information. */
236 struct
237 {
238 uint32_t u7Reserved0 : 7;
239 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
240 uint32_t u3AddrSize : 3;
241 uint32_t u5Reserved1 : 5;
242 /** The segment register (X86_SREG_XXX). */
243 uint32_t iSegReg : 3;
244 uint32_t uReserved2 : 14;
245 } StrIo;
246 } ExitInstrInfo;
247 /** Whether the VM-entry failed or not. */
248 bool fVMEntryFailed;
249 /** Alignment. */
250 uint8_t abAlignment1[3];
251
252 /** The VM-entry interruption-information field. */
253 uint32_t uEntryIntInfo;
254 /** The VM-entry exception error code field. */
255 uint32_t uEntryXcptErrorCode;
256 /** The VM-entry instruction length field. */
257 uint32_t cbEntryInstr;
258
259 /** IDT-vectoring information field. */
260 uint32_t uIdtVectoringInfo;
261 /** IDT-vectoring error code. */
262 uint32_t uIdtVectoringErrorCode;
263
264 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
265 uint32_t fVmcsFieldsRead;
266
267 /** Whether the guest FPU was active at the time of VM-exit. */
268 bool fWasGuestFPUStateActive;
269 /** Whether the guest debug state was active at the time of VM-exit. */
270 bool fWasGuestDebugStateActive;
271 /** Whether the hyper debug state was active at the time of VM-exit. */
272 bool fWasHyperDebugStateActive;
273 /** Whether TSC-offsetting should be setup before VM-entry. */
274 bool fUpdateTscOffsettingAndPreemptTimer;
275 /** Whether the VM-exit was caused by a page-fault during delivery of a
276 * contributory exception or a page-fault. */
277 bool fVectoringDoublePF;
278 /** Whether the VM-exit was caused by a page-fault during delivery of an
279 * external interrupt or NMI. */
280 bool fVectoringPF;
281} VMXTRANSIENT;
282AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
283AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
285AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
286AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
287/** Pointer to VMX transient state. */
288typedef VMXTRANSIENT *PVMXTRANSIENT;
289
290
291/**
292 * MSR-bitmap read permissions.
293 */
294typedef enum VMXMSREXITREAD
295{
296 /** Reading this MSR causes a VM-exit. */
297 VMXMSREXIT_INTERCEPT_READ = 0xb,
298 /** Reading this MSR does not cause a VM-exit. */
299 VMXMSREXIT_PASSTHRU_READ
300} VMXMSREXITREAD;
301/** Pointer to MSR-bitmap read permissions. */
302typedef VMXMSREXITREAD* PVMXMSREXITREAD;
303
304/**
305 * MSR-bitmap write permissions.
306 */
307typedef enum VMXMSREXITWRITE
308{
309 /** Writing to this MSR causes a VM-exit. */
310 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
311 /** Writing to this MSR does not cause a VM-exit. */
312 VMXMSREXIT_PASSTHRU_WRITE
313} VMXMSREXITWRITE;
314/** Pointer to MSR-bitmap write permissions. */
315typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
316
317
318/**
319 * VMX VM-exit handler.
320 *
321 * @returns Strict VBox status code (i.e. informational status codes too).
322 * @param pVCpu The cross context virtual CPU structure.
323 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
324 * out-of-sync. Make sure to update the required
325 * fields before using them.
326 * @param pVmxTransient Pointer to the VMX-transient structure.
327 */
328#ifndef HMVMX_USE_FUNCTION_TABLE
329typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
330#else
331typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
332/** Pointer to VM-exit handler. */
333typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
334#endif
335
336/**
337 * VMX VM-exit handler, non-strict status code.
338 *
339 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
340 *
341 * @returns VBox status code, no informational status code returned.
342 * @param pVCpu The cross context virtual CPU structure.
343 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
344 * out-of-sync. Make sure to update the required
345 * fields before using them.
346 * @param pVmxTransient Pointer to the VMX-transient structure.
347 *
348 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
349 * use of that status code will be replaced with VINF_EM_SOMETHING
350 * later when switching over to IEM.
351 */
352#ifndef HMVMX_USE_FUNCTION_TABLE
353typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
354#else
355typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
356#endif
357
358
359/*********************************************************************************************************************************
360* Internal Functions *
361*********************************************************************************************************************************/
362static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
363static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
364static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
365static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
366 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
367 bool fStepping, uint32_t *puIntState);
368#if HC_ARCH_BITS == 32
369static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
370#endif
371#ifndef HMVMX_USE_FUNCTION_TABLE
372DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
373# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
374# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
375#else
376# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
377# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
378#endif
379
380
381/** @name VM-exit handlers.
382 * @{
383 */
384static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
385static FNVMXEXITHANDLER hmR0VmxExitExtInt;
386static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
393static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
394static FNVMXEXITHANDLER hmR0VmxExitCpuid;
395static FNVMXEXITHANDLER hmR0VmxExitGetsec;
396static FNVMXEXITHANDLER hmR0VmxExitHlt;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
398static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
399static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
400static FNVMXEXITHANDLER hmR0VmxExitVmcall;
401static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
402static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
404static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
405static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
406static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
407static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
408static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
411static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
412static FNVMXEXITHANDLER hmR0VmxExitMwait;
413static FNVMXEXITHANDLER hmR0VmxExitMtf;
414static FNVMXEXITHANDLER hmR0VmxExitMonitor;
415static FNVMXEXITHANDLER hmR0VmxExitPause;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
417static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
418static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
419static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
420static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
421static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
422static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
423static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
424static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
425static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
426static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
427static FNVMXEXITHANDLER hmR0VmxExitRdrand;
428static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
429/** @} */
430
431static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
432static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
439static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
440
441
442/*********************************************************************************************************************************
443* Global Variables *
444*********************************************************************************************************************************/
445#ifdef HMVMX_USE_FUNCTION_TABLE
446
447/**
448 * VMX_EXIT dispatch table.
449 */
450static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
451{
452 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
453 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
454 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
455 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
456 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
457 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
458 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
459 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
460 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
461 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
462 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
463 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
464 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
465 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
466 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
467 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
468 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
469 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
470 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
471 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
472 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
473 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
474 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
475 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
476 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
477 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
478 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
479 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
480 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
481 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
482 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
483 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
484 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
485 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
486 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
487 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
489 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
490 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
491 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
492 /* 40 UNDEFINED */ hmR0VmxExitPause,
493 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
494 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
495 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
496 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
497 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
498 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
499 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
500 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
501 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
502 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
503 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
504 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
505 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
506 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
507 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
508 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
509 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
510 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
511 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
512 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
513 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
514 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
515 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
516 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
517};
518#endif /* HMVMX_USE_FUNCTION_TABLE */
519
520#ifdef VBOX_STRICT
521static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
522{
523 /* 0 */ "(Not Used)",
524 /* 1 */ "VMCALL executed in VMX root operation.",
525 /* 2 */ "VMCLEAR with invalid physical address.",
526 /* 3 */ "VMCLEAR with VMXON pointer.",
527 /* 4 */ "VMLAUNCH with non-clear VMCS.",
528 /* 5 */ "VMRESUME with non-launched VMCS.",
529 /* 6 */ "VMRESUME after VMXOFF",
530 /* 7 */ "VM-entry with invalid control fields.",
531 /* 8 */ "VM-entry with invalid host state fields.",
532 /* 9 */ "VMPTRLD with invalid physical address.",
533 /* 10 */ "VMPTRLD with VMXON pointer.",
534 /* 11 */ "VMPTRLD with incorrect revision identifier.",
535 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
536 /* 13 */ "VMWRITE to read-only VMCS component.",
537 /* 14 */ "(Not Used)",
538 /* 15 */ "VMXON executed in VMX root operation.",
539 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
540 /* 17 */ "VM-entry with non-launched executing VMCS.",
541 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
542 /* 19 */ "VMCALL with non-clear VMCS.",
543 /* 20 */ "VMCALL with invalid VM-exit control fields.",
544 /* 21 */ "(Not Used)",
545 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
546 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
547 /* 24 */ "VMCALL with invalid SMM-monitor features.",
548 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
549 /* 26 */ "VM-entry with events blocked by MOV SS.",
550 /* 27 */ "(Not Used)",
551 /* 28 */ "Invalid operand to INVEPT/INVVPID."
552};
553#endif /* VBOX_STRICT */
554
555
556
557/**
558 * Updates the VM's last error record.
559 *
560 * If there was a VMX instruction error, reads the error data from the VMCS and
561 * updates VCPU's last error record as well.
562 *
563 * @param pVM The cross context VM structure.
564 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
565 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
566 * VERR_VMX_INVALID_VMCS_FIELD.
567 * @param rc The error code.
568 */
569static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
570{
571 AssertPtr(pVM);
572 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
573 || rc == VERR_VMX_UNABLE_TO_START_VM)
574 {
575 AssertPtrReturnVoid(pVCpu);
576 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
577 }
578 pVM->hm.s.lLastError = rc;
579}
580
581
582/**
583 * Reads the VM-entry interruption-information field from the VMCS into the VMX
584 * transient structure.
585 *
586 * @returns VBox status code.
587 * @param pVmxTransient Pointer to the VMX transient structure.
588 *
589 * @remarks No-long-jump zone!!!
590 */
591DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
592{
593 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
594 AssertRCReturn(rc, rc);
595 return VINF_SUCCESS;
596}
597
598
599#ifdef VBOX_STRICT
600/**
601 * Reads the VM-entry exception error code field from the VMCS into
602 * the VMX transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615#endif /* VBOX_STRICT */
616
617
618#ifdef VBOX_STRICT
619/**
620 * Reads the VM-entry exception error code field from the VMCS into
621 * the VMX transient structure.
622 *
623 * @returns VBox status code.
624 * @param pVmxTransient Pointer to the VMX transient structure.
625 *
626 * @remarks No-long-jump zone!!!
627 */
628DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
629{
630 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
631 AssertRCReturn(rc, rc);
632 return VINF_SUCCESS;
633}
634#endif /* VBOX_STRICT */
635
636
637/**
638 * Reads the VM-exit interruption-information field from the VMCS into the VMX
639 * transient structure.
640 *
641 * @returns VBox status code.
642 * @param pVmxTransient Pointer to the VMX transient structure.
643 */
644DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
645{
646 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
647 {
648 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
649 AssertRCReturn(rc, rc);
650 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
651 }
652 return VINF_SUCCESS;
653}
654
655
656/**
657 * Reads the VM-exit interruption error code from the VMCS into the VMX
658 * transient structure.
659 *
660 * @returns VBox status code.
661 * @param pVmxTransient Pointer to the VMX transient structure.
662 */
663DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
664{
665 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
666 {
667 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
668 AssertRCReturn(rc, rc);
669 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
670 }
671 return VINF_SUCCESS;
672}
673
674
675/**
676 * Reads the VM-exit instruction length field from the VMCS into the VMX
677 * transient structure.
678 *
679 * @returns VBox status code.
680 * @param pVmxTransient Pointer to the VMX transient structure.
681 */
682DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
683{
684 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
685 {
686 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
687 AssertRCReturn(rc, rc);
688 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
689 }
690 return VINF_SUCCESS;
691}
692
693
694/**
695 * Reads the VM-exit instruction-information field from the VMCS into
696 * the VMX transient structure.
697 *
698 * @returns VBox status code.
699 * @param pVmxTransient Pointer to the VMX transient structure.
700 */
701DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
702{
703 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
704 {
705 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
706 AssertRCReturn(rc, rc);
707 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
708 }
709 return VINF_SUCCESS;
710}
711
712
713/**
714 * Reads the exit code qualification from the VMCS into the VMX transient
715 * structure.
716 *
717 * @returns VBox status code.
718 * @param pVCpu The cross context virtual CPU structure of the
719 * calling EMT. (Required for the VMCS cache case.)
720 * @param pVmxTransient Pointer to the VMX transient structure.
721 */
722DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
723{
724 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
725 {
726 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
727 AssertRCReturn(rc, rc);
728 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
729 }
730 return VINF_SUCCESS;
731}
732
733
734/**
735 * Reads the IDT-vectoring information field from the VMCS into the VMX
736 * transient structure.
737 *
738 * @returns VBox status code.
739 * @param pVmxTransient Pointer to the VMX transient structure.
740 *
741 * @remarks No-long-jump zone!!!
742 */
743DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
744{
745 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
746 {
747 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
748 AssertRCReturn(rc, rc);
749 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
750 }
751 return VINF_SUCCESS;
752}
753
754
755/**
756 * Reads the IDT-vectoring error code from the VMCS into the VMX
757 * transient structure.
758 *
759 * @returns VBox status code.
760 * @param pVmxTransient Pointer to the VMX transient structure.
761 */
762DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
763{
764 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
765 {
766 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
767 AssertRCReturn(rc, rc);
768 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
769 }
770 return VINF_SUCCESS;
771}
772
773
774/**
775 * Enters VMX root mode operation on the current CPU.
776 *
777 * @returns VBox status code.
778 * @param pVM The cross context VM structure. Can be
779 * NULL, after a resume.
780 * @param HCPhysCpuPage Physical address of the VMXON region.
781 * @param pvCpuPage Pointer to the VMXON region.
782 */
783static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
784{
785 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
786 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
787 Assert(pvCpuPage);
788 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
789
790 if (pVM)
791 {
792 /* Write the VMCS revision dword to the VMXON region. */
793 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
794 }
795
796 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
797 RTCCUINTREG fEFlags = ASMIntDisableFlags();
798
799 /* Enable the VMX bit in CR4 if necessary. */
800 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
801
802 /* Enter VMX root mode. */
803 int rc = VMXEnable(HCPhysCpuPage);
804 if (RT_FAILURE(rc))
805 {
806 if (!(uOldCr4 & X86_CR4_VMXE))
807 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
808
809 if (pVM)
810 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
811 }
812
813 /* Restore interrupts. */
814 ASMSetFlags(fEFlags);
815 return rc;
816}
817
818
819/**
820 * Exits VMX root mode operation on the current CPU.
821 *
822 * @returns VBox status code.
823 */
824static int hmR0VmxLeaveRootMode(void)
825{
826 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
827
828 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
829 RTCCUINTREG fEFlags = ASMIntDisableFlags();
830
831 /* If we're for some reason not in VMX root mode, then don't leave it. */
832 RTCCUINTREG uHostCR4 = ASMGetCR4();
833
834 int rc;
835 if (uHostCR4 & X86_CR4_VMXE)
836 {
837 /* Exit VMX root mode and clear the VMX bit in CR4. */
838 VMXDisable();
839 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
840 rc = VINF_SUCCESS;
841 }
842 else
843 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
844
845 /* Restore interrupts. */
846 ASMSetFlags(fEFlags);
847 return rc;
848}
849
850
851/**
852 * Allocates and maps one physically contiguous page. The allocated page is
853 * zero'd out. (Used by various VT-x structures).
854 *
855 * @returns IPRT status code.
856 * @param pMemObj Pointer to the ring-0 memory object.
857 * @param ppVirt Where to store the virtual address of the
858 * allocation.
859 * @param pHCPhys Where to store the physical address of the
860 * allocation.
861 */
862DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
863{
864 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
865 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
866 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
867
868 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
869 if (RT_FAILURE(rc))
870 return rc;
871 *ppVirt = RTR0MemObjAddress(*pMemObj);
872 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
873 ASMMemZero32(*ppVirt, PAGE_SIZE);
874 return VINF_SUCCESS;
875}
876
877
878/**
879 * Frees and unmaps an allocated physical page.
880 *
881 * @param pMemObj Pointer to the ring-0 memory object.
882 * @param ppVirt Where to re-initialize the virtual address of
883 * allocation as 0.
884 * @param pHCPhys Where to re-initialize the physical address of the
885 * allocation as 0.
886 */
887DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
888{
889 AssertPtr(pMemObj);
890 AssertPtr(ppVirt);
891 AssertPtr(pHCPhys);
892 if (*pMemObj != NIL_RTR0MEMOBJ)
893 {
894 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
895 AssertRC(rc);
896 *pMemObj = NIL_RTR0MEMOBJ;
897 *ppVirt = 0;
898 *pHCPhys = 0;
899 }
900}
901
902
903/**
904 * Worker function to free VT-x related structures.
905 *
906 * @returns IPRT status code.
907 * @param pVM The cross context VM structure.
908 */
909static void hmR0VmxStructsFree(PVM pVM)
910{
911 for (VMCPUID i = 0; i < pVM->cCpus; i++)
912 {
913 PVMCPU pVCpu = &pVM->aCpus[i];
914 AssertPtr(pVCpu);
915
916 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
917 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
918
919 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
920 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
921
922 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
923 }
924
925 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
926#ifdef VBOX_WITH_CRASHDUMP_MAGIC
927 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
928#endif
929}
930
931
932/**
933 * Worker function to allocate VT-x related VM structures.
934 *
935 * @returns IPRT status code.
936 * @param pVM The cross context VM structure.
937 */
938static int hmR0VmxStructsAlloc(PVM pVM)
939{
940 /*
941 * Initialize members up-front so we can cleanup properly on allocation failure.
942 */
943#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
944 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
945 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
946 pVM->hm.s.vmx.HCPhys##a_Name = 0;
947
948#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
949 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
950 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
951 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
952
953#ifdef VBOX_WITH_CRASHDUMP_MAGIC
954 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
955#endif
956 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
957
958 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
959 for (VMCPUID i = 0; i < pVM->cCpus; i++)
960 {
961 PVMCPU pVCpu = &pVM->aCpus[i];
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
965 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
966 }
967#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
968#undef VMXLOCAL_INIT_VM_MEMOBJ
969
970 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
971 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
972 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
973 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
974
975 /*
976 * Allocate all the VT-x structures.
977 */
978 int rc = VINF_SUCCESS;
979#ifdef VBOX_WITH_CRASHDUMP_MAGIC
980 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
981 if (RT_FAILURE(rc))
982 goto cleanup;
983 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
984 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
985#endif
986
987 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
988 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
989 {
990 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
991 &pVM->hm.s.vmx.HCPhysApicAccess);
992 if (RT_FAILURE(rc))
993 goto cleanup;
994 }
995
996 /*
997 * Initialize per-VCPU VT-x structures.
998 */
999 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1000 {
1001 PVMCPU pVCpu = &pVM->aCpus[i];
1002 AssertPtr(pVCpu);
1003
1004 /* Allocate the VM control structure (VMCS). */
1005 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1006 if (RT_FAILURE(rc))
1007 goto cleanup;
1008
1009 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1010 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1011 {
1012 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1013 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1014 if (RT_FAILURE(rc))
1015 goto cleanup;
1016 }
1017
1018 /*
1019 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1020 * transparent accesses of specific MSRs.
1021 *
1022 * If the condition for enabling MSR bitmaps changes here, don't forget to
1023 * update HMAreMsrBitmapsAvailable().
1024 */
1025 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1026 {
1027 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1028 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1029 if (RT_FAILURE(rc))
1030 goto cleanup;
1031 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1032 }
1033
1034 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1035 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1036 if (RT_FAILURE(rc))
1037 goto cleanup;
1038
1039 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1040 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1041 if (RT_FAILURE(rc))
1042 goto cleanup;
1043 }
1044
1045 return VINF_SUCCESS;
1046
1047cleanup:
1048 hmR0VmxStructsFree(pVM);
1049 return rc;
1050}
1051
1052
1053/**
1054 * Does global VT-x initialization (called during module initialization).
1055 *
1056 * @returns VBox status code.
1057 */
1058VMMR0DECL(int) VMXR0GlobalInit(void)
1059{
1060#ifdef HMVMX_USE_FUNCTION_TABLE
1061 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1062# ifdef VBOX_STRICT
1063 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1064 Assert(g_apfnVMExitHandlers[i]);
1065# endif
1066#endif
1067 return VINF_SUCCESS;
1068}
1069
1070
1071/**
1072 * Does global VT-x termination (called during module termination).
1073 */
1074VMMR0DECL(void) VMXR0GlobalTerm()
1075{
1076 /* Nothing to do currently. */
1077}
1078
1079
1080/**
1081 * Sets up and activates VT-x on the current CPU.
1082 *
1083 * @returns VBox status code.
1084 * @param pCpu Pointer to the global CPU info struct.
1085 * @param pVM The cross context VM structure. Can be
1086 * NULL after a host resume operation.
1087 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1088 * fEnabledByHost is @c true).
1089 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1090 * @a fEnabledByHost is @c true).
1091 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1092 * enable VT-x on the host.
1093 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1094 */
1095VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1096 void *pvMsrs)
1097{
1098 Assert(pCpu);
1099 Assert(pvMsrs);
1100 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1101
1102 /* Enable VT-x if it's not already enabled by the host. */
1103 if (!fEnabledByHost)
1104 {
1105 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1106 if (RT_FAILURE(rc))
1107 return rc;
1108 }
1109
1110 /*
1111 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1112 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1113 */
1114 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1115 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1116 {
1117 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1118 pCpu->fFlushAsidBeforeUse = false;
1119 }
1120 else
1121 pCpu->fFlushAsidBeforeUse = true;
1122
1123 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1124 ++pCpu->cTlbFlushes;
1125
1126 return VINF_SUCCESS;
1127}
1128
1129
1130/**
1131 * Deactivates VT-x on the current CPU.
1132 *
1133 * @returns VBox status code.
1134 * @param pCpu Pointer to the global CPU info struct.
1135 * @param pvCpuPage Pointer to the VMXON region.
1136 * @param HCPhysCpuPage Physical address of the VMXON region.
1137 *
1138 * @remarks This function should never be called when SUPR0EnableVTx() or
1139 * similar was used to enable VT-x on the host.
1140 */
1141VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1142{
1143 NOREF(pCpu);
1144 NOREF(pvCpuPage);
1145 NOREF(HCPhysCpuPage);
1146
1147 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1148 return hmR0VmxLeaveRootMode();
1149}
1150
1151
1152/**
1153 * Sets the permission bits for the specified MSR in the MSR bitmap.
1154 *
1155 * @param pVCpu The cross context virtual CPU structure.
1156 * @param uMsr The MSR value.
1157 * @param enmRead Whether reading this MSR causes a VM-exit.
1158 * @param enmWrite Whether writing this MSR causes a VM-exit.
1159 */
1160static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1161{
1162 int32_t iBit;
1163 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1164
1165 /*
1166 * Layout:
1167 * 0x000 - 0x3ff - Low MSR read bits
1168 * 0x400 - 0x7ff - High MSR read bits
1169 * 0x800 - 0xbff - Low MSR write bits
1170 * 0xc00 - 0xfff - High MSR write bits
1171 */
1172 if (uMsr <= 0x00001FFF)
1173 iBit = uMsr;
1174 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1175 {
1176 iBit = uMsr - UINT32_C(0xC0000000);
1177 pbMsrBitmap += 0x400;
1178 }
1179 else
1180 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1181
1182 Assert(iBit <= 0x1fff);
1183 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1184 ASMBitSet(pbMsrBitmap, iBit);
1185 else
1186 ASMBitClear(pbMsrBitmap, iBit);
1187
1188 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1189 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1190 else
1191 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1192}
1193
1194
1195#ifdef VBOX_STRICT
1196/**
1197 * Gets the permission bits for the specified MSR in the MSR bitmap.
1198 *
1199 * @returns VBox status code.
1200 * @retval VINF_SUCCESS if the specified MSR is found.
1201 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1202 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1203 *
1204 * @param pVCpu The cross context virtual CPU structure.
1205 * @param uMsr The MSR.
1206 * @param penmRead Where to store the read permissions.
1207 * @param penmWrite Where to store the write permissions.
1208 */
1209static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1210{
1211 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1212 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1213 int32_t iBit;
1214 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1215
1216 /* See hmR0VmxSetMsrPermission() for the layout. */
1217 if (uMsr <= 0x00001FFF)
1218 iBit = uMsr;
1219 else if ( uMsr >= 0xC0000000
1220 && uMsr <= 0xC0001FFF)
1221 {
1222 iBit = (uMsr - 0xC0000000);
1223 pbMsrBitmap += 0x400;
1224 }
1225 else
1226 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1227
1228 Assert(iBit <= 0x1fff);
1229 if (ASMBitTest(pbMsrBitmap, iBit))
1230 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1231 else
1232 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1233
1234 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1235 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1236 else
1237 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1238 return VINF_SUCCESS;
1239}
1240#endif /* VBOX_STRICT */
1241
1242
1243/**
1244 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1245 * area.
1246 *
1247 * @returns VBox status code.
1248 * @param pVCpu The cross context virtual CPU structure.
1249 * @param cMsrs The number of MSRs.
1250 */
1251DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1252{
1253 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1254 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1255 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1256 {
1257 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1258 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1259 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1260 }
1261
1262 /* Update number of guest MSRs to load/store across the world-switch. */
1263 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1264 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1265
1266 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1267 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1268 AssertRCReturn(rc, rc);
1269
1270 /* Update the VCPU's copy of the MSR count. */
1271 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1272
1273 return VINF_SUCCESS;
1274}
1275
1276
1277/**
1278 * Adds a new (or updates the value of an existing) guest/host MSR
1279 * pair to be swapped during the world-switch as part of the
1280 * auto-load/store MSR area in the VMCS.
1281 *
1282 * @returns VBox status code.
1283 * @param pVCpu The cross context virtual CPU structure.
1284 * @param uMsr The MSR.
1285 * @param uGuestMsrValue Value of the guest MSR.
1286 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1287 * necessary.
1288 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1289 * its value was updated. Optional, can be NULL.
1290 */
1291static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1292 bool *pfAddedAndUpdated)
1293{
1294 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1295 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1296 uint32_t i;
1297 for (i = 0; i < cMsrs; i++)
1298 {
1299 if (pGuestMsr->u32Msr == uMsr)
1300 break;
1301 pGuestMsr++;
1302 }
1303
1304 bool fAdded = false;
1305 if (i == cMsrs)
1306 {
1307 ++cMsrs;
1308 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1309 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1310
1311 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1312 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1313 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1314
1315 fAdded = true;
1316 }
1317
1318 /* Update the MSR values in the auto-load/store MSR area. */
1319 pGuestMsr->u32Msr = uMsr;
1320 pGuestMsr->u64Value = uGuestMsrValue;
1321
1322 /* Create/update the MSR slot in the host MSR area. */
1323 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1324 pHostMsr += i;
1325 pHostMsr->u32Msr = uMsr;
1326
1327 /*
1328 * Update the host MSR only when requested by the caller AND when we're
1329 * adding it to the auto-load/store area. Otherwise, it would have been
1330 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1331 */
1332 bool fUpdatedMsrValue = false;
1333 if ( fAdded
1334 && fUpdateHostMsr)
1335 {
1336 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1337 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1338 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1339 fUpdatedMsrValue = true;
1340 }
1341
1342 if (pfAddedAndUpdated)
1343 *pfAddedAndUpdated = fUpdatedMsrValue;
1344 return VINF_SUCCESS;
1345}
1346
1347
1348/**
1349 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1350 * auto-load/store MSR area in the VMCS.
1351 *
1352 * @returns VBox status code.
1353 * @param pVCpu The cross context virtual CPU structure.
1354 * @param uMsr The MSR.
1355 */
1356static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1357{
1358 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1359 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1360 for (uint32_t i = 0; i < cMsrs; i++)
1361 {
1362 /* Find the MSR. */
1363 if (pGuestMsr->u32Msr == uMsr)
1364 {
1365 /* If it's the last MSR, simply reduce the count. */
1366 if (i == cMsrs - 1)
1367 {
1368 --cMsrs;
1369 break;
1370 }
1371
1372 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1373 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1374 pLastGuestMsr += cMsrs - 1;
1375 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1376 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1377
1378 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1379 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1380 pLastHostMsr += cMsrs - 1;
1381 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1382 pHostMsr->u64Value = pLastHostMsr->u64Value;
1383 --cMsrs;
1384 break;
1385 }
1386 pGuestMsr++;
1387 }
1388
1389 /* Update the VMCS if the count changed (meaning the MSR was found). */
1390 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1391 {
1392 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1393 AssertRCReturn(rc, rc);
1394
1395 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1396 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1397 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1398
1399 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1400 return VINF_SUCCESS;
1401 }
1402
1403 return VERR_NOT_FOUND;
1404}
1405
1406
1407/**
1408 * Checks if the specified guest MSR is part of the auto-load/store area in
1409 * the VMCS.
1410 *
1411 * @returns true if found, false otherwise.
1412 * @param pVCpu The cross context virtual CPU structure.
1413 * @param uMsr The MSR to find.
1414 */
1415static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1416{
1417 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1418 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1419
1420 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1421 {
1422 if (pGuestMsr->u32Msr == uMsr)
1423 return true;
1424 }
1425 return false;
1426}
1427
1428
1429/**
1430 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1431 *
1432 * @param pVCpu The cross context virtual CPU structure.
1433 *
1434 * @remarks No-long-jump zone!!!
1435 */
1436static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1437{
1438 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1439 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1440 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1441 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1442
1443 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1444 {
1445 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1446
1447 /*
1448 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1449 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1450 */
1451 if (pHostMsr->u32Msr == MSR_K6_EFER)
1452 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1453 else
1454 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1455 }
1456
1457 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1458}
1459
1460
1461/**
1462 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1463 * perform lazy restoration of the host MSRs while leaving VT-x.
1464 *
1465 * @param pVCpu The cross context virtual CPU structure.
1466 *
1467 * @remarks No-long-jump zone!!!
1468 */
1469static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1470{
1471 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1472
1473 /*
1474 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1475 */
1476 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1477 {
1478 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1479#if HC_ARCH_BITS == 64
1480 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1481 {
1482 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1483 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1484 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1485 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1486 }
1487#endif
1488 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1489 }
1490}
1491
1492
1493/**
1494 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1495 * lazily while leaving VT-x.
1496 *
1497 * @returns true if it does, false otherwise.
1498 * @param pVCpu The cross context virtual CPU structure.
1499 * @param uMsr The MSR to check.
1500 */
1501static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1502{
1503 NOREF(pVCpu);
1504#if HC_ARCH_BITS == 64
1505 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1506 {
1507 switch (uMsr)
1508 {
1509 case MSR_K8_LSTAR:
1510 case MSR_K6_STAR:
1511 case MSR_K8_SF_MASK:
1512 case MSR_K8_KERNEL_GS_BASE:
1513 return true;
1514 }
1515 }
1516#else
1517 RT_NOREF(pVCpu, uMsr);
1518#endif
1519 return false;
1520}
1521
1522
1523/**
1524 * Saves a set of guest MSRs back into the guest-CPU context.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1528 * out-of-sync. Make sure to update the required fields
1529 * before using them.
1530 *
1531 * @remarks No-long-jump zone!!!
1532 */
1533static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1534{
1535 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1536 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1537
1538 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1539 {
1540 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1541#if HC_ARCH_BITS == 64
1542 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1543 {
1544 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1545 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1546 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1547 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1548 }
1549#else
1550 NOREF(pMixedCtx);
1551#endif
1552 }
1553}
1554
1555
1556/**
1557 * Loads a set of guests MSRs to allow read/passthru to the guest.
1558 *
1559 * The name of this function is slightly confusing. This function does NOT
1560 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1561 * common prefix for functions dealing with "lazy restoration" of the shared
1562 * MSRs.
1563 *
1564 * @param pVCpu The cross context virtual CPU structure.
1565 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1566 * out-of-sync. Make sure to update the required fields
1567 * before using them.
1568 *
1569 * @remarks No-long-jump zone!!!
1570 */
1571static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1572{
1573 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1574 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1575
1576 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1577#if HC_ARCH_BITS == 64
1578 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1579 {
1580 /*
1581 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1582 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1583 * we can skip a few MSR writes.
1584 *
1585 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1586 * guest MSR values in the guest-CPU context might be different to what's currently
1587 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1588 * CPU, see @bugref{8728}.
1589 */
1590 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1591 && pMixedCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1592 && pMixedCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1593 && pMixedCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1594 && pMixedCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1595 {
1596#ifdef VBOX_STRICT
1597 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pMixedCtx->msrKERNELGSBASE);
1598 Assert(ASMRdMsr(MSR_K8_LSTAR) == pMixedCtx->msrLSTAR);
1599 Assert(ASMRdMsr(MSR_K6_STAR) == pMixedCtx->msrSTAR);
1600 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pMixedCtx->msrSFMASK);
1601#endif
1602 }
1603 else
1604 {
1605 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1606 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1607 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1608 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1609 }
1610 }
1611#else
1612 RT_NOREF(pMixedCtx);
1613#endif
1614 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1615}
1616
1617
1618/**
1619 * Performs lazy restoration of the set of host MSRs if they were previously
1620 * loaded with guest MSR values.
1621 *
1622 * @param pVCpu The cross context virtual CPU structure.
1623 *
1624 * @remarks No-long-jump zone!!!
1625 * @remarks The guest MSRs should have been saved back into the guest-CPU
1626 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1627 */
1628static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1629{
1630 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1631 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1632
1633 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1634 {
1635 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1636#if HC_ARCH_BITS == 64
1637 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1638 {
1639 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1640 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1641 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1642 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1643 }
1644#endif
1645 }
1646 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1647}
1648
1649
1650/**
1651 * Verifies that our cached values of the VMCS controls are all
1652 * consistent with what's actually present in the VMCS.
1653 *
1654 * @returns VBox status code.
1655 * @param pVCpu The cross context virtual CPU structure.
1656 */
1657static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1658{
1659 uint32_t u32Val;
1660 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1663 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1664
1665 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1666 AssertRCReturn(rc, rc);
1667 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1668 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1669
1670 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1671 AssertRCReturn(rc, rc);
1672 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1673 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1674
1675 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1676 AssertRCReturn(rc, rc);
1677 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1678 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1679
1680 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1681 {
1682 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1683 AssertRCReturn(rc, rc);
1684 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1685 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1686 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1687 }
1688
1689 return VINF_SUCCESS;
1690}
1691
1692
1693#ifdef VBOX_STRICT
1694/**
1695 * Verifies that our cached host EFER value has not changed
1696 * since we cached it.
1697 *
1698 * @param pVCpu The cross context virtual CPU structure.
1699 */
1700static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1701{
1702 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1703
1704 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1705 {
1706 uint64_t u64Val;
1707 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1708 AssertRC(rc);
1709
1710 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1711 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1712 }
1713}
1714
1715
1716/**
1717 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1718 * VMCS are correct.
1719 *
1720 * @param pVCpu The cross context virtual CPU structure.
1721 */
1722static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1723{
1724 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1725
1726 /* Verify MSR counts in the VMCS are what we think it should be. */
1727 uint32_t cMsrs;
1728 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1729 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1730
1731 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1732 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1733
1734 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1735 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1736
1737 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1738 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1739 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1740 {
1741 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1742 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1743 pGuestMsr->u32Msr, cMsrs));
1744
1745 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1746 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1747 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1748
1749 /* Verify that the permissions are as expected in the MSR bitmap. */
1750 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1751 {
1752 VMXMSREXITREAD enmRead;
1753 VMXMSREXITWRITE enmWrite;
1754 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1755 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1756 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1757 {
1758 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1759 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1760 }
1761 else
1762 {
1763 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1764 pGuestMsr->u32Msr, cMsrs));
1765 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1766 pGuestMsr->u32Msr, cMsrs));
1767 }
1768 }
1769 }
1770}
1771#endif /* VBOX_STRICT */
1772
1773
1774/**
1775 * Flushes the TLB using EPT.
1776 *
1777 * @returns VBox status code.
1778 * @param pVCpu The cross context virtual CPU structure of the calling
1779 * EMT. Can be NULL depending on @a enmFlush.
1780 * @param enmFlush Type of flush.
1781 *
1782 * @remarks Caller is responsible for making sure this function is called only
1783 * when NestedPaging is supported and providing @a enmFlush that is
1784 * supported by the CPU.
1785 * @remarks Can be called with interrupts disabled.
1786 */
1787static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1788{
1789 uint64_t au64Descriptor[2];
1790 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1791 au64Descriptor[0] = 0;
1792 else
1793 {
1794 Assert(pVCpu);
1795 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1796 }
1797 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1798
1799 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1800 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1801 rc));
1802 if ( RT_SUCCESS(rc)
1803 && pVCpu)
1804 {
1805 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1806 }
1807}
1808
1809
1810/**
1811 * Flushes the TLB using VPID.
1812 *
1813 * @returns VBox status code.
1814 * @param pVM The cross context VM structure.
1815 * @param pVCpu The cross context virtual CPU structure of the calling
1816 * EMT. Can be NULL depending on @a enmFlush.
1817 * @param enmFlush Type of flush.
1818 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1819 * on @a enmFlush).
1820 *
1821 * @remarks Can be called with interrupts disabled.
