VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 82821

Last change on this file since 82821 was 82814, checked in by vboxsync, 5 years ago

VMM/HM: Implement last-branch-record (LBR) support for guests executed using hardware-assisted VT-x. Enable per-VM using CFGM.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 720.0 KB
Line 
1/* $Id: HMVMXR0.cpp 82814 2020-01-22 03:38:46Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27#include <iprt/mem.h>
28#include <iprt/mp.h>
29
30#include <VBox/vmm/pdmapi.h>
31#include <VBox/vmm/dbgf.h>
32#include <VBox/vmm/iem.h>
33#include <VBox/vmm/iom.h>
34#include <VBox/vmm/tm.h>
35#include <VBox/vmm/em.h>
36#include <VBox/vmm/gim.h>
37#include <VBox/vmm/apic.h>
38#include "HMInternal.h"
39#include <VBox/vmm/vmcc.h>
40#include <VBox/vmm/hmvmxinline.h>
41#include "HMVMXR0.h"
42#include "dtrace/VBoxVMM.h"
43
44#ifdef DEBUG_ramshankar
45# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
46# define HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CLEAN_TRANSIENT
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/**
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82#define HMVMX_READ_GUEST_PHYSICAL_ADDR RT_BIT_32(8)
83#define HMVMX_READ_GUEST_PENDING_DBG_XCPTS RT_BIT_32(9)
84
85/** All the VMCS fields required for processing of exception/NMI VM-exits. */
86#define HMVMX_READ_XCPT_INFO ( HMVMX_READ_EXIT_INTERRUPTION_INFO \
87 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE \
88 | HMVMX_READ_EXIT_INSTR_LEN \
89 | HMVMX_READ_IDT_VECTORING_INFO \
90 | HMVMX_READ_IDT_VECTORING_ERROR_CODE)
91
92/** Assert that all the given fields have been read from the VMCS. */
93#ifdef VBOX_STRICT
94# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) \
95 do { \
96 uint32_t const fVmcsFieldRead = ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead); \
97 Assert((fVmcsFieldRead & (a_fReadFields)) == (a_fReadFields)); \
98 } while (0)
99#else
100# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) do { } while (0)
101#endif
102
103/**
104 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
105 * guest using hardware-assisted VMX.
106 *
107 * This excludes state like GPRs (other than RSP) which are always are
108 * swapped and restored across the world-switch and also registers like EFER,
109 * MSR which cannot be modified by the guest without causing a VM-exit.
110 */
111#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
112 | CPUMCTX_EXTRN_RFLAGS \
113 | CPUMCTX_EXTRN_RSP \
114 | CPUMCTX_EXTRN_SREG_MASK \
115 | CPUMCTX_EXTRN_TABLE_MASK \
116 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
117 | CPUMCTX_EXTRN_SYSCALL_MSRS \
118 | CPUMCTX_EXTRN_SYSENTER_MSRS \
119 | CPUMCTX_EXTRN_TSC_AUX \
120 | CPUMCTX_EXTRN_OTHER_MSRS \
121 | CPUMCTX_EXTRN_CR0 \
122 | CPUMCTX_EXTRN_CR3 \
123 | CPUMCTX_EXTRN_CR4 \
124 | CPUMCTX_EXTRN_DR7 \
125 | CPUMCTX_EXTRN_HWVIRT \
126 | CPUMCTX_EXTRN_HM_VMX_MASK)
127
128/**
129 * Exception bitmap mask for real-mode guests (real-on-v86).
130 *
131 * We need to intercept all exceptions manually except:
132 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
133 * due to bugs in Intel CPUs.
134 * - \#PF need not be intercepted even in real-mode if we have nested paging
135 * support.
136 */
137#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
138 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
139 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
140 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
141 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
142 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
143 | RT_BIT(X86_XCPT_XF))
144
145/** Maximum VM-instruction error number. */
146#define HMVMX_INSTR_ERROR_MAX 28
147
148/** Profiling macro. */
149#ifdef HM_PROFILE_EXIT_DISPATCH
150# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
151# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
152#else
153# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
154# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
155#endif
156
157/** Assert that preemption is disabled or covered by thread-context hooks. */
158#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
159 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
160
161/** Assert that we haven't migrated CPUs when thread-context hooks are not
162 * used. */
163#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
164 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
165 ("Illegal migration! Entered on CPU %u Current %u\n", \
166 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
167
168/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
169 * context. */
170#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
171 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
172 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
173
174/** Log the VM-exit reason with an easily visible marker to identify it in a
175 * potential sea of logging data. */
176#define HMVMX_LOG_EXIT(a_pVCpu, a_uExitReason) \
177 do { \
178 Log4(("VM-exit: vcpu[%RU32] %85s -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu, \
179 HMGetVmxExitName(a_uExitReason))); \
180 } while (0) \
181
182
183/*********************************************************************************************************************************
184* Structures and Typedefs *
185*********************************************************************************************************************************/
186/**
187 * VMX per-VCPU transient state.
188 *
189 * A state structure for holding miscellaneous information across
190 * VMX non-root operation and restored after the transition.
191 *
192 * Note: The members are ordered and aligned such that the most
193 * frequently used ones (in the guest execution loop) fall within
194 * the first cache line.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
199 uint32_t fVmcsFieldsRead;
200 /** The guest's TPR value used for TPR shadowing. */
201 uint8_t u8GuestTpr;
202 uint8_t abAlignment0[3];
203
204 /** Whether the VM-exit was caused by a page-fault during delivery of an
205 * external interrupt or NMI. */
206 bool fVectoringPF;
207 /** Whether the VM-exit was caused by a page-fault during delivery of a
208 * contributory exception or a page-fault. */
209 bool fVectoringDoublePF;
210 /** Whether the VM-entry failed or not. */
211 bool fVMEntryFailed;
212 /** Whether the TSC_AUX MSR needs to be removed from the auto-load/store MSR
213 * area after VM-exit. */
214 bool fRemoveTscAuxMsr;
215 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
216 bool fUpdatedTscOffsettingAndPreemptTimer;
217 /** Whether we are currently executing a nested-guest. */
218 bool fIsNestedGuest;
219 /** Whether the guest debug state was active at the time of VM-exit. */
220 bool fWasGuestDebugStateActive;
221 /** Whether the hyper debug state was active at the time of VM-exit. */
222 bool fWasHyperDebugStateActive;
223
224 /** The basic VM-exit reason. */
225 uint32_t uExitReason;
226 /** The VM-exit interruption error code. */
227 uint32_t uExitIntErrorCode;
228
229 /** The host's rflags/eflags. */
230 RTCCUINTREG fEFlags;
231
232 /** The VM-exit exit code qualification. */
233 uint64_t uExitQual;
234
235 /** The VMCS info. object. */
236 PVMXVMCSINFO pVmcsInfo;
237
238 /** The VM-exit interruption-information field. */
239 uint32_t uExitIntInfo;
240 /** The VM-exit instruction-length field. */
241 uint32_t cbExitInstr;
242
243 /** The VM-exit instruction-information field. */
244 VMXEXITINSTRINFO ExitInstrInfo;
245 /** IDT-vectoring information field. */
246 uint32_t uIdtVectoringInfo;
247
248 /** IDT-vectoring error code. */
249 uint32_t uIdtVectoringErrorCode;
250 uint32_t u32Alignment0;
251
252 /** The Guest-linear address. */
253 uint64_t uGuestLinearAddr;
254
255 /** The Guest-physical address. */
256 uint64_t uGuestPhysicalAddr;
257
258 /** The Guest pending-debug exceptions. */
259 uint64_t uGuestPendingDbgXcpts;
260
261 /** The VM-entry interruption-information field. */
262 uint32_t uEntryIntInfo;
263 /** The VM-entry exception error code field. */
264 uint32_t uEntryXcptErrorCode;
265
266 /** The VM-entry instruction length field. */
267 uint32_t cbEntryInstr;
268} VMXTRANSIENT;
269AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
270AssertCompileMemberAlignment(VMXTRANSIENT, fVmcsFieldsRead, 8);
271AssertCompileMemberAlignment(VMXTRANSIENT, fVectoringPF, 8);
272AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, 8);
273AssertCompileMemberAlignment(VMXTRANSIENT, fEFlags, 8);
274AssertCompileMemberAlignment(VMXTRANSIENT, uExitQual, 8);
275AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, 8);
276AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, 8);
277AssertCompileMemberAlignment(VMXTRANSIENT, ExitInstrInfo, 8);
278AssertCompileMemberAlignment(VMXTRANSIENT, uIdtVectoringErrorCode, 8);
279AssertCompileMemberAlignment(VMXTRANSIENT, uGuestLinearAddr, 8);
280AssertCompileMemberAlignment(VMXTRANSIENT, uGuestPhysicalAddr, 8);
281AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, 8);
282AssertCompileMemberAlignment(VMXTRANSIENT, cbEntryInstr, 8);
283/** Pointer to VMX transient state. */
284typedef VMXTRANSIENT *PVMXTRANSIENT;
285/** Pointer to a const VMX transient state. */
286typedef const VMXTRANSIENT *PCVMXTRANSIENT;
287
288/**
289 * VMX page allocation information.
290 */
291typedef struct
292{
293 uint32_t fValid; /**< Whether to allocate this page (e.g, based on a CPU feature). */
294 uint32_t uPadding0; /**< Padding to ensure array of these structs are aligned to a multiple of 8. */
295 PRTHCPHYS pHCPhys; /**< Where to store the host-physical address of the allocation. */
296 PRTR0PTR ppVirt; /**< Where to store the host-virtual address of the allocation. */
297} VMXPAGEALLOCINFO;
298/** Pointer to VMX page-allocation info. */
299typedef VMXPAGEALLOCINFO *PVMXPAGEALLOCINFO;
300/** Pointer to a const VMX page-allocation info. */
301typedef const VMXPAGEALLOCINFO *PCVMXPAGEALLOCINFO;
302AssertCompileSizeAlignment(VMXPAGEALLOCINFO, 8);
303
304/**
305 * Memory operand read or write access.
306 */
307typedef enum VMXMEMACCESS
308{
309 VMXMEMACCESS_READ = 0,
310 VMXMEMACCESS_WRITE = 1
311} VMXMEMACCESS;
312
313/**
314 * VMX VM-exit handler.
315 *
316 * @returns Strict VBox status code (i.e. informational status codes too).
317 * @param pVCpu The cross context virtual CPU structure.
318 * @param pVmxTransient The VMX-transient structure.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
324/** Pointer to VM-exit handler. */
325typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
326#endif
327
328/**
329 * VMX VM-exit handler, non-strict status code.
330 *
331 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
332 *
333 * @returns VBox status code, no informational status code returned.
334 * @param pVCpu The cross context virtual CPU structure.
335 * @param pVmxTransient The VMX-transient structure.
336 *
337 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
338 * use of that status code will be replaced with VINF_EM_SOMETHING
339 * later when switching over to IEM.
340 */
341#ifndef HMVMX_USE_FUNCTION_TABLE
342typedef int FNVMXEXITHANDLERNSRC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
343#else
344typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
345#endif
346
347
348/*********************************************************************************************************************************
349* Internal Functions *
350*********************************************************************************************************************************/
351#ifndef HMVMX_USE_FUNCTION_TABLE
352DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
353# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
354# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
355#else
356# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
357# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
358#endif
359#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
360DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
361#endif
362
363static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
364
365/** @name VM-exit handler prototypes.
366 * @{
367 */
368static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
369static FNVMXEXITHANDLER hmR0VmxExitExtInt;
370static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
371static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
372static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
373static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
374static FNVMXEXITHANDLER hmR0VmxExitCpuid;
375static FNVMXEXITHANDLER hmR0VmxExitGetsec;
376static FNVMXEXITHANDLER hmR0VmxExitHlt;
377static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
378static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
379static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
380static FNVMXEXITHANDLER hmR0VmxExitVmcall;
381#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
382static FNVMXEXITHANDLER hmR0VmxExitVmclear;
383static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
384static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
385static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
386static FNVMXEXITHANDLER hmR0VmxExitVmread;
387static FNVMXEXITHANDLER hmR0VmxExitVmresume;
388static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
389static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
390static FNVMXEXITHANDLER hmR0VmxExitVmxon;
391static FNVMXEXITHANDLER hmR0VmxExitInvvpid;
392#endif
393static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
394static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
395static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
396static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
397static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
398static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
399static FNVMXEXITHANDLER hmR0VmxExitMwait;
400static FNVMXEXITHANDLER hmR0VmxExitMtf;
401static FNVMXEXITHANDLER hmR0VmxExitMonitor;
402static FNVMXEXITHANDLER hmR0VmxExitPause;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
404static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
405static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
406static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
407static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
408static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
410static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
411static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
413static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
414static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUnexpected;
415/** @} */
416
417#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
418/** @name Nested-guest VM-exit handler prototypes.
419 * @{
420 */
421static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmiNested;
422static FNVMXEXITHANDLER hmR0VmxExitTripleFaultNested;
423static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindowNested;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindowNested;
425static FNVMXEXITHANDLER hmR0VmxExitTaskSwitchNested;
426static FNVMXEXITHANDLER hmR0VmxExitHltNested;
427static FNVMXEXITHANDLER hmR0VmxExitInvlpgNested;
428static FNVMXEXITHANDLER hmR0VmxExitRdpmcNested;
429static FNVMXEXITHANDLER hmR0VmxExitVmreadVmwriteNested;
430static FNVMXEXITHANDLER hmR0VmxExitRdtscNested;
431static FNVMXEXITHANDLER hmR0VmxExitMovCRxNested;
432static FNVMXEXITHANDLER hmR0VmxExitMovDRxNested;
433static FNVMXEXITHANDLER hmR0VmxExitIoInstrNested;
434static FNVMXEXITHANDLER hmR0VmxExitRdmsrNested;
435static FNVMXEXITHANDLER hmR0VmxExitWrmsrNested;
436static FNVMXEXITHANDLER hmR0VmxExitMwaitNested;
437static FNVMXEXITHANDLER hmR0VmxExitMtfNested;
438static FNVMXEXITHANDLER hmR0VmxExitMonitorNested;
439static FNVMXEXITHANDLER hmR0VmxExitPauseNested;
440static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThresholdNested;
441static FNVMXEXITHANDLER hmR0VmxExitApicAccessNested;
442static FNVMXEXITHANDLER hmR0VmxExitApicWriteNested;
443static FNVMXEXITHANDLER hmR0VmxExitVirtEoiNested;
444static FNVMXEXITHANDLER hmR0VmxExitRdtscpNested;
445static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvdNested;
446static FNVMXEXITHANDLER hmR0VmxExitInvpcidNested;
447static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestStateNested;
448static FNVMXEXITHANDLER hmR0VmxExitInstrNested;
449static FNVMXEXITHANDLER hmR0VmxExitInstrWithInfoNested;
450/** @} */
451#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
452
453
454/*********************************************************************************************************************************
455* Global Variables *
456*********************************************************************************************************************************/
457#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
458/**
459 * Array of all VMCS fields.
460 * Any fields added to the VT-x spec. should be added here.
461 *
462 * Currently only used to derive shadow VMCS fields for hardware-assisted execution
463 * of nested-guests.
464 */
465static const uint32_t g_aVmcsFields[] =
466{
467 /* 16-bit control fields. */
468 VMX_VMCS16_VPID,
469 VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR,
470 VMX_VMCS16_EPTP_INDEX,
471
472 /* 16-bit guest-state fields. */
473 VMX_VMCS16_GUEST_ES_SEL,
474 VMX_VMCS16_GUEST_CS_SEL,
475 VMX_VMCS16_GUEST_SS_SEL,
476 VMX_VMCS16_GUEST_DS_SEL,
477 VMX_VMCS16_GUEST_FS_SEL,
478 VMX_VMCS16_GUEST_GS_SEL,
479 VMX_VMCS16_GUEST_LDTR_SEL,
480 VMX_VMCS16_GUEST_TR_SEL,
481 VMX_VMCS16_GUEST_INTR_STATUS,
482 VMX_VMCS16_GUEST_PML_INDEX,
483
484 /* 16-bits host-state fields. */
485 VMX_VMCS16_HOST_ES_SEL,
486 VMX_VMCS16_HOST_CS_SEL,
487 VMX_VMCS16_HOST_SS_SEL,
488 VMX_VMCS16_HOST_DS_SEL,
489 VMX_VMCS16_HOST_FS_SEL,
490 VMX_VMCS16_HOST_GS_SEL,
491 VMX_VMCS16_HOST_TR_SEL,
492
493 /* 64-bit control fields. */
494 VMX_VMCS64_CTRL_IO_BITMAP_A_FULL,
495 VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH,
496 VMX_VMCS64_CTRL_IO_BITMAP_B_FULL,
497 VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH,
498 VMX_VMCS64_CTRL_MSR_BITMAP_FULL,
499 VMX_VMCS64_CTRL_MSR_BITMAP_HIGH,
500 VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL,
501 VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH,
502 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL,
503 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH,
504 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL,
505 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH,
506 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL,
507 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH,
508 VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL,
509 VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH,
510 VMX_VMCS64_CTRL_TSC_OFFSET_FULL,
511 VMX_VMCS64_CTRL_TSC_OFFSET_HIGH,
512 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL,
513 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH,
514 VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL,
515 VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH,
516 VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL,
517 VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH,
518 VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL,
519 VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH,
520 VMX_VMCS64_CTRL_EPTP_FULL,
521 VMX_VMCS64_CTRL_EPTP_HIGH,
522 VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL,
523 VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH,
524 VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL,
525 VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH,
526 VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL,
527 VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH,
528 VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL,
529 VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH,
530 VMX_VMCS64_CTRL_EPTP_LIST_FULL,
531 VMX_VMCS64_CTRL_EPTP_LIST_HIGH,
532 VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL,
533 VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH,
534 VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL,
535 VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH,
536 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL,
537 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH,
538 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL,
539 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH,
540 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL,
541 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH,
542 VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL,
543 VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH,
544
545 /* 64-bit read-only data fields. */
546 VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,
547 VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH,
548
549 /* 64-bit guest-state fields. */
550 VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL,
551 VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH,
552 VMX_VMCS64_GUEST_DEBUGCTL_FULL,
553 VMX_VMCS64_GUEST_DEBUGCTL_HIGH,
554 VMX_VMCS64_GUEST_PAT_FULL,
555 VMX_VMCS64_GUEST_PAT_HIGH,
556 VMX_VMCS64_GUEST_EFER_FULL,
557 VMX_VMCS64_GUEST_EFER_HIGH,
558 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL,
559 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH,
560 VMX_VMCS64_GUEST_PDPTE0_FULL,
561 VMX_VMCS64_GUEST_PDPTE0_HIGH,
562 VMX_VMCS64_GUEST_PDPTE1_FULL,
563 VMX_VMCS64_GUEST_PDPTE1_HIGH,
564 VMX_VMCS64_GUEST_PDPTE2_FULL,
565 VMX_VMCS64_GUEST_PDPTE2_HIGH,
566 VMX_VMCS64_GUEST_PDPTE3_FULL,
567 VMX_VMCS64_GUEST_PDPTE3_HIGH,
568 VMX_VMCS64_GUEST_BNDCFGS_FULL,
569 VMX_VMCS64_GUEST_BNDCFGS_HIGH,
570
571 /* 64-bit host-state fields. */
572 VMX_VMCS64_HOST_PAT_FULL,
573 VMX_VMCS64_HOST_PAT_HIGH,
574 VMX_VMCS64_HOST_EFER_FULL,
575 VMX_VMCS64_HOST_EFER_HIGH,
576 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL,
577 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH,
578
579 /* 32-bit control fields. */
580 VMX_VMCS32_CTRL_PIN_EXEC,
581 VMX_VMCS32_CTRL_PROC_EXEC,
582 VMX_VMCS32_CTRL_EXCEPTION_BITMAP,
583 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK,
584 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH,
585 VMX_VMCS32_CTRL_CR3_TARGET_COUNT,
586 VMX_VMCS32_CTRL_EXIT,
587 VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT,
588 VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT,
589 VMX_VMCS32_CTRL_ENTRY,
590 VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT,
591 VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO,
592 VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE,
593 VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH,
594 VMX_VMCS32_CTRL_TPR_THRESHOLD,
595 VMX_VMCS32_CTRL_PROC_EXEC2,
596 VMX_VMCS32_CTRL_PLE_GAP,
597 VMX_VMCS32_CTRL_PLE_WINDOW,
598
599 /* 32-bits read-only fields. */
600 VMX_VMCS32_RO_VM_INSTR_ERROR,
601 VMX_VMCS32_RO_EXIT_REASON,
602 VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,
603 VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE,
604 VMX_VMCS32_RO_IDT_VECTORING_INFO,
605 VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,
606 VMX_VMCS32_RO_EXIT_INSTR_LENGTH,
607 VMX_VMCS32_RO_EXIT_INSTR_INFO,
608
609 /* 32-bit guest-state fields. */
610 VMX_VMCS32_GUEST_ES_LIMIT,
611 VMX_VMCS32_GUEST_CS_LIMIT,
612 VMX_VMCS32_GUEST_SS_LIMIT,
613 VMX_VMCS32_GUEST_DS_LIMIT,
614 VMX_VMCS32_GUEST_FS_LIMIT,
615 VMX_VMCS32_GUEST_GS_LIMIT,
616 VMX_VMCS32_GUEST_LDTR_LIMIT,
617 VMX_VMCS32_GUEST_TR_LIMIT,
618 VMX_VMCS32_GUEST_GDTR_LIMIT,
619 VMX_VMCS32_GUEST_IDTR_LIMIT,
620 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
621 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
622 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
623 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
624 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
625 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS,
626 VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS,
627 VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS,
628 VMX_VMCS32_GUEST_INT_STATE,
629 VMX_VMCS32_GUEST_ACTIVITY_STATE,
630 VMX_VMCS32_GUEST_SMBASE,
631 VMX_VMCS32_GUEST_SYSENTER_CS,
632 VMX_VMCS32_PREEMPT_TIMER_VALUE,
633
634 /* 32-bit host-state fields. */
635 VMX_VMCS32_HOST_SYSENTER_CS,
636
637 /* Natural-width control fields. */
638 VMX_VMCS_CTRL_CR0_MASK,
639 VMX_VMCS_CTRL_CR4_MASK,
640 VMX_VMCS_CTRL_CR0_READ_SHADOW,
641 VMX_VMCS_CTRL_CR4_READ_SHADOW,
642 VMX_VMCS_CTRL_CR3_TARGET_VAL0,
643 VMX_VMCS_CTRL_CR3_TARGET_VAL1,
644 VMX_VMCS_CTRL_CR3_TARGET_VAL2,
645 VMX_VMCS_CTRL_CR3_TARGET_VAL3,
646
647 /* Natural-width read-only data fields. */
648 VMX_VMCS_RO_EXIT_QUALIFICATION,
649 VMX_VMCS_RO_IO_RCX,
650 VMX_VMCS_RO_IO_RSI,
651 VMX_VMCS_RO_IO_RDI,
652 VMX_VMCS_RO_IO_RIP,
653 VMX_VMCS_RO_GUEST_LINEAR_ADDR,
654
655 /* Natural-width guest-state field */
656 VMX_VMCS_GUEST_CR0,
657 VMX_VMCS_GUEST_CR3,
658 VMX_VMCS_GUEST_CR4,
659 VMX_VMCS_GUEST_ES_BASE,
660 VMX_VMCS_GUEST_CS_BASE,
661 VMX_VMCS_GUEST_SS_BASE,
662 VMX_VMCS_GUEST_DS_BASE,
663 VMX_VMCS_GUEST_FS_BASE,
664 VMX_VMCS_GUEST_GS_BASE,
665 VMX_VMCS_GUEST_LDTR_BASE,
666 VMX_VMCS_GUEST_TR_BASE,
667 VMX_VMCS_GUEST_GDTR_BASE,
668 VMX_VMCS_GUEST_IDTR_BASE,
669 VMX_VMCS_GUEST_DR7,
670 VMX_VMCS_GUEST_RSP,
671 VMX_VMCS_GUEST_RIP,
672 VMX_VMCS_GUEST_RFLAGS,
673 VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,
674 VMX_VMCS_GUEST_SYSENTER_ESP,
675 VMX_VMCS_GUEST_SYSENTER_EIP,
676
677 /* Natural-width host-state fields */
678 VMX_VMCS_HOST_CR0,
679 VMX_VMCS_HOST_CR3,
680 VMX_VMCS_HOST_CR4,
681 VMX_VMCS_HOST_FS_BASE,
682 VMX_VMCS_HOST_GS_BASE,
683 VMX_VMCS_HOST_TR_BASE,
684 VMX_VMCS_HOST_GDTR_BASE,
685 VMX_VMCS_HOST_IDTR_BASE,
686 VMX_VMCS_HOST_SYSENTER_ESP,
687 VMX_VMCS_HOST_SYSENTER_EIP,
688 VMX_VMCS_HOST_RSP,
689 VMX_VMCS_HOST_RIP
690};
691#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
692
693static const uint32_t g_aVmcsSegBase[] =
694{
695 VMX_VMCS_GUEST_ES_BASE,
696 VMX_VMCS_GUEST_CS_BASE,
697 VMX_VMCS_GUEST_SS_BASE,
698 VMX_VMCS_GUEST_DS_BASE,
699 VMX_VMCS_GUEST_FS_BASE,
700 VMX_VMCS_GUEST_GS_BASE
701};
702static const uint32_t g_aVmcsSegSel[] =
703{
704 VMX_VMCS16_GUEST_ES_SEL,
705 VMX_VMCS16_GUEST_CS_SEL,
706 VMX_VMCS16_GUEST_SS_SEL,
707 VMX_VMCS16_GUEST_DS_SEL,
708 VMX_VMCS16_GUEST_FS_SEL,
709 VMX_VMCS16_GUEST_GS_SEL
710};
711static const uint32_t g_aVmcsSegLimit[] =
712{
713 VMX_VMCS32_GUEST_ES_LIMIT,
714 VMX_VMCS32_GUEST_CS_LIMIT,
715 VMX_VMCS32_GUEST_SS_LIMIT,
716 VMX_VMCS32_GUEST_DS_LIMIT,
717 VMX_VMCS32_GUEST_FS_LIMIT,
718 VMX_VMCS32_GUEST_GS_LIMIT
719};
720static const uint32_t g_aVmcsSegAttr[] =
721{
722 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
723 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
724 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
725 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
726 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
727 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
728};
729AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
730AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
731AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
732AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
733
734#ifdef HMVMX_USE_FUNCTION_TABLE
735/**
736 * VMX_EXIT dispatch table.
737 */
738static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
739{
740 /* 0 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
741 /* 1 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
742 /* 2 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
743 /* 3 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitErrUnexpected,
744 /* 4 VMX_EXIT_SIPI */ hmR0VmxExitErrUnexpected,
745 /* 5 VMX_EXIT_IO_SMI */ hmR0VmxExitErrUnexpected,
746 /* 6 VMX_EXIT_SMI */ hmR0VmxExitErrUnexpected,
747 /* 7 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
748 /* 8 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
749 /* 9 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
750 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
751 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
752 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
753 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
754 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
755 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
756 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
757 /* 17 VMX_EXIT_RSM */ hmR0VmxExitErrUnexpected,
758 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
759#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
760 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
761 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
762 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
763 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
764 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
765 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
766 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
767 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
768 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
769#else
770 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
771 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
772 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
773 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
774 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
775 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
776 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
777 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
778 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
779#endif
780 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
781 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
782 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
783 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
784 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
785 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
786 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrUnexpected,
787 /* 35 UNDEFINED */ hmR0VmxExitErrUnexpected,
788 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
789 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
790 /* 38 UNDEFINED */ hmR0VmxExitErrUnexpected,
791 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
792 /* 40 VMX_EXIT_PAUSE */ hmR0VmxExitPause,
793 /* 41 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUnexpected,
794 /* 42 UNDEFINED */ hmR0VmxExitErrUnexpected,
795 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
796 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
797 /* 45 VMX_EXIT_VIRTUALIZED_EOI */ hmR0VmxExitErrUnexpected,
798 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitErrUnexpected,
799 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitErrUnexpected,
800 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
801 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
802 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
803 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
804 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
805#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
806 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitInvvpid,
807#else
808 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
809#endif
810 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
811 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
812 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUnexpected,
813 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitErrUnexpected,
814 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
815 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitErrUnexpected,
816 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUnexpected,
817 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUnexpected,
818 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUnexpected,
819 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitErrUnexpected,
820 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitErrUnexpected,
821 /* 65 UNDEFINED */ hmR0VmxExitErrUnexpected,
822 /* 66 VMX_EXIT_SPP_EVENT */ hmR0VmxExitErrUnexpected,
823 /* 67 VMX_EXIT_UMWAIT */ hmR0VmxExitErrUnexpected,
824 /* 68 VMX_EXIT_TPAUSE */ hmR0VmxExitErrUnexpected,
825};
826#endif /* HMVMX_USE_FUNCTION_TABLE */
827
828#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
829static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
830{
831 /* 0 */ "(Not Used)",
832 /* 1 */ "VMCALL executed in VMX root operation.",
833 /* 2 */ "VMCLEAR with invalid physical address.",
834 /* 3 */ "VMCLEAR with VMXON pointer.",
835 /* 4 */ "VMLAUNCH with non-clear VMCS.",
836 /* 5 */ "VMRESUME with non-launched VMCS.",
837 /* 6 */ "VMRESUME after VMXOFF",
838 /* 7 */ "VM-entry with invalid control fields.",
839 /* 8 */ "VM-entry with invalid host state fields.",
840 /* 9 */ "VMPTRLD with invalid physical address.",
841 /* 10 */ "VMPTRLD with VMXON pointer.",
842 /* 11 */ "VMPTRLD with incorrect revision identifier.",
843 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
844 /* 13 */ "VMWRITE to read-only VMCS component.",
845 /* 14 */ "(Not Used)",
846 /* 15 */ "VMXON executed in VMX root operation.",
847 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
848 /* 17 */ "VM-entry with non-launched executing VMCS.",
849 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
850 /* 19 */ "VMCALL with non-clear VMCS.",
851 /* 20 */ "VMCALL with invalid VM-exit control fields.",
852 /* 21 */ "(Not Used)",
853 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
854 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
855 /* 24 */ "VMCALL with invalid SMM-monitor features.",
856 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
857 /* 26 */ "VM-entry with events blocked by MOV SS.",
858 /* 27 */ "(Not Used)",
859 /* 28 */ "Invalid operand to INVEPT/INVVPID."
860};
861#endif /* VBOX_STRICT && LOG_ENABLED */
862
863
864/**
865 * Checks if the given MSR is part of the lastbranch-from-IP MSR stack.
866 * @returns @c true if it's part of LBR stack, @c false otherwise.
867 *
868 * @param pVM The cross context VM structure.
869 * @param idMsr The MSR.
870 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
871 * Optional, can be NULL.
872 *
873 * @remarks Must only be called when LBR is enabled.
874 */
875DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchFromMsr(PCVM pVM, uint32_t idMsr, uint32_t *pidxMsr)
876{
877 Assert(pVM->hm.s.vmx.fLbr);
878 Assert(pVM->hm.s.vmx.idLbrFromIpMsrFirst);
879 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
880 uint32_t const idxMsr = idMsr - pVM->hm.s.vmx.idLbrFromIpMsrFirst;
881 if (idxMsr < cLbrStack)
882 {
883 if (pidxMsr)
884 *pidxMsr = idxMsr;
885 return true;
886 }
887 return false;
888}
889
890
891/**
892 * Checks if the given MSR is part of the lastbranch-to-IP MSR stack.
893 * @returns @c true if it's part of LBR stack, @c false otherwise.
894 *
895 * @param pVM The cross context VM structure.
896 * @param idMsr The MSR.
897 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
898 * Optional, can be NULL.
899 *
900 * @remarks Must only be called when LBR is enabled and when lastbranch-to-IP MSRs
901 * are supported by the CPU (see hmR0VmxSetupLbrMsrRange).
902 */
903DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchToMsr(PCVM pVM, uint32_t idMsr, uint32_t *pidxMsr)
904{
905 Assert(pVM->hm.s.vmx.fLbr);
906 if (pVM->hm.s.vmx.idLbrToIpMsrFirst)
907 {
908 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrToIpMsrLast - pVM->hm.s.vmx.idLbrToIpMsrFirst + 1;
909 uint32_t const idxMsr = idMsr - pVM->hm.s.vmx.idLbrToIpMsrFirst;
910 if (idxMsr < cLbrStack)
911 {
912 if (pidxMsr)
913 *pidxMsr = idxMsr;
914 return true;
915 }
916 }
917 return false;
918}
919
920
921/**
922 * Gets the CR0 guest/host mask.
923 *
924 * These bits typically does not change through the lifetime of a VM. Any bit set in
925 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
926 * by the guest.
927 *
928 * @returns The CR0 guest/host mask.
929 * @param pVCpu The cross context virtual CPU structure.
930 */
931static uint64_t hmR0VmxGetFixedCr0Mask(PCVMCPUCC pVCpu)
932{
933 /*
934 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
935 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
936 *
937 * Furthermore, modifications to any bits that are reserved/unspecified currently
938 * by the Intel spec. must also cause a VM-exit. This prevents unpredictable behavior
939 * when future CPUs specify and use currently reserved/unspecified bits.
940 */
941 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
942 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
943 * and @bugref{6944}. */
944 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
945 return ( X86_CR0_PE
946 | X86_CR0_NE
947 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
948 | X86_CR0_PG
949 | VMX_EXIT_HOST_CR0_IGNORE_MASK);
950}
951
952
953/**
954 * Gets the CR4 guest/host mask.
955 *
956 * These bits typically does not change through the lifetime of a VM. Any bit set in
957 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
958 * by the guest.
959 *
960 * @returns The CR4 guest/host mask.
961 * @param pVCpu The cross context virtual CPU structure.
962 */
963static uint64_t hmR0VmxGetFixedCr4Mask(PCVMCPUCC pVCpu)
964{
965 /*
966 * We construct a mask of all CR4 bits that the guest can modify without causing
967 * a VM-exit. Then invert this mask to obtain all CR4 bits that should cause
968 * a VM-exit when the guest attempts to modify them when executing using
969 * hardware-assisted VMX.
970 *
971 * When a feature is not exposed to the guest (and may be present on the host),
972 * we want to intercept guest modifications to the bit so we can emulate proper
973 * behavior (e.g., #GP).
974 *
975 * Furthermore, only modifications to those bits that don't require immediate
976 * emulation is allowed. For e.g., PCIDE is excluded because the behavior
977 * depends on CR3 which might not always be the guest value while executing
978 * using hardware-assisted VMX.
979 */
980 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
981 bool const fFsGsBase = pVM->cpum.ro.GuestFeatures.fFsGsBase;
982 bool const fXSaveRstor = pVM->cpum.ro.GuestFeatures.fXSaveRstor;
983 bool const fFxSaveRstor = pVM->cpum.ro.GuestFeatures.fFxSaveRstor;
984
985 /*
986 * Paranoia.
987 * Ensure features exposed to the guest are present on the host.
988 */
989 Assert(!fFsGsBase || pVM->cpum.ro.HostFeatures.fFsGsBase);
990 Assert(!fXSaveRstor || pVM->cpum.ro.HostFeatures.fXSaveRstor);
991 Assert(!fFxSaveRstor || pVM->cpum.ro.HostFeatures.fFxSaveRstor);
992
993 uint64_t const fGstMask = ( X86_CR4_PVI
994 | X86_CR4_TSD
995 | X86_CR4_DE
996 | X86_CR4_MCE
997 | X86_CR4_PCE
998 | X86_CR4_OSXMMEEXCPT
999 | (fFsGsBase ? X86_CR4_FSGSBASE : 0)
1000 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
1001 | (fFxSaveRstor ? X86_CR4_OSFXSR : 0));
1002 return ~fGstMask;
1003}
1004
1005
1006/**
1007 * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
1008 * area.
1009 *
1010 * @returns @c true if it's different, @c false otherwise.
1011 * @param pVmcsInfo The VMCS info. object.
1012 */
1013DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
1014{
1015 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
1016 && pVmcsInfo->pvGuestMsrStore);
1017}
1018
1019
1020/**
1021 * Sets the given Processor-based VM-execution controls.
1022 *
1023 * @param pVmxTransient The VMX-transient structure.
1024 * @param uProcCtls The Processor-based VM-execution controls to set.
1025 */
1026static void hmR0VmxSetProcCtlsVmcs(PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1027{
1028 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1029 if ((pVmcsInfo->u32ProcCtls & uProcCtls) != uProcCtls)
1030 {
1031 pVmcsInfo->u32ProcCtls |= uProcCtls;
1032 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1033 AssertRC(rc);
1034 }
1035}
1036
1037
1038/**
1039 * Removes the given Processor-based VM-execution controls.
1040 *
1041 * @param pVCpu The cross context virtual CPU structure.
1042 * @param pVmxTransient The VMX-transient structure.
1043 * @param uProcCtls The Processor-based VM-execution controls to remove.
1044 *
1045 * @remarks When executing a nested-guest, this will not remove any of the specified
1046 * controls if the nested hypervisor has set any one of them.
1047 */
1048static void hmR0VmxRemoveProcCtlsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1049{
1050 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1051 if (pVmcsInfo->u32ProcCtls & uProcCtls)
1052 {
1053#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1054 bool const fRemoveCtls = !pVmxTransient->fIsNestedGuest
1055 ? true
1056 : !CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uProcCtls);
1057#else
1058 NOREF(pVCpu);
1059 bool const fRemoveCtls = true;
1060#endif
1061 if (fRemoveCtls)
1062 {
1063 pVmcsInfo->u32ProcCtls &= ~uProcCtls;
1064 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1065 AssertRC(rc);
1066 }
1067 }
1068}
1069
1070
1071/**
1072 * Sets the TSC offset for the current VMCS.
1073 *
1074 * @param uTscOffset The TSC offset to set.
1075 * @param pVmcsInfo The VMCS info. object.
1076 */
1077static void hmR0VmxSetTscOffsetVmcs(PVMXVMCSINFO pVmcsInfo, uint64_t uTscOffset)
1078{
1079 if (pVmcsInfo->u64TscOffset != uTscOffset)
1080 {
1081 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
1082 AssertRC(rc);
1083 pVmcsInfo->u64TscOffset = uTscOffset;
1084 }
1085}
1086
1087
1088/**
1089 * Adds one or more exceptions to the exception bitmap and commits it to the current
1090 * VMCS.
1091 *
1092 * @param pVmxTransient The VMX-transient structure.
1093 * @param uXcptMask The exception(s) to add.
1094 */
1095static void hmR0VmxAddXcptInterceptMask(PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1096{
1097 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1098 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
1099 if ((uXcptBitmap & uXcptMask) != uXcptMask)
1100 {
1101 uXcptBitmap |= uXcptMask;
1102 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
1103 AssertRC(rc);
1104 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
1105 }
1106}
1107
1108
1109/**
1110 * Adds an exception to the exception bitmap and commits it to the current VMCS.
1111 *
1112 * @param pVmxTransient The VMX-transient structure.
1113 * @param uXcpt The exception to add.
1114 */
1115static void hmR0VmxAddXcptIntercept(PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1116{
1117 Assert(uXcpt <= X86_XCPT_LAST);
1118 hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
1119}
1120
1121
1122/**
1123 * Remove one or more exceptions from the exception bitmap and commits it to the
1124 * current VMCS.
1125 *
1126 * This takes care of not removing the exception intercept if a nested-guest
1127 * requires the exception to be intercepted.
1128 *
1129 * @returns VBox status code.
1130 * @param pVCpu The cross context virtual CPU structure.
1131 * @param pVmxTransient The VMX-transient structure.
1132 * @param uXcptMask The exception(s) to remove.
1133 */
1134static int hmR0VmxRemoveXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1135{
1136 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1137 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
1138 if (u32XcptBitmap & uXcptMask)
1139 {
1140#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1141 if (!pVmxTransient->fIsNestedGuest)
1142 { /* likely */ }
1143 else
1144 {
1145 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1146 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
1147 }
1148#endif
1149#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
1150 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
1151 | RT_BIT(X86_XCPT_DE)
1152 | RT_BIT(X86_XCPT_NM)
1153 | RT_BIT(X86_XCPT_TS)
1154 | RT_BIT(X86_XCPT_UD)
1155 | RT_BIT(X86_XCPT_NP)
1156 | RT_BIT(X86_XCPT_SS)
1157 | RT_BIT(X86_XCPT_GP)
1158 | RT_BIT(X86_XCPT_PF)
1159 | RT_BIT(X86_XCPT_MF));
1160#elif defined(HMVMX_ALWAYS_TRAP_PF)
1161 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
1162#endif
1163 if (uXcptMask)
1164 {
1165 /* Validate we are not removing any essential exception intercepts. */
1166 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF)));
1167 NOREF(pVCpu);
1168 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
1169 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
1170
1171 /* Remove it from the exception bitmap. */
1172 u32XcptBitmap &= ~uXcptMask;
1173
1174 /* Commit and update the cache if necessary. */
1175 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
1176 {
1177 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
1178 AssertRC(rc);
1179 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
1180 }
1181 }
1182 }
1183 return VINF_SUCCESS;
1184}
1185
1186
1187/**
1188 * Remove an exceptions from the exception bitmap and commits it to the current
1189 * VMCS.
1190 *
1191 * @returns VBox status code.
1192 * @param pVCpu The cross context virtual CPU structure.
1193 * @param pVmxTransient The VMX-transient structure.
1194 * @param uXcpt The exception to remove.
1195 */
1196static int hmR0VmxRemoveXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1197{
1198 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
1199}
1200
1201
1202/**
1203 * Loads the VMCS specified by the VMCS info. object.
1204 *
1205 * @returns VBox status code.
1206 * @param pVmcsInfo The VMCS info. object.
1207 *
1208 * @remarks Can be called with interrupts disabled.
1209 */
1210static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
1211{
1212 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1213 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1214
1215 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
1216 if (RT_SUCCESS(rc))
1217 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1218 return rc;
1219}
1220
1221
1222/**
1223 * Clears the VMCS specified by the VMCS info. object.
1224 *
1225 * @returns VBox status code.
1226 * @param pVmcsInfo The VMCS info. object.
1227 *
1228 * @remarks Can be called with interrupts disabled.
1229 */
1230static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
1231{
1232 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1233 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1234
1235 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
1236 if (RT_SUCCESS(rc))
1237 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1238 return rc;
1239}
1240
1241
1242#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1243/**
1244 * Loads the shadow VMCS specified by the VMCS info. object.
1245 *
1246 * @returns VBox status code.
1247 * @param pVmcsInfo The VMCS info. object.
1248 *
1249 * @remarks Can be called with interrupts disabled.
1250 */
1251static int hmR0VmxLoadShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1252{
1253 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1254 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1255
1256 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysShadowVmcs);
1257 if (RT_SUCCESS(rc))
1258 pVmcsInfo->fShadowVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1259 return rc;
1260}
1261
1262
1263/**
1264 * Clears the shadow VMCS specified by the VMCS info. object.
1265 *
1266 * @returns VBox status code.
1267 * @param pVmcsInfo The VMCS info. object.
1268 *
1269 * @remarks Can be called with interrupts disabled.
1270 */
1271static int hmR0VmxClearShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1272{
1273 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1274 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1275
1276 int rc = VMXClearVmcs(pVmcsInfo->HCPhysShadowVmcs);
1277 if (RT_SUCCESS(rc))
1278 pVmcsInfo->fShadowVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1279 return rc;
1280}
1281
1282
1283/**
1284 * Switches from and to the specified VMCSes.
1285 *
1286 * @returns VBox status code.
1287 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
1288 * @param pVmcsInfoTo The VMCS info. object we are switching to.
1289 *
1290 * @remarks Called with interrupts disabled.
1291 */
1292static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
1293{
1294 /*
1295 * Clear the VMCS we are switching out if it has not already been cleared.
1296 * This will sync any CPU internal data back to the VMCS.
1297 */
1298 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1299 {
1300 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
1301 if (RT_SUCCESS(rc))
1302 {
1303 /*
1304 * The shadow VMCS, if any, would not be active at this point since we
1305 * would have cleared it while importing the virtual hardware-virtualization
1306 * state as part the VMLAUNCH/VMRESUME VM-exit. Hence, there's no need to
1307 * clear the shadow VMCS here, just assert for safety.
1308 */
1309 Assert(!pVmcsInfoFrom->pvShadowVmcs || pVmcsInfoFrom->fShadowVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR);
1310 }
1311 else
1312 return rc;
1313 }
1314
1315 /*
1316 * Clear the VMCS we are switching to if it has not already been cleared.
1317 * This will initialize the VMCS launch state to "clear" required for loading it.
1318 *
1319 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
1320 */
1321 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1322 {
1323 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
1324 if (RT_SUCCESS(rc))
1325 { /* likely */ }
1326 else
1327 return rc;
1328 }
1329
1330 /*
1331 * Finally, load the VMCS we are switching to.
1332 */
1333 return hmR0VmxLoadVmcs(pVmcsInfoTo);
1334}
1335
1336
1337/**
1338 * Switches between the guest VMCS and the nested-guest VMCS as specified by the
1339 * caller.
1340 *
1341 * @returns VBox status code.
1342 * @param pVCpu The cross context virtual CPU structure.
1343 * @param fSwitchToNstGstVmcs Whether to switch to the nested-guest VMCS (pass
1344 * true) or guest VMCS (pass false).
1345 */
1346static int hmR0VmxSwitchToGstOrNstGstVmcs(PVMCPUCC pVCpu, bool fSwitchToNstGstVmcs)
1347{
1348 /* Ensure we have synced everything from the guest-CPU context to the VMCS before switching. */
1349 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
1350
1351 PVMXVMCSINFO pVmcsInfoFrom;
1352 PVMXVMCSINFO pVmcsInfoTo;
1353 if (fSwitchToNstGstVmcs)
1354 {
1355 pVmcsInfoFrom = &pVCpu->hm.s.vmx.VmcsInfo;
1356 pVmcsInfoTo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1357 }
1358 else
1359 {
1360 pVmcsInfoFrom = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1361 pVmcsInfoTo = &pVCpu->hm.s.vmx.VmcsInfo;
1362 }
1363
1364 /*
1365 * Disable interrupts to prevent being preempted while we switch the current VMCS as the
1366 * preemption hook code path acquires the current VMCS.
1367 */
1368 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1369
1370 int rc = hmR0VmxSwitchVmcs(pVmcsInfoFrom, pVmcsInfoTo);
1371 if (RT_SUCCESS(rc))
1372 {
1373 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fSwitchToNstGstVmcs;
1374
1375 /*
1376 * If we are switching to a VMCS that was executed on a different host CPU or was
1377 * never executed before, flag that we need to export the host state before executing
1378 * guest/nested-guest code using hardware-assisted VMX.
1379 *
1380 * This could probably be done in a preemptible context since the preemption hook
1381 * will flag the necessary change in host context. However, since preemption is
1382 * already disabled and to avoid making assumptions about host specific code in
1383 * RTMpCpuId when called with preemption enabled, we'll do this while preemption is
1384 * disabled.
1385 */
1386 if (pVmcsInfoTo->idHostCpuState == RTMpCpuId())
1387 { /* likely */ }
1388 else
1389 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE);
1390
1391 ASMSetFlags(fEFlags);
1392
1393 /*
1394 * We use a different VM-exit MSR-store areas for the guest and nested-guest. Hence,
1395 * flag that we need to update the host MSR values there. Even if we decide in the
1396 * future to share the VM-exit MSR-store area page between the guest and nested-guest,
1397 * if its content differs, we would have to update the host MSRs anyway.
1398 */
1399 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
1400 }
1401 else
1402 ASMSetFlags(fEFlags);
1403 return rc;
1404}
1405#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
1406
1407
1408/**
1409 * Updates the VM's last error record.
1410 *
1411 * If there was a VMX instruction error, reads the error data from the VMCS and
1412 * updates VCPU's last error record as well.
1413 *
1414 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1415 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
1416 * VERR_VMX_INVALID_VMCS_FIELD.
1417 * @param rc The error code.
1418 */
1419static void hmR0VmxUpdateErrorRecord(PVMCPUCC pVCpu, int rc)
1420{
1421 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
1422 || rc == VERR_VMX_UNABLE_TO_START_VM)
1423 {
1424 AssertPtrReturnVoid(pVCpu);
1425 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
1426 }
1427 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
1428}
1429
1430
1431#ifdef VBOX_STRICT
1432/**
1433 * Reads the VM-entry interruption-information field from the VMCS into the VMX
1434 * transient structure.
1435 *
1436 * @param pVmxTransient The VMX-transient structure.
1437 */
1438DECLINLINE(void) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1439{
1440 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
1441 AssertRC(rc);
1442}
1443
1444
1445/**
1446 * Reads the VM-entry exception error code field from the VMCS into
1447 * the VMX transient structure.
1448 *
1449 * @param pVmxTransient The VMX-transient structure.
1450 */
1451DECLINLINE(void) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1452{
1453 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
1454 AssertRC(rc);
1455}
1456
1457
1458/**
1459 * Reads the VM-entry exception error code field from the VMCS into
1460 * the VMX transient structure.
1461 *
1462 * @param pVmxTransient The VMX-transient structure.
1463 */
1464DECLINLINE(void) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1465{
1466 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
1467 AssertRC(rc);
1468}
1469#endif /* VBOX_STRICT */
1470
1471
1472/**
1473 * Reads the VM-exit interruption-information field from the VMCS into the VMX
1474 * transient structure.
1475 *
1476 * @param pVmxTransient The VMX-transient structure.
1477 */
1478DECLINLINE(void) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1479{
1480 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
1481 {
1482 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1483 AssertRC(rc);
1484 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
1485 }
1486}
1487
1488
1489/**
1490 * Reads the VM-exit interruption error code from the VMCS into the VMX
1491 * transient structure.
1492 *
1493 * @param pVmxTransient The VMX-transient structure.
1494 */
1495DECLINLINE(void) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1496{
1497 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
1498 {
1499 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1500 AssertRC(rc);
1501 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1502 }
1503}
1504
1505
1506/**
1507 * Reads the VM-exit instruction length field from the VMCS into the VMX
1508 * transient structure.
1509 *
1510 * @param pVmxTransient The VMX-transient structure.
1511 */
1512DECLINLINE(void) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1513{
1514 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1515 {
1516 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1517 AssertRC(rc);
1518 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1519 }
1520}
1521
1522
1523/**
1524 * Reads the VM-exit instruction-information field from the VMCS into
1525 * the VMX transient structure.
1526 *
1527 * @param pVmxTransient The VMX-transient structure.
1528 */
1529DECLINLINE(void) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1530{
1531 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1532 {
1533 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1534 AssertRC(rc);
1535 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1536 }
1537}
1538
1539
1540/**
1541 * Reads the Exit Qualification from the VMCS into the VMX transient structure.
1542 *
1543 * @param pVmxTransient The VMX-transient structure.
1544 */
1545DECLINLINE(void) hmR0VmxReadExitQualVmcs(PVMXTRANSIENT pVmxTransient)
1546{
1547 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1548 {
1549 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1550 AssertRC(rc);
1551 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1552 }
1553}
1554
1555
1556/**
1557 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1558 *
1559 * @param pVmxTransient The VMX-transient structure.
1560 */
1561DECLINLINE(void) hmR0VmxReadGuestLinearAddrVmcs(PVMXTRANSIENT pVmxTransient)
1562{
1563 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1564 {
1565 int rc = VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1566 AssertRC(rc);
1567 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1568 }
1569}
1570
1571
1572/**
1573 * Reads the Guest-physical address from the VMCS into the VMX transient structure.
1574 *
1575 * @param pVmxTransient The VMX-transient structure.
1576 */
1577DECLINLINE(void) hmR0VmxReadGuestPhysicalAddrVmcs(PVMXTRANSIENT pVmxTransient)
1578{
1579 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PHYSICAL_ADDR))
1580 {
1581 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1582 AssertRC(rc);
1583 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PHYSICAL_ADDR;
1584 }
1585}
1586
1587#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1588/**
1589 * Reads the Guest pending-debug exceptions from the VMCS into the VMX transient
1590 * structure.
1591 *
1592 * @param pVmxTransient The VMX-transient structure.
1593 */
1594DECLINLINE(void) hmR0VmxReadGuestPendingDbgXctps(PVMXTRANSIENT pVmxTransient)
1595{
1596 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PENDING_DBG_XCPTS))
1597 {
1598 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &pVmxTransient->uGuestPendingDbgXcpts);
1599 AssertRC(rc);
1600 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PENDING_DBG_XCPTS;
1601 }
1602}
1603#endif
1604
1605/**
1606 * Reads the IDT-vectoring information field from the VMCS into the VMX
1607 * transient structure.
1608 *
1609 * @param pVmxTransient The VMX-transient structure.
1610 *
1611 * @remarks No-long-jump zone!!!
1612 */
1613DECLINLINE(void) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1614{
1615 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1616 {
1617 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1618 AssertRC(rc);
1619 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1620 }
1621}
1622
1623
1624/**
1625 * Reads the IDT-vectoring error code from the VMCS into the VMX
1626 * transient structure.
1627 *
1628 * @param pVmxTransient The VMX-transient structure.
1629 */
1630DECLINLINE(void) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1631{
1632 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1633 {
1634 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1635 AssertRC(rc);
1636 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1637 }
1638}
1639
1640#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
1641/**
1642 * Reads all relevant read-only VMCS fields into the VMX transient structure.
1643 *
1644 * @param pVmxTransient The VMX-transient structure.
1645 */
1646static void hmR0VmxReadAllRoFieldsVmcs(PVMXTRANSIENT pVmxTransient)
1647{
1648 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1649 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1650 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1651 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1652 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1653 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1654 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1655 rc |= VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1656 rc |= VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1657 AssertRC(rc);
1658 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION
1659 | HMVMX_READ_EXIT_INSTR_LEN
1660 | HMVMX_READ_EXIT_INSTR_INFO
1661 | HMVMX_READ_IDT_VECTORING_INFO
1662 | HMVMX_READ_IDT_VECTORING_ERROR_CODE
1663 | HMVMX_READ_EXIT_INTERRUPTION_INFO
1664 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
1665 | HMVMX_READ_GUEST_LINEAR_ADDR
1666 | HMVMX_READ_GUEST_PHYSICAL_ADDR;
1667}
1668#endif
1669
1670/**
1671 * Enters VMX root mode operation on the current CPU.
1672 *
1673 * @returns VBox status code.
1674 * @param pHostCpu The HM physical-CPU structure.
1675 * @param pVM The cross context VM structure. Can be
1676 * NULL, after a resume.
1677 * @param HCPhysCpuPage Physical address of the VMXON region.
1678 * @param pvCpuPage Pointer to the VMXON region.
1679 */
1680static int hmR0VmxEnterRootMode(PHMPHYSCPU pHostCpu, PVMCC pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1681{
1682 Assert(pHostCpu);
1683 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1684 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1685 Assert(pvCpuPage);
1686 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1687
1688 if (pVM)
1689 {
1690 /* Write the VMCS revision identifier to the VMXON region. */
1691 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
1692 }
1693
1694 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1695 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1696
1697 /* Enable the VMX bit in CR4 if necessary. */
1698 RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1699
1700 /* Record whether VMXE was already prior to us enabling it above. */
1701 pHostCpu->fVmxeAlreadyEnabled = RT_BOOL(uOldCr4 & X86_CR4_VMXE);
1702
1703 /* Enter VMX root mode. */
1704 int rc = VMXEnable(HCPhysCpuPage);
1705 if (RT_FAILURE(rc))
1706 {
1707 /* Restore CR4.VMXE if it was not set prior to our attempt to set it above. */
1708 if (!pHostCpu->fVmxeAlreadyEnabled)
1709 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1710
1711 if (pVM)
1712 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1713 }
1714
1715 /* Restore interrupts. */
1716 ASMSetFlags(fEFlags);
1717 return rc;
1718}
1719
1720
1721/**
1722 * Exits VMX root mode operation on the current CPU.
1723 *
1724 * @returns VBox status code.
1725 * @param pHostCpu The HM physical-CPU structure.
1726 */
1727static int hmR0VmxLeaveRootMode(PHMPHYSCPU pHostCpu)
1728{
1729 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1730
1731 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1732 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1733
1734 /* If we're for some reason not in VMX root mode, then don't leave it. */
1735 RTCCUINTREG const uHostCr4 = ASMGetCR4();
1736
1737 int rc;
1738 if (uHostCr4 & X86_CR4_VMXE)
1739 {
1740 /* Exit VMX root mode and clear the VMX bit in CR4. */
1741 VMXDisable();
1742
1743 /* Clear CR4.VMXE only if it was clear prior to use setting it. */
1744 if (!pHostCpu->fVmxeAlreadyEnabled)
1745 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1746
1747 rc = VINF_SUCCESS;
1748 }
1749 else
1750 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1751
1752 /* Restore interrupts. */
1753 ASMSetFlags(fEFlags);
1754 return rc;
1755}
1756
1757
1758/**
1759 * Allocates pages specified as specified by an array of VMX page allocation info
1760 * objects.
1761 *
1762 * The pages contents are zero'd after allocation.
1763 *
1764 * @returns VBox status code.
1765 * @param hMemObj The ring-0 memory object associated with the allocation.
1766 * @param paAllocInfo The pointer to the first element of the VMX
1767 * page-allocation info object array.
1768 * @param cEntries The number of elements in the @a paAllocInfo array.
1769 */
1770static int hmR0VmxPagesAllocZ(RTR0MEMOBJ hMemObj, PVMXPAGEALLOCINFO paAllocInfo, uint32_t cEntries)
1771{
1772 /* Figure out how many pages to allocate. */
1773 uint32_t cPages = 0;
1774 for (uint32_t iPage = 0; iPage < cEntries; iPage++)
1775 cPages += !!paAllocInfo[iPage].fValid;
1776
1777 /* Allocate the pages. */
1778 if (cPages)
1779 {
1780 size_t const cbPages = cPages << X86_PAGE_4K_SHIFT;
1781 int rc = RTR0MemObjAllocPage(&hMemObj, cbPages, false /* fExecutable */);
1782 if (RT_FAILURE(rc))
1783 return rc;
1784
1785 /* Zero the contents and assign each page to the corresponding VMX page-allocation entry. */
1786 void *pvFirstPage = RTR0MemObjAddress(hMemObj);
1787 ASMMemZero32(pvFirstPage, cbPages);
1788
1789 uint32_t iPage = 0;
1790 for (uint32_t i = 0; i < cEntries; i++)
1791 if (paAllocInfo[i].fValid)
1792 {
1793 RTHCPHYS const HCPhysPage = RTR0MemObjGetPagePhysAddr(hMemObj, iPage);
1794 void *pvPage = (void *)((uintptr_t)pvFirstPage + (iPage << X86_PAGE_4K_SHIFT));
1795 Assert(HCPhysPage && HCPhysPage != NIL_RTHCPHYS);
1796 AssertPtr(pvPage);
1797
1798 Assert(paAllocInfo[iPage].pHCPhys);
1799 Assert(paAllocInfo[iPage].ppVirt);
1800 *paAllocInfo[iPage].pHCPhys = HCPhysPage;
1801 *paAllocInfo[iPage].ppVirt = pvPage;
1802
1803 /* Move to next page. */
1804 ++iPage;
1805 }
1806
1807 /* Make sure all valid (requested) pages have been assigned. */
1808 Assert(iPage == cPages);
1809 }
1810 return VINF_SUCCESS;
1811}
1812
1813
1814/**
1815 * Frees pages allocated using hmR0VmxPagesAllocZ.
1816 *
1817 * @param hMemObj The ring-0 memory object associated with the allocation.
1818 */
1819DECL_FORCE_INLINE(void) hmR0VmxPagesFree(RTR0MEMOBJ hMemObj)
1820{
1821 /* We can cleanup wholesale since it's all one allocation. */
1822 RTR0MemObjFree(hMemObj, true /* fFreeMappings */);
1823}
1824
1825
1826/**
1827 * Initializes a VMCS info. object.
1828 *
1829 * @param pVmcsInfo The VMCS info. object.
1830 */
1831static void hmR0VmxVmcsInfoInit(PVMXVMCSINFO pVmcsInfo)
1832{
1833 memset(pVmcsInfo, 0, sizeof(*pVmcsInfo));
1834
1835 Assert(pVmcsInfo->hMemObj == NIL_RTR0MEMOBJ);
1836 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1837 pVmcsInfo->HCPhysShadowVmcs = NIL_RTHCPHYS;
1838 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1839 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1840 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1841 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1842 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1843 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1844 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1845 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
1846 pVmcsInfo->idHostCpuExec = NIL_RTCPUID;
1847}
1848
1849
1850/**
1851 * Frees the VT-x structures for a VMCS info. object.
1852 *
1853 * @param pVmcsInfo The VMCS info. object.
1854 */
1855static void hmR0VmxVmcsInfoFree(PVMXVMCSINFO pVmcsInfo)
1856{
1857 if (pVmcsInfo->hMemObj != NIL_RTR0MEMOBJ)
1858 {
1859 hmR0VmxPagesFree(pVmcsInfo->hMemObj);
1860 hmR0VmxVmcsInfoInit(pVmcsInfo);
1861 }
1862}
1863
1864
1865/**
1866 * Allocates the VT-x structures for a VMCS info. object.
1867 *
1868 * @returns VBox status code.
1869 * @param pVCpu The cross context virtual CPU structure.
1870 * @param pVmcsInfo The VMCS info. object.
1871 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1872 *
1873 * @remarks The caller is expected to take care of any and all allocation failures.
1874 * This function will not perform any cleanup for failures half-way
1875 * through.
1876 */
1877static int hmR0VmxAllocVmcsInfo(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1878{
1879 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1880
1881 bool const fMsrBitmaps = RT_BOOL(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1882 bool const fShadowVmcs = !fIsNstGstVmcs ? pVM->hm.s.vmx.fUseVmcsShadowing : pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing;
1883 Assert(!pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing); /* VMCS shadowing is not yet exposed to the guest. */
1884 VMXPAGEALLOCINFO aAllocInfo[] = {
1885 { true, 0 /* Unused */, &pVmcsInfo->HCPhysVmcs, &pVmcsInfo->pvVmcs },
1886 { true, 0 /* Unused */, &pVmcsInfo->HCPhysGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad },
1887 { true, 0 /* Unused */, &pVmcsInfo->HCPhysHostMsrLoad, &pVmcsInfo->pvHostMsrLoad },
1888 { fMsrBitmaps, 0 /* Unused */, &pVmcsInfo->HCPhysMsrBitmap, &pVmcsInfo->pvMsrBitmap },
1889 { fShadowVmcs, 0 /* Unused */, &pVmcsInfo->HCPhysShadowVmcs, &pVmcsInfo->pvShadowVmcs },
1890 };
1891
1892 int rc = hmR0VmxPagesAllocZ(pVmcsInfo->hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
1893 if (RT_FAILURE(rc))
1894 return rc;
1895
1896 /*
1897 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1898 * Because they contain a symmetric list of guest MSRs to load on VM-entry and store on VM-exit.
1899 */
1900 AssertCompile(RT_ELEMENTS(aAllocInfo) > 0);
1901 Assert(pVmcsInfo->HCPhysGuestMsrLoad != NIL_RTHCPHYS);
1902 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1903 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1904
1905 /*
1906 * Get the virtual-APIC page rather than allocating them again.
1907 */
1908 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
1909 {
1910 if (!fIsNstGstVmcs)
1911 {
1912 if (PDMHasApic(pVM))
1913 {
1914 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic, NULL /*pR3Ptr*/);
1915 if (RT_FAILURE(rc))
1916 return rc;
1917 Assert(pVmcsInfo->pbVirtApic);
1918 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1919 }
1920 }
1921 else
1922 {
1923 pVmcsInfo->pbVirtApic = (uint8_t *)CPUMGetGuestVmxVirtApicPage(&pVCpu->cpum.GstCtx, &pVmcsInfo->HCPhysVirtApic);
1924 Assert(pVmcsInfo->pbVirtApic);
1925 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1926 }
1927 }
1928
1929 return VINF_SUCCESS;
1930}
1931
1932
1933/**
1934 * Free all VT-x structures for the VM.
1935 *
1936 * @returns IPRT status code.
1937 * @param pVM The cross context VM structure.
1938 */
1939static void hmR0VmxStructsFree(PVMCC pVM)
1940{
1941 hmR0VmxPagesFree(pVM->hm.s.vmx.hMemObj);
1942#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1943 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1944 {
1945 RTMemFree(pVM->hm.s.vmx.paShadowVmcsFields);
1946 RTMemFree(pVM->hm.s.vmx.paShadowVmcsRoFields);
1947 }
1948#endif
1949
1950 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1951 {
1952 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1953 hmR0VmxVmcsInfoFree(&pVCpu->hm.s.vmx.VmcsInfo);
1954#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1955 if (pVM->cpum.ro.GuestFeatures.fVmx)
1956 hmR0VmxVmcsInfoFree(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
1957#endif
1958 }
1959}
1960
1961
1962/**
1963 * Allocate all VT-x structures for the VM.
1964 *
1965 * @returns IPRT status code.
1966 * @param pVM The cross context VM structure.
1967 *
1968 * @remarks This functions will cleanup on memory allocation failures.
1969 */
1970static int hmR0VmxStructsAlloc(PVMCC pVM)
1971{
1972 /*
1973 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
1974 * The VMCS size cannot be more than 4096 bytes.
1975 *
1976 * See Intel spec. Appendix A.1 "Basic VMX Information".
1977 */
1978 uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
1979 if (cbVmcs <= X86_PAGE_4K_SIZE)
1980 { /* likely */ }
1981 else
1982 {
1983 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
1984 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1985 }
1986
1987 /*
1988 * Allocate per-VM VT-x structures.
1989 */
1990 bool const fVirtApicAccess = RT_BOOL(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1991 bool const fUseVmcsShadowing = pVM->hm.s.vmx.fUseVmcsShadowing;
1992 VMXPAGEALLOCINFO aAllocInfo[] = {
1993 { fVirtApicAccess, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess },
1994 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysVmreadBitmap, &pVM->hm.s.vmx.pvVmreadBitmap },
1995 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysVmwriteBitmap, &pVM->hm.s.vmx.pvVmwriteBitmap },
1996#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1997 { true, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysScratch, &(PRTR0PTR)pVM->hm.s.vmx.pbScratch },
1998#endif
1999 };
2000
2001 int rc = hmR0VmxPagesAllocZ(pVM->hm.s.vmx.hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
2002 if (RT_FAILURE(rc))
2003 goto cleanup;
2004
2005#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2006 /* Allocate the shadow VMCS-fields array. */
2007 if (fUseVmcsShadowing)
2008 {
2009 Assert(!pVM->hm.s.vmx.cShadowVmcsFields);
2010 Assert(!pVM->hm.s.vmx.cShadowVmcsRoFields);
2011 pVM->hm.s.vmx.paShadowVmcsFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2012 pVM->hm.s.vmx.paShadowVmcsRoFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2013 if (RT_LIKELY( pVM->hm.s.vmx.paShadowVmcsFields
2014 && pVM->hm.s.vmx.paShadowVmcsRoFields))
2015 { /* likely */ }
2016 else
2017 {
2018 rc = VERR_NO_MEMORY;
2019 goto cleanup;
2020 }
2021 }
2022#endif
2023
2024 /*
2025 * Allocate per-VCPU VT-x structures.
2026 */
2027 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2028 {
2029 /* Allocate the guest VMCS structures. */
2030 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2031 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
2032 if (RT_FAILURE(rc))
2033 goto cleanup;
2034
2035#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2036 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
2037 if (pVM->cpum.ro.GuestFeatures.fVmx)
2038 {
2039 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
2040 if (RT_FAILURE(rc))
2041 goto cleanup;
2042 }
2043#endif
2044 }
2045
2046 return VINF_SUCCESS;
2047
2048cleanup:
2049 hmR0VmxStructsFree(pVM);
2050 Assert(rc != VINF_SUCCESS);
2051 return rc;
2052}
2053
2054
2055/**
2056 * Pre-initializes non-zero fields in VMX structures that will be allocated.
2057 *
2058 * @param pVM The cross context VM structure.
2059 */
2060static void hmR0VmxStructsInit(PVMCC pVM)
2061{
2062 /* Paranoia. */
2063 Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
2064#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2065 Assert(pVM->hm.s.vmx.pbScratch == NULL);
2066#endif
2067
2068 /*
2069 * Initialize members up-front so we can cleanup en masse on allocation failures.
2070 */
2071#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2072 pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
2073#endif
2074 pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
2075 pVM->hm.s.vmx.HCPhysVmreadBitmap = NIL_RTHCPHYS;
2076 pVM->hm.s.vmx.HCPhysVmwriteBitmap = NIL_RTHCPHYS;
2077 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2078 {
2079 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2080 hmR0VmxVmcsInfoInit(&pVCpu->hm.s.vmx.VmcsInfo);
2081 hmR0VmxVmcsInfoInit(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
2082 }
2083}
2084
2085#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2086/**
2087 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
2088 *
2089 * @returns @c true if the MSR is intercepted, @c false otherwise.
2090 * @param pvMsrBitmap The MSR bitmap.
2091 * @param offMsr The MSR byte offset.
2092 * @param iBit The bit offset from the byte offset.
2093 */
2094DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
2095{
2096 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
2097 Assert(pbMsrBitmap);
2098 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
2099 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
2100}
2101#endif
2102
2103/**
2104 * Sets the permission bits for the specified MSR in the given MSR bitmap.
2105 *
2106 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
2107 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
2108 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
2109 * the read/write access of this MSR.
2110 *
2111 * @param pVCpu The cross context virtual CPU structure.
2112 * @param pVmcsInfo The VMCS info. object.
2113 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2114 * @param idMsr The MSR value.
2115 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
2116 * include both a read -and- a write permission!
2117 *
2118 * @sa CPUMGetVmxMsrPermission.
2119 * @remarks Can be called with interrupts disabled.
2120 */
2121static void hmR0VmxSetMsrPermission(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
2122{
2123 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
2124 Assert(pbMsrBitmap);
2125 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
2126
2127 /*
2128 * MSR-bitmap Layout:
2129 * Byte index MSR range Interpreted as
2130 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
2131 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
2132 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
2133 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
2134 *
2135 * A bit corresponding to an MSR within the above range causes a VM-exit
2136 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
2137 * the MSR range, it always cause a VM-exit.
2138 *
2139 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
2140 */
2141 uint16_t const offBitmapRead = 0;
2142 uint16_t const offBitmapWrite = 0x800;
2143 uint16_t offMsr;
2144 int32_t iBit;
2145 if (idMsr <= UINT32_C(0x00001fff))
2146 {
2147 offMsr = 0;
2148 iBit = idMsr;
2149 }
2150 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
2151 {
2152 offMsr = 0x400;
2153 iBit = idMsr - UINT32_C(0xc0000000);
2154 }
2155 else
2156 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
2157
2158 /*
2159 * Set the MSR read permission.
2160 */
2161 uint16_t const offMsrRead = offBitmapRead + offMsr;
2162 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
2163 if (fMsrpm & VMXMSRPM_ALLOW_RD)
2164 {
2165#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2166 bool const fClear = !fIsNstGstVmcs ? true
2167 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
2168#else
2169 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2170 bool const fClear = true;
2171#endif
2172 if (fClear)
2173 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
2174 }
2175 else
2176 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
2177
2178 /*
2179 * Set the MSR write permission.
2180 */
2181 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
2182 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
2183 if (fMsrpm & VMXMSRPM_ALLOW_WR)
2184 {
2185#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2186 bool const fClear = !fIsNstGstVmcs ? true
2187 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
2188#else
2189 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2190 bool const fClear = true;
2191#endif
2192 if (fClear)
2193 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
2194 }
2195 else
2196 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
2197}
2198
2199
2200/**
2201 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
2202 * area.
2203 *
2204 * @returns VBox status code.
2205 * @param pVCpu The cross context virtual CPU structure.
2206 * @param pVmcsInfo The VMCS info. object.
2207 * @param cMsrs The number of MSRs.
2208 */
2209static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
2210{
2211 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
2212 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
2213 if (RT_LIKELY(cMsrs < cMaxSupportedMsrs))
2214 {
2215 /* Commit the MSR counts to the VMCS and update the cache. */
2216 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
2217 {
2218 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2219 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRC(rc);
2220 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2221 pVmcsInfo->cEntryMsrLoad = cMsrs;
2222 pVmcsInfo->cExitMsrStore = cMsrs;
2223 pVmcsInfo->cExitMsrLoad = cMsrs;
2224 }
2225 return VINF_SUCCESS;
2226 }
2227
2228 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u MaxSupported=%u\n", cMsrs, cMaxSupportedMsrs));
2229 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
2230 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2231}
2232
2233
2234/**
2235 * Adds a new (or updates the value of an existing) guest/host MSR
2236 * pair to be swapped during the world-switch as part of the
2237 * auto-load/store MSR area in the VMCS.
2238 *
2239 * @returns VBox status code.
2240 * @param pVCpu The cross context virtual CPU structure.
2241 * @param pVmxTransient The VMX-transient structure.
2242 * @param idMsr The MSR.
2243 * @param uGuestMsrValue Value of the guest MSR.
2244 * @param fSetReadWrite Whether to set the guest read/write access of this
2245 * MSR (thus not causing a VM-exit).
2246 * @param fUpdateHostMsr Whether to update the value of the host MSR if
2247 * necessary.
2248 */
2249static int hmR0VmxAddAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
2250 bool fSetReadWrite, bool fUpdateHostMsr)
2251{
2252 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2253 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2254 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2255 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2256 uint32_t i;
2257
2258 /* Paranoia. */
2259 Assert(pGuestMsrLoad);
2260
2261 LogFlowFunc(("pVCpu=%p idMsr=%#RX32 uGestMsrValue=%#RX64\n", pVCpu, idMsr, uGuestMsrValue));
2262
2263 /* Check if the MSR already exists in the VM-entry MSR-load area. */
2264 for (i = 0; i < cMsrs; i++)
2265 {
2266 if (pGuestMsrLoad[i].u32Msr == idMsr)
2267 break;
2268 }
2269
2270 bool fAdded = false;
2271 if (i == cMsrs)
2272 {
2273 /* The MSR does not exist, bump the MSR count to make room for the new MSR. */
2274 ++cMsrs;
2275 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2276 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
2277
2278 /* Set the guest to read/write this MSR without causing VM-exits. */
2279 if ( fSetReadWrite
2280 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
2281 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
2282
2283 Log4Func(("Added MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2284 fAdded = true;
2285 }
2286
2287 /* Update the MSR value for the newly added or already existing MSR. */
2288 pGuestMsrLoad[i].u32Msr = idMsr;
2289 pGuestMsrLoad[i].u64Value = uGuestMsrValue;
2290
2291 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
2292 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2293 {
2294 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2295 pGuestMsrStore[i].u32Msr = idMsr;
2296 pGuestMsrStore[i].u64Value = uGuestMsrValue;
2297 }
2298
2299 /* Update the corresponding slot in the host MSR area. */
2300 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2301 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad);
2302 Assert(pHostMsr != pVmcsInfo->pvGuestMsrStore);
2303 pHostMsr[i].u32Msr = idMsr;
2304
2305 /*
2306 * Only if the caller requests to update the host MSR value AND we've newly added the
2307 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
2308 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
2309 *
2310 * We do this for performance reasons since reading MSRs may be quite expensive.
2311 */
2312 if (fAdded)
2313 {
2314 if (fUpdateHostMsr)
2315 {
2316 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2317 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2318 pHostMsr[i].u64Value = ASMRdMsr(idMsr);
2319 }
2320 else
2321 {
2322 /* Someone else can do the work. */
2323 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
2324 }
2325 }
2326 return VINF_SUCCESS;
2327}
2328
2329
2330/**
2331 * Removes a guest/host MSR pair to be swapped during the world-switch from the
2332 * auto-load/store MSR area in the VMCS.
2333 *
2334 * @returns VBox status code.
2335 * @param pVCpu The cross context virtual CPU structure.
2336 * @param pVmxTransient The VMX-transient structure.
2337 * @param idMsr The MSR.
2338 */
2339static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr)
2340{
2341 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2342 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2343 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2344 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2345
2346 LogFlowFunc(("pVCpu=%p idMsr=%#RX32\n", pVCpu, idMsr));
2347
2348 for (uint32_t i = 0; i < cMsrs; i++)
2349 {
2350 /* Find the MSR. */
2351 if (pGuestMsrLoad[i].u32Msr == idMsr)
2352 {
2353 /*
2354 * If it's the last MSR, we only need to reduce the MSR count.
2355 * If it's -not- the last MSR, copy the last MSR in place of it and reduce the MSR count.
2356 */
2357 if (i < cMsrs - 1)
2358 {
2359 /* Remove it from the VM-entry MSR-load area. */
2360 pGuestMsrLoad[i].u32Msr = pGuestMsrLoad[cMsrs - 1].u32Msr;
2361 pGuestMsrLoad[i].u64Value = pGuestMsrLoad[cMsrs - 1].u64Value;
2362
2363 /* Remove it from the VM-exit MSR-store area if it's in a different page. */
2364 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2365 {
2366 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2367 Assert(pGuestMsrStore[i].u32Msr == idMsr);
2368 pGuestMsrStore[i].u32Msr = pGuestMsrStore[cMsrs - 1].u32Msr;
2369 pGuestMsrStore[i].u64Value = pGuestMsrStore[cMsrs - 1].u64Value;
2370 }
2371
2372 /* Remove it from the VM-exit MSR-load area. */
2373 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2374 Assert(pHostMsr[i].u32Msr == idMsr);
2375 pHostMsr[i].u32Msr = pHostMsr[cMsrs - 1].u32Msr;
2376 pHostMsr[i].u64Value = pHostMsr[cMsrs - 1].u64Value;
2377 }
2378
2379 /* Reduce the count to reflect the removed MSR and bail. */
2380 --cMsrs;
2381 break;
2382 }
2383 }
2384
2385 /* Update the VMCS if the count changed (meaning the MSR was found and removed). */
2386 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
2387 {
2388 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2389 AssertRCReturn(rc, rc);
2390
2391 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
2392 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2393 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
2394
2395 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2396 return VINF_SUCCESS;
2397 }
2398
2399 return VERR_NOT_FOUND;
2400}
2401
2402
2403/**
2404 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
2405 *
2406 * @returns @c true if found, @c false otherwise.
2407 * @param pVmcsInfo The VMCS info. object.
2408 * @param idMsr The MSR to find.
2409 */
2410static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
2411{
2412 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2413 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
2414 Assert(pMsrs);
2415 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
2416 for (uint32_t i = 0; i < cMsrs; i++)
2417 {
2418 if (pMsrs[i].u32Msr == idMsr)
2419 return true;
2420 }
2421 return false;
2422}
2423
2424
2425/**
2426 * Updates the value of all host MSRs in the VM-exit MSR-load area.
2427 *
2428 * @param pVCpu The cross context virtual CPU structure.
2429 * @param pVmcsInfo The VMCS info. object.
2430 *
2431 * @remarks No-long-jump zone!!!
2432 */
2433static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2434{
2435 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2436
2437 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2438 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
2439 Assert(pHostMsrLoad);
2440 Assert(sizeof(*pHostMsrLoad) * cMsrs <= X86_PAGE_4K_SIZE);
2441 LogFlowFunc(("pVCpu=%p cMsrs=%u\n", pVCpu, cMsrs));
2442 for (uint32_t i = 0; i < cMsrs; i++)
2443 {
2444 /*
2445 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
2446 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
2447 */
2448 if (pHostMsrLoad[i].u32Msr == MSR_K6_EFER)
2449 pHostMsrLoad[i].u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2450 else
2451 pHostMsrLoad[i].u64Value = ASMRdMsr(pHostMsrLoad[i].u32Msr);
2452 }
2453}
2454
2455
2456/**
2457 * Saves a set of host MSRs to allow read/write passthru access to the guest and
2458 * perform lazy restoration of the host MSRs while leaving VT-x.
2459 *
2460 * @param pVCpu The cross context virtual CPU structure.
2461 *
2462 * @remarks No-long-jump zone!!!
2463 */
2464static void hmR0VmxLazySaveHostMsrs(PVMCPUCC pVCpu)
2465{
2466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2467
2468 /*
2469 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
2470 */
2471 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
2472 {
2473 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
2474 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2475 {
2476 pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
2477 pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
2478 pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
2479 pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
2480 }
2481 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
2482 }
2483}
2484
2485
2486/**
2487 * Checks whether the MSR belongs to the set of guest MSRs that we restore
2488 * lazily while leaving VT-x.
2489 *
2490 * @returns true if it does, false otherwise.
2491 * @param pVCpu The cross context virtual CPU structure.
2492 * @param idMsr The MSR to check.
2493 */
2494static bool hmR0VmxIsLazyGuestMsr(PCVMCPUCC pVCpu, uint32_t idMsr)
2495{
2496 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2497 {
2498 switch (idMsr)
2499 {
2500 case MSR_K8_LSTAR:
2501 case MSR_K6_STAR:
2502 case MSR_K8_SF_MASK:
2503 case MSR_K8_KERNEL_GS_BASE:
2504 return true;
2505 }
2506 }
2507 return false;
2508}
2509
2510
2511/**
2512 * Loads a set of guests MSRs to allow read/passthru to the guest.
2513 *
2514 * The name of this function is slightly confusing. This function does NOT
2515 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
2516 * common prefix for functions dealing with "lazy restoration" of the shared
2517 * MSRs.
2518 *
2519 * @param pVCpu The cross context virtual CPU structure.
2520 *
2521 * @remarks No-long-jump zone!!!
2522 */
2523static void hmR0VmxLazyLoadGuestMsrs(PVMCPUCC pVCpu)
2524{
2525 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2526 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2527
2528 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2529 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2530 {
2531 /*
2532 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
2533 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
2534 * we can skip a few MSR writes.
2535 *
2536 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
2537 * guest MSR values in the guest-CPU context might be different to what's currently
2538 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
2539 * CPU, see @bugref{8728}.
2540 */
2541 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2542 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2543 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
2544 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
2545 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
2546 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
2547 {
2548#ifdef VBOX_STRICT
2549 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
2550 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
2551 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
2552 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
2553#endif
2554 }
2555 else
2556 {
2557 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
2558 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2559 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2560 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
2561 }
2562 }
2563 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2564}
2565
2566
2567/**
2568 * Performs lazy restoration of the set of host MSRs if they were previously
2569 * loaded with guest MSR values.
2570 *
2571 * @param pVCpu The cross context virtual CPU structure.
2572 *
2573 * @remarks No-long-jump zone!!!
2574 * @remarks The guest MSRs should have been saved back into the guest-CPU
2575 * context by hmR0VmxImportGuestState()!!!
2576 */
2577static void hmR0VmxLazyRestoreHostMsrs(PVMCPUCC pVCpu)
2578{
2579 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2580 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2581
2582 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2583 {
2584 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2585 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2586 {
2587 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
2588 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
2589 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
2590 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
2591 }
2592 }
2593 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2594}
2595
2596
2597/**
2598 * Verifies that our cached values of the VMCS fields are all consistent with
2599 * what's actually present in the VMCS.
2600 *
2601 * @returns VBox status code.
2602 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2603 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2604 * VMCS content. HMCPU error-field is
2605 * updated, see VMX_VCI_XXX.
2606 * @param pVCpu The cross context virtual CPU structure.
2607 * @param pVmcsInfo The VMCS info. object.
2608 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2609 */
2610static int hmR0VmxCheckCachedVmcsCtls(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2611{
2612 const char * const pcszVmcs = fIsNstGstVmcs ? "Nested-guest VMCS" : "VMCS";
2613
2614 uint32_t u32Val;
2615 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2616 AssertRC(rc);
2617 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2618 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32EntryCtls, u32Val),
2619 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2620 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2621
2622 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2623 AssertRC(rc);
2624 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2625 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ExitCtls, u32Val),
2626 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2627 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2628
2629 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2630 AssertRC(rc);
2631 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2632 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32PinCtls, u32Val),
2633 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2634 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2635
2636 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2637 AssertRC(rc);
2638 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2639 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls, u32Val),
2640 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2641 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2642
2643 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2644 {
2645 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2646 AssertRC(rc);
2647 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2648 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls2, u32Val),
2649 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2650 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2651 }
2652
2653 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2654 AssertRC(rc);
2655 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2656 ("%s exception bitmap mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32XcptBitmap, u32Val),
2657 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2658 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2659
2660 uint64_t u64Val;
2661 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2662 AssertRC(rc);
2663 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2664 ("%s TSC offset mismatch: Cache=%#RX64 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64TscOffset, u64Val),
2665 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2666 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2667
2668 NOREF(pcszVmcs);
2669 return VINF_SUCCESS;
2670}
2671
2672
2673#ifdef VBOX_STRICT
2674/**
2675 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2676 *
2677 * @param pVCpu The cross context virtual CPU structure.
2678 * @param pVmcsInfo The VMCS info. object.
2679 */
2680static void hmR0VmxCheckHostEferMsr(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2681{
2682 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2683
2684 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2685 {
2686 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2687 uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2688 uint64_t uVmcsEferMsrVmcs;
2689 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2690 AssertRC(rc);
2691
2692 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2693 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2694 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2695 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2696 }
2697}
2698
2699
2700/**
2701 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2702 * VMCS are correct.
2703 *
2704 * @param pVCpu The cross context virtual CPU structure.
2705 * @param pVmcsInfo The VMCS info. object.
2706 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2707 */
2708static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2709{
2710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2711
2712 /* Read the various MSR-area counts from the VMCS. */
2713 uint32_t cEntryLoadMsrs;
2714 uint32_t cExitStoreMsrs;
2715 uint32_t cExitLoadMsrs;
2716 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cEntryLoadMsrs); AssertRC(rc);
2717 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cExitStoreMsrs); AssertRC(rc);
2718 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cExitLoadMsrs); AssertRC(rc);
2719
2720 /* Verify all the MSR counts are the same. */
2721 Assert(cEntryLoadMsrs == cExitStoreMsrs);
2722 Assert(cExitStoreMsrs == cExitLoadMsrs);
2723 uint32_t const cMsrs = cExitLoadMsrs;
2724
2725 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2726 Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
2727
2728 /* Verify the MSR counts are within the allocated page size. */
2729 Assert(sizeof(VMXAUTOMSR) * cMsrs <= X86_PAGE_4K_SIZE);
2730
2731 /* Verify the relevant contents of the MSR areas match. */
2732 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2733 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2734 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2735 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2736 for (uint32_t i = 0; i < cMsrs; i++)
2737 {
2738 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2739 if (fSeparateExitMsrStorePage)
2740 {
2741 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2742 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2743 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2744 }
2745
2746 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2747 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2748 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2749
2750 uint64_t const u64HostMsr = ASMRdMsr(pHostMsrLoad->u32Msr);
2751 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64HostMsr,
2752 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2753 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64HostMsr, cMsrs));
2754
2755 /* Verify that cached host EFER MSR matches what's loaded the CPU. */
2756 bool const fIsEferMsr = RT_BOOL(pHostMsrLoad->u32Msr == MSR_K6_EFER);
2757 if (fIsEferMsr)
2758 {
2759 AssertMsgReturnVoid(u64HostMsr == pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer,
2760 ("Cached=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2761 pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer, u64HostMsr, cMsrs));
2762 }
2763
2764 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2765 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2766 {
2767 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2768 if (fIsEferMsr)
2769 {
2770 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2771 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2772 }
2773 else
2774 {
2775 /* Verify LBR MSRs (used only for debugging) are intercepted. We don't passthru these MSRs to the guest yet. */
2776 PCVM pVM = pVCpu->CTX_SUFF(pVM);
2777 if ( pVM->hm.s.vmx.fLbr
2778 && ( hmR0VmxIsLbrBranchFromMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2779 || hmR0VmxIsLbrBranchToMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2780 || pGuestMsrLoad->u32Msr == pVM->hm.s.vmx.idLbrTosMsr))
2781 {
2782 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_EXIT_RD_WR,
2783 ("u32Msr=%#RX32 cMsrs=%u Passthru read/write for LBR MSRs!\n",
2784 pGuestMsrLoad->u32Msr, cMsrs));
2785 }
2786 else if (!fIsNstGstVmcs)
2787 {
2788 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_ALLOW_RD_WR,
2789 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2790 }
2791 else
2792 {
2793 /*
2794 * A nested-guest VMCS must -also- allow read/write passthrough for the MSR for us to
2795 * execute a nested-guest with MSR passthrough.
2796 *
2797 * Check if the nested-guest MSR bitmap allows passthrough, and if so, assert that we
2798 * allow passthrough too.
2799 */
2800 void const *pvMsrBitmapNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
2801 Assert(pvMsrBitmapNstGst);
2802 uint32_t const fMsrpmNstGst = CPUMGetVmxMsrPermission(pvMsrBitmapNstGst, pGuestMsrLoad->u32Msr);
2803 AssertMsgReturnVoid(fMsrpm == fMsrpmNstGst,
2804 ("u32Msr=%#RX32 cMsrs=%u Permission mismatch fMsrpm=%#x fMsrpmNstGst=%#x!\n",
2805 pGuestMsrLoad->u32Msr, cMsrs, fMsrpm, fMsrpmNstGst));
2806 }
2807 }
2808 }
2809
2810 /* Move to the next MSR. */
2811 pHostMsrLoad++;
2812 pGuestMsrLoad++;
2813 pGuestMsrStore++;
2814 }
2815}
2816#endif /* VBOX_STRICT */
2817
2818
2819/**
2820 * Flushes the TLB using EPT.
2821 *
2822 * @returns VBox status code.
2823 * @param pVCpu The cross context virtual CPU structure of the calling
2824 * EMT. Can be NULL depending on @a enmTlbFlush.
2825 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2826 * enmTlbFlush.
2827 * @param enmTlbFlush Type of flush.
2828 *
2829 * @remarks Caller is responsible for making sure this function is called only
2830 * when NestedPaging is supported and providing @a enmTlbFlush that is
2831 * supported by the CPU.
2832 * @remarks Can be called with interrupts disabled.
2833 */
2834static void hmR0VmxFlushEpt(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2835{
2836 uint64_t au64Descriptor[2];
2837 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2838 au64Descriptor[0] = 0;
2839 else
2840 {
2841 Assert(pVCpu);
2842 Assert(pVmcsInfo);
2843 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2844 }
2845 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2846
2847 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2848 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2849
2850 if ( RT_SUCCESS(rc)
2851 && pVCpu)
2852 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2853}
2854
2855
2856/**
2857 * Flushes the TLB using VPID.
2858 *
2859 * @returns VBox status code.
2860 * @param pVCpu The cross context virtual CPU structure of the calling
2861 * EMT. Can be NULL depending on @a enmTlbFlush.
2862 * @param enmTlbFlush Type of flush.
2863 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2864 * on @a enmTlbFlush).
2865 *
2866 * @remarks Can be called with interrupts disabled.
2867 */
2868static void hmR0VmxFlushVpid(PVMCPUCC pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2869{
2870 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
2871
2872 uint64_t au64Descriptor[2];
2873 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2874 {
2875 au64Descriptor[0] = 0;
2876 au64Descriptor[1] = 0;
2877 }
2878 else
2879 {
2880 AssertPtr(pVCpu);
2881 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2882 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2883 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
2884 au64Descriptor[1] = GCPtr;
2885 }
2886
2887 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2888 AssertMsg(rc == VINF_SUCCESS,
2889 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
2890
2891 if ( RT_SUCCESS(rc)
2892 && pVCpu)
2893 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2894 NOREF(rc);
2895}
2896
2897
2898/**
2899 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2900 * otherwise there is nothing really to invalidate.
2901 *
2902 * @returns VBox status code.
2903 * @param pVCpu The cross context virtual CPU structure.
2904 * @param GCVirt Guest virtual address of the page to invalidate.
2905 */
2906VMMR0DECL(int) VMXR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
2907{
2908 AssertPtr(pVCpu);
2909 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2910
2911 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2912 {
2913 /*
2914 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2915 * the EPT case. See @bugref{6043} and @bugref{6177}.
2916 *
2917 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2918 * as this function maybe called in a loop with individual addresses.
2919 */
2920 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2921 if (pVM->hm.s.vmx.fVpid)
2922 {
2923 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
2924 if (fVpidFlush)
2925 {
2926 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2927 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2928 }
2929 else
2930 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2931 }
2932 else if (pVM->hm.s.fNestedPaging)
2933 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2934 }
2935
2936 return VINF_SUCCESS;
2937}
2938
2939
2940/**
2941 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2942 * case where neither EPT nor VPID is supported by the CPU.
2943 *
2944 * @param pHostCpu The HM physical-CPU structure.
2945 * @param pVCpu The cross context virtual CPU structure.
2946 *
2947 * @remarks Called with interrupts disabled.
2948 */
2949static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2950{
2951 AssertPtr(pVCpu);
2952 AssertPtr(pHostCpu);
2953
2954 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2955
2956 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2957 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2958 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2959 pVCpu->hm.s.fForceTLBFlush = false;
2960 return;
2961}
2962
2963
2964/**
2965 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2966 *
2967 * @param pHostCpu The HM physical-CPU structure.
2968 * @param pVCpu The cross context virtual CPU structure.
2969 * @param pVmcsInfo The VMCS info. object.
2970 *
2971 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2972 * nomenclature. The reason is, to avoid confusion in compare statements
2973 * since the host-CPU copies are named "ASID".
2974 *
2975 * @remarks Called with interrupts disabled.
2976 */
2977static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2978{
2979#ifdef VBOX_WITH_STATISTICS
2980 bool fTlbFlushed = false;
2981# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
2982# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
2983 if (!fTlbFlushed) \
2984 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
2985 } while (0)
2986#else
2987# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
2988# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
2989#endif
2990
2991 AssertPtr(pVCpu);
2992 AssertPtr(pHostCpu);
2993 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2994
2995 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2996 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
2997 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
2998 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
2999
3000 /*
3001 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
3002 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3003 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3004 * cannot reuse the current ASID anymore.
3005 */
3006 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3007 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3008 {
3009 ++pHostCpu->uCurrentAsid;
3010 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
3011 {
3012 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
3013 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3014 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3015 }
3016
3017 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3018 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3019 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3020
3021 /*
3022 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
3023 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
3024 */
3025 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3026 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3027 HMVMX_SET_TAGGED_TLB_FLUSHED();
3028 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
3029 }
3030 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
3031 {
3032 /*
3033 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
3034 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
3035 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
3036 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
3037 * mappings, see @bugref{6568}.
3038 *
3039 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
3040 */
3041 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3042 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3043 HMVMX_SET_TAGGED_TLB_FLUSHED();
3044 }
3045 else if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3046 {
3047 /*
3048 * The nested-guest specifies its own guest-physical address to use as the APIC-access
3049 * address which requires flushing the TLB of EPT cached structures.
3050 *
3051 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
3052 */
3053 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3054 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3055 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3056 HMVMX_SET_TAGGED_TLB_FLUSHED();
3057 }
3058
3059
3060 pVCpu->hm.s.fForceTLBFlush = false;
3061 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
3062
3063 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
3064 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
3065 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3066 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3067 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
3068 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3069 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
3070 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
3071 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
3072
3073 /* Update VMCS with the VPID. */
3074 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
3075 AssertRC(rc);
3076
3077#undef HMVMX_SET_TAGGED_TLB_FLUSHED
3078}
3079
3080
3081/**
3082 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
3083 *
3084 * @param pHostCpu The HM physical-CPU structure.
3085 * @param pVCpu The cross context virtual CPU structure.
3086 * @param pVmcsInfo The VMCS info. object.
3087 *
3088 * @remarks Called with interrupts disabled.
3089 */
3090static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
3091{
3092 AssertPtr(pVCpu);
3093 AssertPtr(pHostCpu);
3094 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3095 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
3096 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
3097
3098 /*
3099 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
3100 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
3101 */
3102 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3103 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3104 {
3105 pVCpu->hm.s.fForceTLBFlush = true;
3106 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3107 }
3108
3109 /* Check for explicit TLB flushes. */
3110 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3111 {
3112 pVCpu->hm.s.fForceTLBFlush = true;
3113 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3114 }
3115
3116 /* Check for TLB flushes while switching to/from a nested-guest. */
3117 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3118 {
3119 pVCpu->hm.s.fForceTLBFlush = true;
3120 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3121 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3122 }
3123
3124 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3125 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3126
3127 if (pVCpu->hm.s.fForceTLBFlush)
3128 {
3129 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
3130 pVCpu->hm.s.fForceTLBFlush = false;
3131 }
3132}
3133
3134
3135/**
3136 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
3137 *
3138 * @param pHostCpu The HM physical-CPU structure.
3139 * @param pVCpu The cross context virtual CPU structure.
3140 *
3141 * @remarks Called with interrupts disabled.
3142 */
3143static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
3144{
3145 AssertPtr(pVCpu);
3146 AssertPtr(pHostCpu);
3147 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3148 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
3149 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
3150
3151 /*
3152 * Force a TLB flush for the first world switch if the current CPU differs from the one we
3153 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3154 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3155 * cannot reuse the current ASID anymore.
3156 */
3157 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3158 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3159 {
3160 pVCpu->hm.s.fForceTLBFlush = true;
3161 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3162 }
3163
3164 /* Check for explicit TLB flushes. */
3165 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3166 {
3167 /*
3168 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
3169 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
3170 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
3171 * include fExplicitFlush's too) - an obscure corner case.
3172 */
3173 pVCpu->hm.s.fForceTLBFlush = true;
3174 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3175 }
3176
3177 /* Check for TLB flushes while switching to/from a nested-guest. */
3178 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3179 {
3180 pVCpu->hm.s.fForceTLBFlush = true;
3181 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3182 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3183 }
3184
3185 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3186 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3187 if (pVCpu->hm.s.fForceTLBFlush)
3188 {
3189 ++pHostCpu->uCurrentAsid;
3190 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
3191 {
3192 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
3193 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3194 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3195 }
3196
3197 pVCpu->hm.s.fForceTLBFlush = false;
3198 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3199 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3200 if (pHostCpu->fFlushAsidBeforeUse)
3201 {
3202 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
3203 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
3204 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
3205 {
3206 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
3207 pHostCpu->fFlushAsidBeforeUse = false;
3208 }
3209 else
3210 {
3211 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
3212 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
3213 }
3214 }
3215 }
3216
3217 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3218 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3219 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
3220 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3221 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
3222 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
3223 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
3224
3225 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
3226 AssertRC(rc);
3227}
3228
3229
3230/**
3231 * Flushes the guest TLB entry based on CPU capabilities.
3232 *
3233 * @param pHostCpu The HM physical-CPU structure.
3234 * @param pVCpu The cross context virtual CPU structure.
3235 * @param pVmcsInfo The VMCS info. object.
3236 *
3237 * @remarks Called with interrupts disabled.
3238 */
3239static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3240{
3241#ifdef HMVMX_ALWAYS_FLUSH_TLB
3242 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3243#endif
3244 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3245 switch (pVM->hm.s.vmx.enmTlbFlushType)
3246 {
3247 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
3248 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
3249 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
3250 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
3251 default:
3252 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
3253 break;
3254 }
3255 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
3256}
3257
3258
3259/**
3260 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
3261 * TLB entries from the host TLB before VM-entry.
3262 *
3263 * @returns VBox status code.
3264 * @param pVM The cross context VM structure.
3265 */
3266static int hmR0VmxSetupTaggedTlb(PVMCC pVM)
3267{
3268 /*
3269 * Determine optimal flush type for nested paging.
3270 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
3271 * unrestricted guest execution (see hmR3InitFinalizeR0()).
3272 */
3273 if (pVM->hm.s.fNestedPaging)
3274 {
3275 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
3276 {
3277 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
3278 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
3279 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3280 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
3281 else
3282 {
3283 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
3284 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3285 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
3286 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3287 }
3288
3289 /* Make sure the write-back cacheable memory type for EPT is supported. */
3290 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
3291 {
3292 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3293 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
3294 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3295 }
3296
3297 /* EPT requires a page-walk length of 4. */
3298 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
3299 {
3300 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3301 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
3302 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3303 }
3304 }
3305 else
3306 {
3307 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
3308 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3309 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
3310 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3311 }
3312 }
3313
3314 /*
3315 * Determine optimal flush type for VPID.
3316 */
3317 if (pVM->hm.s.vmx.fVpid)
3318 {
3319 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
3320 {
3321 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
3322 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
3323 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
3324 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
3325 else
3326 {
3327 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
3328 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
3329 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
3330 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
3331 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
3332 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3333 pVM->hm.s.vmx.fVpid = false;
3334 }
3335 }
3336 else
3337 {
3338 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
3339 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
3340 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3341 pVM->hm.s.vmx.fVpid = false;
3342 }
3343 }
3344
3345 /*
3346 * Setup the handler for flushing tagged-TLBs.
3347 */
3348 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
3349 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
3350 else if (pVM->hm.s.fNestedPaging)
3351 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
3352 else if (pVM->hm.s.vmx.fVpid)
3353 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
3354 else
3355 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
3356 return VINF_SUCCESS;
3357}
3358
3359
3360/**
3361 * Sets up the LBR MSR ranges based on the host CPU.
3362 *
3363 * @returns VBox status code.
3364 * @param pVM The cross context VM structure.
3365 */
3366static int hmR0VmxSetupLbrMsrRange(PVMCC pVM)
3367{
3368 Assert(pVM->hm.s.vmx.fLbr);
3369 uint32_t idLbrFromIpMsrFirst;
3370 uint32_t idLbrFromIpMsrLast;
3371 uint32_t idLbrToIpMsrFirst;
3372 uint32_t idLbrToIpMsrLast;
3373 uint32_t idLbrTosMsr;
3374
3375 /*
3376 * Determine the LBR MSRs supported for this host CPU family and model.
3377 *
3378 * See Intel spec. 17.4.8 "LBR Stack".
3379 * See Intel "Model-Specific Registers" spec.