1822 */
1823static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1824{
1825 NOREF(pVM);
1826 AssertPtr(pVM);
1827 Assert(pVM->hm.s.vmx.fVpid);
1828
1829 uint64_t au64Descriptor[2];
1830 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1831 {
1832 au64Descriptor[0] = 0;
1833 au64Descriptor[1] = 0;
1834 }
1835 else
1836 {
1837 AssertPtr(pVCpu);
1838 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1839 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1840 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1841 au64Descriptor[1] = GCPtr;
1842 }
1843
1844 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1845 AssertMsg(rc == VINF_SUCCESS,
1846 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1847 if ( RT_SUCCESS(rc)
1848 && pVCpu)
1849 {
1850 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1851 }
1852}
1853
1854
1855/**
1856 * Invalidates a guest page by guest virtual address. Only relevant for
1857 * EPT/VPID, otherwise there is nothing really to invalidate.
1858 *
1859 * @returns VBox status code.
1860 * @param pVM The cross context VM structure.
1861 * @param pVCpu The cross context virtual CPU structure.
1862 * @param GCVirt Guest virtual address of the page to invalidate.
1863 */
1864VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1865{
1866 AssertPtr(pVM);
1867 AssertPtr(pVCpu);
1868 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1869
1870 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1871 if (!fFlushPending)
1872 {
1873 /*
1874 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1875 * See @bugref{6043} and @bugref{6177}.
1876 *
1877 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1878 * function maybe called in a loop with individual addresses.
1879 */
1880 if (pVM->hm.s.vmx.fVpid)
1881 {
1882 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1883 {
1884 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1885 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1886 }
1887 else
1888 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1889 }
1890 else if (pVM->hm.s.fNestedPaging)
1891 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1892 }
1893
1894 return VINF_SUCCESS;
1895}
1896
1897
1898/**
1899 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1900 * otherwise there is nothing really to invalidate.
1901 *
1902 * @returns VBox status code.
1903 * @param pVM The cross context VM structure.
1904 * @param pVCpu The cross context virtual CPU structure.
1905 * @param GCPhys Guest physical address of the page to invalidate.
1906 */
1907VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1908{
1909 NOREF(pVM); NOREF(GCPhys);
1910 LogFlowFunc(("%RGp\n", GCPhys));
1911
1912 /*
1913 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1914 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1915 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1916 */
1917 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1918 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1919 return VINF_SUCCESS;
1920}
1921
1922
1923/**
1924 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1925 * case where neither EPT nor VPID is supported by the CPU.
1926 *
1927 * @param pVM The cross context VM structure.
1928 * @param pVCpu The cross context virtual CPU structure.
1929 * @param pCpu Pointer to the global HM struct.
1930 *
1931 * @remarks Called with interrupts disabled.
1932 */
1933static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1934{
1935 AssertPtr(pVCpu);
1936 AssertPtr(pCpu);
1937 NOREF(pVM);
1938
1939 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1940
1941 Assert(pCpu->idCpu != NIL_RTCPUID);
1942 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1943 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1944 pVCpu->hm.s.fForceTLBFlush = false;
1945 return;
1946}
1947
1948
1949/**
1950 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1951 *
1952 * @param pVM The cross context VM structure.
1953 * @param pVCpu The cross context virtual CPU structure.
1954 * @param pCpu Pointer to the global HM CPU struct.
1955 * @remarks All references to "ASID" in this function pertains to "VPID" in
1956 * Intel's nomenclature. The reason is, to avoid confusion in compare
1957 * statements since the host-CPU copies are named "ASID".
1958 *
1959 * @remarks Called with interrupts disabled.
1960 */
1961static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1962{
1963#ifdef VBOX_WITH_STATISTICS
1964 bool fTlbFlushed = false;
1965# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1966# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1967 if (!fTlbFlushed) \
1968 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1969 } while (0)
1970#else
1971# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1972# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1973#endif
1974
1975 AssertPtr(pVM);
1976 AssertPtr(pCpu);
1977 AssertPtr(pVCpu);
1978 Assert(pCpu->idCpu != NIL_RTCPUID);
1979
1980 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1981 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1982 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1983
1984 /*
1985 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1986 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1987 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1988 */
1989 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1990 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1991 {
1992 ++pCpu->uCurrentAsid;
1993 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1994 {
1995 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1996 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1997 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1998 }
1999
2000 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2001 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2002 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2003
2004 /*
2005 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2006 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2007 */
2008 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2009 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2010 HMVMX_SET_TAGGED_TLB_FLUSHED();
2011 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
2012 }
2013
2014 /* Check for explicit TLB flushes. */
2015 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2016 {
2017 /*
2018 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
2019 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2020 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2021 * but not guest-physical mappings.
2022 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2023 */
2024 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2025 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2026 HMVMX_SET_TAGGED_TLB_FLUSHED();
2027 }
2028
2029 pVCpu->hm.s.fForceTLBFlush = false;
2030 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2031
2032 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2033 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2034 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2035 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2036 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2037 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2038 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2039 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2040 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2041
2042 /* Update VMCS with the VPID. */
2043 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2044 AssertRC(rc);
2045
2046#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2047}
2048
2049
2050/**
2051 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2052 *
2053 * @returns VBox status code.
2054 * @param pVM The cross context VM structure.
2055 * @param pVCpu The cross context virtual CPU structure.
2056 * @param pCpu Pointer to the global HM CPU struct.
2057 *
2058 * @remarks Called with interrupts disabled.
2059 */
2060static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2061{
2062 AssertPtr(pVM);
2063 AssertPtr(pVCpu);
2064 AssertPtr(pCpu);
2065 Assert(pCpu->idCpu != NIL_RTCPUID);
2066 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2067 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2068
2069 /*
2070 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2071 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2072 */
2073 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2074 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2075 {
2076 pVCpu->hm.s.fForceTLBFlush = true;
2077 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2078 }
2079
2080 /* Check for explicit TLB flushes. */
2081 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2082 {
2083 pVCpu->hm.s.fForceTLBFlush = true;
2084 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2085 }
2086
2087 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2088 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2089
2090 if (pVCpu->hm.s.fForceTLBFlush)
2091 {
2092 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2093 pVCpu->hm.s.fForceTLBFlush = false;
2094 }
2095}
2096
2097
2098/**
2099 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2100 *
2101 * @returns VBox status code.
2102 * @param pVM The cross context VM structure.
2103 * @param pVCpu The cross context virtual CPU structure.
2104 * @param pCpu Pointer to the global HM CPU struct.
2105 *
2106 * @remarks Called with interrupts disabled.
2107 */
2108static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2109{
2110 AssertPtr(pVM);
2111 AssertPtr(pVCpu);
2112 AssertPtr(pCpu);
2113 Assert(pCpu->idCpu != NIL_RTCPUID);
2114 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2115 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2116
2117 /*
2118 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2119 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2120 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2121 */
2122 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2123 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2124 {
2125 pVCpu->hm.s.fForceTLBFlush = true;
2126 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2127 }
2128
2129 /* Check for explicit TLB flushes. */
2130 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2131 {
2132 /*
2133 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2134 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2135 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2136 */
2137 pVCpu->hm.s.fForceTLBFlush = true;
2138 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2139 }
2140
2141 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2142 if (pVCpu->hm.s.fForceTLBFlush)
2143 {
2144 ++pCpu->uCurrentAsid;
2145 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2146 {
2147 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2148 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2149 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2150 }
2151
2152 pVCpu->hm.s.fForceTLBFlush = false;
2153 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2154 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2155 if (pCpu->fFlushAsidBeforeUse)
2156 {
2157 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2158 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2159 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2160 {
2161 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2162 pCpu->fFlushAsidBeforeUse = false;
2163 }
2164 else
2165 {
2166 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2167 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2168 }
2169 }
2170 }
2171
2172 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2173 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2174 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2175 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2176 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2177 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2178 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2179
2180 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2181 AssertRC(rc);
2182}
2183
2184
2185/**
2186 * Flushes the guest TLB entry based on CPU capabilities.
2187 *
2188 * @param pVCpu The cross context virtual CPU structure.
2189 * @param pCpu Pointer to the global HM CPU struct.
2190 */
2191DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2192{
2193#ifdef HMVMX_ALWAYS_FLUSH_TLB
2194 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2195#endif
2196 PVM pVM = pVCpu->CTX_SUFF(pVM);
2197 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2198 {
2199 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2200 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2201 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2202 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2203 default:
2204 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2205 break;
2206 }
2207
2208 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2209}
2210
2211
2212/**
2213 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2214 * TLB entries from the host TLB before VM-entry.
2215 *
2216 * @returns VBox status code.
2217 * @param pVM The cross context VM structure.
2218 */
2219static int hmR0VmxSetupTaggedTlb(PVM pVM)
2220{
2221 /*
2222 * Determine optimal flush type for Nested Paging.
2223 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2224 * guest execution (see hmR3InitFinalizeR0()).
2225 */
2226 if (pVM->hm.s.fNestedPaging)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2237 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2238 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2239 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2240 }
2241
2242 /* Make sure the write-back cacheable memory type for EPT is supported. */
2243 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2244 {
2245 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2246 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2247 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2248 }
2249
2250 /* EPT requires a page-walk length of 4. */
2251 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2252 {
2253 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2254 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2256 }
2257 }
2258 else
2259 {
2260 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2261 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2262 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2263 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2264 }
2265 }
2266
2267 /*
2268 * Determine optimal flush type for VPID.
2269 */
2270 if (pVM->hm.s.vmx.fVpid)
2271 {
2272 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2273 {
2274 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2275 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2276 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2277 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2278 else
2279 {
2280 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2281 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2282 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2283 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2284 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2285 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2286 pVM->hm.s.vmx.fVpid = false;
2287 }
2288 }
2289 else
2290 {
2291 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2292 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2293 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2294 pVM->hm.s.vmx.fVpid = false;
2295 }
2296 }
2297
2298 /*
2299 * Setup the handler for flushing tagged-TLBs.
2300 */
2301 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2302 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2303 else if (pVM->hm.s.fNestedPaging)
2304 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2305 else if (pVM->hm.s.vmx.fVpid)
2306 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2307 else
2308 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2309 return VINF_SUCCESS;
2310}
2311
2312
2313/**
2314 * Sets up pin-based VM-execution controls in the VMCS.
2315 *
2316 * @returns VBox status code.
2317 * @param pVM The cross context VM structure.
2318 * @param pVCpu The cross context virtual CPU structure.
2319 */
2320static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2321{
2322 AssertPtr(pVM);
2323 AssertPtr(pVCpu);
2324
2325 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2326 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2327
2328 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2329 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2330
2331 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2332 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2333
2334 /* Enable the VMX preemption timer. */
2335 if (pVM->hm.s.vmx.fUsePreemptTimer)
2336 {
2337 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2338 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2339 }
2340
2341#if 0
2342 /* Enable posted-interrupt processing. */
2343 if (pVM->hm.s.fPostedIntrs)
2344 {
2345 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2346 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2347 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2348 }
2349#endif
2350
2351 if ((val & zap) != val)
2352 {
2353 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2354 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2355 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2356 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2357 }
2358
2359 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2360 AssertRCReturn(rc, rc);
2361
2362 pVCpu->hm.s.vmx.u32PinCtls = val;
2363 return rc;
2364}
2365
2366
2367/**
2368 * Sets up processor-based VM-execution controls in the VMCS.
2369 *
2370 * @returns VBox status code.
2371 * @param pVM The cross context VM structure.
2372 * @param pVCpu The cross context virtual CPU structure.
2373 */
2374static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2375{
2376 AssertPtr(pVM);
2377 AssertPtr(pVCpu);
2378
2379 int rc = VERR_INTERNAL_ERROR_5;
2380 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2381 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2382
2383 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2384 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2385 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2386 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2387 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2388 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2389 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2390
2391 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2392 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2393 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2394 {
2395 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2396 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2397 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2398 }
2399
2400 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2401 if (!pVM->hm.s.fNestedPaging)
2402 {
2403 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2404 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2405 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2406 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2407 }
2408
2409 /* Use TPR shadowing if supported by the CPU. */
2410 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2411 {
2412 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2413 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2414 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2415 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2416 AssertRCReturn(rc, rc);
2417
2418 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2419 /* CR8 writes cause a VM-exit based on TPR threshold. */
2420 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2421 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2422 }
2423 else
2424 {
2425 /*
2426 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2427 * Set this control only for 64-bit guests.
2428 */
2429 if (pVM->hm.s.fAllow64BitGuests)
2430 {
2431 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2432 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2433 }
2434 }
2435
2436 /* Use MSR-bitmaps if supported by the CPU. */
2437 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2438 {
2439 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2440
2441 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2442 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2443 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2444 AssertRCReturn(rc, rc);
2445
2446 /*
2447 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2448 * automatically using dedicated fields in the VMCS.
2449 */
2450 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2451 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2452 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2453 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2454 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2455
2456#if HC_ARCH_BITS == 64
2457 /*
2458 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2459 */
2460 if (pVM->hm.s.fAllow64BitGuests)
2461 {
2462 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2463 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2464 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2465 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2466 }
2467#endif
2468 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2469 }
2470
2471 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2472 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2473 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2474
2475 if ((val & zap) != val)
2476 {
2477 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2478 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2479 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2480 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2481 }
2482
2483 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2484 AssertRCReturn(rc, rc);
2485
2486 pVCpu->hm.s.vmx.u32ProcCtls = val;
2487
2488 /*
2489 * Secondary processor-based VM-execution controls.
2490 */
2491 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2492 {
2493 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2494 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2495
2496 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2497 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2498
2499 if (pVM->hm.s.fNestedPaging)
2500 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2501 else
2502 {
2503 /*
2504 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2505 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2506 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2507 */
2508 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2509 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2510 }
2511
2512 if (pVM->hm.s.vmx.fVpid)
2513 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2514
2515 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2516 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2517
2518#if 0
2519 if (pVM->hm.s.fVirtApicRegs)
2520 {
2521 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2522 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2523
2524 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2525 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2526 }
2527#endif
2528
2529 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2530 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2531 * done dynamically. */
2532 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2533 {
2534 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2535 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2536 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2537 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2538 AssertRCReturn(rc, rc);
2539 }
2540
2541 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2542 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2543
2544 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2545 && pVM->hm.s.vmx.cPleGapTicks
2546 && pVM->hm.s.vmx.cPleWindowTicks)
2547 {
2548 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2549
2550 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2551 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2552 AssertRCReturn(rc, rc);
2553 }
2554
2555 if ((val & zap) != val)
2556 {
2557 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2558 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2559 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2560 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2561 }
2562
2563 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2564 AssertRCReturn(rc, rc);
2565
2566 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2567 }
2568 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2569 {
2570 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2571 "available\n"));
2572 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2573 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2574 }
2575
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Sets up miscellaneous (everything other than Pin & Processor-based
2582 * VM-execution) control fields in the VMCS.
2583 *
2584 * @returns VBox status code.
2585 * @param pVM The cross context VM structure.
2586 * @param pVCpu The cross context virtual CPU structure.
2587 */
2588static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2589{
2590 NOREF(pVM);
2591 AssertPtr(pVM);
2592 AssertPtr(pVCpu);
2593
2594 int rc = VERR_GENERAL_FAILURE;
2595
2596 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2597#if 0
2598 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2599 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2600 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2601
2602 /*
2603 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2604 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2605 * We thus use the exception bitmap to control it rather than use both.
2606 */
2607 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2608 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2609
2610 /** @todo Explore possibility of using IO-bitmaps. */
2611 /* All IO & IOIO instructions cause VM-exits. */
2612 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2613 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2614
2615 /* Initialize the MSR-bitmap area. */
2616 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2617 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2618 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2619 AssertRCReturn(rc, rc);
2620#endif
2621
2622 /* Setup MSR auto-load/store area. */
2623 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2624 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2626 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2627 AssertRCReturn(rc, rc);
2628
2629 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2630 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2631 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2632 AssertRCReturn(rc, rc);
2633
2634 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2635 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2636 AssertRCReturn(rc, rc);
2637
2638 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2639#if 0
2640 /* Setup debug controls */
2641 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2642 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2643 AssertRCReturn(rc, rc);
2644#endif
2645
2646 return rc;
2647}
2648
2649
2650/**
2651 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2652 *
2653 * We shall setup those exception intercepts that don't change during the
2654 * lifetime of the VM here. The rest are done dynamically while loading the
2655 * guest state.
2656 *
2657 * @returns VBox status code.
2658 * @param pVM The cross context VM structure.
2659 * @param pVCpu The cross context virtual CPU structure.
2660 */
2661static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2662{
2663 AssertPtr(pVM);
2664 AssertPtr(pVCpu);
2665
2666 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2667
2668 uint32_t u32XcptBitmap = 0;
2669
2670 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2671 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2672
2673 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2674 and writes, and because recursive #DBs can cause the CPU hang, we must always
2675 intercept #DB. */
2676 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2677
2678 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2679 if (!pVM->hm.s.fNestedPaging)
2680 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2681
2682 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2683 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2684 AssertRCReturn(rc, rc);
2685 return rc;
2686}
2687
2688
2689/**
2690 * Sets up the initial guest-state mask. The guest-state mask is consulted
2691 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2692 * for the nested virtualization case (as it would cause a VM-exit).
2693 *
2694 * @param pVCpu The cross context virtual CPU structure.
2695 */
2696static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2697{
2698 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2699 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2700 return VINF_SUCCESS;
2701}
2702
2703
2704/**
2705 * Does per-VM VT-x initialization.
2706 *
2707 * @returns VBox status code.
2708 * @param pVM The cross context VM structure.
2709 */
2710VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2711{
2712 LogFlowFunc(("pVM=%p\n", pVM));
2713
2714 int rc = hmR0VmxStructsAlloc(pVM);
2715 if (RT_FAILURE(rc))
2716 {
2717 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2718 return rc;
2719 }
2720
2721 return VINF_SUCCESS;
2722}
2723
2724
2725/**
2726 * Does per-VM VT-x termination.
2727 *
2728 * @returns VBox status code.
2729 * @param pVM The cross context VM structure.
2730 */
2731VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2732{
2733 LogFlowFunc(("pVM=%p\n", pVM));
2734
2735#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2736 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2737 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2738#endif
2739 hmR0VmxStructsFree(pVM);
2740 return VINF_SUCCESS;
2741}
2742
2743
2744/**
2745 * Sets up the VM for execution under VT-x.
2746 * This function is only called once per-VM during initialization.
2747 *
2748 * @returns VBox status code.
2749 * @param pVM The cross context VM structure.
2750 */
2751VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2752{
2753 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2754 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2755
2756 LogFlowFunc(("pVM=%p\n", pVM));
2757
2758 /*
2759 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2760 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2761 */
2762 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2763 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2764 || !pVM->hm.s.vmx.pRealModeTSS))
2765 {
2766 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2767 return VERR_INTERNAL_ERROR;
2768 }
2769
2770 /* Initialize these always, see hmR3InitFinalizeR0().*/
2771 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2772 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2773
2774 /* Setup the tagged-TLB flush handlers. */
2775 int rc = hmR0VmxSetupTaggedTlb(pVM);
2776 if (RT_FAILURE(rc))
2777 {
2778 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2779 return rc;
2780 }
2781
2782 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2783 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2784#if HC_ARCH_BITS == 64
2785 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2786 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2787 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2788 {
2789 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2790 }
2791#endif
2792
2793 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2794 RTCCUINTREG uHostCR4 = ASMGetCR4();
2795 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2796 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2797
2798 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2799 {
2800 PVMCPU pVCpu = &pVM->aCpus[i];
2801 AssertPtr(pVCpu);
2802 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2803
2804 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2805 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2806
2807 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2808 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2809 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2810
2811 /* Set revision dword at the beginning of the VMCS structure. */
2812 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2813
2814 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2815 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2816 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2817 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2818
2819 /* Load this VMCS as the current VMCS. */
2820 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2825 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2826 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2827
2828 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2829 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2830 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2831
2832 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2833 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2834 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2835
2836 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2837 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2838 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2839
2840 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2841 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2842 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2843
2844#if HC_ARCH_BITS == 32
2845 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2846 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2847 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2848#endif
2849
2850 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2851 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2852 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2853 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2854
2855 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2856
2857 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2858 }
2859
2860 return VINF_SUCCESS;
2861}
2862
2863
2864/**
2865 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2866 * the VMCS.
2867 *
2868 * @returns VBox status code.
2869 * @param pVM The cross context VM structure.
2870 * @param pVCpu The cross context virtual CPU structure.
2871 */
2872DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2873{
2874 NOREF(pVM); NOREF(pVCpu);
2875
2876 RTCCUINTREG uReg = ASMGetCR0();
2877 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2878 AssertRCReturn(rc, rc);
2879
2880 uReg = ASMGetCR3();
2881 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2882 AssertRCReturn(rc, rc);
2883
2884 uReg = ASMGetCR4();
2885 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2886 AssertRCReturn(rc, rc);
2887 return rc;
2888}
2889
2890
2891#if HC_ARCH_BITS == 64
2892/**
2893 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2894 * requirements. See hmR0VmxSaveHostSegmentRegs().
2895 */
2896# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2897 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2898 { \
2899 bool fValidSelector = true; \
2900 if ((selValue) & X86_SEL_LDT) \
2901 { \
2902 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2903 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2904 } \
2905 if (fValidSelector) \
2906 { \
2907 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2908 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2909 } \
2910 (selValue) = 0; \
2911 }
2912#endif
2913
2914
2915/**
2916 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2917 * the host-state area in the VMCS.
2918 *
2919 * @returns VBox status code.
2920 * @param pVM The cross context VM structure.
2921 * @param pVCpu The cross context virtual CPU structure.
2922 */
2923DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2924{
2925 int rc = VERR_INTERNAL_ERROR_5;
2926
2927#if HC_ARCH_BITS == 64
2928 /*
2929 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2930 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2931 *
2932 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2933 * Was observed booting Solaris10u10 32-bit guest.
2934 */
2935 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2936 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2937 {
2938 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2939 pVCpu->idCpu));
2940 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2941 }
2942 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2943#else
2944 RT_NOREF(pVCpu);
2945#endif
2946
2947 /*
2948 * Host DS, ES, FS and GS segment registers.
2949 */
2950#if HC_ARCH_BITS == 64
2951 RTSEL uSelDS = ASMGetDS();
2952 RTSEL uSelES = ASMGetES();
2953 RTSEL uSelFS = ASMGetFS();
2954 RTSEL uSelGS = ASMGetGS();
2955#else
2956 RTSEL uSelDS = 0;
2957 RTSEL uSelES = 0;
2958 RTSEL uSelFS = 0;
2959 RTSEL uSelGS = 0;
2960#endif
2961
2962 /*
2963 * Host CS and SS segment registers.
2964 */
2965 RTSEL uSelCS = ASMGetCS();
2966 RTSEL uSelSS = ASMGetSS();
2967
2968 /*
2969 * Host TR segment register.
2970 */
2971 RTSEL uSelTR = ASMGetTR();
2972
2973#if HC_ARCH_BITS == 64
2974 /*
2975 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2976 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2977 */
2978 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2979 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2980 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2981 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2982# undef VMXLOCAL_ADJUST_HOST_SEG
2983#endif
2984
2985 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2986 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2987 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2988 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2989 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2990 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2991 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2992 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2993 Assert(uSelCS);
2994 Assert(uSelTR);
2995
2996 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2997#if 0
2998 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2999 Assert(uSelSS != 0);
3000#endif
3001
3002 /* Write these host selector fields into the host-state area in the VMCS. */
3003 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3004 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3005#if HC_ARCH_BITS == 64
3006 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3007 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3008 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3009 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3010#else
3011 NOREF(uSelDS);
3012 NOREF(uSelES);
3013 NOREF(uSelFS);
3014 NOREF(uSelGS);
3015#endif
3016 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3017 AssertRCReturn(rc, rc);
3018
3019 /*
3020 * Host GDTR and IDTR.
3021 */
3022 RTGDTR Gdtr;
3023 RTIDTR Idtr;
3024 RT_ZERO(Gdtr);
3025 RT_ZERO(Idtr);
3026 ASMGetGDTR(&Gdtr);
3027 ASMGetIDTR(&Idtr);
3028 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3029 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3030 AssertRCReturn(rc, rc);
3031
3032#if HC_ARCH_BITS == 64
3033 /*
3034 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3035 * maximum limit (0xffff) on every VM-exit.
3036 */
3037 if (Gdtr.cbGdt != 0xffff)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3040 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3041 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3042 }
3043
3044 /*
3045 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3046 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3047 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3048 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3049 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3050 * hosts where we are pretty sure it won't cause trouble.
3051 */
3052# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3053 if (Idtr.cbIdt < 0x0fff)
3054# else
3055 if (Idtr.cbIdt != 0xffff)
3056# endif
3057 {
3058 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3059 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3060 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3061 }
3062#endif
3063
3064 /*
3065 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3066 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3067 */
3068 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3069 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3070 VERR_VMX_INVALID_HOST_STATE);
3071
3072 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3073#if HC_ARCH_BITS == 64
3074 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3075
3076 /*
3077 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3078 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3079 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3080 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3081 *
3082 * [1] See Intel spec. 3.5 "System Descriptor Types".
3083 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3084 */
3085 Assert(pDesc->System.u4Type == 11);
3086 if ( pDesc->System.u16LimitLow != 0x67
3087 || pDesc->System.u4LimitHigh)
3088 {
3089 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3090 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3091 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3092 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3093 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3094
3095 /* Store the GDTR here as we need it while restoring TR. */
3096 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3097 }
3098#else
3099 NOREF(pVM);
3100 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3101#endif
3102 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3103 AssertRCReturn(rc, rc);
3104
3105 /*
3106 * Host FS base and GS base.
3107 */
3108#if HC_ARCH_BITS == 64
3109 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3110 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3111 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3112 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3113 AssertRCReturn(rc, rc);
3114
3115 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3116 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3117 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3118 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3119 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3120#endif
3121 return rc;
3122}
3123
3124
3125/**
3126 * Saves certain host MSRs in the VM-exit MSR-load area and some in the
3127 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3128 * the host after every successful VM-exit.
3129 *
3130 * @returns VBox status code.
3131 * @param pVM The cross context VM structure.
3132 * @param pVCpu The cross context virtual CPU structure.
3133 *
3134 * @remarks No-long-jump zone!!!
3135 */
3136DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3137{
3138 NOREF(pVM);
3139
3140 AssertPtr(pVCpu);
3141 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3142
3143 /*
3144 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3145 * rather than swapping them on every VM-entry.
3146 */
3147 hmR0VmxLazySaveHostMsrs(pVCpu);
3148
3149 /*
3150 * Host Sysenter MSRs.
3151 */
3152 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3153#if HC_ARCH_BITS == 32
3154 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3155 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3156#else
3157 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3158 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3159#endif
3160 AssertRCReturn(rc, rc);
3161
3162 /*
3163 * Host EFER MSR.
3164 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3165 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3166 */
3167 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3168 {
3169 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3170 AssertRCReturn(rc, rc);
3171 }
3172
3173 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3174 * hmR0VmxLoadGuestExitCtls() !! */
3175
3176 return rc;
3177}
3178
3179
3180/**
3181 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3182 *
3183 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3184 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3185 * hmR0VMxLoadGuestEntryCtls().
3186 *
3187 * @returns true if we need to load guest EFER, false otherwise.
3188 * @param pVCpu The cross context virtual CPU structure.
3189 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3190 * out-of-sync. Make sure to update the required fields
3191 * before using them.
3192 *
3193 * @remarks Requires EFER, CR4.
3194 * @remarks No-long-jump zone!!!
3195 */
3196static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3197{
3198#ifdef HMVMX_ALWAYS_SWAP_EFER
3199 return true;
3200#endif
3201
3202#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3203 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3204 if (CPUMIsGuestInLongMode(pVCpu))
3205 return false;
3206#endif
3207
3208 PVM pVM = pVCpu->CTX_SUFF(pVM);
3209 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3210 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3211
3212 /*
3213 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3214 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3215 */
3216 if ( CPUMIsGuestInLongMode(pVCpu)
3217 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3218 {
3219 return true;
3220 }
3221
3222 /*
3223 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3224 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3225 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3226 */
3227 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3228 && (pMixedCtx->cr0 & X86_CR0_PG)
3229 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3230 {
3231 /* Assert that host is PAE capable. */
3232 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3233 return true;
3234 }
3235
3236 /** @todo Check the latest Intel spec. for any other bits,
3237 * like SMEP/SMAP? */
3238 return false;
3239}
3240
3241
3242/**
3243 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3244 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3245 * controls".
3246 *
3247 * @returns VBox status code.
3248 * @param pVCpu The cross context virtual CPU structure.
3249 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3250 * out-of-sync. Make sure to update the required fields
3251 * before using them.
3252 *
3253 * @remarks Requires EFER.
3254 * @remarks No-long-jump zone!!!
3255 */
3256DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3257{
3258 int rc = VINF_SUCCESS;
3259 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3260 {
3261 PVM pVM = pVCpu->CTX_SUFF(pVM);
3262 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3263 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3264
3265 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3266 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3267
3268 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3269 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3270 {
3271 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3272 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3273 }
3274 else
3275 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3276
3277 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3278 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3279 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3280 {
3281 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3282 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3283 }
3284
3285 /*
3286 * The following should -not- be set (since we're not in SMM mode):
3287 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3288 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3289 */
3290
3291 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3292 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3293
3294 if ((val & zap) != val)
3295 {
3296 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3297 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3298 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3299 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3300 }
3301
3302 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3303 AssertRCReturn(rc, rc);
3304
3305 pVCpu->hm.s.vmx.u32EntryCtls = val;
3306 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3307 }
3308 return rc;
3309}
3310
3311
3312/**
3313 * Sets up the VM-exit controls in the VMCS.
3314 *
3315 * @returns VBox status code.
3316 * @param pVCpu The cross context virtual CPU structure.
3317 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3318 * out-of-sync. Make sure to update the required fields
3319 * before using them.
3320 *
3321 * @remarks Requires EFER.
3322 */
3323DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3324{
3325 NOREF(pMixedCtx);
3326
3327 int rc = VINF_SUCCESS;
3328 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3329 {
3330 PVM pVM = pVCpu->CTX_SUFF(pVM);
3331 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3332 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3333
3334 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3335 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3336
3337 /*
3338 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3339 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3340 */
3341#if HC_ARCH_BITS == 64
3342 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3343 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3344#else
3345 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3346 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3347 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3348 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3349 {
3350 /* The switcher returns to long mode, EFER is managed by the switcher. */
3351 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3352 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3353 }
3354 else
3355 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3356#endif
3357
3358 /* If the newer VMCS fields for managing EFER exists, use it. */
3359 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3360 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3361 {
3362 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3363 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3364 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3365 }
3366
3367 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3368 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3369
3370 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3371 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3372 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3373
3374 if ( pVM->hm.s.vmx.fUsePreemptTimer
3375 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3376 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3377
3378 if ((val & zap) != val)
3379 {
3380 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3381 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3382 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3383 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3384 }
3385
3386 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3387 AssertRCReturn(rc, rc);
3388
3389 pVCpu->hm.s.vmx.u32ExitCtls = val;
3390 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3391 }
3392 return rc;
3393}
3394
3395
3396/**
3397 * Sets the TPR threshold in the VMCS.
3398 *
3399 * @returns VBox status code.
3400 * @param pVCpu The cross context virtual CPU structure.
3401 * @param u32TprThreshold The TPR threshold (task-priority class only).
3402 */
3403DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3404{
3405 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3406 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3407 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3408}
3409
3410
3411/**
3412 * Loads the guest APIC and related state.
3413 *
3414 * @returns VBox status code.
3415 * @param pVCpu The cross context virtual CPU structure.
3416 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3417 * out-of-sync. Make sure to update the required fields
3418 * before using them.
3419 *
3420 * @remarks No-long-jump zone!!!
3421 */
3422DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3423{
3424 NOREF(pMixedCtx);
3425
3426 int rc = VINF_SUCCESS;
3427 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3428 {
3429 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3430 && APICIsEnabled(pVCpu))
3431 {
3432 /*
3433 * Setup TPR shadowing.
3434 */
3435 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3436 {
3437 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3438
3439 bool fPendingIntr = false;
3440 uint8_t u8Tpr = 0;
3441 uint8_t u8PendingIntr = 0;
3442 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3443 AssertRCReturn(rc, rc);
3444
3445 /*
3446 * If there are interrupts pending but masked by the TPR, instruct VT-x to cause a TPR-below-threshold VM-exit
3447 * when the guest lowers its TPR below the priority of the pending interrupt so we can deliver the interrupt.
3448 * If there are no interrupts pending, set threshold to 0 to not cause any TPR-below-threshold VM-exits.
3449 */
3450 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3451 uint32_t u32TprThreshold = 0;
3452 if (fPendingIntr)
3453 {
3454 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3455 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3456 const uint8_t u8TprPriority = u8Tpr >> 4;
3457 if (u8PendingPriority <= u8TprPriority)
3458 u32TprThreshold = u8PendingPriority;
3459 }
3460
3461 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3462 AssertRCReturn(rc, rc);
3463 }
3464 }
3465 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3466 }
3467
3468 return rc;
3469}
3470
3471
3472/**
3473 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3474 *
3475 * @returns Guest's interruptibility-state.
3476 * @param pVCpu The cross context virtual CPU structure.
3477 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3478 * out-of-sync. Make sure to update the required fields
3479 * before using them.
3480 *
3481 * @remarks No-long-jump zone!!!
3482 */
3483DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3484{
3485 /*
3486 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3487 */
3488 uint32_t uIntrState = 0;
3489 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3490 {
3491 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3492 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3493 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3494 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3495 {
3496 if (pMixedCtx->eflags.Bits.u1IF)
3497 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3498 else
3499 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3500 }
3501 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3502 {
3503 /*
3504 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3505 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3506 */
3507 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3508 }
3509 }
3510
3511 /*
3512 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3513 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3514 * setting this would block host-NMIs and IRET will not clear the blocking.
3515 *
3516 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3517 */
3518 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3519 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3520 {
3521 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3522 }
3523
3524 return uIntrState;
3525}
3526
3527
3528/**
3529 * Loads the guest's interruptibility-state into the guest-state area in the
3530 * VMCS.
3531 *
3532 * @returns VBox status code.
3533 * @param pVCpu The cross context virtual CPU structure.
3534 * @param uIntrState The interruptibility-state to set.
3535 */
3536static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3537{
3538 NOREF(pVCpu);
3539 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3540 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3541 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3542 AssertRC(rc);
3543 return rc;
3544}
3545
3546
3547/**
3548 * Loads the exception intercepts required for guest execution in the VMCS.
3549 *
3550 * @returns VBox status code.
3551 * @param pVCpu The cross context virtual CPU structure.
3552 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3553 * out-of-sync. Make sure to update the required fields
3554 * before using them.
3555 */
3556static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3557{
3558 NOREF(pMixedCtx);
3559 int rc = VINF_SUCCESS;
3560 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3561 {
3562 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3563 if (pVCpu->hm.s.fGIMTrapXcptUD)
3564 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3565#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3566 else
3567 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3568#endif
3569
3570 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3571 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3572
3573 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3574 AssertRCReturn(rc, rc);
3575
3576 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3577 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3578 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3579 }
3580 return rc;
3581}
3582
3583
3584/**
3585 * Loads the guest's RIP into the guest-state area in the VMCS.
3586 *
3587 * @returns VBox status code.
3588 * @param pVCpu The cross context virtual CPU structure.
3589 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3590 * out-of-sync. Make sure to update the required fields
3591 * before using them.
3592 *
3593 * @remarks No-long-jump zone!!!
3594 */
3595static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3596{
3597 int rc = VINF_SUCCESS;
3598 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3599 {
3600 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3601 AssertRCReturn(rc, rc);
3602
3603 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3604 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3605 HMCPU_CF_VALUE(pVCpu)));
3606 }
3607 return rc;
3608}
3609
3610
3611/**
3612 * Loads the guest's RSP into the guest-state area in the VMCS.
3613 *
3614 * @returns VBox status code.
3615 * @param pVCpu The cross context virtual CPU structure.
3616 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3617 * out-of-sync. Make sure to update the required fields
3618 * before using them.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3623{
3624 int rc = VINF_SUCCESS;
3625 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3626 {
3627 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3628 AssertRCReturn(rc, rc);
3629
3630 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3631 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3632 }
3633 return rc;
3634}
3635
3636
3637/**
3638 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3639 *
3640 * @returns VBox status code.
3641 * @param pVCpu The cross context virtual CPU structure.
3642 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3643 * out-of-sync. Make sure to update the required fields
3644 * before using them.
3645 *
3646 * @remarks No-long-jump zone!!!