3380 */
3381 uint32_t const uFamilyModel = (pVM->cpum.ro.HostFeatures.uFamily << 8)
3382 | pVM->cpum.ro.HostFeatures.uModel;
3383 switch (uFamilyModel)
3384 {
3385 case 0x0f01: case 0x0f02:
3386 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
3387 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
3388 idLbrToIpMsrFirst = 0x0;
3389 idLbrToIpMsrLast = 0x0;
3390 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
3391 break;
3392
3393 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
3394 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
3395 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
3396 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3397 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
3398 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3399 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
3400 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3401 break;
3402
3403 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
3404 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
3405 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
3406 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
3407 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3408 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
3409 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3410 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
3411 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3412 break;
3413
3414 case 0x0617: case 0x061d: case 0x060f:
3415 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
3416 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
3417 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
3418 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
3419 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
3420 break;
3421
3422 /* Atom and related microarchitectures we don't care about:
3423 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
3424 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
3425 case 0x0636: */
3426 /* All other CPUs: */
3427 default:
3428 {
3429 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
3430 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
3431 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3432 }
3433 }
3434
3435 /*
3436 * Validate.
3437 */
3438 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
3439 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
3440 AssertCompile( RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr)
3441 == RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrToIpMsr));
3442 if (cLbrStack > RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr))
3443 {
3444 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
3445 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
3446 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3447 }
3448 NOREF(pVCpu0);
3449
3450 /*
3451 * Update the LBR info. to the VM struct. for use later.
3452 */
3453 pVM->hm.s.vmx.idLbrTosMsr = idLbrTosMsr;
3454 pVM->hm.s.vmx.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
3455 pVM->hm.s.vmx.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
3456
3457 pVM->hm.s.vmx.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
3458 pVM->hm.s.vmx.idLbrToIpMsrLast = idLbrToIpMsrLast;
3459 return VINF_SUCCESS;
3460}
3461
3462
3463#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3464/**
3465 * Sets up the shadow VMCS fields arrays.
3466 *
3467 * This function builds arrays of VMCS fields to sync the shadow VMCS later while
3468 * executing the guest.
3469 *
3470 * @returns VBox status code.
3471 * @param pVM The cross context VM structure.
3472 */
3473static int hmR0VmxSetupShadowVmcsFieldsArrays(PVMCC pVM)
3474{
3475 /*
3476 * Paranoia. Ensure we haven't exposed the VMWRITE-All VMX feature to the guest
3477 * when the host does not support it.
3478 */
3479 bool const fGstVmwriteAll = pVM->cpum.ro.GuestFeatures.fVmxVmwriteAll;
3480 if ( !fGstVmwriteAll
3481 || (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL))
3482 { /* likely. */ }
3483 else
3484 {
3485 LogRelFunc(("VMX VMWRITE-All feature exposed to the guest but host CPU does not support it!\n"));
3486 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_GST_HOST_VMWRITE_ALL;
3487 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3488 }
3489
3490 uint32_t const cVmcsFields = RT_ELEMENTS(g_aVmcsFields);
3491 uint32_t cRwFields = 0;
3492 uint32_t cRoFields = 0;
3493 for (uint32_t i = 0; i < cVmcsFields; i++)
3494 {
3495 VMXVMCSFIELD VmcsField;
3496 VmcsField.u = g_aVmcsFields[i];
3497
3498 /*
3499 * We will be writing "FULL" (64-bit) fields while syncing the shadow VMCS.
3500 * Therefore, "HIGH" (32-bit portion of 64-bit) fields must not be included
3501 * in the shadow VMCS fields array as they would be redundant.
3502 *
3503 * If the VMCS field depends on a CPU feature that is not exposed to the guest,
3504 * we must not include it in the shadow VMCS fields array. Guests attempting to
3505 * VMREAD/VMWRITE such VMCS fields would cause a VM-exit and we shall emulate
3506 * the required behavior.
3507 */
3508 if ( VmcsField.n.fAccessType == VMX_VMCSFIELD_ACCESS_FULL
3509 && CPUMIsGuestVmxVmcsFieldValid(pVM, VmcsField.u))
3510 {
3511 /*
3512 * Read-only fields are placed in a separate array so that while syncing shadow
3513 * VMCS fields later (which is more performance critical) we can avoid branches.
3514 *
3515 * However, if the guest can write to all fields (including read-only fields),
3516 * we treat it a as read/write field. Otherwise, writing to these fields would
3517 * cause a VMWRITE instruction error while syncing the shadow VMCS.
3518 */
3519 if ( fGstVmwriteAll
3520 || !VMXIsVmcsFieldReadOnly(VmcsField.u))
3521 pVM->hm.s.vmx.paShadowVmcsFields[cRwFields++] = VmcsField.u;
3522 else
3523 pVM->hm.s.vmx.paShadowVmcsRoFields[cRoFields++] = VmcsField.u;
3524 }
3525 }
3526
3527 /* Update the counts. */
3528 pVM->hm.s.vmx.cShadowVmcsFields = cRwFields;
3529 pVM->hm.s.vmx.cShadowVmcsRoFields = cRoFields;
3530 return VINF_SUCCESS;
3531}
3532
3533
3534/**
3535 * Sets up the VMREAD and VMWRITE bitmaps.
3536 *
3537 * @param pVM The cross context VM structure.
3538 */
3539static void hmR0VmxSetupVmreadVmwriteBitmaps(PVMCC pVM)
3540{
3541 /*
3542 * By default, ensure guest attempts to access any VMCS fields cause VM-exits.
3543 */
3544 uint32_t const cbBitmap = X86_PAGE_4K_SIZE;
3545 uint8_t *pbVmreadBitmap = (uint8_t *)pVM->hm.s.vmx.pvVmreadBitmap;
3546 uint8_t *pbVmwriteBitmap = (uint8_t *)pVM->hm.s.vmx.pvVmwriteBitmap;
3547 ASMMemFill32(pbVmreadBitmap, cbBitmap, UINT32_C(0xffffffff));
3548 ASMMemFill32(pbVmwriteBitmap, cbBitmap, UINT32_C(0xffffffff));
3549
3550 /*
3551 * Skip intercepting VMREAD/VMWRITE to guest read/write fields in the
3552 * VMREAD and VMWRITE bitmaps.
3553 */
3554 {
3555 uint32_t const *paShadowVmcsFields = pVM->hm.s.vmx.paShadowVmcsFields;
3556 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
3557 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
3558 {
3559 uint32_t const uVmcsField = paShadowVmcsFields[i];
3560 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3561 Assert(uVmcsField >> 3 < cbBitmap);
3562 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3563 ASMBitClear(pbVmwriteBitmap + (uVmcsField >> 3), uVmcsField & 7);
3564 }
3565 }
3566
3567 /*
3568 * Skip intercepting VMREAD for guest read-only fields in the VMREAD bitmap
3569 * if the host supports VMWRITE to all supported VMCS fields.
3570 */
3571 if (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL)
3572 {
3573 uint32_t const *paShadowVmcsRoFields = pVM->hm.s.vmx.paShadowVmcsRoFields;
3574 uint32_t const cShadowVmcsRoFields = pVM->hm.s.vmx.cShadowVmcsRoFields;
3575 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
3576 {
3577 uint32_t const uVmcsField = paShadowVmcsRoFields[i];
3578 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3579 Assert(uVmcsField >> 3 < cbBitmap);
3580 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3581 }
3582 }
3583}
3584#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
3585
3586
3587/**
3588 * Sets up the virtual-APIC page address for the VMCS.
3589 *
3590 * @param pVmcsInfo The VMCS info. object.
3591 */
3592DECLINLINE(void) hmR0VmxSetupVmcsVirtApicAddr(PCVMXVMCSINFO pVmcsInfo)
3593{
3594 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
3595 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
3596 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
3597 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
3598 AssertRC(rc);
3599}
3600
3601
3602/**
3603 * Sets up the MSR-bitmap address for the VMCS.
3604 *
3605 * @param pVmcsInfo The VMCS info. object.
3606 */
3607DECLINLINE(void) hmR0VmxSetupVmcsMsrBitmapAddr(PCVMXVMCSINFO pVmcsInfo)
3608{
3609 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
3610 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
3611 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3612 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
3613 AssertRC(rc);
3614}
3615
3616
3617/**
3618 * Sets up the APIC-access page address for the VMCS.
3619 *
3620 * @param pVCpu The cross context virtual CPU structure.
3621 */
3622DECLINLINE(void) hmR0VmxSetupVmcsApicAccessAddr(PVMCPUCC pVCpu)
3623{
3624 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
3625 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
3626 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
3627 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
3628 AssertRC(rc);
3629}
3630
3631
3632#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3633/**
3634 * Sets up the VMREAD bitmap address for the VMCS.
3635 *
3636 * @param pVCpu The cross context virtual CPU structure.
3637 */
3638DECLINLINE(void) hmR0VmxSetupVmcsVmreadBitmapAddr(PVMCPUCC pVCpu)
3639{
3640 RTHCPHYS const HCPhysVmreadBitmap = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysVmreadBitmap;
3641 Assert(HCPhysVmreadBitmap != NIL_RTHCPHYS);
3642 Assert(!(HCPhysVmreadBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3643 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL, HCPhysVmreadBitmap);
3644 AssertRC(rc);
3645}
3646
3647
3648/**
3649 * Sets up the VMWRITE bitmap address for the VMCS.
3650 *
3651 * @param pVCpu The cross context virtual CPU structure.
3652 */
3653DECLINLINE(void) hmR0VmxSetupVmcsVmwriteBitmapAddr(PVMCPUCC pVCpu)
3654{
3655 RTHCPHYS const HCPhysVmwriteBitmap = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysVmwriteBitmap;
3656 Assert(HCPhysVmwriteBitmap != NIL_RTHCPHYS);
3657 Assert(!(HCPhysVmwriteBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3658 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL, HCPhysVmwriteBitmap);
3659 AssertRC(rc);
3660}
3661#endif
3662
3663
3664/**
3665 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
3666 * in the VMCS.
3667 *
3668 * @returns VBox status code.
3669 * @param pVmcsInfo The VMCS info. object.
3670 */
3671DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMXVMCSINFO pVmcsInfo)
3672{
3673 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
3674 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
3675 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3676
3677 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
3678 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
3679 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
3680
3681 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
3682 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
3683 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3684
3685 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad); AssertRC(rc);
3686 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore); AssertRC(rc);
3687 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad); AssertRC(rc);
3688 return VINF_SUCCESS;
3689}
3690
3691
3692/**
3693 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
3694 *
3695 * @param pVCpu The cross context virtual CPU structure.
3696 * @param pVmcsInfo The VMCS info. object.
3697 */
3698static void hmR0VmxSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3699{
3700 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
3701
3702 /*
3703 * By default, ensure guest attempts to access any MSR cause VM-exits.
3704 * This shall later be relaxed for specific MSRs as necessary.
3705 *
3706 * Note: For nested-guests, the entire bitmap will be merged prior to
3707 * executing the nested-guest using hardware-assisted VMX and hence there
3708 * is no need to perform this operation. See hmR0VmxMergeMsrBitmapNested.
3709 */
3710 Assert(pVmcsInfo->pvMsrBitmap);
3711 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
3712
3713 /*
3714 * The guest can access the following MSRs (read, write) without causing
3715 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
3716 */
3717 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3718 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
3719 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
3720 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
3721 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3722 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
3723
3724 /*
3725 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
3726 * associated with then. We never need to intercept access (writes need to be
3727 * executed without causing a VM-exit, reads will #GP fault anyway).
3728 *
3729 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
3730 * read/write them. We swap the the guest/host MSR value using the
3731 * auto-load/store MSR area.
3732 */
3733 if (pVM->cpum.ro.GuestFeatures.fIbpb)
3734 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
3735 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
3736 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
3737 if (pVM->cpum.ro.GuestFeatures.fIbrs)
3738 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
3739
3740 /*
3741 * Allow full read/write access for the following MSRs (mandatory for VT-x)
3742 * required for 64-bit guests.
3743 */
3744 if (pVM->hm.s.fAllow64BitGuests)
3745 {
3746 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
3747 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
3748 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
3749 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3750 }
3751
3752 /*
3753 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
3754 */
3755#ifdef VBOX_STRICT
3756 Assert(pVmcsInfo->pvMsrBitmap);
3757 uint32_t const fMsrpmEfer = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K6_EFER);
3758 Assert(fMsrpmEfer == VMXMSRPM_EXIT_RD_WR);
3759#endif
3760}
3761
3762
3763/**
3764 * Sets up pin-based VM-execution controls in the VMCS.
3765 *
3766 * @returns VBox status code.
3767 * @param pVCpu The cross context virtual CPU structure.
3768 * @param pVmcsInfo The VMCS info. object.
3769 */
3770static int hmR0VmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3771{
3772 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3773 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
3774 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
3775
3776 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
3777 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
3778
3779 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
3780 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
3781
3782 /* Enable the VMX-preemption timer. */
3783 if (pVM->hm.s.vmx.fUsePreemptTimer)
3784 {
3785 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
3786 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
3787 }
3788
3789#if 0
3790 /* Enable posted-interrupt processing. */
3791 if (pVM->hm.s.fPostedIntrs)
3792 {
3793 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
3794 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
3795 fVal |= VMX_PIN_CTLS_POSTED_INT;
3796 }
3797#endif
3798
3799 if ((fVal & fZap) != fVal)
3800 {
3801 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3802 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
3803 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
3804 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3805 }
3806
3807 /* Commit it to the VMCS and update our cache. */
3808 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
3809 AssertRC(rc);
3810 pVmcsInfo->u32PinCtls = fVal;
3811
3812 return VINF_SUCCESS;
3813}
3814
3815
3816/**
3817 * Sets up secondary processor-based VM-execution controls in the VMCS.
3818 *
3819 * @returns VBox status code.
3820 * @param pVCpu The cross context virtual CPU structure.
3821 * @param pVmcsInfo The VMCS info. object.
3822 */
3823static int hmR0VmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3824{
3825 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3826 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
3827 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3828
3829 /* WBINVD causes a VM-exit. */
3830 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
3831 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
3832
3833 /* Enable EPT (aka nested-paging). */
3834 if (pVM->hm.s.fNestedPaging)
3835 fVal |= VMX_PROC_CTLS2_EPT;
3836
3837 /* Enable the INVPCID instruction if we expose it to the guest and is supported
3838 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
3839 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
3840 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
3841 fVal |= VMX_PROC_CTLS2_INVPCID;
3842
3843 /* Enable VPID. */
3844 if (pVM->hm.s.vmx.fVpid)
3845 fVal |= VMX_PROC_CTLS2_VPID;
3846
3847 /* Enable unrestricted guest execution. */
3848 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3849 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
3850
3851#if 0
3852 if (pVM->hm.s.fVirtApicRegs)
3853 {
3854 /* Enable APIC-register virtualization. */
3855 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3856 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3857
3858 /* Enable virtual-interrupt delivery. */
3859 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3860 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3861 }
3862#endif
3863
3864 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
3865 where the TPR shadow resides. */
3866 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3867 * done dynamically. */
3868 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3869 {
3870 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3871 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3872 }
3873
3874 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
3875 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
3876 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
3877 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
3878 fVal |= VMX_PROC_CTLS2_RDTSCP;
3879
3880 /* Enable Pause-Loop exiting. */
3881 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3882 && pVM->hm.s.vmx.cPleGapTicks
3883 && pVM->hm.s.vmx.cPleWindowTicks)
3884 {
3885 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3886
3887 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
3888 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
3889 }
3890
3891 if ((fVal & fZap) != fVal)
3892 {
3893 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3894 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
3895 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3896 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3897 }
3898
3899 /* Commit it to the VMCS and update our cache. */
3900 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3901 AssertRC(rc);
3902 pVmcsInfo->u32ProcCtls2 = fVal;
3903
3904 return VINF_SUCCESS;
3905}
3906
3907
3908/**
3909 * Sets up processor-based VM-execution controls in the VMCS.
3910 *
3911 * @returns VBox status code.
3912 * @param pVCpu The cross context virtual CPU structure.
3913 * @param pVmcsInfo The VMCS info. object.
3914 */
3915static int hmR0VmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3916{
3917 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3918 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3919 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3920
3921 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3922 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3923 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3924 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3925 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3926 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3927 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3928
3929 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3930 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3931 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3932 {
3933 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3934 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3935 }
3936
3937 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3938 if (!pVM->hm.s.fNestedPaging)
3939 {
3940 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
3941 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3942 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3943 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3944 }
3945
3946 /* Use TPR shadowing if supported by the CPU. */
3947 if ( PDMHasApic(pVM)
3948 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3949 {
3950 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3951 /* CR8 writes cause a VM-exit based on TPR threshold. */
3952 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3953 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3954 hmR0VmxSetupVmcsVirtApicAddr(pVmcsInfo);
3955 }
3956 else
3957 {
3958 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3959 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3960 if (pVM->hm.s.fAllow64BitGuests)
3961 {
3962 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3963 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3964 }
3965 }
3966
3967 /* Use MSR-bitmaps if supported by the CPU. */
3968 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3969 {
3970 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
3971 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
3972 }
3973
3974 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
3975 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3976 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
3977
3978 if ((fVal & fZap) != fVal)
3979 {
3980 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3981 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
3982 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
3983 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3984 }
3985
3986 /* Commit it to the VMCS and update our cache. */
3987 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3988 AssertRC(rc);
3989 pVmcsInfo->u32ProcCtls = fVal;
3990
3991 /* Set up MSR permissions that don't change through the lifetime of the VM. */
3992 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3993 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
3994
3995 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
3996 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3997 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
3998
3999 /* Sanity check, should not really happen. */
4000 if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
4001 { /* likely */ }
4002 else
4003 {
4004 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
4005 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4006 }
4007
4008 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
4009 return VINF_SUCCESS;
4010}
4011
4012
4013/**
4014 * Sets up miscellaneous (everything other than Pin, Processor and secondary
4015 * Processor-based VM-execution) control fields in the VMCS.
4016 *
4017 * @returns VBox status code.
4018 * @param pVCpu The cross context virtual CPU structure.
4019 * @param pVmcsInfo The VMCS info. object.
4020 */
4021static int hmR0VmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4022{
4023#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4024 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUseVmcsShadowing)
4025 {
4026 hmR0VmxSetupVmcsVmreadBitmapAddr(pVCpu);
4027 hmR0VmxSetupVmcsVmwriteBitmapAddr(pVCpu);
4028 }
4029#endif
4030
4031 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4032 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4033 AssertRC(rc);
4034
4035 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4036 if (RT_SUCCESS(rc))
4037 {
4038 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
4039 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
4040
4041 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
4042 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
4043
4044 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
4045 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
4046
4047 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fLbr)
4048 {
4049 rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
4050 AssertRC(rc);
4051 }
4052 return VINF_SUCCESS;
4053 }
4054 else
4055 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
4056 return rc;
4057}
4058
4059
4060/**
4061 * Sets up the initial exception bitmap in the VMCS based on static conditions.
4062 *
4063 * We shall setup those exception intercepts that don't change during the
4064 * lifetime of the VM here. The rest are done dynamically while loading the
4065 * guest state.
4066 *
4067 * @param pVCpu The cross context virtual CPU structure.
4068 * @param pVmcsInfo The VMCS info. object.
4069 */
4070static void hmR0VmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4071{
4072 /*
4073 * The following exceptions are always intercepted:
4074 *
4075 * #AC - To prevent the guest from hanging the CPU.
4076 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
4077 * recursive #DBs can cause a CPU hang.
4078 * #PF - To sync our shadow page tables when nested-paging is not used.
4079 */
4080 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
4081 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
4082 | RT_BIT(X86_XCPT_DB)
4083 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
4084
4085 /* Commit it to the VMCS. */
4086 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4087 AssertRC(rc);
4088
4089 /* Update our cache of the exception bitmap. */
4090 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4091}
4092
4093
4094#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4095/**
4096 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
4097 *
4098 * @returns VBox status code.
4099 * @param pVCpu The cross context virtual CPU structure.
4100 * @param pVmcsInfo The VMCS info. object.
4101 */
4102static int hmR0VmxSetupVmcsCtlsNested(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4103{
4104 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4105 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4106 AssertRC(rc);
4107
4108 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4109 if (RT_SUCCESS(rc))
4110 {
4111 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4112 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
4113
4114 /* Paranoia - We've not yet initialized these, they shall be done while merging the VMCS. */
4115 Assert(!pVmcsInfo->u64Cr0Mask);
4116 Assert(!pVmcsInfo->u64Cr4Mask);
4117 return VINF_SUCCESS;
4118 }
4119 else
4120 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
4121 return rc;
4122}
4123#endif
4124
4125
4126/**
4127 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
4128 * VMX.
4129 *
4130 * @returns VBox status code.
4131 * @param pVCpu The cross context virtual CPU structure.
4132 * @param pVmcsInfo The VMCS info. object.
4133 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
4134 */
4135static int hmR0VmxSetupVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
4136{
4137 Assert(pVmcsInfo->pvVmcs);
4138 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4139
4140 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
4141 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4142 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
4143 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
4144
4145 LogFlowFunc(("\n"));
4146
4147 /*
4148 * Initialize the VMCS using VMCLEAR before loading the VMCS.
4149 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
4150 */
4151 int rc = hmR0VmxClearVmcs(pVmcsInfo);
4152 if (RT_SUCCESS(rc))
4153 {
4154 rc = hmR0VmxLoadVmcs(pVmcsInfo);
4155 if (RT_SUCCESS(rc))
4156 {
4157 if (!fIsNstGstVmcs)
4158 {
4159 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
4160 if (RT_SUCCESS(rc))
4161 {
4162 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
4163 if (RT_SUCCESS(rc))
4164 {
4165 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
4166 if (RT_SUCCESS(rc))
4167 {
4168 hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
4169#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4170 /*
4171 * If a shadow VMCS is allocated for the VMCS info. object, initialize the
4172 * VMCS revision ID and shadow VMCS indicator bit. Also, clear the VMCS
4173 * making it fit for use when VMCS shadowing is later enabled.
4174 */
4175 if (pVmcsInfo->pvShadowVmcs)
4176 {
4177 VMXVMCSREVID VmcsRevId;
4178 VmcsRevId.u = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
4179 VmcsRevId.n.fIsShadowVmcs = 1;
4180 *(uint32_t *)pVmcsInfo->pvShadowVmcs = VmcsRevId.u;
4181 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
4182 if (RT_SUCCESS(rc))
4183 { /* likely */ }
4184 else
4185 LogRelFunc(("Failed to initialize shadow VMCS. rc=%Rrc\n", rc));
4186 }
4187#endif
4188 }
4189 else
4190 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
4191 }
4192 else
4193 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
4194 }
4195 else
4196 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
4197 }
4198 else
4199 {
4200#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4201 rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
4202 if (RT_SUCCESS(rc))
4203 { /* likely */ }
4204 else
4205 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
4206#else
4207 AssertFailed();
4208#endif
4209 }
4210 }
4211 else
4212 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
4213 }
4214 else
4215 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
4216
4217 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
4218 if (RT_SUCCESS(rc))
4219 {
4220 rc = hmR0VmxClearVmcs(pVmcsInfo);
4221 if (RT_SUCCESS(rc))
4222 { /* likely */ }
4223 else
4224 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
4225 }
4226
4227 /*
4228 * Update the last-error record both for failures and success, so we
4229 * can propagate the status code back to ring-3 for diagnostics.
4230 */
4231 hmR0VmxUpdateErrorRecord(pVCpu, rc);
4232 NOREF(pszVmcs);
4233 return rc;
4234}
4235
4236
4237/**
4238 * Does global VT-x initialization (called during module initialization).
4239 *
4240 * @returns VBox status code.
4241 */
4242VMMR0DECL(int) VMXR0GlobalInit(void)
4243{
4244#ifdef HMVMX_USE_FUNCTION_TABLE
4245 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
4246# ifdef VBOX_STRICT
4247 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
4248 Assert(g_apfnVMExitHandlers[i]);
4249# endif
4250#endif
4251 return VINF_SUCCESS;
4252}
4253
4254
4255/**
4256 * Does global VT-x termination (called during module termination).
4257 */
4258VMMR0DECL(void) VMXR0GlobalTerm()
4259{
4260 /* Nothing to do currently. */
4261}
4262
4263
4264/**
4265 * Sets up and activates VT-x on the current CPU.
4266 *
4267 * @returns VBox status code.
4268 * @param pHostCpu The HM physical-CPU structure.
4269 * @param pVM The cross context VM structure. Can be
4270 * NULL after a host resume operation.
4271 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
4272 * fEnabledByHost is @c true).
4273 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
4274 * @a fEnabledByHost is @c true).
4275 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
4276 * enable VT-x on the host.
4277 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
4278 */
4279VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
4280 PCSUPHWVIRTMSRS pHwvirtMsrs)
4281{
4282 AssertPtr(pHostCpu);
4283 AssertPtr(pHwvirtMsrs);
4284 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4285
4286 /* Enable VT-x if it's not already enabled by the host. */
4287 if (!fEnabledByHost)
4288 {
4289 int rc = hmR0VmxEnterRootMode(pHostCpu, pVM, HCPhysCpuPage, pvCpuPage);
4290 if (RT_FAILURE(rc))
4291 return rc;
4292 }
4293
4294 /*
4295 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
4296 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
4297 * invalidated when flushing by VPID.
4298 */
4299 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
4300 {
4301 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
4302 pHostCpu->fFlushAsidBeforeUse = false;
4303 }
4304 else
4305 pHostCpu->fFlushAsidBeforeUse = true;
4306
4307 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
4308 ++pHostCpu->cTlbFlushes;
4309
4310 return VINF_SUCCESS;
4311}
4312
4313
4314/**
4315 * Deactivates VT-x on the current CPU.
4316 *
4317 * @returns VBox status code.
4318 * @param pHostCpu The HM physical-CPU structure.
4319 * @param pvCpuPage Pointer to the VMXON region.
4320 * @param HCPhysCpuPage Physical address of the VMXON region.
4321 *
4322 * @remarks This function should never be called when SUPR0EnableVTx() or
4323 * similar was used to enable VT-x on the host.
4324 */
4325VMMR0DECL(int) VMXR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
4326{
4327 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
4328
4329 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4330 return hmR0VmxLeaveRootMode(pHostCpu);
4331}
4332
4333
4334/**
4335 * Does per-VM VT-x initialization.
4336 *
4337 * @returns VBox status code.
4338 * @param pVM The cross context VM structure.
4339 */
4340VMMR0DECL(int) VMXR0InitVM(PVMCC pVM)
4341{
4342 AssertPtr(pVM);
4343 LogFlowFunc(("pVM=%p\n", pVM));
4344
4345 hmR0VmxStructsInit(pVM);
4346 int rc = hmR0VmxStructsAlloc(pVM);
4347 if (RT_FAILURE(rc))
4348 {
4349 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
4350 return rc;
4351 }
4352
4353 /* Setup the crash dump page. */
4354#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4355 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
4356 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
4357#endif
4358 return VINF_SUCCESS;
4359}
4360
4361
4362/**
4363 * Does per-VM VT-x termination.
4364 *
4365 * @returns VBox status code.
4366 * @param pVM The cross context VM structure.
4367 */
4368VMMR0DECL(int) VMXR0TermVM(PVMCC pVM)
4369{
4370 AssertPtr(pVM);
4371 LogFlowFunc(("pVM=%p\n", pVM));
4372
4373#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4374 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
4375 {
4376 Assert(pVM->hm.s.vmx.pvScratch);
4377 ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
4378 }
4379#endif
4380 hmR0VmxStructsFree(pVM);
4381 return VINF_SUCCESS;
4382}
4383
4384
4385/**
4386 * Sets up the VM for execution using hardware-assisted VMX.
4387 * This function is only called once per-VM during initialization.
4388 *
4389 * @returns VBox status code.
4390 * @param pVM The cross context VM structure.
4391 */
4392VMMR0DECL(int) VMXR0SetupVM(PVMCC pVM)
4393{
4394 AssertPtr(pVM);
4395 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4396
4397 LogFlowFunc(("pVM=%p\n", pVM));
4398
4399 /*
4400 * At least verify if VMX is enabled, since we can't check if we're in VMX root mode or not
4401 * without causing a #GP.
4402 */
4403 RTCCUINTREG const uHostCr4 = ASMGetCR4();
4404 if (RT_LIKELY(uHostCr4 & X86_CR4_VMXE))
4405 { /* likely */ }
4406 else
4407 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
4408
4409 /*
4410 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
4411 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
4412 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
4413 */
4414 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4415 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
4416 || !pVM->hm.s.vmx.pRealModeTSS))
4417 {
4418 LogRelFunc(("Invalid real-on-v86 state.\n"));
4419 return VERR_INTERNAL_ERROR;
4420 }
4421
4422 /* Initialize these always, see hmR3InitFinalizeR0().*/
4423 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
4424 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
4425
4426 /* Setup the tagged-TLB flush handlers. */
4427 int rc = hmR0VmxSetupTaggedTlb(pVM);
4428 if (RT_FAILURE(rc))
4429 {
4430 LogRelFunc(("Failed to setup tagged TLB. rc=%Rrc\n", rc));
4431 return rc;
4432 }
4433
4434 /* Determine LBR capabilities. */
4435 if (pVM->hm.s.vmx.fLbr)
4436 {
4437 rc = hmR0VmxSetupLbrMsrRange(pVM);
4438 if (RT_FAILURE(rc))
4439 {
4440 LogRelFunc(("Failed to setup LBR MSR range. rc=%Rrc\n", rc));
4441 return rc;
4442 }
4443 }
4444
4445#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4446 /* Setup the shadow VMCS fields array and VMREAD/VMWRITE bitmaps. */
4447 if (pVM->hm.s.vmx.fUseVmcsShadowing)
4448 {
4449 rc = hmR0VmxSetupShadowVmcsFieldsArrays(pVM);
4450 if (RT_SUCCESS(rc))
4451 hmR0VmxSetupVmreadVmwriteBitmaps(pVM);
4452 else
4453 {
4454 LogRelFunc(("Failed to setup shadow VMCS fields arrays. rc=%Rrc\n", rc));
4455 return rc;
4456 }
4457 }
4458#endif
4459
4460 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4461 {
4462 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
4463 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
4464
4465 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
4466 if (RT_SUCCESS(rc))
4467 {
4468#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4469 if (pVM->cpum.ro.GuestFeatures.fVmx)
4470 {
4471 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
4472 if (RT_SUCCESS(rc))
4473 { /* likely */ }
4474 else
4475 {
4476 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
4477 return rc;
4478 }
4479 }
4480#endif
4481 }
4482 else
4483 {
4484 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
4485 return rc;
4486 }
4487 }
4488
4489 return VINF_SUCCESS;
4490}
4491
4492
4493/**
4494 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
4495 * the VMCS.
4496 */
4497static void hmR0VmxExportHostControlRegs(void)
4498{
4499 int rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR0, ASMGetCR0()); AssertRC(rc);
4500 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR3, ASMGetCR3()); AssertRC(rc);
4501 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR4, ASMGetCR4()); AssertRC(rc);
4502}
4503
4504
4505/**
4506 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
4507 * the host-state area in the VMCS.
4508 *
4509 * @returns VBox status code.
4510 * @param pVCpu The cross context virtual CPU structure.
4511 */
4512static int hmR0VmxExportHostSegmentRegs(PVMCPUCC pVCpu)
4513{
4514/**
4515 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
4516 * requirements. See hmR0VmxExportHostSegmentRegs().
4517 */
4518#define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_selValue) \
4519 if ((a_selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
4520 { \
4521 bool fValidSelector = true; \
4522 if ((a_selValue) & X86_SEL_LDT) \
4523 { \
4524 uint32_t const uAttr = ASMGetSegAttr(a_selValue); \
4525 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
4526 } \
4527 if (fValidSelector) \
4528 { \
4529 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
4530 pVCpu->hm.s.vmx.RestoreHost.uHostSel##a_Seg = (a_selValue); \
4531 } \
4532 (a_selValue) = 0; \
4533 }
4534
4535 /*
4536 * If we've executed guest code using hardware-assisted VMX, the host-state bits
4537 * will be messed up. We should -not- save the messed up state without restoring
4538 * the original host-state, see @bugref{7240}.
4539 *
4540 * This apparently can happen (most likely the FPU changes), deal with it rather than
4541 * asserting. Was observed booting Solaris 10u10 32-bit guest.
4542 */
4543 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
4544 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
4545 {
4546 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
4547 pVCpu->idCpu));
4548 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
4549 }
4550 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
4551
4552 /*
4553 * Host segment registers.
4554 */
4555 RTSEL uSelES = ASMGetES();
4556 RTSEL uSelCS = ASMGetCS();
4557 RTSEL uSelSS = ASMGetSS();
4558 RTSEL uSelDS = ASMGetDS();
4559 RTSEL uSelFS = ASMGetFS();
4560 RTSEL uSelGS = ASMGetGS();
4561 RTSEL uSelTR = ASMGetTR();
4562
4563 /*
4564 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
4565 * gain VM-entry and restore them before we get preempted.
4566 *
4567 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
4568 */
4569 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
4570 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
4571 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
4572 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
4573
4574 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
4575 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
4576 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
4577 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
4578 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
4579 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
4580 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
4581 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
4582 Assert(uSelCS);
4583 Assert(uSelTR);
4584
4585 /* Write these host selector fields into the host-state area in the VMCS. */
4586 int rc = VMXWriteVmcs16(VMX_VMCS16_HOST_CS_SEL, uSelCS); AssertRC(rc);
4587 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_SS_SEL, uSelSS); AssertRC(rc);
4588 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_DS_SEL, uSelDS); AssertRC(rc);
4589 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_ES_SEL, uSelES); AssertRC(rc);
4590 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_FS_SEL, uSelFS); AssertRC(rc);
4591 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_GS_SEL, uSelGS); AssertRC(rc);
4592 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_TR_SEL, uSelTR); AssertRC(rc);
4593
4594 /*
4595 * Host GDTR and IDTR.
4596 */
4597 RTGDTR Gdtr;
4598 RTIDTR Idtr;
4599 RT_ZERO(Gdtr);
4600 RT_ZERO(Idtr);
4601 ASMGetGDTR(&Gdtr);
4602 ASMGetIDTR(&Idtr);
4603 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRC(rc);
4604 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRC(rc);
4605
4606 /*
4607 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
4608 * them to the maximum limit (0xffff) on every VM-exit.
4609 */
4610 if (Gdtr.cbGdt != 0xffff)
4611 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4612
4613 /*
4614 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4615 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4616 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4617 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4618 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4619 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4620 * at 0xffff on hosts where we are sure it won't cause trouble.
4621 */
4622#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4623 if (Idtr.cbIdt < 0x0fff)
4624#else
4625 if (Idtr.cbIdt != 0xffff)
4626#endif
4627 {
4628 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4629 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
4630 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
4631 }
4632
4633 /*
4634 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4635 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4636 * RPL should be too in most cases.
4637 */
4638 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
4639 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
4640
4641 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
4642 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4643
4644 /*
4645 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4646 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4647 * restoration if the host has something else. Task switching is not supported in 64-bit
4648 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4649 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4650 *
4651 * [1] See Intel spec. 3.5 "System Descriptor Types".
4652 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4653 */
4654 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4655 Assert(pDesc->System.u4Type == 11);
4656 if ( pDesc->System.u16LimitLow != 0x67
4657 || pDesc->System.u4LimitHigh)
4658 {
4659 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4660 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4661 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4662 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4663 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
4664 }
4665
4666 /*
4667 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
4668 */
4669 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
4670 {
4671 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
4672 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
4673 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4674 {
4675 /* The GDT is read-only but the writable GDT is available. */
4676 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4677 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
4678 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4679 AssertRCReturn(rc, rc);
4680 }
4681 }
4682
4683 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_TR_BASE, uTRBase);
4684 AssertRC(rc);
4685
4686 /*
4687 * Host FS base and GS base.
4688 */
4689 uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
4690 uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
4691 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRC(rc);
4692 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRC(rc);
4693
4694 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
4695 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
4696 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
4697 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
4698 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
4699
4700 return VINF_SUCCESS;
4701#undef VMXLOCAL_ADJUST_HOST_SEG
4702}
4703
4704
4705/**
4706 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4707 * host-state area of the VMCS.
4708 *
4709 * These MSRs will be automatically restored on the host after every successful
4710 * VM-exit.
4711 *
4712 * @param pVCpu The cross context virtual CPU structure.
4713 *
4714 * @remarks No-long-jump zone!!!
4715 */
4716static void hmR0VmxExportHostMsrs(PVMCPUCC pVCpu)
4717{
4718 AssertPtr(pVCpu);
4719
4720 /*
4721 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4722 * rather than swapping them on every VM-entry.
4723 */
4724 hmR0VmxLazySaveHostMsrs(pVCpu);
4725
4726 /*
4727 * Host Sysenter MSRs.
4728 */
4729 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); AssertRC(rc);
4730 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); AssertRC(rc);
4731 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); AssertRC(rc);
4732
4733 /*
4734 * Host EFER MSR.
4735 *
4736 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4737 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4738 */
4739 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4740 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4741 {
4742 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
4743 AssertRC(rc);
4744 }
4745
4746 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4747 * hmR0VmxExportGuestEntryExitCtls(). */
4748}
4749
4750
4751/**
4752 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4753 *
4754 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4755 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4756 *
4757 * @returns true if we need to load guest EFER, false otherwise.
4758 * @param pVCpu The cross context virtual CPU structure.
4759 * @param pVmxTransient The VMX-transient structure.
4760 *
4761 * @remarks Requires EFER, CR4.
4762 * @remarks No-long-jump zone!!!
4763 */
4764static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4765{
4766#ifdef HMVMX_ALWAYS_SWAP_EFER
4767 RT_NOREF2(pVCpu, pVmxTransient);
4768 return true;
4769#else
4770 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4771 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4772 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
4773 uint64_t const u64GuestEfer = pCtx->msrEFER;
4774
4775# ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4776 /*
4777 * For nested-guests, we shall honor swapping the EFER MSR when requested by
4778 * the nested-guest.
4779 */
4780 if ( pVmxTransient->fIsNestedGuest
4781 && ( CPUMIsGuestVmxEntryCtlsSet(pCtx, VMX_ENTRY_CTLS_LOAD_EFER_MSR)
4782 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_SAVE_EFER_MSR)
4783 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_LOAD_EFER_MSR)))
4784 return true;
4785# else
4786 RT_NOREF(pVmxTransient);
4787#endif
4788
4789 /*
4790 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4791 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4792 */
4793 if ( CPUMIsGuestInLongModeEx(pCtx)
4794 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4795 return true;
4796
4797 /*
4798 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4799 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4800 *
4801 * See Intel spec. 4.5 "IA-32e Paging".
4802 * See Intel spec. 4.1.1 "Three Paging Modes".
4803 *
4804 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4805 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4806 */
4807 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4808 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4809 if ( (pCtx->cr4 & X86_CR4_PAE)
4810 && (pCtx->cr0 & X86_CR0_PG))
4811 {
4812 /*
4813 * If nested paging is not used, verify that the guest paging mode matches the
4814 * shadow paging mode which is/will be placed in the VMCS (which is what will
4815 * actually be used while executing the guest and not the CR4 shadow value).
4816 */
4817 AssertMsg(pVM->hm.s.fNestedPaging || ( pVCpu->hm.s.enmShadowMode == PGMMODE_PAE
4818 || pVCpu->hm.s.enmShadowMode == PGMMODE_PAE_NX
4819 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64
4820 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64_NX),
4821 ("enmShadowMode=%u\n", pVCpu->hm.s.enmShadowMode));
4822 if ((u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4823 {
4824 /* Verify that the host is NX capable. */
4825 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4826 return true;
4827 }
4828 }
4829
4830 return false;
4831#endif
4832}
4833
4834
4835/**
4836 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4837 * VMCS.
4838 *
4839 * This is typically required when the guest changes paging mode.
4840 *
4841 * @returns VBox status code.
4842 * @param pVCpu The cross context virtual CPU structure.
4843 * @param pVmxTransient The VMX-transient structure.
4844 *
4845 * @remarks Requires EFER.
4846 * @remarks No-long-jump zone!!!
4847 */
4848static int hmR0VmxExportGuestEntryExitCtls(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4849{
4850 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4851 {
4852 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4853 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4854 bool const fGstInLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
4855
4856 /*
4857 * VMRUN function.
4858 * If the guest is in long mode, use the 64-bit guest handler, else the 32-bit guest handler.
4859 * The host is always 64-bit since we no longer support 32-bit hosts.
4860 */
4861 if (fGstInLongMode)
4862 {
4863#ifndef VBOX_WITH_64_BITS_GUESTS
4864 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4865#else
4866 Assert(pVM->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4867 pVmcsInfo->pfnStartVM = VMXR0StartVM64;
4868#endif
4869 }
4870 else
4871 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
4872
4873 /*
4874 * VM-entry controls.
4875 */
4876 {
4877 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4878 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4879
4880 /*
4881 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
4882 * The first VT-x capable CPUs only supported the 1-setting of this bit.
4883 *
4884 * For nested-guests, this is a mandatory VM-entry control. It's also
4885 * required because we do not want to leak host bits to the nested-guest.
4886 */
4887 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
4888
4889 /*
4890 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
4891 *
4892 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
4893 * required to get the nested-guest working with hardware-assisted VMX execution.
4894 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested hypervisor
4895 * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
4896 * here rather than while merging the guest VMCS controls.
4897 */
4898 if (fGstInLongMode)
4899 {
4900 Assert(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME);
4901 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
4902 }
4903 else
4904 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
4905
4906 /*
4907 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
4908 *
4909 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
4910 * regardless of whether the nested-guest VMCS specifies it because we are free to
4911 * load whatever MSRs we require and we do not need to modify the guest visible copy
4912 * of the VM-entry MSR load area.
4913 */
4914 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4915 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
4916 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
4917 else
4918 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
4919
4920 /*
4921 * The following should -not- be set (since we're not in SMM mode):
4922 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
4923 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
4924 */
4925
4926 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
4927 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
4928
4929 if ((fVal & fZap) == fVal)
4930 { /* likely */ }
4931 else
4932 {
4933 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4934 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
4935 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
4936 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4937 }
4938
4939 /* Commit it to the VMCS. */
4940 if (pVmcsInfo->u32EntryCtls != fVal)
4941 {
4942 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
4943 AssertRC(rc);
4944 pVmcsInfo->u32EntryCtls = fVal;
4945 }
4946 }
4947
4948 /*
4949 * VM-exit controls.
4950 */
4951 {
4952 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4953 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4954
4955 /*
4956 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
4957 * supported the 1-setting of this bit.
4958 *
4959 * For nested-guests, we set the "save debug controls" as the converse
4960 * "load debug controls" is mandatory for nested-guests anyway.
4961 */
4962 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
4963
4964 /*
4965 * Set the host long mode active (EFER.LMA) bit (which Intel calls
4966 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
4967 * host EFER.LMA and EFER.LME bit to this value. See assertion in
4968 * hmR0VmxExportHostMsrs().
4969 *
4970 * For nested-guests, we always set this bit as we do not support 32-bit
4971 * hosts.
4972 */
4973 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4974
4975 /*
4976 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
4977 *
4978 * For nested-guests, we should use the "save IA32_EFER" control if we also
4979 * used the "load IA32_EFER" control while exporting VM-entry controls.
4980 */
4981 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4982 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
4983 {
4984 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
4985 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
4986 }
4987
4988 /*
4989 * Enable saving of the VMX-preemption timer value on VM-exit.
4990 * For nested-guests, currently not exposed/used.
4991 */
4992 if ( pVM->hm.s.vmx.fUsePreemptTimer
4993 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
4994 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
4995
4996 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
4997 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
4998
4999 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
5000 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
5001 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
5002
5003 if ((fVal & fZap) == fVal)
5004 { /* likely */ }
5005 else
5006 {
5007 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
5008 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
5009 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
5010 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
5011 }
5012
5013 /* Commit it to the VMCS. */
5014 if (pVmcsInfo->u32ExitCtls != fVal)
5015 {
5016 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
5017 AssertRC(rc);
5018 pVmcsInfo->u32ExitCtls = fVal;
5019 }
5020 }
5021
5022 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
5023 }
5024 return VINF_SUCCESS;
5025}
5026
5027
5028/**
5029 * Sets the TPR threshold in the VMCS.
5030 *
5031 * @param pVmcsInfo The VMCS info. object.
5032 * @param u32TprThreshold The TPR threshold (task-priority class only).
5033 */
5034DECLINLINE(void) hmR0VmxApicSetTprThreshold(PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
5035{
5036 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
5037 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
5038 RT_NOREF(pVmcsInfo);
5039 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
5040 AssertRC(rc);
5041}
5042
5043
5044/**
5045 * Exports the guest APIC TPR state into the VMCS.
5046 *
5047 * @param pVCpu The cross context virtual CPU structure.
5048 * @param pVmxTransient The VMX-transient structure.
5049 *
5050 * @remarks No-long-jump zone!!!
5051 */
5052static void hmR0VmxExportGuestApicTpr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5053{
5054 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
5055 {
5056 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5057
5058 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5059 if (!pVmxTransient->fIsNestedGuest)
5060 {
5061 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
5062 && APICIsEnabled(pVCpu))
5063 {
5064 /*
5065 * Setup TPR shadowing.
5066 */
5067 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
5068 {
5069 bool fPendingIntr = false;
5070 uint8_t u8Tpr = 0;
5071 uint8_t u8PendingIntr = 0;
5072 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
5073 AssertRC(rc);
5074
5075 /*
5076 * If there are interrupts pending but masked by the TPR, instruct VT-x to
5077 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
5078 * priority of the pending interrupt so we can deliver the interrupt. If there
5079 * are no interrupts pending, set threshold to 0 to not cause any
5080 * TPR-below-threshold VM-exits.
5081 */
5082 uint32_t u32TprThreshold = 0;
5083 if (fPendingIntr)
5084 {
5085 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
5086 (which is the Task-Priority Class). */
5087 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
5088 const uint8_t u8TprPriority = u8Tpr >> 4;
5089 if (u8PendingPriority <= u8TprPriority)
5090 u32TprThreshold = u8PendingPriority;
5091 }
5092
5093 hmR0VmxApicSetTprThreshold(pVmcsInfo, u32TprThreshold);
5094 }
5095 }
5096 }
5097 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
5098 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
5099 }
5100}
5101
5102
5103/**
5104 * Gets the guest interruptibility-state and updates related force-flags.
5105 *
5106 * @returns Guest's interruptibility-state.
5107 * @param pVCpu The cross context virtual CPU structure.
5108 *
5109 * @remarks No-long-jump zone!!!
5110 */
5111static uint32_t hmR0VmxGetGuestIntrStateAndUpdateFFs(PVMCPUCC pVCpu)
5112{
5113 /*
5114 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
5115 */
5116 uint32_t fIntrState = 0;
5117 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5118 {
5119 /* If inhibition is active, RIP and RFLAGS should've been imported from the VMCS already. */
5120 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
5121
5122 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5123 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
5124 {
5125 if (pCtx->eflags.Bits.u1IF)
5126 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
5127 else
5128 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
5129 }
5130 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5131 {
5132 /*
5133 * We can clear the inhibit force flag as even if we go back to the recompiler
5134 * without executing guest code in VT-x, the flag's condition to be cleared is
5135 * met and thus the cleared state is correct.
5136 */
5137 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5138 }
5139 }
5140
5141 /*
5142 * Check if we should inhibit NMI delivery.
5143 */
5144 if (CPUMIsGuestNmiBlocking(pVCpu))
5145 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
5146
5147 /*
5148 * Validate.
5149 */
5150#ifdef VBOX_STRICT
5151 /* We don't support block-by-SMI yet.*/
5152 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI));
5153
5154 /* Block-by-STI must not be set when interrupts are disabled. */
5155 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
5156 {
5157 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5158 Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_IF);
5159 }
5160#endif
5161
5162 return fIntrState;
5163}
5164
5165
5166/**
5167 * Exports the exception intercepts required for guest execution in the VMCS.
5168 *
5169 * @param pVCpu The cross context virtual CPU structure.
5170 * @param pVmxTransient The VMX-transient structure.
5171 *
5172 * @remarks No-long-jump zone!!!
5173 */
5174static void hmR0VmxExportGuestXcptIntercepts(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5175{
5176 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_XCPT_INTERCEPTS)
5177 {
5178 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
5179 if ( !pVmxTransient->fIsNestedGuest
5180 && pVCpu->hm.s.fGIMTrapXcptUD)
5181 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
5182 else
5183 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
5184
5185 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
5186 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_XCPT_INTERCEPTS);
5187 }
5188}
5189
5190
5191/**
5192 * Exports the guest's RIP into the guest-state area in the VMCS.
5193 *
5194 * @param pVCpu The cross context virtual CPU structure.
5195 *
5196 * @remarks No-long-jump zone!!!
5197 */
5198static void hmR0VmxExportGuestRip(PVMCPUCC pVCpu)
5199{
5200 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
5201 {
5202 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
5203
5204 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
5205 AssertRC(rc);
5206
5207 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
5208 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
5209 }
5210}
5211
5212
5213/**
5214 * Exports the guest's RSP into the guest-state area in the VMCS.
5215 *
5216 * @param pVCpu The cross context virtual CPU structure.
5217 *
5218 * @remarks No-long-jump zone!!!
5219 */
5220static void hmR0VmxExportGuestRsp(PVMCPUCC pVCpu)
5221{
5222 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
5223 {
5224 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
5225
5226 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
5227 AssertRC(rc);
5228
5229 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
5230 Log4Func(("rsp=%#RX64\n", pVCpu->cpum.GstCtx.rsp));
5231 }
5232}
5233
5234
5235/**
5236 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
5237 *
5238 * @param pVCpu The cross context virtual CPU structure.
5239 * @param pVmxTransient The VMX-transient structure.
5240 *
5241 * @remarks No-long-jump zone!!!
5242 */
5243static void hmR0VmxExportGuestRflags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5244{
5245 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
5246 {
5247 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5248
5249 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
5250 Let us assert it as such and use 32-bit VMWRITE. */
5251 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
5252 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
5253 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
5254 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
5255
5256 /*
5257 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
5258 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
5259 * can run the real-mode guest code under Virtual 8086 mode.
5260 */
5261 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5262 if (pVmcsInfo->RealMode.fRealOnV86Active)
5263 {
5264 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5265 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5266 Assert(!pVmxTransient->fIsNestedGuest);
5267 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
5268 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
5269 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
5270 }
5271
5272 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
5273 AssertRC(rc);
5274
5275 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
5276 Log4Func(("eflags=%#RX32\n", fEFlags.u32));
5277 }
5278}
5279
5280
5281#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5282/**
5283 * Copies the nested-guest VMCS to the shadow VMCS.
5284 *
5285 * @returns VBox status code.
5286 * @param pVCpu The cross context virtual CPU structure.
5287 * @param pVmcsInfo The VMCS info. object.
5288 *
5289 * @remarks No-long-jump zone!!!
5290 */
5291static int hmR0VmxCopyNstGstToShadowVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5292{
5293 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5294 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5295
5296 /*
5297 * Disable interrupts so we don't get preempted while the shadow VMCS is the
5298 * current VMCS, as we may try saving guest lazy MSRs.
5299 *
5300 * Strictly speaking the lazy MSRs are not in the VMCS, but I'd rather not risk
5301 * calling the import VMCS code which is currently performing the guest MSR reads
5302 * (on 64-bit hosts) and accessing the auto-load/store MSR area on 32-bit hosts
5303 * and the rest of the VMX leave session machinery.
5304 */
5305 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
5306
5307 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5308 if (RT_SUCCESS(rc))
5309 {
5310 /*
5311 * Copy all guest read/write VMCS fields.
5312 *
5313 * We don't check for VMWRITE failures here for performance reasons and
5314 * because they are not expected to fail, barring irrecoverable conditions
5315 * like hardware errors.
5316 */
5317 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
5318 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5319 {
5320 uint64_t u64Val;
5321 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsFields[i];
5322 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5323 VMXWriteVmcs64(uVmcsField, u64Val);
5324 }
5325
5326 /*
5327 * If the host CPU supports writing all VMCS fields, copy the guest read-only
5328 * VMCS fields, so the guest can VMREAD them without causing a VM-exit.
5329 */
5330 if (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL)
5331 {
5332 uint32_t const cShadowVmcsRoFields = pVM->hm.s.vmx.cShadowVmcsRoFields;
5333 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
5334 {
5335 uint64_t u64Val;
5336 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsRoFields[i];
5337 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5338 VMXWriteVmcs64(uVmcsField, u64Val);
5339 }
5340 }
5341
5342 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5343 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5344 }
5345
5346 ASMSetFlags(fEFlags);
5347 return rc;
5348}
5349
5350
5351/**
5352 * Copies the shadow VMCS to the nested-guest VMCS.
5353 *
5354 * @returns VBox status code.
5355 * @param pVCpu The cross context virtual CPU structure.
5356 * @param pVmcsInfo The VMCS info. object.
5357 *
5358 * @remarks Called with interrupts disabled.
5359 */
5360static int hmR0VmxCopyShadowToNstGstVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5361{
5362 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5363 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5364 PVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5365
5366 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5367 if (RT_SUCCESS(rc))
5368 {
5369 /*
5370 * Copy guest read/write fields from the shadow VMCS.
5371 * Guest read-only fields cannot be modified, so no need to copy them.
5372 *
5373 * We don't check for VMREAD failures here for performance reasons and
5374 * because they are not expected to fail, barring irrecoverable conditions
5375 * like hardware errors.
5376 */
5377 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
5378 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5379 {
5380 uint64_t u64Val;
5381 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsFields[i];
5382 VMXReadVmcs64(uVmcsField, &u64Val);
5383 IEMWriteVmxVmcsField(pVmcsNstGst, uVmcsField, u64Val);
5384 }
5385
5386 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5387 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5388 }
5389 return rc;
5390}
5391
5392
5393/**
5394 * Enables VMCS shadowing for the given VMCS info. object.
5395 *
5396 * @param pVmcsInfo The VMCS info. object.
5397 *
5398 * @remarks No-long-jump zone!!!
5399 */
5400static void hmR0VmxEnableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5401{
5402 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5403 if (!(uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING))
5404 {
5405 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
5406 uProcCtls2 |= VMX_PROC_CTLS2_VMCS_SHADOWING;
5407 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5408 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, pVmcsInfo->HCPhysShadowVmcs); AssertRC(rc);
5409 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5410 pVmcsInfo->u64VmcsLinkPtr = pVmcsInfo->HCPhysShadowVmcs;
5411 Log4Func(("Enabled\n"));
5412 }
5413}
5414
5415
5416/**
5417 * Disables VMCS shadowing for the given VMCS info. object.
5418 *
5419 * @param pVmcsInfo The VMCS info. object.
5420 *
5421 * @remarks No-long-jump zone!!!
5422 */
5423static void hmR0VmxDisableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5424{
5425 /*
5426 * We want all VMREAD and VMWRITE instructions to cause VM-exits, so we clear the
5427 * VMCS shadowing control. However, VM-entry requires the shadow VMCS indicator bit
5428 * to match the VMCS shadowing control if the VMCS link pointer is not NIL_RTHCPHYS.
5429 * Hence, we must also reset the VMCS link pointer to ensure VM-entry does not fail.
5430 *
5431 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
5432 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5433 */
5434 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5435 if (uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
5436 {
5437 uProcCtls2 &= ~VMX_PROC_CTLS2_VMCS_SHADOWING;
5438 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5439 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS); AssertRC(rc);
5440 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5441 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
5442 Log4Func(("Disabled\n"));
5443 }
5444}
5445#endif
5446
5447
5448/**
5449 * Exports the guest hardware-virtualization state.
5450 *
5451 * @returns VBox status code.
5452 * @param pVCpu The cross context virtual CPU structure.
5453 * @param pVmxTransient The VMX-transient structure.
5454 *
5455 * @remarks No-long-jump zone!!!
5456 */
5457static int hmR0VmxExportGuestHwvirtState(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5458{
5459 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_HWVIRT)
5460 {
5461#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5462 /*
5463 * Check if the VMX feature is exposed to the guest and if the host CPU supports
5464 * VMCS shadowing.
5465 */
5466 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUseVmcsShadowing)
5467 {
5468 /*
5469 * If the nested hypervisor has loaded a current VMCS and is in VMX root mode,
5470 * copy the nested hypervisor's current VMCS into the shadow VMCS and enable
5471 * VMCS shadowing to skip intercepting some or all VMREAD/VMWRITE VM-exits.
5472 *
5473 * We check for VMX root mode here in case the guest executes VMXOFF without
5474 * clearing the current VMCS pointer and our VMXOFF instruction emulation does
5475 * not clear the current VMCS pointer.
5476 */
5477 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5478 if ( CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)
5479 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
5480 && CPUMIsGuestVmxCurrentVmcsValid(&pVCpu->cpum.GstCtx))
5481 {
5482 /* Paranoia. */
5483 Assert(!pVmxTransient->fIsNestedGuest);
5484
5485 /*
5486 * For performance reasons, also check if the nested hypervisor's current VMCS
5487 * was newly loaded or modified before copying it to the shadow VMCS.
5488 */
5489 if (!pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs)
5490 {
5491 int rc = hmR0VmxCopyNstGstToShadowVmcs(pVCpu, pVmcsInfo);
5492 AssertRCReturn(rc, rc);
5493 pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs = true;
5494 }
5495 hmR0VmxEnableVmcsShadowing(pVmcsInfo);
5496 }
5497 else
5498 hmR0VmxDisableVmcsShadowing(pVmcsInfo);
5499 }
5500#else
5501 NOREF(pVmxTransient);
5502#endif
5503 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_HWVIRT);
5504 }
5505 return VINF_SUCCESS;
5506}
5507
5508
5509/**
5510 * Exports the guest CR0 control register into the guest-state area in the VMCS.
5511 *
5512 * The guest FPU state is always pre-loaded hence we don't need to bother about
5513 * sharing FPU related CR0 bits between the guest and host.
5514 *
5515 * @returns VBox status code.
5516 * @param pVCpu The cross context virtual CPU structure.
5517 * @param pVmxTransient The VMX-transient structure.
5518 *
5519 * @remarks No-long-jump zone!!!
5520 */
5521static int hmR0VmxExportGuestCR0(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5522{
5523 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
5524 {
5525 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5526 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5527
5528 uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
5529 uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
5530 if (pVM->hm.s.vmx.fUnrestrictedGuest)
5531 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
5532 else
5533 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
5534
5535 if (!pVmxTransient->fIsNestedGuest)
5536 {
5537 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5538 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5539 uint64_t const u64ShadowCr0 = u64GuestCr0;
5540 Assert(!RT_HI_U32(u64GuestCr0));
5541
5542 /*
5543 * Setup VT-x's view of the guest CR0.
5544 */
5545 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5546 if (pVM->hm.s.fNestedPaging)
5547 {
5548 if (CPUMIsGuestPagingEnabled(pVCpu))
5549 {
5550 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
5551 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
5552 | VMX_PROC_CTLS_CR3_STORE_EXIT);
5553 }
5554 else
5555 {
5556 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
5557 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
5558 | VMX_PROC_CTLS_CR3_STORE_EXIT;
5559 }
5560
5561 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
5562 if (pVM->hm.s.vmx.fUnrestrictedGuest)
5563 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
5564 }
5565 else
5566 {
5567 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
5568 u64GuestCr0 |= X86_CR0_WP;
5569 }
5570
5571 /*
5572 * Guest FPU bits.
5573 *
5574 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
5575 * using CR0.TS.
5576 *
5577 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
5578 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
5579 */
5580 u64GuestCr0 |= X86_CR0_NE;
5581
5582 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
5583 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
5584
5585 /*
5586 * Update exception intercepts.
5587 */
5588 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
5589 if (pVmcsInfo->RealMode.fRealOnV86Active)
5590 {
5591 Assert(PDMVmmDevHeapIsEnabled(pVM));
5592 Assert(pVM->hm.s.vmx.pRealModeTSS);
5593 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
5594 }
5595 else
5596 {
5597 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
5598 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
5599 if (fInterceptMF)
5600 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
5601 }
5602
5603 /* Additional intercepts for debugging, define these yourself explicitly. */
5604#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
5605 uXcptBitmap |= 0
5606 | RT_BIT(X86_XCPT_BP)
5607 | RT_BIT(X86_XCPT_DE)
5608 | RT_BIT(X86_XCPT_NM)
5609 | RT_BIT(X86_XCPT_TS)
5610 | RT_BIT(X86_XCPT_UD)
5611 | RT_BIT(X86_XCPT_NP)
5612 | RT_BIT(X86_XCPT_SS)
5613 | RT_BIT(X86_XCPT_GP)
5614 | RT_BIT(X86_XCPT_PF)
5615 | RT_BIT(X86_XCPT_MF)
5616 ;
5617#elif defined(HMVMX_ALWAYS_TRAP_PF)
5618 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
5619#endif
5620 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
5621 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
5622 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
5623
5624 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5625 u64GuestCr0 |= fSetCr0;
5626 u64GuestCr0 &= fZapCr0;
5627 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5628
5629 /* Commit the CR0 and related fields to the guest VMCS. */
5630 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5631 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5632 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5633 {
5634 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5635 AssertRC(rc);
5636 }
5637 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
5638 {
5639 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
5640 AssertRC(rc);
5641 }
5642
5643 /* Update our caches. */
5644 pVmcsInfo->u32ProcCtls = uProcCtls;
5645 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
5646
5647 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5648 }
5649 else
5650 {
5651 /*
5652 * With nested-guests, we may have extended the guest/host mask here since we
5653 * merged in the outer guest's mask. Thus, the merged mask can include more bits
5654 * (to read from the nested-guest CR0 read-shadow) than the nested hypervisor
5655 * originally supplied. We must copy those bits from the nested-guest CR0 into
5656 * the nested-guest CR0 read-shadow.
5657 */
5658 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5659 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5660 uint64_t const u64ShadowCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcsInfo->u64Cr0Mask);
5661 Assert(!RT_HI_U32(u64GuestCr0));
5662 Assert(u64GuestCr0 & X86_CR0_NE);
5663
5664 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5665 u64GuestCr0 |= fSetCr0;
5666 u64GuestCr0 &= fZapCr0;
5667 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5668
5669 /* Commit the CR0 and CR0 read-shadow to the nested-guest VMCS. */
5670 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5671 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5672
5673 Log4Func(("cr0=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5674 }
5675
5676 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
5677 }
5678
5679 return VINF_SUCCESS;
5680}
5681
5682
5683/**
5684 * Exports the guest control registers (CR3, CR4) into the guest-state area
5685 * in the VMCS.
5686 *
5687 * @returns VBox strict status code.
5688 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
5689 * without unrestricted guest access and the VMMDev is not presently
5690 * mapped (e.g. EFI32).
5691 *
5692 * @param pVCpu The cross context virtual CPU structure.
5693 * @param pVmxTransient The VMX-transient structure.
5694 *
5695 * @remarks No-long-jump zone!!!
5696 */
5697static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5698{
5699 int rc = VINF_SUCCESS;
5700 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5701
5702 /*
5703 * Guest CR2.
5704 * It's always loaded in the assembler code. Nothing to do here.
5705 */
5706
5707 /*
5708 * Guest CR3.
5709 */
5710 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
5711 {
5712 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5713
5714 if (pVM->hm.s.fNestedPaging)
5715 {
5716 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5717 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
5718
5719 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
5720 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
5721 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
5722 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
5723
5724 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
5725 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
5726 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
5727
5728 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
5729 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
5730 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
5731 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
5732 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
5733 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
5734 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
5735
5736 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
5737 AssertRC(rc);
5738
5739 uint64_t u64GuestCr3;
5740 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5741 if ( pVM->hm.s.vmx.fUnrestrictedGuest
5742 || CPUMIsGuestPagingEnabledEx(pCtx))
5743 {
5744 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
5745 if (CPUMIsGuestInPAEModeEx(pCtx))
5746 {
5747 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5748 AssertRC(rc);
5749 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
5750 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
5751 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
5752 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
5753 }
5754
5755 /*
5756 * The guest's view of its CR3 is unblemished with nested paging when the
5757 * guest is using paging or we have unrestricted guest execution to handle
5758 * the guest when it's not using paging.
5759 */
5760 u64GuestCr3 = pCtx->cr3;
5761 }
5762 else
5763 {
5764 /*
5765 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
5766 * thinks it accesses physical memory directly, we use our identity-mapped
5767 * page table to map guest-linear to guest-physical addresses. EPT takes care
5768 * of translating it to host-physical addresses.
5769 */
5770 RTGCPHYS GCPhys;
5771 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
5772
5773 /* We obtain it here every time as the guest could have relocated this PCI region. */
5774 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
5775 if (RT_SUCCESS(rc))
5776 { /* likely */ }
5777 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
5778 {
5779 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
5780 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
5781 }
5782 else
5783 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
5784
5785 u64GuestCr3 = GCPhys;
5786 }
5787
5788 Log4Func(("guest_cr3=%#RX64 (GstN)\n", u64GuestCr3));
5789 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, u64GuestCr3);
5790 AssertRC(rc);
5791 }
5792 else
5793 {
5794 Assert(!pVmxTransient->fIsNestedGuest);
5795 /* Non-nested paging case, just use the hypervisor's CR3. */
5796 RTHCPHYS const HCPhysGuestCr3 = PGMGetHyperCR3(pVCpu);
5797
5798 Log4Func(("guest_cr3=%#RX64 (HstN)\n", HCPhysGuestCr3));
5799 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, HCPhysGuestCr3);
5800 AssertRC(rc);
5801 }
5802
5803 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
5804 }
5805
5806 /*
5807 * Guest CR4.
5808 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
5809 */
5810 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
5811 {
5812 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5813 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5814
5815 uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
5816 uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
5817
5818 /*
5819 * With nested-guests, we may have extended the guest/host mask here (since we
5820 * merged in the outer guest's mask, see hmR0VmxMergeVmcsNested). This means, the
5821 * mask can include more bits (to read from the nested-guest CR4 read-shadow) than
5822 * the nested hypervisor originally supplied. Thus, we should, in essence, copy
5823 * those bits from the nested-guest CR4 into the nested-guest CR4 read-shadow.
5824 */
5825 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5826 uint64_t u64GuestCr4 = pCtx->cr4;
5827 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest
5828 ? pCtx->cr4
5829 : CPUMGetGuestVmxMaskedCr4(pCtx, pVmcsInfo->u64Cr4Mask);
5830 Assert(!RT_HI_U32(u64GuestCr4));
5831
5832 /*
5833 * Setup VT-x's view of the guest CR4.
5834 *
5835 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
5836 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5837 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5838 *
5839 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5840 */
5841 if (pVmcsInfo->RealMode.fRealOnV86Active)
5842 {
5843 Assert(pVM->hm.s.vmx.pRealModeTSS);
5844 Assert(PDMVmmDevHeapIsEnabled(pVM));
5845 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5846 }
5847
5848 if (pVM->hm.s.fNestedPaging)
5849 {
5850 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5851 && !pVM->hm.s.vmx.fUnrestrictedGuest)
5852 {
5853 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5854 u64GuestCr4 |= X86_CR4_PSE;
5855 /* Our identity mapping is a 32-bit page directory. */
5856 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5857 }
5858 /* else use guest CR4.*/
5859 }
5860 else
5861 {
5862 Assert(!pVmxTransient->fIsNestedGuest);
5863
5864 /*
5865 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
5866 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
5867 */
5868 switch (pVCpu->hm.s.enmShadowMode)
5869 {
5870 case PGMMODE_REAL: /* Real-mode. */
5871 case PGMMODE_PROTECTED: /* Protected mode without paging. */
5872 case PGMMODE_32_BIT: /* 32-bit paging. */
5873 {
5874 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5875 break;
5876 }
5877
5878 case PGMMODE_PAE: /* PAE paging. */
5879 case PGMMODE_PAE_NX: /* PAE paging with NX. */
5880 {
5881 u64GuestCr4 |= X86_CR4_PAE;
5882 break;
5883 }
5884
5885 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
5886 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
5887 {
5888#ifdef VBOX_WITH_64_BITS_GUESTS
5889 /* For our assumption in hmR0VmxShouldSwapEferMsr. */
5890 Assert(u64GuestCr4 & X86_CR4_PAE);
5891 break;
5892#endif
5893 }
5894 default:
5895 AssertFailed();
5896 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5897 }
5898 }
5899
5900 /* Apply the hardware specified CR4 fixed bits (mainly CR4.VMXE). */
5901 u64GuestCr4 |= fSetCr4;
5902 u64GuestCr4 &= fZapCr4;
5903
5904 /* Commit the CR4 and CR4 read-shadow to the guest VMCS. */
5905 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR4, u64GuestCr4); AssertRC(rc);
5906 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4); AssertRC(rc);
5907
5908 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
5909 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
5910
5911 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
5912
5913 Log4Func(("cr4=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
5914 }
5915 return rc;
5916}
5917
5918
5919/**
5920 * Exports the guest debug registers into the guest-state area in the VMCS.
5921 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
5922 *
5923 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
5924 *
5925 * @returns VBox status code.
5926 * @param pVCpu The cross context virtual CPU structure.
5927 * @param pVmxTransient The VMX-transient structure.
5928 *
5929 * @remarks No-long-jump zone!!!
5930 */
5931static int hmR0VmxExportSharedDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
5932{
5933 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5934
5935 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
5936 * stepping. */
5937 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5938 if (pVmxTransient->fIsNestedGuest)
5939 {
5940 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
5941 AssertRC(rc);
5942
5943 /* Always intercept Mov DRx accesses for the nested-guest for now. */
5944 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
5945 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
5946 AssertRC(rc);
5947 return VINF_SUCCESS;
5948 }
5949
5950#ifdef VBOX_STRICT
5951 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
5952 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5953 {
5954 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
5955 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
5956 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
5957 }
5958#endif
5959
5960 bool fSteppingDB = false;
5961 bool fInterceptMovDRx = false;
5962 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5963 if (pVCpu->hm.s.fSingleInstruction)
5964 {
5965 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
5966 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5967 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
5968 {
5969 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
5970 Assert(fSteppingDB == false);
5971 }
5972 else
5973 {
5974 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
5975 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
5976 pVCpu->hm.s.fClearTrapFlag = true;
5977 fSteppingDB = true;
5978 }
5979 }
5980
5981 uint64_t u64GuestDr7;
5982 if ( fSteppingDB
5983 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
5984 {
5985 /*
5986 * Use the combined guest and host DRx values found in the hypervisor register set
5987 * because the hypervisor debugger has breakpoints active or someone is single stepping
5988 * on the host side without a monitor trap flag.
5989 *
5990 * Note! DBGF expects a clean DR6 state before executing guest code.
5991 */
5992 if (!CPUMIsHyperDebugStateActive(pVCpu))
5993 {
5994 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5995 Assert(CPUMIsHyperDebugStateActive(pVCpu));
5996 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5997 }
5998
5999 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
6000 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
6001 pVCpu->hm.s.fUsingHyperDR7 = true;
6002 fInterceptMovDRx = true;
6003 }
6004 else
6005 {
6006 /*
6007 * If the guest has enabled debug registers, we need to load them prior to
6008 * executing guest code so they'll trigger at the right time.
6009 */
6010 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6011 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
6012 {
6013 if (!CPUMIsGuestDebugStateActive(pVCpu))
6014 {
6015 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
6016 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6017 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
6018 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
6019 }
6020 Assert(!fInterceptMovDRx);
6021 }
6022 else if (!CPUMIsGuestDebugStateActive(pVCpu))
6023 {
6024 /*
6025 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
6026 * must intercept #DB in order to maintain a correct DR6 guest value, and
6027 * because we need to intercept it to prevent nested #DBs from hanging the
6028 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
6029 */
6030 fInterceptMovDRx = true;
6031 }
6032
6033 /* Update DR7 with the actual guest value. */
6034 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
6035 pVCpu->hm.s.fUsingHyperDR7 = false;
6036 }
6037
6038 if (fInterceptMovDRx)
6039 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
6040 else
6041 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
6042
6043 /*
6044 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
6045 * monitor-trap flag and update our cache.
6046 */
6047 if (uProcCtls != pVmcsInfo->u32ProcCtls)
6048 {
6049 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6050 AssertRC(rc);
6051 pVmcsInfo->u32ProcCtls = uProcCtls;
6052 }
6053
6054 /*
6055 * Update guest DR7.
6056 */
6057 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, u64GuestDr7);
6058 AssertRC(rc);
6059
6060 /*
6061 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
6062 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
6063 *
6064 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
6065 */
6066 if (fSteppingDB)
6067 {
6068 Assert(pVCpu->hm.s.fSingleInstruction);
6069 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
6070
6071 uint32_t fIntrState = 0;
6072 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
6073 AssertRC(rc);
6074
6075 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
6076 {
6077 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
6078 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
6079 AssertRC(rc);
6080 }
6081 }
6082
6083 return VINF_SUCCESS;
6084}
6085
6086
6087#ifdef VBOX_STRICT
6088/**
6089 * Strict function to validate segment registers.
6090 *
6091 * @param pVCpu The cross context virtual CPU structure.
6092 * @param pVmcsInfo The VMCS info. object.
6093 *
6094 * @remarks Will import guest CR0 on strict builds during validation of
6095 * segments.
6096 */
6097static void hmR0VmxValidateSegmentRegs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
6098{
6099 /*
6100 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
6101 *
6102 * The reason we check for attribute value 0 in this function and not just the unusable bit is
6103 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
6104 * unusable bit and doesn't change the guest-context value.
6105 */
6106 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6107 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6108 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
6109 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
6110 && ( !CPUMIsGuestInRealModeEx(pCtx)
6111 && !CPUMIsGuestInV86ModeEx(pCtx)))
6112 {
6113 /* Protected mode checks */
6114 /* CS */
6115 Assert(pCtx->cs.Attr.n.u1Present);
6116 Assert(!(pCtx->cs.Attr.u & 0xf00));
6117 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
6118 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
6119 || !(pCtx->cs.Attr.n.u1Granularity));
6120 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
6121 || (pCtx->cs.Attr.n.u1Granularity));
6122 /* CS cannot be loaded with NULL in protected mode. */
6123 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
6124 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
6125 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
6126 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
6127 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
6128 else
6129 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
6130 /* SS */
6131 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6132 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
6133 if ( !(pCtx->cr0 & X86_CR0_PE)
6134 || pCtx->cs.Attr.n.u4Type == 3)
6135 {
6136 Assert(!pCtx->ss.Attr.n.u2Dpl);
6137 }
6138 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
6139 {
6140 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6141 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
6142 Assert(pCtx->ss.Attr.n.u1Present);
6143 Assert(!(pCtx->ss.Attr.u & 0xf00));
6144 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
6145 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
6146 || !(pCtx->ss.Attr.n.u1Granularity));
6147 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
6148 || (pCtx->ss.Attr.n.u1Granularity));
6149 }
6150 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
6151 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
6152 {
6153 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6154 Assert(pCtx->ds.Attr.n.u1Present);
6155 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
6156 Assert(!(pCtx->ds.Attr.u & 0xf00));
6157 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
6158 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
6159 || !(pCtx->ds.Attr.n.u1Granularity));
6160 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
6161 || (pCtx->ds.Attr.n.u1Granularity));
6162 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6163 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
6164 }
6165 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
6166 {
6167 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6168 Assert(pCtx->es.Attr.n.u1Present);
6169 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
6170 Assert(!(pCtx->es.Attr.u & 0xf00));
6171 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
6172 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
6173 || !(pCtx->es.Attr.n.u1Granularity));
6174 Assert( !(pCtx->es.u32Limit & 0xfff00000)
6175 || (pCtx->es.Attr.n.u1Granularity));
6176 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6177 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
6178 }
6179 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
6180 {
6181 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6182 Assert(pCtx->fs.Attr.n.u1Present);
6183 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
6184 Assert(!(pCtx->fs.Attr.u & 0xf00));
6185 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
6186 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
6187 || !(pCtx->fs.Attr.n.u1Granularity));
6188 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
6189 || (pCtx->fs.Attr.n.u1Granularity));
6190 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6191 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6192 }
6193 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
6194 {
6195 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6196 Assert(pCtx->gs.Attr.n.u1Present);
6197 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
6198 Assert(!(pCtx->gs.Attr.u & 0xf00));
6199 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
6200 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
6201 || !(pCtx->gs.Attr.n.u1Granularity));
6202 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
6203 || (pCtx->gs.Attr.n.u1Granularity));
6204 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6205 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6206 }
6207 /* 64-bit capable CPUs. */
6208 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6209 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
6210 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
6211 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
6212 }
6213 else if ( CPUMIsGuestInV86ModeEx(pCtx)
6214 || ( CPUMIsGuestInRealModeEx(pCtx)
6215 && !pVM->hm.s.vmx.fUnrestrictedGuest))
6216 {
6217 /* Real and v86 mode checks. */
6218 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
6219 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
6220 if (pVmcsInfo->RealMode.fRealOnV86Active)
6221 {
6222 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
6223 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
6224 }
6225 else
6226 {
6227 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
6228 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
6229 }
6230
6231 /* CS */
6232 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
6233 Assert(pCtx->cs.u32Limit == 0xffff);
6234 Assert(u32CSAttr == 0xf3);
6235 /* SS */
6236 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
6237 Assert(pCtx->ss.u32Limit == 0xffff);
6238 Assert(u32SSAttr == 0xf3);
6239 /* DS */
6240 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
6241 Assert(pCtx->ds.u32Limit == 0xffff);
6242 Assert(u32DSAttr == 0xf3);
6243 /* ES */
6244 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
6245 Assert(pCtx->es.u32Limit == 0xffff);
6246 Assert(u32ESAttr == 0xf3);
6247 /* FS */
6248 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
6249 Assert(pCtx->fs.u32Limit == 0xffff);
6250 Assert(u32FSAttr == 0xf3);
6251 /* GS */
6252 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
6253 Assert(pCtx->gs.u32Limit == 0xffff);
6254 Assert(u32GSAttr == 0xf3);
6255 /* 64-bit capable CPUs. */
6256 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6257 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
6258 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
6259 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
6260 }
6261}
6262#endif /* VBOX_STRICT */
6263
6264
6265/**
6266 * Exports a guest segment register into the guest-state area in the VMCS.
6267 *
6268 * @returns VBox status code.
6269 * @param pVCpu The cross context virtual CPU structure.
6270 * @param pVmcsInfo The VMCS info. object.
6271 * @param iSegReg The segment register number (X86_SREG_XXX).
6272 * @param pSelReg Pointer to the segment selector.
6273 *
6274 * @remarks No-long-jump zone!!!
6275 */
6276static int hmR0VmxExportGuestSegReg(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
6277{
6278 Assert(iSegReg < X86_SREG_COUNT);
6279 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
6280 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
6281 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
6282 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
6283
6284 uint32_t u32Access = pSelReg->Attr.u;
6285 if (pVmcsInfo->RealMode.fRealOnV86Active)
6286 {
6287 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
6288 u32Access = 0xf3;
6289 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6290 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
6291 RT_NOREF_PV(pVCpu);
6292 }
6293 else
6294 {
6295 /*
6296 * The way to differentiate between whether this is really a null selector or was just
6297 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
6298 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
6299 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
6300 * NULL selectors loaded in protected-mode have their attribute as 0.
6301 */
6302 if (!u32Access)
6303 u32Access = X86DESCATTR_UNUSABLE;
6304 }
6305
6306 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
6307 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
6308 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
6309
6310 /*
6311 * Commit it to the VMCS.
6312 */
6313 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); AssertRC(rc);
6314 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); AssertRC(rc);
6315 rc = VMXWriteVmcsNw(idxBase, pSelReg->u64Base); AssertRC(rc);
6316 rc = VMXWriteVmcs32(idxAttr, u32Access); AssertRC(rc);
6317 return VINF_SUCCESS;
6318}
6319
6320
6321/**
6322 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
6323 * area in the VMCS.
6324 *
6325 * @returns VBox status code.
6326 * @param pVCpu The cross context virtual CPU structure.
6327 * @param pVmxTransient The VMX-transient structure.
6328 *
6329 * @remarks Will import guest CR0 on strict builds during validation of
6330 * segments.
6331 * @remarks No-long-jump zone!!!
6332 */
6333static int hmR0VmxExportGuestSegRegsXdtr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6334{
6335 int rc = VERR_INTERNAL_ERROR_5;
6336 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6337 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6338 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6339
6340 /*
6341 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
6342 */
6343 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
6344 {
6345 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
6346 {
6347 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
6348 if (pVmcsInfo->RealMode.fRealOnV86Active)
6349 pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
6350 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
6351 AssertRC(rc);
6352 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
6353 }
6354
6355 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
6356 {
6357 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
6358 if (pVmcsInfo->RealMode.fRealOnV86Active)
6359 pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
6360 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
6361 AssertRC(rc);
6362 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
6363 }
6364
6365 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
6366 {
6367 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
6368 if (pVmcsInfo->RealMode.fRealOnV86Active)
6369 pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
6370 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
6371 AssertRC(rc);
6372 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
6373 }
6374
6375 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
6376 {
6377 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
6378 if (pVmcsInfo->RealMode.fRealOnV86Active)
6379 pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
6380 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
6381 AssertRC(rc);
6382 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
6383 }
6384
6385 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
6386 {
6387 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
6388 if (pVmcsInfo->RealMode.fRealOnV86Active)
6389 pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
6390 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
6391 AssertRC(rc);
6392 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
6393 }
6394
6395 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
6396 {
6397 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
6398 if (pVmcsInfo->RealMode.fRealOnV86Active)
6399 pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
6400 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
6401 AssertRC(rc);
6402 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
6403 }
6404
6405#ifdef VBOX_STRICT
6406 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
6407#endif
6408 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
6409 pCtx->cs.Attr.u));
6410 }
6411
6412 /*
6413 * Guest TR.
6414 */
6415 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
6416 {
6417 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
6418
6419 /*
6420 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
6421 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
6422 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
6423 */
6424 uint16_t u16Sel;
6425 uint32_t u32Limit;
6426 uint64_t u64Base;
6427 uint32_t u32AccessRights;
6428 if (!pVmcsInfo->RealMode.fRealOnV86Active)
6429 {
6430 u16Sel = pCtx->tr.Sel;
6431 u32Limit = pCtx->tr.u32Limit;
6432 u64Base = pCtx->tr.u64Base;
6433 u32AccessRights = pCtx->tr.Attr.u;
6434 }
6435 else
6436 {
6437 Assert(!pVmxTransient->fIsNestedGuest);
6438 Assert(pVM->hm.s.vmx.pRealModeTSS);
6439 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
6440
6441 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
6442 RTGCPHYS GCPhys;
6443 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
6444 AssertRCReturn(rc, rc);
6445
6446 X86DESCATTR DescAttr;
6447 DescAttr.u = 0;
6448 DescAttr.n.u1Present = 1;
6449 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
6450
6451 u16Sel = 0;
6452 u32Limit = HM_VTX_TSS_SIZE;
6453 u64Base = GCPhys;
6454 u32AccessRights = DescAttr.u;
6455 }
6456
6457 /* Validate. */
6458 Assert(!(u16Sel & RT_BIT(2)));
6459 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
6460 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
6461 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
6462 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
6463 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
6464 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
6465 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
6466 Assert( (u32Limit & 0xfff) == 0xfff
6467 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
6468 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
6469 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
6470
6471 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_TR_SEL, u16Sel); AssertRC(rc);
6472 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRC(rc);
6473 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRC(rc);
6474 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRC(rc);
6475
6476 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
6477 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
6478 }
6479
6480 /*
6481 * Guest GDTR.
6482 */
6483 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
6484 {
6485 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
6486
6487 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); AssertRC(rc);
6488 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc);
6489
6490 /* Validate. */
6491 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6492
6493 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
6494 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
6495 }
6496
6497 /*
6498 * Guest LDTR.
6499 */
6500 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
6501 {
6502 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
6503
6504 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
6505 uint32_t u32Access;
6506 if ( !pVmxTransient->fIsNestedGuest
6507 && !pCtx->ldtr.Attr.u)
6508 u32Access = X86DESCATTR_UNUSABLE;
6509 else
6510 u32Access = pCtx->ldtr.Attr.u;
6511
6512 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel); AssertRC(rc);
6513 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit); AssertRC(rc);
6514 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRC(rc);
6515 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); AssertRC(rc);
6516
6517 /* Validate. */
6518 if (!(u32Access & X86DESCATTR_UNUSABLE))
6519 {
6520 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
6521 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
6522 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
6523 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
6524 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
6525 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
6526 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
6527 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
6528 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
6529 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
6530 }
6531
6532 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
6533 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
6534 }
6535
6536 /*
6537 * Guest IDTR.
6538 */
6539 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
6540 {
6541 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
6542
6543 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); AssertRC(rc);
6544 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc);
6545
6546 /* Validate. */
6547 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6548
6549 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
6550 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
6551 }
6552
6553 return VINF_SUCCESS;
6554}
6555
6556
6557/**
6558 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
6559 * areas.
6560 *
6561 * These MSRs will automatically be loaded to the host CPU on every successful
6562 * VM-entry and stored from the host CPU on every successful VM-exit.
6563 *
6564 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
6565 * actual host MSR values are not- updated here for performance reasons. See
6566 * hmR0VmxExportHostMsrs().
6567 *
6568 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
6569 *
6570 * @returns VBox status code.
6571 * @param pVCpu The cross context virtual CPU structure.
6572 * @param pVmxTransient The VMX-transient structure.
6573 *
6574 * @remarks No-long-jump zone!!!
6575 */
6576static int hmR0VmxExportGuestMsrs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6577{
6578 AssertPtr(pVCpu);
6579 AssertPtr(pVmxTransient);
6580
6581 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6582 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6583
6584 /*
6585 * MSRs that we use the auto-load/store MSR area in the VMCS.
6586 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(),
6587 * nothing to do here. The host MSR values are updated when it's safe in
6588 * hmR0VmxLazySaveHostMsrs().
6589 *
6590 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
6591 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
6592 * emulation. The merged MSR permission bitmap will ensure that we get VM-exits
6593 * for any MSR that are not part of the lazy MSRs so we do not need to place
6594 * those MSRs into the auto-load/store MSR area. Nothing to do here.
6595 */
6596 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
6597 {
6598 /* No auto-load/store MSRs currently. */
6599 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
6600 }
6601
6602 /*
6603 * Guest Sysenter MSRs.
6604 */
6605 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
6606 {
6607 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
6608
6609 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
6610 {
6611 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
6612 AssertRC(rc);
6613 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
6614 }
6615
6616 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
6617 {
6618 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
6619 AssertRC(rc);
6620 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
6621 }
6622
6623 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
6624 {
6625 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
6626 AssertRC(rc);
6627 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
6628 }
6629 }
6630
6631 /*
6632 * Guest/host EFER MSR.
6633 */
6634 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
6635 {
6636 /* Whether we are using the VMCS to swap the EFER MSR must have been
6637 determined earlier while exporting VM-entry/VM-exit controls. */
6638 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
6639 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6640
6641 if (hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
6642 {
6643 /*
6644 * EFER.LME is written by software, while EFER.LMA is set by the CPU to (CR0.PG & EFER.LME).
6645 * This means a guest can set EFER.LME=1 while CR0.PG=0 and EFER.LMA can remain 0.
6646 * VT-x requires that "IA-32e mode guest" VM-entry control must be identical to EFER.LMA
6647 * and to CR0.PG. Without unrestricted execution, CR0.PG (used for VT-x, not the shadow)
6648 * must always be 1. This forces us to effectively clear both EFER.LMA and EFER.LME until
6649 * the guest has also set CR0.PG=1. Otherwise, we would run into an invalid-guest state
6650 * during VM-entry.
6651 */
6652 uint64_t uGuestEferMsr = pCtx->msrEFER;
6653 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
6654 {
6655 if (!(pCtx->msrEFER & MSR_K6_EFER_LMA))
6656 uGuestEferMsr &= ~MSR_K6_EFER_LME;
6657 else
6658 Assert((pCtx->msrEFER & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
6659 }
6660
6661 /*
6662 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
6663 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
6664 */
6665 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
6666 {
6667 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, uGuestEferMsr);
6668 AssertRC(rc);
6669 }
6670 else
6671 {
6672 /*
6673 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
6674 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
6675 */
6676 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, uGuestEferMsr,
6677 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6678 AssertRCReturn(rc, rc);
6679 }
6680
6681 Log4Func(("efer=%#RX64 shadow=%#RX64\n", uGuestEferMsr, pCtx->msrEFER));
6682 }
6683 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
6684 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
6685
6686 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
6687 }
6688
6689 /*
6690 * Other MSRs.
6691 */
6692 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
6693 {
6694 /* Speculation Control (R/W). */
6695 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
6696 if (pVM->cpum.ro.GuestFeatures.fIbrs)
6697 {
6698 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
6699 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6700 AssertRCReturn(rc, rc);
6701 }
6702
6703 /* Last Branch Record. */
6704 if (pVM->hm.s.vmx.fLbr)
6705 {
6706 uint32_t const idFromIpMsrStart = pVM->hm.s.vmx.idLbrFromIpMsrFirst;
6707 uint32_t const idToIpMsrStart = pVM->hm.s.vmx.idLbrToIpMsrFirst;
6708 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
6709 Assert(cLbrStack <= 32);
6710 for (uint32_t i = 0; i < cLbrStack; i++)
6711 {
6712 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idFromIpMsrStart + i,
6713 pVmxTransient->pVmcsInfo->au64LbrFromIpMsr[i],
6714 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6715 AssertRCReturn(rc, rc);
6716
6717 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
6718 if (idToIpMsrStart != 0)
6719 {
6720 rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idToIpMsrStart + i,
6721 pVmxTransient->pVmcsInfo->au64LbrToIpMsr[i],
6722 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6723 AssertRCReturn(rc, rc);
6724 }
6725 }
6726
6727 /* Add LBR top-of-stack MSR (which contains the index to the most recent record). */
6728 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, pVM->hm.s.vmx.idLbrTosMsr,
6729 pVmxTransient->pVmcsInfo->u64LbrTosMsr, false /* fSetReadWrite */,
6730 false /* fUpdateHostMsr */);
6731 AssertRCReturn(rc, rc);
6732 }
6733
6734 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
6735 }
6736
6737 return VINF_SUCCESS;
6738}
6739
6740
6741/**
6742 * Wrapper for running the guest code in VT-x.
6743 *
6744 * @returns VBox status code, no informational status codes.
6745 * @param pVCpu The cross context virtual CPU structure.
6746 * @param pVmxTransient The VMX-transient structure.
6747 *
6748 * @remarks No-long-jump zone!!!
6749 */
6750DECLINLINE(int) hmR0VmxRunGuest(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6751{
6752 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6753 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6754 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6755
6756 /** @todo Add stats for VMRESUME vs VMLAUNCH. */
6757
6758 /*
6759 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
6760 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
6761 * callee-saved and thus the need for this XMM wrapper.
6762 *
6763 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
6764 */
6765 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6766 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6767 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6768#ifdef VBOX_WITH_KERNEL_USING_XMM
6769 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, NULL /*pvUnused*/, pVM, pVCpu, pVmcsInfo->pfnStartVM);
6770#else
6771 int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, NULL /*pvUnused*/, pVM, pVCpu);
6772#endif
6773 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6774 return rc;
6775}
6776
6777
6778/**
6779 * Reports world-switch error and dumps some useful debug info.
6780 *
6781 * @param pVCpu The cross context virtual CPU structure.
6782 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6783 * @param pVmxTransient The VMX-transient structure (only
6784 * exitReason updated).
6785 */
6786static void hmR0VmxReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6787{
6788 Assert(pVCpu);
6789 Assert(pVmxTransient);
6790 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6791
6792 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6793 switch (rcVMRun)
6794 {
6795 case VERR_VMX_INVALID_VMXON_PTR:
6796 AssertFailed();
6797 break;
6798 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6799 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6800 {
6801 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6802 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6803 AssertRC(rc);
6804 hmR0VmxReadExitQualVmcs(pVmxTransient);
6805
6806 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6807 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6808 Cannot do it here as we may have been long preempted. */
6809
6810#ifdef VBOX_STRICT
6811 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6812 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6813 pVmxTransient->uExitReason));
6814 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6815 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6816 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6817 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6818 else
6819 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6820 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6821 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6822
6823 static struct
6824 {
6825 /** Name of the field to log. */
6826 const char *pszName;
6827 /** The VMCS field. */
6828 uint32_t uVmcsField;
6829 /** Whether host support of this field needs to be checked. */
6830 bool fCheckSupport;
6831 } const s_aVmcsFields[] =
6832 {
6833 { "VMX_VMCS32_CTRL_PIN_EXEC", VMX_VMCS32_CTRL_PIN_EXEC, false },
6834 { "VMX_VMCS32_CTRL_PROC_EXEC", VMX_VMCS32_CTRL_PROC_EXEC, false },
6835 { "VMX_VMCS32_CTRL_PROC_EXEC2", VMX_VMCS32_CTRL_PROC_EXEC2, true },
6836 { "VMX_VMCS32_CTRL_ENTRY", VMX_VMCS32_CTRL_ENTRY, false },
6837 { "VMX_VMCS32_CTRL_EXIT", VMX_VMCS32_CTRL_EXIT, false },
6838 { "VMX_VMCS32_CTRL_CR3_TARGET_COUNT", VMX_VMCS32_CTRL_CR3_TARGET_COUNT, false },
6839 { "VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO", VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, false },
6840 { "VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE", VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, false },
6841 { "VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH", VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, false },
6842 { "VMX_VMCS32_CTRL_TPR_THRESHOLD", VMX_VMCS32_CTRL_TPR_THRESHOLD, false },
6843 { "VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, false },
6844 { "VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, false },
6845 { "VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, false },
6846 { "VMX_VMCS32_CTRL_EXCEPTION_BITMAP", VMX_VMCS32_CTRL_EXCEPTION_BITMAP, false },
6847 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, false },
6848 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, false },
6849 { "VMX_VMCS_CTRL_CR0_MASK", VMX_VMCS_CTRL_CR0_MASK, false },
6850 { "VMX_VMCS_CTRL_CR0_READ_SHADOW", VMX_VMCS_CTRL_CR0_READ_SHADOW, false },
6851 { "VMX_VMCS_CTRL_CR4_MASK", VMX_VMCS_CTRL_CR4_MASK, false },
6852 { "VMX_VMCS_CTRL_CR4_READ_SHADOW", VMX_VMCS_CTRL_CR4_READ_SHADOW, false },
6853 { "VMX_VMCS64_CTRL_EPTP_FULL", VMX_VMCS64_CTRL_EPTP_FULL, true },
6854 { "VMX_VMCS_GUEST_RIP", VMX_VMCS_GUEST_RIP, false },
6855 { "VMX_VMCS_GUEST_RSP", VMX_VMCS_GUEST_RSP, false },
6856 { "VMX_VMCS_GUEST_RFLAGS", VMX_VMCS_GUEST_RFLAGS, false },
6857 { "VMX_VMCS16_VPID", VMX_VMCS16_VPID, true, },
6858 { "VMX_VMCS_HOST_CR0", VMX_VMCS_HOST_CR0, false },
6859 { "VMX_VMCS_HOST_CR3", VMX_VMCS_HOST_CR3, false },
6860 { "VMX_VMCS_HOST_CR4", VMX_VMCS_HOST_CR4, false },
6861 /* The order of selector fields below are fixed! */
6862 { "VMX_VMCS16_HOST_ES_SEL", VMX_VMCS16_HOST_ES_SEL, false },
6863 { "VMX_VMCS16_HOST_CS_SEL", VMX_VMCS16_HOST_CS_SEL, false },
6864 { "VMX_VMCS16_HOST_SS_SEL", VMX_VMCS16_HOST_SS_SEL, false },
6865 { "VMX_VMCS16_HOST_DS_SEL", VMX_VMCS16_HOST_DS_SEL, false },
6866 { "VMX_VMCS16_HOST_FS_SEL", VMX_VMCS16_HOST_FS_SEL, false },
6867 { "VMX_VMCS16_HOST_GS_SEL", VMX_VMCS16_HOST_GS_SEL, false },
6868 { "VMX_VMCS16_HOST_TR_SEL", VMX_VMCS16_HOST_TR_SEL, false },
6869 /* End of ordered selector fields. */
6870 { "VMX_VMCS_HOST_TR_BASE", VMX_VMCS_HOST_TR_BASE, false },
6871 { "VMX_VMCS_HOST_GDTR_BASE", VMX_VMCS_HOST_GDTR_BASE, false },
6872 { "VMX_VMCS_HOST_IDTR_BASE", VMX_VMCS_HOST_IDTR_BASE, false },
6873 { "VMX_VMCS32_HOST_SYSENTER_CS", VMX_VMCS32_HOST_SYSENTER_CS, false },
6874 { "VMX_VMCS_HOST_SYSENTER_EIP", VMX_VMCS_HOST_SYSENTER_EIP, false },
6875 { "VMX_VMCS_HOST_SYSENTER_ESP", VMX_VMCS_HOST_SYSENTER_ESP, false },
6876 { "VMX_VMCS_HOST_RSP", VMX_VMCS_HOST_RSP, false },
6877 { "VMX_VMCS_HOST_RIP", VMX_VMCS_HOST_RIP, false }
6878 };
6879
6880 RTGDTR HostGdtr;
6881 ASMGetGDTR(&HostGdtr);
6882
6883 uint32_t const cVmcsFields = RT_ELEMENTS(s_aVmcsFields);
6884 for (uint32_t i = 0; i < cVmcsFields; i++)
6885 {
6886 uint32_t const uVmcsField = s_aVmcsFields[i].uVmcsField;
6887
6888 bool fSupported;
6889 if (!s_aVmcsFields[i].fCheckSupport)
6890 fSupported = true;
6891 else
6892 {
6893 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6894 switch (uVmcsField)
6895 {
6896 case VMX_VMCS64_CTRL_EPTP_FULL: fSupported = pVM->hm.s.fNestedPaging; break;
6897 case VMX_VMCS16_VPID: fSupported = pVM->hm.s.vmx.fVpid; break;
6898 case VMX_VMCS32_CTRL_PROC_EXEC2:
6899 fSupported = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
6900 break;
6901 default:
6902 AssertMsgFailedReturnVoid(("Failed to provide VMCS field support for %#RX32\n", uVmcsField));
6903 }
6904 }
6905
6906 if (fSupported)
6907 {
6908 uint8_t const uWidth = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_WIDTH);
6909 switch (uWidth)
6910 {
6911 case VMX_VMCSFIELD_WIDTH_16BIT:
6912 {
6913 uint16_t u16Val;
6914 rc = VMXReadVmcs16(uVmcsField, &u16Val);
6915 AssertRC(rc);
6916 Log4(("%-40s = %#RX16\n", s_aVmcsFields[i].pszName, u16Val));
6917
6918 if ( uVmcsField >= VMX_VMCS16_HOST_ES_SEL
6919 && uVmcsField <= VMX_VMCS16_HOST_TR_SEL)
6920 {
6921 if (u16Val < HostGdtr.cbGdt)
6922 {
6923 /* Order of selectors in s_apszSel is fixed and matches the order in s_aVmcsFields. */
6924 static const char * const s_apszSel[] = { "Host ES", "Host CS", "Host SS", "Host DS",
6925 "Host FS", "Host GS", "Host TR" };
6926 uint8_t const idxSel = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_INDEX);
6927 Assert(idxSel < RT_ELEMENTS(s_apszSel));
6928 PCX86DESCHC pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u16Val & X86_SEL_MASK));
6929 hmR0DumpDescriptor(pDesc, u16Val, s_apszSel[idxSel]);
6930 }
6931 else
6932 Log4((" Selector value exceeds GDT limit!\n"));
6933 }
6934 break;
6935 }
6936
6937 case VMX_VMCSFIELD_WIDTH_32BIT:
6938 {
6939 uint32_t u32Val;
6940 rc = VMXReadVmcs32(uVmcsField, &u32Val);
6941 AssertRC(rc);
6942 Log4(("%-40s = %#RX32\n", s_aVmcsFields[i].pszName, u32Val));
6943 break;
6944 }
6945
6946 case VMX_VMCSFIELD_WIDTH_64BIT:
6947 case VMX_VMCSFIELD_WIDTH_NATURAL:
6948 {
6949 uint64_t u64Val;
6950 rc = VMXReadVmcs64(uVmcsField, &u64Val);
6951 AssertRC(rc);
6952 Log4(("%-40s = %#RX64\n", s_aVmcsFields[i].pszName, u64Val));
6953 break;
6954 }
6955 }
6956 }
6957 }
6958
6959 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
6960 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
6961 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
6962 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
6963 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
6964 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
6965#endif /* VBOX_STRICT */
6966 break;
6967 }
6968
6969 default:
6970 /* Impossible */
6971 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
6972 break;
6973 }
6974}
6975
6976
6977/**
6978 * Sets up the usage of TSC-offsetting and updates the VMCS.
6979 *
6980 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
6981 * VMX-preemption timer.
6982 *
6983 * @returns VBox status code.
6984 * @param pVCpu The cross context virtual CPU structure.
6985 * @param pVmxTransient The VMX-transient structure.
6986 *
6987 * @remarks No-long-jump zone!!!
6988 */
6989static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
6990{
6991 bool fOffsettedTsc;
6992 bool fParavirtTsc;
6993 uint64_t uTscOffset;
6994 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6995 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6996
6997 if (pVM->hm.s.vmx.fUsePreemptTimer)
6998 {
6999 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
7000
7001 /* Make sure the returned values have sane upper and lower boundaries. */
7002 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
7003 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
7004 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
7005 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
7006
7007 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
7008 * preemption timers here. We probably need to clamp the preemption timer,
7009 * after converting the timer value to the host. */
7010 uint32_t const cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
7011 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
7012 AssertRC(rc);
7013 }
7014 else
7015 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
7016
7017 if (fParavirtTsc)
7018 {
7019 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
7020 information before every VM-entry, hence disable it for performance sake. */
7021#if 0
7022 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
7023 AssertRC(rc);
7024#endif
7025 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
7026 }
7027
7028 if ( fOffsettedTsc
7029 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
7030 {
7031 if (pVmxTransient->fIsNestedGuest)
7032 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
7033 hmR0VmxSetTscOffsetVmcs(pVmcsInfo, uTscOffset);
7034 hmR0VmxRemoveProcCtlsVmcs(pVCpu, pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7035 }
7036 else
7037 {
7038 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
7039 hmR0VmxSetProcCtlsVmcs(pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7040 }
7041}
7042
7043
7044/**
7045 * Gets the IEM exception flags for the specified vector and IDT vectoring /
7046 * VM-exit interruption info type.