3647 */
3648static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3649{
3650 int rc = VINF_SUCCESS;
3651 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3652 {
3653 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3654 Let us assert it as such and use 32-bit VMWRITE. */
3655 Assert(!(pMixedCtx->rflags.u64 >> 32));
3656 X86EFLAGS Eflags = pMixedCtx->eflags;
3657 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3658 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3659 * These will never be cleared/set, unless some other part of the VMM
3660 * code is buggy - in which case we're better of finding and fixing
3661 * those bugs than hiding them. */
3662 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3663 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3664 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3665 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3666
3667 /*
3668 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3669 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3670 */
3671 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3672 {
3673 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3674 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3675 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3676 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3677 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3678 }
3679
3680 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3681 AssertRCReturn(rc, rc);
3682
3683 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3684 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3685 }
3686 return rc;
3687}
3688
3689
3690/**
3691 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3692 *
3693 * @returns VBox status code.
3694 * @param pVCpu The cross context virtual CPU structure.
3695 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3696 * out-of-sync. Make sure to update the required fields
3697 * before using them.
3698 *
3699 * @remarks No-long-jump zone!!!
3700 */
3701DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3702{
3703 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3704 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3705 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3706 AssertRCReturn(rc, rc);
3707 return rc;
3708}
3709
3710
3711/**
3712 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3713 * CR0 is partially shared with the host and we have to consider the FPU bits.
3714 *
3715 * @returns VBox status code.
3716 * @param pVCpu The cross context virtual CPU structure.
3717 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3718 * out-of-sync. Make sure to update the required fields
3719 * before using them.
3720 *
3721 * @remarks No-long-jump zone!!!
3722 */
3723static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3724{
3725 /*
3726 * Guest CR0.
3727 * Guest FPU.
3728 */
3729 int rc = VINF_SUCCESS;
3730 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3731 {
3732 Assert(!(pMixedCtx->cr0 >> 32));
3733 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3734 PVM pVM = pVCpu->CTX_SUFF(pVM);
3735
3736 /* The guest's view (read access) of its CR0 is unblemished. */
3737 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3738 AssertRCReturn(rc, rc);
3739 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3740
3741 /* Setup VT-x's view of the guest CR0. */
3742 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3743 if (pVM->hm.s.fNestedPaging)
3744 {
3745 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3746 {
3747 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3748 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3749 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3750 }
3751 else
3752 {
3753 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3754 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3755 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3756 }
3757
3758 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3759 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3760 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3761
3762 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3763 AssertRCReturn(rc, rc);
3764 }
3765 else
3766 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3767
3768 /*
3769 * Guest FPU bits.
3770 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3771 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3772 */
3773 u32GuestCR0 |= X86_CR0_NE;
3774 bool fInterceptNM = false;
3775 if (CPUMIsGuestFPUStateActive(pVCpu))
3776 {
3777 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3778 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3779 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3780 }
3781 else
3782 {
3783 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3784 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3785 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3786 }
3787
3788 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3789 bool fInterceptMF = false;
3790 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3791 fInterceptMF = true;
3792
3793 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3794 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3795 {
3796 Assert(PDMVmmDevHeapIsEnabled(pVM));
3797 Assert(pVM->hm.s.vmx.pRealModeTSS);
3798 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3799 fInterceptNM = true;
3800 fInterceptMF = true;
3801 }
3802 else
3803 {
3804 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3805 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3806 }
3807 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3808
3809 if (fInterceptNM)
3810 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3811 else
3812 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3813
3814 if (fInterceptMF)
3815 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3816 else
3817 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3818
3819 /* Additional intercepts for debugging, define these yourself explicitly. */
3820#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3821 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3822 | RT_BIT(X86_XCPT_BP)
3823 | RT_BIT(X86_XCPT_DE)
3824 | RT_BIT(X86_XCPT_NM)
3825 | RT_BIT(X86_XCPT_TS)
3826 | RT_BIT(X86_XCPT_UD)
3827 | RT_BIT(X86_XCPT_NP)
3828 | RT_BIT(X86_XCPT_SS)
3829 | RT_BIT(X86_XCPT_GP)
3830 | RT_BIT(X86_XCPT_PF)
3831 | RT_BIT(X86_XCPT_MF)
3832 ;
3833#elif defined(HMVMX_ALWAYS_TRAP_PF)
3834 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3835#endif
3836
3837 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3838
3839 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3840 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3841 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3842 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3843 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3844 else
3845 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3846
3847 u32GuestCR0 |= uSetCR0;
3848 u32GuestCR0 &= uZapCR0;
3849 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3850
3851 /* Write VT-x's view of the guest CR0 into the VMCS. */
3852 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3853 AssertRCReturn(rc, rc);
3854 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3855 uZapCR0));
3856
3857 /*
3858 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3859 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3860 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3861 */
3862 uint32_t u32CR0Mask = 0;
3863 u32CR0Mask = X86_CR0_PE
3864 | X86_CR0_NE
3865 | X86_CR0_WP
3866 | X86_CR0_PG
3867 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3868 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3869 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3870
3871 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3872 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3873 * and @bugref{6944}. */
3874#if 0
3875 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3876 u32CR0Mask &= ~X86_CR0_PE;
3877#endif
3878 if (pVM->hm.s.fNestedPaging)
3879 u32CR0Mask &= ~X86_CR0_WP;
3880
3881 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3882 if (fInterceptNM)
3883 {
3884 u32CR0Mask |= X86_CR0_TS
3885 | X86_CR0_MP;
3886 }
3887
3888 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3889 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3890 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3891 AssertRCReturn(rc, rc);
3892 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3893
3894 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3895 }
3896 return rc;
3897}
3898
3899
3900/**
3901 * Loads the guest control registers (CR3, CR4) into the guest-state area
3902 * in the VMCS.
3903 *
3904 * @returns VBox strict status code.
3905 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3906 * without unrestricted guest access and the VMMDev is not presently
3907 * mapped (e.g. EFI32).
3908 *
3909 * @param pVCpu The cross context virtual CPU structure.
3910 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3911 * out-of-sync. Make sure to update the required fields
3912 * before using them.
3913 *
3914 * @remarks No-long-jump zone!!!
3915 */
3916static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3917{
3918 int rc = VINF_SUCCESS;
3919 PVM pVM = pVCpu->CTX_SUFF(pVM);
3920
3921 /*
3922 * Guest CR2.
3923 * It's always loaded in the assembler code. Nothing to do here.
3924 */
3925
3926 /*
3927 * Guest CR3.
3928 */
3929 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3930 {
3931 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3932 if (pVM->hm.s.fNestedPaging)
3933 {
3934 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3935
3936 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3937 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3938 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3939 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3940
3941 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3942 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3943 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3944
3945 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3946 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3947 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3948 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3949 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3950 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3951 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3952
3953 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3954 AssertRCReturn(rc, rc);
3955 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3956
3957 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3958 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3959 {
3960 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3961 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3962 {
3963 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3964 AssertRCReturn(rc, rc);
3965 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3966 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3967 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3968 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3969 AssertRCReturn(rc, rc);
3970 }
3971
3972 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3973 have Unrestricted Execution to handle the guest when it's not using paging. */
3974 GCPhysGuestCR3 = pMixedCtx->cr3;
3975 }
3976 else
3977 {
3978 /*
3979 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3980 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3981 * EPT takes care of translating it to host-physical addresses.
3982 */
3983 RTGCPHYS GCPhys;
3984 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3985
3986 /* We obtain it here every time as the guest could have relocated this PCI region. */
3987 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3988 if (RT_SUCCESS(rc))
3989 { /* likely */ }
3990 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3991 {
3992 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
3993 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3994 }
3995 else
3996 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3997
3998 GCPhysGuestCR3 = GCPhys;
3999 }
4000
4001 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
4002 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4003 }
4004 else
4005 {
4006 /* Non-nested paging case, just use the hypervisor's CR3. */
4007 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4008
4009 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
4010 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4011 }
4012 AssertRCReturn(rc, rc);
4013
4014 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
4015 }
4016
4017 /*
4018 * Guest CR4.
4019 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4020 */
4021 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
4022 {
4023 Assert(!(pMixedCtx->cr4 >> 32));
4024 uint32_t u32GuestCR4 = pMixedCtx->cr4;
4025
4026 /* The guest's view of its CR4 is unblemished. */
4027 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4028 AssertRCReturn(rc, rc);
4029 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4030
4031 /* Setup VT-x's view of the guest CR4. */
4032 /*
4033 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4034 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4035 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4036 */
4037 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4038 {
4039 Assert(pVM->hm.s.vmx.pRealModeTSS);
4040 Assert(PDMVmmDevHeapIsEnabled(pVM));
4041 u32GuestCR4 &= ~X86_CR4_VME;
4042 }
4043
4044 if (pVM->hm.s.fNestedPaging)
4045 {
4046 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4047 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4048 {
4049 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4050 u32GuestCR4 |= X86_CR4_PSE;
4051 /* Our identity mapping is a 32-bit page directory. */
4052 u32GuestCR4 &= ~X86_CR4_PAE;
4053 }
4054 /* else use guest CR4.*/
4055 }
4056 else
4057 {
4058 /*
4059 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4060 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4061 */
4062 switch (pVCpu->hm.s.enmShadowMode)
4063 {
4064 case PGMMODE_REAL: /* Real-mode. */
4065 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4066 case PGMMODE_32_BIT: /* 32-bit paging. */
4067 {
4068 u32GuestCR4 &= ~X86_CR4_PAE;
4069 break;
4070 }
4071
4072 case PGMMODE_PAE: /* PAE paging. */
4073 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4074 {
4075 u32GuestCR4 |= X86_CR4_PAE;
4076 break;
4077 }
4078
4079 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4080 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4081#ifdef VBOX_ENABLE_64_BITS_GUESTS
4082 break;
4083#endif
4084 default:
4085 AssertFailed();
4086 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4087 }
4088 }
4089
4090 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4091 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4092 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4093 u32GuestCR4 |= uSetCR4;
4094 u32GuestCR4 &= uZapCR4;
4095
4096 /* Write VT-x's view of the guest CR4 into the VMCS. */
4097 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4098 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4099 AssertRCReturn(rc, rc);
4100
4101 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4102 uint32_t u32CR4Mask = X86_CR4_VME
4103 | X86_CR4_PAE
4104 | X86_CR4_PGE
4105 | X86_CR4_PSE
4106 | X86_CR4_VMXE;
4107 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4108 u32CR4Mask |= X86_CR4_OSXSAVE;
4109 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4110 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4111 AssertRCReturn(rc, rc);
4112
4113 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4114 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4115
4116 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4117 }
4118 return rc;
4119}
4120
4121
4122/**
4123 * Loads the guest debug registers into the guest-state area in the VMCS.
4124 *
4125 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4126 *
4127 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4128 *
4129 * @returns VBox status code.
4130 * @param pVCpu The cross context virtual CPU structure.
4131 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4132 * out-of-sync. Make sure to update the required fields
4133 * before using them.
4134 *
4135 * @remarks No-long-jump zone!!!
4136 */
4137static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4138{
4139 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4140 return VINF_SUCCESS;
4141
4142#ifdef VBOX_STRICT
4143 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4144 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4145 {
4146 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4147 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4148 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4149 }
4150#endif
4151
4152 int rc;
4153 PVM pVM = pVCpu->CTX_SUFF(pVM);
4154 bool fSteppingDB = false;
4155 bool fInterceptMovDRx = false;
4156 if (pVCpu->hm.s.fSingleInstruction)
4157 {
4158 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4159 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4160 {
4161 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4162 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4163 AssertRCReturn(rc, rc);
4164 Assert(fSteppingDB == false);
4165 }
4166 else
4167 {
4168 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4169 pVCpu->hm.s.fClearTrapFlag = true;
4170 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4171 fSteppingDB = true;
4172 }
4173 }
4174
4175 if ( fSteppingDB
4176 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4177 {
4178 /*
4179 * Use the combined guest and host DRx values found in the hypervisor
4180 * register set because the debugger has breakpoints active or someone
4181 * is single stepping on the host side without a monitor trap flag.
4182 *
4183 * Note! DBGF expects a clean DR6 state before executing guest code.
4184 */
4185#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4186 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4187 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4188 {
4189 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4190 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4191 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4192 }
4193 else
4194#endif
4195 if (!CPUMIsHyperDebugStateActive(pVCpu))
4196 {
4197 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4198 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4199 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4200 }
4201
4202 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4203 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4204 AssertRCReturn(rc, rc);
4205
4206 pVCpu->hm.s.fUsingHyperDR7 = true;
4207 fInterceptMovDRx = true;
4208 }
4209 else
4210 {
4211 /*
4212 * If the guest has enabled debug registers, we need to load them prior to
4213 * executing guest code so they'll trigger at the right time.
4214 */
4215 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4216 {
4217#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4218 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4219 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4220 {
4221 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4222 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4223 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4224 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4225 }
4226 else
4227#endif
4228 if (!CPUMIsGuestDebugStateActive(pVCpu))
4229 {
4230 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4231 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4232 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4233 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4234 }
4235 Assert(!fInterceptMovDRx);
4236 }
4237 /*
4238 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4239 * must intercept #DB in order to maintain a correct DR6 guest value, and
4240 * because we need to intercept it to prevent nested #DBs from hanging the
4241 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4242 */
4243#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4244 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4245 && !CPUMIsGuestDebugStateActive(pVCpu))
4246#else
4247 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4248#endif
4249 {
4250 fInterceptMovDRx = true;
4251 }
4252
4253 /* Update guest DR7. */
4254 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4255 AssertRCReturn(rc, rc);
4256
4257 pVCpu->hm.s.fUsingHyperDR7 = false;
4258 }
4259
4260 /*
4261 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4262 */
4263 if (fInterceptMovDRx)
4264 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4265 else
4266 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4267 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4268 AssertRCReturn(rc, rc);
4269
4270 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4271 return VINF_SUCCESS;
4272}
4273
4274
4275#ifdef VBOX_STRICT
4276/**
4277 * Strict function to validate segment registers.
4278 *
4279 * @remarks ASSUMES CR0 is up to date.
4280 */
4281static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4282{
4283 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4284 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4285 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4286 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4287 && ( !CPUMIsGuestInRealModeEx(pCtx)
4288 && !CPUMIsGuestInV86ModeEx(pCtx)))
4289 {
4290 /* Protected mode checks */
4291 /* CS */
4292 Assert(pCtx->cs.Attr.n.u1Present);
4293 Assert(!(pCtx->cs.Attr.u & 0xf00));
4294 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4295 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4296 || !(pCtx->cs.Attr.n.u1Granularity));
4297 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4298 || (pCtx->cs.Attr.n.u1Granularity));
4299 /* CS cannot be loaded with NULL in protected mode. */
4300 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4301 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4302 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4303 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4304 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4305 else
4306 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4307 /* SS */
4308 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4309 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4310 if ( !(pCtx->cr0 & X86_CR0_PE)
4311 || pCtx->cs.Attr.n.u4Type == 3)
4312 {
4313 Assert(!pCtx->ss.Attr.n.u2Dpl);
4314 }
4315 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4316 {
4317 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4318 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4319 Assert(pCtx->ss.Attr.n.u1Present);
4320 Assert(!(pCtx->ss.Attr.u & 0xf00));
4321 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4322 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4323 || !(pCtx->ss.Attr.n.u1Granularity));
4324 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4325 || (pCtx->ss.Attr.n.u1Granularity));
4326 }
4327 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4328 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4329 {
4330 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4331 Assert(pCtx->ds.Attr.n.u1Present);
4332 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4333 Assert(!(pCtx->ds.Attr.u & 0xf00));
4334 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4335 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4336 || !(pCtx->ds.Attr.n.u1Granularity));
4337 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4338 || (pCtx->ds.Attr.n.u1Granularity));
4339 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4340 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4341 }
4342 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4343 {
4344 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4345 Assert(pCtx->es.Attr.n.u1Present);
4346 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4347 Assert(!(pCtx->es.Attr.u & 0xf00));
4348 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4349 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4350 || !(pCtx->es.Attr.n.u1Granularity));
4351 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4352 || (pCtx->es.Attr.n.u1Granularity));
4353 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4354 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4355 }
4356 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4357 {
4358 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4359 Assert(pCtx->fs.Attr.n.u1Present);
4360 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4361 Assert(!(pCtx->fs.Attr.u & 0xf00));
4362 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4363 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4364 || !(pCtx->fs.Attr.n.u1Granularity));
4365 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4366 || (pCtx->fs.Attr.n.u1Granularity));
4367 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4368 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4369 }
4370 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4371 {
4372 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4373 Assert(pCtx->gs.Attr.n.u1Present);
4374 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4375 Assert(!(pCtx->gs.Attr.u & 0xf00));
4376 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4377 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4378 || !(pCtx->gs.Attr.n.u1Granularity));
4379 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4380 || (pCtx->gs.Attr.n.u1Granularity));
4381 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4382 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4383 }
4384 /* 64-bit capable CPUs. */
4385# if HC_ARCH_BITS == 64
4386 Assert(!(pCtx->cs.u64Base >> 32));
4387 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4388 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4389 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4390# endif
4391 }
4392 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4393 || ( CPUMIsGuestInRealModeEx(pCtx)
4394 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4395 {
4396 /* Real and v86 mode checks. */
4397 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4398 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4399 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4400 {
4401 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4402 }
4403 else
4404 {
4405 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4406 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4407 }
4408
4409 /* CS */
4410 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4411 Assert(pCtx->cs.u32Limit == 0xffff);
4412 Assert(u32CSAttr == 0xf3);
4413 /* SS */
4414 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4415 Assert(pCtx->ss.u32Limit == 0xffff);
4416 Assert(u32SSAttr == 0xf3);
4417 /* DS */
4418 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4419 Assert(pCtx->ds.u32Limit == 0xffff);
4420 Assert(u32DSAttr == 0xf3);
4421 /* ES */
4422 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4423 Assert(pCtx->es.u32Limit == 0xffff);
4424 Assert(u32ESAttr == 0xf3);
4425 /* FS */
4426 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4427 Assert(pCtx->fs.u32Limit == 0xffff);
4428 Assert(u32FSAttr == 0xf3);
4429 /* GS */
4430 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4431 Assert(pCtx->gs.u32Limit == 0xffff);
4432 Assert(u32GSAttr == 0xf3);
4433 /* 64-bit capable CPUs. */
4434# if HC_ARCH_BITS == 64
4435 Assert(!(pCtx->cs.u64Base >> 32));
4436 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4437 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4438 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4439# endif
4440 }
4441}
4442#endif /* VBOX_STRICT */
4443
4444
4445/**
4446 * Writes a guest segment register into the guest-state area in the VMCS.
4447 *
4448 * @returns VBox status code.
4449 * @param pVCpu The cross context virtual CPU structure.
4450 * @param idxSel Index of the selector in the VMCS.
4451 * @param idxLimit Index of the segment limit in the VMCS.
4452 * @param idxBase Index of the segment base in the VMCS.
4453 * @param idxAccess Index of the access rights of the segment in the VMCS.
4454 * @param pSelReg Pointer to the segment selector.
4455 *
4456 * @remarks No-long-jump zone!!!
4457 */
4458static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4459 uint32_t idxAccess, PCPUMSELREG pSelReg)
4460{
4461 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4462 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4463 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4464 AssertRCReturn(rc, rc);
4465
4466 uint32_t u32Access = pSelReg->Attr.u;
4467 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4468 {
4469 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4470 u32Access = 0xf3;
4471 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4472 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4473 }
4474 else
4475 {
4476 /*
4477 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4478 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4479 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4480 * loaded in protected-mode have their attribute as 0.
4481 */
4482 if (!u32Access)
4483 u32Access = X86DESCATTR_UNUSABLE;
4484 }
4485
4486 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4487 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4488 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4489
4490 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4491 AssertRCReturn(rc, rc);
4492 return rc;
4493}
4494
4495
4496/**
4497 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4498 * into the guest-state area in the VMCS.
4499 *
4500 * @returns VBox status code.
4501 * @param pVCpu The cross context virtual CPU structure.
4502 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4503 * out-of-sync. Make sure to update the required fields
4504 * before using them.
4505 *
4506 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4507 * @remarks No-long-jump zone!!!
4508 */
4509static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4510{
4511 int rc = VERR_INTERNAL_ERROR_5;
4512 PVM pVM = pVCpu->CTX_SUFF(pVM);
4513
4514 /*
4515 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4516 */
4517 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4518 {
4519 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4520 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4521 {
4522 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4523 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4524 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4525 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4526 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4527 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4528 }
4529
4530#ifdef VBOX_WITH_REM
4531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4532 {
4533 Assert(pVM->hm.s.vmx.pRealModeTSS);
4534 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4535 if ( pVCpu->hm.s.vmx.fWasInRealMode
4536 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4537 {
4538 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4539 in real-mode (e.g. OpenBSD 4.0) */
4540 REMFlushTBs(pVM);
4541 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4542 pVCpu->hm.s.vmx.fWasInRealMode = false;
4543 }
4544 }
4545#endif
4546 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4547 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4548 AssertRCReturn(rc, rc);
4549 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4550 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4551 AssertRCReturn(rc, rc);
4552 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4553 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4554 AssertRCReturn(rc, rc);
4555 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4556 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4557 AssertRCReturn(rc, rc);
4558 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4559 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4560 AssertRCReturn(rc, rc);
4561 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4562 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4563 AssertRCReturn(rc, rc);
4564
4565#ifdef VBOX_STRICT
4566 /* Validate. */
4567 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4568#endif
4569
4570 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4571 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4572 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4573 }
4574
4575 /*
4576 * Guest TR.
4577 */
4578 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4579 {
4580 /*
4581 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4582 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4583 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4584 */
4585 uint16_t u16Sel = 0;
4586 uint32_t u32Limit = 0;
4587 uint64_t u64Base = 0;
4588 uint32_t u32AccessRights = 0;
4589
4590 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4591 {
4592 u16Sel = pMixedCtx->tr.Sel;
4593 u32Limit = pMixedCtx->tr.u32Limit;
4594 u64Base = pMixedCtx->tr.u64Base;
4595 u32AccessRights = pMixedCtx->tr.Attr.u;
4596 }
4597 else
4598 {
4599 Assert(pVM->hm.s.vmx.pRealModeTSS);
4600 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4601
4602 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4603 RTGCPHYS GCPhys;
4604 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4605 AssertRCReturn(rc, rc);
4606
4607 X86DESCATTR DescAttr;
4608 DescAttr.u = 0;
4609 DescAttr.n.u1Present = 1;
4610 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4611
4612 u16Sel = 0;
4613 u32Limit = HM_VTX_TSS_SIZE;
4614 u64Base = GCPhys; /* in real-mode phys = virt. */
4615 u32AccessRights = DescAttr.u;
4616 }
4617
4618 /* Validate. */
4619 Assert(!(u16Sel & RT_BIT(2)));
4620 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4621 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4622 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4623 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4624 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4625 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4626 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4627 Assert( (u32Limit & 0xfff) == 0xfff
4628 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4629 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4630 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4631
4632 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4633 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4634 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4635 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4636 AssertRCReturn(rc, rc);
4637
4638 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4639 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4640 }
4641
4642 /*
4643 * Guest GDTR.
4644 */
4645 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4646 {
4647 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4648 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4649 AssertRCReturn(rc, rc);
4650
4651 /* Validate. */
4652 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4653
4654 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4655 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4656 }
4657
4658 /*
4659 * Guest LDTR.
4660 */
4661 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4662 {
4663 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4664 uint32_t u32Access = 0;
4665 if (!pMixedCtx->ldtr.Attr.u)
4666 u32Access = X86DESCATTR_UNUSABLE;
4667 else
4668 u32Access = pMixedCtx->ldtr.Attr.u;
4669
4670 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4671 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4672 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4673 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4674 AssertRCReturn(rc, rc);
4675
4676 /* Validate. */
4677 if (!(u32Access & X86DESCATTR_UNUSABLE))
4678 {
4679 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4680 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4681 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4682 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4683 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4684 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4685 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4686 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4687 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4688 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4689 }
4690
4691 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4692 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4693 }
4694
4695 /*
4696 * Guest IDTR.
4697 */
4698 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4699 {
4700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4701 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4702 AssertRCReturn(rc, rc);
4703
4704 /* Validate. */
4705 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4706
4707 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4708 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4709 }
4710
4711 return VINF_SUCCESS;
4712}
4713
4714
4715/**
4716 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4717 * areas.
4718 *
4719 * These MSRs will automatically be loaded to the host CPU on every successful
4720 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4721 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4722 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4723 *
4724 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4725 *
4726 * @returns VBox status code.
4727 * @param pVCpu The cross context virtual CPU structure.
4728 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4729 * out-of-sync. Make sure to update the required fields
4730 * before using them.
4731 *
4732 * @remarks No-long-jump zone!!!
4733 */
4734static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4735{
4736 AssertPtr(pVCpu);
4737 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4738
4739 /*
4740 * MSRs that we use the auto-load/store MSR area in the VMCS.
4741 */
4742 PVM pVM = pVCpu->CTX_SUFF(pVM);
4743 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4744 {
4745 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4746#if HC_ARCH_BITS == 32
4747 if (pVM->hm.s.fAllow64BitGuests)
4748 {
4749 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4750 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4751 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4752 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4753 AssertRCReturn(rc, rc);
4754# ifdef LOG_ENABLED
4755 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4756 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4757 {
4758 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4759 pMsr->u64Value));
4760 }
4761# endif
4762 }
4763#endif
4764 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4765 }
4766
4767 /*
4768 * Guest Sysenter MSRs.
4769 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4770 * VM-exits on WRMSRs for these MSRs.
4771 */
4772 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4773 {
4774 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4775 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4776 }
4777
4778 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4779 {
4780 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4781 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4782 }
4783
4784 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4785 {
4786 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4787 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4788 }
4789
4790 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4791 {
4792 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4793 {
4794 /*
4795 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4796 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4797 */
4798 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4799 {
4800 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4801 AssertRCReturn(rc,rc);
4802 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4803 }
4804 else
4805 {
4806 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4807 NULL /* pfAddedAndUpdated */);
4808 AssertRCReturn(rc, rc);
4809
4810 /* We need to intercept reads too, see @bugref{7386#c16}. */
4811 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4812 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4813 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4814 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4815 }
4816 }
4817 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4818 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4819 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4820 }
4821
4822 return VINF_SUCCESS;
4823}
4824
4825
4826/**
4827 * Loads the guest activity state into the guest-state area in the VMCS.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4832 * out-of-sync. Make sure to update the required fields
4833 * before using them.
4834 *
4835 * @remarks No-long-jump zone!!!
4836 */
4837static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4838{
4839 NOREF(pMixedCtx);
4840 /** @todo See if we can make use of other states, e.g.
4841 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4842 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4843 {
4844 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4845 AssertRCReturn(rc, rc);
4846
4847 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4848 }
4849 return VINF_SUCCESS;
4850}
4851
4852
4853#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4854/**
4855 * Check if guest state allows safe use of 32-bit switcher again.
4856 *
4857 * Segment bases and protected mode structures must be 32-bit addressable
4858 * because the 32-bit switcher will ignore high dword when writing these VMCS
4859 * fields. See @bugref{8432} for details.
4860 *
4861 * @returns true if safe, false if must continue to use the 64-bit switcher.
4862 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4863 * out-of-sync. Make sure to update the required fields
4864 * before using them.
4865 *
4866 * @remarks No-long-jump zone!!!
4867 */
4868static bool hmR0VmxIs32BitSwitcherSafe(PCPUMCTX pMixedCtx)
4869{
4870 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4871 return false;
4872 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4873 return false;
4874 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4875 return false;
4876 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4877 return false;
4878 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4879 return false;
4880 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4881 return false;
4882 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4883 return false;
4884 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4885 return false;
4886 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4887 return false;
4888 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4889 return false;
4890 /* All good, bases are 32-bit. */
4891 return true;
4892}
4893#endif
4894
4895
4896/**
4897 * Sets up the appropriate function to run guest code.
4898 *
4899 * @returns VBox status code.
4900 * @param pVCpu The cross context virtual CPU structure.
4901 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4902 * out-of-sync. Make sure to update the required fields
4903 * before using them.
4904 *
4905 * @remarks No-long-jump zone!!!
4906 */
4907static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4908{
4909 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4910 {
4911#ifndef VBOX_ENABLE_64_BITS_GUESTS
4912 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4913#endif
4914 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4915#if HC_ARCH_BITS == 32
4916 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4917 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4918 {
4919 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4920 {
4921 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4922 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4923 | HM_CHANGED_VMX_ENTRY_CTLS
4924 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4925 }
4926 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4927
4928 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4929 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4930 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4931 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4932 }
4933#else
4934 /* 64-bit host. */
4935 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4936#endif
4937 }
4938 else
4939 {
4940 /* Guest is not in long mode, use the 32-bit handler. */
4941#if HC_ARCH_BITS == 32
4942 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4943 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4944 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4945 {
4946 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4947 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4948 | HM_CHANGED_VMX_ENTRY_CTLS
4949 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4950 }
4951# ifdef VBOX_ENABLE_64_BITS_GUESTS
4952 /*
4953 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4954 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4955 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4956 * the much faster 32-bit switcher again.
4957 */
4958 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4959 {
4960 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4961 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4962 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4963 }
4964 else
4965 {
4966 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4967 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4968 || hmR0VmxIs32BitSwitcherSafe(pMixedCtx))
4969 {
4970 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4971 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4972 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
4973 | HM_CHANGED_VMX_ENTRY_CTLS
4974 | HM_CHANGED_VMX_EXIT_CTLS
4975 | HM_CHANGED_HOST_CONTEXT);
4976 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4977 }
4978 }
4979# else
4980 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4981# endif
4982#else
4983 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4984#endif
4985 }
4986 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4987 return VINF_SUCCESS;
4988}
4989
4990
4991/**
4992 * Wrapper for running the guest code in VT-x.
4993 *
4994 * @returns VBox status code, no informational status codes.
4995 * @param pVM The cross context VM structure.
4996 * @param pVCpu The cross context virtual CPU structure.
4997 * @param pCtx Pointer to the guest-CPU context.
4998 *
4999 * @remarks No-long-jump zone!!!
5000 */
5001DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5002{
5003 /*
5004 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
5005 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
5006 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
5007 */
5008 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
5009 /** @todo Add stats for resume vs launch. */
5010#ifdef VBOX_WITH_KERNEL_USING_XMM
5011 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
5012#else
5013 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
5014#endif
5015 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
5016 return rc;
5017}
5018
5019
5020/**
5021 * Reports world-switch error and dumps some useful debug info.
5022 *
5023 * @param pVM The cross context VM structure.
5024 * @param pVCpu The cross context virtual CPU structure.
5025 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5026 * @param pCtx Pointer to the guest-CPU context.
5027 * @param pVmxTransient Pointer to the VMX transient structure (only
5028 * exitReason updated).
5029 */
5030static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5031{
5032 Assert(pVM);
5033 Assert(pVCpu);
5034 Assert(pCtx);
5035 Assert(pVmxTransient);
5036 HMVMX_ASSERT_PREEMPT_SAFE();
5037
5038 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5039 switch (rcVMRun)
5040 {
5041 case VERR_VMX_INVALID_VMXON_PTR:
5042 AssertFailed();
5043 break;
5044 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5045 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5046 {
5047 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5048 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5049 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5050 AssertRC(rc);
5051
5052 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5053 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5054 Cannot do it here as we may have been long preempted. */
5055
5056#ifdef VBOX_STRICT
5057 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5058 pVmxTransient->uExitReason));
5059 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5060 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5061 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5062 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5063 else
5064 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5065 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5066 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5067
5068 /* VMX control bits. */
5069 uint32_t u32Val;
5070 uint64_t u64Val;
5071 RTHCUINTREG uHCReg;
5072 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5073 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5074 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5075 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5076 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5077 {
5078 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5079 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5080 }
5081 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5082 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5083 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5084 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5085 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5086 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5087 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5088 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5089 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5090 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5091 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5092 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5094 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5096 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5097 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5098 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5100 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5101 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5102 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5103 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5104 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5105 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5106 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5107 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5108 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5109 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5110 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5111 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5112 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5113 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5114 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5115 if (pVM->hm.s.fNestedPaging)
5116 {
5117 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5118 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5119 }
5120
5121 /* Guest bits. */
5122 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5123 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5124 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5125 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5126 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5127 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5128 if (pVM->hm.s.vmx.fVpid)
5129 {
5130 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5131 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5132 }
5133
5134 /* Host bits. */
5135 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5136 Log4(("Host CR0 %#RHr\n", uHCReg));
5137 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5138 Log4(("Host CR3 %#RHr\n", uHCReg));
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5140 Log4(("Host CR4 %#RHr\n", uHCReg));
5141
5142 RTGDTR HostGdtr;
5143 PCX86DESCHC pDesc;
5144 ASMGetGDTR(&HostGdtr);
5145 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5146 Log4(("Host CS %#08x\n", u32Val));
5147 if (u32Val < HostGdtr.cbGdt)
5148 {
5149 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5150 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5151 }
5152
5153 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5154 Log4(("Host DS %#08x\n", u32Val));
5155 if (u32Val < HostGdtr.cbGdt)
5156 {
5157 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5158 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5159 }
5160
5161 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5162 Log4(("Host ES %#08x\n", u32Val));
5163 if (u32Val < HostGdtr.cbGdt)
5164 {
5165 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5166 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5167 }
5168
5169 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5170 Log4(("Host FS %#08x\n", u32Val));
5171 if (u32Val < HostGdtr.cbGdt)
5172 {
5173 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5174 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5175 }
5176
5177 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5178 Log4(("Host GS %#08x\n", u32Val));
5179 if (u32Val < HostGdtr.cbGdt)
5180 {
5181 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5182 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5183 }
5184
5185 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5186 Log4(("Host SS %#08x\n", u32Val));
5187 if (u32Val < HostGdtr.cbGdt)
5188 {
5189 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5190 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5191 }
5192
5193 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5194 Log4(("Host TR %#08x\n", u32Val));
5195 if (u32Val < HostGdtr.cbGdt)
5196 {
5197 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5198 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5199 }
5200
5201 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5202 Log4(("Host TR Base %#RHv\n", uHCReg));
5203 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5204 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5205 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5206 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5207 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5208 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5209 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5210 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5211 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5212 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5213 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5214 Log4(("Host RSP %#RHv\n", uHCReg));
5215 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5216 Log4(("Host RIP %#RHv\n", uHCReg));
5217# if HC_ARCH_BITS == 64
5218 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5219 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5220 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5221 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5222 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5223 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5224# endif
5225#endif /* VBOX_STRICT */
5226 break;
5227 }
5228
5229 default:
5230 /* Impossible */
5231 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5232 break;
5233 }
5234 NOREF(pVM); NOREF(pCtx);
5235}
5236
5237
5238#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5239#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5240# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5241#endif
5242#ifdef VBOX_STRICT
5243static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5244{
5245 switch (idxField)
5246 {
5247 case VMX_VMCS_GUEST_RIP:
5248 case VMX_VMCS_GUEST_RSP:
5249 case VMX_VMCS_GUEST_SYSENTER_EIP:
5250 case VMX_VMCS_GUEST_SYSENTER_ESP:
5251 case VMX_VMCS_GUEST_GDTR_BASE:
5252 case VMX_VMCS_GUEST_IDTR_BASE:
5253 case VMX_VMCS_GUEST_CS_BASE:
5254 case VMX_VMCS_GUEST_DS_BASE:
5255 case VMX_VMCS_GUEST_ES_BASE:
5256 case VMX_VMCS_GUEST_FS_BASE:
5257 case VMX_VMCS_GUEST_GS_BASE:
5258 case VMX_VMCS_GUEST_SS_BASE:
5259 case VMX_VMCS_GUEST_LDTR_BASE:
5260 case VMX_VMCS_GUEST_TR_BASE:
5261 case VMX_VMCS_GUEST_CR3:
5262 return true;
5263 }
5264 return false;
5265}
5266
5267static bool hmR0VmxIsValidReadField(uint32_t idxField)
5268{
5269 switch (idxField)
5270 {
5271 /* Read-only fields. */
5272 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5273 return true;
5274 }
5275 /* Remaining readable fields should also be writable. */
5276 return hmR0VmxIsValidWriteField(idxField);
5277}
5278#endif /* VBOX_STRICT */
5279
5280
5281/**
5282 * Executes the specified handler in 64-bit mode.
5283 *
5284 * @returns VBox status code (no informational status codes).
5285 * @param pVM The cross context VM structure.
5286 * @param pVCpu The cross context virtual CPU structure.
5287 * @param pCtx Pointer to the guest CPU context.
5288 * @param enmOp The operation to perform.
5289 * @param cParams Number of parameters.
5290 * @param paParam Array of 32-bit parameters.