7047 *
7048 * @returns The IEM exception flags.
7049 * @param uVector The event vector.
7050 * @param uVmxEventType The VMX event type.
7051 *
7052 * @remarks This function currently only constructs flags required for
7053 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
7054 * and CR2 aspects of an exception are not included).
7055 */
7056static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
7057{
7058 uint32_t fIemXcptFlags;
7059 switch (uVmxEventType)
7060 {
7061 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7062 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7063 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
7064 break;
7065
7066 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7067 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
7068 break;
7069
7070 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7071 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
7072 break;
7073
7074 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
7075 {
7076 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7077 if (uVector == X86_XCPT_BP)
7078 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
7079 else if (uVector == X86_XCPT_OF)
7080 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
7081 else
7082 {
7083 fIemXcptFlags = 0;
7084 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
7085 }
7086 break;
7087 }
7088
7089 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7090 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7091 break;
7092
7093 default:
7094 fIemXcptFlags = 0;
7095 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
7096 break;
7097 }
7098 return fIemXcptFlags;
7099}
7100
7101
7102/**
7103 * Sets an event as a pending event to be injected into the guest.
7104 *
7105 * @param pVCpu The cross context virtual CPU structure.
7106 * @param u32IntInfo The VM-entry interruption-information field.
7107 * @param cbInstr The VM-entry instruction length in bytes (for
7108 * software interrupts, exceptions and privileged
7109 * software exceptions).
7110 * @param u32ErrCode The VM-entry exception error code.
7111 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
7112 * page-fault.
7113 */
7114DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPUCC pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7115 RTGCUINTPTR GCPtrFaultAddress)
7116{
7117 Assert(!pVCpu->hm.s.Event.fPending);
7118 pVCpu->hm.s.Event.fPending = true;
7119 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
7120 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
7121 pVCpu->hm.s.Event.cbInstr = cbInstr;
7122 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
7123}
7124
7125
7126/**
7127 * Sets an external interrupt as pending-for-injection into the VM.
7128 *
7129 * @param pVCpu The cross context virtual CPU structure.
7130 * @param u8Interrupt The external interrupt vector.
7131 */
7132DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPUCC pVCpu, uint8_t u8Interrupt)
7133{
7134 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
7135 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7136 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7137 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7138 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7139}
7140
7141
7142/**
7143 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
7144 *
7145 * @param pVCpu The cross context virtual CPU structure.
7146 */
7147DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPUCC pVCpu)
7148{
7149 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
7150 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
7151 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7152 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7153 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7154}
7155
7156
7157/**
7158 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
7159 *
7160 * @param pVCpu The cross context virtual CPU structure.
7161 */
7162DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPUCC pVCpu)
7163{
7164 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
7165 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7166 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7167 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7168 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7169}
7170
7171
7172/**
7173 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7174 *
7175 * @param pVCpu The cross context virtual CPU structure.
7176 */
7177DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPUCC pVCpu)
7178{
7179 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
7180 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7181 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7182 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7183 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7184}
7185
7186
7187/**
7188 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7189 *
7190 * @param pVCpu The cross context virtual CPU structure.
7191 */
7192DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPUCC pVCpu)
7193{
7194 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7195 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7196 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7197 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7198 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7199}
7200
7201
7202#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7203/**
7204 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
7205 *
7206 * @param pVCpu The cross context virtual CPU structure.
7207 * @param u32ErrCode The error code for the general-protection exception.
7208 */
7209DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7210{
7211 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
7212 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7213 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7214 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7215 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7216}
7217
7218
7219/**
7220 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
7221 *
7222 * @param pVCpu The cross context virtual CPU structure.
7223 * @param u32ErrCode The error code for the stack exception.
7224 */
7225DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7226{
7227 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
7228 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7229 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7230 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7231 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7232}
7233#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7234
7235
7236/**
7237 * Fixes up attributes for the specified segment register.
7238 *
7239 * @param pVCpu The cross context virtual CPU structure.
7240 * @param pSelReg The segment register that needs fixing.
7241 * @param idxSel The VMCS field for the corresponding segment register.
7242 */
7243static void hmR0VmxFixUnusableSegRegAttr(PVMCPUCC pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
7244{
7245 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7246
7247 /*
7248 * If VT-x marks the segment as unusable, most other bits remain undefined:
7249 * - For CS the L, D and G bits have meaning.
7250 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7251 * - For the remaining data segments no bits are defined.
7252 *
7253 * The present bit and the unusable bit has been observed to be set at the
7254 * same time (the selector was supposed to be invalid as we started executing
7255 * a V8086 interrupt in ring-0).
7256 *
7257 * What should be important for the rest of the VBox code, is that the P bit is
7258 * cleared. Some of the other VBox code recognizes the unusable bit, but
7259 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7260 * safe side here, we'll strip off P and other bits we don't care about. If
7261 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7262 *
7263 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7264 */
7265#ifdef VBOX_STRICT
7266 uint32_t const uAttr = pSelReg->Attr.u;
7267#endif
7268
7269 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7270 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7271 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7272
7273#ifdef VBOX_STRICT
7274 VMMRZCallRing3Disable(pVCpu);
7275 Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7276# ifdef DEBUG_bird
7277 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7278 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7279 idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7280# endif
7281 VMMRZCallRing3Enable(pVCpu);
7282 NOREF(uAttr);
7283#endif
7284 RT_NOREF2(pVCpu, idxSel);
7285}
7286
7287
7288/**
7289 * Imports a guest segment register from the current VMCS into the guest-CPU
7290 * context.
7291 *
7292 * @param pVCpu The cross context virtual CPU structure.
7293 * @param iSegReg The segment register number (X86_SREG_XXX).
7294 *
7295 * @remarks Called with interrupts and/or preemption disabled.
7296 */
7297static void hmR0VmxImportGuestSegReg(PVMCPUCC pVCpu, uint8_t iSegReg)
7298{
7299 Assert(iSegReg < X86_SREG_COUNT);
7300
7301 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
7302 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
7303 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
7304 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
7305
7306 uint16_t u16Sel;
7307 uint64_t u64Base;
7308 uint32_t u32Limit, u32Attr;
7309 int rc = VMXReadVmcs16(idxSel, &u16Sel); AssertRC(rc);
7310 rc = VMXReadVmcs32(idxLimit, &u32Limit); AssertRC(rc);
7311 rc = VMXReadVmcs32(idxAttr, &u32Attr); AssertRC(rc);
7312 rc = VMXReadVmcsNw(idxBase, &u64Base); AssertRC(rc);
7313
7314 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7315 pSelReg->Sel = u16Sel;
7316 pSelReg->ValidSel = u16Sel;
7317 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7318 pSelReg->u32Limit = u32Limit;
7319 pSelReg->u64Base = u64Base;
7320 pSelReg->Attr.u = u32Attr;
7321 if (u32Attr & X86DESCATTR_UNUSABLE)
7322 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
7323}
7324
7325
7326/**
7327 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7328 *
7329 * @param pVCpu The cross context virtual CPU structure.
7330 *
7331 * @remarks Called with interrupts and/or preemption disabled.
7332 */
7333static void hmR0VmxImportGuestLdtr(PVMCPUCC pVCpu)
7334{
7335 uint16_t u16Sel;
7336 uint64_t u64Base;
7337 uint32_t u32Limit, u32Attr;
7338 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, &u16Sel); AssertRC(rc);
7339 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit); AssertRC(rc);
7340 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7341 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, &u64Base); AssertRC(rc);
7342
7343 pVCpu->cpum.GstCtx.ldtr.Sel = u16Sel;
7344 pVCpu->cpum.GstCtx.ldtr.ValidSel = u16Sel;
7345 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7346 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7347 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7348 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7349 if (u32Attr & X86DESCATTR_UNUSABLE)
7350 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
7351}
7352
7353
7354/**
7355 * Imports the guest TR from the current VMCS into the guest-CPU context.
7356 *
7357 * @param pVCpu The cross context virtual CPU structure.
7358 *
7359 * @remarks Called with interrupts and/or preemption disabled.
7360 */
7361static void hmR0VmxImportGuestTr(PVMCPUCC pVCpu)
7362{
7363 uint16_t u16Sel;
7364 uint64_t u64Base;
7365 uint32_t u32Limit, u32Attr;
7366 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_TR_SEL, &u16Sel); AssertRC(rc);
7367 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit); AssertRC(rc);
7368 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7369 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_TR_BASE, &u64Base); AssertRC(rc);
7370
7371 pVCpu->cpum.GstCtx.tr.Sel = u16Sel;
7372 pVCpu->cpum.GstCtx.tr.ValidSel = u16Sel;
7373 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7374 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7375 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7376 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7377 /* TR is the only selector that can never be unusable. */
7378 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7379}
7380
7381
7382/**
7383 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7384 *
7385 * @param pVCpu The cross context virtual CPU structure.
7386 *
7387 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7388 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7389 * instead!!!
7390 */
7391static void hmR0VmxImportGuestRip(PVMCPUCC pVCpu)
7392{
7393 uint64_t u64Val;
7394 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7395 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7396 {
7397 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
7398 AssertRC(rc);
7399
7400 pCtx->rip = u64Val;
7401 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7402 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7403 }
7404}
7405
7406
7407/**
7408 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7409 *
7410 * @param pVCpu The cross context virtual CPU structure.
7411 * @param pVmcsInfo The VMCS info. object.
7412 *
7413 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7414 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7415 * instead!!!
7416 */
7417static void hmR0VmxImportGuestRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7418{
7419 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7420 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7421 {
7422 uint64_t u64Val;
7423 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
7424 AssertRC(rc);
7425
7426 pCtx->rflags.u64 = u64Val;
7427 if (pVmcsInfo->RealMode.fRealOnV86Active)
7428 {
7429 pCtx->eflags.Bits.u1VM = 0;
7430 pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
7431 }
7432 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7433 }
7434}
7435
7436
7437/**
7438 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7439 * context.
7440 *
7441 * @param pVCpu The cross context virtual CPU structure.
7442 * @param pVmcsInfo The VMCS info. object.
7443 *
7444 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7445 * do not log!
7446 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7447 * instead!!!
7448 */
7449static void hmR0VmxImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7450{
7451 uint32_t u32Val;
7452 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val); AssertRC(rc);
7453 if (!u32Val)
7454 {
7455 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7456 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7457 CPUMSetGuestNmiBlocking(pVCpu, false);
7458 }
7459 else
7460 {
7461 /*
7462 * We must import RIP here to set our EM interrupt-inhibited state.
7463 * We also import RFLAGS as our code that evaluates pending interrupts
7464 * before VM-entry requires it.
7465 */
7466 hmR0VmxImportGuestRip(pVCpu);
7467 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7468
7469 if (u32Val & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7470 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7471 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7472 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7473
7474 bool const fNmiBlocking = RT_BOOL(u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7475 CPUMSetGuestNmiBlocking(pVCpu, fNmiBlocking);
7476 }
7477}
7478
7479
7480/**
7481 * Worker for VMXR0ImportStateOnDemand.
7482 *
7483 * @returns VBox status code.
7484 * @param pVCpu The cross context virtual CPU structure.
7485 * @param pVmcsInfo The VMCS info. object.
7486 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7487 */
7488static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7489{
7490 int rc = VINF_SUCCESS;
7491 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7492 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7493 uint32_t u32Val;
7494
7495 /*
7496 * Note! This is hack to workaround a mysterious BSOD observed with release builds
7497 * on Windows 10 64-bit hosts. Profile and debug builds are not affected and
7498 * neither are other host platforms.
7499 *
7500 * Committing this temporarily as it prevents BSOD.
7501 *
7502 * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
7503 */
7504#ifdef RT_OS_WINDOWS
7505 if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
7506 return VERR_HM_IPE_1;
7507#endif
7508
7509 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
7510
7511 /*
7512 * We disable interrupts to make the updating of the state and in particular
7513 * the fExtrn modification atomic wrt to preemption hooks.
7514 */
7515 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7516
7517 fWhat &= pCtx->fExtrn;
7518 if (fWhat)
7519 {
7520 do
7521 {
7522 if (fWhat & CPUMCTX_EXTRN_RIP)
7523 hmR0VmxImportGuestRip(pVCpu);
7524
7525 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7526 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7527
7528 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7529 hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7530
7531 if (fWhat & CPUMCTX_EXTRN_RSP)
7532 {
7533 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RSP, &pCtx->rsp);
7534 AssertRC(rc);
7535 }
7536
7537 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7538 {
7539 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
7540 if (fWhat & CPUMCTX_EXTRN_CS)
7541 {
7542 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7543 hmR0VmxImportGuestRip(pVCpu);
7544 if (fRealOnV86Active)
7545 pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
7546 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7547 }
7548 if (fWhat & CPUMCTX_EXTRN_SS)
7549 {
7550 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7551 if (fRealOnV86Active)
7552 pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
7553 }
7554 if (fWhat & CPUMCTX_EXTRN_DS)
7555 {
7556 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7557 if (fRealOnV86Active)
7558 pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
7559 }
7560 if (fWhat & CPUMCTX_EXTRN_ES)
7561 {
7562 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7563 if (fRealOnV86Active)
7564 pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
7565 }
7566 if (fWhat & CPUMCTX_EXTRN_FS)
7567 {
7568 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7569 if (fRealOnV86Active)
7570 pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
7571 }
7572 if (fWhat & CPUMCTX_EXTRN_GS)
7573 {
7574 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7575 if (fRealOnV86Active)
7576 pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
7577 }
7578 }
7579
7580 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7581 {
7582 if (fWhat & CPUMCTX_EXTRN_LDTR)
7583 hmR0VmxImportGuestLdtr(pVCpu);
7584
7585 if (fWhat & CPUMCTX_EXTRN_GDTR)
7586 {
7587 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &pCtx->gdtr.pGdt); AssertRC(rc);
7588 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc);
7589 pCtx->gdtr.cbGdt = u32Val;
7590 }
7591
7592 /* Guest IDTR. */
7593 if (fWhat & CPUMCTX_EXTRN_IDTR)
7594 {
7595 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &pCtx->idtr.pIdt); AssertRC(rc);
7596 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc);
7597 pCtx->idtr.cbIdt = u32Val;
7598 }
7599
7600 /* Guest TR. */
7601 if (fWhat & CPUMCTX_EXTRN_TR)
7602 {
7603 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7604 don't need to import that one. */
7605 if (!pVmcsInfo->RealMode.fRealOnV86Active)
7606 hmR0VmxImportGuestTr(pVCpu);
7607 }
7608 }
7609
7610 if (fWhat & CPUMCTX_EXTRN_DR7)
7611 {
7612 if (!pVCpu->hm.s.fUsingHyperDR7)
7613 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_DR7, &pCtx->dr[7]); AssertRC(rc);
7614 }
7615
7616 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7617 {
7618 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip); AssertRC(rc);
7619 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp); AssertRC(rc);
7620 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc);
7621 pCtx->SysEnter.cs = u32Val;
7622 }
7623
7624 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7625 {
7626 if ( pVM->hm.s.fAllow64BitGuests
7627 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7628 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7629 }
7630
7631 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7632 {
7633 if ( pVM->hm.s.fAllow64BitGuests
7634 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7635 {
7636 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7637 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7638 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7639 }
7640 }
7641
7642 if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7643 {
7644 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7645 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7646 Assert(pMsrs);
7647 Assert(cMsrs <= VMX_MISC_MAX_MSRS(pVM->hm.s.vmx.Msrs.u64Misc));
7648 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
7649 for (uint32_t i = 0; i < cMsrs; i++)
7650 {
7651 uint32_t const idMsr = pMsrs[i].u32Msr;
7652 switch (idMsr)
7653 {
7654 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break;
7655 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break;
7656 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7657 default:
7658 {
7659 uint32_t idxLbrMsr;
7660 if (pVM->hm.s.vmx.fLbr)
7661 {
7662 if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
7663 {
7664 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfo->au64LbrFromIpMsr));
7665 pVmcsInfo->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7666 break;
7667 }
7668 else if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
7669 {
7670 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfo->au64LbrFromIpMsr));
7671 pVmcsInfo->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7672 break;
7673 }
7674 else if (idMsr == pVM->hm.s.vmx.idLbrTosMsr)
7675 {
7676 pVmcsInfo->u64LbrTosMsr = pMsrs[i].u64Value;
7677 break;
7678 }
7679 /* Fallthru (no break) */
7680 }
7681 pCtx->fExtrn = 0;
7682 pVCpu->hm.s.u32HMError = pMsrs->u32Msr;
7683 ASMSetFlags(fEFlags);
7684 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
7685 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7686 }
7687 }
7688 }
7689 }
7690
7691 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7692 {
7693 if (fWhat & CPUMCTX_EXTRN_CR0)
7694 {
7695 uint64_t u64Cr0;
7696 uint64_t u64Shadow;
7697 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc);
7698 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc);
7699#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7700 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7701 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7702#else
7703 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7704 {
7705 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7706 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7707 }
7708 else
7709 {
7710 /*
7711 * We've merged the guest and nested-guest's CR0 guest/host mask while executing
7712 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7713 * re-construct CR0. See @bugref{9180#c95} for details.
7714 */
7715 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
7716 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7717 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7718 | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u)
7719 | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
7720 }
7721#endif
7722 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7723 CPUMSetGuestCR0(pVCpu, u64Cr0);
7724 VMMRZCallRing3Enable(pVCpu);
7725 }
7726
7727 if (fWhat & CPUMCTX_EXTRN_CR4)
7728 {
7729 uint64_t u64Cr4;
7730 uint64_t u64Shadow;
7731 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc);
7732 rc |= VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc);
7733#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7734 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7735 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7736#else
7737 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7738 {
7739 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7740 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7741 }
7742 else
7743 {
7744 /*
7745 * We've merged the guest and nested-guest's CR4 guest/host mask while executing
7746 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7747 * re-construct CR4. See @bugref{9180#c95} for details.
7748 */
7749 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
7750 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7751 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7752 | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u)
7753 | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
7754 }
7755#endif
7756 pCtx->cr4 = u64Cr4;
7757 }
7758
7759 if (fWhat & CPUMCTX_EXTRN_CR3)
7760 {
7761 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7762 if ( pVM->hm.s.vmx.fUnrestrictedGuest
7763 || ( pVM->hm.s.fNestedPaging
7764 && CPUMIsGuestPagingEnabledEx(pCtx)))
7765 {
7766 uint64_t u64Cr3;
7767 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc);
7768 if (pCtx->cr3 != u64Cr3)
7769 {
7770 pCtx->cr3 = u64Cr3;
7771 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7772 }
7773
7774 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7775 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7776 if (CPUMIsGuestInPAEModeEx(pCtx))
7777 {
7778 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
7779 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
7780 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
7781 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
7782 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7783 }
7784 }
7785 }
7786 }
7787
7788#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7789 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
7790 {
7791 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7792 && !CPUMIsGuestInVmxNonRootMode(pCtx))
7793 {
7794 Assert(CPUMIsGuestInVmxRootMode(pCtx));
7795 rc = hmR0VmxCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
7796 if (RT_SUCCESS(rc))
7797 { /* likely */ }
7798 else
7799 break;
7800 }
7801 }
7802#endif
7803 } while (0);
7804
7805 if (RT_SUCCESS(rc))
7806 {
7807 /* Update fExtrn. */
7808 pCtx->fExtrn &= ~fWhat;
7809
7810 /* If everything has been imported, clear the HM keeper bit. */
7811 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7812 {
7813 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7814 Assert(!pCtx->fExtrn);
7815 }
7816 }
7817 }
7818 else
7819 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7820
7821 /*
7822 * Restore interrupts.
7823 */
7824 ASMSetFlags(fEFlags);
7825
7826 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
7827
7828 if (RT_SUCCESS(rc))
7829 { /* likely */ }
7830 else
7831 return rc;
7832
7833 /*
7834 * Honor any pending CR3 updates.
7835 *
7836 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
7837 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
7838 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
7839 *
7840 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
7841 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
7842 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
7843 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
7844 *
7845 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
7846 */
7847 if (VMMRZCallRing3IsEnabled(pVCpu))
7848 {
7849 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7850 {
7851 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
7852 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
7853 }
7854
7855 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7856 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7857
7858 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7859 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7860 }
7861
7862 return VINF_SUCCESS;
7863}
7864
7865
7866/**
7867 * Saves the guest state from the VMCS into the guest-CPU context.
7868 *
7869 * @returns VBox status code.
7870 * @param pVCpu The cross context virtual CPU structure.
7871 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7872 */
7873VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
7874{
7875 AssertPtr(pVCpu);
7876 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7877 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
7878}
7879
7880
7881/**
7882 * Check per-VM and per-VCPU force flag actions that require us to go back to
7883 * ring-3 for one reason or another.
7884 *
7885 * @returns Strict VBox status code (i.e. informational status codes too)
7886 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7887 * ring-3.
7888 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7889 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7890 * interrupts)
7891 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7892 * all EMTs to be in ring-3.
7893 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7894 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7895 * to the EM loop.
7896 *
7897 * @param pVCpu The cross context virtual CPU structure.
7898 * @param pVmxTransient The VMX-transient structure.
7899 * @param fStepping Whether we are single-stepping the guest using the
7900 * hypervisor debugger.
7901 *
7902 * @remarks This might cause nested-guest VM-exits, caller must check if the guest
7903 * is no longer in VMX non-root mode.
7904 */
7905static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, bool fStepping)
7906{
7907 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7908
7909 /*
7910 * Update pending interrupts into the APIC's IRR.
7911 */
7912 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7913 APICUpdatePendingInterrupts(pVCpu);
7914
7915 /*
7916 * Anything pending? Should be more likely than not if we're doing a good job.
7917 */
7918 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7919 if ( !fStepping
7920 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7921 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7922 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7923 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7924 return VINF_SUCCESS;
7925
7926 /* Pending PGM C3 sync. */
7927 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7928 {
7929 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7930 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
7931 VBOXSTRICTRC rcStrict = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
7932 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7933 if (rcStrict != VINF_SUCCESS)
7934 {
7935 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
7936 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
7937 return rcStrict;
7938 }
7939 }
7940
7941 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7942 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
7943 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7944 {
7945 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7946 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
7947 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
7948 return rc;
7949 }
7950
7951 /* Pending VM request packets, such as hardware interrupts. */
7952 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
7953 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
7954 {
7955 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
7956 Log4Func(("Pending VM request forcing us back to ring-3\n"));
7957 return VINF_EM_PENDING_REQUEST;
7958 }
7959
7960 /* Pending PGM pool flushes. */
7961 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7962 {
7963 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
7964 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
7965 return VINF_PGM_POOL_FLUSH_PENDING;
7966 }
7967
7968 /* Pending DMA requests. */
7969 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
7970 {
7971 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
7972 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
7973 return VINF_EM_RAW_TO_R3;
7974 }
7975
7976#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7977 /*
7978 * Pending nested-guest events.
7979 *
7980 * Please note the priority of these events are specified and important.
7981 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
7982 * See Intel spec. 6.9 "Priority Among Simultaneous Exceptions And Interrupts".
7983 */
7984 if (pVmxTransient->fIsNestedGuest)
7985 {
7986 /* Pending nested-guest APIC-write. */
7987 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
7988 {
7989 Log4Func(("Pending nested-guest APIC-write\n"));
7990 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitApicWrite(pVCpu);
7991 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
7992 return rcStrict;
7993 }
7994
7995 /* Pending nested-guest monitor-trap flag (MTF). */
7996 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF))
7997 {
7998 Log4Func(("Pending nested-guest MTF\n"));
7999 VBOXSTRICTRC rcStrict = IEMExecVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* uExitQual */);
8000 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8001 return rcStrict;
8002 }
8003
8004 /* Pending nested-guest VMX-preemption timer expired. */
8005 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
8006 {
8007 Log4Func(("Pending nested-guest MTF\n"));
8008 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitPreemptTimer(pVCpu);
8009 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8010 return rcStrict;
8011 }
8012 }
8013#else
8014 NOREF(pVmxTransient);
8015#endif
8016
8017 return VINF_SUCCESS;
8018}
8019
8020
8021/**
8022 * Converts any TRPM trap into a pending HM event. This is typically used when
8023 * entering from ring-3 (not longjmp returns).
8024 *
8025 * @param pVCpu The cross context virtual CPU structure.
8026 */
8027static void hmR0VmxTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
8028{
8029 Assert(TRPMHasTrap(pVCpu));
8030 Assert(!pVCpu->hm.s.Event.fPending);
8031
8032 uint8_t uVector;
8033 TRPMEVENT enmTrpmEvent;
8034 uint32_t uErrCode;
8035 RTGCUINTPTR GCPtrFaultAddress;
8036 uint8_t cbInstr;
8037 bool fIcebp;
8038
8039 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, &fIcebp);
8040 AssertRC(rc);
8041
8042 uint32_t u32IntInfo;
8043 u32IntInfo = uVector | VMX_IDT_VECTORING_INFO_VALID;
8044 u32IntInfo |= HMTrpmEventTypeToVmxEventType(uVector, enmTrpmEvent, fIcebp);
8045
8046 rc = TRPMResetTrap(pVCpu);
8047 AssertRC(rc);
8048 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
8049 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
8050
8051 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
8052}
8053
8054
8055/**
8056 * Converts the pending HM event into a TRPM trap.
8057 *
8058 * @param pVCpu The cross context virtual CPU structure.
8059 */
8060static void hmR0VmxPendingEventToTrpmTrap(PVMCPUCC pVCpu)
8061{
8062 Assert(pVCpu->hm.s.Event.fPending);
8063
8064 /* If a trap was already pending, we did something wrong! */
8065 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
8066
8067 uint32_t const u32IntInfo = pVCpu->hm.s.Event.u64IntInfo;
8068 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(u32IntInfo);
8069 TRPMEVENT const enmTrapType = HMVmxEventTypeToTrpmEventType(u32IntInfo);
8070
8071 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
8072
8073 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
8074 AssertRC(rc);
8075
8076 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8077 TRPMSetErrorCode(pVCpu, pVCpu->hm.s.Event.u32ErrCode);
8078
8079 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(u32IntInfo))
8080 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
8081 else if (VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo) == VMX_IDT_VECTORING_INFO_TYPE_SW_INT)
8082 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
8083
8084 if (VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo) == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
8085 TRPMSetTrapDueToIcebp(pVCpu);
8086
8087 /* We're now done converting the pending event. */
8088 pVCpu->hm.s.Event.fPending = false;
8089}
8090
8091
8092/**
8093 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
8094 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
8095 *
8096 * @param pVCpu The cross context virtual CPU structure.
8097 * @param pVmcsInfo The VMCS info. object.
8098 */
8099static void hmR0VmxSetIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
8100{
8101 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8102 {
8103 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
8104 {
8105 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
8106 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8107 AssertRC(rc);
8108 }
8109 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
8110}
8111
8112
8113/**
8114 * Clears the interrupt-window exiting control in the VMCS.
8115 *
8116 * @param pVmcsInfo The VMCS info. object.
8117 */
8118DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8119{
8120 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8121 {
8122 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
8123 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8124 AssertRC(rc);
8125 }
8126}
8127
8128
8129/**
8130 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
8131 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
8132 *
8133 * @param pVCpu The cross context virtual CPU structure.
8134 * @param pVmcsInfo The VMCS info. object.
8135 */
8136static void hmR0VmxSetNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
8137{
8138 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8139 {
8140 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
8141 {
8142 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8143 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8144 AssertRC(rc);
8145 Log4Func(("Setup NMI-window exiting\n"));
8146 }
8147 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
8148}
8149
8150
8151/**
8152 * Clears the NMI-window exiting control in the VMCS.
8153 *
8154 * @param pVmcsInfo The VMCS info. object.
8155 */
8156DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8157{
8158 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8159 {
8160 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8161 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8162 AssertRC(rc);
8163 }
8164}
8165
8166
8167/**
8168 * Does the necessary state syncing before returning to ring-3 for any reason
8169 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
8170 *
8171 * @returns VBox status code.
8172 * @param pVCpu The cross context virtual CPU structure.
8173 * @param fImportState Whether to import the guest state from the VMCS back
8174 * to the guest-CPU context.
8175 *
8176 * @remarks No-long-jmp zone!!!
8177 */
8178static int hmR0VmxLeave(PVMCPUCC pVCpu, bool fImportState)
8179{
8180 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8181 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8182
8183 RTCPUID const idCpu = RTMpCpuId();
8184 Log4Func(("HostCpuId=%u\n", idCpu));
8185
8186 /*
8187 * !!! IMPORTANT !!!
8188 * If you modify code here, check whether VMXR0CallRing3Callback() needs to be updated too.
8189 */
8190
8191 /* Save the guest state if necessary. */
8192 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8193 if (fImportState)
8194 {
8195 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8196 AssertRCReturn(rc, rc);
8197 }
8198
8199 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8200 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8201 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8202
8203 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8204#ifdef VBOX_STRICT
8205 if (CPUMIsHyperDebugStateActive(pVCpu))
8206 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8207#endif
8208 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8209 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
8210 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
8211
8212 /* Restore host-state bits that VT-x only restores partially. */
8213 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8214 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8215 {
8216 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
8217 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8218 }
8219 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8220
8221 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8222 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8223 {
8224 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8225 if (!fImportState)
8226 {
8227 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8228 AssertRCReturn(rc, rc);
8229 }
8230 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8231 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
8232 }
8233 else
8234 pVCpu->hm.s.vmx.fLazyMsrs = 0;
8235
8236 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8237 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8238
8239 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8240 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8241 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8242 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8243 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8244 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8245 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8246 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8247 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
8248 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8249
8250 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8251
8252 /** @todo This partially defeats the purpose of having preemption hooks.
8253 * The problem is, deregistering the hooks should be moved to a place that
8254 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8255 * context.
8256 */
8257 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8258 AssertRCReturn(rc, rc);
8259
8260#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8261 /*
8262 * A valid shadow VMCS is made active as part of VM-entry. It is necessary to
8263 * clear a shadow VMCS before allowing that VMCS to become active on another
8264 * logical processor. We may or may not be importing guest state which clears
8265 * it, so cover for it here.
8266 *
8267 * See Intel spec. 24.11.1 "Software Use of Virtual-Machine Control Structures".
8268 */
8269 if ( pVmcsInfo->pvShadowVmcs
8270 && pVmcsInfo->fShadowVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
8271 {
8272 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
8273 AssertRCReturn(rc, rc);
8274 }
8275
8276 /*
8277 * Flag that we need to re-export the host state if we switch to this VMCS before
8278 * executing guest or nested-guest code.
8279 */
8280 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
8281#endif
8282
8283 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8284 NOREF(idCpu);
8285 return VINF_SUCCESS;
8286}
8287
8288
8289/**
8290 * Leaves the VT-x session.
8291 *
8292 * @returns VBox status code.
8293 * @param pVCpu The cross context virtual CPU structure.
8294 *
8295 * @remarks No-long-jmp zone!!!
8296 */
8297static int hmR0VmxLeaveSession(PVMCPUCC pVCpu)
8298{
8299 HM_DISABLE_PREEMPT(pVCpu);
8300 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8301 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8302 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8303
8304 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8305 and done this from the VMXR0ThreadCtxCallback(). */
8306 if (!pVCpu->hm.s.fLeaveDone)
8307 {
8308 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8309 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8310 pVCpu->hm.s.fLeaveDone = true;
8311 }
8312 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8313
8314 /*
8315 * !!! IMPORTANT !!!
8316 * If you modify code here, make sure to check whether VMXR0CallRing3Callback() needs to be updated too.
8317 */
8318
8319 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8320 /** @todo Deregistering here means we need to VMCLEAR always
8321 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8322 * for calling VMMR0ThreadCtxHookDisable here! */
8323 VMMR0ThreadCtxHookDisable(pVCpu);
8324
8325 /* Leave HM context. This takes care of local init (term) and deregistering the longjmp-to-ring-3 callback. */
8326 int rc = HMR0LeaveCpu(pVCpu);
8327 HM_RESTORE_PREEMPT();
8328 return rc;
8329}
8330
8331
8332/**
8333 * Does the necessary state syncing before doing a longjmp to ring-3.
8334 *
8335 * @returns VBox status code.
8336 * @param pVCpu The cross context virtual CPU structure.
8337 *
8338 * @remarks No-long-jmp zone!!!
8339 */
8340DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPUCC pVCpu)
8341{
8342 return hmR0VmxLeaveSession(pVCpu);
8343}
8344
8345
8346/**
8347 * Take necessary actions before going back to ring-3.
8348 *
8349 * An action requires us to go back to ring-3. This function does the necessary
8350 * steps before we can safely return to ring-3. This is not the same as longjmps
8351 * to ring-3, this is voluntary and prepares the guest so it may continue
8352 * executing outside HM (recompiler/IEM).
8353 *
8354 * @returns VBox status code.
8355 * @param pVCpu The cross context virtual CPU structure.
8356 * @param rcExit The reason for exiting to ring-3. Can be
8357 * VINF_VMM_UNKNOWN_RING3_CALL.
8358 */
8359static int hmR0VmxExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
8360{
8361 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8362
8363 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8364 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8365 {
8366 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8367 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8368 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
8369 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8370 }
8371
8372 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8373 VMMRZCallRing3Disable(pVCpu);
8374 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8375
8376 /*
8377 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8378 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8379 *
8380 * This is because execution may continue from ring-3 and we would need to inject
8381 * the event from there (hence place it back in TRPM).
8382 */
8383 if (pVCpu->hm.s.Event.fPending)
8384 {
8385 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8386 Assert(!pVCpu->hm.s.Event.fPending);
8387
8388 /* Clear the events from the VMCS. */
8389 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
8390 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
8391 }
8392#ifdef VBOX_STRICT
8393 else
8394 {
8395 /*
8396 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8397 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8398 * occasionally, see @bugref{9180#c42}.
8399 *
8400 * However, if the VM-entry failed, any VM entry-interruption info. field would
8401 * be left unmodified as the event would not have been injected to the guest. In
8402 * such cases, don't assert, we're not going to continue guest execution anyway.
8403 */
8404 uint32_t uExitReason;
8405 uint32_t uEntryIntInfo;
8406 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8407 rc |= VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8408 AssertRC(rc);
8409 Assert(VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason) || !VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
8410 }
8411#endif
8412
8413 /*
8414 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8415 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8416 * (e.g. TPR below threshold).
8417 */
8418 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8419 {
8420 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8421 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8422 }
8423
8424 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8425 and if we're injecting an event we should have a TRPM trap pending. */
8426 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8427#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8428 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8429#endif
8430
8431 /* Save guest state and restore host state bits. */
8432 int rc = hmR0VmxLeaveSession(pVCpu);
8433 AssertRCReturn(rc, rc);
8434 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8435
8436 /* Thread-context hooks are unregistered at this point!!! */
8437 /* Ring-3 callback notifications are unregistered at this point!!! */
8438
8439 /* Sync recompiler state. */
8440 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8441 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8442 | CPUM_CHANGED_LDTR
8443 | CPUM_CHANGED_GDTR
8444 | CPUM_CHANGED_IDTR
8445 | CPUM_CHANGED_TR
8446 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8447 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
8448 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8449 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8450
8451 Assert(!pVCpu->hm.s.fClearTrapFlag);
8452
8453 /* Update the exit-to-ring 3 reason. */
8454 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8455
8456 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8457 if ( rcExit != VINF_EM_RAW_INTERRUPT
8458 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8459 {
8460 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8461 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8462 }
8463
8464 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8465 VMMRZCallRing3Enable(pVCpu);
8466 return rc;
8467}
8468
8469
8470/**
8471 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8472 * longjump to ring-3 and possibly get preempted.
8473 *
8474 * @returns VBox status code.
8475 * @param pVCpu The cross context virtual CPU structure.
8476 * @param enmOperation The operation causing the ring-3 longjump.
8477 */
8478VMMR0DECL(int) VMXR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
8479{
8480 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8481 {
8482 /*
8483 * !!! IMPORTANT !!!
8484 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8485 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8486 */
8487 VMMRZCallRing3RemoveNotification(pVCpu);
8488 VMMRZCallRing3Disable(pVCpu);
8489 HM_DISABLE_PREEMPT(pVCpu);
8490
8491 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8492 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8493 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8494 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8495
8496 /* Restore host-state bits that VT-x only restores partially. */
8497 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8498 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8499 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8500 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8501
8502 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8503 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8504 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8505
8506 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8507 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8508 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8509
8510 /* Clear the current VMCS data back to memory (shadow VMCS if any would have been
8511 cleared as part of importing the guest state above. */
8512 hmR0VmxClearVmcs(pVmcsInfo);
8513
8514 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8515 VMMR0ThreadCtxHookDisable(pVCpu);
8516
8517 /* Leave HM context. This takes care of local init (term). */
8518 HMR0LeaveCpu(pVCpu);
8519 HM_RESTORE_PREEMPT();
8520 return VINF_SUCCESS;
8521 }
8522
8523 Assert(pVCpu);
8524 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8525 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8526
8527 VMMRZCallRing3Disable(pVCpu);
8528 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8529
8530 Log4Func(("-> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8531
8532 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8533 AssertRCReturn(rc, rc);
8534
8535 VMMRZCallRing3Enable(pVCpu);
8536 return VINF_SUCCESS;
8537}
8538
8539
8540/**
8541 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8542 * stack.
8543 *
8544 * @returns Strict VBox status code (i.e. informational status codes too).
8545 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8546 * @param pVCpu The cross context virtual CPU structure.
8547 * @param uValue The value to push to the guest stack.
8548 */
8549static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPUCC pVCpu, uint16_t uValue)
8550{
8551 /*
8552 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8553 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8554 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8555 */
8556 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8557 if (pCtx->sp == 1)
8558 return VINF_EM_RESET;
8559 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8560 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8561 AssertRC(rc);
8562 return rc;
8563}
8564
8565
8566/**
8567 * Injects an event into the guest upon VM-entry by updating the relevant fields
8568 * in the VM-entry area in the VMCS.
8569 *
8570 * @returns Strict VBox status code (i.e. informational status codes too).
8571 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8572 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8573 *
8574 * @param pVCpu The cross context virtual CPU structure.
8575 * @param pVmxTransient The VMX-transient structure.
8576 * @param pEvent The event being injected.
8577 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state. This
8578 * will be updated if necessary. This cannot not be NULL.
8579 * @param fStepping Whether we're single-stepping guest execution and should
8580 * return VINF_EM_DBG_STEPPED if the event is injected
8581 * directly (registers modified by us, not by hardware on
8582 * VM-entry).
8583 */
8584static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8585 uint32_t *pfIntrState)
8586{
8587 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8588 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8589 Assert(pfIntrState);
8590
8591 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8592 uint32_t u32IntInfo = pEvent->u64IntInfo;
8593 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8594 uint32_t const cbInstr = pEvent->cbInstr;
8595 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8596 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8597 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8598
8599#ifdef VBOX_STRICT
8600 /*
8601 * Validate the error-code-valid bit for hardware exceptions.
8602 * No error codes for exceptions in real-mode.
8603 *
8604 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8605 */
8606 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8607 && !CPUMIsGuestInRealModeEx(pCtx))
8608 {
8609 switch (uVector)
8610 {
8611 case X86_XCPT_PF:
8612 case X86_XCPT_DF:
8613 case X86_XCPT_TS:
8614 case X86_XCPT_NP:
8615 case X86_XCPT_SS:
8616 case X86_XCPT_GP:
8617 case X86_XCPT_AC:
8618 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8619 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8620 RT_FALL_THRU();
8621 default:
8622 break;
8623 }
8624 }
8625
8626 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8627 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8628 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8629#endif
8630
8631 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8632
8633 /*
8634 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8635 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8636 * interrupt handler in the (real-mode) guest.
8637 *
8638 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8639 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8640 */
8641 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8642 {
8643 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
8644 {
8645 /*
8646 * For CPUs with unrestricted guest execution enabled and with the guest
8647 * in real-mode, we must not set the deliver-error-code bit.
8648 *
8649 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8650 */
8651 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8652 }
8653 else
8654 {
8655 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
8656 Assert(PDMVmmDevHeapIsEnabled(pVM));
8657 Assert(pVM->hm.s.vmx.pRealModeTSS);
8658 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8659
8660 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8661 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8662 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8663 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8664 AssertRCReturn(rc2, rc2);
8665
8666 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8667 size_t const cbIdtEntry = sizeof(X86IDTR16);
8668 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8669 {
8670 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8671 if (uVector == X86_XCPT_DF)
8672 return VINF_EM_RESET;
8673
8674 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8675 No error codes for exceptions in real-mode. */
8676 if (uVector == X86_XCPT_GP)
8677 {
8678 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8679 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8680 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8681 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8682 HMEVENT EventXcptDf;
8683 RT_ZERO(EventXcptDf);
8684 EventXcptDf.u64IntInfo = uXcptDfInfo;
8685 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8686 }
8687
8688 /*
8689 * If we're injecting an event with no valid IDT entry, inject a #GP.
8690 * No error codes for exceptions in real-mode.
8691 *
8692 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8693 */
8694 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8695 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8696 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8697 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8698 HMEVENT EventXcptGp;
8699 RT_ZERO(EventXcptGp);
8700 EventXcptGp.u64IntInfo = uXcptGpInfo;
8701 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8702 }
8703
8704 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8705 uint16_t uGuestIp = pCtx->ip;
8706 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8707 {
8708 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8709 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8710 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8711 }
8712 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8713 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8714
8715 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8716 X86IDTR16 IdtEntry;
8717 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8718 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8719 AssertRCReturn(rc2, rc2);
8720
8721 /* Construct the stack frame for the interrupt/exception handler. */
8722 VBOXSTRICTRC rcStrict;
8723 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8724 if (rcStrict == VINF_SUCCESS)
8725 {
8726 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8727 if (rcStrict == VINF_SUCCESS)
8728 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8729 }
8730
8731 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8732 if (rcStrict == VINF_SUCCESS)
8733 {
8734 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8735 pCtx->rip = IdtEntry.offSel;
8736 pCtx->cs.Sel = IdtEntry.uSel;
8737 pCtx->cs.ValidSel = IdtEntry.uSel;
8738 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8739 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8740 && uVector == X86_XCPT_PF)
8741 pCtx->cr2 = GCPtrFault;
8742
8743 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8744 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8745 | HM_CHANGED_GUEST_RSP);
8746
8747 /*
8748 * If we delivered a hardware exception (other than an NMI) and if there was
8749 * block-by-STI in effect, we should clear it.
8750 */
8751 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8752 {
8753 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8754 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8755 Log4Func(("Clearing inhibition due to STI\n"));
8756 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8757 }
8758
8759 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8760 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8761
8762 /*
8763 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8764 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8765 */
8766 pVCpu->hm.s.Event.fPending = false;
8767
8768 /*
8769 * If we eventually support nested-guest execution without unrestricted guest execution,
8770 * we should set fInterceptEvents here.
8771 */
8772 Assert(!pVmxTransient->fIsNestedGuest);
8773
8774 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8775 if (fStepping)
8776 rcStrict = VINF_EM_DBG_STEPPED;
8777 }
8778 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8779 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8780 return rcStrict;
8781 }
8782 }
8783
8784 /*
8785 * Validate.
8786 */
8787 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8788 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8789
8790 /*
8791 * Inject the event into the VMCS.
8792 */
8793 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8794 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8795 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8796 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8797 AssertRC(rc);
8798
8799 /*
8800 * Update guest CR2 if this is a page-fault.
8801 */
8802 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(u32IntInfo))
8803 pCtx->cr2 = GCPtrFault;
8804
8805 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8806 return VINF_SUCCESS;
8807}
8808
8809
8810/**
8811 * Evaluates the event to be delivered to the guest and sets it as the pending
8812 * event.
8813 *
8814 * Toggling of interrupt force-flags here is safe since we update TRPM on premature
8815 * exits to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must
8816 * NOT restore these force-flags.
8817 *
8818 * @returns Strict VBox status code (i.e. informational status codes too).
8819 * @param pVCpu The cross context virtual CPU structure.
8820 * @param pVmxTransient The VMX-transient structure.
8821 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
8822 */
8823static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
8824{
8825 Assert(pfIntrState);
8826 Assert(!TRPMHasTrap(pVCpu));
8827
8828 /*
8829 * Compute/update guest-interruptibility state related FFs.
8830 * The FFs will be used below while evaluating events to be injected.
8831 */
8832 *pfIntrState = hmR0VmxGetGuestIntrStateAndUpdateFFs(pVCpu);
8833
8834 /*
8835 * Evaluate if a new event needs to be injected.
8836 * An event that's already pending has already performed all necessary checks.
8837 */
8838 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8839 bool const fIsNestedGuest = pVmxTransient->fIsNestedGuest;
8840 if ( !pVCpu->hm.s.Event.fPending
8841 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
8842 {
8843 /** @todo SMI. SMIs take priority over NMIs. */
8844
8845 /*
8846 * NMIs.
8847 * NMIs take priority over external interrupts.
8848 */
8849 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8850 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
8851 {
8852 /*
8853 * For a guest, the FF always indicates the guest's ability to receive an NMI.
8854 *
8855 * For a nested-guest, the FF always indicates the outer guest's ability to
8856 * receive an NMI while the guest-interruptibility state bit depends on whether
8857 * the nested-hypervisor is using virtual-NMIs.
8858 */
8859 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
8860 {
8861#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8862 if ( fIsNestedGuest
8863 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_NMI_EXIT))
8864 return IEMExecVmxVmexitXcptNmi(pVCpu);
8865#endif
8866 hmR0VmxSetPendingXcptNmi(pVCpu);
8867 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
8868 Log4Func(("NMI pending injection\n"));
8869
8870 /* We've injected the NMI, bail. */
8871 return VINF_SUCCESS;
8872 }
8873 else if (!fIsNestedGuest)
8874 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8875 }
8876
8877 /*
8878 * External interrupts (PIC/APIC).
8879 * Once PDMGetInterrupt() returns a valid interrupt we -must- deliver it.
8880 * We cannot re-request the interrupt from the controller again.
8881 */
8882 if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8883 && !pVCpu->hm.s.fSingleInstruction)
8884 {
8885 Assert(!DBGFIsStepping(pVCpu));
8886 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
8887 AssertRC(rc);
8888
8889 if (pCtx->eflags.u32 & X86_EFL_IF)
8890 {
8891#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8892 if ( fIsNestedGuest
8893 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8894 && !CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8895 {
8896 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0 /* uVector */, true /* fIntPending */);
8897 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8898 return rcStrict;
8899 }
8900#endif
8901 uint8_t u8Interrupt;
8902 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
8903 if (RT_SUCCESS(rc))
8904 {
8905#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8906 if ( fIsNestedGuest
8907 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8908 && CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8909 {
8910 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
8911 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8912 return rcStrict;
8913 }
8914#endif
8915 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
8916 Log4Func(("External interrupt (%#x) pending injection\n", u8Interrupt));
8917 }
8918 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
8919 {
8920 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
8921
8922 if ( !fIsNestedGuest
8923 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
8924 hmR0VmxApicSetTprThreshold(pVmcsInfo, u8Interrupt >> 4);
8925 /* else: for nested-guests, TPR threshold is picked up while merging VMCS controls. */
8926
8927 /*
8928 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
8929 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
8930 * need to re-set this force-flag here.
8931 */
8932 }
8933 else
8934 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
8935
8936 /* We've injected the interrupt or taken necessary action, bail. */
8937 return VINF_SUCCESS;
8938 }
8939 else if (!fIsNestedGuest)
8940 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8941 }
8942 }
8943 else if (!fIsNestedGuest)
8944 {
8945 /*
8946 * An event is being injected or we are in an interrupt shadow. Check if another event is
8947 * pending. If so, instruct VT-x to cause a VM-exit as soon as the guest is ready to accept
8948 * the pending event.
8949 */
8950 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
8951 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8952 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8953 && !pVCpu->hm.s.fSingleInstruction)
8954 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8955 }
8956 /* else: for nested-guests, NMI/interrupt-window exiting will be picked up when merging VMCS controls. */
8957
8958 return VINF_SUCCESS;
8959}
8960
8961
8962/**
8963 * Injects any pending events into the guest if the guest is in a state to
8964 * receive them.
8965 *
8966 * @returns Strict VBox status code (i.e. informational status codes too).
8967 * @param pVCpu The cross context virtual CPU structure.
8968 * @param pVmxTransient The VMX-transient structure.
8969 * @param fIntrState The VT-x guest-interruptibility state.
8970 * @param fStepping Whether we are single-stepping the guest using the
8971 * hypervisor debugger and should return
8972 * VINF_EM_DBG_STEPPED if the event was dispatched
8973 * directly.
8974 */
8975static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
8976{
8977 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8978 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8979
8980#ifdef VBOX_STRICT
8981 /*
8982 * Verify guest-interruptibility state.
8983 *
8984 * We put this in a scoped block so we do not accidentally use fBlockSti or fBlockMovSS,
8985 * since injecting an event may modify the interruptibility state and we must thus always
8986 * use fIntrState.
8987 */
8988 {
8989 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8990 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8991 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8992 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8993 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8994 Assert(!TRPMHasTrap(pVCpu));
8995 NOREF(fBlockMovSS); NOREF(fBlockSti);
8996 }
8997#endif
8998
8999 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
9000 if (pVCpu->hm.s.Event.fPending)
9001 {
9002 /*
9003 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
9004 * pending even while injecting an event and in this case, we want a VM-exit as soon as
9005 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
9006 *
9007 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
9008 */
9009 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
9010#ifdef VBOX_STRICT
9011 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9012 {
9013 Assert(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
9014 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9015 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9016 }
9017 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
9018 {
9019 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI));
9020 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9021 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9022 }
9023#endif
9024 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
9025 uIntType));
9026
9027 /*
9028 * Inject the event and get any changes to the guest-interruptibility state.
9029 *
9030 * The guest-interruptibility state may need to be updated if we inject the event
9031 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
9032 */
9033 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
9034 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
9035
9036 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9037 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
9038 else
9039 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
9040 }
9041
9042 /*
9043 * Deliver any pending debug exceptions if the guest is single-stepping using EFLAGS.TF and
9044 * is an interrupt shadow (block-by-STI or block-by-MOV SS).
9045 */
9046 if ( (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9047 && !pVmxTransient->fIsNestedGuest)
9048 {
9049 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
9050
9051 if (!pVCpu->hm.s.fSingleInstruction)
9052 {
9053 /*
9054 * Set or clear the BS bit depending on whether the trap flag is active or not. We need
9055 * to do both since we clear the BS bit from the VMCS while exiting to ring-3.
9056 */
9057 Assert(!DBGFIsStepping(pVCpu));
9058 uint8_t const fTrapFlag = !!(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_TF);
9059 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, fTrapFlag << VMX_BF_VMCS_PENDING_DBG_XCPT_BS_SHIFT);
9060 AssertRC(rc);
9061 }
9062 else
9063 {
9064 /*
9065 * We must not deliver a debug exception when single-stepping over STI/Mov-SS in the
9066 * hypervisor debugger using EFLAGS.TF but rather clear interrupt inhibition. However,
9067 * we take care of this case in hmR0VmxExportSharedDebugState and also the case if
9068 * we use MTF, so just make sure it's called before executing guest-code.