5291 */
5292VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5293 uint32_t cParams, uint32_t *paParam)
5294{
5295 NOREF(pCtx);
5296
5297 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5298 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5299 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5300 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5301
5302#ifdef VBOX_STRICT
5303 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5304 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5305
5306 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5307 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5308#endif
5309
5310 /* Disable interrupts. */
5311 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5312
5313#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5314 RTCPUID idHostCpu = RTMpCpuId();
5315 CPUMR0SetLApic(pVCpu, idHostCpu);
5316#endif
5317
5318 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5319 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5320
5321 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5322 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5323 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5324
5325 /* Leave VMX Root Mode. */
5326 VMXDisable();
5327
5328 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5329
5330 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5331 CPUMSetHyperEIP(pVCpu, enmOp);
5332 for (int i = (int)cParams - 1; i >= 0; i--)
5333 CPUMPushHyper(pVCpu, paParam[i]);
5334
5335 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5336
5337 /* Call the switcher. */
5338 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5339 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5340
5341 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5342 /* Make sure the VMX instructions don't cause #UD faults. */
5343 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5344
5345 /* Re-enter VMX Root Mode */
5346 int rc2 = VMXEnable(HCPhysCpuPage);
5347 if (RT_FAILURE(rc2))
5348 {
5349 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5350 ASMSetFlags(fOldEFlags);
5351 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5352 return rc2;
5353 }
5354
5355 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5356 AssertRC(rc2);
5357 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5358 Assert(!(ASMGetFlags() & X86_EFL_IF));
5359 ASMSetFlags(fOldEFlags);
5360 return rc;
5361}
5362
5363
5364/**
5365 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5366 * supporting 64-bit guests.
5367 *
5368 * @returns VBox status code.
5369 * @param fResume Whether to VMLAUNCH or VMRESUME.
5370 * @param pCtx Pointer to the guest-CPU context.
5371 * @param pCache Pointer to the VMCS cache.
5372 * @param pVM The cross context VM structure.
5373 * @param pVCpu The cross context virtual CPU structure.
5374 */
5375DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5376{
5377 NOREF(fResume);
5378
5379 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5380 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5381
5382#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5383 pCache->uPos = 1;
5384 pCache->interPD = PGMGetInterPaeCR3(pVM);
5385 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5386#endif
5387
5388#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5389 pCache->TestIn.HCPhysCpuPage = 0;
5390 pCache->TestIn.HCPhysVmcs = 0;
5391 pCache->TestIn.pCache = 0;
5392 pCache->TestOut.HCPhysVmcs = 0;
5393 pCache->TestOut.pCache = 0;
5394 pCache->TestOut.pCtx = 0;
5395 pCache->TestOut.eflags = 0;
5396#else
5397 NOREF(pCache);
5398#endif
5399
5400 uint32_t aParam[10];
5401 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5402 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5403 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5404 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5405 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5406 aParam[5] = 0;
5407 aParam[6] = VM_RC_ADDR(pVM, pVM);
5408 aParam[7] = 0;
5409 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5410 aParam[9] = 0;
5411
5412#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5413 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5414 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5415#endif
5416 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5417
5418#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5419 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5420 Assert(pCtx->dr[4] == 10);
5421 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5422#endif
5423
5424#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5425 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5426 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5427 pVCpu->hm.s.vmx.HCPhysVmcs));
5428 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5429 pCache->TestOut.HCPhysVmcs));
5430 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5431 pCache->TestOut.pCache));
5432 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5433 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5434 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5435 pCache->TestOut.pCtx));
5436 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5437#endif
5438 return rc;
5439}
5440
5441
5442/**
5443 * Initialize the VMCS-Read cache.
5444 *
5445 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5446 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5447 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5448 * (those that have a 32-bit FULL & HIGH part).
5449 *
5450 * @returns VBox status code.
5451 * @param pVM The cross context VM structure.
5452 * @param pVCpu The cross context virtual CPU structure.
5453 */
5454static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5455{
5456#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5457{ \
5458 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5459 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5460 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5461 ++cReadFields; \
5462}
5463
5464 AssertPtr(pVM);
5465 AssertPtr(pVCpu);
5466 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5467 uint32_t cReadFields = 0;
5468
5469 /*
5470 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5471 * and serve to indicate exceptions to the rules.
5472 */
5473
5474 /* Guest-natural selector base fields. */
5475#if 0
5476 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5479#endif
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5482 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5485 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5486 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5487 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5489 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5490 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5491 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5492#if 0
5493 /* Unused natural width guest-state fields. */
5494 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5495 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5496#endif
5497 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5498 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5499
5500 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5501#if 0
5502 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5503 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5504 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5505 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5506 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5507 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5508 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5509 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5510 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5511#endif
5512
5513 /* Natural width guest-state fields. */
5514 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5515#if 0
5516 /* Currently unused field. */
5517 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5518#endif
5519
5520 if (pVM->hm.s.fNestedPaging)
5521 {
5522 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5523 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5524 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5525 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5526 }
5527 else
5528 {
5529 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5530 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5531 }
5532
5533#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5534 return VINF_SUCCESS;
5535}
5536
5537
5538/**
5539 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5540 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5541 * darwin, running 64-bit guests).
5542 *
5543 * @returns VBox status code.
5544 * @param pVCpu The cross context virtual CPU structure.
5545 * @param idxField The VMCS field encoding.
5546 * @param u64Val 16, 32 or 64-bit value.
5547 */
5548VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5549{
5550 int rc;
5551 switch (idxField)
5552 {
5553 /*
5554 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5555 */
5556 /* 64-bit Control fields. */
5557 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5558 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5559 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5560 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5561 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5562 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5563 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5564 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5565 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5566 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5567 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5568 case VMX_VMCS64_CTRL_EPTP_FULL:
5569 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5570 /* 64-bit Guest-state fields. */
5571 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5572 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5573 case VMX_VMCS64_GUEST_PAT_FULL:
5574 case VMX_VMCS64_GUEST_EFER_FULL:
5575 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5576 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5577 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5578 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5579 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5580 /* 64-bit Host-state fields. */
5581 case VMX_VMCS64_HOST_PAT_FULL:
5582 case VMX_VMCS64_HOST_EFER_FULL:
5583 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5584 {
5585 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5586 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5587 break;
5588 }
5589
5590 /*
5591 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5592 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5593 */
5594 /* Natural-width Guest-state fields. */
5595 case VMX_VMCS_GUEST_CR3:
5596 case VMX_VMCS_GUEST_ES_BASE:
5597 case VMX_VMCS_GUEST_CS_BASE:
5598 case VMX_VMCS_GUEST_SS_BASE:
5599 case VMX_VMCS_GUEST_DS_BASE:
5600 case VMX_VMCS_GUEST_FS_BASE:
5601 case VMX_VMCS_GUEST_GS_BASE:
5602 case VMX_VMCS_GUEST_LDTR_BASE:
5603 case VMX_VMCS_GUEST_TR_BASE:
5604 case VMX_VMCS_GUEST_GDTR_BASE:
5605 case VMX_VMCS_GUEST_IDTR_BASE:
5606 case VMX_VMCS_GUEST_RSP:
5607 case VMX_VMCS_GUEST_RIP:
5608 case VMX_VMCS_GUEST_SYSENTER_ESP:
5609 case VMX_VMCS_GUEST_SYSENTER_EIP:
5610 {
5611 if (!(RT_HI_U32(u64Val)))
5612 {
5613 /* If this field is 64-bit, VT-x will zero out the top bits. */
5614 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5615 }
5616 else
5617 {
5618 /* Assert that only the 32->64 switcher case should ever come here. */
5619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5620 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5621 }
5622 break;
5623 }
5624
5625 default:
5626 {
5627 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5628 rc = VERR_INVALID_PARAMETER;
5629 break;
5630 }
5631 }
5632 AssertRCReturn(rc, rc);
5633 return rc;
5634}
5635
5636
5637/**
5638 * Queue up a VMWRITE by using the VMCS write cache.
5639 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5640 *
5641 * @param pVCpu The cross context virtual CPU structure.
5642 * @param idxField The VMCS field encoding.
5643 * @param u64Val 16, 32 or 64-bit value.
5644 */
5645VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5646{
5647 AssertPtr(pVCpu);
5648 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5649
5650 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5651 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5652
5653 /* Make sure there are no duplicates. */
5654 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5655 {
5656 if (pCache->Write.aField[i] == idxField)
5657 {
5658 pCache->Write.aFieldVal[i] = u64Val;
5659 return VINF_SUCCESS;
5660 }
5661 }
5662
5663 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5664 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5665 pCache->Write.cValidEntries++;
5666 return VINF_SUCCESS;
5667}
5668#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5669
5670
5671/**
5672 * Sets up the usage of TSC-offsetting and updates the VMCS.
5673 *
5674 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5675 * VMX preemption timer.
5676 *
5677 * @returns VBox status code.
5678 * @param pVM The cross context VM structure.
5679 * @param pVCpu The cross context virtual CPU structure.
5680 *
5681 * @remarks No-long-jump zone!!!
5682 */
5683static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5684{
5685 int rc;
5686 bool fOffsettedTsc;
5687 bool fParavirtTsc;
5688 if (pVM->hm.s.vmx.fUsePreemptTimer)
5689 {
5690 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5691 &fOffsettedTsc, &fParavirtTsc);
5692
5693 /* Make sure the returned values have sane upper and lower boundaries. */
5694 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5695 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5696 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5697 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5698
5699 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5701 }
5702 else
5703 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5704
5705 /** @todo later optimize this to be done elsewhere and not before every
5706 * VM-entry. */
5707 if (fParavirtTsc)
5708 {
5709 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5710 information before every VM-entry, hence disable it for performance sake. */
5711#if 0
5712 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5713 AssertRC(rc);
5714#endif
5715 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5716 }
5717
5718 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5719 {
5720 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5721 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5722
5723 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5724 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5725 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5726 }
5727 else
5728 {
5729 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5730 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5731 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5732 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5733 }
5734}
5735
5736
5737#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5738/**
5739 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5740 * VM-exit interruption info type.
5741 *
5742 * @returns The IEM exception flags.
5743 * @param uVector The event vector.
5744 * @param uVmxVectorType The VMX event type.
5745 *
5746 * @remarks This function currently only constructs flags required for
5747 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5748 * and CR2 aspects of an exception are not included).
5749 */
5750static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5751{
5752 uint32_t fIemXcptFlags;
5753 switch (uVmxVectorType)
5754 {
5755 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5756 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5757 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5758 break;
5759
5760 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5761 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5762 break;
5763
5764 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5765 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5766 break;
5767
5768 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5769 {
5770 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5771 if (uVector == X86_XCPT_BP)
5772 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5773 else if (uVector == X86_XCPT_OF)
5774 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5775 else
5776 {
5777 fIemXcptFlags = 0;
5778 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5779 }
5780 break;
5781 }
5782
5783 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5784 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5785 break;
5786
5787 default:
5788 fIemXcptFlags = 0;
5789 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5790 break;
5791 }
5792 return fIemXcptFlags;
5793}
5794
5795#else
5796/**
5797 * Determines if an exception is a contributory exception.
5798 *
5799 * Contributory exceptions are ones which can cause double-faults unless the
5800 * original exception was a benign exception. Page-fault is intentionally not
5801 * included here as it's a conditional contributory exception.
5802 *
5803 * @returns true if the exception is contributory, false otherwise.
5804 * @param uVector The exception vector.
5805 */
5806DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5807{
5808 switch (uVector)
5809 {
5810 case X86_XCPT_GP:
5811 case X86_XCPT_SS:
5812 case X86_XCPT_NP:
5813 case X86_XCPT_TS:
5814 case X86_XCPT_DE:
5815 return true;
5816 default:
5817 break;
5818 }
5819 return false;
5820}
5821#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
5822
5823
5824/**
5825 * Sets an event as a pending event to be injected into the guest.
5826 *
5827 * @param pVCpu The cross context virtual CPU structure.
5828 * @param u32IntInfo The VM-entry interruption-information field.
5829 * @param cbInstr The VM-entry instruction length in bytes (for software
5830 * interrupts, exceptions and privileged software
5831 * exceptions).
5832 * @param u32ErrCode The VM-entry exception error code.
5833 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5834 * page-fault.
5835 *
5836 * @remarks Statistics counter assumes this is a guest event being injected or
5837 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5838 * always incremented.
5839 */
5840DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5841 RTGCUINTPTR GCPtrFaultAddress)
5842{
5843 Assert(!pVCpu->hm.s.Event.fPending);
5844 pVCpu->hm.s.Event.fPending = true;
5845 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5846 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5847 pVCpu->hm.s.Event.cbInstr = cbInstr;
5848 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5849}
5850
5851
5852/**
5853 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5854 *
5855 * @param pVCpu The cross context virtual CPU structure.
5856 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5857 * out-of-sync. Make sure to update the required fields
5858 * before using them.
5859 */
5860DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5861{
5862 NOREF(pMixedCtx);
5863 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5864 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5865 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5866 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5867}
5868
5869
5870/**
5871 * Handle a condition that occurred while delivering an event through the guest
5872 * IDT.
5873 *
5874 * @returns Strict VBox status code (i.e. informational status codes too).
5875 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5876 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5877 * to continue execution of the guest which will delivery the \#DF.
5878 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5879 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5880 *
5881 * @param pVCpu The cross context virtual CPU structure.
5882 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5883 * out-of-sync. Make sure to update the required fields
5884 * before using them.
5885 * @param pVmxTransient Pointer to the VMX transient structure.
5886 *
5887 * @remarks No-long-jump zone!!!
5888 */
5889static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5890{
5891 uint32_t const uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5892
5893 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5894 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5895
5896 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5897 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5898 {
5899 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5900 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5901#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5902 /*
5903 * If the event was a software interrupt (generated with INT n) or a software exception (generated
5904 * by INT3/INTO) or a privileged software exception (generated by INT1), we can handle the VM-exit
5905 * and continue guest execution which will re-execute the instruction rather than re-injecting the
5906 * exception, as that can cause premature trips to ring-3 before injection and involve TRPM which
5907 * currently has no way of storing that these exceptions were caused by these instructions
5908 * (ICEBP's #DB poses the problem).
5909 */
5910 IEMXCPTRAISE enmRaise;
5911 IEMXCPTRAISEINFO fRaiseInfo;
5912 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5913 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5914 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
5915 {
5916 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5917 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5918 }
5919 else if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5920 {
5921 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
5922 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
5923 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
5924 /** @todo Make AssertMsgReturn as just AssertMsg later. */
5925 AssertMsgReturn(uExitVectorType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT,
5926 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
5927 uExitVectorType), VERR_VMX_IPE_5);
5928 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5929
5930 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
5931 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5932 {
5933 pVmxTransient->fVectoringPF = true;
5934 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5935 }
5936 }
5937 else
5938 {
5939 /*
5940 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
5941 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
5942 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
5943 */
5944 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5945 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5946 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
5947 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5948 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5949 }
5950
5951 /*
5952 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
5953 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
5954 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
5955 * subsequent VM-entry would fail.
5956 *
5957 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5958 */
5959 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
5960 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5961 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
5962 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
5963 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5964 {
5965 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5966 }
5967
5968 switch (enmRaise)
5969 {
5970 case IEMXCPTRAISE_CURRENT_XCPT:
5971 {
5972 Log4(("IDT: vcpu[%RU32] Pending secondary xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n", pVCpu->idCpu,
5973 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
5974 Assert(rcStrict == VINF_SUCCESS);
5975 break;
5976 }
5977
5978 case IEMXCPTRAISE_PREV_EVENT:
5979 {
5980 uint32_t u32ErrCode;
5981 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5982 {
5983 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5984 AssertRCReturn(rc2, rc2);
5985 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5986 }
5987 else
5988 u32ErrCode = 0;
5989
5990 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
5991 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5992 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5993 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5994
5995 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
5996 pVCpu->hm.s.Event.u32ErrCode));
5997 Assert(rcStrict == VINF_SUCCESS);
5998 break;
5999 }
6000
6001 case IEMXCPTRAISE_REEXEC_INSTR:
6002 Assert(rcStrict == VINF_SUCCESS);
6003 break;
6004
6005 case IEMXCPTRAISE_DOUBLE_FAULT:
6006 {
6007 /*
6008 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6009 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6010 */
6011 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6012 {
6013 pVmxTransient->fVectoringDoublePF = true;
6014 Log4(("IDT: vcpu[%RU32] Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
6015 pMixedCtx->cr2));
6016 rcStrict = VINF_SUCCESS;
6017 }
6018 else
6019 {
6020 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6021 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6022 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6023 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6024 rcStrict = VINF_HM_DOUBLE_FAULT;
6025 }
6026 break;
6027 }
6028
6029 case IEMXCPTRAISE_TRIPLE_FAULT:
6030 {
6031 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6032 uExitVector));
6033 rcStrict = VINF_EM_RESET;
6034 break;
6035 }
6036
6037 case IEMXCPTRAISE_CPU_HANG:
6038 {
6039 Log4(("IDT: vcpu[%RU32] Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", pVCpu->idCpu, fRaiseInfo));
6040 rcStrict = VERR_EM_GUEST_CPU_HANG;
6041 break;
6042 }
6043
6044 default:
6045 {
6046 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6047 rcStrict = VERR_VMX_IPE_2;
6048 break;
6049 }
6050 }
6051#else
6052 typedef enum
6053 {
6054 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
6055 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
6056 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
6057 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
6058 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
6059 } VMXREFLECTXCPT;
6060
6061 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
6062 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
6063 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6064 {
6065 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
6066 {
6067 enmReflect = VMXREFLECTXCPT_XCPT;
6068#ifdef VBOX_STRICT
6069 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
6070 && uExitVector == X86_XCPT_PF)
6071 {
6072 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6073 }
6074#endif
6075 if ( uExitVector == X86_XCPT_PF
6076 && uIdtVector == X86_XCPT_PF)
6077 {
6078 pVmxTransient->fVectoringDoublePF = true;
6079 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6080 }
6081 else if ( uExitVector == X86_XCPT_AC
6082 && uIdtVector == X86_XCPT_AC)
6083 {
6084 enmReflect = VMXREFLECTXCPT_HANG;
6085 Log4(("IDT: Nested #AC - Bad guest\n"));
6086 }
6087 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
6088 && hmR0VmxIsContributoryXcpt(uExitVector)
6089 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
6090 || uIdtVector == X86_XCPT_PF))
6091 {
6092 enmReflect = VMXREFLECTXCPT_DF;
6093 }
6094 else if (uIdtVector == X86_XCPT_DF)
6095 enmReflect = VMXREFLECTXCPT_TF;
6096 }
6097 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6098 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6099 {
6100 /*
6101 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
6102 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
6103 */
6104 enmReflect = VMXREFLECTXCPT_XCPT;
6105
6106 if (uExitVector == X86_XCPT_PF)
6107 {
6108 pVmxTransient->fVectoringPF = true;
6109 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6110 }
6111 }
6112 }
6113 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6114 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6115 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6116 {
6117 /*
6118 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
6119 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
6120 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
6121 */
6122 enmReflect = VMXREFLECTXCPT_XCPT;
6123 }
6124
6125 /*
6126 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
6127 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
6128 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
6129 *
6130 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6131 */
6132 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6133 && enmReflect == VMXREFLECTXCPT_XCPT
6134 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
6135 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6136 {
6137 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6138 }
6139
6140 switch (enmReflect)
6141 {
6142 case VMXREFLECTXCPT_XCPT:
6143 {
6144 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6145 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6146 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
6147
6148 uint32_t u32ErrCode = 0;
6149 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6150 {
6151 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6152 AssertRCReturn(rc2, rc2);
6153 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6154 }
6155
6156 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
6157 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6158 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6159 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
6160 rcStrict = VINF_SUCCESS;
6161 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
6162 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
6163
6164 break;
6165 }
6166
6167 case VMXREFLECTXCPT_DF:
6168 {
6169 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6170 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6171 rcStrict = VINF_HM_DOUBLE_FAULT;
6172 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6173 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6174
6175 break;
6176 }
6177
6178 case VMXREFLECTXCPT_TF:
6179 {
6180 rcStrict = VINF_EM_RESET;
6181 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6182 uExitVector));
6183 break;
6184 }
6185
6186 case VMXREFLECTXCPT_HANG:
6187 {
6188 rcStrict = VERR_EM_GUEST_CPU_HANG;
6189 break;
6190 }
6191
6192 default:
6193 Assert(rcStrict == VINF_SUCCESS);
6194 break;
6195 }
6196#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
6197 }
6198 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6199 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6200 && uExitVector != X86_XCPT_DF
6201 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
6202 {
6203 /*
6204 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6205 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6206 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6207 */
6208 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6209 {
6210 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
6211 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6212 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6213 }
6214 }
6215
6216 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6217 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6218 return rcStrict;
6219}
6220
6221
6222/**
6223 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
6224 *
6225 * @returns VBox status code.
6226 * @param pVCpu The cross context virtual CPU structure.
6227 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6228 * out-of-sync. Make sure to update the required fields
6229 * before using them.
6230 *
6231 * @remarks No-long-jump zone!!!
6232 */
6233static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6234{
6235 NOREF(pMixedCtx);
6236
6237 /*
6238 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6239 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6240 */
6241 VMMRZCallRing3Disable(pVCpu);
6242 HM_DISABLE_PREEMPT();
6243
6244 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6245 {
6246#ifndef DEBUG_bird /** @todo this triggers running bs3-cpu-generated-1.img with --debug-command-line
6247 * and 'dbgc-init' containing:
6248 * sxe "xcpt_de"
6249 * sxe "xcpt_bp"
6250 * sxi "xcpt_gp"
6251 * sxi "xcpt_ss"
6252 * sxi "xcpt_np"
6253 */
6254 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
6255#endif
6256 uint32_t uVal = 0;
6257 uint32_t uShadow = 0;
6258 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6259 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6260 AssertRCReturn(rc, rc);
6261
6262 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6263 CPUMSetGuestCR0(pVCpu, uVal);
6264 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6265 }
6266
6267 HM_RESTORE_PREEMPT();
6268 VMMRZCallRing3Enable(pVCpu);
6269 return VINF_SUCCESS;
6270}
6271
6272
6273/**
6274 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6275 *
6276 * @returns VBox status code.
6277 * @param pVCpu The cross context virtual CPU structure.
6278 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6279 * out-of-sync. Make sure to update the required fields
6280 * before using them.
6281 *
6282 * @remarks No-long-jump zone!!!
6283 */
6284static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6285{
6286 NOREF(pMixedCtx);
6287
6288 int rc = VINF_SUCCESS;
6289 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6290 {
6291 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4));
6292 uint32_t uVal = 0;
6293 uint32_t uShadow = 0;
6294 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6295 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6296 AssertRCReturn(rc, rc);
6297
6298 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6299 CPUMSetGuestCR4(pVCpu, uVal);
6300 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6301 }
6302 return rc;
6303}
6304
6305
6306/**
6307 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6308 *
6309 * @returns VBox status code.
6310 * @param pVCpu The cross context virtual CPU structure.
6311 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6312 * out-of-sync. Make sure to update the required fields
6313 * before using them.
6314 *
6315 * @remarks No-long-jump zone!!!
6316 */
6317static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6318{
6319 int rc = VINF_SUCCESS;
6320 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6321 {
6322 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP));
6323 uint64_t u64Val = 0;
6324 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6325 AssertRCReturn(rc, rc);
6326
6327 pMixedCtx->rip = u64Val;
6328 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6329 }
6330 return rc;
6331}
6332
6333
6334/**
6335 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6336 *
6337 * @returns VBox status code.
6338 * @param pVCpu The cross context virtual CPU structure.
6339 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6340 * out-of-sync. Make sure to update the required fields
6341 * before using them.
6342 *
6343 * @remarks No-long-jump zone!!!
6344 */
6345static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6346{
6347 int rc = VINF_SUCCESS;
6348 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6349 {
6350 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP));
6351 uint64_t u64Val = 0;
6352 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6353 AssertRCReturn(rc, rc);
6354
6355 pMixedCtx->rsp = u64Val;
6356 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6357 }
6358 return rc;
6359}
6360
6361
6362/**
6363 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6364 *
6365 * @returns VBox status code.
6366 * @param pVCpu The cross context virtual CPU structure.
6367 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6368 * out-of-sync. Make sure to update the required fields
6369 * before using them.
6370 *
6371 * @remarks No-long-jump zone!!!
6372 */
6373static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6374{
6375 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6376 {
6377 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS));
6378 uint32_t uVal = 0;
6379 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6380 AssertRCReturn(rc, rc);
6381
6382 pMixedCtx->eflags.u32 = uVal;
6383 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6384 {
6385 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6386 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6387
6388 pMixedCtx->eflags.Bits.u1VM = 0;
6389 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6390 }
6391
6392 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6393 }
6394 return VINF_SUCCESS;
6395}
6396
6397
6398/**
6399 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6400 * guest-CPU context.
6401 */
6402DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6403{
6404 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6405 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6406 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6407 return rc;
6408}
6409
6410
6411/**
6412 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6413 * from the guest-state area in the VMCS.
6414 *
6415 * @param pVCpu The cross context virtual CPU structure.
6416 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6417 * out-of-sync. Make sure to update the required fields
6418 * before using them.
6419 *
6420 * @remarks No-long-jump zone!!!
6421 */
6422static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6423{
6424 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6425 {
6426 uint32_t uIntrState = 0;
6427 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6428 AssertRC(rc);
6429
6430 if (!uIntrState)
6431 {
6432 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6433 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6434
6435 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6436 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6437 }
6438 else
6439 {
6440 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6441 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6442 {
6443 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6444 AssertRC(rc);
6445 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6446 AssertRC(rc);
6447
6448 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6449 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6450 }
6451 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6452 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6453
6454 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6455 {
6456 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6457 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6458 }
6459 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6460 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6461 }
6462
6463 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6464 }
6465}
6466
6467
6468/**
6469 * Saves the guest's activity state.
6470 *
6471 * @returns VBox status code.
6472 * @param pVCpu The cross context virtual CPU structure.
6473 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6474 * out-of-sync. Make sure to update the required fields
6475 * before using them.
6476 *
6477 * @remarks No-long-jump zone!!!
6478 */
6479static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6480{
6481 NOREF(pMixedCtx);
6482 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6483 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6484 return VINF_SUCCESS;
6485}
6486
6487
6488/**
6489 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6490 * the current VMCS into the guest-CPU context.
6491 *
6492 * @returns VBox status code.
6493 * @param pVCpu The cross context virtual CPU structure.
6494 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6495 * out-of-sync. Make sure to update the required fields
6496 * before using them.
6497 *
6498 * @remarks No-long-jump zone!!!
6499 */
6500static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6501{
6502 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6503 {
6504 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR));
6505 uint32_t u32Val = 0;
6506 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6507 pMixedCtx->SysEnter.cs = u32Val;
6508 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6509 }
6510
6511 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6512 {
6513 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR));
6514 uint64_t u64Val = 0;
6515 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6516 pMixedCtx->SysEnter.eip = u64Val;
6517 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6518 }
6519 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6520 {
6521 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR));
6522 uint64_t u64Val = 0;
6523 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6524 pMixedCtx->SysEnter.esp = u64Val;
6525 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6526 }
6527 return VINF_SUCCESS;
6528}
6529
6530
6531/**
6532 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6533 * the CPU back into the guest-CPU context.
6534 *
6535 * @returns VBox status code.
6536 * @param pVCpu The cross context virtual CPU structure.
6537 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6538 * out-of-sync. Make sure to update the required fields
6539 * before using them.
6540 *
6541 * @remarks No-long-jump zone!!!
6542 */
6543static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6544{
6545 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6546 VMMRZCallRing3Disable(pVCpu);
6547 HM_DISABLE_PREEMPT();
6548
6549 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6550 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6551 {
6552 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS));
6553 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6554 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6555 }
6556
6557 HM_RESTORE_PREEMPT();
6558 VMMRZCallRing3Enable(pVCpu);
6559
6560 return VINF_SUCCESS;
6561}
6562
6563
6564/**
6565 * Saves the auto load/store'd guest MSRs from the current VMCS into
6566 * the guest-CPU context.
6567 *
6568 * @returns VBox status code.
6569 * @param pVCpu The cross context virtual CPU structure.
6570 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6571 * out-of-sync. Make sure to update the required fields
6572 * before using them.
6573 *
6574 * @remarks No-long-jump zone!!!
6575 */
6576static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6577{
6578 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6579 return VINF_SUCCESS;
6580
6581 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS));
6582 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6583 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6584 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6585 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6586 {
6587 switch (pMsr->u32Msr)
6588 {
6589 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6590 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6591 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6592 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6593 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6594 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6595 break;
6596
6597 default:
6598 {
6599 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6600 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6601 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6602 }
6603 }
6604 }
6605
6606 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6607 return VINF_SUCCESS;
6608}
6609
6610
6611/**
6612 * Saves the guest control registers from the current VMCS into the guest-CPU
6613 * context.
6614 *
6615 * @returns VBox status code.
6616 * @param pVCpu The cross context virtual CPU structure.
6617 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6618 * out-of-sync. Make sure to update the required fields
6619 * before using them.
6620 *
6621 * @remarks No-long-jump zone!!!
6622 */
6623static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6624{
6625 /* Guest CR0. Guest FPU. */
6626 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6627 AssertRCReturn(rc, rc);
6628
6629 /* Guest CR4. */
6630 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6631 AssertRCReturn(rc, rc);
6632
6633 /* Guest CR2 - updated always during the world-switch or in #PF. */
6634 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6635 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6636 {
6637 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3));
6638 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6639 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6640
6641 PVM pVM = pVCpu->CTX_SUFF(pVM);
6642 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6643 || ( pVM->hm.s.fNestedPaging
6644 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6645 {
6646 uint64_t u64Val = 0;
6647 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6648 if (pMixedCtx->cr3 != u64Val)
6649 {
6650 CPUMSetGuestCR3(pVCpu, u64Val);
6651 if (VMMRZCallRing3IsEnabled(pVCpu))
6652 {
6653 PGMUpdateCR3(pVCpu, u64Val);
6654 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6655 }
6656 else
6657 {
6658 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6659 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6660 }
6661 }
6662
6663 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6664 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6665 {
6666 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6667 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6668 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6669 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6670 AssertRCReturn(rc, rc);
6671
6672 if (VMMRZCallRing3IsEnabled(pVCpu))
6673 {
6674 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6675 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6676 }
6677 else
6678 {
6679 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6680 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6681 }
6682 }
6683 }
6684
6685 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6686 }
6687
6688 /*
6689 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6690 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6691 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6692 *
6693 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6694 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6695 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6696 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6697 *
6698 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6699 */
6700 if (VMMRZCallRing3IsEnabled(pVCpu))
6701 {
6702 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6703 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6704
6705 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6706 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6707
6708 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6709 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6710 }
6711
6712 return rc;
6713}
6714
6715
6716/**
6717 * Reads a guest segment register from the current VMCS into the guest-CPU
6718 * context.
6719 *
6720 * @returns VBox status code.
6721 * @param pVCpu The cross context virtual CPU structure.
6722 * @param idxSel Index of the selector in the VMCS.
6723 * @param idxLimit Index of the segment limit in the VMCS.
6724 * @param idxBase Index of the segment base in the VMCS.
6725 * @param idxAccess Index of the access rights of the segment in the VMCS.
6726 * @param pSelReg Pointer to the segment selector.
6727 *
6728 * @remarks No-long-jump zone!!!
6729 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6730 * macro as that takes care of whether to read from the VMCS cache or
6731 * not.
6732 */
6733DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6734 PCPUMSELREG pSelReg)
6735{
6736 NOREF(pVCpu);
6737
6738 uint32_t u32Val = 0;
6739 int rc = VMXReadVmcs32(idxSel, &u32Val);
6740 AssertRCReturn(rc, rc);
6741 pSelReg->Sel = (uint16_t)u32Val;
6742 pSelReg->ValidSel = (uint16_t)u32Val;
6743 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6744
6745 rc = VMXReadVmcs32(idxLimit, &u32Val);
6746 AssertRCReturn(rc, rc);
6747 pSelReg->u32Limit = u32Val;
6748
6749 uint64_t u64Val = 0;
6750 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6751 AssertRCReturn(rc, rc);
6752 pSelReg->u64Base = u64Val;
6753
6754 rc = VMXReadVmcs32(idxAccess, &u32Val);
6755 AssertRCReturn(rc, rc);
6756 pSelReg->Attr.u = u32Val;
6757
6758 /*
6759 * If VT-x marks the segment as unusable, most other bits remain undefined:
6760 * - For CS the L, D and G bits have meaning.
6761 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6762 * - For the remaining data segments no bits are defined.
6763 *
6764 * The present bit and the unusable bit has been observed to be set at the
6765 * same time (the selector was supposed to be invalid as we started executing
6766 * a V8086 interrupt in ring-0).
6767 *
6768 * What should be important for the rest of the VBox code, is that the P bit is
6769 * cleared. Some of the other VBox code recognizes the unusable bit, but
6770 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6771 * safe side here, we'll strip off P and other bits we don't care about. If
6772 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6773 *
6774 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6775 */
6776 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6777 {
6778 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6779
6780 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6781 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6782 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6783
6784 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6785#ifdef DEBUG_bird
6786 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6787 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6788 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6789#endif
6790 }
6791 return VINF_SUCCESS;
6792}
6793
6794
6795#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6796# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6797 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6798 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6799#else
6800# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6801 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6802 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6803#endif
6804
6805
6806/**
6807 * Saves the guest segment registers from the current VMCS into the guest-CPU
6808 * context.
6809 *
6810 * @returns VBox status code.
6811 * @param pVCpu The cross context virtual CPU structure.
6812 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6813 * out-of-sync. Make sure to update the required fields
6814 * before using them.
6815 *
6816 * @remarks No-long-jump zone!!!
6817 */
6818static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6819{
6820 /* Guest segment registers. */
6821 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6822 {
6823 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS));
6824 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6825 AssertRCReturn(rc, rc);
6826
6827 rc = VMXLOCAL_READ_SEG(CS, cs);
6828 rc |= VMXLOCAL_READ_SEG(SS, ss);
6829 rc |= VMXLOCAL_READ_SEG(DS, ds);
6830 rc |= VMXLOCAL_READ_SEG(ES, es);
6831 rc |= VMXLOCAL_READ_SEG(FS, fs);
6832 rc |= VMXLOCAL_READ_SEG(GS, gs);
6833 AssertRCReturn(rc, rc);
6834
6835 /* Restore segment attributes for real-on-v86 mode hack. */
6836 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6837 {
6838 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6839 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6840 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6841 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6842 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6843 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6844 }
6845 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6846 }
6847
6848 return VINF_SUCCESS;
6849}
6850
6851
6852/**
6853 * Saves the guest descriptor table registers and task register from the current
6854 * VMCS into the guest-CPU context.
6855 *
6856 * @returns VBox status code.
6857 * @param pVCpu The cross context virtual CPU structure.
6858 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6859 * out-of-sync. Make sure to update the required fields
6860 * before using them.
6861 *
6862 * @remarks No-long-jump zone!!!
6863 */
6864static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6865{
6866 int rc = VINF_SUCCESS;
6867
6868 /* Guest LDTR. */
6869 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6870 {
6871 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR));
6872 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6873 AssertRCReturn(rc, rc);
6874 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6875 }
6876
6877 /* Guest GDTR. */
6878 uint64_t u64Val = 0;
6879 uint32_t u32Val = 0;
6880 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6881 {
6882 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR));
6883 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6884 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6885 pMixedCtx->gdtr.pGdt = u64Val;
6886 pMixedCtx->gdtr.cbGdt = u32Val;
6887 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6888 }
6889
6890 /* Guest IDTR. */
6891 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6892 {
6893 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR));
6894 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6895 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6896 pMixedCtx->idtr.pIdt = u64Val;
6897 pMixedCtx->idtr.cbIdt = u32Val;
6898 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6899 }
6900
6901 /* Guest TR. */
6902 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6903 {
6904 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR));
6905 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6906 AssertRCReturn(rc, rc);
6907
6908 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6909 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6910 {
6911 rc = VMXLOCAL_READ_SEG(TR, tr);
6912 AssertRCReturn(rc, rc);
6913 }
6914 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6915 }
6916 return rc;
6917}
6918
6919#undef VMXLOCAL_READ_SEG
6920
6921
6922/**
6923 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6924 * context.
6925 *
6926 * @returns VBox status code.
6927 * @param pVCpu The cross context virtual CPU structure.
6928 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6929 * out-of-sync. Make sure to update the required fields
6930 * before using them.
6931 *
6932 * @remarks No-long-jump zone!!!
6933 */
6934static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6935{
6936 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7))
6937 {
6938 if (!pVCpu->hm.s.fUsingHyperDR7)
6939 {
6940 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6941 uint32_t u32Val;
6942 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6943 pMixedCtx->dr[7] = u32Val;
6944 }
6945
6946 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7);
6947 }
6948 return VINF_SUCCESS;
6949}
6950
6951
6952/**
6953 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6954 *
6955 * @returns VBox status code.
6956 * @param pVCpu The cross context virtual CPU structure.
6957 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6958 * out-of-sync. Make sure to update the required fields
6959 * before using them.
6960 *
6961 * @remarks No-long-jump zone!!!
6962 */
6963static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6964{
6965 NOREF(pMixedCtx);
6966
6967 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6968 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6969 return VINF_SUCCESS;
6970}
6971
6972
6973/**
6974 * Saves the entire guest state from the currently active VMCS into the
6975 * guest-CPU context.
6976 *
6977 * This essentially VMREADs all guest-data.
6978 *
6979 * @returns VBox status code.
6980 * @param pVCpu The cross context virtual CPU structure.
6981 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6982 * out-of-sync. Make sure to update the required fields
6983 * before using them.
6984 */
6985static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6986{
6987 Assert(pVCpu);
6988 Assert(pMixedCtx);
6989
6990 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6991 return VINF_SUCCESS;
6992
6993 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6994 again on the ring-3 callback path, there is no real need to. */
6995 if (VMMRZCallRing3IsEnabled(pVCpu))
6996 VMMR0LogFlushDisable(pVCpu);
6997 else
6998 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6999 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
7000
7001 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
7002 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7003
7004 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7005 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7006
7007 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7008 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7009
7010 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
7011 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7012
7013 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
7014 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7015
7016 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
7017 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7018
7019 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7020 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7021
7022 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
7023 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7024
7025 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
7026 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7027
7028 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
7029 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7030
7031 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
7032 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
7033 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
7034
7035 if (VMMRZCallRing3IsEnabled(pVCpu))
7036 VMMR0LogFlushEnable(pVCpu);
7037
7038 return VINF_SUCCESS;
7039}
7040
7041
7042/**
7043 * Saves basic guest registers needed for IEM instruction execution.
7044 *
7045 * @returns VBox status code (OR-able).
7046 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7047 * @param pMixedCtx Pointer to the CPU context of the guest.
7048 * @param fMemory Whether the instruction being executed operates on
7049 * memory or not. Only CR0 is synced up if clear.
7050 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
7051 */
7052static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
7053{
7054 /*
7055 * We assume all general purpose registers other than RSP are available.
7056 *
7057 * - RIP is a must, as it will be incremented or otherwise changed.
7058 * - RFLAGS are always required to figure the CPL.
7059 * - RSP isn't always required, however it's a GPR, so frequently required.
7060 * - SS and CS are the only segment register needed if IEM doesn't do memory
7061 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
7062 * - CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
7063 * be required for memory accesses.
7064 *
7065 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
7066 */
7067 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
7068 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7069 if (fNeedRsp)
7070 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
7071 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7072 if (!fMemory)
7073 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7074 else
7075 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7076 AssertRCReturn(rc, rc);
7077 return rc;
7078}
7079
7080
7081/**
7082 * Ensures that we've got a complete basic guest-context.
7083 *
7084 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
7085 * is for the interpreter.
7086 *
7087 * @returns VBox status code.
7088 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7089 * @param pMixedCtx Pointer to the guest-CPU context which may have data
7090 * needing to be synced in.
7091 * @thread EMT(pVCpu)
7092 */
7093VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7094{
7095 /* Note! Since this is only applicable to VT-x, the implementation is placed
7096 in the VT-x part of the sources instead of the generic stuff. */
7097 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
7098 {
7099 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7100 /*
7101 * For now, imply that the caller might change everything too. Do this after
7102 * saving the guest state so as to not trigger assertions.
7103 */
7104 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7105 return rc;
7106 }
7107 return VINF_SUCCESS;
7108}
7109
7110
7111/**
7112 * Check per-VM and per-VCPU force flag actions that require us to go back to
7113 * ring-3 for one reason or another.
7114 *
7115 * @returns Strict VBox status code (i.e. informational status codes too)
7116 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7117 * ring-3.
7118 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7119 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7120 * interrupts)
7121 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7122 * all EMTs to be in ring-3.
7123 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7124 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7125 * to the EM loop.
7126 *
7127 * @param pVM The cross context VM structure.
7128 * @param pVCpu The cross context virtual CPU structure.
7129 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7130 * out-of-sync. Make sure to update the required fields
7131 * before using them.
7132 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
7133 */
7134static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
7135{
7136 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7137
7138 /*
7139 * Anything pending? Should be more likely than not if we're doing a good job.
7140 */
7141 if ( !fStepping
7142 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7143 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7144 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7145 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7146 return VINF_SUCCESS;
7147
7148 /* We need the control registers now, make sure the guest-CPU context is updated. */
7149 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7150 AssertRCReturn(rc3, rc3);
7151
7152 /* Pending HM CR3 sync. */
7153 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7154 {
7155 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
7156 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
7157 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
7158 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7159 }
7160
7161 /* Pending HM PAE PDPEs. */
7162 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7163 {
7164 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7165 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7166 }
7167
7168 /* Pending PGM C3 sync. */
7169 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7170 {
7171 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
7172 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7173 if (rcStrict2 != VINF_SUCCESS)
7174 {
7175 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7176 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7177 return rcStrict2;
7178 }
7179 }
7180
7181 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7182 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
7183 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7184 {
7185 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7186 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
7187 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7188 return rc2;
7189 }
7190
7191 /* Pending VM request packets, such as hardware interrupts. */
7192 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
7193 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
7194 {
7195 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
7196 return VINF_EM_PENDING_REQUEST;
7197 }
7198
7199 /* Pending PGM pool flushes. */
7200 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7201 {
7202 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
7203 return VINF_PGM_POOL_FLUSH_PENDING;
7204 }
7205
7206 /* Pending DMA requests. */
7207 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
7208 {
7209 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
7210 return VINF_EM_RAW_TO_R3;
7211 }
7212
7213 return VINF_SUCCESS;
7214}
7215
7216
7217/**
7218 * Converts any TRPM trap into a pending HM event. This is typically used when
7219 * entering from ring-3 (not longjmp returns).
7220 *
7221 * @param pVCpu The cross context virtual CPU structure.
7222 */
7223static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7224{
7225 Assert(TRPMHasTrap(pVCpu));
7226 Assert(!pVCpu->hm.s.Event.fPending);
7227
7228 uint8_t uVector;
7229 TRPMEVENT enmTrpmEvent;
7230 RTGCUINT uErrCode;
7231 RTGCUINTPTR GCPtrFaultAddress;
7232 uint8_t cbInstr;
7233
7234 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7235 AssertRC(rc);
7236
7237 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7238 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7239 if (enmTrpmEvent == TRPM_TRAP)
7240 {
7241 switch (uVector)
7242 {
7243 case X86_XCPT_NMI:
7244 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7245 break;
7246
7247 case X86_XCPT_BP:
7248 case X86_XCPT_OF:
7249 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7250 break;
7251
7252 case X86_XCPT_PF:
7253 case X86_XCPT_DF:
7254 case X86_XCPT_TS:
7255 case X86_XCPT_NP:
7256 case X86_XCPT_SS:
7257 case X86_XCPT_GP:
7258 case X86_XCPT_AC:
7259 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7260 /* fall thru */
7261 default:
7262 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7263 break;
7264 }
7265 }
7266 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7267 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7268 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7269 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7270 else
7271 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7272
7273 rc = TRPMResetTrap(pVCpu);
7274 AssertRC(rc);
7275 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7276 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7277
7278 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7279}
7280
7281
7282/**
7283 * Converts the pending HM event into a TRPM trap.
7284 *
7285 * @param pVCpu The cross context virtual CPU structure.
7286 */
7287static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7288{
7289 Assert(pVCpu->hm.s.Event.fPending);
7290
7291 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7292 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7293 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7294 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7295
7296 /* If a trap was already pending, we did something wrong! */
7297 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7298
7299 TRPMEVENT enmTrapType;
7300 switch (uVectorType)
7301 {
7302 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7303 enmTrapType = TRPM_HARDWARE_INT;
7304 break;
7305
7306 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7307 enmTrapType = TRPM_SOFTWARE_INT;
7308 break;
7309
7310 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7311 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7312 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7313 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7314 enmTrapType = TRPM_TRAP;
7315 break;
7316
7317 default:
7318 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7319 enmTrapType = TRPM_32BIT_HACK;
7320 break;
7321 }
7322
7323 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7324
7325 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7326 AssertRC(rc);
7327
7328 if (fErrorCodeValid)
7329 TRPMSetErrorCode(pVCpu, uErrorCode);
7330
7331 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7332 && uVector == X86_XCPT_PF)
7333 {
7334 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7335 }
7336 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7337 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7338 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7339 {
7340 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7341 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7342 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7343 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7344 }
7345
7346 /* Clear any pending events from the VMCS. */
7347 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7348 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7349
7350 /* We're now done converting the pending event. */
7351 pVCpu->hm.s.Event.fPending = false;
7352}
7353
7354
7355/**
7356 * Does the necessary state syncing before returning to ring-3 for any reason
7357 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7358 *
7359 * @returns VBox status code.
7360 * @param pVCpu The cross context virtual CPU structure.
7361 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7362 * be out-of-sync. Make sure to update the required
7363 * fields before using them.
7364 * @param fSaveGuestState Whether to save the guest state or not.
7365 *
7366 * @remarks No-long-jmp zone!!!
7367 */
7368static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7369{
7370 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7371 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7372
7373 RTCPUID idCpu = RTMpCpuId();
7374 Log4Func(("HostCpuId=%u\n", idCpu));
7375
7376 /*
7377 * !!! IMPORTANT !!!
7378 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7379 */
7380
7381 /* Save the guest state if necessary. */
7382 if ( fSaveGuestState
7383 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7384 {
7385 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7386 AssertRCReturn(rc, rc);
7387 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7388 }
7389
7390 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7391 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7392 {
7393 /* We shouldn't reload CR0 without saving it first. */
7394 if (!fSaveGuestState)
7395 {
7396 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7397 AssertRCReturn(rc, rc);
7398 }
7399 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7400 }
7401
7402 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7403#ifdef VBOX_STRICT
7404 if (CPUMIsHyperDebugStateActive(pVCpu))
7405 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7406#endif
7407 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7408 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7409 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7410 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7411
7412#if HC_ARCH_BITS == 64
7413 /* Restore host-state bits that VT-x only restores partially. */
7414 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7415 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7416 {
7417 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7418 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7419 }
7420 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7421#endif
7422
7423 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7424 if (pVCpu->hm.s.vmx.fLazyMsrs)
7425 {
7426 /* We shouldn't reload the guest MSRs without saving it first. */
7427 if (!fSaveGuestState)
7428 {
7429 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7430 AssertRCReturn(rc, rc);
7431 }
7432 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7433 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7434 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7435 }
7436
7437 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7438 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7439
7440 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7441 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7442 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7443 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7444 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7445 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7446 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7447 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7448
7449 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7450
7451 /** @todo This partially defeats the purpose of having preemption hooks.
7452 * The problem is, deregistering the hooks should be moved to a place that
7453 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7454 * context.
7455 */
7456 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7457 {
7458 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7459 AssertRCReturn(rc, rc);
7460
7461 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7462 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7463 }
7464 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7465 NOREF(idCpu);
7466
7467 return VINF_SUCCESS;
7468}
7469
7470
7471/**
7472 * Leaves the VT-x session.
7473 *
7474 * @returns VBox status code.
7475 * @param pVCpu The cross context virtual CPU structure.
7476 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7477 * out-of-sync. Make sure to update the required fields
7478 * before using them.
7479 *
7480 * @remarks No-long-jmp zone!!!
7481 */
7482DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7483{
7484 HM_DISABLE_PREEMPT();
7485 HMVMX_ASSERT_CPU_SAFE();
7486 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7487 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7488
7489 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7490 and done this from the VMXR0ThreadCtxCallback(). */
7491 if (!pVCpu->hm.s.fLeaveDone)
7492 {
7493 int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
7494 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7495 pVCpu->hm.s.fLeaveDone = true;
7496 }
7497 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7498
7499 /*
7500 * !!! IMPORTANT !!!
7501 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7502 */
7503
7504 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7505 /** @todo Deregistering here means we need to VMCLEAR always
7506 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7507 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7508 VMMR0ThreadCtxHookDisable(pVCpu);
7509
7510 /* Leave HM context. This takes care of local init (term). */
7511 int rc = HMR0LeaveCpu(pVCpu);
7512
7513 HM_RESTORE_PREEMPT();
7514 return rc;
7515}
7516
7517
7518/**
7519 * Does the necessary state syncing before doing a longjmp to ring-3.
7520 *
7521 * @returns VBox status code.
7522 * @param pVCpu The cross context virtual CPU structure.
7523 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7524 * out-of-sync. Make sure to update the required fields
7525 * before using them.
7526 *
7527 * @remarks No-long-jmp zone!!!
7528 */
7529DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7530{
7531 return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7532}
7533
7534
7535/**
7536 * Take necessary actions before going back to ring-3.
7537 *
7538 * An action requires us to go back to ring-3. This function does the necessary
7539 * steps before we can safely return to ring-3. This is not the same as longjmps
7540 * to ring-3, this is voluntary and prepares the guest so it may continue
7541 * executing outside HM (recompiler/IEM).
7542 *
7543 * @returns VBox status code.
7544 * @param pVM The cross context VM structure.
7545 * @param pVCpu The cross context virtual CPU structure.
7546 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7547 * out-of-sync. Make sure to update the required fields
7548 * before using them.
7549 * @param rcExit The reason for exiting to ring-3. Can be
7550 * VINF_VMM_UNKNOWN_RING3_CALL.
7551 */
7552static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7553{
7554 Assert(pVM);
7555 Assert(pVCpu);
7556 Assert(pMixedCtx);
7557 HMVMX_ASSERT_PREEMPT_SAFE();
7558
7559 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7560 {
7561 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7562 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7563 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7564 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7565 }
7566
7567 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7568 VMMRZCallRing3Disable(pVCpu);
7569 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7570
7571 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7572 if (pVCpu->hm.s.Event.fPending)
7573 {
7574 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7575 Assert(!pVCpu->hm.s.Event.fPending);
7576 }
7577
7578 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7579 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7580
7581 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7582 and if we're injecting an event we should have a TRPM trap pending. */
7583 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7584#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7585 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7586#endif
7587
7588 /* Save guest state and restore host state bits. */
7589 int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7590 AssertRCReturn(rc, rc);
7591 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7592 /* Thread-context hooks are unregistered at this point!!! */
7593
7594 /* Sync recompiler state. */
7595 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7596 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7597 | CPUM_CHANGED_LDTR
7598 | CPUM_CHANGED_GDTR
7599 | CPUM_CHANGED_IDTR
7600 | CPUM_CHANGED_TR
7601 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7602 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7603 if ( pVM->hm.s.fNestedPaging
7604 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7605 {
7606 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7607 }
7608
7609 Assert(!pVCpu->hm.s.fClearTrapFlag);
7610
7611 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7612 if (rcExit != VINF_EM_RAW_INTERRUPT)
7613 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7614
7615 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7616
7617 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7618 VMMRZCallRing3RemoveNotification(pVCpu);
7619 VMMRZCallRing3Enable(pVCpu);
7620
7621 return rc;
7622}
7623
7624
7625/**
7626 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7627 * longjump to ring-3 and possibly get preempted.
7628 *
7629 * @returns VBox status code.
7630 * @param pVCpu The cross context virtual CPU structure.
7631 * @param enmOperation The operation causing the ring-3 longjump.
7632 * @param pvUser Opaque pointer to the guest-CPU context. The data
7633 * may be out-of-sync. Make sure to update the required
7634 * fields before using them.
7635 */
7636static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7637{
7638 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7639 {
7640 /*
7641 * !!! IMPORTANT !!!
7642 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7643 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7644 */
7645 VMMRZCallRing3RemoveNotification(pVCpu);
7646 VMMRZCallRing3Disable(pVCpu);
7647 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7648 RTThreadPreemptDisable(&PreemptState);
7649
7650 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7651 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7652
7653#if HC_ARCH_BITS == 64
7654 /* Restore host-state bits that VT-x only restores partially. */
7655 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7656 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7657 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7658 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7659#endif
7660 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7661 if (pVCpu->hm.s.vmx.fLazyMsrs)
7662 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7663
7664 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7665 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7666 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7667 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7668 {
7669 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7670 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7671 }
7672
7673 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7674 VMMR0ThreadCtxHookDisable(pVCpu);
7675 HMR0LeaveCpu(pVCpu);
7676 RTThreadPreemptRestore(&PreemptState);
7677 return VINF_SUCCESS;
7678 }
7679
7680 Assert(pVCpu);
7681 Assert(pvUser);
7682 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7683 HMVMX_ASSERT_PREEMPT_SAFE();
7684
7685 VMMRZCallRing3Disable(pVCpu);
7686 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7687
7688 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7689 enmOperation));
7690
7691 int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
7692 AssertRCReturn(rc, rc);
7693
7694 VMMRZCallRing3Enable(pVCpu);
7695 return VINF_SUCCESS;
7696}
7697
7698
7699/**
7700 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7701 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7702 *
7703 * @param pVCpu The cross context virtual CPU structure.
7704 */
7705DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7706{
7707 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7708 {
7709 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7710 {
7711 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7712 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7713 AssertRC(rc);
7714 Log4(("Setup interrupt-window exiting\n"));
7715 }
7716 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7717}
7718
7719
7720/**
7721 * Clears the interrupt-window exiting control in the VMCS.
7722 *
7723 * @param pVCpu The cross context virtual CPU structure.
7724 */
7725DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7726{
7727 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7728 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7729 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7730 AssertRC(rc);
7731 Log4(("Cleared interrupt-window exiting\n"));
7732}
7733
7734
7735/**
7736 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7737 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7738 *
7739 * @param pVCpu The cross context virtual CPU structure.
7740 */
7741DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7742{
7743 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7744 {
7745 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7746 {
7747 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7748 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7749 AssertRC(rc);
7750 Log4(("Setup NMI-window exiting\n"));
7751 }
7752 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7753}
7754
7755
7756/**
7757 * Clears the NMI-window exiting control in the VMCS.
7758 *
7759 * @param pVCpu The cross context virtual CPU structure.
7760 */
7761DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7762{
7763 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7764 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7765 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7766 AssertRC(rc);
7767 Log4(("Cleared NMI-window exiting\n"));
7768}
7769
7770
7771/**
7772 * Evaluates the event to be delivered to the guest and sets it as the pending
7773 * event.
7774 *
7775 * @returns The VT-x guest-interruptibility state.
7776 * @param pVCpu The cross context virtual CPU structure.
7777 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7778 * out-of-sync. Make sure to update the required fields
7779 * before using them.
7780 */
7781static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7782{
7783 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7784 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7785 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7786 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7787 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7788
7789 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7790 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7791 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7792 Assert(!TRPMHasTrap(pVCpu));
7793
7794 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7795 APICUpdatePendingInterrupts(pVCpu);
7796
7797 /*
7798 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7799 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7800 */
7801 /** @todo SMI. SMIs take priority over NMIs. */
7802 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7803 {
7804 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7805 if ( !pVCpu->hm.s.Event.fPending
7806 && !fBlockNmi
7807 && !fBlockSti
7808 && !fBlockMovSS)
7809 {
7810 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7811 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7812 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7813
7814 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7815 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7816 }
7817 else
7818 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7819 }
7820 /*
7821 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7822 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7823 */
7824 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7825 && !pVCpu->hm.s.fSingleInstruction)
7826 {
7827 Assert(!DBGFIsStepping(pVCpu));
7828 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7829 AssertRC(rc);
7830 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7831 if ( !pVCpu->hm.s.Event.fPending
7832 && !fBlockInt
7833 && !fBlockSti
7834 && !fBlockMovSS)
7835 {
7836 uint8_t u8Interrupt;
7837 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7838 if (RT_SUCCESS(rc))
7839 {
7840 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7841 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7842 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7843
7844 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7845 }
7846 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7847 {
7848 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7849 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7850 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7851
7852 /*
7853 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7854 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7855 * need to re-set this force-flag here.
7856 */
7857 }
7858 else
7859 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7860 }
7861 else
7862 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7863 }
7864
7865 return uIntrState;
7866}
7867
7868
7869/**
7870 * Sets a pending-debug exception to be delivered to the guest if the guest is
7871 * single-stepping in the VMCS.
7872 *
7873 * @param pVCpu The cross context virtual CPU structure.
7874 */
7875DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7876{
7877 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7878 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7879 AssertRC(rc);
7880}
7881
7882
7883/**
7884 * Injects any pending events into the guest if the guest is in a state to
7885 * receive them.
7886 *
7887 * @returns Strict VBox status code (i.e. informational status codes too).
7888 * @param pVCpu The cross context virtual CPU structure.
7889 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7890 * out-of-sync. Make sure to update the required fields
7891 * before using them.
7892 * @param uIntrState The VT-x guest-interruptibility state.
7893 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7894 * return VINF_EM_DBG_STEPPED if the event was
7895 * dispatched directly.
7896 */
7897static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7898{
7899 HMVMX_ASSERT_PREEMPT_SAFE();
7900 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7901
7902 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7903 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7904
7905 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7906 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7907 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7908 Assert(!TRPMHasTrap(pVCpu));
7909
7910 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7911 if (pVCpu->hm.s.Event.fPending)
7912 {
7913 /*
7914 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7915 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7916 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7917 *
7918 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7919 */
7920 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7921#ifdef VBOX_STRICT
7922 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7923 {
7924 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7925 Assert(!fBlockInt);
7926 Assert(!fBlockSti);
7927 Assert(!fBlockMovSS);
7928 }
7929 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7930 {
7931 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7932 Assert(!fBlockSti);
7933 Assert(!fBlockMovSS);
7934 Assert(!fBlockNmi);
7935 }
7936#endif
7937 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7938 (uint8_t)uIntType));
7939 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7940 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7941 fStepping, &uIntrState);
7942 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7943
7944 /* Update the interruptibility-state as it could have been changed by
7945 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7946 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7947 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7948
7949 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7950 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7951 else
7952 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7953 }
7954
7955 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7956 if ( fBlockSti
7957 || fBlockMovSS)
7958 {
7959 if (!pVCpu->hm.s.fSingleInstruction)
7960 {
7961 /*
7962 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7963 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7964 * See Intel spec. 27.3.4 "Saving Non-Register State".
7965 */
7966 Assert(!DBGFIsStepping(pVCpu));
7967 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7968 AssertRCReturn(rc2, rc2);
7969 if (pMixedCtx->eflags.Bits.u1TF)
7970 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7971 }
7972 else if (pMixedCtx->eflags.Bits.u1TF)
7973 {
7974 /*
7975 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7976 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7977 */
7978 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7979 uIntrState = 0;
7980 }
7981 }
7982
7983 /*
7984 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7985 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7986 */
7987 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7988 AssertRC(rc2);
7989
7990 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7991 NOREF(fBlockMovSS); NOREF(fBlockSti);
7992 return rcStrict;
7993}
7994
7995
7996/**
7997 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7998 *
7999 * @param pVCpu The cross context virtual CPU structure.
8000 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8001 * out-of-sync. Make sure to update the required fields
8002 * before using them.
8003 */
8004DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8005{
8006 NOREF(pMixedCtx);
8007 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
8008 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8009}
8010
8011
8012/**
8013 * Injects a double-fault (\#DF) exception into the VM.
8014 *
8015 * @returns Strict VBox status code (i.e. informational status codes too).
8016 * @param pVCpu The cross context virtual CPU structure.
8017 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8018 * out-of-sync. Make sure to update the required fields
8019 * before using them.
8020 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
8021 * and should return VINF_EM_DBG_STEPPED if the event
8022 * is injected directly (register modified by us, not
8023 * by hardware on VM-entry).
8024 * @param puIntrState Pointer to the current guest interruptibility-state.
8025 * This interruptibility-state will be updated if
8026 * necessary. This cannot not be NULL.
8027 */
8028DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
8029{
8030 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8031 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8032 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8033 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
8034 fStepping, puIntrState);
8035}
8036
8037
8038/**
8039 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
8040 *
8041 * @param pVCpu The cross context virtual CPU structure.
8042 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8043 * out-of-sync. Make sure to update the required fields
8044 * before using them.
8045 */
8046DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8047{
8048 NOREF(pMixedCtx);
8049 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
8050 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8051 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8052}
8053
8054
8055/**
8056 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
8057 *
8058 * @param pVCpu The cross context virtual CPU structure.
8059 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8060 * out-of-sync. Make sure to update the required fields
8061 * before using them.
8062 * @param cbInstr The value of RIP that is to be pushed on the guest
8063 * stack.
8064 */
8065DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
8066{
8067 NOREF(pMixedCtx);
8068 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8069 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8070 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8071}
8072
8073
8074/**
8075 * Injects a general-protection (\#GP) fault into the VM.
8076 *
8077 * @returns Strict VBox status code (i.e. informational status codes too).
8078 * @param pVCpu The cross context virtual CPU structure.
8079 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8080 * out-of-sync. Make sure to update the required fields
8081 * before using them.
8082 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
8083 * mode, i.e. in real-mode it's not valid).
8084 * @param u32ErrorCode The error code associated with the \#GP.
8085 * @param fStepping Whether we're running in
8086 * hmR0VmxRunGuestCodeStep() and should return
8087 * VINF_EM_DBG_STEPPED if the event is injected
8088 * directly (register modified by us, not by
8089 * hardware on VM-entry).
8090 * @param puIntrState Pointer to the current guest interruptibility-state.
8091 * This interruptibility-state will be updated if
8092 * necessary. This cannot not be NULL.
8093 */
8094DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
8095 bool fStepping, uint32_t *puIntrState)
8096{
8097 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8098 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8099 if (fErrorCodeValid)
8100 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8101 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
8102 fStepping, puIntrState);
8103}
8104
8105
8106#if 0 /* unused */
8107/**
8108 * Sets a general-protection (\#GP) exception as pending-for-injection into the
8109 * VM.
8110 *
8111 * @param pVCpu The cross context virtual CPU structure.
8112 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8113 * out-of-sync. Make sure to update the required fields
8114 * before using them.
8115 * @param u32ErrorCode The error code associated with the \#GP.
8116 */
8117DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
8118{
8119 NOREF(pMixedCtx);
8120 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8121 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8122 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8123 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
8124}
8125#endif /* unused */
8126
8127
8128/**
8129 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
8130 *
8131 * @param pVCpu The cross context virtual CPU structure.
8132 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8133 * out-of-sync. Make sure to update the required fields
8134 * before using them.
8135 * @param uVector The software interrupt vector number.
8136 * @param cbInstr The value of RIP that is to be pushed on the guest
8137 * stack.
8138 */
8139DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
8140{
8141 NOREF(pMixedCtx);
8142 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
8143 if ( uVector == X86_XCPT_BP
8144 || uVector == X86_XCPT_OF)
8145 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8146 else
8147 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8148 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8149}
8150
8151
8152/**
8153 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8154 * stack.
8155 *
8156 * @returns Strict VBox status code (i.e. informational status codes too).
8157 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8158 * @param pVM The cross context VM structure.
8159 * @param pMixedCtx Pointer to the guest-CPU context.
8160 * @param uValue The value to push to the guest stack.
8161 */
8162DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
8163{
8164 /*
8165 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8166 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8167 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8168 */
8169 if (pMixedCtx->sp == 1)
8170 return VINF_EM_RESET;
8171 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8172 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
8173 AssertRC(rc);
8174 return rc;
8175}
8176
8177
8178/**
8179 * Injects an event into the guest upon VM-entry by updating the relevant fields
8180 * in the VM-entry area in the VMCS.
8181 *
8182 * @returns Strict VBox status code (i.e. informational status codes too).
8183 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8184 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8185 *
8186 * @param pVCpu The cross context virtual CPU structure.
8187 * @param pMixedCtx Pointer to the guest-CPU context. The data may
8188 * be out-of-sync. Make sure to update the required
8189 * fields before using them.
8190 * @param u64IntInfo The VM-entry interruption-information field.
8191 * @param cbInstr The VM-entry instruction length in bytes (for
8192 * software interrupts, exceptions and privileged
8193 * software exceptions).
8194 * @param u32ErrCode The VM-entry exception error code.
8195 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
8196 * @param puIntrState Pointer to the current guest interruptibility-state.
8197 * This interruptibility-state will be updated if
8198 * necessary. This cannot not be NULL.
8199 * @param fStepping Whether we're running in
8200 * hmR0VmxRunGuestCodeStep() and should return
8201 * VINF_EM_DBG_STEPPED if the event is injected
8202 * directly (register modified by us, not by
8203 * hardware on VM-entry).
8204 *
8205 * @remarks Requires CR0!
8206 */
8207static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
8208 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
8209 uint32_t *puIntrState)
8210{
8211 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8212 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
8213 Assert(puIntrState);
8214 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
8215
8216 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
8217 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
8218
8219#ifdef VBOX_STRICT
8220 /* Validate the error-code-valid bit for hardware exceptions. */
8221 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
8222 {
8223 switch (uVector)
8224 {
8225 case X86_XCPT_PF:
8226 case X86_XCPT_DF:
8227 case X86_XCPT_TS:
8228 case X86_XCPT_NP:
8229 case X86_XCPT_SS:
8230 case X86_XCPT_GP:
8231 case X86_XCPT_AC:
8232 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
8233 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8234 /* fall thru */
8235 default:
8236 break;
8237 }
8238 }
8239#endif
8240
8241 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8242 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8243 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
8244
8245 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8246
8247 /* We require CR0 to check if the guest is in real-mode. */
8248 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8249 AssertRCReturn(rc, rc);
8250
8251 /*
8252 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
8253 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
8254 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
8255 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8256 */
8257 if (CPUMIsGuestInRealModeEx(pMixedCtx))
8258 {
8259 PVM pVM = pVCpu->CTX_SUFF(pVM);
8260 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
8261 {
8262 Assert(PDMVmmDevHeapIsEnabled(pVM));
8263 Assert(pVM->hm.s.vmx.pRealModeTSS);
8264
8265 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
8266 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8267 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8268 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8269 AssertRCReturn(rc, rc);
8270 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8271
8272 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8273 size_t const cbIdtEntry = sizeof(X86IDTR16);
8274 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8275 {
8276 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8277 if (uVector == X86_XCPT_DF)
8278 return VINF_EM_RESET;
8279
8280 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8281 if (uVector == X86_XCPT_GP)
8282 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8283
8284 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8285 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8286 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8287 fStepping, puIntrState);
8288 }
8289
8290 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8291 uint16_t uGuestIp = pMixedCtx->ip;
8292 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8293 {
8294 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8295 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8296 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8297 }
8298 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8299 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8300
8301 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8302 X86IDTR16 IdtEntry;
8303 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8304 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8305 AssertRCReturn(rc, rc);
8306
8307 /* Construct the stack frame for the interrupt/exception handler. */
8308 VBOXSTRICTRC rcStrict;
8309 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8310 if (rcStrict == VINF_SUCCESS)
8311 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8312 if (rcStrict == VINF_SUCCESS)
8313 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8314
8315 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8316 if (rcStrict == VINF_SUCCESS)
8317 {
8318 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8319 pMixedCtx->rip = IdtEntry.offSel;
8320 pMixedCtx->cs.Sel = IdtEntry.uSel;
8321 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8322 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8323 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8324 && uVector == X86_XCPT_PF)
8325 pMixedCtx->cr2 = GCPtrFaultAddress;
8326
8327 /* If any other guest-state bits are changed here, make sure to update
8328 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8329 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8330 | HM_CHANGED_GUEST_RIP
8331 | HM_CHANGED_GUEST_RFLAGS
8332 | HM_CHANGED_GUEST_RSP);
8333
8334 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8335 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8336 {
8337 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8338 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8339 Log4(("Clearing inhibition due to STI.\n"));
8340 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8341 }
8342 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8343 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8344
8345 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8346 it, if we are returning to ring-3 before executing guest code. */
8347 pVCpu->hm.s.Event.fPending = false;
8348
8349 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8350 if (fStepping)
8351 rcStrict = VINF_EM_DBG_STEPPED;
8352 }
8353 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8354 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8355 return rcStrict;
8356 }
8357
8358 /*
8359 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8360 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8361 */
8362 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8363 }
8364
8365 /* Validate. */
8366 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8367 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8368 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8369
8370 /* Inject. */
8371 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8372 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8373 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8374 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8375
8376 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8377 && uVector == X86_XCPT_PF)
8378 pMixedCtx->cr2 = GCPtrFaultAddress;
8379
8380 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8381 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8382
8383 AssertRCReturn(rc, rc);
8384 return VINF_SUCCESS;
8385}
8386
8387
8388/**
8389 * Clears the interrupt-window exiting control in the VMCS and if necessary
8390 * clears the current event in the VMCS as well.
8391 *
8392 * @returns VBox status code.
8393 * @param pVCpu The cross context virtual CPU structure.
8394 *
8395 * @remarks Use this function only to clear events that have not yet been
8396 * delivered to the guest but are injected in the VMCS!
8397 * @remarks No-long-jump zone!!!
8398 */
8399static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8400{
8401 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8402
8403 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8404 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8405
8406 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8407 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8408}
8409
8410
8411/**
8412 * Enters the VT-x session.
8413 *
8414 * @returns VBox status code.
8415 * @param pVM The cross context VM structure.
8416 * @param pVCpu The cross context virtual CPU structure.
8417 * @param pCpu Pointer to the CPU info struct.
8418 */
8419VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8420{
8421 AssertPtr(pVM);
8422 AssertPtr(pVCpu);
8423 Assert(pVM->hm.s.vmx.fSupported);
8424 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8425 NOREF(pCpu); NOREF(pVM);
8426
8427 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8428 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8429
8430#ifdef VBOX_STRICT
8431 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8432 RTCCUINTREG uHostCR4 = ASMGetCR4();
8433 if (!(uHostCR4 & X86_CR4_VMXE))
8434 {
8435 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8436 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8437 }
8438#endif
8439
8440 /*
8441 * Load the VCPU's VMCS as the current (and active) one.
8442 */
8443 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8444 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8445 if (RT_FAILURE(rc))
8446 return rc;
8447
8448 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8449 pVCpu->hm.s.fLeaveDone = false;
8450 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8451
8452 return VINF_SUCCESS;
8453}
8454
8455
8456/**
8457 * The thread-context callback (only on platforms which support it).
8458 *
8459 * @param enmEvent The thread-context event.
8460 * @param pVCpu The cross context virtual CPU structure.
8461 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8462 * @thread EMT(pVCpu)
8463 */
8464VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8465{
8466 NOREF(fGlobalInit);
8467
8468 switch (enmEvent)
8469 {
8470 case RTTHREADCTXEVENT_OUT:
8471 {
8472 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8473 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8474 VMCPU_ASSERT_EMT(pVCpu);
8475
8476 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8477
8478 /* No longjmps (logger flushes, locks) in this fragile context. */
8479 VMMRZCallRing3Disable(pVCpu);
8480 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8481
8482 /*
8483 * Restore host-state (FPU, debug etc.)
8484 */
8485 if (!pVCpu->hm.s.fLeaveDone)
8486 {
8487 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8488 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8489 hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
8490 pVCpu->hm.s.fLeaveDone = true;
8491 }
8492
8493 /* Leave HM context, takes care of local init (term). */
8494 int rc = HMR0LeaveCpu(pVCpu);
8495 AssertRC(rc); NOREF(rc);
8496
8497 /* Restore longjmp state. */
8498 VMMRZCallRing3Enable(pVCpu);
8499 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8500 break;
8501 }
8502
8503 case RTTHREADCTXEVENT_IN:
8504 {
8505 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8506 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8507 VMCPU_ASSERT_EMT(pVCpu);
8508
8509 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8510 VMMRZCallRing3Disable(pVCpu);
8511 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8512
8513 /* Initialize the bare minimum state required for HM. This takes care of
8514 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8515 int rc = HMR0EnterCpu(pVCpu);
8516 AssertRC(rc);
8517 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8518
8519 /* Load the active VMCS as the current one. */
8520 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8521 {
8522 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8523 AssertRC(rc); NOREF(rc);
8524 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8525 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8526 }
8527 pVCpu->hm.s.fLeaveDone = false;
8528
8529 /* Restore longjmp state. */
8530 VMMRZCallRing3Enable(pVCpu);
8531 break;
8532 }
8533
8534 default:
8535 break;
8536 }
8537}
8538
8539
8540/**
8541 * Saves the host state in the VMCS host-state.
8542 * Sets up the VM-exit MSR-load area.
8543 *
8544 * The CPU state will be loaded from these fields on every successful VM-exit.
8545 *
8546 * @returns VBox status code.
8547 * @param pVM The cross context VM structure.
8548 * @param pVCpu The cross context virtual CPU structure.
8549 *
8550 * @remarks No-long-jump zone!!!
8551 */
8552static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8553{
8554 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8555
8556 int rc = VINF_SUCCESS;
8557 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8558 {
8559 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8560 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8561
8562 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8563 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8564
8565 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8566 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8567
8568 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8569 }
8570 return rc;
8571}
8572
8573
8574/**
8575 * Saves the host state in the VMCS host-state.