9069 */
9070 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
9071 }
9072 }
9073 /* else: for nested-guest currently handling while merging controls. */
9074
9075 /*
9076 * Finally, update the guest-interruptibility state.
9077 *
9078 * This is required for the real-on-v86 software interrupt injection, for
9079 * pending debug exceptions as well as updates to the guest state from ring-3 (IEM).
9080 */
9081 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
9082 AssertRC(rc);
9083
9084 /*
9085 * There's no need to clear the VM-entry interruption-information field here if we're not
9086 * injecting anything. VT-x clears the valid bit on every VM-exit.
9087 *
9088 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
9089 */
9090
9091 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
9092 return rcStrict;
9093}
9094
9095
9096/**
9097 * Enters the VT-x session.
9098 *
9099 * @returns VBox status code.
9100 * @param pVCpu The cross context virtual CPU structure.
9101 */
9102VMMR0DECL(int) VMXR0Enter(PVMCPUCC pVCpu)
9103{
9104 AssertPtr(pVCpu);
9105 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
9106 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9107
9108 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9109 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9110 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9111
9112#ifdef VBOX_STRICT
9113 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
9114 RTCCUINTREG uHostCr4 = ASMGetCR4();
9115 if (!(uHostCr4 & X86_CR4_VMXE))
9116 {
9117 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
9118 return VERR_VMX_X86_CR4_VMXE_CLEARED;
9119 }
9120#endif
9121
9122 /*
9123 * Load the appropriate VMCS as the current and active one.
9124 */
9125 PVMXVMCSINFO pVmcsInfo;
9126 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
9127 if (!fInNestedGuestMode)
9128 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
9129 else
9130 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
9131 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
9132 if (RT_SUCCESS(rc))
9133 {
9134 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
9135 pVCpu->hm.s.fLeaveDone = false;
9136 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9137
9138 /*
9139 * Do the EMT scheduled L1D flush here if needed.
9140 */
9141 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
9142 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9143 else if (pVCpu->CTX_SUFF(pVM)->hm.s.fMdsClearOnSched)
9144 hmR0MdsClear();
9145 }
9146 return rc;
9147}
9148
9149
9150/**
9151 * The thread-context callback (only on platforms which support it).
9152 *
9153 * @param enmEvent The thread-context event.
9154 * @param pVCpu The cross context virtual CPU structure.
9155 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
9156 * @thread EMT(pVCpu)
9157 */
9158VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
9159{
9160 AssertPtr(pVCpu);
9161 RT_NOREF1(fGlobalInit);
9162
9163 switch (enmEvent)
9164 {
9165 case RTTHREADCTXEVENT_OUT:
9166 {
9167 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9168 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
9169 VMCPU_ASSERT_EMT(pVCpu);
9170
9171 /* No longjmps (logger flushes, locks) in this fragile context. */
9172 VMMRZCallRing3Disable(pVCpu);
9173 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
9174
9175 /* Restore host-state (FPU, debug etc.) */
9176 if (!pVCpu->hm.s.fLeaveDone)
9177 {
9178 /*
9179 * Do -not- import the guest-state here as we might already be in the middle of importing
9180 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
9181 */
9182 hmR0VmxLeave(pVCpu, false /* fImportState */);
9183 pVCpu->hm.s.fLeaveDone = true;
9184 }
9185
9186 /* Leave HM context, takes care of local init (term). */
9187 int rc = HMR0LeaveCpu(pVCpu);
9188 AssertRC(rc);
9189
9190 /* Restore longjmp state. */
9191 VMMRZCallRing3Enable(pVCpu);
9192 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
9193 break;
9194 }
9195
9196 case RTTHREADCTXEVENT_IN:
9197 {
9198 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9199 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
9200 VMCPU_ASSERT_EMT(pVCpu);
9201
9202 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
9203 VMMRZCallRing3Disable(pVCpu);
9204 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
9205
9206 /* Initialize the bare minimum state required for HM. This takes care of
9207 initializing VT-x if necessary (onlined CPUs, local init etc.) */
9208 int rc = hmR0EnterCpu(pVCpu);
9209 AssertRC(rc);
9210 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9211 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9212
9213 /* Load the active VMCS as the current one. */
9214 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
9215 rc = hmR0VmxLoadVmcs(pVmcsInfo);
9216 AssertRC(rc);
9217 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9218 pVCpu->hm.s.fLeaveDone = false;
9219
9220 /* Do the EMT scheduled L1D flush if needed. */
9221 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
9222 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9223
9224 /* Restore longjmp state. */
9225 VMMRZCallRing3Enable(pVCpu);
9226 break;
9227 }
9228
9229 default:
9230 break;
9231 }
9232}
9233
9234
9235/**
9236 * Exports the host state into the VMCS host-state area.
9237 * Sets up the VM-exit MSR-load area.
9238 *
9239 * The CPU state will be loaded from these fields on every successful VM-exit.
9240 *
9241 * @returns VBox status code.
9242 * @param pVCpu The cross context virtual CPU structure.
9243 *
9244 * @remarks No-long-jump zone!!!
9245 */
9246static int hmR0VmxExportHostState(PVMCPUCC pVCpu)
9247{
9248 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9249
9250 int rc = VINF_SUCCESS;
9251 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
9252 {
9253 hmR0VmxExportHostControlRegs();
9254
9255 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
9256 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9257
9258 hmR0VmxExportHostMsrs(pVCpu);
9259
9260 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
9261 }
9262 return rc;
9263}
9264
9265
9266/**
9267 * Saves the host state in the VMCS host-state.
9268 *
9269 * @returns VBox status code.
9270 * @param pVCpu The cross context virtual CPU structure.
9271 *
9272 * @remarks No-long-jump zone!!!
9273 */
9274VMMR0DECL(int) VMXR0ExportHostState(PVMCPUCC pVCpu)
9275{
9276 AssertPtr(pVCpu);
9277 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9278
9279 /*
9280 * Export the host state here while entering HM context.
9281 * When thread-context hooks are used, we might get preempted and have to re-save the host
9282 * state but most of the time we won't be, so do it here before we disable interrupts.
9283 */
9284 return hmR0VmxExportHostState(pVCpu);
9285}
9286
9287
9288/**
9289 * Exports the guest state into the VMCS guest-state area.
9290 *
9291 * The will typically be done before VM-entry when the guest-CPU state and the
9292 * VMCS state may potentially be out of sync.
9293 *
9294 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9295 * VM-entry controls.
9296 * Sets up the appropriate VMX non-root function to execute guest code based on
9297 * the guest CPU mode.
9298 *
9299 * @returns VBox strict status code.
9300 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9301 * without unrestricted guest execution and the VMMDev is not presently
9302 * mapped (e.g. EFI32).
9303 *
9304 * @param pVCpu The cross context virtual CPU structure.
9305 * @param pVmxTransient The VMX-transient structure.
9306 *
9307 * @remarks No-long-jump zone!!!
9308 */
9309static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9310{
9311 AssertPtr(pVCpu);
9312 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9313 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9314
9315 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9316
9317 /*
9318 * Determine real-on-v86 mode.
9319 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9320 */
9321 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9322 if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
9323 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9324 pVmcsInfo->RealMode.fRealOnV86Active = false;
9325 else
9326 {
9327 Assert(!pVmxTransient->fIsNestedGuest);
9328 pVmcsInfo->RealMode.fRealOnV86Active = true;
9329 }
9330
9331 /*
9332 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9333 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9334 */
9335 int rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9336 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9337
9338 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9339 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9340
9341 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9342 if (rcStrict == VINF_SUCCESS)
9343 { /* likely */ }
9344 else
9345 {
9346 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9347 return rcStrict;
9348 }
9349
9350 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9351 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9352
9353 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9354 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9355
9356 hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9357 hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9358 hmR0VmxExportGuestRip(pVCpu);
9359 hmR0VmxExportGuestRsp(pVCpu);
9360 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9361
9362 rc = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9363 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9364
9365 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9366 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9367 | HM_CHANGED_GUEST_CR2
9368 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9369 | HM_CHANGED_GUEST_X87
9370 | HM_CHANGED_GUEST_SSE_AVX
9371 | HM_CHANGED_GUEST_OTHER_XSAVE
9372 | HM_CHANGED_GUEST_XCRx
9373 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9374 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9375 | HM_CHANGED_GUEST_TSC_AUX
9376 | HM_CHANGED_GUEST_OTHER_MSRS
9377 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9378
9379 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9380 return rc;
9381}
9382
9383
9384/**
9385 * Exports the state shared between the host and guest into the VMCS.
9386 *
9387 * @param pVCpu The cross context virtual CPU structure.
9388 * @param pVmxTransient The VMX-transient structure.
9389 *
9390 * @remarks No-long-jump zone!!!
9391 */
9392static void hmR0VmxExportSharedState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9393{
9394 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9395 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9396
9397 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9398 {
9399 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9400 AssertRC(rc);
9401 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9402
9403 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9404 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9405 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9406 }
9407
9408 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9409 {
9410 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9411 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9412 }
9413
9414 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9415 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9416}
9417
9418
9419/**
9420 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9421 *
9422 * @returns Strict VBox status code (i.e. informational status codes too).
9423 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9424 * without unrestricted guest execution and the VMMDev is not presently
9425 * mapped (e.g. EFI32).
9426 *
9427 * @param pVCpu The cross context virtual CPU structure.
9428 * @param pVmxTransient The VMX-transient structure.
9429 *
9430 * @remarks No-long-jump zone!!!
9431 */
9432static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9433{
9434 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9435 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9436 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9437
9438#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9439 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9440#endif
9441
9442 /*
9443 * For many VM-exits only RIP/RSP/RFLAGS (and HWVIRT state when executing a nested-guest)
9444 * changes. First try to export only these without going through all other changed-flag checks.
9445 */
9446 VBOXSTRICTRC rcStrict;
9447 uint64_t const fCtxMask = HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
9448 uint64_t const fMinimalMask = HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT;
9449 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9450
9451 /* If only RIP/RSP/RFLAGS/HWVIRT changed, export only those (quicker, happens more often).*/
9452 if ( (fCtxChanged & fMinimalMask)
9453 && !(fCtxChanged & (fCtxMask & ~fMinimalMask)))
9454 {
9455 hmR0VmxExportGuestRip(pVCpu);
9456 hmR0VmxExportGuestRsp(pVCpu);
9457 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9458 rcStrict = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9459 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9460 }
9461 /* If anything else also changed, go through the full export routine and export as required. */
9462 else if (fCtxChanged & fCtxMask)
9463 {
9464 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9465 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9466 { /* likely */}
9467 else
9468 {
9469 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9470 VBOXSTRICTRC_VAL(rcStrict)));
9471 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9472 return rcStrict;
9473 }
9474 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9475 }
9476 /* Nothing changed, nothing to load here. */
9477 else
9478 rcStrict = VINF_SUCCESS;
9479
9480#ifdef VBOX_STRICT
9481 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9482 uint64_t const fCtxChangedCur = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9483 AssertMsg(!(fCtxChangedCur & fCtxMask), ("fCtxChangedCur=%#RX64\n", fCtxChangedCur));
9484#endif
9485 return rcStrict;
9486}
9487
9488
9489/**
9490 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9491 * and update error record fields accordingly.
9492 *
9493 * @returns VMX_IGS_* error codes.
9494 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9495 * wrong with the guest state.
9496 *
9497 * @param pVCpu The cross context virtual CPU structure.
9498 * @param pVmcsInfo The VMCS info. object.
9499 *
9500 * @remarks This function assumes our cache of the VMCS controls
9501 * are valid, i.e. hmR0VmxCheckCachedVmcsCtls() succeeded.
9502 */
9503static uint32_t hmR0VmxCheckGuestState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
9504{
9505#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9506#define HMVMX_CHECK_BREAK(expr, err) do { \
9507 if (!(expr)) { uError = (err); break; } \
9508 } while (0)
9509
9510 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
9511 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9512 uint32_t uError = VMX_IGS_ERROR;
9513 uint32_t u32IntrState = 0;
9514 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9515 do
9516 {
9517 int rc;
9518
9519 /*
9520 * Guest-interruptibility state.
9521 *
9522 * Read this first so that any check that fails prior to those that actually
9523 * require the guest-interruptibility state would still reflect the correct
9524 * VMCS value and avoids causing further confusion.
9525 */
9526 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9527 AssertRC(rc);
9528
9529 uint32_t u32Val;
9530 uint64_t u64Val;
9531
9532 /*
9533 * CR0.
9534 */
9535 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9536 uint64_t fSetCr0 = (pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9537 uint64_t const fZapCr0 = (pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9538 /* Exceptions for unrestricted guest execution for CR0 fixed bits (PE, PG).
9539 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9540 if (fUnrestrictedGuest)
9541 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
9542
9543 uint64_t u64GuestCr0;
9544 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64GuestCr0);
9545 AssertRC(rc);
9546 HMVMX_CHECK_BREAK((u64GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9547 HMVMX_CHECK_BREAK(!(u64GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9548 if ( !fUnrestrictedGuest
9549 && (u64GuestCr0 & X86_CR0_PG)
9550 && !(u64GuestCr0 & X86_CR0_PE))
9551 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9552
9553 /*
9554 * CR4.
9555 */
9556 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9557 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9558 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9559
9560 uint64_t u64GuestCr4;
9561 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64GuestCr4);
9562 AssertRC(rc);
9563 HMVMX_CHECK_BREAK((u64GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9564 HMVMX_CHECK_BREAK(!(u64GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9565
9566 /*
9567 * IA32_DEBUGCTL MSR.
9568 */
9569 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9570 AssertRC(rc);
9571 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9572 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9573 {
9574 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9575 }
9576 uint64_t u64DebugCtlMsr = u64Val;
9577
9578#ifdef VBOX_STRICT
9579 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9580 AssertRC(rc);
9581 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9582#endif
9583 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9584
9585 /*
9586 * RIP and RFLAGS.
9587 */
9588 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
9589 AssertRC(rc);
9590 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9591 if ( !fLongModeGuest
9592 || !pCtx->cs.Attr.n.u1Long)
9593 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9594 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9595 * must be identical if the "IA-32e mode guest" VM-entry
9596 * control is 1 and CS.L is 1. No check applies if the
9597 * CPU supports 64 linear-address bits. */
9598
9599 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9600 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9601 AssertRC(rc);
9602 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9603 VMX_IGS_RFLAGS_RESERVED);
9604 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9605 uint32_t const u32Eflags = u64Val;
9606
9607 if ( fLongModeGuest
9608 || ( fUnrestrictedGuest
9609 && !(u64GuestCr0 & X86_CR0_PE)))
9610 {
9611 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9612 }
9613
9614 uint32_t u32EntryInfo;
9615 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9616 AssertRC(rc);
9617 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
9618 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9619
9620 /*
9621 * 64-bit checks.
9622 */
9623 if (fLongModeGuest)
9624 {
9625 HMVMX_CHECK_BREAK(u64GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9626 HMVMX_CHECK_BREAK(u64GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9627 }
9628
9629 if ( !fLongModeGuest
9630 && (u64GuestCr4 & X86_CR4_PCIDE))
9631 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9632
9633 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9634 * 51:32 beyond the processor's physical-address width are 0. */
9635
9636 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9637 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9638 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9639
9640 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9641 AssertRC(rc);
9642 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9643
9644 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9645 AssertRC(rc);
9646 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9647
9648 /*
9649 * PERF_GLOBAL MSR.
9650 */
9651 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9652 {
9653 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9654 AssertRC(rc);
9655 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9656 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9657 }
9658
9659 /*
9660 * PAT MSR.
9661 */
9662 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9663 {
9664 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9665 AssertRC(rc);
9666 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9667 for (unsigned i = 0; i < 8; i++)
9668 {
9669 uint8_t u8Val = (u64Val & 0xff);
9670 if ( u8Val != 0 /* UC */
9671 && u8Val != 1 /* WC */
9672 && u8Val != 4 /* WT */
9673 && u8Val != 5 /* WP */
9674 && u8Val != 6 /* WB */
9675 && u8Val != 7 /* UC- */)
9676 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9677 u64Val >>= 8;
9678 }
9679 }
9680
9681 /*
9682 * EFER MSR.
9683 */
9684 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9685 {
9686 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9687 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9688 AssertRC(rc);
9689 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9690 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9691 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9692 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9693 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9694 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9695 * iemVmxVmentryCheckGuestState(). */
9696 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9697 || !(u64GuestCr0 & X86_CR0_PG)
9698 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9699 VMX_IGS_EFER_LMA_LME_MISMATCH);
9700 }
9701
9702 /*
9703 * Segment registers.
9704 */
9705 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9706 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9707 if (!(u32Eflags & X86_EFL_VM))
9708 {
9709 /* CS */
9710 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9711 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9712 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9713 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9714 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9715 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9716 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9717 /* CS cannot be loaded with NULL in protected mode. */
9718 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9719 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9720 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9721 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9722 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9723 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9724 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9725 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9726 else
9727 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9728
9729 /* SS */
9730 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9731 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9732 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9733 if ( !(pCtx->cr0 & X86_CR0_PE)
9734 || pCtx->cs.Attr.n.u4Type == 3)
9735 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9736
9737 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9738 {
9739 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9740 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9741 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9742 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9743 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9744 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9745 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9746 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9747 }
9748
9749 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9750 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9751 {
9752 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9753 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9754 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9755 || pCtx->ds.Attr.n.u4Type > 11
9756 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9757 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9758 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9759 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9760 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9761 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9762 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9763 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9764 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9765 }
9766 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9767 {
9768 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9769 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9770 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9771 || pCtx->es.Attr.n.u4Type > 11
9772 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9773 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9774 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9775 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9776 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9777 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9778 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9779 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9780 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9781 }
9782 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9783 {
9784 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9785 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9786 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9787 || pCtx->fs.Attr.n.u4Type > 11
9788 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9789 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9790 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9791 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9792 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9793 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9794 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9795 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9796 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9797 }
9798 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9799 {
9800 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9801 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9802 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9803 || pCtx->gs.Attr.n.u4Type > 11
9804 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9805 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9806 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9807 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9808 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9809 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9810 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9811 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9812 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9813 }
9814 /* 64-bit capable CPUs. */
9815 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9816 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9817 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9818 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9819 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9820 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9821 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9822 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9823 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9824 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9825 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9826 }
9827 else
9828 {
9829 /* V86 mode checks. */
9830 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9831 if (pVmcsInfo->RealMode.fRealOnV86Active)
9832 {
9833 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9834 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9835 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9836 }
9837 else
9838 {
9839 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9840 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9841 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9842 }
9843
9844 /* CS */
9845 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9846 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9847 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9848 /* SS */
9849 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9850 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9851 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9852 /* DS */
9853 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9854 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9855 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9856 /* ES */
9857 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9858 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9859 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9860 /* FS */
9861 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9862 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9863 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9864 /* GS */
9865 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9866 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9867 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9868 /* 64-bit capable CPUs. */
9869 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9870 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9871 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9872 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9873 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9874 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9875 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9876 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9877 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9878 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9879 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9880 }
9881
9882 /*
9883 * TR.
9884 */
9885 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9886 /* 64-bit capable CPUs. */
9887 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9888 if (fLongModeGuest)
9889 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9890 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9891 else
9892 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9893 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9894 VMX_IGS_TR_ATTR_TYPE_INVALID);
9895 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9896 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9897 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9898 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9899 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9900 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9901 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9902 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9903
9904 /*
9905 * GDTR and IDTR (64-bit capable checks).
9906 */
9907 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9908 AssertRC(rc);
9909 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9910
9911 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9912 AssertRC(rc);
9913 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9914
9915 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9916 AssertRC(rc);
9917 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9918
9919 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9920 AssertRC(rc);
9921 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9922
9923 /*
9924 * Guest Non-Register State.
9925 */
9926 /* Activity State. */
9927 uint32_t u32ActivityState;
9928 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9929 AssertRC(rc);
9930 HMVMX_CHECK_BREAK( !u32ActivityState
9931 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
9932 VMX_IGS_ACTIVITY_STATE_INVALID);
9933 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9934 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9935
9936 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
9937 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9938 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9939
9940 /** @todo Activity state and injecting interrupts. Left as a todo since we
9941 * currently don't use activity states but ACTIVE. */
9942
9943 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9944 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9945
9946 /* Guest interruptibility-state. */
9947 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9948 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9949 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9950 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9951 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9952 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9953 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9954 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
9955 {
9956 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9957 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9958 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9959 }
9960 else if (VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
9961 {
9962 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9963 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9964 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9965 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9966 }
9967 /** @todo Assumes the processor is not in SMM. */
9968 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9969 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9970 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9971 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9972 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9973 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
9974 && VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
9975 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI), VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9976
9977 /* Pending debug exceptions. */
9978 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
9979 AssertRC(rc);
9980 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9981 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9982 u32Val = u64Val; /* For pending debug exceptions checks below. */
9983
9984 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9985 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
9986 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9987 {
9988 if ( (u32Eflags & X86_EFL_TF)
9989 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9990 {
9991 /* Bit 14 is PendingDebug.BS. */
9992 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9993 }
9994 if ( !(u32Eflags & X86_EFL_TF)
9995 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9996 {
9997 /* Bit 14 is PendingDebug.BS. */
9998 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9999 }
10000 }
10001
10002 /* VMCS link pointer. */
10003 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
10004 AssertRC(rc);
10005 if (u64Val != UINT64_C(0xffffffffffffffff))
10006 {
10007 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
10008 /** @todo Bits beyond the processor's physical-address width MBZ. */
10009 /** @todo SMM checks. */
10010 Assert(pVmcsInfo->HCPhysShadowVmcs == u64Val);
10011 Assert(pVmcsInfo->pvShadowVmcs);
10012 VMXVMCSREVID VmcsRevId;
10013 VmcsRevId.u = *(uint32_t *)pVmcsInfo->pvShadowVmcs;
10014 HMVMX_CHECK_BREAK(VmcsRevId.n.u31RevisionId == RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID),
10015 VMX_IGS_VMCS_LINK_PTR_SHADOW_VMCS_ID_INVALID);
10016 HMVMX_CHECK_BREAK(VmcsRevId.n.fIsShadowVmcs == (uint32_t)!!(pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING),
10017 VMX_IGS_VMCS_LINK_PTR_NOT_SHADOW);
10018 }
10019
10020 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
10021 * not using nested paging? */
10022 if ( pVM->hm.s.fNestedPaging
10023 && !fLongModeGuest
10024 && CPUMIsGuestInPAEModeEx(pCtx))
10025 {
10026 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
10027 AssertRC(rc);
10028 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10029
10030 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
10031 AssertRC(rc);
10032 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10033
10034 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
10035 AssertRC(rc);
10036 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10037
10038 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
10039 AssertRC(rc);
10040 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10041 }
10042
10043 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
10044 if (uError == VMX_IGS_ERROR)
10045 uError = VMX_IGS_REASON_NOT_FOUND;
10046 } while (0);
10047
10048 pVCpu->hm.s.u32HMError = uError;
10049 pVCpu->hm.s.vmx.LastError.u32GuestIntrState = u32IntrState;
10050 return uError;
10051
10052#undef HMVMX_ERROR_BREAK
10053#undef HMVMX_CHECK_BREAK
10054}
10055
10056
10057/**
10058 * Map the APIC-access page for virtualizing APIC accesses.
10059 *
10060 * This can cause a longjumps to R3 due to the acquisition of the PGM lock. Hence,
10061 * this not done as part of exporting guest state, see @bugref{8721}.
10062 *
10063 * @returns VBox status code.
10064 * @param pVCpu The cross context virtual CPU structure.
10065 */
10066static int hmR0VmxMapHCApicAccessPage(PVMCPUCC pVCpu)
10067{
10068 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10069 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
10070
10071 Assert(PDMHasApic(pVM));
10072 Assert(u64MsrApicBase);
10073
10074 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
10075 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
10076
10077 /* Unalias the existing mapping. */
10078 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
10079 AssertRCReturn(rc, rc);
10080
10081 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
10082 Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
10083 rc = IOMR0MmioMapMmioHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
10084 AssertRCReturn(rc, rc);
10085
10086 /* Update the per-VCPU cache of the APIC base MSR. */
10087 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
10088 return VINF_SUCCESS;
10089}
10090
10091
10092/**
10093 * Worker function passed to RTMpOnSpecific() that is to be called on the target
10094 * CPU.
10095 *
10096 * @param idCpu The ID for the CPU the function is called on.
10097 * @param pvUser1 Null, not used.
10098 * @param pvUser2 Null, not used.
10099 */
10100static DECLCALLBACK(void) hmR0DispatchHostNmi(RTCPUID idCpu, void *pvUser1, void *pvUser2)
10101{
10102 RT_NOREF3(idCpu, pvUser1, pvUser2);
10103 VMXDispatchHostNmi();
10104}
10105
10106
10107/**
10108 * Dispatching an NMI on the host CPU that received it.
10109 *
10110 * @returns VBox status code.
10111 * @param pVCpu The cross context virtual CPU structure.
10112 * @param pVmcsInfo The VMCS info. object corresponding to the VMCS that was
10113 * executing when receiving the host NMI in VMX non-root
10114 * operation.
10115 */
10116static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
10117{
10118 RTCPUID const idCpu = pVmcsInfo->idHostCpuExec;
10119 Assert(idCpu != NIL_RTCPUID);
10120
10121 /*
10122 * We don't want to delay dispatching the NMI any more than we have to. However,
10123 * we have already chosen -not- to dispatch NMIs when interrupts were still disabled
10124 * after executing guest or nested-guest code for the following reasons:
10125 *
10126 * - We would need to perform VMREADs with interrupts disabled and is orders of
10127 * magnitude worse when we run as a nested hypervisor without VMCS shadowing
10128 * supported by the host hypervisor.
10129 *
10130 * - It affects the common VM-exit scenario and keeps interrupts disabled for a
10131 * longer period of time just for handling an edge case like host NMIs which do
10132 * not occur nearly as frequently as other VM-exits.
10133 *
10134 * Let's cover the most likely scenario first. Check if we are on the target CPU
10135 * and dispatch the NMI right away. This should be much faster than calling into
10136 * RTMpOnSpecific() machinery.
10137 */
10138 bool fDispatched = false;
10139 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10140 if (idCpu == RTMpCpuId())
10141 {
10142 VMXDispatchHostNmi();
10143 fDispatched = true;
10144 }
10145 ASMSetFlags(fEFlags);
10146 if (fDispatched)
10147 {
10148 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
10149 return VINF_SUCCESS;
10150 }
10151
10152 /*
10153 * RTMpOnSpecific() waits until the worker function has run on the target CPU. So
10154 * there should be no race or recursion even if we are unlucky enough to be preempted
10155 * (to the target CPU) without dispatching the host NMI above.
10156 */
10157 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGCIpi);
10158 return RTMpOnSpecific(idCpu, &hmR0DispatchHostNmi, NULL /* pvUser1 */, NULL /* pvUser2 */);
10159}
10160
10161
10162#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10163/**
10164 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
10165 * nested-guest using hardware-assisted VMX.
10166 *
10167 * @param pVCpu The cross context virtual CPU structure.
10168 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
10169 * @param pVmcsInfoGst The guest VMCS info. object.
10170 */
10171static void hmR0VmxMergeMsrBitmapNested(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
10172{
10173 uint32_t const cbMsrBitmap = X86_PAGE_4K_SIZE;
10174 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
10175 Assert(pu64MsrBitmap);
10176
10177 /*
10178 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
10179 * MSR that is intercepted by the guest is also intercepted while executing the
10180 * nested-guest using hardware-assisted VMX.
10181 *
10182 * Note! If the nested-guest is not using an MSR bitmap, every MSR must cause a
10183 * nested-guest VM-exit even if the outer guest is not intercepting some
10184 * MSRs. We cannot assume the caller has initialized the nested-guest
10185 * MSR bitmap in this case.
10186 *
10187 * The nested hypervisor may also switch whether it uses MSR bitmaps for
10188 * each of its VM-entry, hence initializing it once per-VM while setting
10189 * up the nested-guest VMCS is not sufficient.
10190 */
10191 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10192 if (pVmcsNstGst->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10193 {
10194 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
10195 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
10196 Assert(pu64MsrBitmapNstGst);
10197 Assert(pu64MsrBitmapGst);
10198
10199 uint32_t const cFrags = cbMsrBitmap / sizeof(uint64_t);
10200 for (uint32_t i = 0; i < cFrags; i++)
10201 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
10202 }
10203 else
10204 ASMMemFill32(pu64MsrBitmap, cbMsrBitmap, UINT32_C(0xffffffff));
10205}
10206
10207
10208/**
10209 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
10210 * hardware-assisted VMX execution of the nested-guest.
10211 *
10212 * For a guest, we don't modify these controls once we set up the VMCS and hence
10213 * this function is never called.
10214 *
10215 * For nested-guests since the nested hypervisor provides these controls on every
10216 * nested-guest VM-entry and could potentially change them everytime we need to
10217 * merge them before every nested-guest VM-entry.
10218 *
10219 * @returns VBox status code.
10220 * @param pVCpu The cross context virtual CPU structure.
10221 */
10222static int hmR0VmxMergeVmcsNested(PVMCPUCC pVCpu)
10223{
10224 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10225 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
10226 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10227 Assert(pVmcsNstGst);
10228
10229 /*
10230 * Merge the controls with the requirements of the guest VMCS.
10231 *
10232 * We do not need to validate the nested-guest VMX features specified in the nested-guest
10233 * VMCS with the features supported by the physical CPU as it's already done by the
10234 * VMLAUNCH/VMRESUME instruction emulation.
10235 *
10236 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the guest are
10237 * derived from the VMX features supported by the physical CPU.
10238 */
10239
10240 /* Pin-based VM-execution controls. */
10241 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
10242
10243 /* Processor-based VM-execution controls. */
10244 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
10245 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
10246 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
10247 | VMX_PROC_CTLS_USE_TPR_SHADOW
10248 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
10249
10250 /* Secondary processor-based VM-execution controls. */
10251 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
10252 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
10253 | VMX_PROC_CTLS2_INVPCID
10254 | VMX_PROC_CTLS2_VMCS_SHADOWING
10255 | VMX_PROC_CTLS2_RDTSCP
10256 | VMX_PROC_CTLS2_XSAVES_XRSTORS
10257 | VMX_PROC_CTLS2_APIC_REG_VIRT
10258 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
10259 | VMX_PROC_CTLS2_VMFUNC));
10260
10261 /*
10262 * VM-entry controls:
10263 * These controls contains state that depends on the nested-guest state (primarily
10264 * EFER MSR) and is thus not constant between VMLAUNCH/VMRESUME and the nested-guest
10265 * VM-exit. Although the nested hypervisor cannot change it, we need to in order to
10266 * properly continue executing the nested-guest if the EFER MSR changes but does not
10267 * cause a nested-guest VM-exits.
10268 *
10269 * VM-exit controls:
10270 * These controls specify the host state on return. We cannot use the controls from
10271 * the nested hypervisor state as is as it would contain the guest state rather than
10272 * the host state. Since the host state is subject to change (e.g. preemption, trips
10273 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
10274 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
10275 *
10276 * VM-entry MSR-load:
10277 * The guest MSRs from the VM-entry MSR-load area are already loaded into the guest-CPU
10278 * context by the VMLAUNCH/VMRESUME instruction emulation.
10279 *
10280 * VM-exit MSR-store:
10281 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU context
10282 * back into the VM-exit MSR-store area.
10283 *
10284 * VM-exit MSR-load areas:
10285 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence, we
10286 * can entirely ignore what the nested hypervisor wants to load here.
10287 */
10288
10289 /*
10290 * Exception bitmap.
10291 *
10292 * We could remove #UD from the guest bitmap and merge it with the nested-guest bitmap
10293 * here (and avoid doing anything while exporting nested-guest state), but to keep the
10294 * code more flexible if intercepting exceptions become more dynamic in the future we do
10295 * it as part of exporting the nested-guest state.
10296 */
10297 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
10298
10299 /*
10300 * CR0/CR4 guest/host mask.
10301 *
10302 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest must
10303 * cause VM-exits, so we need to merge them here.
10304 */
10305 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
10306 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
10307
10308 /*
10309 * Page-fault error-code mask and match.
10310 *
10311 * Although we require unrestricted guest execution (and thereby nested-paging) for
10312 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
10313 * normally intercept #PFs, it might intercept them for debugging purposes.
10314 *
10315 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF filters.
10316 * If the outer guest is intercepting #PFs, we must intercept all #PFs.
10317 */
10318 uint32_t u32XcptPFMask;
10319 uint32_t u32XcptPFMatch;
10320 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
10321 {
10322 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
10323 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
10324 }
10325 else
10326 {
10327 u32XcptPFMask = 0;
10328 u32XcptPFMatch = 0;
10329 }
10330
10331 /*
10332 * Pause-Loop exiting.
10333 */
10334 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10335 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10336
10337 /*
10338 * Pending debug exceptions.
10339 * Currently just copy whatever the nested-guest provides us.
10340 */
10341 uint64_t const uPendingDbgXcpts = pVmcsNstGst->u64GuestPendingDbgXcpts.u;
10342
10343 /*
10344 * I/O Bitmap.
10345 *
10346 * We do not use the I/O bitmap that may be provided by the nested hypervisor as we always
10347 * intercept all I/O port accesses.
10348 */
10349 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10350 Assert(!(u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS));
10351
10352 /*
10353 * VMCS shadowing.
10354 *
10355 * We do not yet expose VMCS shadowing to the guest and thus VMCS shadowing should not be
10356 * enabled while executing the nested-guest.
10357 */
10358 Assert(!(u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING));
10359
10360 /*
10361 * APIC-access page.
10362 */
10363 RTHCPHYS HCPhysApicAccess;
10364 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10365 {
10366 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
10367 RTGCPHYS const GCPhysApicAccess = pVmcsNstGst->u64AddrApicAccess.u;
10368
10369 /** @todo NSTVMX: This is not really correct but currently is required to make
10370 * things work. We need to re-enable the page handler when we fallback to
10371 * IEM execution of the nested-guest! */
10372 PGMHandlerPhysicalPageTempOff(pVM, GCPhysApicAccess, GCPhysApicAccess);
10373
10374 void *pvPage;
10375 PGMPAGEMAPLOCK PgLockApicAccess;
10376 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysApicAccess, &pvPage, &PgLockApicAccess);
10377 if (RT_SUCCESS(rc))
10378 {
10379 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysApicAccess, &HCPhysApicAccess);
10380 AssertMsgRCReturn(rc, ("Failed to get host-physical address for APIC-access page at %#RGp\n", GCPhysApicAccess), rc);
10381
10382 /** @todo Handle proper releasing of page-mapping lock later. */
10383 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockApicAccess);
10384 }
10385 else
10386 return rc;
10387 }
10388 else
10389 HCPhysApicAccess = 0;
10390
10391 /*
10392 * Virtual-APIC page and TPR threshold.
10393 */
10394 RTHCPHYS HCPhysVirtApic;
10395 uint32_t u32TprThreshold;
10396 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10397 {
10398 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW);
10399 RTGCPHYS const GCPhysVirtApic = pVmcsNstGst->u64AddrVirtApic.u;
10400
10401 void *pvPage;
10402 PGMPAGEMAPLOCK PgLockVirtApic;
10403 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysVirtApic, &pvPage, &PgLockVirtApic);
10404 if (RT_SUCCESS(rc))
10405 {
10406 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysVirtApic, &HCPhysVirtApic);
10407 AssertMsgRCReturn(rc, ("Failed to get host-physical address for virtual-APIC page at %#RGp\n", GCPhysVirtApic), rc);
10408
10409 /** @todo Handle proper releasing of page-mapping lock later. */
10410 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockVirtApic);
10411 }
10412 else
10413 return rc;
10414
10415 u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10416 }
10417 else
10418 {
10419 HCPhysVirtApic = 0;
10420 u32TprThreshold = 0;
10421
10422 /*
10423 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10424 * used by the nested hypervisor. Preventing MMIO accesses to the physical APIC will
10425 * be taken care of by EPT/shadow paging.
10426 */
10427 if (pVM->hm.s.fAllow64BitGuests)
10428 {
10429 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10430 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10431 }
10432 }
10433
10434 /*
10435 * Validate basic assumptions.
10436 */
10437 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10438 Assert(pVM->hm.s.vmx.fAllowUnrestricted);
10439 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10440 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10441
10442 /*
10443 * Commit it to the nested-guest VMCS.
10444 */
10445 int rc = VINF_SUCCESS;
10446 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10447 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10448 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10449 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10450 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10451 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10452 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10453 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10454 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10455 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10456 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10457 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10458 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10459 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10460 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10461 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10462 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10463 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10464 {
10465 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10466 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10467 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10468 }
10469 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10470 {
10471 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10472 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10473 }
10474 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10475 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
10476 rc |= VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, uPendingDbgXcpts);
10477 AssertRC(rc);
10478
10479 /*
10480 * Update the nested-guest VMCS cache.
10481 */
10482 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10483 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10484 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10485 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10486 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10487 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10488 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10489 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10490 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10491
10492 /*
10493 * We need to flush the TLB if we are switching the APIC-access page address.
10494 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
10495 */
10496 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10497 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = true;
10498
10499 /*
10500 * MSR bitmap.
10501 *
10502 * The MSR bitmap address has already been initialized while setting up the nested-guest
10503 * VMCS, here we need to merge the MSR bitmaps.
10504 */
10505 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10506 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10507
10508 return VINF_SUCCESS;
10509}
10510#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10511
10512
10513/**
10514 * Does the preparations before executing guest code in VT-x.
10515 *
10516 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10517 * recompiler/IEM. We must be cautious what we do here regarding committing
10518 * guest-state information into the VMCS assuming we assuredly execute the
10519 * guest in VT-x mode.
10520 *
10521 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10522 * the common-state (TRPM/forceflags), we must undo those changes so that the
10523 * recompiler/IEM can (and should) use them when it resumes guest execution.
10524 * Otherwise such operations must be done when we can no longer exit to ring-3.
10525 *
10526 * @returns Strict VBox status code (i.e. informational status codes too).
10527 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10528 * have been disabled.
10529 * @retval VINF_VMX_VMEXIT if a nested-guest VM-exit occurs (e.g., while evaluating
10530 * pending events).
10531 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10532 * double-fault into the guest.
10533 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10534 * dispatched directly.
10535 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10536 *
10537 * @param pVCpu The cross context virtual CPU structure.
10538 * @param pVmxTransient The VMX-transient structure.
10539 * @param fStepping Whether we are single-stepping the guest in the
10540 * hypervisor debugger. Makes us ignore some of the reasons
10541 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10542 * if event dispatching took place.
10543 */
10544static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10545{
10546 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10547
10548 Log4Func(("fIsNested=%RTbool fStepping=%RTbool\n", pVmxTransient->fIsNestedGuest, fStepping));
10549
10550#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10551 if (pVmxTransient->fIsNestedGuest)
10552 {
10553 RT_NOREF2(pVCpu, fStepping);
10554 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10555 return VINF_EM_RESCHEDULE_REM;
10556 }
10557#endif
10558
10559#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
10560 PGMRZDynMapFlushAutoSet(pVCpu);
10561#endif
10562
10563 /*
10564 * Check and process force flag actions, some of which might require us to go back to ring-3.
10565 */
10566 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, pVmxTransient, fStepping);
10567 if (rcStrict == VINF_SUCCESS)
10568 {
10569 /* FFs don't get set all the time. */
10570#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10571 if ( pVmxTransient->fIsNestedGuest
10572 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10573 {
10574 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10575 return VINF_VMX_VMEXIT;
10576 }
10577#endif
10578 }
10579 else
10580 return rcStrict;
10581
10582 /*
10583 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10584 */
10585 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10586 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10587 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10588 && PDMHasApic(pVM))
10589 {
10590 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10591 AssertRCReturn(rc, rc);
10592 }
10593
10594#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10595 /*
10596 * Merge guest VMCS controls with the nested-guest VMCS controls.
10597 *
10598 * Even if we have not executed the guest prior to this (e.g. when resuming from a
10599 * saved state), we should be okay with merging controls as we initialize the
10600 * guest VMCS controls as part of VM setup phase.
10601 */
10602 if ( pVmxTransient->fIsNestedGuest
10603 && !pVCpu->hm.s.vmx.fMergedNstGstCtls)
10604 {
10605 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10606 AssertRCReturn(rc, rc);
10607 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10608 }
10609#endif
10610
10611 /*
10612 * Evaluate events to be injected into the guest.
10613 *
10614 * Events in TRPM can be injected without inspecting the guest state.
10615 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10616 * guest to cause a VM-exit the next time they are ready to receive the event.
10617 *
10618 * With nested-guests, evaluating pending events may cause VM-exits. Also, verify
10619 * that the event in TRPM that we will inject using hardware-assisted VMX is -not-
10620 * subject to interecption. Otherwise, we should have checked and injected them
10621 * manually elsewhere (IEM).
10622 */
10623 if (TRPMHasTrap(pVCpu))
10624 {
10625 Assert(!pVmxTransient->fIsNestedGuest || !CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx));
10626 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10627 }
10628
10629 uint32_t fIntrState;
10630 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10631
10632#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10633 /*
10634 * While evaluating pending events if something failed (unlikely) or if we were
10635 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10636 */
10637 if (rcStrict != VINF_SUCCESS)
10638 return rcStrict;
10639 if ( pVmxTransient->fIsNestedGuest
10640 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10641 {
10642 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10643 return VINF_VMX_VMEXIT;
10644 }
10645#else
10646 Assert(rcStrict == VINF_SUCCESS);
10647#endif
10648
10649 /*
10650 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10651 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10652 * also result in triple-faulting the VM.
10653 *
10654 * With nested-guests, the above does not apply since unrestricted guest execution is a
10655 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
10656 */
10657 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10658 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10659 { /* likely */ }
10660 else
10661 {
10662 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10663 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10664 return rcStrict;
10665 }
10666
10667 /*
10668 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10669 * import CR3 themselves. We will need to update them here, as even as late as the above
10670 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10671 * the below force flags to be set.
10672 */
10673 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10674 {
10675 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10676 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10677 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10678 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10679 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10680 }
10681 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10682 {
10683 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10684 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10685 }
10686
10687#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10688 /* Paranoia. */
10689 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10690#endif
10691
10692 /*
10693 * No longjmps to ring-3 from this point on!!!
10694 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10695 * This also disables flushing of the R0-logger instance (if any).
10696 */
10697 VMMRZCallRing3Disable(pVCpu);
10698
10699 /*
10700 * Export the guest state bits.
10701 *
10702 * We cannot perform longjmps while loading the guest state because we do not preserve the
10703 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10704 * CPU migration.
10705 *
10706 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10707 * registers. Hence, exporting of the guest state needs to be done -after- injection of events.
10708 */
10709 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10710 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10711 { /* likely */ }
10712 else
10713 {
10714 VMMRZCallRing3Enable(pVCpu);
10715 return rcStrict;
10716 }
10717
10718 /*
10719 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10720 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10721 * preemption disabled for a while. Since this is purely to aid the
10722 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10723 * disable interrupt on NT.
10724 *
10725 * We need to check for force-flags that could've possible been altered since we last
10726 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10727 * see @bugref{6398}).
10728 *
10729 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10730 * to ring-3 before executing guest code.
10731 */
10732 pVmxTransient->fEFlags = ASMIntDisableFlags();
10733
10734 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10735 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10736 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10737 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10738 {
10739 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10740 {
10741#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10742 /*
10743 * If we are executing a nested-guest make sure that we should intercept subsequent
10744 * events. The one we are injecting might be part of VM-entry. This is mainly to keep
10745 * the VM-exit instruction emulation happy.
10746 */
10747 if (pVmxTransient->fIsNestedGuest)
10748 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
10749#endif
10750
10751 /*
10752 * We've injected any pending events. This is really the point of no return (to ring-3).
10753 *
10754 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10755 * returns from this function, so do -not- enable them here.
10756 */
10757 pVCpu->hm.s.Event.fPending = false;
10758 return VINF_SUCCESS;
10759 }
10760
10761 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10762 rcStrict = VINF_EM_RAW_INTERRUPT;
10763 }
10764 else
10765 {
10766 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10767 rcStrict = VINF_EM_RAW_TO_R3;
10768 }
10769
10770 ASMSetFlags(pVmxTransient->fEFlags);
10771 VMMRZCallRing3Enable(pVCpu);
10772
10773 return rcStrict;
10774}
10775
10776
10777/**
10778 * Final preparations before executing guest code using hardware-assisted VMX.
10779 *
10780 * We can no longer get preempted to a different host CPU and there are no returns
10781 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10782 * failures), this function is not intended to fail sans unrecoverable hardware
10783 * errors.
10784 *
10785 * @param pVCpu The cross context virtual CPU structure.
10786 * @param pVmxTransient The VMX-transient structure.
10787 *
10788 * @remarks Called with preemption disabled.
10789 * @remarks No-long-jump zone!!!
10790 */
10791static void hmR0VmxPreRunGuestCommitted(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
10792{
10793 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10794 Assert(VMMR0IsLogFlushDisabled(pVCpu));
10795 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
10796 Assert(!pVCpu->hm.s.Event.fPending);
10797
10798 /*
10799 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
10800 */
10801 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10802 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
10803
10804 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10805 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10806 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
10807 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
10808
10809 if (!CPUMIsGuestFPUStateActive(pVCpu))
10810 {
10811 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10812 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
10813 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
10814 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10815 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
10816 }
10817
10818 /*
10819 * Re-export the host state bits as we may've been preempted (only happens when
10820 * thread-context hooks are used or when the VM start function changes) or if
10821 * the host CR0 is modified while loading the guest FPU state above.
10822 *
10823 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
10824 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
10825 * see @bugref{8432}.
10826 *
10827 * This may also happen when switching to/from a nested-guest VMCS without leaving
10828 * ring-0.
10829 */
10830 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
10831 {
10832 hmR0VmxExportHostState(pVCpu);
10833 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportHostState);
10834 }
10835 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
10836
10837 /*
10838 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
10839 */
10840 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
10841 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
10842 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
10843
10844 /*
10845 * Store status of the shared guest/host debug state at the time of VM-entry.
10846 */
10847 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
10848 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
10849
10850 /*
10851 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
10852 * more than one conditional check. The post-run side of our code shall determine
10853 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
10854 */
10855 if (pVmcsInfo->pbVirtApic)
10856 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
10857
10858 /*
10859 * Update the host MSRs values in the VM-exit MSR-load area.
10860 */
10861 if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
10862 {
10863 if (pVmcsInfo->cExitMsrLoad > 0)
10864 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
10865 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
10866 }
10867
10868 /*
10869 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
10870 * VMX-preemption timer based on the next virtual sync clock deadline.
10871 */
10872 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
10873 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
10874 {
10875 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
10876 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
10877 }
10878
10879 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
10880 bool const fIsRdtscIntercepted = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
10881 if (!fIsRdtscIntercepted)
10882 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
10883 else
10884 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
10885
10886 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
10887 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
10888 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
10889 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Record the error reporting info. with the current host CPU. */
10890 pVmcsInfo->idHostCpuState = idCurrentCpu; /* Record the CPU for which the host-state has been exported. */
10891 pVmcsInfo->idHostCpuExec = idCurrentCpu; /* Record the CPU on which we shall execute. */
10892
10893 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
10894
10895 TMNotifyStartOfExecution(pVM, pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
10896 as we're about to start executing the guest. */
10897
10898 /*
10899 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
10900 *
10901 * This is done this late as updating the TSC offsetting/preemption timer above
10902 * figures out if we can skip intercepting RDTSCP by calculating the number of
10903 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
10904 */
10905 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
10906 && !fIsRdtscIntercepted)
10907 {
10908 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
10909
10910 /* NB: Because we call hmR0VmxAddAutoLoadStoreMsr with fUpdateHostMsr=true,
10911 it's safe even after hmR0VmxUpdateAutoLoadHostMsrs has already been done. */
10912 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
10913 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
10914 AssertRC(rc);
10915 Assert(!pVmxTransient->fRemoveTscAuxMsr);
10916 pVmxTransient->fRemoveTscAuxMsr = true;
10917 }
10918
10919#ifdef VBOX_STRICT
10920 Assert(pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs);
10921 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
10922 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
10923 AssertRC(hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest));
10924#endif
10925
10926#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
10927 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
10928 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs,
10929 * see @bugref{9180#c54}. */
10930 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
10931 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
10932 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
10933#endif
10934}
10935
10936
10937/**
10938 * First C routine invoked after running guest code using hardware-assisted VMX.
10939 *
10940 * @param pVCpu The cross context virtual CPU structure.
10941 * @param pVmxTransient The VMX-transient structure.
10942 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
10943 *
10944 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
10945 *
10946 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
10947 * unconditionally when it is safe to do so.
10948 */
10949static void hmR0VmxPostRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
10950{
10951 uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
10952
10953 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
10954 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
10955 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
10956 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
10957 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
10958 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
10959
10960 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10961 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10962 {
10963 uint64_t uGstTsc;
10964 if (!pVmxTransient->fIsNestedGuest)
10965 uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10966 else
10967 {
10968 uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10969 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
10970 }
10971 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
10972 }
10973
10974 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
10975 TMNotifyEndOfExecution(pVCpu->CTX_SUFF(pVM), pVCpu); /* Notify TM that the guest is no longer running. */
10976 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10977
10978 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
10979 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10980#ifdef VBOX_STRICT
10981 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
10982#endif
10983 Assert(!ASMIntAreEnabled());
10984 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
10985 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10986
10987#ifdef HMVMX_ALWAYS_CLEAN_TRANSIENT
10988 /*
10989 * Clean all the VMCS fields in the transient structure before reading
10990 * anything from the VMCS.
10991 */
10992 pVmxTransient->uExitReason = 0;
10993 pVmxTransient->uExitIntErrorCode = 0;
10994 pVmxTransient->uExitQual = 0;
10995 pVmxTransient->uGuestLinearAddr = 0;
10996 pVmxTransient->uExitIntInfo = 0;
10997 pVmxTransient->cbExitInstr = 0;
10998 pVmxTransient->ExitInstrInfo.u = 0;
10999 pVmxTransient->uEntryIntInfo = 0;
11000 pVmxTransient->uEntryXcptErrorCode = 0;
11001 pVmxTransient->cbEntryInstr = 0;
11002 pVmxTransient->uIdtVectoringInfo = 0;
11003 pVmxTransient->uIdtVectoringErrorCode = 0;
11004#endif
11005
11006 /*
11007 * Save the basic VM-exit reason and check if the VM-entry failed.
11008 * See Intel spec. 24.9.1 "Basic VM-exit Information".
11009 */
11010 uint32_t uExitReason;
11011 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
11012 AssertRC(rc);
11013 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
11014 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
11015
11016 /*
11017 * Log the VM-exit before logging anything else as otherwise it might be a
11018 * tad confusing what happens before and after the world-switch.
11019 */
11020 HMVMX_LOG_EXIT(pVCpu, uExitReason);
11021
11022 /*
11023 * Remove the TSC_AUX MSR from the auto-load/store MSR area and reset any MSR
11024 * bitmap permissions, if it was added before VM-entry.
11025 */
11026 if (pVmxTransient->fRemoveTscAuxMsr)
11027 {
11028 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
11029 pVmxTransient->fRemoveTscAuxMsr = false;
11030 }
11031
11032 /*
11033 * Check if VMLAUNCH/VMRESUME succeeded.
11034 * If this failed, we cause a guru meditation and cease further execution.
11035 *
11036 * However, if we are executing a nested-guest we might fail if we use the
11037 * fast path rather than fully emulating VMLAUNCH/VMRESUME instruction in IEM.
11038 */
11039 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
11040 {
11041 /*
11042 * Update the VM-exit history array here even if the VM-entry failed due to:
11043 * - Invalid guest state.
11044 * - MSR loading.
11045 * - Machine-check event.
11046 *
11047 * In any of the above cases we will still have a "valid" VM-exit reason
11048 * despite @a fVMEntryFailed being false.
11049 *
11050 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
11051 *
11052 * Note! We don't have CS or RIP at this point. Will probably address that later
11053 * by amending the history entry added here.
11054 */
11055 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
11056 UINT64_MAX, uHostTsc);
11057
11058 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
11059 {
11060 VMMRZCallRing3Enable(pVCpu);
11061
11062 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
11063 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
11064
11065#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
11066 hmR0VmxReadAllRoFieldsVmcs(pVmxTransient);
11067#endif
11068
11069 /*
11070 * Import the guest-interruptibility state always as we need it while evaluating
11071 * injecting events on re-entry.
11072 *
11073 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
11074 * checking for real-mode while exporting the state because all bits that cause
11075 * mode changes wrt CR0 are intercepted.
11076 */
11077 uint64_t const fImportMask = CPUMCTX_EXTRN_HM_VMX_INT_STATE
11078#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
11079 | HMVMX_CPUMCTX_EXTRN_ALL
11080#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
11081 | CPUMCTX_EXTRN_RFLAGS
11082#endif
11083 ;
11084 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImportMask);
11085 AssertRC(rc);
11086
11087 /*
11088 * Sync the TPR shadow with our APIC state.
11089 */
11090 if ( !pVmxTransient->fIsNestedGuest
11091 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
11092 {
11093 Assert(pVmcsInfo->pbVirtApic);
11094 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
11095 {
11096 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
11097 AssertRC(rc);
11098 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
11099 }
11100 }
11101
11102 Assert(VMMRZCallRing3IsEnabled(pVCpu));
11103 return;
11104 }
11105 }
11106#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11107 else if (pVmxTransient->fIsNestedGuest)
11108 AssertMsgFailed(("VMLAUNCH/VMRESUME failed but shouldn't happen when VMLAUNCH/VMRESUME was emulated in IEM!\n"));
11109#endif
11110 else
11111 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
11112
11113 VMMRZCallRing3Enable(pVCpu);
11114}
11115
11116
11117/**
11118 * Runs the guest code using hardware-assisted VMX the normal way.
11119 *
11120 * @returns VBox status code.
11121 * @param pVCpu The cross context virtual CPU structure.
11122 * @param pcLoops Pointer to the number of executed loops.
11123 */
11124static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
11125{
11126 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11127 Assert(pcLoops);
11128 Assert(*pcLoops <= cMaxResumeLoops);
11129 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11130
11131#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11132 /*
11133 * Switch to the guest VMCS as we may have transitioned from executing the nested-guest
11134 * without leaving ring-0. Otherwise, if we came from ring-3 we would have loaded the
11135 * guest VMCS while entering the VMX ring-0 session.
11136 */
11137 if (pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
11138 {
11139 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, false /* fSwitchToNstGstVmcs */);
11140 if (RT_SUCCESS(rc))
11141 { /* likely */ }
11142 else
11143 {
11144 LogRelFunc(("Failed to switch to the guest VMCS. rc=%Rrc\n", rc));
11145 return rc;
11146 }
11147 }
11148#endif
11149
11150 VMXTRANSIENT VmxTransient;
11151 RT_ZERO(VmxTransient);
11152 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11153
11154 /* Paranoia. */
11155 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
11156
11157 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11158 for (;;)
11159 {
11160 Assert(!HMR0SuspendPending());
11161 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11162 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11163
11164 /*
11165 * Preparatory work for running nested-guest code, this may force us to
11166 * return to ring-3.
11167 *
11168 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11169 */
11170 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11171 if (rcStrict != VINF_SUCCESS)
11172 break;
11173
11174 /* Interrupts are disabled at this point! */
11175 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11176 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11177 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11178 /* Interrupts are re-enabled at this point! */
11179
11180 /*
11181 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11182 */
11183 if (RT_SUCCESS(rcRun))
11184 { /* very likely */ }
11185 else
11186 {
11187 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11188 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11189 return rcRun;
11190 }
11191
11192 /*
11193 * Profile the VM-exit.
11194 */
11195 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11196 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11197 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11198 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11199 HMVMX_START_EXIT_DISPATCH_PROF();
11200
11201 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11202
11203 /*
11204 * Handle the VM-exit.
11205 */
11206#ifdef HMVMX_USE_FUNCTION_TABLE
11207 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
11208#else
11209 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
11210#endif
11211 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11212 if (rcStrict == VINF_SUCCESS)
11213 {
11214 if (++(*pcLoops) <= cMaxResumeLoops)
11215 continue;
11216 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11217 rcStrict = VINF_EM_RAW_INTERRUPT;
11218 }
11219 break;
11220 }
11221
11222 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11223 return rcStrict;
11224}
11225
11226
11227#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11228/**
11229 * Runs the nested-guest code using hardware-assisted VMX.
11230 *
11231 * @returns VBox status code.
11232 * @param pVCpu The cross context virtual CPU structure.
11233 * @param pcLoops Pointer to the number of executed loops.
11234 *
11235 * @sa hmR0VmxRunGuestCodeNormal.
11236 */
11237static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
11238{
11239 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11240 Assert(pcLoops);
11241 Assert(*pcLoops <= cMaxResumeLoops);
11242 Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11243
11244 /*
11245 * Switch to the nested-guest VMCS as we may have transitioned from executing the
11246 * guest without leaving ring-0. Otherwise, if we came from ring-3 we would have
11247 * loaded the nested-guest VMCS while entering the VMX ring-0 session.
11248 */
11249 if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
11250 {
11251 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, true /* fSwitchToNstGstVmcs */);
11252 if (RT_SUCCESS(rc))
11253 { /* likely */ }
11254 else
11255 {
11256 LogRelFunc(("Failed to switch to the nested-guest VMCS. rc=%Rrc\n", rc));
11257 return rc;
11258 }
11259 }
11260
11261 VMXTRANSIENT VmxTransient;
11262 RT_ZERO(VmxTransient);
11263 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11264 VmxTransient.fIsNestedGuest = true;
11265
11266 /* Paranoia. */
11267 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfoNstGst);
11268
11269 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11270 for (;;)
11271 {
11272 Assert(!HMR0SuspendPending());
11273 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11274 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11275
11276 /*
11277 * Preparatory work for running guest code, this may force us to
11278 * return to ring-3.
11279 *
11280 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11281 */
11282 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11283 if (rcStrict != VINF_SUCCESS)
11284 break;
11285
11286 /* Interrupts are disabled at this point! */
11287 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11288 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11289 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11290 /* Interrupts are re-enabled at this point! */
11291
11292 /*
11293 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11294 */
11295 if (RT_SUCCESS(rcRun))
11296 { /* very likely */ }
11297 else
11298 {
11299 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11300 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11301 return rcRun;
11302 }
11303
11304 /*
11305 * Profile the VM-exit.
11306 */
11307 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11308 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11309 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll);
11310 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11311 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11312 HMVMX_START_EXIT_DISPATCH_PROF();
11313
11314 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11315
11316 /*
11317 * Handle the VM-exit.
11318 */
11319 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
11320 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11321 if (rcStrict == VINF_SUCCESS)
11322 {
11323 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
11324 {
11325 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
11326 rcStrict = VINF_VMX_VMEXIT;
11327 }
11328 else
11329 {
11330 if (++(*pcLoops) <= cMaxResumeLoops)
11331 continue;
11332 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11333 rcStrict = VINF_EM_RAW_INTERRUPT;
11334 }
11335 }
11336 else
11337 Assert(rcStrict != VINF_VMX_VMEXIT);
11338 break;
11339 }
11340
11341 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11342 return rcStrict;
11343}
11344#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
11345
11346
11347/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
11348 * probes.
11349 *
11350 * The following few functions and associated structure contains the bloat
11351 * necessary for providing detailed debug events and dtrace probes as well as
11352 * reliable host side single stepping. This works on the principle of
11353 * "subclassing" the normal execution loop and workers. We replace the loop
11354 * method completely and override selected helpers to add necessary adjustments
11355 * to their core operation.
11356 *
11357 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
11358 * any performance for debug and analysis features.
11359 *
11360 * @{
11361 */
11362
11363/**
11364 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
11365 * the debug run loop.
11366 */
11367typedef struct VMXRUNDBGSTATE
11368{
11369 /** The RIP we started executing at. This is for detecting that we stepped. */
11370 uint64_t uRipStart;
11371 /** The CS we started executing with. */
11372 uint16_t uCsStart;
11373
11374 /** Whether we've actually modified the 1st execution control field. */
11375 bool fModifiedProcCtls : 1;
11376 /** Whether we've actually modified the 2nd execution control field. */
11377 bool fModifiedProcCtls2 : 1;
11378 /** Whether we've actually modified the exception bitmap. */
11379 bool fModifiedXcptBitmap : 1;
11380
11381 /** We desire the modified the CR0 mask to be cleared. */
11382 bool fClearCr0Mask : 1;
11383 /** We desire the modified the CR4 mask to be cleared. */
11384 bool fClearCr4Mask : 1;
11385 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
11386 uint32_t fCpe1Extra;
11387 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
11388 uint32_t fCpe1Unwanted;
11389 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
11390 uint32_t fCpe2Extra;
11391 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
11392 uint32_t bmXcptExtra;
11393 /** The sequence number of the Dtrace provider settings the state was
11394 * configured against. */
11395 uint32_t uDtraceSettingsSeqNo;
11396 /** VM-exits to check (one bit per VM-exit). */
11397 uint32_t bmExitsToCheck[3];
11398
11399 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
11400 uint32_t fProcCtlsInitial;
11401 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
11402 uint32_t fProcCtls2Initial;
11403 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
11404 uint32_t bmXcptInitial;
11405} VMXRUNDBGSTATE;
11406AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
11407typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
11408
11409
11410/**
11411 * Initializes the VMXRUNDBGSTATE structure.
11412 *
11413 * @param pVCpu The cross context virtual CPU structure of the
11414 * calling EMT.
11415 * @param pVmxTransient The VMX-transient structure.
11416 * @param pDbgState The debug state to initialize.
11417 */
11418static void hmR0VmxRunDebugStateInit(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11419{
11420 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
11421 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
11422
11423 pDbgState->fModifiedProcCtls = false;
11424 pDbgState->fModifiedProcCtls2 = false;
11425 pDbgState->fModifiedXcptBitmap = false;
11426 pDbgState->fClearCr0Mask = false;
11427 pDbgState->fClearCr4Mask = false;
11428 pDbgState->fCpe1Extra = 0;
11429 pDbgState->fCpe1Unwanted = 0;
11430 pDbgState->fCpe2Extra = 0;
11431 pDbgState->bmXcptExtra = 0;
11432 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
11433 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
11434 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
11435}
11436
11437
11438/**
11439 * Updates the VMSC fields with changes requested by @a pDbgState.
11440 *
11441 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
11442 * immediately before executing guest code, i.e. when interrupts are disabled.
11443 * We don't check status codes here as we cannot easily assert or return in the
11444 * latter case.
11445 *
11446 * @param pVCpu The cross context virtual CPU structure.
11447 * @param pVmxTransient The VMX-transient structure.
11448 * @param pDbgState The debug state.
11449 */
11450static void hmR0VmxPreRunGuestDebugStateApply(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11451{
11452 /*
11453 * Ensure desired flags in VMCS control fields are set.
11454 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11455 *
11456 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11457 * there should be no stale data in pCtx at this point.
11458 */
11459 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11460 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11461 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11462 {
11463 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11464 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11465 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11466 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11467 pDbgState->fModifiedProcCtls = true;
11468 }
11469
11470 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11471 {
11472 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11473 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11474 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11475 pDbgState->fModifiedProcCtls2 = true;
11476 }
11477
11478 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11479 {
11480 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11481 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11482 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11483 pDbgState->fModifiedXcptBitmap = true;
11484 }
11485
11486 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11487 {
11488 pVmcsInfo->u64Cr0Mask = 0;
11489 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, 0);
11490 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11491 }
11492
11493 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11494 {
11495 pVmcsInfo->u64Cr4Mask = 0;
11496 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, 0);
11497 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11498 }
11499
11500 NOREF(pVCpu);
11501}
11502
11503
11504/**
11505 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11506 * re-entry next time around.
11507 *
11508 * @returns Strict VBox status code (i.e. informational status codes too).
11509 * @param pVCpu The cross context virtual CPU structure.
11510 * @param pVmxTransient The VMX-transient structure.
11511 * @param pDbgState The debug state.
11512 * @param rcStrict The return code from executing the guest using single
11513 * stepping.
11514 */
11515static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11516 VBOXSTRICTRC rcStrict)
11517{
11518 /*
11519 * Restore VM-exit control settings as we may not reenter this function the
11520 * next time around.
11521 */
11522 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11523
11524 /* We reload the initial value, trigger what we can of recalculations the
11525 next time around. From the looks of things, that's all that's required atm. */
11526 if (pDbgState->fModifiedProcCtls)
11527 {
11528 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11529 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11530 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11531 AssertRC(rc2);
11532 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11533 }
11534
11535 /* We're currently the only ones messing with this one, so just restore the
11536 cached value and reload the field. */
11537 if ( pDbgState->fModifiedProcCtls2
11538 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11539 {
11540 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11541 AssertRC(rc2);
11542 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11543 }
11544
11545 /* If we've modified the exception bitmap, we restore it and trigger
11546 reloading and partial recalculation the next time around. */
11547 if (pDbgState->fModifiedXcptBitmap)
11548 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11549
11550 return rcStrict;
11551}
11552
11553
11554/**
11555 * Configures VM-exit controls for current DBGF and DTrace settings.
11556 *
11557 * This updates @a pDbgState and the VMCS execution control fields to reflect
11558 * the necessary VM-exits demanded by DBGF and DTrace.
11559 *
11560 * @param pVCpu The cross context virtual CPU structure.
11561 * @param pVmxTransient The VMX-transient structure. May update
11562 * fUpdatedTscOffsettingAndPreemptTimer.
11563 * @param pDbgState The debug state.
11564 */
11565static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11566{
11567 /*
11568 * Take down the dtrace serial number so we can spot changes.
11569 */
11570 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11571 ASMCompilerBarrier();
11572
11573 /*
11574 * We'll rebuild most of the middle block of data members (holding the
11575 * current settings) as we go along here, so start by clearing it all.
11576 */
11577 pDbgState->bmXcptExtra = 0;
11578 pDbgState->fCpe1Extra = 0;
11579 pDbgState->fCpe1Unwanted = 0;
11580 pDbgState->fCpe2Extra = 0;
11581 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11582 pDbgState->bmExitsToCheck[i] = 0;
11583
11584 /*
11585 * Software interrupts (INT XXh) - no idea how to trigger these...
11586 */
11587 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
11588 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11589 || VBOXVMM_INT_SOFTWARE_ENABLED())
11590 {
11591 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11592 }
11593
11594 /*
11595 * INT3 breakpoints - triggered by #BP exceptions.
11596 */
11597 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11598 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11599
11600 /*
11601 * Exception bitmap and XCPT events+probes.
11602 */
11603 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11604 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11605 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11606
11607 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11608 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11609 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11610 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11611 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11612 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11613 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11614 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11615 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11616 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11617 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11618 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11619 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11620 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11621 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11622 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11623 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11624 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11625
11626 if (pDbgState->bmXcptExtra)
11627 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11628
11629 /*
11630 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11631 *
11632 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11633 * So, when adding/changing/removing please don't forget to update it.
11634 *
11635 * Some of the macros are picking up local variables to save horizontal space,
11636 * (being able to see it in a table is the lesser evil here).
11637 */
11638#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11639 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11640 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11641#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11642 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11643 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11644 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11645 } else do { } while (0)
11646#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11647 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11648 { \
11649 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11650 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11651 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11652 } else do { } while (0)
11653#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11654 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11655 { \
11656 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11657 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11658 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11659 } else do { } while (0)
11660#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11661 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11662 { \
11663 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11664 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11665 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11666 } else do { } while (0)
11667
11668 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11669 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11670 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11671 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11672 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11673
11674 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11675 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11676 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11677 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11678 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11679 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11680 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11681 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11682 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11683 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11684 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11685 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11686 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11687 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11688 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11689 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11690 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11691 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11692 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11693 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11694 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11695 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11696 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11697 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11698 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11699 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11700 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11701 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11702 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11703 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11704 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11705 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11706 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11707 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11708 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11709 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11710
11711 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11712 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11713 {
11714 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11715 | CPUMCTX_EXTRN_APIC_TPR);
11716 AssertRC(rc);
11717
11718#if 0 /** @todo fix me */
11719 pDbgState->fClearCr0Mask = true;
11720 pDbgState->fClearCr4Mask = true;
11721#endif
11722 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11723 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11724 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11725 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11726 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11727 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11728 require clearing here and in the loop if we start using it. */
11729 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11730 }
11731 else
11732 {
11733 if (pDbgState->fClearCr0Mask)
11734 {
11735 pDbgState->fClearCr0Mask = false;
11736 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11737 }
11738 if (pDbgState->fClearCr4Mask)
11739 {
11740 pDbgState->fClearCr4Mask = false;
11741 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11742 }
11743 }
11744 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11745 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11746
11747 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11748 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11749 {
11750 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11751 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11752 }
11753 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11754 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11755
11756 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11757 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11758 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11759 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11760 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11761 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11762 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11763 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11764#if 0 /** @todo too slow, fix handler. */
11765 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11766#endif
11767 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11768
11769 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11770 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11771 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11772 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11773 {
11774 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11775 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11776 }
11777 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11778 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11779 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11780 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11781
11782 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11783 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11784 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11785 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11786 {
11787 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11788 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11789 }
11790 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11791 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11792 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11793 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
11794
11795 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
11796 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
11797 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
11798 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
11799 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
11800 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
11801 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
11802 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
11803 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
11804 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
11805 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
11806 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
11807 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
11808 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
11809 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
11810 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
11811 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
11812 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
11813 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
11814 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
11815 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
11816 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
11817
11818#undef IS_EITHER_ENABLED
11819#undef SET_ONLY_XBM_IF_EITHER_EN
11820#undef SET_CPE1_XBM_IF_EITHER_EN
11821#undef SET_CPEU_XBM_IF_EITHER_EN
11822#undef SET_CPE2_XBM_IF_EITHER_EN
11823
11824 /*
11825 * Sanitize the control stuff.
11826 */
11827 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
11828 if (pDbgState->fCpe2Extra)
11829 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
11830 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
11831 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
11832 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
11833 {
11834 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
11835 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
11836 }
11837
11838 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
11839 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
11840 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
11841 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
11842}
11843
11844
11845/**
11846 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
11847 * appropriate.
11848 *
11849 * The caller has checked the VM-exit against the
11850 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
11851 * already, so we don't have to do that either.
11852 *
11853 * @returns Strict VBox status code (i.e. informational status codes too).
11854 * @param pVCpu The cross context virtual CPU structure.
11855 * @param pVmxTransient The VMX-transient structure.
11856 * @param uExitReason The VM-exit reason.
11857 *
11858 * @remarks The name of this function is displayed by dtrace, so keep it short
11859 * and to the point. No longer than 33 chars long, please.
11860 */
11861static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
11862{
11863 /*
11864 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
11865 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
11866 *
11867 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
11868 * does. Must add/change/remove both places. Same ordering, please.
11869 *
11870 * Added/removed events must also be reflected in the next section
11871 * where we dispatch dtrace events.
11872 */
11873 bool fDtrace1 = false;
11874 bool fDtrace2 = false;
11875 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
11876 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
11877 uint32_t uEventArg = 0;
11878#define SET_EXIT(a_EventSubName) \
11879 do { \
11880 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11881 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11882 } while (0)
11883#define SET_BOTH(a_EventSubName) \
11884 do { \
11885 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
11886 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11887 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
11888 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11889 } while (0)
11890 switch (uExitReason)
11891 {
11892 case VMX_EXIT_MTF:
11893 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11894
11895 case VMX_EXIT_XCPT_OR_NMI:
11896 {
11897 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
11898 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
11899 {
11900 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11901 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
11902 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
11903 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
11904 {
11905 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
11906 {
11907 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11908 uEventArg = pVmxTransient->uExitIntErrorCode;
11909 }
11910 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
11911 switch (enmEvent1)
11912 {
11913 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
11914 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
11915 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
11916 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
11917 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
11918 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
11919 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
11920 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
11921 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
11922 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
11923 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
11924 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
11925 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
11926 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
11927 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
11928 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
11929 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
11930 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
11931 default: break;
11932 }
11933 }
11934 else
11935 AssertFailed();
11936 break;
11937
11938 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
11939 uEventArg = idxVector;
11940 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
11941 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
11942 break;
11943 }
11944 break;
11945 }
11946
11947 case VMX_EXIT_TRIPLE_FAULT:
11948 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
11949 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
11950 break;
11951 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
11952 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
11953 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
11954 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
11955 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
11956
11957 /* Instruction specific VM-exits: */
11958 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
11959 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
11960 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
11961 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
11962 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
11963 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
11964 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
11965 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
11966 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
11967 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
11968 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
11969 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
11970 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
11971 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
11972 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
11973 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
11974 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
11975 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
11976 case VMX_EXIT_MOV_CRX:
11977 hmR0VmxReadExitQualVmcs(pVmxTransient);
11978 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
11979 SET_BOTH(CRX_READ);
11980 else
11981 SET_BOTH(CRX_WRITE);
11982 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
11983 break;
11984 case VMX_EXIT_MOV_DRX:
11985 hmR0VmxReadExitQualVmcs(pVmxTransient);
11986 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
11987 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
11988 SET_BOTH(DRX_READ);
11989 else
11990 SET_BOTH(DRX_WRITE);
11991 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
11992 break;
11993 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
11994 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
11995 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
11996 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
11997 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
11998 case VMX_EXIT_GDTR_IDTR_ACCESS:
11999 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12000 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
12001 {
12002 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
12003 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
12004 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
12005 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
12006 }
12007 break;
12008
12009 case VMX_EXIT_LDTR_TR_ACCESS:
12010 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12011 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
12012 {
12013 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
12014 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
12015 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
12016 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
12017 }
12018 break;
12019
12020 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
12021 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
12022 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
12023 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
12024 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
12025 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
12026 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
12027 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
12028 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
12029 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
12030 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
12031
12032 /* Events that aren't relevant at this point. */
12033 case VMX_EXIT_EXT_INT:
12034 case VMX_EXIT_INT_WINDOW:
12035 case VMX_EXIT_NMI_WINDOW:
12036 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12037 case VMX_EXIT_PREEMPT_TIMER:
12038 case VMX_EXIT_IO_INSTR:
12039 break;
12040
12041 /* Errors and unexpected events. */
12042 case VMX_EXIT_INIT_SIGNAL:
12043 case VMX_EXIT_SIPI:
12044 case VMX_EXIT_IO_SMI:
12045 case VMX_EXIT_SMI:
12046 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12047 case VMX_EXIT_ERR_MSR_LOAD:
12048 case VMX_EXIT_ERR_MACHINE_CHECK:
12049 case VMX_EXIT_PML_FULL:
12050 case VMX_EXIT_VIRTUALIZED_EOI:
12051 break;
12052
12053 default:
12054 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12055 break;
12056 }
12057#undef SET_BOTH
12058#undef SET_EXIT
12059
12060 /*
12061 * Dtrace tracepoints go first. We do them here at once so we don't
12062 * have to copy the guest state saving and stuff a few dozen times.
12063 * Down side is that we've got to repeat the switch, though this time
12064 * we use enmEvent since the probes are a subset of what DBGF does.
12065 */
12066 if (fDtrace1 || fDtrace2)
12067 {
12068 hmR0VmxReadExitQualVmcs(pVmxTransient);
12069 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12070 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12071 switch (enmEvent1)
12072 {
12073 /** @todo consider which extra parameters would be helpful for each probe. */
12074 case DBGFEVENT_END: break;
12075 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
12076 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
12077 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
12078 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
12079 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
12080 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
12081 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
12082 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
12083 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
12084 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
12085 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
12086 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
12087 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
12088 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
12089 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
12090 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
12091 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
12092 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
12093 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12094 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12095 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
12096 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
12097 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
12098 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
12099 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
12100 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
12101 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
12102 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12103 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12104 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12105 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12106 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12107 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
12108 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12109 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
12110 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
12111 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
12112 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
12113 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
12114 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
12115 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
12116 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
12117 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
12118 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
12119 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
12120 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
12121 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
12122 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
12123 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
12124 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
12125 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
12126 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
12127 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
12128 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
12129 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
12130 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
12131 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
12132 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
12133 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
12134 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
12135 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
12136 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
12137 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
12138 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
12139 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
12140 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
12141 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
12142 }
12143 switch (enmEvent2)
12144 {
12145 /** @todo consider which extra parameters would be helpful for each probe. */
12146 case DBGFEVENT_END: break;
12147 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
12148 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12149 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
12150 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
12151 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
12152 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
12153 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
12154 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
12155 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
12156 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12157 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12158 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12159 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12160 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12161 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
12162 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12163 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
12164 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
12165 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
12166 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
12167 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
12168 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
12169 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
12170 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
12171 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
12172 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
12173 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
12174 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
12175 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
12176 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
12177 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
12178 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
12179 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
12180 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
12181 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
12182 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
12183 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
12184 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
12185 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
12186 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
12187 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
12188 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
12189 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
12190 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
12191 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
12192 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
12193 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
12194 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
12195 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
12196 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
12197 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
12198 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
12199 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
12200 }
12201 }
12202
12203 /*
12204 * Fire of the DBGF event, if enabled (our check here is just a quick one,
12205 * the DBGF call will do a full check).
12206 *
12207 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
12208 * Note! If we have to events, we prioritize the first, i.e. the instruction
12209 * one, in order to avoid event nesting.
12210 */
12211 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
12212 if ( enmEvent1 != DBGFEVENT_END
12213 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
12214 {
12215 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12216 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
12217 if (rcStrict != VINF_SUCCESS)
12218 return rcStrict;
12219 }
12220 else if ( enmEvent2 != DBGFEVENT_END
12221 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
12222 {
12223 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12224 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
12225 if (rcStrict != VINF_SUCCESS)
12226 return rcStrict;
12227 }
12228
12229 return VINF_SUCCESS;
12230}
12231
12232
12233/**
12234 * Single-stepping VM-exit filtering.
12235 *
12236 * This is preprocessing the VM-exits and deciding whether we've gotten far
12237 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
12238 * handling is performed.
12239 *
12240 * @returns Strict VBox status code (i.e. informational status codes too).
12241 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
12242 * @param pVmxTransient The VMX-transient structure.
12243 * @param pDbgState The debug state.
12244 */
12245DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
12246{
12247 /*
12248 * Expensive (saves context) generic dtrace VM-exit probe.
12249 */
12250 uint32_t const uExitReason = pVmxTransient->uExitReason;
12251 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
12252 { /* more likely */ }
12253 else
12254 {
12255 hmR0VmxReadExitQualVmcs(pVmxTransient);
12256 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12257 AssertRC(rc);
12258 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
12259 }
12260
12261 /*
12262 * Check for host NMI, just to get that out of the way.
12263 */
12264 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
12265 { /* normally likely */ }
12266 else
12267 {
12268 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12269 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12270 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12271 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
12272 }
12273
12274 /*
12275 * Check for single stepping event if we're stepping.
12276 */
12277 if (pVCpu->hm.s.fSingleInstruction)
12278 {
12279 switch (uExitReason)
12280 {
12281 case VMX_EXIT_MTF:
12282 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
12283
12284 /* Various events: */
12285 case VMX_EXIT_XCPT_OR_NMI:
12286 case VMX_EXIT_EXT_INT:
12287 case VMX_EXIT_TRIPLE_FAULT:
12288 case VMX_EXIT_INT_WINDOW:
12289 case VMX_EXIT_NMI_WINDOW:
12290 case VMX_EXIT_TASK_SWITCH:
12291 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12292 case VMX_EXIT_APIC_ACCESS:
12293 case VMX_EXIT_EPT_VIOLATION:
12294 case VMX_EXIT_EPT_MISCONFIG:
12295 case VMX_EXIT_PREEMPT_TIMER:
12296
12297 /* Instruction specific VM-exits: */
12298 case VMX_EXIT_CPUID:
12299 case VMX_EXIT_GETSEC:
12300 case VMX_EXIT_HLT:
12301 case VMX_EXIT_INVD:
12302 case VMX_EXIT_INVLPG:
12303 case VMX_EXIT_RDPMC:
12304 case VMX_EXIT_RDTSC:
12305 case VMX_EXIT_RSM:
12306 case VMX_EXIT_VMCALL:
12307 case VMX_EXIT_VMCLEAR:
12308 case VMX_EXIT_VMLAUNCH:
12309 case VMX_EXIT_VMPTRLD:
12310 case VMX_EXIT_VMPTRST:
12311 case VMX_EXIT_VMREAD:
12312 case VMX_EXIT_VMRESUME:
12313 case VMX_EXIT_VMWRITE:
12314 case VMX_EXIT_VMXOFF:
12315 case VMX_EXIT_VMXON:
12316 case VMX_EXIT_MOV_CRX:
12317 case VMX_EXIT_MOV_DRX:
12318 case VMX_EXIT_IO_INSTR:
12319 case VMX_EXIT_RDMSR:
12320 case VMX_EXIT_WRMSR:
12321 case VMX_EXIT_MWAIT:
12322 case VMX_EXIT_MONITOR:
12323 case VMX_EXIT_PAUSE:
12324 case VMX_EXIT_GDTR_IDTR_ACCESS:
12325 case VMX_EXIT_LDTR_TR_ACCESS:
12326 case VMX_EXIT_INVEPT:
12327 case VMX_EXIT_RDTSCP:
12328 case VMX_EXIT_INVVPID:
12329 case VMX_EXIT_WBINVD:
12330 case VMX_EXIT_XSETBV:
12331 case VMX_EXIT_RDRAND:
12332 case VMX_EXIT_INVPCID:
12333 case VMX_EXIT_VMFUNC:
12334 case VMX_EXIT_RDSEED:
12335 case VMX_EXIT_XSAVES:
12336 case VMX_EXIT_XRSTORS:
12337 {
12338 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12339 AssertRCReturn(rc, rc);
12340 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
12341 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
12342 return VINF_EM_DBG_STEPPED;
12343 break;
12344 }
12345
12346 /* Errors and unexpected events: */
12347 case VMX_EXIT_INIT_SIGNAL:
12348 case VMX_EXIT_SIPI:
12349 case VMX_EXIT_IO_SMI:
12350 case VMX_EXIT_SMI:
12351 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12352 case VMX_EXIT_ERR_MSR_LOAD:
12353 case VMX_EXIT_ERR_MACHINE_CHECK:
12354 case VMX_EXIT_PML_FULL:
12355 case VMX_EXIT_VIRTUALIZED_EOI:
12356 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
12357 break;
12358
12359 default:
12360 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12361 break;
12362 }
12363 }
12364
12365 /*
12366 * Check for debugger event breakpoints and dtrace probes.
12367 */
12368 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
12369 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
12370 {
12371 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
12372 if (rcStrict != VINF_SUCCESS)
12373 return rcStrict;
12374 }
12375
12376 /*
12377 * Normal processing.
12378 */
12379#ifdef HMVMX_USE_FUNCTION_TABLE
12380 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
12381#else
12382 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
12383#endif
12384}
12385
12386
12387/**
12388 * Single steps guest code using hardware-assisted VMX.
12389 *
12390 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
12391 * but single-stepping through the hypervisor debugger.
12392 *
12393 * @returns Strict VBox status code (i.e. informational status codes too).
12394 * @param pVCpu The cross context virtual CPU structure.
12395 * @param pcLoops Pointer to the number of executed loops.
12396 *
12397 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
12398 */
12399static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops)
12400{
12401 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
12402 Assert(pcLoops);
12403 Assert(*pcLoops <= cMaxResumeLoops);
12404
12405 VMXTRANSIENT VmxTransient;
12406 RT_ZERO(VmxTransient);
12407 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
12408
12409 /* Set HMCPU indicators. */
12410 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
12411 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
12412 pVCpu->hm.s.fDebugWantRdTscExit = false;
12413 pVCpu->hm.s.fUsingDebugLoop = true;
12414
12415 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
12416 VMXRUNDBGSTATE DbgState;
12417 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
12418 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12419
12420 /*
12421 * The loop.
12422 */
12423 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
12424 for (;;)
12425 {
12426 Assert(!HMR0SuspendPending());
12427 HMVMX_ASSERT_CPU_SAFE(pVCpu);
12428 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
12429 bool fStepping = pVCpu->hm.s.fSingleInstruction;
12430
12431 /* Set up VM-execution controls the next two can respond to. */
12432 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12433
12434 /*
12435 * Preparatory work for running guest code, this may force us to
12436 * return to ring-3.
12437 *
12438 * Warning! This bugger disables interrupts on VINF_SUCCESS!
12439 */
12440 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
12441 if (rcStrict != VINF_SUCCESS)
12442 break;
12443
12444 /* Interrupts are disabled at this point! */
12445 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
12446
12447 /* Override any obnoxious code in the above two calls. */
12448 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12449
12450 /*
12451 * Finally execute the guest.
12452 */
12453 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
12454
12455 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12456 /* Interrupts are re-enabled at this point! */
12457
12458 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12459 if (RT_SUCCESS(rcRun))
12460 { /* very likely */ }
12461 else
12462 {
12463 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12464 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12465 return rcRun;
12466 }
12467
12468 /* Profile the VM-exit. */
12469 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12470 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12471 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12472 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12473 HMVMX_START_EXIT_DISPATCH_PROF();
12474
12475 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12476
12477 /*
12478 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12479 */
12480 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12481 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12482 if (rcStrict != VINF_SUCCESS)
12483 break;
12484 if (++(*pcLoops) > cMaxResumeLoops)
12485 {
12486 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12487 rcStrict = VINF_EM_RAW_INTERRUPT;
12488 break;
12489 }
12490
12491 /*
12492 * Stepping: Did the RIP change, if so, consider it a single step.
12493 * Otherwise, make sure one of the TFs gets set.
12494 */
12495 if (fStepping)
12496 {
12497 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12498 AssertRC(rc);
12499 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12500 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12501 {
12502 rcStrict = VINF_EM_DBG_STEPPED;
12503 break;
12504 }
12505 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12506 }
12507
12508 /*
12509 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12510 */
12511 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12512 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12513 }
12514
12515 /*
12516 * Clear the X86_EFL_TF if necessary.
12517 */
12518 if (pVCpu->hm.s.fClearTrapFlag)
12519 {
12520 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12521 AssertRC(rc);
12522 pVCpu->hm.s.fClearTrapFlag = false;
12523 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12524 }
12525 /** @todo there seems to be issues with the resume flag when the monitor trap
12526 * flag is pending without being used. Seen early in bios init when
12527 * accessing APIC page in protected mode. */
12528
12529 /*
12530 * Restore VM-exit control settings as we may not re-enter this function the
12531 * next time around.
12532 */
12533 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12534
12535 /* Restore HMCPU indicators. */
12536 pVCpu->hm.s.fUsingDebugLoop = false;
12537 pVCpu->hm.s.fDebugWantRdTscExit = false;
12538 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12539
12540 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12541 return rcStrict;
12542}
12543
12544
12545/** @} */
12546
12547
12548/**
12549 * Checks if any expensive dtrace probes are enabled and we should go to the
12550 * debug loop.
12551 *
12552 * @returns true if we should use debug loop, false if not.
12553 */
12554static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12555{
12556 /* It's probably faster to OR the raw 32-bit counter variables together.
12557 Since the variables are in an array and the probes are next to one
12558 another (more or less), we have good locality. So, better read
12559 eight-nine cache lines ever time and only have one conditional, than
12560 128+ conditionals, right? */
12561 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12562 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12563 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12564 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12565 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12566 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12567 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12568 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12569 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12570 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12571 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12572 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12573 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12574 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12575 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12576 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12577 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12578 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12579 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12580 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12581 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12582 ) != 0
12583 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12584 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12585 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12586 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12587 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12588 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12589 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12590 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12591 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12592 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12593 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12594 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12595 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12596 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12597 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12598 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12599 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12600 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12601 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12602 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12603 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12604 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12605 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12606 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12607 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12608 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12609 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12610 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12611 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12612 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12613 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12614 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12615 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12616 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12617 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12618 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12619 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12620 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12621 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12622 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12623 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12624 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12625 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12626 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12627 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12628 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12629 ) != 0
12630 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12631 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12632 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12633 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12634 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12635 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12636 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12637 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12638 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12639 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12640 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12641 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12642 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12643 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12644 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12645 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12646 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12647 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12648 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12649 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12650 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12651 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12652 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12653 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12654 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12655 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12656 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12657 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12658 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12659 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12660 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12661 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12662 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12663 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12664 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12665 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12666 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12667 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12668 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12669 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12670 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12671 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12672 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12673 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12674 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12675 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12676 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12677 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12678 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12679 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12680 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12681 ) != 0;
12682}
12683
12684
12685/**
12686 * Runs the guest using hardware-assisted VMX.
12687 *
12688 * @returns Strict VBox status code (i.e. informational status codes too).
12689 * @param pVCpu The cross context virtual CPU structure.
12690 */
12691VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPUCC pVCpu)
12692{
12693 AssertPtr(pVCpu);
12694 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12695 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12696 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12697 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12698
12699 VBOXSTRICTRC rcStrict;
12700 uint32_t cLoops = 0;
12701 for (;;)
12702 {
12703#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12704 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12705#else
12706 NOREF(pCtx);
12707 bool const fInNestedGuestMode = false;
12708#endif
12709 if (!fInNestedGuestMode)
12710 {
12711 if ( !pVCpu->hm.s.fUseDebugLoop
12712 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12713 && !DBGFIsStepping(pVCpu)
12714 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12715 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12716 else
12717 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12718 }
12719#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12720 else
12721 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12722
12723 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12724 {
12725 Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
12726 continue;
12727 }
12728 if (rcStrict == VINF_VMX_VMEXIT)
12729 {
12730 Assert(!CPUMIsGuestInVmxNonRootMode(pCtx));
12731 continue;
12732 }
12733#endif
12734 break;
12735 }
12736
12737 int const rcLoop = VBOXSTRICTRC_VAL(rcStrict);
12738 switch (rcLoop)
12739 {
12740 case VERR_EM_INTERPRETER: rcStrict = VINF_EM_RAW_EMULATE_INSTR; break;
12741 case VINF_EM_RESET: rcStrict = VINF_EM_TRIPLE_FAULT; break;
12742 }
12743
12744 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12745 if (RT_FAILURE(rc2))
12746 {
12747 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12748 rcStrict = rc2;
12749 }
12750 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12751 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12752 return rcStrict;
12753}
12754
12755
12756#ifndef HMVMX_USE_FUNCTION_TABLE
12757/**
12758 * Handles a guest VM-exit from hardware-assisted VMX execution.
12759 *
12760 * @returns Strict VBox status code (i.e. informational status codes too).
12761 * @param pVCpu The cross context virtual CPU structure.
12762 * @param pVmxTransient The VMX-transient structure.
12763 */
12764DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
12765{
12766#ifdef DEBUG_ramshankar
12767# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12768 do { \
12769 if (a_fSave != 0) \
12770 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); \
12771 VBOXSTRICTRC rcStrict = a_CallExpr; \
12772 if (a_fSave != 0) \
12773 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12774 return rcStrict; \
12775 } while (0)
12776#else
12777# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12778#endif
12779 uint32_t const uExitReason = pVmxTransient->uExitReason;
12780 switch (uExitReason)
12781 {
12782 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12783 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12784 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12785 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12786 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12787 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12788 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12789 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12790 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12791 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12792 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12793 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12794 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12795 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
12796 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
12797 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
12798 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
12799 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
12800 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
12801 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
12802 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
12803 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
12804 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
12805 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
12806 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
12807 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
12808 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
12809 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
12810 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
12811 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
12812#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12813 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
12814 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
12815 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
12816 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
12817 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
12818 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
12819 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
12820 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
12821 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
12822 case VMX_EXIT_INVVPID: VMEXIT_CALL_RET(0, hmR0VmxExitInvvpid(pVCpu, pVmxTransient));
12823 case VMX_EXIT_INVEPT: VMEXIT_CALL_RET(0, hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient));
12824#else
12825 case VMX_EXIT_VMCLEAR:
12826 case VMX_EXIT_VMLAUNCH:
12827 case VMX_EXIT_VMPTRLD:
12828 case VMX_EXIT_VMPTRST:
12829 case VMX_EXIT_VMREAD:
12830 case VMX_EXIT_VMRESUME:
12831 case VMX_EXIT_VMWRITE:
12832 case VMX_EXIT_VMXOFF:
12833 case VMX_EXIT_VMXON:
12834 case VMX_EXIT_INVVPID:
12835 case VMX_EXIT_INVEPT:
12836 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12837#endif
12838
12839 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
12840 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
12841 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
12842
12843 case VMX_EXIT_INIT_SIGNAL:
12844 case VMX_EXIT_SIPI:
12845 case VMX_EXIT_IO_SMI:
12846 case VMX_EXIT_SMI:
12847 case VMX_EXIT_ERR_MSR_LOAD:
12848 case VMX_EXIT_ERR_MACHINE_CHECK:
12849 case VMX_EXIT_PML_FULL:
12850 case VMX_EXIT_VIRTUALIZED_EOI:
12851 case VMX_EXIT_GDTR_IDTR_ACCESS:
12852 case VMX_EXIT_LDTR_TR_ACCESS:
12853 case VMX_EXIT_APIC_WRITE:
12854 case VMX_EXIT_RDRAND:
12855 case VMX_EXIT_RSM:
12856 case VMX_EXIT_VMFUNC:
12857 case VMX_EXIT_ENCLS:
12858 case VMX_EXIT_RDSEED:
12859 case VMX_EXIT_XSAVES:
12860 case VMX_EXIT_XRSTORS:
12861 case VMX_EXIT_UMWAIT:
12862 case VMX_EXIT_TPAUSE:
12863 default:
12864 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
12865 }
12866#undef VMEXIT_CALL_RET
12867}
12868#endif /* !HMVMX_USE_FUNCTION_TABLE */
12869
12870
12871#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12872/**
12873 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
12874 *
12875 * @returns Strict VBox status code (i.e. informational status codes too).
12876 * @param pVCpu The cross context virtual CPU structure.
12877 * @param pVmxTransient The VMX-transient structure.
12878 */
12879DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
12880{
12881 uint32_t const uExitReason = pVmxTransient->uExitReason;
12882 switch (uExitReason)
12883 {
12884 case VMX_EXIT_EPT_MISCONFIG: return hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient);
12885 case VMX_EXIT_EPT_VIOLATION: return hmR0VmxExitEptViolation(pVCpu, pVmxTransient);
12886 case VMX_EXIT_XCPT_OR_NMI: return hmR0VmxExitXcptOrNmiNested(pVCpu, pVmxTransient);
12887 case VMX_EXIT_IO_INSTR: return hmR0VmxExitIoInstrNested(pVCpu, pVmxTransient);
12888 case VMX_EXIT_HLT: return hmR0VmxExitHltNested(pVCpu, pVmxTransient);
12889
12890 /*
12891 * We shouldn't direct host physical interrupts to the nested-guest.
12892 */
12893 case VMX_EXIT_EXT_INT:
12894 return hmR0VmxExitExtInt(pVCpu, pVmxTransient);
12895
12896 /*
12897 * Instructions that cause VM-exits unconditionally or the condition is
12898 * always is taken solely from the nested hypervisor (meaning if the VM-exit
12899 * happens, it's guaranteed to be a nested-guest VM-exit).
12900 *
12901 * - Provides VM-exit instruction length ONLY.
12902 */
12903 case VMX_EXIT_CPUID: /* Unconditional. */
12904 case VMX_EXIT_VMCALL:
12905 case VMX_EXIT_GETSEC:
12906 case VMX_EXIT_INVD:
12907 case VMX_EXIT_XSETBV:
12908 case VMX_EXIT_VMLAUNCH:
12909 case VMX_EXIT_VMRESUME:
12910 case VMX_EXIT_VMXOFF:
12911 case VMX_EXIT_ENCLS: /* Condition specified solely by nested hypervisor. */
12912 case VMX_EXIT_VMFUNC:
12913 return hmR0VmxExitInstrNested(pVCpu, pVmxTransient);
12914
12915 /*
12916 * Instructions that cause VM-exits unconditionally or the condition is
12917 * always is taken solely from the nested hypervisor (meaning if the VM-exit
12918 * happens, it's guaranteed to be a nested-guest VM-exit).
12919 *
12920 * - Provides VM-exit instruction length.
12921 * - Provides VM-exit information.
12922 * - Optionally provides Exit qualification.
12923 *
12924 * Since Exit qualification is 0 for all VM-exits where it is not
12925 * applicable, reading and passing it to the guest should produce
12926 * defined behavior.
12927 *
12928 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
12929 */
12930 case VMX_EXIT_INVEPT: /* Unconditional. */
12931 case VMX_EXIT_INVVPID:
12932 case VMX_EXIT_VMCLEAR:
12933 case VMX_EXIT_VMPTRLD:
12934 case VMX_EXIT_VMPTRST:
12935 case VMX_EXIT_VMXON:
12936 case VMX_EXIT_GDTR_IDTR_ACCESS: /* Condition specified solely by nested hypervisor. */
12937 case VMX_EXIT_LDTR_TR_ACCESS:
12938 case VMX_EXIT_RDRAND:
12939 case VMX_EXIT_RDSEED:
12940 case VMX_EXIT_XSAVES:
12941 case VMX_EXIT_XRSTORS:
12942 case VMX_EXIT_UMWAIT:
12943 case VMX_EXIT_TPAUSE:
12944 return hmR0VmxExitInstrWithInfoNested(pVCpu, pVmxTransient);
12945
12946 case VMX_EXIT_RDTSC: return hmR0VmxExitRdtscNested(pVCpu, pVmxTransient);
12947 case VMX_EXIT_RDTSCP: return hmR0VmxExitRdtscpNested(pVCpu, pVmxTransient);
12948 case VMX_EXIT_RDMSR: return hmR0VmxExitRdmsrNested(pVCpu, pVmxTransient);
12949 case VMX_EXIT_WRMSR: return hmR0VmxExitWrmsrNested(pVCpu, pVmxTransient);
12950 case VMX_EXIT_INVLPG: return hmR0VmxExitInvlpgNested(pVCpu, pVmxTransient);
12951 case VMX_EXIT_INVPCID: return hmR0VmxExitInvpcidNested(pVCpu, pVmxTransient);
12952 case VMX_EXIT_TASK_SWITCH: return hmR0VmxExitTaskSwitchNested(pVCpu, pVmxTransient);
12953 case VMX_EXIT_WBINVD: return hmR0VmxExitWbinvdNested(pVCpu, pVmxTransient);
12954 case VMX_EXIT_MTF: return hmR0VmxExitMtfNested(pVCpu, pVmxTransient);
12955 case VMX_EXIT_APIC_ACCESS: return hmR0VmxExitApicAccessNested(pVCpu, pVmxTransient);
12956 case VMX_EXIT_APIC_WRITE: return hmR0VmxExitApicWriteNested(pVCpu, pVmxTransient);
12957 case VMX_EXIT_VIRTUALIZED_EOI: return hmR0VmxExitVirtEoiNested(pVCpu, pVmxTransient);
12958 case VMX_EXIT_MOV_CRX: return hmR0VmxExitMovCRxNested(pVCpu, pVmxTransient);
12959 case VMX_EXIT_INT_WINDOW: return hmR0VmxExitIntWindowNested(pVCpu, pVmxTransient);
12960 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindowNested(pVCpu, pVmxTransient);
12961 case VMX_EXIT_TPR_BELOW_THRESHOLD: return hmR0VmxExitTprBelowThresholdNested(pVCpu, pVmxTransient);
12962 case VMX_EXIT_MWAIT: return hmR0VmxExitMwaitNested(pVCpu, pVmxTransient);
12963 case VMX_EXIT_MONITOR: return hmR0VmxExitMonitorNested(pVCpu, pVmxTransient);
12964 case VMX_EXIT_PAUSE: return hmR0VmxExitPauseNested(pVCpu, pVmxTransient);
12965
12966 case VMX_EXIT_PREEMPT_TIMER:
12967 {
12968 /** @todo NSTVMX: Preempt timer. */
12969 return hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient);
12970 }
12971
12972 case VMX_EXIT_MOV_DRX: return hmR0VmxExitMovDRxNested(pVCpu, pVmxTransient);
12973 case VMX_EXIT_RDPMC: return hmR0VmxExitRdpmcNested(pVCpu, pVmxTransient);
12974
12975 case VMX_EXIT_VMREAD:
12976 case VMX_EXIT_VMWRITE: return hmR0VmxExitVmreadVmwriteNested(pVCpu, pVmxTransient);
12977
12978 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFaultNested(pVCpu, pVmxTransient);
12979 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestStateNested(pVCpu, pVmxTransient);
12980
12981 case VMX_EXIT_INIT_SIGNAL:
12982 case VMX_EXIT_SIPI:
12983 case VMX_EXIT_IO_SMI:
12984 case VMX_EXIT_SMI:
12985 case VMX_EXIT_ERR_MSR_LOAD:
12986 case VMX_EXIT_ERR_MACHINE_CHECK:
12987 case VMX_EXIT_PML_FULL:
12988 case VMX_EXIT_RSM:
12989 default:
12990 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
12991 }
12992}
12993#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
12994
12995
12996/** @name VM-exit helpers.