8576 *
8577 * @returns VBox status code.
8578 * @param pVM The cross context VM structure.
8579 * @param pVCpu The cross context virtual CPU structure.
8580 *
8581 * @remarks No-long-jump zone!!!
8582 */
8583VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8584{
8585 AssertPtr(pVM);
8586 AssertPtr(pVCpu);
8587
8588 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8589
8590 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8591 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8592 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8593 return hmR0VmxSaveHostState(pVM, pVCpu);
8594}
8595
8596
8597/**
8598 * Loads the guest state into the VMCS guest-state area.
8599 *
8600 * The will typically be done before VM-entry when the guest-CPU state and the
8601 * VMCS state may potentially be out of sync.
8602 *
8603 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8604 * VM-entry controls.
8605 * Sets up the appropriate VMX non-root function to execute guest code based on
8606 * the guest CPU mode.
8607 *
8608 * @returns VBox strict status code.
8609 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8610 * without unrestricted guest access and the VMMDev is not presently
8611 * mapped (e.g. EFI32).
8612 *
8613 * @param pVM The cross context VM structure.
8614 * @param pVCpu The cross context virtual CPU structure.
8615 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8616 * out-of-sync. Make sure to update the required fields
8617 * before using them.
8618 *
8619 * @remarks No-long-jump zone!!!
8620 */
8621static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8622{
8623 AssertPtr(pVM);
8624 AssertPtr(pVCpu);
8625 AssertPtr(pMixedCtx);
8626 HMVMX_ASSERT_PREEMPT_SAFE();
8627
8628 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8629
8630 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8631
8632 /* Determine real-on-v86 mode. */
8633 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8634 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8635 && CPUMIsGuestInRealModeEx(pMixedCtx))
8636 {
8637 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8638 }
8639
8640 /*
8641 * Load the guest-state into the VMCS.
8642 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8643 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8644 */
8645 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8646 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8647
8648 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8649 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8650 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8651
8652 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8653 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8654 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8655
8656 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8657 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8658
8659 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8660 if (rcStrict == VINF_SUCCESS)
8661 { /* likely */ }
8662 else
8663 {
8664 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8665 return rcStrict;
8666 }
8667
8668 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8669 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8670 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8671
8672 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8673 determine we don't have to swap EFER after all. */
8674 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8675 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8676
8677 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8678 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8679
8680 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8681 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8682
8683 /*
8684 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8685 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8686 */
8687 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8688 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8689
8690 /* Clear any unused and reserved bits. */
8691 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8692
8693 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8694 return rc;
8695}
8696
8697
8698/**
8699 * Loads the state shared between the host and guest into the VMCS.
8700 *
8701 * @param pVM The cross context VM structure.
8702 * @param pVCpu The cross context virtual CPU structure.
8703 * @param pCtx Pointer to the guest-CPU context.
8704 *
8705 * @remarks No-long-jump zone!!!
8706 */
8707static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8708{
8709 NOREF(pVM);
8710
8711 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8712 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8713
8714 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8715 {
8716 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8717 AssertRC(rc);
8718 }
8719
8720 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8721 {
8722 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8723 AssertRC(rc);
8724
8725 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8726 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8727 {
8728 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8729 AssertRC(rc);
8730 }
8731 }
8732
8733 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8734 {
8735 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8736 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8737 }
8738
8739 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8740 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8741 {
8742 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8743 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8744 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8745 AssertRC(rc);
8746 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8747 }
8748
8749 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8750 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8751}
8752
8753
8754/**
8755 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8756 *
8757 * @returns Strict VBox status code (i.e. informational status codes too).
8758 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8759 * without unrestricted guest access and the VMMDev is not presently
8760 * mapped (e.g. EFI32).
8761 *
8762 * @param pVM The cross context VM structure.
8763 * @param pVCpu The cross context virtual CPU structure.
8764 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8765 * out-of-sync. Make sure to update the required fields
8766 * before using them.
8767 *
8768 * @remarks No-long-jump zone!!!
8769 */
8770static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8771{
8772 HMVMX_ASSERT_PREEMPT_SAFE();
8773 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8774 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8775
8776 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8777#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8778 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8779#endif
8780
8781 /*
8782 * RIP is what changes the most often and hence if it's the only bit needing to be
8783 * updated, we shall handle it early for performance reasons.
8784 */
8785 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8786 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8787 {
8788 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8789 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8790 { /* likely */}
8791 else
8792 {
8793 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8794 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8795 }
8796 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8797 }
8798 else if (HMCPU_CF_VALUE(pVCpu))
8799 {
8800 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8801 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8802 { /* likely */}
8803 else
8804 {
8805 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8806 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8807 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8808 return rcStrict;
8809 }
8810 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8811 }
8812
8813 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8814 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8815 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8816 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8817 return rcStrict;
8818}
8819
8820
8821/**
8822 * Does the preparations before executing guest code in VT-x.
8823 *
8824 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8825 * recompiler/IEM. We must be cautious what we do here regarding committing
8826 * guest-state information into the VMCS assuming we assuredly execute the
8827 * guest in VT-x mode.
8828 *
8829 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8830 * the common-state (TRPM/forceflags), we must undo those changes so that the
8831 * recompiler/IEM can (and should) use them when it resumes guest execution.
8832 * Otherwise such operations must be done when we can no longer exit to ring-3.
8833 *
8834 * @returns Strict VBox status code (i.e. informational status codes too).
8835 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8836 * have been disabled.
8837 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8838 * double-fault into the guest.
8839 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8840 * dispatched directly.
8841 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8842 *
8843 * @param pVM The cross context VM structure.
8844 * @param pVCpu The cross context virtual CPU structure.
8845 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8846 * out-of-sync. Make sure to update the required fields
8847 * before using them.
8848 * @param pVmxTransient Pointer to the VMX transient structure.
8849 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8850 * us ignore some of the reasons for returning to
8851 * ring-3, and return VINF_EM_DBG_STEPPED if event
8852 * dispatching took place.
8853 */
8854static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8855{
8856 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8857
8858#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8859 PGMRZDynMapFlushAutoSet(pVCpu);
8860#endif
8861
8862 /* Check force flag actions that might require us to go back to ring-3. */
8863 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8864 if (rcStrict == VINF_SUCCESS)
8865 { /* FFs doesn't get set all the time. */ }
8866 else
8867 return rcStrict;
8868
8869#ifndef IEM_VERIFICATION_MODE_FULL
8870 /*
8871 * Setup the virtualized-APIC accesses.
8872 *
8873 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8874 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8875 *
8876 * This is the reason we do it here and not in hmR0VmxLoadGuestState().
8877 */
8878 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8879 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
8880 && PDMHasApic(pVM))
8881 {
8882 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8883 Assert(u64MsrApicBase);
8884 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8885
8886 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8887
8888 /* Unalias any existing mapping. */
8889 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8890 AssertRCReturn(rc, rc);
8891
8892 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8893 Log4(("hmR0VmxPreRunGuest: VCPU%u: Mapped HC APIC-access page at %#RGp\n", pVCpu->idCpu, GCPhysApicBase));
8894 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8895 AssertRCReturn(rc, rc);
8896
8897 /* Update the per-VCPU cache of the APIC base MSR. */
8898 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8899 }
8900#endif /* !IEM_VERIFICATION_MODE_FULL */
8901
8902 if (TRPMHasTrap(pVCpu))
8903 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8904 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8905
8906 /*
8907 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8908 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8909 */
8910 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8911 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8912 { /* likely */ }
8913 else
8914 {
8915 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8916 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8917 return rcStrict;
8918 }
8919
8920 /*
8921 * No longjmps to ring-3 from this point on!!!
8922 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8923 * This also disables flushing of the R0-logger instance (if any).
8924 */
8925 VMMRZCallRing3Disable(pVCpu);
8926
8927 /*
8928 * Load the guest state bits.
8929 *
8930 * We cannot perform longjmps while loading the guest state because we do not preserve the
8931 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8932 * CPU migration.
8933 *
8934 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8935 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8936 * Hence, loading of the guest state needs to be done -after- injection of events.
8937 */
8938 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8939 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8940 { /* likely */ }
8941 else
8942 {
8943 VMMRZCallRing3Enable(pVCpu);
8944 return rcStrict;
8945 }
8946
8947 /*
8948 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8949 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8950 *
8951 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8952 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8953 *
8954 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8955 * executing guest code.
8956 */
8957 pVmxTransient->fEFlags = ASMIntDisableFlags();
8958
8959 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8960 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8961 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8962 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8963 {
8964 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8965 {
8966 pVCpu->hm.s.Event.fPending = false;
8967
8968 /*
8969 * We've injected any pending events. This is really the point of no return (to ring-3).
8970 *
8971 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8972 * returns from this function, so don't enable them here.
8973 */
8974 return VINF_SUCCESS;
8975 }
8976
8977 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8978 rcStrict = VINF_EM_RAW_INTERRUPT;
8979 }
8980 else
8981 {
8982 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8983 rcStrict = VINF_EM_RAW_TO_R3;
8984 }
8985
8986 ASMSetFlags(pVmxTransient->fEFlags);
8987 VMMRZCallRing3Enable(pVCpu);
8988
8989 return rcStrict;
8990}
8991
8992
8993/**
8994 * Prepares to run guest code in VT-x and we've committed to doing so. This
8995 * means there is no backing out to ring-3 or anywhere else at this
8996 * point.
8997 *
8998 * @param pVM The cross context VM structure.
8999 * @param pVCpu The cross context virtual CPU structure.
9000 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
9001 * out-of-sync. Make sure to update the required fields
9002 * before using them.
9003 * @param pVmxTransient Pointer to the VMX transient structure.
9004 *
9005 * @remarks Called with preemption disabled.
9006 * @remarks No-long-jump zone!!!
9007 */
9008static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9009{
9010 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9011 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9012 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9013
9014 /*
9015 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
9016 */
9017 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9018 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
9019
9020#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9021 if (!CPUMIsGuestFPUStateActive(pVCpu))
9022 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9023 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9024 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9025#endif
9026
9027 if ( pVCpu->hm.s.fPreloadGuestFpu
9028 && !CPUMIsGuestFPUStateActive(pVCpu))
9029 {
9030 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9031 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9032 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
9033 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9034 }
9035
9036 /*
9037 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
9038 */
9039 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
9040 && pVCpu->hm.s.vmx.cMsrs > 0)
9041 {
9042 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
9043 }
9044
9045 /*
9046 * Load the host state bits as we may've been preempted (only happens when
9047 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
9048 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
9049 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
9050 * See @bugref{8432}.
9051 */
9052 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
9053 {
9054 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
9055 AssertRC(rc);
9056 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
9057 }
9058 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
9059
9060 /*
9061 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
9062 */
9063 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
9064 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
9065 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
9066
9067 /* Store status of the shared guest-host state at the time of VM-entry. */
9068#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
9069 if (CPUMIsGuestInLongModeEx(pMixedCtx))
9070 {
9071 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
9072 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
9073 }
9074 else
9075#endif
9076 {
9077 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
9078 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
9079 }
9080 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
9081
9082 /*
9083 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
9084 */
9085 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9086 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
9087
9088 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
9089 RTCPUID idCurrentCpu = pCpu->idCpu;
9090 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
9091 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
9092 {
9093 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
9094 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
9095 }
9096
9097 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
9098 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
9099 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
9100 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
9101
9102 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
9103
9104 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
9105 to start executing. */
9106
9107 /*
9108 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
9109 */
9110 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
9111 {
9112 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9113 {
9114 bool fMsrUpdated;
9115 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
9116 AssertRC(rc2);
9117 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
9118
9119 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
9120 &fMsrUpdated);
9121 AssertRC(rc2);
9122 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9123
9124 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
9125 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
9126 }
9127 else
9128 {
9129 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
9130 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9131 }
9132 }
9133
9134#ifdef VBOX_STRICT
9135 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
9136 hmR0VmxCheckHostEferMsr(pVCpu);
9137 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
9138#endif
9139#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
9140 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
9141 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
9142 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
9143#endif
9144}
9145
9146
9147/**
9148 * Performs some essential restoration of state after running guest code in
9149 * VT-x.
9150 *
9151 * @param pVM The cross context VM structure.
9152 * @param pVCpu The cross context virtual CPU structure.
9153 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
9154 * out-of-sync. Make sure to update the required fields
9155 * before using them.
9156 * @param pVmxTransient Pointer to the VMX transient structure.
9157 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
9158 *
9159 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
9160 *
9161 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
9162 * unconditionally when it is safe to do so.
9163 */
9164static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
9165{
9166 NOREF(pVM);
9167
9168 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9169
9170 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
9171 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
9172 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
9173 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
9174 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
9175 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
9176
9177 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9178 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
9179
9180 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
9181 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
9182 Assert(!ASMIntAreEnabled());
9183 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9184
9185#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9186 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
9187 {
9188 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9189 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9190 }
9191#endif
9192
9193#if HC_ARCH_BITS == 64
9194 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
9195#endif
9196#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
9197 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
9198 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
9199 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9200#else
9201 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9202#endif
9203#ifdef VBOX_STRICT
9204 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
9205#endif
9206 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
9207 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
9208
9209 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
9210 uint32_t uExitReason;
9211 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
9212 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
9213 AssertRC(rc);
9214 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
9215 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
9216
9217 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
9218 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
9219 {
9220 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
9221 pVmxTransient->fVMEntryFailed));
9222 return;
9223 }
9224
9225 /*
9226 * Update the VM-exit history array here even if the VM-entry failed due to:
9227 * - Invalid guest state.
9228 * - MSR loading.
9229 * - Machine-check event.
9230 *
9231 * In any of the above cases we will still have a "valid" VM-exit reason
9232 * despite @a fVMEntryFailed being false.
9233 *
9234 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
9235 */
9236 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
9237
9238 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
9239 {
9240 /** @todo We can optimize this by only syncing with our force-flags when
9241 * really needed and keeping the VMCS state as it is for most
9242 * VM-exits. */
9243 /* Update the guest interruptibility-state from the VMCS. */
9244 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
9245
9246#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
9247 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9248 AssertRC(rc);
9249#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
9250 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9251 AssertRC(rc);
9252#endif
9253
9254 /*
9255 * Sync the TPR shadow with our APIC state.
9256 */
9257 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9258 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
9259 {
9260 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
9261 AssertRC(rc);
9262 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
9263 }
9264 }
9265}
9266
9267
9268/**
9269 * Runs the guest code using VT-x the normal way.
9270 *
9271 * @returns VBox status code.
9272 * @param pVM The cross context VM structure.
9273 * @param pVCpu The cross context virtual CPU structure.
9274 * @param pCtx Pointer to the guest-CPU context.
9275 *
9276 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
9277 */
9278static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9279{
9280 VMXTRANSIENT VmxTransient;
9281 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9282 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
9283 uint32_t cLoops = 0;
9284
9285 for (;; cLoops++)
9286 {
9287 Assert(!HMR0SuspendPending());
9288 HMVMX_ASSERT_CPU_SAFE();
9289
9290 /* Preparatory work for running guest code, this may force us to return
9291 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
9292 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
9293 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
9294 if (rcStrict != VINF_SUCCESS)
9295 break;
9296
9297 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9298 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9299 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9300
9301 /* Restore any residual host-state and save any bits shared between host
9302 and guest into the guest-CPU state. Re-enables interrupts! */
9303 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
9304
9305 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9306 if (RT_SUCCESS(rcRun))
9307 { /* very likely */ }
9308 else
9309 {
9310 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9311 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9312 return rcRun;
9313 }
9314
9315 /* Profile the VM-exit. */
9316 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9317 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9318 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9319 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9320 HMVMX_START_EXIT_DISPATCH_PROF();
9321
9322 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9323
9324 /* Handle the VM-exit. */
9325#ifdef HMVMX_USE_FUNCTION_TABLE
9326 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9327#else
9328 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9329#endif
9330 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9331 if (rcStrict == VINF_SUCCESS)
9332 {
9333 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9334 continue; /* likely */
9335 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9336 rcStrict = VINF_EM_RAW_INTERRUPT;
9337 }
9338 break;
9339 }
9340
9341 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9342 return rcStrict;
9343}
9344
9345
9346
9347/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9348 * probes.
9349 *
9350 * The following few functions and associated structure contains the bloat
9351 * necessary for providing detailed debug events and dtrace probes as well as
9352 * reliable host side single stepping. This works on the principle of
9353 * "subclassing" the normal execution loop and workers. We replace the loop
9354 * method completely and override selected helpers to add necessary adjustments
9355 * to their core operation.
9356 *
9357 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9358 * any performance for debug and analysis features.
9359 *
9360 * @{
9361 */
9362
9363/**
9364 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
9365 * the debug run loop.
9366 */
9367typedef struct VMXRUNDBGSTATE
9368{
9369 /** The RIP we started executing at. This is for detecting that we stepped. */
9370 uint64_t uRipStart;
9371 /** The CS we started executing with. */
9372 uint16_t uCsStart;
9373
9374 /** Whether we've actually modified the 1st execution control field. */
9375 bool fModifiedProcCtls : 1;
9376 /** Whether we've actually modified the 2nd execution control field. */
9377 bool fModifiedProcCtls2 : 1;
9378 /** Whether we've actually modified the exception bitmap. */
9379 bool fModifiedXcptBitmap : 1;
9380
9381 /** We desire the modified the CR0 mask to be cleared. */
9382 bool fClearCr0Mask : 1;
9383 /** We desire the modified the CR4 mask to be cleared. */
9384 bool fClearCr4Mask : 1;
9385 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9386 uint32_t fCpe1Extra;
9387 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9388 uint32_t fCpe1Unwanted;
9389 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9390 uint32_t fCpe2Extra;
9391 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9392 uint32_t bmXcptExtra;
9393 /** The sequence number of the Dtrace provider settings the state was
9394 * configured against. */
9395 uint32_t uDtraceSettingsSeqNo;
9396 /** VM-exits to check (one bit per VM-exit). */
9397 uint32_t bmExitsToCheck[3];
9398
9399 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9400 uint32_t fProcCtlsInitial;
9401 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9402 uint32_t fProcCtls2Initial;
9403 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9404 uint32_t bmXcptInitial;
9405} VMXRUNDBGSTATE;
9406AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9407typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9408
9409
9410/**
9411 * Initializes the VMXRUNDBGSTATE structure.
9412 *
9413 * @param pVCpu The cross context virtual CPU structure of the
9414 * calling EMT.
9415 * @param pCtx The CPU register context to go with @a pVCpu.
9416 * @param pDbgState The structure to initialize.
9417 */
9418DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9419{
9420 pDbgState->uRipStart = pCtx->rip;
9421 pDbgState->uCsStart = pCtx->cs.Sel;
9422
9423 pDbgState->fModifiedProcCtls = false;
9424 pDbgState->fModifiedProcCtls2 = false;
9425 pDbgState->fModifiedXcptBitmap = false;
9426 pDbgState->fClearCr0Mask = false;
9427 pDbgState->fClearCr4Mask = false;
9428 pDbgState->fCpe1Extra = 0;
9429 pDbgState->fCpe1Unwanted = 0;
9430 pDbgState->fCpe2Extra = 0;
9431 pDbgState->bmXcptExtra = 0;
9432 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9433 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9434 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9435}
9436
9437
9438/**
9439 * Updates the VMSC fields with changes requested by @a pDbgState.
9440 *
9441 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9442 * immediately before executing guest code, i.e. when interrupts are disabled.
9443 * We don't check status codes here as we cannot easily assert or return in the
9444 * latter case.
9445 *
9446 * @param pVCpu The cross context virtual CPU structure.
9447 * @param pDbgState The debug state.
9448 */
9449DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9450{
9451 /*
9452 * Ensure desired flags in VMCS control fields are set.
9453 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9454 *
9455 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9456 * there should be no stale data in pCtx at this point.
9457 */
9458 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9459 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9460 {
9461 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9462 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9463 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9464 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9465 pDbgState->fModifiedProcCtls = true;
9466 }
9467
9468 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9469 {
9470 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9471 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9472 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9473 pDbgState->fModifiedProcCtls2 = true;
9474 }
9475
9476 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9477 {
9478 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9479 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9480 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9481 pDbgState->fModifiedXcptBitmap = true;
9482 }
9483
9484 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9485 {
9486 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9487 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9488 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9489 }
9490
9491 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9492 {
9493 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9494 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9495 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9496 }
9497}
9498
9499
9500DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9501{
9502 /*
9503 * Restore VM-exit control settings as we may not reenter this function the
9504 * next time around.
9505 */
9506 /* We reload the initial value, trigger what we can of recalculations the
9507 next time around. From the looks of things, that's all that's required atm. */
9508 if (pDbgState->fModifiedProcCtls)
9509 {
9510 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9511 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9512 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9513 AssertRCReturn(rc2, rc2);
9514 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9515 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9516 }
9517
9518 /* We're currently the only ones messing with this one, so just restore the
9519 cached value and reload the field. */
9520 if ( pDbgState->fModifiedProcCtls2
9521 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9522 {
9523 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9524 AssertRCReturn(rc2, rc2);
9525 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9526 }
9527
9528 /* If we've modified the exception bitmap, we restore it and trigger
9529 reloading and partial recalculation the next time around. */
9530 if (pDbgState->fModifiedXcptBitmap)
9531 {
9532 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9533 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9534 }
9535
9536 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9537 if (pDbgState->fClearCr0Mask)
9538 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9539
9540 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9541 if (pDbgState->fClearCr4Mask)
9542 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9543
9544 return rcStrict;
9545}
9546
9547
9548/**
9549 * Configures VM-exit controls for current DBGF and DTrace settings.
9550 *
9551 * This updates @a pDbgState and the VMCS execution control fields to reflect
9552 * the necessary VM-exits demanded by DBGF and DTrace.
9553 *
9554 * @param pVM The cross context VM structure.
9555 * @param pVCpu The cross context virtual CPU structure.
9556 * @param pCtx Pointer to the guest-CPU context.
9557 * @param pDbgState The debug state.
9558 * @param pVmxTransient Pointer to the VMX transient structure. May update
9559 * fUpdateTscOffsettingAndPreemptTimer.
9560 */
9561static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9562 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9563{
9564 /*
9565 * Take down the dtrace serial number so we can spot changes.
9566 */
9567 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9568 ASMCompilerBarrier();
9569
9570 /*
9571 * We'll rebuild most of the middle block of data members (holding the
9572 * current settings) as we go along here, so start by clearing it all.
9573 */
9574 pDbgState->bmXcptExtra = 0;
9575 pDbgState->fCpe1Extra = 0;
9576 pDbgState->fCpe1Unwanted = 0;
9577 pDbgState->fCpe2Extra = 0;
9578 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9579 pDbgState->bmExitsToCheck[i] = 0;
9580
9581 /*
9582 * Software interrupts (INT XXh) - no idea how to trigger these...
9583 */
9584 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9585 || VBOXVMM_INT_SOFTWARE_ENABLED())
9586 {
9587 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9588 }
9589
9590 /*
9591 * INT3 breakpoints - triggered by #BP exceptions.
9592 */
9593 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9594 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9595
9596 /*
9597 * Exception bitmap and XCPT events+probes.
9598 */
9599 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9600 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9601 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9602
9603 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9604 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9605 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9606 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9607 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9608 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9609 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9610 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9611 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9612 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9613 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9614 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9615 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9616 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9617 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9618 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9619 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9620 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9621
9622 if (pDbgState->bmXcptExtra)
9623 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9624
9625 /*
9626 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9627 *
9628 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9629 * So, when adding/changing/removing please don't forget to update it.
9630 *
9631 * Some of the macros are picking up local variables to save horizontal space,
9632 * (being able to see it in a table is the lesser evil here).
9633 */
9634#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9635 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9636 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9637#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9638 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9639 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9640 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9641 } else do { } while (0)
9642#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9643 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9644 { \
9645 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9646 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9647 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9648 } else do { } while (0)
9649#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9650 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9651 { \
9652 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9653 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9654 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9655 } else do { } while (0)
9656#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9657 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9658 { \
9659 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9660 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9661 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9662 } else do { } while (0)
9663
9664 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9665 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9666 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9667 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9668 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9669
9670 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9671 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9672 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9673 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9674 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9675 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9676 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9677 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9678 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9679 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9680 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9681 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9682 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9683 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9684 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9685 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9686 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9687 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9688 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9689 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9690 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9691 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9692 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9693 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9694 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9695 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9696 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9697 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9698 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9699 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9700 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9701 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9702 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9703 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9704 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9705 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9706
9707 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9708 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9709 {
9710 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9711 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9712 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9713 AssertRC(rc2);
9714
9715#if 0 /** @todo fix me */
9716 pDbgState->fClearCr0Mask = true;
9717 pDbgState->fClearCr4Mask = true;
9718#endif
9719 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9720 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9721 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9722 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9723 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9724 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9725 require clearing here and in the loop if we start using it. */
9726 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9727 }
9728 else
9729 {
9730 if (pDbgState->fClearCr0Mask)
9731 {
9732 pDbgState->fClearCr0Mask = false;
9733 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9734 }
9735 if (pDbgState->fClearCr4Mask)
9736 {
9737 pDbgState->fClearCr4Mask = false;
9738 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9739 }
9740 }
9741 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9742 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9743
9744 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9745 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9746 {
9747 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9748 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9749 }
9750 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9751 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9752
9753 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9754 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9755 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9756 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9757 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9758 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9759 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9760 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9761#if 0 /** @todo too slow, fix handler. */
9762 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9763#endif
9764 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9765
9766 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9767 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9768 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9769 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9770 {
9771 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9772 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9773 }
9774 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9775 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9776 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9777 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9778
9779 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9780 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9781 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9782 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9783 {
9784 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9785 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9786 }
9787 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9788 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9789 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9790 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9791
9792 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9793 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9794 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9795 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9796 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9797 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9798 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9799 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9800 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9801 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9802 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9803 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9804 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9805 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9806 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9807 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9808 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9809 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9810 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9811 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9812 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9813 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9814
9815#undef IS_EITHER_ENABLED
9816#undef SET_ONLY_XBM_IF_EITHER_EN
9817#undef SET_CPE1_XBM_IF_EITHER_EN
9818#undef SET_CPEU_XBM_IF_EITHER_EN
9819#undef SET_CPE2_XBM_IF_EITHER_EN
9820
9821 /*
9822 * Sanitize the control stuff.
9823 */
9824 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9825 if (pDbgState->fCpe2Extra)
9826 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9827 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9828 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9829 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9830 {
9831 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9832 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9833 }
9834
9835 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9836 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9837 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9838 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9839}
9840
9841
9842/**
9843 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9844 * appropriate.
9845 *
9846 * The caller has checked the VM-exit against the
9847 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9848 * already, so we don't have to do that either.
9849 *
9850 * @returns Strict VBox status code (i.e. informational status codes too).
9851 * @param pVM The cross context VM structure.
9852 * @param pVCpu The cross context virtual CPU structure.
9853 * @param pMixedCtx Pointer to the guest-CPU context.
9854 * @param pVmxTransient Pointer to the VMX-transient structure.
9855 * @param uExitReason The VM-exit reason.
9856 *
9857 * @remarks The name of this function is displayed by dtrace, so keep it short
9858 * and to the point. No longer than 33 chars long, please.
9859 */
9860static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9861 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9862{
9863 /*
9864 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9865 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9866 *
9867 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9868 * does. Must add/change/remove both places. Same ordering, please.
9869 *
9870 * Added/removed events must also be reflected in the next section
9871 * where we dispatch dtrace events.
9872 */
9873 bool fDtrace1 = false;
9874 bool fDtrace2 = false;
9875 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9876 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9877 uint32_t uEventArg = 0;
9878#define SET_EXIT(a_EventSubName) \
9879 do { \
9880 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9881 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9882 } while (0)
9883#define SET_BOTH(a_EventSubName) \
9884 do { \
9885 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9886 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9887 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9888 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9889 } while (0)
9890 switch (uExitReason)
9891 {
9892 case VMX_EXIT_MTF:
9893 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9894
9895 case VMX_EXIT_XCPT_OR_NMI:
9896 {
9897 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9898 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9899 {
9900 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9901 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9902 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9903 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9904 {
9905 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9906 {
9907 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9908 uEventArg = pVmxTransient->uExitIntErrorCode;
9909 }
9910 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9911 switch (enmEvent1)
9912 {
9913 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9914 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9915 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9916 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9917 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9918 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9919 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9920 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9921 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9922 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9923 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9924 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9925 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9926 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9927 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9928 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9929 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9930 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9931 default: break;
9932 }
9933 }
9934 else
9935 AssertFailed();
9936 break;
9937
9938 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9939 uEventArg = idxVector;
9940 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9941 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9942 break;
9943 }
9944 break;
9945 }
9946
9947 case VMX_EXIT_TRIPLE_FAULT:
9948 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9949 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9950 break;
9951 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9952 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9953 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9954 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9955 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9956
9957 /* Instruction specific VM-exits: */
9958 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9959 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9960 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9961 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9962 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9963 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9964 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9965 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9966 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9967 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9968 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9969 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9970 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9971 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9972 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9973 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9974 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9975 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9976 case VMX_EXIT_MOV_CRX:
9977 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9978/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9979* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9980 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9981 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9982 SET_BOTH(CRX_READ);
9983 else
9984 SET_BOTH(CRX_WRITE);
9985 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9986 break;
9987 case VMX_EXIT_MOV_DRX:
9988 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9989 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9990 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9991 SET_BOTH(DRX_READ);
9992 else
9993 SET_BOTH(DRX_WRITE);
9994 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9995 break;
9996 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9997 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9998 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9999 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
10000 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
10001 case VMX_EXIT_XDTR_ACCESS:
10002 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10003 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
10004 {
10005 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
10006 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
10007 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
10008 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
10009 }
10010 break;
10011
10012 case VMX_EXIT_TR_ACCESS:
10013 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10014 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
10015 {
10016 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
10017 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
10018 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
10019 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
10020 }
10021 break;
10022
10023 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
10024 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
10025 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
10026 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
10027 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
10028 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
10029 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
10030 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
10031 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
10032 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
10033 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
10034
10035 /* Events that aren't relevant at this point. */
10036 case VMX_EXIT_EXT_INT:
10037 case VMX_EXIT_INT_WINDOW:
10038 case VMX_EXIT_NMI_WINDOW:
10039 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10040 case VMX_EXIT_PREEMPT_TIMER:
10041 case VMX_EXIT_IO_INSTR:
10042 break;
10043
10044 /* Errors and unexpected events. */
10045 case VMX_EXIT_INIT_SIGNAL:
10046 case VMX_EXIT_SIPI:
10047 case VMX_EXIT_IO_SMI:
10048 case VMX_EXIT_SMI:
10049 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10050 case VMX_EXIT_ERR_MSR_LOAD:
10051 case VMX_EXIT_ERR_MACHINE_CHECK:
10052 break;
10053
10054 default:
10055 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10056 break;
10057 }
10058#undef SET_BOTH
10059#undef SET_EXIT
10060
10061 /*
10062 * Dtrace tracepoints go first. We do them here at once so we don't
10063 * have to copy the guest state saving and stuff a few dozen times.
10064 * Down side is that we've got to repeat the switch, though this time
10065 * we use enmEvent since the probes are a subset of what DBGF does.
10066 */
10067 if (fDtrace1 || fDtrace2)
10068 {
10069 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10070 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10071 switch (enmEvent1)
10072 {
10073 /** @todo consider which extra parameters would be helpful for each probe. */
10074 case DBGFEVENT_END: break;
10075 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
10076 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
10077 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
10078 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
10079 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
10080 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
10081 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
10082 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
10083 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
10084 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
10085 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
10086 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
10087 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
10088 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
10089 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
10090 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
10091 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
10092 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
10093 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10094 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10095 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
10096 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
10097 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
10098 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
10099 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
10100 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
10101 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
10102 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10103 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10104 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10105 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10106 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10107 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10108 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10109 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
10110 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
10111 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
10112 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
10113 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
10114 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
10115 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
10116 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
10117 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
10118 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
10119 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
10120 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
10121 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
10122 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
10123 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
10124 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
10125 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
10126 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
10127 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
10128 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10129 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10130 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10131 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10132 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
10133 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10134 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10135 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10136 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
10137 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
10138 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
10139 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
10140 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10141 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
10142 }
10143 switch (enmEvent2)
10144 {
10145 /** @todo consider which extra parameters would be helpful for each probe. */
10146 case DBGFEVENT_END: break;
10147 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
10148 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10149 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
10150 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
10151 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
10152 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
10153 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
10154 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
10155 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
10156 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10157 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10158 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10159 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10160 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10161 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10162 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10163 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
10164 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
10165 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
10166 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
10167 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
10168 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
10169 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
10170 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
10171 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
10172 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
10173 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
10174 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
10175 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
10176 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
10177 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
10178 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
10179 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
10180 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
10181 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
10182 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10183 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10184 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10185 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10186 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
10187 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10188 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10189 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10190 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
10191 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
10192 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
10193 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
10194 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10195 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
10196 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
10197 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
10198 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
10199 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
10200 }
10201 }
10202
10203 /*
10204 * Fire of the DBGF event, if enabled (our check here is just a quick one,
10205 * the DBGF call will do a full check).
10206 *
10207 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
10208 * Note! If we have to events, we prioritize the first, i.e. the instruction
10209 * one, in order to avoid event nesting.
10210 */
10211 if ( enmEvent1 != DBGFEVENT_END
10212 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
10213 {
10214 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
10215 if (rcStrict != VINF_SUCCESS)
10216 return rcStrict;
10217 }
10218 else if ( enmEvent2 != DBGFEVENT_END
10219 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
10220 {
10221 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
10222 if (rcStrict != VINF_SUCCESS)
10223 return rcStrict;
10224 }
10225
10226 return VINF_SUCCESS;
10227}
10228
10229
10230/**
10231 * Single-stepping VM-exit filtering.
10232 *
10233 * This is preprocessing the VM-exits and deciding whether we've gotten far
10234 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
10235 * handling is performed.
10236 *
10237 * @returns Strict VBox status code (i.e. informational status codes too).
10238 * @param pVM The cross context VM structure.
10239 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
10240 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
10241 * out-of-sync. Make sure to update the required
10242 * fields before using them.
10243 * @param pVmxTransient Pointer to the VMX-transient structure.
10244 * @param uExitReason The VM-exit reason.
10245 * @param pDbgState The debug state.
10246 */
10247DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
10248 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
10249{
10250 /*
10251 * Expensive (saves context) generic dtrace VM-exit probe.
10252 */
10253 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
10254 { /* more likely */ }
10255 else
10256 {
10257 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10258 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10259 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
10260 }
10261
10262 /*
10263 * Check for host NMI, just to get that out of the way.
10264 */
10265 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
10266 { /* normally likely */ }
10267 else
10268 {
10269 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10270 AssertRCReturn(rc2, rc2);
10271 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
10272 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
10273 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
10274 }
10275
10276 /*
10277 * Check for single stepping event if we're stepping.