12997 * @{
12998 */
12999/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13000/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit helpers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
13001/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13002
13003/** Macro for VM-exits called unexpectedly. */
13004#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_HmError) \
13005 do { \
13006 (a_pVCpu)->hm.s.u32HMError = (a_HmError); \
13007 return VERR_VMX_UNEXPECTED_EXIT; \
13008 } while (0)
13009
13010#ifdef VBOX_STRICT
13011/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
13012# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
13013 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
13014
13015# define HMVMX_ASSERT_PREEMPT_CPUID() \
13016 do { \
13017 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
13018 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
13019 } while (0)
13020
13021# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13022 do { \
13023 AssertPtr((a_pVCpu)); \
13024 AssertPtr((a_pVmxTransient)); \
13025 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
13026 Assert((a_pVmxTransient)->pVmcsInfo); \
13027 Assert(ASMIntAreEnabled()); \
13028 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13029 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
13030 Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
13031 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13032 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
13033 HMVMX_ASSERT_PREEMPT_CPUID(); \
13034 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13035 } while (0)
13036
13037# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13038 do { \
13039 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); \
13040 Assert((a_pVmxTransient)->fIsNestedGuest); \
13041 } while (0)
13042
13043# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13044 do { \
13045 Log4Func(("\n")); \
13046 } while (0)
13047#else
13048# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13049 do { \
13050 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13051 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
13052 } while (0)
13053
13054# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13055 do { HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); } while (0)
13056
13057# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
13058#endif
13059
13060#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13061/** Macro that does the necessary privilege checks and intercepted VM-exits for
13062 * guests that attempted to execute a VMX instruction. */
13063# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
13064 do \
13065 { \
13066 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
13067 if (rcStrictTmp == VINF_SUCCESS) \
13068 { /* likely */ } \
13069 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13070 { \
13071 Assert((a_pVCpu)->hm.s.Event.fPending); \
13072 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
13073 return VINF_SUCCESS; \
13074 } \
13075 else \
13076 { \
13077 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
13078 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
13079 } \
13080 } while (0)
13081
13082/** Macro that decodes a memory operand for an VM-exit caused by an instruction. */
13083# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
13084 do \
13085 { \
13086 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
13087 (a_pGCPtrEffAddr)); \
13088 if (rcStrictTmp == VINF_SUCCESS) \
13089 { /* likely */ } \
13090 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13091 { \
13092 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
13093 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
13094 NOREF(uXcptTmp); \
13095 return VINF_SUCCESS; \
13096 } \
13097 else \
13098 { \
13099 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
13100 return rcStrictTmp; \
13101 } \
13102 } while (0)
13103#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13104
13105
13106/**
13107 * Advances the guest RIP by the specified number of bytes.
13108 *
13109 * @param pVCpu The cross context virtual CPU structure.
13110 * @param cbInstr Number of bytes to advance the RIP by.
13111 *
13112 * @remarks No-long-jump zone!!!
13113 */
13114DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPUCC pVCpu, uint32_t cbInstr)
13115{
13116 /* Advance the RIP. */
13117 pVCpu->cpum.GstCtx.rip += cbInstr;
13118 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
13119
13120 /* Update interrupt inhibition. */
13121 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
13122 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
13123 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
13124}
13125
13126
13127/**
13128 * Advances the guest RIP after reading it from the VMCS.
13129 *
13130 * @returns VBox status code, no informational status codes.
13131 * @param pVCpu The cross context virtual CPU structure.
13132 * @param pVmxTransient The VMX-transient structure.
13133 *
13134 * @remarks No-long-jump zone!!!
13135 */
13136static int hmR0VmxAdvanceGuestRip(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13137{
13138 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13139 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
13140 AssertRCReturn(rc, rc);
13141
13142 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbExitInstr);
13143 return VINF_SUCCESS;
13144}
13145
13146
13147/**
13148 * Handle a condition that occurred while delivering an event through the guest or
13149 * nested-guest IDT.
13150 *
13151 * @returns Strict VBox status code (i.e. informational status codes too).
13152 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13153 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
13154 * to continue execution of the guest which will delivery the \#DF.
13155 * @retval VINF_EM_RESET if we detected a triple-fault condition.
13156 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
13157 *
13158 * @param pVCpu The cross context virtual CPU structure.
13159 * @param pVmxTransient The VMX-transient structure.
13160 *
13161 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13162 * Additionally, HMVMX_READ_EXIT_QUALIFICATION is required if the VM-exit
13163 * is due to an EPT violation, PML full or SPP-related event.
13164 *
13165 * @remarks No-long-jump zone!!!
13166 */
13167static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13168{
13169 Assert(!pVCpu->hm.s.Event.fPending);
13170 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
13171 if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13172 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13173 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13174 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_EXIT_QUALIFICATION);
13175
13176 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
13177 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13178 uint32_t const uIdtVectorInfo = pVmxTransient->uIdtVectoringInfo;
13179 uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
13180 if (VMX_IDT_VECTORING_INFO_IS_VALID(uIdtVectorInfo))
13181 {
13182 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(uIdtVectorInfo);
13183 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(uIdtVectorInfo);
13184
13185 /*
13186 * If the event was a software interrupt (generated with INT n) or a software exception
13187 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
13188 * can handle the VM-exit and continue guest execution which will re-execute the
13189 * instruction rather than re-injecting the exception, as that can cause premature
13190 * trips to ring-3 before injection and involve TRPM which currently has no way of
13191 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
13192 * the problem).
13193 */
13194 IEMXCPTRAISE enmRaise;
13195 IEMXCPTRAISEINFO fRaiseInfo;
13196 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
13197 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
13198 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
13199 {
13200 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
13201 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13202 }
13203 else if (VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo))
13204 {
13205 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
13206 uint8_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
13207 Assert(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT);
13208
13209 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
13210 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
13211
13212 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
13213
13214 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
13215 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
13216 {
13217 pVmxTransient->fVectoringPF = true;
13218 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13219 }
13220 }
13221 else
13222 {
13223 /*
13224 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
13225 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
13226 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
13227 */
13228 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
13229 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13230 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
13231 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13232 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13233 }
13234
13235 /*
13236 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
13237 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
13238 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
13239 * subsequent VM-entry would fail, see @bugref{7445}.
13240 *
13241 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception".
13242 */
13243 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13244 && enmRaise == IEMXCPTRAISE_PREV_EVENT
13245 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13246 && CPUMIsGuestNmiBlocking(pVCpu))
13247 {
13248 CPUMSetGuestNmiBlocking(pVCpu, false);
13249 }
13250
13251 switch (enmRaise)
13252 {
13253 case IEMXCPTRAISE_CURRENT_XCPT:
13254 {
13255 Log4Func(("IDT: Pending secondary Xcpt: idtinfo=%#RX64 exitinfo=%#RX64\n", uIdtVectorInfo, uExitIntInfo));
13256 Assert(rcStrict == VINF_SUCCESS);
13257 break;
13258 }
13259
13260 case IEMXCPTRAISE_PREV_EVENT:
13261 {
13262 uint32_t u32ErrCode;
13263 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(uIdtVectorInfo))
13264 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
13265 else
13266 u32ErrCode = 0;
13267
13268 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
13269 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
13270 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(uIdtVectorInfo), 0 /* cbInstr */,
13271 u32ErrCode, pVCpu->cpum.GstCtx.cr2);
13272
13273 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
13274 pVCpu->hm.s.Event.u32ErrCode));
13275 Assert(rcStrict == VINF_SUCCESS);
13276 break;
13277 }
13278
13279 case IEMXCPTRAISE_REEXEC_INSTR:
13280 Assert(rcStrict == VINF_SUCCESS);
13281 break;
13282
13283 case IEMXCPTRAISE_DOUBLE_FAULT:
13284 {
13285 /*
13286 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
13287 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
13288 */
13289 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
13290 {
13291 pVmxTransient->fVectoringDoublePF = true;
13292 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
13293 pVCpu->cpum.GstCtx.cr2));
13294 rcStrict = VINF_SUCCESS;
13295 }
13296 else
13297 {
13298 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
13299 hmR0VmxSetPendingXcptDF(pVCpu);
13300 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
13301 uIdtVector, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13302 rcStrict = VINF_HM_DOUBLE_FAULT;
13303 }
13304 break;
13305 }
13306
13307 case IEMXCPTRAISE_TRIPLE_FAULT:
13308 {
13309 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector,
13310 VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13311 rcStrict = VINF_EM_RESET;
13312 break;
13313 }
13314
13315 case IEMXCPTRAISE_CPU_HANG:
13316 {
13317 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
13318 rcStrict = VERR_EM_GUEST_CPU_HANG;
13319 break;
13320 }
13321
13322 default:
13323 {
13324 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
13325 rcStrict = VERR_VMX_IPE_2;
13326 break;
13327 }
13328 }
13329 }
13330 else if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13331 && !CPUMIsGuestNmiBlocking(pVCpu))
13332 {
13333 if ( VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)
13334 && VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo) != X86_XCPT_DF
13335 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(uExitIntInfo))
13336 {
13337 /*
13338 * Execution of IRET caused a fault when NMI blocking was in effect (i.e we're in
13339 * the guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13340 * that virtual NMIs remain blocked until the IRET execution is completed.
13341 *
13342 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
13343 */
13344 CPUMSetGuestNmiBlocking(pVCpu, true);
13345 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13346 }
13347 else if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13348 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13349 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13350 {
13351 /*
13352 * Execution of IRET caused an EPT violation, page-modification log-full event or
13353 * SPP-related event VM-exit when NMI blocking was in effect (i.e. we're in the
13354 * guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13355 * that virtual NMIs remain blocked until the IRET execution is completed.
13356 *
13357 * See Intel spec. 27.2.3 "Information about NMI unblocking due to IRET"
13358 */
13359 if (VMX_EXIT_QUAL_EPT_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitQual))
13360 {
13361 CPUMSetGuestNmiBlocking(pVCpu, true);
13362 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13363 }
13364 }
13365 }
13366
13367 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
13368 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
13369 return rcStrict;
13370}
13371
13372
13373#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13374/**
13375 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
13376 * guest attempting to execute a VMX instruction.
13377 *
13378 * @returns Strict VBox status code (i.e. informational status codes too).
13379 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13380 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
13381 *
13382 * @param pVCpu The cross context virtual CPU structure.
13383 * @param uExitReason The VM-exit reason.
13384 *
13385 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
13386 * @remarks No-long-jump zone!!!
13387 */
13388static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPUCC pVCpu, uint32_t uExitReason)
13389{
13390 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
13391 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13392
13393 /*
13394 * The physical CPU would have already checked the CPU mode/code segment.
13395 * We shall just assert here for paranoia.
13396 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
13397 */
13398 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13399 Assert( !CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
13400 || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx));
13401
13402 if (uExitReason == VMX_EXIT_VMXON)
13403 {
13404 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
13405
13406 /*
13407 * We check CR4.VMXE because it is required to be always set while in VMX operation
13408 * by physical CPUs and our CR4 read-shadow is only consulted when executing specific
13409 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
13410 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
13411 */
13412 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
13413 {
13414 Log4Func(("CR4.VMXE is not set -> #UD\n"));
13415 hmR0VmxSetPendingXcptUD(pVCpu);
13416 return VINF_HM_PENDING_XCPT;
13417 }
13418 }
13419 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
13420 {
13421 /*
13422 * The guest has not entered VMX operation but attempted to execute a VMX instruction
13423 * (other than VMXON), we need to raise a #UD.
13424 */
13425 Log4Func(("Not in VMX root mode -> #UD\n"));
13426 hmR0VmxSetPendingXcptUD(pVCpu);
13427 return VINF_HM_PENDING_XCPT;
13428 }
13429
13430 /* All other checks (including VM-exit intercepts) are handled by IEM instruction emulation. */
13431 return VINF_SUCCESS;
13432}
13433
13434
13435/**
13436 * Decodes the memory operand of an instruction that caused a VM-exit.
13437 *
13438 * The Exit qualification field provides the displacement field for memory
13439 * operand instructions, if any.
13440 *
13441 * @returns Strict VBox status code (i.e. informational status codes too).
13442 * @retval VINF_SUCCESS if the operand was successfully decoded.
13443 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
13444 * operand.
13445 * @param pVCpu The cross context virtual CPU structure.
13446 * @param uExitInstrInfo The VM-exit instruction information field.
13447 * @param enmMemAccess The memory operand's access type (read or write).
13448 * @param GCPtrDisp The instruction displacement field, if any. For
13449 * RIP-relative addressing pass RIP + displacement here.
13450 * @param pGCPtrMem Where to store the effective destination memory address.
13451 *
13452 * @remarks Warning! This function ASSUMES the instruction cannot be used in real or
13453 * virtual-8086 mode hence skips those checks while verifying if the
13454 * segment is valid.
13455 */
13456static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPUCC pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
13457 PRTGCPTR pGCPtrMem)
13458{
13459 Assert(pGCPtrMem);
13460 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
13461 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
13462 | CPUMCTX_EXTRN_CR0);
13463
13464 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
13465 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
13466 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
13467
13468 VMXEXITINSTRINFO ExitInstrInfo;
13469 ExitInstrInfo.u = uExitInstrInfo;
13470 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
13471 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
13472 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
13473 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
13474 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
13475 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
13476 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
13477 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
13478 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
13479
13480 /*
13481 * Validate instruction information.
13482 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
13483 */
13484 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
13485 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
13486 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
13487 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
13488 AssertLogRelMsgReturn(fIsMemOperand,
13489 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
13490
13491 /*
13492 * Compute the complete effective address.
13493 *
13494 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
13495 * See AMD spec. 4.5.2 "Segment Registers".
13496 */
13497 RTGCPTR GCPtrMem = GCPtrDisp;
13498 if (fBaseRegValid)
13499 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
13500 if (fIdxRegValid)
13501 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
13502
13503 RTGCPTR const GCPtrOff = GCPtrMem;
13504 if ( !fIsLongMode
13505 || iSegReg >= X86_SREG_FS)
13506 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
13507 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
13508
13509 /*
13510 * Validate effective address.
13511 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
13512 */
13513 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
13514 Assert(cbAccess > 0);
13515 if (fIsLongMode)
13516 {
13517 if (X86_IS_CANONICAL(GCPtrMem))
13518 {
13519 *pGCPtrMem = GCPtrMem;
13520 return VINF_SUCCESS;
13521 }
13522
13523 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
13524 * "Data Limit Checks in 64-bit Mode". */
13525 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
13526 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13527 return VINF_HM_PENDING_XCPT;
13528 }
13529
13530 /*
13531 * This is a watered down version of iemMemApplySegment().
13532 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
13533 * and segment CPL/DPL checks are skipped.
13534 */
13535 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
13536 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
13537 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
13538
13539 /* Check if the segment is present and usable. */
13540 if ( pSel->Attr.n.u1Present
13541 && !pSel->Attr.n.u1Unusable)
13542 {
13543 Assert(pSel->Attr.n.u1DescType);
13544 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
13545 {
13546 /* Check permissions for the data segment. */
13547 if ( enmMemAccess == VMXMEMACCESS_WRITE
13548 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
13549 {
13550 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13551 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
13552 return VINF_HM_PENDING_XCPT;
13553 }
13554
13555 /* Check limits if it's a normal data segment. */
13556 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
13557 {
13558 if ( GCPtrFirst32 > pSel->u32Limit
13559 || GCPtrLast32 > pSel->u32Limit)
13560 {
13561 Log4Func(("Data segment limit exceeded. "
13562 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13563 GCPtrLast32, pSel->u32Limit));
13564 if (iSegReg == X86_SREG_SS)
13565 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13566 else
13567 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13568 return VINF_HM_PENDING_XCPT;
13569 }
13570 }
13571 else
13572 {
13573 /* Check limits if it's an expand-down data segment.
13574 Note! The upper boundary is defined by the B bit, not the G bit! */
13575 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
13576 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
13577 {
13578 Log4Func(("Expand-down data segment limit exceeded. "
13579 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13580 GCPtrLast32, pSel->u32Limit));
13581 if (iSegReg == X86_SREG_SS)
13582 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13583 else
13584 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13585 return VINF_HM_PENDING_XCPT;
13586 }
13587 }
13588 }
13589 else
13590 {
13591 /* Check permissions for the code segment. */
13592 if ( enmMemAccess == VMXMEMACCESS_WRITE
13593 || ( enmMemAccess == VMXMEMACCESS_READ
13594 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
13595 {
13596 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
13597 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13598 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13599 return VINF_HM_PENDING_XCPT;
13600 }
13601
13602 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
13603 if ( GCPtrFirst32 > pSel->u32Limit
13604 || GCPtrLast32 > pSel->u32Limit)
13605 {
13606 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
13607 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
13608 if (iSegReg == X86_SREG_SS)
13609 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13610 else
13611 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13612 return VINF_HM_PENDING_XCPT;
13613 }
13614 }
13615 }
13616 else
13617 {
13618 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13619 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13620 return VINF_HM_PENDING_XCPT;
13621 }
13622
13623 *pGCPtrMem = GCPtrMem;
13624 return VINF_SUCCESS;
13625}
13626#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13627
13628
13629/**
13630 * VM-exit helper for LMSW.
13631 */
13632static VBOXSTRICTRC hmR0VmxExitLmsw(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint16_t uMsw, RTGCPTR GCPtrEffDst)
13633{
13634 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13635 AssertRCReturn(rc, rc);
13636
13637 VBOXSTRICTRC rcStrict = IEMExecDecodedLmsw(pVCpu, cbInstr, uMsw, GCPtrEffDst);
13638 AssertMsg( rcStrict == VINF_SUCCESS
13639 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13640
13641 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13642 if (rcStrict == VINF_IEM_RAISED_XCPT)
13643 {
13644 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13645 rcStrict = VINF_SUCCESS;
13646 }
13647
13648 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
13649 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13650 return rcStrict;
13651}
13652
13653
13654/**
13655 * VM-exit helper for CLTS.
13656 */
13657static VBOXSTRICTRC hmR0VmxExitClts(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr)
13658{
13659 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13660 AssertRCReturn(rc, rc);
13661
13662 VBOXSTRICTRC rcStrict = IEMExecDecodedClts(pVCpu, cbInstr);
13663 AssertMsg( rcStrict == VINF_SUCCESS
13664 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13665
13666 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13667 if (rcStrict == VINF_IEM_RAISED_XCPT)
13668 {
13669 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13670 rcStrict = VINF_SUCCESS;
13671 }
13672
13673 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
13674 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13675 return rcStrict;
13676}
13677
13678
13679/**
13680 * VM-exit helper for MOV from CRx (CRx read).
13681 */
13682static VBOXSTRICTRC hmR0VmxExitMovFromCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13683{
13684 Assert(iCrReg < 16);
13685 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
13686
13687 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13688 AssertRCReturn(rc, rc);
13689
13690 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
13691 AssertMsg( rcStrict == VINF_SUCCESS
13692 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13693
13694 if (iGReg == X86_GREG_xSP)
13695 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
13696 else
13697 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13698#ifdef VBOX_WITH_STATISTICS
13699 switch (iCrReg)
13700 {
13701 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13702 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13703 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13704 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13705 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13706 }
13707#endif
13708 Log4Func(("CR%d Read access rcStrict=%Rrc\n", iCrReg, VBOXSTRICTRC_VAL(rcStrict)));
13709 return rcStrict;
13710}
13711
13712
13713/**
13714 * VM-exit helper for MOV to CRx (CRx write).
13715 */
13716static VBOXSTRICTRC hmR0VmxExitMovToCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13717{
13718 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13719 AssertRCReturn(rc, rc);
13720
13721 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
13722 AssertMsg( rcStrict == VINF_SUCCESS
13723 || rcStrict == VINF_IEM_RAISED_XCPT
13724 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13725
13726 switch (iCrReg)
13727 {
13728 case 0:
13729 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0
13730 | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13731 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13732 Log4Func(("CR0 write. rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13733 break;
13734
13735 case 2:
13736 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13737 /* Nothing to do here, CR2 it's not part of the VMCS. */
13738 break;
13739
13740 case 3:
13741 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13742 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13743 Log4Func(("CR3 write. rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13744 break;
13745
13746 case 4:
13747 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13748 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13749 Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13750 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
13751 break;
13752
13753 case 8:
13754 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13755 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13756 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13757 break;
13758
13759 default:
13760 AssertMsgFailed(("Invalid CRx register %#x\n", iCrReg));
13761 break;
13762 }
13763
13764 if (rcStrict == VINF_IEM_RAISED_XCPT)
13765 {
13766 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13767 rcStrict = VINF_SUCCESS;
13768 }
13769 return rcStrict;
13770}
13771
13772
13773/**
13774 * VM-exit exception handler for \#PF (Page-fault exception).
13775 *
13776 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13777 */
13778static VBOXSTRICTRC hmR0VmxExitXcptPF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13779{
13780 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13781 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
13782 hmR0VmxReadExitQualVmcs(pVmxTransient);
13783
13784 if (!pVM->hm.s.fNestedPaging)
13785 { /* likely */ }
13786 else
13787 {
13788#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13789 Assert(pVmxTransient->fIsNestedGuest || pVCpu->hm.s.fUsingDebugLoop);
13790#endif
13791 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13792 if (!pVmxTransient->fVectoringDoublePF)
13793 {
13794 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13795 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13796 }
13797 else
13798 {
13799 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13800 Assert(!pVmxTransient->fIsNestedGuest);
13801 hmR0VmxSetPendingXcptDF(pVCpu);
13802 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13803 }
13804 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13805 return VINF_SUCCESS;
13806 }
13807
13808 Assert(!pVmxTransient->fIsNestedGuest);
13809
13810 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13811 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13812 if (pVmxTransient->fVectoringPF)
13813 {
13814 Assert(pVCpu->hm.s.Event.fPending);
13815 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13816 }
13817
13818 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13819 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13820 AssertRCReturn(rc, rc);
13821
13822 Log4Func(("#PF: cs:rip=%#04x:%#RX64 err_code=%#RX32 exit_qual=%#RX64 cr3=%#RX64\n", pCtx->cs.Sel, pCtx->rip,
13823 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual, pCtx->cr3));
13824
13825 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13826 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13827
13828 Log4Func(("#PF: rc=%Rrc\n", rc));
13829 if (rc == VINF_SUCCESS)
13830 {
13831 /*
13832 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13833 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13834 */
13835 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13836 TRPMResetTrap(pVCpu);
13837 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13838 return rc;
13839 }
13840
13841 if (rc == VINF_EM_RAW_GUEST_TRAP)
13842 {
13843 if (!pVmxTransient->fVectoringDoublePF)
13844 {
13845 /* It's a guest page fault and needs to be reflected to the guest. */
13846 uint32_t const uGstErrorCode = TRPMGetErrorCode(pVCpu);
13847 TRPMResetTrap(pVCpu);
13848 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13849 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13850 uGstErrorCode, pVmxTransient->uExitQual);
13851 }
13852 else
13853 {
13854 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13855 TRPMResetTrap(pVCpu);
13856 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13857 hmR0VmxSetPendingXcptDF(pVCpu);
13858 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13859 }
13860
13861 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13862 return VINF_SUCCESS;
13863 }
13864
13865 TRPMResetTrap(pVCpu);
13866 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13867 return rc;
13868}
13869
13870
13871/**
13872 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13873 *
13874 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13875 */
13876static VBOXSTRICTRC hmR0VmxExitXcptMF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13877{
13878 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13879 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13880
13881 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
13882 AssertRCReturn(rc, rc);
13883
13884 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
13885 {
13886 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13887 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13888
13889 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13890 * provides VM-exit instruction length. If this causes problem later,
13891 * disassemble the instruction like it's done on AMD-V. */
13892 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13893 AssertRCReturn(rc2, rc2);
13894 return rc;
13895 }
13896
13897 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbExitInstr,
13898 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13899 return VINF_SUCCESS;
13900}
13901
13902
13903/**
13904 * VM-exit exception handler for \#BP (Breakpoint exception).
13905 *
13906 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13907 */
13908static VBOXSTRICTRC hmR0VmxExitXcptBP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13909{
13910 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13911 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13912
13913 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13914 AssertRCReturn(rc, rc);
13915
13916 if (!pVmxTransient->fIsNestedGuest)
13917 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx));
13918 else
13919 rc = VINF_EM_RAW_GUEST_TRAP;
13920
13921 if (rc == VINF_EM_RAW_GUEST_TRAP)
13922 {
13923 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13924 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13925 rc = VINF_SUCCESS;
13926 }
13927
13928 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
13929 return rc;
13930}
13931
13932
13933/**
13934 * VM-exit exception handler for \#AC (Alignment-check exception).
13935 *
13936 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13937 */
13938static VBOXSTRICTRC hmR0VmxExitXcptAC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13939{
13940 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13941 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
13942
13943 /* Re-inject it. We'll detect any nesting before getting here. */
13944 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13945 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13946 return VINF_SUCCESS;
13947}
13948
13949
13950/**
13951 * VM-exit exception handler for \#DB (Debug exception).
13952 *
13953 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13954 */
13955static VBOXSTRICTRC hmR0VmxExitXcptDB(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13956{
13957 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13958 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13959
13960 /*
13961 * Get the DR6-like values from the Exit qualification and pass it to DBGF for processing.
13962 */
13963 hmR0VmxReadExitQualVmcs(pVmxTransient);
13964
13965 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13966 uint64_t const uDR6 = X86_DR6_INIT_VAL
13967 | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
13968 | X86_DR6_BD | X86_DR6_BS));
13969
13970 int rc;
13971 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13972 if (!pVmxTransient->fIsNestedGuest)
13973 {
13974 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13975
13976 /*
13977 * Prevents stepping twice over the same instruction when the guest is stepping using
13978 * EFLAGS.TF and the hypervisor debugger is stepping using MTF.
13979 * Testcase: DOSQEMM, break (using "ba x 1") at cs:rip 0x70:0x774 and step (using "t").
13980 */
13981 if ( rc == VINF_EM_DBG_STEPPED
13982 && (pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG))
13983 {
13984 Assert(pVCpu->hm.s.fSingleInstruction);
13985 rc = VINF_EM_RAW_GUEST_TRAP;
13986 }
13987 }
13988 else
13989 rc = VINF_EM_RAW_GUEST_TRAP;
13990 Log6Func(("rc=%Rrc\n", rc));
13991 if (rc == VINF_EM_RAW_GUEST_TRAP)
13992 {
13993 /*
13994 * The exception was for the guest. Update DR6, DR7.GD and
13995 * IA32_DEBUGCTL.LBR before forwarding it.
13996 * See Intel spec. 27.1 "Architectural State before a VM-Exit".
13997 */
13998 VMMRZCallRing3Disable(pVCpu);
13999 HM_DISABLE_PREEMPT(pVCpu);
14000
14001 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14002 pCtx->dr[6] |= uDR6;
14003 if (CPUMIsGuestDebugStateActive(pVCpu))
14004 ASMSetDR6(pCtx->dr[6]);
14005
14006 HM_RESTORE_PREEMPT();
14007 VMMRZCallRing3Enable(pVCpu);
14008
14009 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14010 AssertRCReturn(rc, rc);
14011
14012 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14013 pCtx->dr[7] &= ~(uint64_t)X86_DR7_GD;
14014
14015 /* Paranoia. */
14016 pCtx->dr[7] &= ~(uint64_t)X86_DR7_RAZ_MASK;
14017 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14018
14019 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
14020 AssertRC(rc);
14021
14022 /*
14023 * Raise #DB in the guest.
14024 *
14025 * It is important to reflect exactly what the VM-exit gave us (preserving the
14026 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14027 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14028 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14029 *
14030 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14031 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14032 */
14033 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14034 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14035 return VINF_SUCCESS;
14036 }
14037
14038 /*
14039 * Not a guest trap, must be a hypervisor related debug event then.
14040 * Update DR6 in case someone is interested in it.
14041 */
14042 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14043 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14044 CPUMSetHyperDR6(pVCpu, uDR6);
14045
14046 return rc;
14047}
14048
14049
14050/**
14051 * Hacks its way around the lovely mesa driver's backdoor accesses.
14052 *
14053 * @sa hmR0SvmHandleMesaDrvGp.
14054 */
14055static int hmR0VmxHandleMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14056{
14057 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14058 RT_NOREF(pCtx);
14059
14060 /* For now we'll just skip the instruction. */
14061 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14062}
14063
14064
14065/**
14066 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14067 * backdoor logging w/o checking what it is running inside.
14068 *
14069 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14070 * backdoor port and magic numbers loaded in registers.
14071 *
14072 * @returns true if it is, false if it isn't.
14073 * @sa hmR0SvmIsMesaDrvGp.
14074 */
14075DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14076{
14077 /* 0xed: IN eAX,dx */
14078 uint8_t abInstr[1];
14079 if (pVmxTransient->cbExitInstr != sizeof(abInstr))
14080 return false;
14081
14082 /* Check that it is #GP(0). */
14083 if (pVmxTransient->uExitIntErrorCode != 0)
14084 return false;
14085
14086 /* Check magic and port. */
14087 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14088 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14089 if (pCtx->rax != UINT32_C(0x564d5868))
14090 return false;
14091 if (pCtx->dx != UINT32_C(0x5658))
14092 return false;
14093
14094 /* Flat ring-3 CS. */
14095 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14096 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14097 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14098 if (pCtx->cs.Attr.n.u2Dpl != 3)
14099 return false;
14100 if (pCtx->cs.u64Base != 0)
14101 return false;
14102
14103 /* Check opcode. */
14104 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14105 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14106 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14107 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14108 if (RT_FAILURE(rc))
14109 return false;
14110 if (abInstr[0] != 0xed)
14111 return false;
14112
14113 return true;
14114}
14115
14116
14117/**
14118 * VM-exit exception handler for \#GP (General-protection exception).
14119 *
14120 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14121 */
14122static VBOXSTRICTRC hmR0VmxExitXcptGP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14123{
14124 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14125 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14126
14127 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14128 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14129 if (pVmcsInfo->RealMode.fRealOnV86Active)
14130 { /* likely */ }
14131 else
14132 {
14133#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14134 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
14135#endif
14136 /*
14137 * If the guest is not in real-mode or we have unrestricted guest execution support, or if we are
14138 * executing a nested-guest, reflect #GP to the guest or nested-guest.
14139 */
14140 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14141 AssertRCReturn(rc, rc);
14142 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14143 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14144
14145 if ( pVmxTransient->fIsNestedGuest
14146 || !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14147 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14148 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14149 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14150 else
14151 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14152 return rc;
14153 }
14154
14155 Assert(CPUMIsGuestInRealModeEx(pCtx));
14156 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
14157 Assert(!pVmxTransient->fIsNestedGuest);
14158
14159 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14160 AssertRCReturn(rc, rc);
14161
14162 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14163 if (rcStrict == VINF_SUCCESS)
14164 {
14165 if (!CPUMIsGuestInRealModeEx(pCtx))
14166 {
14167 /*
14168 * The guest is no longer in real-mode, check if we can continue executing the
14169 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14170 */
14171 pVmcsInfo->RealMode.fRealOnV86Active = false;
14172 if (HMCanExecuteVmxGuest(pVCpu->pVMR0, pVCpu, pCtx))
14173 {
14174 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14175 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14176 }
14177 else
14178 {
14179 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14180 rcStrict = VINF_EM_RESCHEDULE;
14181 }
14182 }
14183 else
14184 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14185 }
14186 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14187 {
14188 rcStrict = VINF_SUCCESS;
14189 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14190 }
14191 return VBOXSTRICTRC_VAL(rcStrict);
14192}
14193
14194
14195/**
14196 * VM-exit exception handler wrapper for all other exceptions that are not handled
14197 * by a specific handler.
14198 *
14199 * This simply re-injects the exception back into the VM without any special
14200 * processing.
14201 *
14202 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14203 */
14204static VBOXSTRICTRC hmR0VmxExitXcptOthers(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14205{
14206 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14207
14208#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14209 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14210 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active || pVmxTransient->fIsNestedGuest,
14211 ("uVector=%#x u32XcptBitmap=%#X32\n",
14212 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
14213 NOREF(pVmcsInfo);
14214#endif
14215
14216 /*
14217 * Re-inject the exception into the guest. This cannot be a double-fault condition which
14218 * would have been handled while checking exits due to event delivery.
14219 */
14220 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14221
14222#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14223 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
14224 AssertRCReturn(rc, rc);
14225 Log4Func(("Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
14226#endif
14227
14228#ifdef VBOX_WITH_STATISTICS
14229 switch (uVector)
14230 {
14231 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
14232 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
14233 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
14234 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14235 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
14236 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
14237 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14238 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
14239 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
14240 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
14241 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
14242 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
14243 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
14244 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
14245 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
14246 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
14247 default:
14248 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
14249 break;
14250 }
14251#endif
14252
14253 /* We should never call this function for a page-fault, we'd need to pass on the fault address below otherwise. */
14254 Assert(!VMX_EXIT_INT_INFO_IS_XCPT_PF(pVmxTransient->uExitIntInfo));
14255 NOREF(uVector);
14256
14257 /* Re-inject the original exception into the guest. */
14258 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14259 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14260 return VINF_SUCCESS;
14261}
14262
14263
14264/**
14265 * VM-exit exception handler for all exceptions (except NMIs!).
14266 *
14267 * @remarks This may be called for both guests and nested-guests. Take care to not
14268 * make assumptions and avoid doing anything that is not relevant when
14269 * executing a nested-guest (e.g., Mesa driver hacks).
14270 */
14271static VBOXSTRICTRC hmR0VmxExitXcpt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14272{
14273 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
14274
14275 /*
14276 * If this VM-exit occurred while delivering an event through the guest IDT, take
14277 * action based on the return code and additional hints (e.g. for page-faults)
14278 * that will be updated in the VMX transient structure.
14279 */
14280 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14281 if (rcStrict == VINF_SUCCESS)
14282 {
14283 /*
14284 * If an exception caused a VM-exit due to delivery of an event, the original
14285 * event may have to be re-injected into the guest. We shall reinject it and
14286 * continue guest execution. However, page-fault is a complicated case and
14287 * needs additional processing done in hmR0VmxExitXcptPF().
14288 */
14289 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14290 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14291 if ( !pVCpu->hm.s.Event.fPending
14292 || uVector == X86_XCPT_PF)
14293 {
14294 switch (uVector)
14295 {
14296 case X86_XCPT_PF: return hmR0VmxExitXcptPF(pVCpu, pVmxTransient);
14297 case X86_XCPT_GP: return hmR0VmxExitXcptGP(pVCpu, pVmxTransient);
14298 case X86_XCPT_MF: return hmR0VmxExitXcptMF(pVCpu, pVmxTransient);
14299 case X86_XCPT_DB: return hmR0VmxExitXcptDB(pVCpu, pVmxTransient);
14300 case X86_XCPT_BP: return hmR0VmxExitXcptBP(pVCpu, pVmxTransient);
14301 case X86_XCPT_AC: return hmR0VmxExitXcptAC(pVCpu, pVmxTransient);
14302 default:
14303 return hmR0VmxExitXcptOthers(pVCpu, pVmxTransient);
14304 }
14305 }
14306 /* else: inject pending event before resuming guest execution. */
14307 }
14308 else if (rcStrict == VINF_HM_DOUBLE_FAULT)
14309 {
14310 Assert(pVCpu->hm.s.Event.fPending);
14311 rcStrict = VINF_SUCCESS;
14312 }
14313
14314 return rcStrict;
14315}
14316/** @} */
14317
14318
14319/** @name VM-exit handlers.
14320 * @{
14321 */
14322/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14323/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14324/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14325
14326/**
14327 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
14328 */
14329HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14330{
14331 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14332 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
14333 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
14334 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
14335 return VINF_SUCCESS;
14336 return VINF_EM_RAW_INTERRUPT;
14337}
14338
14339
14340/**
14341 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). Conditional
14342 * VM-exit.
14343 */
14344HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14345{
14346 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14347 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
14348
14349 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14350
14351 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
14352 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14353 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14354
14355 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14356 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
14357 && uExitIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
14358 NOREF(pVmcsInfo);
14359
14360 VBOXSTRICTRC rcStrict;
14361 switch (uExitIntType)
14362 {
14363 /*
14364 * Host physical NMIs:
14365 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
14366 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
14367 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
14368 *
14369 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
14370 * See Intel spec. 27.5.5 "Updating Non-Register State".
14371 */
14372 case VMX_EXIT_INT_INFO_TYPE_NMI:
14373 {
14374 rcStrict = hmR0VmxExitHostNmi(pVCpu, pVmcsInfo);
14375 break;
14376 }
14377
14378 /*
14379 * Privileged software exceptions (#DB from ICEBP),
14380 * Software exceptions (#BP and #OF),
14381 * Hardware exceptions:
14382 * Process the required exceptions and resume guest execution if possible.
14383 */
14384 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
14385 Assert(uVector == X86_XCPT_DB);
14386 RT_FALL_THRU();
14387 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
14388 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uExitIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
14389 RT_FALL_THRU();
14390 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
14391 {
14392 NOREF(uVector);
14393 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14394 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14395 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14396 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14397
14398 rcStrict = hmR0VmxExitXcpt(pVCpu, pVmxTransient);
14399 break;
14400 }
14401
14402 default:
14403 {
14404 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
14405 rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
14406 AssertMsgFailed(("Invalid/unexpected VM-exit interruption info %#x\n", pVmxTransient->uExitIntInfo));
14407 break;
14408 }
14409 }
14410
14411 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
14412 return rcStrict;
14413}
14414
14415
14416/**
14417 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
14418 */
14419HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14420{
14421 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14422
14423 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
14424 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14425 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
14426
14427 /* Evaluate and deliver pending events and resume guest execution. */
14428 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
14429 return VINF_SUCCESS;
14430}
14431
14432
14433/**
14434 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
14435 */
14436HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14437{
14438 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14439
14440 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14441 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
14442 {
14443 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
14444 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14445 }
14446
14447 Assert(!CPUMIsGuestNmiBlocking(pVCpu));
14448
14449 /*
14450 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
14451 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
14452 */
14453 uint32_t fIntrState;
14454 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
14455 AssertRC(rc);
14456 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
14457 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
14458 {
14459 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
14460 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
14461
14462 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
14463 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
14464 AssertRC(rc);
14465 }
14466
14467 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
14468 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
14469
14470 /* Evaluate and deliver pending events and resume guest execution. */
14471 return VINF_SUCCESS;
14472}
14473
14474
14475/**
14476 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
14477 */
14478HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14479{
14480 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14481 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14482}
14483
14484
14485/**
14486 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
14487 */
14488HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14489{
14490 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14491 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14492}
14493
14494
14495/**
14496 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
14497 */
14498HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14499{
14500 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14501
14502 /*
14503 * Get the state we need and update the exit history entry.
14504 */
14505 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14506 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14507
14508 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
14509 AssertRCReturn(rc, rc);
14510
14511 VBOXSTRICTRC rcStrict;
14512 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14513 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
14514 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14515 if (!pExitRec)
14516 {
14517 /*
14518 * Regular CPUID instruction execution.
14519 */
14520 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbExitInstr);
14521 if (rcStrict == VINF_SUCCESS)
14522 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14523 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14524 {
14525 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14526 rcStrict = VINF_SUCCESS;
14527 }
14528 }
14529 else
14530 {
14531 /*
14532 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14533 */
14534 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14535 AssertRCReturn(rc2, rc2);
14536
14537 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
14538 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
14539
14540 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14541 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14542
14543 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14544 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14545 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14546 }
14547 return rcStrict;
14548}
14549
14550
14551/**
14552 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
14553 */
14554HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14555{
14556 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14557
14558 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14559 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
14560 AssertRCReturn(rc, rc);
14561
14562 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
14563 return VINF_EM_RAW_EMULATE_INSTR;
14564
14565 AssertMsgFailed(("hmR0VmxExitGetsec: Unexpected VM-exit when CR4.SMXE is 0.\n"));
14566 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14567}
14568
14569
14570/**
14571 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
14572 */
14573HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14574{
14575 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14576
14577 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14578 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14579 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14580 AssertRCReturn(rc, rc);
14581
14582 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbExitInstr);
14583 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14584 {
14585 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14586 we must reset offsetting on VM-entry. See @bugref{6634}. */
14587 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14588 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14589 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14590 }
14591 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14592 {
14593 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14594 rcStrict = VINF_SUCCESS;
14595 }
14596 return rcStrict;
14597}
14598
14599
14600/**
14601 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
14602 */
14603HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14604{
14605 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14606
14607 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14608 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14609 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
14610 AssertRCReturn(rc, rc);
14611
14612 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbExitInstr);
14613 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14614 {
14615 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14616 we must reset offsetting on VM-reentry. See @bugref{6634}. */
14617 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14618 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14619 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14620 }
14621 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14622 {
14623 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14624 rcStrict = VINF_SUCCESS;
14625 }
14626 return rcStrict;
14627}
14628
14629
14630/**
14631 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
14632 */
14633HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14634{
14635 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14636
14637 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14638 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
14639 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
14640 AssertRCReturn(rc, rc);
14641
14642 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14643 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14644 if (RT_LIKELY(rc == VINF_SUCCESS))
14645 {
14646 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14647 Assert(pVmxTransient->cbExitInstr == 2);
14648 }
14649 else
14650 {
14651 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
14652 rc = VERR_EM_INTERPRETER;
14653 }
14654 return rc;
14655}
14656
14657
14658/**
14659 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
14660 */
14661HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14662{
14663 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14664
14665 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
14666 if (EMAreHypercallInstructionsEnabled(pVCpu))
14667 {
14668 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14669 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
14670 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
14671 AssertRCReturn(rc, rc);
14672
14673 /* Perform the hypercall. */
14674 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
14675 if (rcStrict == VINF_SUCCESS)
14676 {
14677 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14678 AssertRCReturn(rc, rc);
14679 }
14680 else
14681 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
14682 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
14683 || RT_FAILURE(rcStrict));
14684
14685 /* If the hypercall changes anything other than guest's general-purpose registers,
14686 we would need to reload the guest changed bits here before VM-entry. */
14687 }
14688 else
14689 Log4Func(("Hypercalls not enabled\n"));
14690
14691 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
14692 if (RT_FAILURE(rcStrict))
14693 {
14694 hmR0VmxSetPendingXcptUD(pVCpu);
14695 rcStrict = VINF_SUCCESS;
14696 }
14697
14698 return rcStrict;
14699}
14700
14701
14702/**
14703 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
14704 */
14705HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14706{
14707 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14708 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
14709
14710 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14711 hmR0VmxReadExitQualVmcs(pVmxTransient);
14712 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14713 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
14714 AssertRCReturn(rc, rc);
14715
14716 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->uExitQual);
14717
14718 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
14719 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14720 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14721 {
14722 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14723 rcStrict = VINF_SUCCESS;
14724 }
14725 else
14726 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) status: %Rrc\n", pVmxTransient->uExitQual,
14727 VBOXSTRICTRC_VAL(rcStrict)));
14728 return rcStrict;
14729}
14730
14731
14732/**
14733 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
14734 */
14735HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14736{
14737 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14738
14739 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14740 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14741 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
14742 AssertRCReturn(rc, rc);
14743
14744 VBOXSTRICTRC rcStrict = IEMExecDecodedMonitor(pVCpu, pVmxTransient->cbExitInstr);
14745 if (rcStrict == VINF_SUCCESS)
14746 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14747 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14748 {
14749 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14750 rcStrict = VINF_SUCCESS;
14751 }
14752
14753 return rcStrict;
14754}
14755
14756
14757/**
14758 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
14759 */
14760HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14761{
14762 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14763
14764 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14765 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14766 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
14767 AssertRCReturn(rc, rc);
14768
14769 VBOXSTRICTRC rcStrict = IEMExecDecodedMwait(pVCpu, pVmxTransient->cbExitInstr);
14770 if (RT_SUCCESS(rcStrict))
14771 {
14772 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14773 if (EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
14774 rcStrict = VINF_SUCCESS;
14775 }
14776
14777 return rcStrict;
14778}
14779
14780
14781/**
14782 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
14783 * VM-exit.
14784 */
14785HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14786{
14787 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14788 return VINF_EM_RESET;
14789}
14790
14791
14792/**
14793 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
14794 */
14795HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14796{
14797 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14798
14799 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14800 AssertRCReturn(rc, rc);
14801
14802 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
14803 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
14804 rc = VINF_SUCCESS;
14805 else
14806 rc = VINF_EM_HALT;
14807
14808 if (rc != VINF_SUCCESS)
14809 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
14810 return rc;
14811}
14812
14813
14814/**
14815 * VM-exit handler for instructions that result in a \#UD exception delivered to
14816 * the guest.
14817 */
14818HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14819{
14820 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14821 hmR0VmxSetPendingXcptUD(pVCpu);
14822 return VINF_SUCCESS;
14823}
14824
14825
14826/**
14827 * VM-exit handler for expiry of the VMX-preemption timer.
14828 */
14829HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14830{
14831 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14832
14833 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
14834 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14835
14836 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
14837 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
14838 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
14839 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
14840 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
14841}
14842
14843
14844/**
14845 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
14846 */
14847HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14848{
14849 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14850
14851 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14852 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14853 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
14854 AssertRCReturn(rc, rc);
14855
14856 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbExitInstr);
14857 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
14858 : HM_CHANGED_RAISED_XCPT_MASK);
14859
14860 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14861 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
14862
14863 return rcStrict;
14864}
14865
14866
14867/**
14868 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
14869 */
14870HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14871{
14872 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14873
14874 /** @todo Enable the new code after finding a reliably guest test-case. */
14875#if 1
14876 return VERR_EM_INTERPRETER;
14877#else
14878 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14879 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
14880 hmR0VmxReadExitQualVmcs(pVmxTransient);
14881 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
14882 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
14883 AssertRCReturn(rc, rc);
14884
14885 /* Paranoia. Ensure this has a memory operand. */
14886 Assert(!pVmxTransient->ExitInstrInfo.Inv.u1Cleared0);
14887
14888 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
14889 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
14890 uint64_t const uType = CPUMIsGuestIn64BitCode(pVCpu) ? pVCpu->cpum.GstCtx.aGRegs[iGReg].u64
14891 : pVCpu->cpum.GstCtx.aGRegs[iGReg].u32;
14892
14893 RTGCPTR GCPtrDesc;
14894 HMVMX_DECODE_MEM_OPERAND(pVCpu, pVmxTransient->ExitInstrInfo.u, pVmxTransient->uExitQual, VMXMEMACCESS_READ, &GCPtrDesc);
14895
14896 VBOXSTRICTRC rcStrict = IEMExecDecodedInvpcid(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->ExitInstrInfo.Inv.iSegReg,
14897 GCPtrDesc, uType);
14898 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14899 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14900 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14901 {
14902 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14903 rcStrict = VINF_SUCCESS;
14904 }
14905 return rcStrict;
14906#endif
14907}
14908
14909
14910/**
14911 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error
14912 * VM-exit.
14913 */
14914HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14915{
14916 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14917 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14918 AssertRCReturn(rc, rc);
14919
14920 rc = hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
14921 if (RT_FAILURE(rc))
14922 return rc;
14923
14924 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
14925 NOREF(uInvalidReason);
14926
14927#ifdef VBOX_STRICT
14928 uint32_t fIntrState;
14929 uint64_t u64Val;
14930 hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
14931 hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
14932 hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
14933
14934 Log4(("uInvalidReason %u\n", uInvalidReason));
14935 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
14936 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
14937 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
14938
14939 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState); AssertRC(rc);
14940 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
14941 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Val); AssertRC(rc);
14942 Log4(("VMX_VMCS_GUEST_CR0 %#RX64\n", u64Val));
14943 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_MASK, &u64Val); AssertRC(rc);
14944 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RX64\n", u64Val));
14945 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Val); AssertRC(rc);
14946 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
14947 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_MASK, &u64Val); AssertRC(rc);
14948 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RX64\n", u64Val));
14949 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Val); AssertRC(rc);
14950 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
14951 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
14952 {
14953 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
14954 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
14955 }
14956 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
14957#endif
14958
14959 return VERR_VMX_INVALID_GUEST_STATE;
14960}
14961
14962/**
14963 * VM-exit handler for all undefined/unexpected reasons. Should never happen.
14964 */
14965HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUnexpected(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14966{
14967 /*
14968 * Cumulative notes of all recognized but unexpected VM-exits.
14969 *
14970 * 1. This does -not- cover scenarios like a page-fault VM-exit occurring when
14971 * nested-paging is used.
14972 *
14973 * 2. Any instruction that causes a VM-exit unconditionally (for e.g. VMXON) must be
14974 * emulated or a #UD must be raised in the guest. Therefore, we should -not- be using
14975 * this function (and thereby stop VM execution) for handling such instructions.
14976 *
14977 *
14978 * VMX_EXIT_INIT_SIGNAL:
14979 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
14980 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these
14981 * VM-exits. However, we should not receive INIT signals VM-exit while executing a VM.
14982 *
14983 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery"
14984 * See Intel spec. 29.3 "VMX Instructions" for "VMXON".
14985 * See Intel spec. "23.8 Restrictions on VMX operation".
14986 *
14987 * VMX_EXIT_SIPI:
14988 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest
14989 * activity state is used. We don't make use of it as our guests don't have direct
14990 * access to the host local APIC.
14991 *
14992 * See Intel spec. 25.3 "Other Causes of VM-exits".
14993 *
14994 * VMX_EXIT_IO_SMI:
14995 * VMX_EXIT_SMI:
14996 * This can only happen if we support dual-monitor treatment of SMI, which can be
14997 * activated by executing VMCALL in VMX root operation. Only an STM (SMM transfer
14998 * monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL in
14999 * VMX root mode or receive an SMI. If we get here, something funny is going on.
15000 *
15001 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
15002 * See Intel spec. 25.3 "Other Causes of VM-Exits"
15003 *
15004 * VMX_EXIT_ERR_MSR_LOAD:
15005 * Failures while loading MSRs are part of the VM-entry MSR-load area are unexpected
15006 * and typically indicates a bug in the hypervisor code. We thus cannot not resume
15007 * execution.
15008 *
15009 * See Intel spec. 26.7 "VM-Entry Failures During Or After Loading Guest State".
15010 *
15011 * VMX_EXIT_ERR_MACHINE_CHECK:
15012 * Machine check exceptions indicates a fatal/unrecoverable hardware condition
15013 * including but not limited to system bus, ECC, parity, cache and TLB errors. A
15014 * #MC exception abort class exception is raised. We thus cannot assume a
15015 * reasonable chance of continuing any sort of execution and we bail.
15016 *
15017 * See Intel spec. 15.1 "Machine-check Architecture".
15018 * See Intel spec. 27.1 "Architectural State Before A VM Exit".
15019 *
15020 * VMX_EXIT_PML_FULL:
15021 * VMX_EXIT_VIRTUALIZED_EOI:
15022 * VMX_EXIT_APIC_WRITE:
15023 * We do not currently support any of these features and thus they are all unexpected
15024 * VM-exits.
15025 *
15026 * VMX_EXIT_GDTR_IDTR_ACCESS:
15027 * VMX_EXIT_LDTR_TR_ACCESS:
15028 * VMX_EXIT_RDRAND:
15029 * VMX_EXIT_RSM:
15030 * VMX_EXIT_VMFUNC:
15031 * VMX_EXIT_ENCLS:
15032 * VMX_EXIT_RDSEED:
15033 * VMX_EXIT_XSAVES:
15034 * VMX_EXIT_XRSTORS:
15035 * VMX_EXIT_UMWAIT:
15036 * VMX_EXIT_TPAUSE:
15037 * These VM-exits are -not- caused unconditionally by execution of the corresponding
15038 * instruction. Any VM-exit for these instructions indicate a hardware problem,
15039 * unsupported CPU modes (like SMM) or potentially corrupt VMCS controls.
15040 *
15041 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
15042 */
15043 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15044 AssertMsgFailed(("Unexpected VM-exit %u\n", pVmxTransient->uExitReason));
15045 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
15046}
15047
15048
15049/**
15050 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
15051 */
15052HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15053{
15054 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15055
15056 /** @todo Optimize this: We currently drag in the whole MSR state
15057 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15058 * MSRs required. That would require changes to IEM and possibly CPUM too.
15059 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15060 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15061 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15062 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15063 switch (idMsr)
15064 {
15065 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15066 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15067 }
15068
15069 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15070 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15071 AssertRCReturn(rc, rc);
15072
15073 Log4Func(("ecx=%#RX