10278 */
10279 if (pVCpu->hm.s.fSingleInstruction)
10280 {
10281 switch (uExitReason)
10282 {
10283 case VMX_EXIT_MTF:
10284 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
10285
10286 /* Various events: */
10287 case VMX_EXIT_XCPT_OR_NMI:
10288 case VMX_EXIT_EXT_INT:
10289 case VMX_EXIT_TRIPLE_FAULT:
10290 case VMX_EXIT_INT_WINDOW:
10291 case VMX_EXIT_NMI_WINDOW:
10292 case VMX_EXIT_TASK_SWITCH:
10293 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10294 case VMX_EXIT_APIC_ACCESS:
10295 case VMX_EXIT_EPT_VIOLATION:
10296 case VMX_EXIT_EPT_MISCONFIG:
10297 case VMX_EXIT_PREEMPT_TIMER:
10298
10299 /* Instruction specific VM-exits: */
10300 case VMX_EXIT_CPUID:
10301 case VMX_EXIT_GETSEC:
10302 case VMX_EXIT_HLT:
10303 case VMX_EXIT_INVD:
10304 case VMX_EXIT_INVLPG:
10305 case VMX_EXIT_RDPMC:
10306 case VMX_EXIT_RDTSC:
10307 case VMX_EXIT_RSM:
10308 case VMX_EXIT_VMCALL:
10309 case VMX_EXIT_VMCLEAR:
10310 case VMX_EXIT_VMLAUNCH:
10311 case VMX_EXIT_VMPTRLD:
10312 case VMX_EXIT_VMPTRST:
10313 case VMX_EXIT_VMREAD:
10314 case VMX_EXIT_VMRESUME:
10315 case VMX_EXIT_VMWRITE:
10316 case VMX_EXIT_VMXOFF:
10317 case VMX_EXIT_VMXON:
10318 case VMX_EXIT_MOV_CRX:
10319 case VMX_EXIT_MOV_DRX:
10320 case VMX_EXIT_IO_INSTR:
10321 case VMX_EXIT_RDMSR:
10322 case VMX_EXIT_WRMSR:
10323 case VMX_EXIT_MWAIT:
10324 case VMX_EXIT_MONITOR:
10325 case VMX_EXIT_PAUSE:
10326 case VMX_EXIT_XDTR_ACCESS:
10327 case VMX_EXIT_TR_ACCESS:
10328 case VMX_EXIT_INVEPT:
10329 case VMX_EXIT_RDTSCP:
10330 case VMX_EXIT_INVVPID:
10331 case VMX_EXIT_WBINVD:
10332 case VMX_EXIT_XSETBV:
10333 case VMX_EXIT_RDRAND:
10334 case VMX_EXIT_INVPCID:
10335 case VMX_EXIT_VMFUNC:
10336 case VMX_EXIT_RDSEED:
10337 case VMX_EXIT_XSAVES:
10338 case VMX_EXIT_XRSTORS:
10339 {
10340 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10341 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10342 AssertRCReturn(rc2, rc2);
10343 if ( pMixedCtx->rip != pDbgState->uRipStart
10344 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10345 return VINF_EM_DBG_STEPPED;
10346 break;
10347 }
10348
10349 /* Errors and unexpected events: */
10350 case VMX_EXIT_INIT_SIGNAL:
10351 case VMX_EXIT_SIPI:
10352 case VMX_EXIT_IO_SMI:
10353 case VMX_EXIT_SMI:
10354 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10355 case VMX_EXIT_ERR_MSR_LOAD:
10356 case VMX_EXIT_ERR_MACHINE_CHECK:
10357 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10358 break;
10359
10360 default:
10361 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10362 break;
10363 }
10364 }
10365
10366 /*
10367 * Check for debugger event breakpoints and dtrace probes.
10368 */
10369 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10370 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10371 {
10372 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10373 if (rcStrict != VINF_SUCCESS)
10374 return rcStrict;
10375 }
10376
10377 /*
10378 * Normal processing.
10379 */
10380#ifdef HMVMX_USE_FUNCTION_TABLE
10381 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10382#else
10383 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10384#endif
10385}
10386
10387
10388/**
10389 * Single steps guest code using VT-x.
10390 *
10391 * @returns Strict VBox status code (i.e. informational status codes too).
10392 * @param pVM The cross context VM structure.
10393 * @param pVCpu The cross context virtual CPU structure.
10394 * @param pCtx Pointer to the guest-CPU context.
10395 *
10396 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10397 */
10398static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10399{
10400 VMXTRANSIENT VmxTransient;
10401 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10402
10403 /* Set HMCPU indicators. */
10404 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10405 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10406 pVCpu->hm.s.fDebugWantRdTscExit = false;
10407 pVCpu->hm.s.fUsingDebugLoop = true;
10408
10409 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10410 VMXRUNDBGSTATE DbgState;
10411 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10412 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10413
10414 /*
10415 * The loop.
10416 */
10417 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10418 for (uint32_t cLoops = 0; ; cLoops++)
10419 {
10420 Assert(!HMR0SuspendPending());
10421 HMVMX_ASSERT_CPU_SAFE();
10422 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10423
10424 /*
10425 * Preparatory work for running guest code, this may force us to return
10426 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10427 */
10428 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10429 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10430 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10431 if (rcStrict != VINF_SUCCESS)
10432 break;
10433
10434 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10435 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10436
10437 /*
10438 * Now we can run the guest code.
10439 */
10440 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10441
10442 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10443
10444 /*
10445 * Restore any residual host-state and save any bits shared between host
10446 * and guest into the guest-CPU state. Re-enables interrupts!
10447 */
10448 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
10449
10450 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10451 if (RT_SUCCESS(rcRun))
10452 { /* very likely */ }
10453 else
10454 {
10455 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10456 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10457 return rcRun;
10458 }
10459
10460 /* Profile the VM-exit. */
10461 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10463 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10464 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10465 HMVMX_START_EXIT_DISPATCH_PROF();
10466
10467 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10468
10469 /*
10470 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10471 */
10472 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10473 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10474 if (rcStrict != VINF_SUCCESS)
10475 break;
10476 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10477 {
10478 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10479 rcStrict = VINF_EM_RAW_INTERRUPT;
10480 break;
10481 }
10482
10483 /*
10484 * Stepping: Did the RIP change, if so, consider it a single step.
10485 * Otherwise, make sure one of the TFs gets set.
10486 */
10487 if (fStepping)
10488 {
10489 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10490 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10491 AssertRCReturn(rc2, rc2);
10492 if ( pCtx->rip != DbgState.uRipStart
10493 || pCtx->cs.Sel != DbgState.uCsStart)
10494 {
10495 rcStrict = VINF_EM_DBG_STEPPED;
10496 break;
10497 }
10498 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10499 }
10500
10501 /*
10502 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10503 */
10504 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10505 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10506 }
10507
10508 /*
10509 * Clear the X86_EFL_TF if necessary.
10510 */
10511 if (pVCpu->hm.s.fClearTrapFlag)
10512 {
10513 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10514 AssertRCReturn(rc2, rc2);
10515 pVCpu->hm.s.fClearTrapFlag = false;
10516 pCtx->eflags.Bits.u1TF = 0;
10517 }
10518 /** @todo there seems to be issues with the resume flag when the monitor trap
10519 * flag is pending without being used. Seen early in bios init when
10520 * accessing APIC page in protected mode. */
10521
10522 /*
10523 * Restore VM-exit control settings as we may not reenter this function the
10524 * next time around.
10525 */
10526 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10527
10528 /* Restore HMCPU indicators. */
10529 pVCpu->hm.s.fUsingDebugLoop = false;
10530 pVCpu->hm.s.fDebugWantRdTscExit = false;
10531 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10532
10533 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10534 return rcStrict;
10535}
10536
10537
10538/** @} */
10539
10540
10541/**
10542 * Checks if any expensive dtrace probes are enabled and we should go to the
10543 * debug loop.
10544 *
10545 * @returns true if we should use debug loop, false if not.
10546 */
10547static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10548{
10549 /* It's probably faster to OR the raw 32-bit counter variables together.
10550 Since the variables are in an array and the probes are next to one
10551 another (more or less), we have good locality. So, better read
10552 eight-nine cache lines ever time and only have one conditional, than
10553 128+ conditionals, right? */
10554 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10555 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10556 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10557 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10558 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10559 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10560 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10561 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10562 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10563 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10564 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10565 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10566 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10567 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10568 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10569 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10570 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10571 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10572 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10573 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10574 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10575 ) != 0
10576 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10577 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10578 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10579 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10580 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10581 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10582 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10583 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10584 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10585 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10586 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10587 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10588 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10589 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10590 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10591 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10592 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10593 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10594 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10595 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10596 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10597 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10598 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10599 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10600 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10601 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10602 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10603 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10604 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10605 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10606 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10607 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10608 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10609 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10610 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10611 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10612 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10613 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10614 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10615 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10616 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10617 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10618 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10619 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10620 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10621 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10622 ) != 0
10623 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10624 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10625 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10626 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10627 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10628 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10629 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10630 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10631 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10632 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10633 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10634 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10635 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10636 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10637 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10638 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10639 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10640 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10641 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10642 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10643 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10644 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10645 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10646 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10647 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10648 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10649 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10650 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10651 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10652 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10653 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10654 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10655 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10656 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10657 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10658 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10659 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10660 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10661 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10662 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10663 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10664 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10665 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10666 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10667 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10668 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10669 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10670 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10671 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10672 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10673 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10674 ) != 0;
10675}
10676
10677
10678/**
10679 * Runs the guest code using VT-x.
10680 *
10681 * @returns Strict VBox status code (i.e. informational status codes too).
10682 * @param pVM The cross context VM structure.
10683 * @param pVCpu The cross context virtual CPU structure.
10684 * @param pCtx Pointer to the guest-CPU context.
10685 */
10686VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10687{
10688 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10689 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10690 HMVMX_ASSERT_PREEMPT_SAFE();
10691
10692 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10693
10694 VBOXSTRICTRC rcStrict;
10695 if ( !pVCpu->hm.s.fUseDebugLoop
10696 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10697 && !DBGFIsStepping(pVCpu)
10698 && !pVM->dbgf.ro.cEnabledInt3Breakpoints)
10699 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10700 else
10701 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10702
10703 if (rcStrict == VERR_EM_INTERPRETER)
10704 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10705 else if (rcStrict == VINF_EM_RESET)
10706 rcStrict = VINF_EM_TRIPLE_FAULT;
10707
10708 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10709 if (RT_FAILURE(rc2))
10710 {
10711 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10712 rcStrict = rc2;
10713 }
10714 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10715 return rcStrict;
10716}
10717
10718
10719#ifndef HMVMX_USE_FUNCTION_TABLE
10720DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10721{
10722# ifdef DEBUG_ramshankar
10723# define RETURN_EXIT_CALL(a_CallExpr) \
10724 do { \
10725 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10726 VBOXSTRICTRC rcStrict = a_CallExpr; \
10727 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10728 return rcStrict; \
10729 } while (0)
10730# else
10731# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10732# endif
10733 switch (rcReason)
10734 {
10735 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10736 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10737 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10738 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10739 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10740 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10741 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10742 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10743 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10744 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10745 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10746 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10747 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10748 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10749 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10750 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10751 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10752 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10753 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10754 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10755 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10756 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10757 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10758 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10759 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10760 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10761 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10762 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10763 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10764 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10765 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10766 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10767 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10768 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10769
10770 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10771 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10772 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10773 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10774 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10775 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10776 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10777 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10778 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10779
10780 case VMX_EXIT_VMCLEAR:
10781 case VMX_EXIT_VMLAUNCH:
10782 case VMX_EXIT_VMPTRLD:
10783 case VMX_EXIT_VMPTRST:
10784 case VMX_EXIT_VMREAD:
10785 case VMX_EXIT_VMRESUME:
10786 case VMX_EXIT_VMWRITE:
10787 case VMX_EXIT_VMXOFF:
10788 case VMX_EXIT_VMXON:
10789 case VMX_EXIT_INVEPT:
10790 case VMX_EXIT_INVVPID:
10791 case VMX_EXIT_VMFUNC:
10792 case VMX_EXIT_XSAVES:
10793 case VMX_EXIT_XRSTORS:
10794 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10795 case VMX_EXIT_ENCLS:
10796 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10797 case VMX_EXIT_PML_FULL:
10798 default:
10799 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10800 }
10801#undef RETURN_EXIT_CALL
10802}
10803#endif /* !HMVMX_USE_FUNCTION_TABLE */
10804
10805
10806#ifdef VBOX_STRICT
10807/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10808# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10809 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10810
10811# define HMVMX_ASSERT_PREEMPT_CPUID() \
10812 do { \
10813 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10814 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10815 } while (0)
10816
10817# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10818 do { \
10819 AssertPtr(pVCpu); \
10820 AssertPtr(pMixedCtx); \
10821 AssertPtr(pVmxTransient); \
10822 Assert(pVmxTransient->fVMEntryFailed == false); \
10823 Assert(ASMIntAreEnabled()); \
10824 HMVMX_ASSERT_PREEMPT_SAFE(); \
10825 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10826 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10827 HMVMX_ASSERT_PREEMPT_SAFE(); \
10828 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10829 HMVMX_ASSERT_PREEMPT_CPUID(); \
10830 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10831 } while (0)
10832
10833# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10834 do { \
10835 Log4Func(("\n")); \
10836 } while (0)
10837#else /* nonstrict builds: */
10838# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10839 do { \
10840 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10841 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10842 } while (0)
10843# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10844#endif
10845
10846
10847/**
10848 * Advances the guest RIP by the specified number of bytes.
10849 *
10850 * @param pVCpu The cross context virtual CPU structure.
10851 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10852 * out-of-sync. Make sure to update the required fields
10853 * before using them.
10854 * @param cbInstr Number of bytes to advance the RIP by.
10855 *
10856 * @remarks No-long-jump zone!!!
10857 */
10858DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10859{
10860 /* Advance the RIP. */
10861 pMixedCtx->rip += cbInstr;
10862 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10863
10864 /* Update interrupt inhibition. */
10865 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10866 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10867 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10868}
10869
10870
10871/**
10872 * Advances the guest RIP after reading it from the VMCS.
10873 *
10874 * @returns VBox status code, no informational status codes.
10875 * @param pVCpu The cross context virtual CPU structure.
10876 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10877 * out-of-sync. Make sure to update the required fields
10878 * before using them.
10879 * @param pVmxTransient Pointer to the VMX transient structure.
10880 *
10881 * @remarks No-long-jump zone!!!
10882 */
10883static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10884{
10885 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10886 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10887 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10888 AssertRCReturn(rc, rc);
10889
10890 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10891
10892 /*
10893 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10894 * pending debug exception field as it takes care of priority of events.
10895 *
10896 * See Intel spec. 32.2.1 "Debug Exceptions".
10897 */
10898 if ( !pVCpu->hm.s.fSingleInstruction
10899 && pMixedCtx->eflags.Bits.u1TF)
10900 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10901
10902 return VINF_SUCCESS;
10903}
10904
10905
10906/**
10907 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10908 * and update error record fields accordingly.
10909 *
10910 * @return VMX_IGS_* return codes.
10911 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10912 * wrong with the guest state.
10913 *
10914 * @param pVM The cross context VM structure.
10915 * @param pVCpu The cross context virtual CPU structure.
10916 * @param pCtx Pointer to the guest-CPU state.
10917 *
10918 * @remarks This function assumes our cache of the VMCS controls
10919 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10920 */
10921static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10922{
10923#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10924#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10925 uError = (err); \
10926 break; \
10927 } else do { } while (0)
10928
10929 int rc;
10930 uint32_t uError = VMX_IGS_ERROR;
10931 uint32_t u32Val;
10932 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10933
10934 do
10935 {
10936 /*
10937 * CR0.
10938 */
10939 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10940 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10941 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10942 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10943 if (fUnrestrictedGuest)
10944 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10945
10946 uint32_t u32GuestCR0;
10947 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10948 AssertRCBreak(rc);
10949 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10950 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10951 if ( !fUnrestrictedGuest
10952 && (u32GuestCR0 & X86_CR0_PG)
10953 && !(u32GuestCR0 & X86_CR0_PE))
10954 {
10955 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10956 }
10957
10958 /*
10959 * CR4.
10960 */
10961 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10962 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10963
10964 uint32_t u32GuestCR4;
10965 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10966 AssertRCBreak(rc);
10967 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10968 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10969
10970 /*
10971 * IA32_DEBUGCTL MSR.
10972 */
10973 uint64_t u64Val;
10974 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10975 AssertRCBreak(rc);
10976 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10977 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10978 {
10979 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10980 }
10981 uint64_t u64DebugCtlMsr = u64Val;
10982
10983#ifdef VBOX_STRICT
10984 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10985 AssertRCBreak(rc);
10986 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10987#endif
10988 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10989
10990 /*
10991 * RIP and RFLAGS.
10992 */
10993 uint32_t u32Eflags;
10994#if HC_ARCH_BITS == 64
10995 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10996 AssertRCBreak(rc);
10997 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10998 if ( !fLongModeGuest
10999 || !pCtx->cs.Attr.n.u1Long)
11000 {
11001 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
11002 }
11003 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
11004 * must be identical if the "IA-32e mode guest" VM-entry
11005 * control is 1 and CS.L is 1. No check applies if the
11006 * CPU supports 64 linear-address bits. */
11007
11008 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
11009 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
11010 AssertRCBreak(rc);
11011 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
11012 VMX_IGS_RFLAGS_RESERVED);
11013 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11014 u32Eflags = u64Val;
11015#else
11016 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
11017 AssertRCBreak(rc);
11018 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
11019 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11020#endif
11021
11022 if ( fLongModeGuest
11023 || ( fUnrestrictedGuest
11024 && !(u32GuestCR0 & X86_CR0_PE)))
11025 {
11026 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
11027 }
11028
11029 uint32_t u32EntryInfo;
11030 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
11031 AssertRCBreak(rc);
11032 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11033 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11034 {
11035 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
11036 }
11037
11038 /*
11039 * 64-bit checks.
11040 */
11041#if HC_ARCH_BITS == 64
11042 if (fLongModeGuest)
11043 {
11044 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
11045 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
11046 }
11047
11048 if ( !fLongModeGuest
11049 && (u32GuestCR4 & X86_CR4_PCIDE))
11050 {
11051 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
11052 }
11053
11054 /** @todo CR3 field must be such that bits 63:52 and bits in the range
11055 * 51:32 beyond the processor's physical-address width are 0. */
11056
11057 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
11058 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
11059 {
11060 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
11061 }
11062
11063 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
11064 AssertRCBreak(rc);
11065 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
11066
11067 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
11068 AssertRCBreak(rc);
11069 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
11070#endif
11071
11072 /*
11073 * PERF_GLOBAL MSR.
11074 */
11075 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
11076 {
11077 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
11078 AssertRCBreak(rc);
11079 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
11080 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
11081 }
11082
11083 /*
11084 * PAT MSR.
11085 */
11086 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
11087 {
11088 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
11089 AssertRCBreak(rc);
11090 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
11091 for (unsigned i = 0; i < 8; i++)
11092 {
11093 uint8_t u8Val = (u64Val & 0xff);
11094 if ( u8Val != 0 /* UC */
11095 && u8Val != 1 /* WC */
11096 && u8Val != 4 /* WT */
11097 && u8Val != 5 /* WP */
11098 && u8Val != 6 /* WB */
11099 && u8Val != 7 /* UC- */)
11100 {
11101 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
11102 }
11103 u64Val >>= 8;
11104 }
11105 }
11106
11107 /*
11108 * EFER MSR.
11109 */
11110 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
11111 {
11112 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
11113 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
11114 AssertRCBreak(rc);
11115 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
11116 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
11117 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
11118 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
11119 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
11120 HMVMX_CHECK_BREAK( fUnrestrictedGuest
11121 || !(u32GuestCR0 & X86_CR0_PG)
11122 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
11123 VMX_IGS_EFER_LMA_LME_MISMATCH);
11124 }
11125
11126 /*
11127 * Segment registers.
11128 */
11129 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11130 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
11131 if (!(u32Eflags & X86_EFL_VM))
11132 {
11133 /* CS */
11134 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
11135 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
11136 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
11137 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
11138 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11139 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
11140 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11141 /* CS cannot be loaded with NULL in protected mode. */
11142 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
11143 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
11144 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
11145 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
11146 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
11147 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
11148 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
11149 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
11150 else
11151 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
11152
11153 /* SS */
11154 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11155 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
11156 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
11157 if ( !(pCtx->cr0 & X86_CR0_PE)
11158 || pCtx->cs.Attr.n.u4Type == 3)
11159 {
11160 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
11161 }
11162 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
11163 {
11164 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
11165 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
11166 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
11167 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
11168 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
11169 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11170 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
11171 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11172 }
11173
11174 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
11175 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
11176 {
11177 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
11178 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
11179 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11180 || pCtx->ds.Attr.n.u4Type > 11
11181 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11182 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
11183 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
11184 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
11185 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11186 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
11187 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11188 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11189 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
11190 }
11191 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
11192 {
11193 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
11194 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
11195 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11196 || pCtx->es.Attr.n.u4Type > 11
11197 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11198 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
11199 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
11200 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
11201 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11202 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
11203 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11204 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11205 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
11206 }
11207 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
11208 {
11209 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
11210 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
11211 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11212 || pCtx->fs.Attr.n.u4Type > 11
11213 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
11214 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
11215 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
11216 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
11217 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11218 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
11219 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11220 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11221 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
11222 }
11223 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
11224 {
11225 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
11226 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
11227 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11228 || pCtx->gs.Attr.n.u4Type > 11
11229 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
11230 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
11231 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
11232 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
11233 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11234 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
11235 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11236 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11237 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
11238 }
11239 /* 64-bit capable CPUs. */
11240#if HC_ARCH_BITS == 64
11241 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11242 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11243 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11244 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11245 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11246 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11247 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11248 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11249 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11250 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11251 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11252#endif
11253 }
11254 else
11255 {
11256 /* V86 mode checks. */
11257 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
11258 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11259 {
11260 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
11261 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
11262 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
11263 }
11264 else
11265 {
11266 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
11267 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
11268 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
11269 }
11270
11271 /* CS */
11272 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
11273 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
11274 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
11275 /* SS */
11276 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
11277 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
11278 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
11279 /* DS */
11280 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
11281 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
11282 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
11283 /* ES */
11284 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
11285 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
11286 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
11287 /* FS */
11288 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
11289 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
11290 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
11291 /* GS */
11292 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
11293 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
11294 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
11295 /* 64-bit capable CPUs. */
11296#if HC_ARCH_BITS == 64
11297 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11298 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11299 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11300 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11301 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11302 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11303 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11304 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11305 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11306 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11307 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11308#endif
11309 }
11310
11311 /*
11312 * TR.
11313 */
11314 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11315 /* 64-bit capable CPUs. */
11316#if HC_ARCH_BITS == 64
11317 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11318#endif
11319 if (fLongModeGuest)
11320 {
11321 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11322 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11323 }
11324 else
11325 {
11326 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11327 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11328 VMX_IGS_TR_ATTR_TYPE_INVALID);
11329 }
11330 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11331 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11332 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11333 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11334 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11335 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11336 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11337 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11338
11339 /*
11340 * GDTR and IDTR.
11341 */
11342#if HC_ARCH_BITS == 64
11343 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11344 AssertRCBreak(rc);
11345 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11346
11347 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11348 AssertRCBreak(rc);
11349 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11350#endif
11351
11352 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11353 AssertRCBreak(rc);
11354 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11355
11356 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11357 AssertRCBreak(rc);
11358 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11359
11360 /*
11361 * Guest Non-Register State.
11362 */
11363 /* Activity State. */
11364 uint32_t u32ActivityState;
11365 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11366 AssertRCBreak(rc);
11367 HMVMX_CHECK_BREAK( !u32ActivityState
11368 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11369 VMX_IGS_ACTIVITY_STATE_INVALID);
11370 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11371 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11372 uint32_t u32IntrState;
11373 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11374 AssertRCBreak(rc);
11375 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11376 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11377 {
11378 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11379 }
11380
11381 /** @todo Activity state and injecting interrupts. Left as a todo since we
11382 * currently don't use activity states but ACTIVE. */
11383
11384 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11385 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11386
11387 /* Guest interruptibility-state. */
11388 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11389 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11390 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11391 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11392 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11393 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11394 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11395 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11396 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11397 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11398 {
11399 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11400 {
11401 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11402 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11403 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11404 }
11405 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11406 {
11407 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11408 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11409 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11410 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11411 }
11412 }
11413 /** @todo Assumes the processor is not in SMM. */
11414 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11415 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11416 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11417 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11418 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11419 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11420 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11421 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11422 {
11423 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11424 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11425 }
11426
11427 /* Pending debug exceptions. */
11428#if HC_ARCH_BITS == 64
11429 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11430 AssertRCBreak(rc);
11431 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11432 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11433 u32Val = u64Val; /* For pending debug exceptions checks below. */
11434#else
11435 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11436 AssertRCBreak(rc);
11437 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11438 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11439#endif
11440
11441 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11442 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11443 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11444 {
11445 if ( (u32Eflags & X86_EFL_TF)
11446 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11447 {
11448 /* Bit 14 is PendingDebug.BS. */
11449 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11450 }
11451 if ( !(u32Eflags & X86_EFL_TF)
11452 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11453 {
11454 /* Bit 14 is PendingDebug.BS. */
11455 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11456 }
11457 }
11458
11459 /* VMCS link pointer. */
11460 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11461 AssertRCBreak(rc);
11462 if (u64Val != UINT64_C(0xffffffffffffffff))
11463 {
11464 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11465 /** @todo Bits beyond the processor's physical-address width MBZ. */
11466 /** @todo 32-bit located in memory referenced by value of this field (as a
11467 * physical address) must contain the processor's VMCS revision ID. */
11468 /** @todo SMM checks. */
11469 }
11470
11471 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11472 * not using Nested Paging? */
11473 if ( pVM->hm.s.fNestedPaging
11474 && !fLongModeGuest
11475 && CPUMIsGuestInPAEModeEx(pCtx))
11476 {
11477 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11478 AssertRCBreak(rc);
11479 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11480
11481 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11482 AssertRCBreak(rc);
11483 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11484
11485 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11486 AssertRCBreak(rc);
11487 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11488
11489 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11490 AssertRCBreak(rc);
11491 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11492 }
11493
11494 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11495 if (uError == VMX_IGS_ERROR)
11496 uError = VMX_IGS_REASON_NOT_FOUND;
11497 } while (0);
11498
11499 pVCpu->hm.s.u32HMError = uError;
11500 return uError;
11501
11502#undef HMVMX_ERROR_BREAK
11503#undef HMVMX_CHECK_BREAK
11504}
11505
11506/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11507/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11508/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11509
11510/** @name VM-exit handlers.
11511 * @{
11512 */
11513
11514/**
11515 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11516 */
11517HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11518{
11519 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11520 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11521 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11522 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11523 return VINF_SUCCESS;
11524 return VINF_EM_RAW_INTERRUPT;
11525}
11526
11527
11528/**
11529 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11530 */
11531HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11532{
11533 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11534 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11535
11536 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11537 AssertRCReturn(rc, rc);
11538
11539 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11540 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11541 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11542 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11543
11544 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11545 {
11546 /*
11547 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11548 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11549 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11550 *
11551 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11552 */
11553 VMXDispatchHostNmi();
11554 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11555 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11556 return VINF_SUCCESS;
11557 }
11558
11559 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11560 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11561 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11562 { /* likely */ }
11563 else
11564 {
11565 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11566 rcStrictRc1 = VINF_SUCCESS;
11567 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11568 return rcStrictRc1;
11569 }
11570
11571 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11572 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11573 switch (uIntType)
11574 {
11575 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11576 Assert(uVector == X86_XCPT_DB);
11577 /* fall thru */
11578 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11579 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11580 /* fall thru */
11581 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11582 {
11583 /*
11584 * If there's any exception caused as a result of event injection, the resulting
11585 * secondary/final execption will be pending, we shall continue guest execution
11586 * after injecting the event. The page-fault case is complicated and we manually
11587 * handle any currently pending event in hmR0VmxExitXcptPF.
11588 */
11589 if (!pVCpu->hm.s.Event.fPending)
11590 { /* likely */ }
11591 else if (uVector != X86_XCPT_PF)
11592 {
11593 rc = VINF_SUCCESS;
11594 break;
11595 }
11596
11597 switch (uVector)
11598 {
11599 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11600 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11601 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11602 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11603 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11604 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11605 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11606
11607 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11608 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11609 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11610 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11611 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11612 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11613 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11614 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11615 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11616 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11617 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11618 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11619 default:
11620 {
11621 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11622 AssertRCReturn(rc, rc);
11623
11624 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11625 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11626 {
11627 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11628 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11629 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11630
11631 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11632 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11633 AssertRCReturn(rc, rc);
11634 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11635 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11636 0 /* GCPtrFaultAddress */);
11637 AssertRCReturn(rc, rc);
11638 }
11639 else
11640 {
11641 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11642 pVCpu->hm.s.u32HMError = uVector;
11643 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11644 }
11645 break;
11646 }
11647 }
11648 break;
11649 }
11650
11651 default:
11652 {
11653 pVCpu->hm.s.u32HMError = uExitIntInfo;
11654 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11655 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11656 break;
11657 }
11658 }
11659 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11660 return rc;
11661}
11662
11663
11664/**
11665 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11666 */
11667HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11668{
11669 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11670
11671 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11672 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11673
11674 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11675 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11676 return VINF_SUCCESS;
11677}
11678
11679
11680/**
11681 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11682 */
11683HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11684{
11685 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11686 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11687 {
11688 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11689 HMVMX_RETURN_UNEXPECTED_EXIT();
11690 }
11691
11692 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11693
11694 /*
11695 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11696 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11697 */
11698 uint32_t uIntrState = 0;
11699 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11700 AssertRCReturn(rc, rc);
11701
11702 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11703 if ( fBlockSti
11704 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11705 {
11706 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11707 }
11708
11709 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11710 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11711
11712 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11713 return VINF_SUCCESS;
11714}
11715
11716
11717/**
11718 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11719 */
11720HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11721{
11722 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11723 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11724 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11725}
11726
11727
11728/**
11729 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11730 */
11731HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11732{
11733 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11734 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11735 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11736}
11737
11738
11739/**
11740 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11741 */
11742HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11743{
11744 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11745 PVM pVM = pVCpu->CTX_SUFF(pVM);
11746 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11747 if (RT_LIKELY(rc == VINF_SUCCESS))
11748 {
11749 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11750 Assert(pVmxTransient->cbInstr == 2);
11751 }
11752 else
11753 {
11754 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11755 rc = VERR_EM_INTERPRETER;
11756 }
11757 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11758 return rc;
11759}
11760
11761
11762/**
11763 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11764 */
11765HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11766{
11767 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11768 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11769 AssertRCReturn(rc, rc);
11770
11771 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11772 return VINF_EM_RAW_EMULATE_INSTR;
11773
11774 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11775 HMVMX_RETURN_UNEXPECTED_EXIT();
11776}
11777
11778
11779/**
11780 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11781 */
11782HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11783{
11784 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11785 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11786 AssertRCReturn(rc, rc);
11787
11788 PVM pVM = pVCpu->CTX_SUFF(pVM);
11789 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11790 if (RT_LIKELY(rc == VINF_SUCCESS))
11791 {
11792 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11793 Assert(pVmxTransient->cbInstr == 2);
11794 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11795 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11796 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11797 }
11798 else
11799 rc = VERR_EM_INTERPRETER;
11800 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11801 return rc;
11802}
11803
11804
11805/**
11806 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11807 */
11808HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11809{
11810 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11811 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11812 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11813 AssertRCReturn(rc, rc);
11814
11815 PVM pVM = pVCpu->CTX_SUFF(pVM);
11816 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11817 if (RT_SUCCESS(rc))
11818 {
11819 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11820 Assert(pVmxTransient->cbInstr == 3);
11821 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11822 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11823 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11824 }
11825 else
11826 {
11827 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11828 rc = VERR_EM_INTERPRETER;
11829 }
11830 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11831 return rc;
11832}
11833
11834
11835/**
11836 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11837 */
11838HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11839{
11840 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11841 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11842 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11843 AssertRCReturn(rc, rc);
11844
11845 PVM pVM = pVCpu->CTX_SUFF(pVM);
11846 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11847 if (RT_LIKELY(rc == VINF_SUCCESS))
11848 {
11849 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11850 Assert(pVmxTransient->cbInstr == 2);
11851 }
11852 else
11853 {
11854 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11855 rc = VERR_EM_INTERPRETER;
11856 }
11857 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11858 return rc;
11859}
11860
11861
11862/**
11863 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11864 */
11865HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11866{
11867 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11868 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11869
11870 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11871 if (pVCpu->hm.s.fHypercallsEnabled)
11872 {
11873#if 0
11874 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11875#else
11876 /* Aggressive state sync. for now. */
11877 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11878 rc |= hmR0VmxSaveGuestRflags(pVCpu,pMixedCtx); /* For CPL checks in gimHvHypercall() & gimKvmHypercall() */
11879 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11880 AssertRCReturn(rc, rc);
11881#endif
11882
11883 /* Perform the hypercall. */
11884 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11885 if (rcStrict == VINF_SUCCESS)
11886 {
11887 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11888 AssertRCReturn(rc, rc);
11889 }
11890 else
11891 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11892 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11893 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11894
11895 /* If the hypercall changes anything other than guest's general-purpose registers,
11896 we would need to reload the guest changed bits here before VM-entry. */
11897 }
11898 else
11899 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11900
11901 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11902 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11903 {
11904 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11905 rcStrict = VINF_SUCCESS;
11906 }
11907
11908 return rcStrict;
11909}
11910
11911
11912/**
11913 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11914 */
11915HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11916{
11917 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11918 PVM pVM = pVCpu->CTX_SUFF(pVM);
11919 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11920
11921 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11922 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11923 AssertRCReturn(rc, rc);
11924
11925 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11926 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11927 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11928 else
11929 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11930 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11931 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11932 return rcStrict;
11933}
11934
11935
11936/**
11937 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11938 */
11939HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11940{
11941 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11942 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11943 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11944 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11945 AssertRCReturn(rc, rc);
11946
11947 PVM pVM = pVCpu->CTX_SUFF(pVM);
11948 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11949 if (RT_LIKELY(rc == VINF_SUCCESS))
11950 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11951 else
11952 {
11953 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11954 rc = VERR_EM_INTERPRETER;
11955 }
11956 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11957 return rc;
11958}
11959
11960
11961/**
11962 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11963 */
11964HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11965{
11966 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11967 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11968 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11969 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11970 AssertRCReturn(rc, rc);
11971
11972 PVM pVM = pVCpu->CTX_SUFF(pVM);
11973 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11974 rc = VBOXSTRICTRC_VAL(rc2);
11975 if (RT_LIKELY( rc == VINF_SUCCESS
11976 || rc == VINF_EM_HALT))
11977 {
11978 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11979 AssertRCReturn(rc3, rc3);
11980
11981 if ( rc == VINF_EM_HALT
11982 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11983 {
11984 rc = VINF_SUCCESS;
11985 }
11986 }
11987 else
11988 {
11989 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11990 rc = VERR_EM_INTERPRETER;
11991 }
11992 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11993 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11994 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11995 return rc;
11996}
11997
11998
11999/**
12000 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
12001 */
12002HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12003{
12004 /*
12005 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
12006 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
12007 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
12008 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
12009 */
12010 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12011 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12012 HMVMX_RETURN_UNEXPECTED_EXIT();
12013}
12014
12015
12016/**
12017 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
12018 */
12019HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12020{
12021 /*
12022 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
12023 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
12024 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
12025 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
12026 */
12027 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12028 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12029 HMVMX_RETURN_UNEXPECTED_EXIT();
12030}
12031
12032
12033/**
12034 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
12035 */
12036HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12037{
12038 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
12039 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12040 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12041 HMVMX_RETURN_UNEXPECTED_EXIT();
12042}
12043
12044
12045/**
12046 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
12047 */
12048HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12049{
12050 /*
12051 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
12052 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
12053 * See Intel spec. 25.3 "Other Causes of VM-exits".
12054 */
12055 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12056 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12057 HMVMX_RETURN_UNEXPECTED_EXIT();
12058}
12059
12060
12061/**
12062 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
12063 * VM-exit.
12064 */
12065HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12066{
12067 /*
12068 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
12069 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
12070 *
12071 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
12072 * See Intel spec. "23.8 Restrictions on VMX operation".
12073 */
12074 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12075 return VINF_SUCCESS;
12076}
12077
12078
12079/**
12080 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
12081 * VM-exit.
12082 */
12083HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12084{
12085 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12086 return VINF_EM_RESET;
12087}
12088
12089
12090/**
12091 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
12092 */
12093HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12094{
12095 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12096 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
12097
12098 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12099 AssertRCReturn(rc, rc);
12100
12101 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
12102 rc = VINF_SUCCESS;
12103 else
12104 rc = VINF_EM_HALT;
12105
12106 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
12107 if (rc != VINF_SUCCESS)
12108 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
12109 return rc;
12110}
12111
12112
12113/**
12114 * VM-exit handler for instructions that result in a \#UD exception delivered to
12115 * the guest.
12116 */
12117HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12118{
12119 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12120 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
12121 return VINF_SUCCESS;
12122}
12123
12124
12125/**
12126 * VM-exit handler for expiry of the VMX preemption timer.
12127 */
12128HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12129{
12130 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12131
12132 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
12133 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12134
12135 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
12136 PVM pVM = pVCpu->CTX_SUFF(pVM);
12137 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
12138 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
12139 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
12140}
12141
12142
12143/**
12144 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
12145 */
12146HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12147{
12148 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12149
12150 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12151 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
12152 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
12153 AssertRCReturn(rc, rc);
12154
12155 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
12156 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12157
12158 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
12159
12160 return rcStrict;
12161}
12162
12163
12164/**
12165 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
12166 */
12167HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12168{
12169 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12170
12171 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
12172 /** @todo implement EMInterpretInvpcid() */
12173 return VERR_EM_INTERPRETER;
12174}
12175
12176
12177/**
12178 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
12179 * Error VM-exit.
12180 */
12181HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12182{
12183 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12184 AssertRCReturn(rc, rc);
12185
12186 rc = hmR0VmxCheckVmcsCtls(pVCpu);
12187 AssertRCReturn(rc, rc);
12188
12189 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12190 NOREF(uInvalidReason);
12191
12192#ifdef VBOX_STRICT
12193 uint32_t uIntrState;
12194 RTHCUINTREG uHCReg;
12195 uint64_t u64Val;
12196 uint32_t u32Val;
12197
12198 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
12199 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
12200 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
12201 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
12202 AssertRCReturn(rc, rc);
12203
12204 Log4(("uInvalidReason %u\n", uInvalidReason));
12205 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
12206 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
12207 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
12208 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
12209
12210 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
12211 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
12212 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
12213 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
12214 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
12215 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12216 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
12217 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
12218 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
12219 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12220 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
12221 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
12222#else
12223 NOREF(pVmxTransient);
12224#endif
12225
12226 hmR0DumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12227 return VERR_VMX_INVALID_GUEST_STATE;
12228}
12229
12230
12231/**
12232 * VM-exit handler for VM-entry failure due to an MSR-load
12233 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
12234 */
12235HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12236{
12237 NOREF(pVmxTransient);
12238 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12239 HMVMX_RETURN_UNEXPECTED_EXIT();
12240}
12241
12242
12243/**
12244 * VM-exit handler for VM-entry failure due to a machine-check event
12245 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
12246 */
12247HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12248{
12249 NOREF(pVmxTransient);
12250 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12251 HMVMX_RETURN_UNEXPECTED_EXIT();
12252}
12253
12254
12255/**
12256 * VM-exit handler for all undefined reasons. Should never ever happen.. in
12257 * theory.
12258 */
12259HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12260{
12261 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
12262 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
12263 return VERR_VMX_UNDEFINED_EXIT_CODE;
12264}
12265
12266
12267/**
12268 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
12269 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
12270 * Conditional VM-exit.
12271 */
12272HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12273{
12274 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12275
12276 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
12277 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
12278 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
12279 return VERR_EM_INTERPRETER;
12280 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12281 HMVMX_RETURN_UNEXPECTED_EXIT();
12282}
12283
12284
12285/**
12286 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
12287 */
12288HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12289{
12290 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12291
12292 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
12293 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
12294 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
12295 return VERR_EM_INTERPRETER;
12296 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12297 HMVMX_RETURN_UNEXPECTED_EXIT();
12298}
12299
12300
12301/**
12302 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
12303 */
12304HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12305{
12306 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12307
12308 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12309 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12310 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12311 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12312 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12313 {
12314 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12315 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12316 }
12317 AssertRCReturn(rc, rc);
12318 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12319
12320#ifdef VBOX_STRICT
12321 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12322 {
12323 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12324 && pMixedCtx->ecx != MSR_K6_EFER)
12325 {
12326 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12327 pMixedCtx->ecx));
12328 HMVMX_RETURN_UNEXPECTED_EXIT();
12329 }
12330 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12331 {
12332 VMXMSREXITREAD enmRead;
12333 VMXMSREXITWRITE enmWrite;
12334 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12335 AssertRCReturn(rc2, rc2);
12336 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12337 {
12338 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12339 HMVMX_RETURN_UNEXPECTED_EXIT();
12340 }
12341 }
12342 }
12343#endif
12344
12345 PVM pVM = pVCpu->CTX_SUFF(pVM);
12346 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12347 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12348 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12349 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12350 if (RT_SUCCESS(rc))
12351 {
12352 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12353 Assert(pVmxTransient->cbInstr == 2);
12354 }
12355 return rc;
12356}
12357
12358
12359/**
12360 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12361 */
12362HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12363{
12364 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12365 PVM pVM = pVCpu->CTX_SUFF(pVM);
12366 int rc = VINF_SUCCESS;
12367
12368 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12369 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12370 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12371 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12372 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12373 {
12374 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12375 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12376 }
12377 AssertRCReturn(rc, rc);
12378 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12379
12380 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12381 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12382 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12383
12384 if (RT_SUCCESS(rc))
12385 {
12386 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12387
12388 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12389 if ( pMixedCtx->ecx == MSR_IA32_APICBASE
12390 || ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12391 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END))
12392 {
12393 /*
12394 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12395 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12396 * EMInterpretWrmsr() changes it.
12397 */
12398 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12399 }
12400 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12401 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12402 else if (pMixedCtx->ecx == MSR_K6_EFER)
12403 {
12404 /*
12405 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12406 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12407 * the other bits as well, SCE and NXE. See @bugref{7368}.
12408 */
12409 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12410 }
12411
12412 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12413 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12414 {
12415 switch (pMixedCtx->ecx)
12416 {
12417 /*
12418 * For SYSENTER CS, EIP, ESP MSRs, we set both the flags here so we don't accidentally
12419 * overwrite the changed guest-CPU context value while going to ring-3, see @bufref{8745}.
12420 */
12421 case MSR_IA32_SYSENTER_CS:
12422 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
12423 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
12424 break;
12425 case MSR_IA32_SYSENTER_EIP:
12426 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
12427 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
12428 break;
12429 case MSR_IA32_SYSENTER_ESP:
12430 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
12431 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
12432 break;
12433 case MSR_K8_FS_BASE: /* fall thru */
12434 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12435 case MSR_K6_EFER: /* already handled above */ break;
12436 default:
12437 {
12438 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12439 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12440 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12441 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12442 break;
12443 }
12444 }
12445 }
12446#ifdef VBOX_STRICT
12447 else
12448 {
12449 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12450 switch (pMixedCtx->ecx)
12451 {
12452 case MSR_IA32_SYSENTER_CS:
12453 case MSR_IA32_SYSENTER_EIP:
12454 case MSR_IA32_SYSENTER_ESP:
12455 case MSR_K8_FS_BASE:
12456 case MSR_K8_GS_BASE:
12457 {
12458 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12459 HMVMX_RETURN_UNEXPECTED_EXIT();
12460 }
12461
12462 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12463 default:
12464 {
12465 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12466 {
12467 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12468 if (pMixedCtx->ecx != MSR_K6_EFER)
12469 {
12470 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12471 pMixedCtx->ecx));
12472 HMVMX_RETURN_UNEXPECTED_EXIT();
12473 }
12474 }
12475
12476 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12477 {
12478 VMXMSREXITREAD enmRead;
12479 VMXMSREXITWRITE enmWrite;
12480 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12481 AssertRCReturn(rc2, rc2);
12482 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12483 {
12484 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12485 HMVMX_RETURN_UNEXPECTED_EXIT();
12486 }
12487 }
12488 break;
12489 }
12490 }
12491 }
12492#endif /* VBOX_STRICT */
12493 }
12494 return rc;
12495}
12496
12497
12498/**
12499 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12500 */
12501HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12502{
12503 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12504
12505 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12506 return VINF_EM_RAW_INTERRUPT;
12507}
12508
12509
12510/**
12511 * VM-exit handler for when the TPR value is lowered below the specified
12512 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12513 */
12514HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12515{
12516 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12517 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12518
12519 /*
12520 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12521 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12522 */
12523 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12524 return VINF_SUCCESS;
12525}
12526
12527
12528/**
12529 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12530 * VM-exit.
12531 *
12532 * @retval VINF_SUCCESS when guest execution can continue.
12533 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12534 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12535 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12536 * interpreter.
12537 */
12538HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12539{
12540 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12541 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12542 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12543 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12544 AssertRCReturn(rc, rc);
12545
12546 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12547 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12548 PVM pVM = pVCpu->CTX_SUFF(pVM);
12549 VBOXSTRICTRC rcStrict;
12550 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12551 switch (uAccessType)
12552 {
12553 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12554 {
12555 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12556 AssertRCReturn(rc, rc);
12557
12558 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12559 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12560 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12561 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12562 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12563 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12564 {
12565 case 0: /* CR0 */
12566 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12567 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12568 break;
12569 case 2: /* CR2 */
12570 /* Nothing to do here, CR2 it's not part of the VMCS. */
12571 break;
12572 case 3: /* CR3 */
12573 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12574 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12575 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12576 break;
12577 case 4: /* CR4 */
12578 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12579 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12580 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12581 break;
12582 case 8: /* CR8 */
12583 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12584 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12585 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12586 break;
12587 default:
12588 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12589 break;
12590 }
12591
12592 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12593 break;
12594 }
12595
12596 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12597 {
12598 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12599 AssertRCReturn(rc, rc);
12600
12601 Assert( !pVM->hm.s.fNestedPaging
12602 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12603 || pVCpu->hm.s.fUsingDebugLoop
12604 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12605
12606 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12607 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12608 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12609
12610 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12611 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12612 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12613 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12614 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12615 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12616 VBOXSTRICTRC_VAL(rcStrict)));
12617 break;
12618 }
12619
12620 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12621 {
12622 AssertRCReturn(rc, rc);
12623 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12624 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12625 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12626 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12627 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12628 break;
12629 }
12630
12631 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12632 {
12633 AssertRCReturn(rc, rc);
12634 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12635 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12636 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12637 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12638 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12640 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12641 break;
12642 }
12643
12644 default:
12645 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12646 VERR_VMX_UNEXPECTED_EXCEPTION);
12647 }
12648
12649 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12650 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12651 NOREF(pVM);
12652 return rcStrict;
12653}
12654
12655
12656/**
12657 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12658 * VM-exit.
12659 */
12660HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12661{
12662 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12663 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12664
12665 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12666 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12667 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12668 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12669 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12670 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12671 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12672 AssertRCReturn(rc, rc);
12673
12674 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12675 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12676 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12677 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12678 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12679 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12680 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12681 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12682 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12683
12684 /* I/O operation lookup arrays. */
12685 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12686 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12687
12688 VBOXSTRICTRC rcStrict;
12689 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12690 uint32_t const cbInstr = pVmxTransient->cbInstr;
12691 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12692 PVM pVM = pVCpu->CTX_SUFF(pVM);
12693 if (fIOString)
12694 {
12695#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12696 See @bugref{5752#c158}. Should work now. */
12697 /*
12698 * INS/OUTS - I/O String instruction.
12699 *
12700 * Use instruction-information if available, otherwise fall back on
12701 * interpreting the instruction.
12702 */
12703 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12704 fIOWrite ? 'w' : 'r'));
12705 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12706 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12707 {
12708 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12709 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12710 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12711 AssertRCReturn(rc2, rc2);
12712 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12713 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12714 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12715 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12716 if (fIOWrite)
12717 {
12718 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12719 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12720 }
12721 else
12722 {
12723 /*
12724 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12725 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12726 * See Intel Instruction spec. for "INS".
12727 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12728 */
12729 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12730 }
12731 }
12732 else
12733 {
12734 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12735 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12736 AssertRCReturn(rc2, rc2);
12737 rcStrict = IEMExecOne(pVCpu);
12738 }
12739 /** @todo IEM needs to be setting these flags somehow. */
12740 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12741 fUpdateRipAlready = true;
12742#else
12743 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12744 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12745 if (RT_SUCCESS(rcStrict))
12746 {
12747 if (fIOWrite)
12748 {
12749 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12750 (DISCPUMODE)pDis->uAddrMode, cbValue);
12751 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12752 }
12753 else
12754 {
12755 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12756 (DISCPUMODE)pDis->uAddrMode, cbValue);
12757 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12758 }
12759 }
12760 else
12761 {
12762 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12763 pMixedCtx->rip));
12764 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12765 }
12766#endif
12767 }
12768 else
12769 {
12770 /*
12771 * IN/OUT - I/O instruction.
12772 */
12773 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12774 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12775 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12776 if (fIOWrite)
12777 {
12778 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12779 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12780 }
12781 else
12782 {
12783 uint32_t u32Result = 0;
12784 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12785 if (IOM_SUCCESS(rcStrict))
12786 {
12787 /* Save result of I/O IN instr. in AL/AX/EAX. */
12788 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12789 }
12790 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12791 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12792 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12793 }
12794 }
12795
12796 if (IOM_SUCCESS(rcStrict))
12797 {
12798 if (!fUpdateRipAlready)
12799 {
12800 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12801 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12802 }
12803
12804 /*
12805 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12806 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12807 */
12808 if (fIOString)
12809 {
12810 /** @todo Single-step for INS/OUTS with REP prefix? */
12811 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12812 }
12813 else if ( !fDbgStepping
12814 && fGstStepping)
12815 {
12816 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12817 }
12818
12819 /*
12820 * If any I/O breakpoints are armed, we need to check if one triggered
12821 * and take appropriate action.
12822 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12823 */
12824 int rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12825 AssertRCReturn(rc2, rc2);
12826
12827 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12828 * execution engines about whether hyper BPs and such are pending. */
12829 uint32_t const uDr7 = pMixedCtx->dr[7];
12830 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12831 && X86_DR7_ANY_RW_IO(uDr7)
12832 && (pMixedCtx->cr4 & X86_CR4_DE))
12833 || DBGFBpIsHwIoArmed(pVM)))
12834 {
12835 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12836
12837 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12838 VMMRZCallRing3Disable(pVCpu);
12839 HM_DISABLE_PREEMPT();
12840
12841 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12842
12843 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12844 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12845 {
12846 /* Raise #DB. */
12847 if (fIsGuestDbgActive)
12848 ASMSetDR6(pMixedCtx->dr[6]);
12849 if (pMixedCtx->dr[7] != uDr7)
12850 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12851
12852 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12853 }
12854 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12855 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12856 else if ( rcStrict2 != VINF_SUCCESS
12857 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12858 rcStrict = rcStrict2;
12859 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12860
12861 HM_RESTORE_PREEMPT();
12862 VMMRZCallRing3Enable(pVCpu);
12863 }
12864 }
12865
12866#ifdef VBOX_STRICT
12867 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12868 Assert(!fIOWrite);
12869 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12870 Assert(fIOWrite);
12871 else
12872 {
12873#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12874 * statuses, that the VMM device and some others may return. See
12875 * IOM_SUCCESS() for guidance. */
12876 AssertMsg( RT_FAILURE(rcStrict)
12877 || rcStrict == VINF_SUCCESS
12878 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12879 || rcStrict == VINF_EM_DBG_BREAKPOINT
12880 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12881 || rcStrict == VINF_EM_RAW_TO_R3
12882 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12883#endif
12884 }
12885#endif
12886
12887 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12888 return rcStrict;
12889}
12890
12891
12892/**
12893 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12894 * VM-exit.
12895 */
12896HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12897{
12898 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12899
12900 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12901 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12902 AssertRCReturn(rc, rc);
12903 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12904 {
12905 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12906 AssertRCReturn(rc, rc);
12907 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12908 {
12909 uint32_t uErrCode;
12910 RTGCUINTPTR GCPtrFaultAddress;
12911 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12912 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12913 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12914 if (fErrorCodeValid)
12915 {
12916 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12917 AssertRCReturn(rc, rc);
12918 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12919 }
12920 else
12921 uErrCode = 0;
12922
12923 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12924 && uVector == X86_XCPT_PF)
12925 GCPtrFaultAddress = pMixedCtx->cr2;
12926 else
12927 GCPtrFaultAddress = 0;
12928
12929 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12930 0 /* cbInstr */, uErrCode, GCPtrFaultAddress);
12931
12932 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12933 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12934 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12935 }
12936 }
12937
12938 /* Fall back to the interpreter to emulate the task-switch. */
12939 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12940 return VERR_EM_INTERPRETER;
12941}
12942
12943
12944/**
12945 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12946 */
12947HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12948{
12949 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12950 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12951 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12952 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12953 AssertRCReturn(rc, rc);
12954 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12955 return VINF_EM_DBG_STEPPED;
12956}
12957
12958
12959/**
12960 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12961 */
12962HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12963{
12964 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12965
12966 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12967
12968 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12969 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12970 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12971 {
12972 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12973 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12974 {
12975 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12976 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12977 }
12978 }
12979 else
12980 {
12981 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12982 rcStrict1 = VINF_SUCCESS;
12983 return rcStrict1;
12984 }
12985
12986#if 0
12987 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12988 * just sync the whole thing. */
12989 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12990#else
12991 /* Aggressive state sync. for now. */
12992 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12993 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12994 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12995#endif
12996 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12997 AssertRCReturn(rc, rc);
12998
12999 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
13000 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
13001 VBOXSTRICTRC rcStrict2;
13002 switch (uAccessType)
13003 {
13004 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
13005 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
13006 {
13007 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
13008 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != XAPIC_OFF_TPR,
13009 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
13010
13011 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
13012 GCPhys &= PAGE_BASE_GC_MASK;
13013 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
13014 PVM pVM = pVCpu->CTX_SUFF(pVM);
13015 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
13016 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
13017
13018 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
13019 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
13020 CPUMCTX2CORE(pMixedCtx), GCPhys);
13021 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
13022 if ( rcStrict2 == VINF_SUCCESS
13023 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13024 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13025 {
13026 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13027 | HM_CHANGED_GUEST_RSP
13028 | HM_CHANGED_GUEST_RFLAGS
13029 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13030 rcStrict2 = VINF_SUCCESS;
13031 }
13032 break;
13033 }
13034
13035 default:
13036 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
13037 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
13038 break;
13039 }
13040
13041 if (rcStrict2 != VINF_SUCCESS)
13042 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
13043 return rcStrict2;
13044}
13045
13046
13047/**
13048 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
13049 * VM-exit.
13050 */
13051HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13052{
13053 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13054
13055 /* We should -not- get this VM-exit if the guest's debug registers were active. */
13056 if (pVmxTransient->fWasGuestDebugStateActive)
13057 {
13058 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
13059 HMVMX_RETURN_UNEXPECTED_EXIT();
13060 }
13061
13062 if ( !pVCpu->hm.s.fSingleInstruction
13063 && !pVmxTransient->fWasHyperDebugStateActive)
13064 {
13065 Assert(!DBGFIsStepping(pVCpu));
13066 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
13067
13068 /* Don't intercept MOV DRx any more. */
13069 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
13070 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
13071 AssertRCReturn(rc, rc);
13072
13073 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
13074 VMMRZCallRing3Disable(pVCpu);
13075 HM_DISABLE_PREEMPT();
13076
13077 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
13078 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
13079 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
13080
13081 HM_RESTORE_PREEMPT();
13082 VMMRZCallRing3Enable(pVCpu);
13083
13084#ifdef VBOX_WITH_STATISTICS
13085 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13086 AssertRCReturn(rc, rc);
13087 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13088 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13089 else
13090 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13091#endif
13092 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
13093 return VINF_SUCCESS;
13094 }
13095
13096 /*
13097 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
13098 * Update the segment registers and DR7 from the CPU.
13099 */
13100 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13101 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13102 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13103 AssertRCReturn(rc, rc);
13104 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13105
13106 PVM pVM = pVCpu->CTX_SUFF(pVM);
13107 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13108 {
13109 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13110 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
13111 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
13112 if (RT_SUCCESS(rc))
13113 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
13114 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13115 }
13116 else
13117 {
13118 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13119 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
13120 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
13121 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13122 }
13123
13124 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
13125 if (RT_SUCCESS(rc))
13126 {
13127 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13128 AssertRCReturn(rc2, rc2);
13129 return VINF_SUCCESS;
13130 }
13131 return rc;
13132}
13133
13134
13135/**
13136 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
13137 * Conditional VM-exit.
13138 */
13139HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13140{
13141 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13142 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13143
13144 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13145 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13146 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13147 {
13148 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
13149 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
13150 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13151 {
13152 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
13153 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13154 }
13155 }
13156 else
13157 {
13158 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13159 rcStrict1 = VINF_SUCCESS;
13160 return rcStrict1;
13161 }
13162
13163 RTGCPHYS GCPhys = 0;
13164 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13165
13166#if 0
13167 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13168#else
13169 /* Aggressive state sync. for now. */
13170 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13171 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13172 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13173#endif
13174 AssertRCReturn(rc, rc);
13175
13176 /*
13177 * If we succeed, resume guest execution.
13178 * If we fail in interpreting the instruction because we couldn't get the guest physical address
13179 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
13180 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
13181 * weird case. See @bugref{6043}.
13182 */
13183 PVM pVM = pVCpu->CTX_SUFF(pVM);
13184 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
13185 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
13186 if ( rcStrict2 == VINF_SUCCESS
13187 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13188 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13189 {
13190 /* Successfully handled MMIO operation. */
13191 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13192 | HM_CHANGED_GUEST_RSP
13193 | HM_CHANGED_GUEST_RFLAGS
13194 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13195 return VINF_SUCCESS;
13196 }
13197 return rcStrict2;
13198}
13199
13200
13201/**
13202 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
13203 * VM-exit.
13204 */
13205HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13206{
13207 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13208 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13209
13210 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13211 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13212 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13213 {
13214 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
13215 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13216 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
13217 }
13218 else
13219 {
13220 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13221 rcStrict1 = VINF_SUCCESS;
13222 return rcStrict1;
13223 }
13224
13225 RTGCPHYS GCPhys = 0;
13226 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13227 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13228#if 0
13229 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13230#else
13231 /* Aggressive state sync. for now. */
13232 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13233 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13234 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13235#endif
13236 AssertRCReturn(rc, rc);
13237
13238 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
13239 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
13240
13241 RTGCUINT uErrorCode = 0;
13242 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
13243 uErrorCode |= X86_TRAP_PF_ID;
13244 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
13245 uErrorCode |= X86_TRAP_PF_RW;
13246 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
13247 uErrorCode |= X86_TRAP_PF_P;
13248
13249 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
13250
13251 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
13252 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13253
13254 /* Handle the pagefault trap for the nested shadow table. */
13255 PVM pVM = pVCpu->CTX_SUFF(pVM);
13256 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
13257 TRPMResetTrap(pVCpu);
13258
13259 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
13260 if ( rcStrict2 == VINF_SUCCESS
13261 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13262 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13263 {
13264 /* Successfully synced our nested page tables. */
13265 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
13266 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13267 | HM_CHANGED_GUEST_RSP
13268 | HM_CHANGED_GUEST_RFLAGS);
13269 return VINF_SUCCESS;
13270 }
13271
13272 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
13273 return rcStrict2;
13274}
13275
13276/** @} */
13277
13278/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13279/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
13280/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13281
13282/** @name VM-exit exception handlers.
13283 * @{
13284 */
13285
13286/**
13287 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13288 */
13289static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13290{
13291 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13292 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13293
13294 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13295 AssertRCReturn(rc, rc);
13296
13297 if (!(pMixedCtx->cr0 & X86_CR0_NE))
13298 {
13299 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13300 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13301
13302 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13303 * provides VM-exit instruction length. If this causes problem later,
13304 * disassemble the instruction like it's done on AMD-V. */
13305 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13306 AssertRCReturn(rc2, rc2);
13307 return rc;
13308 }
13309
13310 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13311 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13312 return rc;
13313}
13314
13315
13316/**
13317 * VM-exit exception handler for \#BP (Breakpoint exception).
13318 */
13319static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13320{
13321 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13322 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13323
13324 /** @todo Try optimize this by not saving the entire guest state unless
13325 * really needed. */
13326 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13327 AssertRCReturn(rc, rc);
13328
13329 PVM pVM = pVCpu->CTX_SUFF(pVM);
13330 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13331 if (rc == VINF_EM_RAW_GUEST_TRAP)
13332 {
13333 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13334 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13335 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13336 AssertRCReturn(rc, rc);
13337
13338 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13339 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13340 }
13341
13342 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13343 return rc;
13344}
13345
13346
13347/**
13348 * VM-exit exception handler for \#AC (alignment check exception).
13349 */
13350static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13351{
13352 RT_NOREF_PV(pMixedCtx);
13353 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13354
13355 /*
13356 * Re-inject it. We'll detect any nesting before getting here.
13357 */
13358 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13359 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13360 AssertRCReturn(rc, rc);
13361 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13362
13363 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13364 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13365 return VINF_SUCCESS;
13366}
13367
13368
13369/**
13370 * VM-exit exception handler for \#DB (Debug exception).
13371 */
13372static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13373{
13374 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13375 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13376 Log6(("XcptDB\n"));
13377
13378 /*
13379 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13380 * for processing.
13381 */
13382 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13383 AssertRCReturn(rc, rc);
13384
13385 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13386 uint64_t uDR6 = X86_DR6_INIT_VAL;
13387 uDR6 |= ( pVmxTransient->uExitQualification
13388 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13389
13390 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13391 if (rc == VINF_EM_RAW_GUEST_TRAP)
13392 {
13393 /*
13394 * The exception was for the guest. Update DR6, DR7.GD and
13395 * IA32_DEBUGCTL.LBR before forwarding it.
13396 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13397 */
13398 VMMRZCallRing3Disable(pVCpu);
13399 HM_DISABLE_PREEMPT();
13400
13401 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13402 pMixedCtx->dr[6] |= uDR6;
13403 if (CPUMIsGuestDebugStateActive(pVCpu))
13404 ASMSetDR6(pMixedCtx->dr[6]);
13405
13406 HM_RESTORE_PREEMPT();
13407 VMMRZCallRing3Enable(pVCpu);
13408
13409 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13410 AssertRCReturn(rc, rc);
13411
13412 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13413 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13414
13415 /* Paranoia. */
13416 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13417 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13418
13419 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13420 AssertRCReturn(rc, rc);
13421
13422 /*
13423 * Raise #DB in the guest.
13424 *
13425 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13426 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13427 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13428 *
13429 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13430 */
13431 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13432 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13433 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13434 AssertRCReturn(rc, rc);
13435 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13436 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13437 return VINF_SUCCESS;
13438 }
13439
13440 /*
13441 * Not a guest trap, must be a hypervisor related debug event then.
13442 * Update DR6 in case someone is interested in it.
13443 */
13444 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13445 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13446 CPUMSetHyperDR6(pVCpu, uDR6);
13447
13448 return rc;
13449}
13450
13451
13452/**
13453 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13454 * point exception).
13455 */
13456static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13457{
13458 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13459
13460 /* We require CR0 and EFER. EFER is always up-to-date. */
13461 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13462 AssertRCReturn(rc, rc);
13463
13464 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13465 VMMRZCallRing3Disable(pVCpu);
13466 HM_DISABLE_PREEMPT();
13467
13468 /* If the guest FPU was active at the time of the #NM VM-exit, then it's a guest fault. */
13469 if (pVmxTransient->fWasGuestFPUStateActive)
13470 {
13471 rc = VINF_EM_RAW_GUEST_TRAP;
13472 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13473 }
13474 else
13475 {
13476#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13477 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13478#endif
13479 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13480 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13481 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13482 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13483 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13484 }
13485
13486 HM_RESTORE_PREEMPT();
13487 VMMRZCallRing3Enable(pVCpu);
13488
13489 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13490 {
13491 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13492 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13493 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13494 pVCpu->hm.s.fPreloadGuestFpu = true;
13495 }
13496 else
13497 {
13498 /* Forward #NM to the guest. */
13499 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13500 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13501 AssertRCReturn(rc, rc);
13502 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13503 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13504 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13505 }
13506
13507 return VINF_SUCCESS;
13508}
13509
13510
13511/**
13512 * VM-exit exception handler for \#GP (General-protection exception).
13513 *
13514 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13515 */
13516static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13517{
13518 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13519 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13520
13521 int rc;
13522 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13523 { /* likely */ }
13524 else
13525 {
13526#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13527 Assert(pVCpu->hm.s.fUsingDebugLoop);
13528#endif
13529 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13530 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13531 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13532 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13533 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13534 AssertRCReturn(rc, rc);
13535 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13536 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13537 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13538 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13539 return rc;
13540 }
13541
13542 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13543 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13544
13545 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13546 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13547 AssertRCReturn(rc, rc);
13548
13549 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13550 uint32_t cbOp = 0;
13551 PVM pVM = pVCpu->CTX_SUFF(pVM);
13552 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13553 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13554 if (RT_SUCCESS(rc))
13555 {
13556 rc = VINF_SUCCESS;
13557 Assert(cbOp == pDis->cbInstr);
13558 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13559 switch (pDis->pCurInstr->uOpcode)
13560 {
13561 case OP_CLI:
13562 {
13563 pMixedCtx->eflags.Bits.u1IF = 0;
13564 pMixedCtx->eflags.Bits.u1RF = 0;
13565 pMixedCtx->rip += pDis->cbInstr;
13566 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13567 if ( !fDbgStepping
13568 && pMixedCtx->eflags.Bits.u1TF)
13569 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13570 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13571 break;
13572 }
13573
13574 case OP_STI:
13575 {
13576 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13577 pMixedCtx->eflags.Bits.u1IF = 1;
13578 pMixedCtx->eflags.Bits.u1RF = 0;
13579 pMixedCtx->rip += pDis->cbInstr;
13580 if (!fOldIF)
13581 {
13582 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13583 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13584 }
13585 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13586 if ( !fDbgStepping
13587 && pMixedCtx->eflags.Bits.u1TF)
13588 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13589 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13590 break;
13591 }
13592
13593 case OP_HLT:
13594 {
13595 rc = VINF_EM_HALT;
13596 pMixedCtx->rip += pDis->cbInstr;
13597 pMixedCtx->eflags.Bits.u1RF = 0;
13598 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13599 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13600 break;
13601 }
13602
13603 case OP_POPF:
13604 {
13605 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13606 uint32_t cbParm;
13607 uint32_t uMask;
13608 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13609 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13610 {
13611 cbParm = 4;
13612 uMask = 0xffffffff;
13613 }
13614 else
13615 {
13616 cbParm = 2;
13617 uMask = 0xffff;
13618 }
13619
13620 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13621 RTGCPTR GCPtrStack = 0;
13622 X86EFLAGS Eflags;
13623 Eflags.u32 = 0;
13624 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13625 &GCPtrStack);
13626 if (RT_SUCCESS(rc))
13627 {
13628 Assert(sizeof(Eflags.u32) >= cbParm);
13629 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13630 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13631 }
13632 if (RT_FAILURE(rc))
13633 {
13634 rc = VERR_EM_INTERPRETER;
13635 break;
13636 }
13637 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13638 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13639 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13640 pMixedCtx->esp += cbParm;
13641 pMixedCtx->esp &= uMask;
13642 pMixedCtx->rip += pDis->cbInstr;
13643 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13644 | HM_CHANGED_GUEST_RSP
13645 | HM_CHANGED_GUEST_RFLAGS);
13646 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13647 POPF restores EFLAGS.TF. */
13648 if ( !fDbgStepping
13649 && fGstStepping)
13650 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13651 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13652 break;
13653 }
13654
13655 case OP_PUSHF:
13656 {
13657 uint32_t cbParm;
13658 uint32_t uMask;
13659 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13660 {
13661 cbParm = 4;
13662 uMask = 0xffffffff;
13663 }
13664 else
13665 {
13666 cbParm = 2;
13667 uMask = 0xffff;
13668 }
13669
13670 /* Get the stack pointer & push the contents of eflags onto the stack. */
13671 RTGCPTR GCPtrStack = 0;
13672 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13673 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13674 if (RT_FAILURE(rc))
13675 {
13676 rc = VERR_EM_INTERPRETER;
13677 break;
13678 }
13679 X86EFLAGS Eflags = pMixedCtx->eflags;
13680 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13681 Eflags.Bits.u1RF = 0;
13682 Eflags.Bits.u1VM = 0;
13683
13684 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13685 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13686 {
13687 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13688 rc = VERR_EM_INTERPRETER;
13689 break;
13690 }
13691 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13692 pMixedCtx->esp -= cbParm;
13693 pMixedCtx->esp &= uMask;
13694 pMixedCtx->rip += pDis->cbInstr;
13695 pMixedCtx->eflags.Bits.u1RF = 0;
13696 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13697 | HM_CHANGED_GUEST_RSP
13698 | HM_CHANGED_GUEST_RFLAGS);
13699 if ( !fDbgStepping
13700 && pMixedCtx->eflags.Bits.u1TF)
13701 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13702 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13703 break;
13704 }
13705
13706 case OP_IRET:
13707 {
13708 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13709 * instruction reference. */
13710 RTGCPTR GCPtrStack = 0;
13711 uint32_t uMask = 0xffff;
13712 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13713 uint16_t aIretFrame[3];
13714 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13715 {
13716 rc = VERR_EM_INTERPRETER;
13717 break;
13718 }
13719 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13720 &GCPtrStack);
13721 if (RT_SUCCESS(rc))
13722 {
13723 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13724 PGMACCESSORIGIN_HM));
13725 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13726 }
13727 if (RT_FAILURE(rc))
13728 {
13729 rc = VERR_EM_INTERPRETER;
13730 break;
13731 }
13732 pMixedCtx->eip = 0;
13733 pMixedCtx->ip = aIretFrame[0];
13734 pMixedCtx->cs.Sel = aIretFrame[1];
13735 pMixedCtx->cs.ValidSel = aIretFrame[1];
13736 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13737 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13738 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13739 pMixedCtx->sp += sizeof(aIretFrame);
13740 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13741 | HM_CHANGED_GUEST_SEGMENT_REGS
13742 | HM_CHANGED_GUEST_RSP
13743 | HM_CHANGED_GUEST_RFLAGS);
13744 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13745 if ( !fDbgStepping
13746 && fGstStepping)
13747 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13748 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13749 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13750 break;
13751 }
13752
13753 case OP_INT:
13754 {
13755 uint16_t uVector = pDis->Param1.uValue & 0xff;
13756 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13757 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13758 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13759 break;
13760 }
13761
13762 case OP_INTO:
13763 {
13764 if (pMixedCtx->eflags.Bits.u1OF)
13765 {
13766 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13767 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13768 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13769 }
13770 else
13771 {
13772 pMixedCtx->eflags.Bits.u1RF = 0;
13773 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13774 }
13775 break;
13776 }
13777
13778 default:
13779 {
13780 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13781 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13782 EMCODETYPE_SUPERVISOR);
13783 rc = VBOXSTRICTRC_VAL(rc2);
13784 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13785 /** @todo We have to set pending-debug exceptions here when the guest is
13786 * single-stepping depending on the instruction that was interpreted. */
13787 Log4(("#GP rc=%Rrc\n", rc));
13788 break;
13789 }
13790 }
13791 }
13792 else
13793 rc = VERR_EM_INTERPRETER;
13794
13795 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13796 ("#GP Unexpected rc=%Rrc\n", rc));
13797 return rc;
13798}
13799
13800
13801/**
13802 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13803 * the exception reported in the VMX transient structure back into the VM.
13804 *
13805 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13806 * up-to-date.
13807 */
13808static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13809{
13810 RT_NOREF_PV(pMixedCtx);
13811 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13812#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13813 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13814 ("uVector=%#04x u32XcptBitmap=%#010RX32\n",
13815 VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13816#endif
13817
13818 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13819 hmR0VmxCheckExitDueToEventDelivery(). */
13820 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13821 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13822 AssertRCReturn(rc, rc);
13823 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13824
13825#ifdef DEBUG_ramshankar
13826 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13827 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13828 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13829#endif
13830
13831 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13832 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13833 return VINF_SUCCESS;
13834}
13835
13836
13837/**
13838 * VM-exit exception handler for \#PF (Page-fault exception).
13839 */
13840static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13841{
13842 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13843 PVM pVM = pVCpu->CTX_SUFF(pVM);
13844 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13845 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13846 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13847 AssertRCReturn(rc, rc);
13848
13849 if (!pVM->hm.s.fNestedPaging)
13850 { /* likely */ }
13851 else
13852 {
13853#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13854 Assert(pVCpu->hm.s.fUsingDebugLoop);
13855#endif
13856 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13857 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13858 {
13859 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13860 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13861 }
13862 else
13863 {
13864 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13865 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13866 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13867 }
13868 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13869 return rc;
13870 }
13871
13872 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13873 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13874 if (pVmxTransient->fVectoringPF)
13875 {
13876 Assert(pVCpu->hm.s.Event.fPending);
13877 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13878 }
13879
13880 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13881 AssertRCReturn(rc, rc);
13882
13883 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13884 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13885
13886 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13887 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13888 (RTGCPTR)pVmxTransient->uExitQualification);
13889
13890 Log4(("#PF: rc=%Rrc\n", rc));
13891 if (rc == VINF_SUCCESS)
13892 {
13893#if 0
13894 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13895 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13896 * memory? We don't update the whole state here... */
13897 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13898 | HM_CHANGED_GUEST_RSP
13899 | HM_CHANGED_GUEST_RFLAGS
13900 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13901#else
13902 /*
13903 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13904 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13905 */
13906 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13907 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13908#endif
13909 TRPMResetTrap(pVCpu);
13910 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13911 return rc;
13912 }
13913
13914 if (rc == VINF_EM_RAW_GUEST_TRAP)
13915 {
13916 if (!pVmxTransient->fVectoringDoublePF)
13917 {
13918 /* It's a guest page fault and needs to be reflected to the guest. */
13919 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13920 TRPMResetTrap(pVCpu);
13921 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13922 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13923 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13924 }
13925 else
13926 {
13927 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13928 TRPMResetTrap(pVCpu);
13929 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13930 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13931 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13932 }
13933
13934 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13935 return VINF_SUCCESS;
13936 }
13937
13938 TRPMResetTrap(pVCpu);
13939 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13940 return rc;
13941}
13942
13943/** @} */
13944
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette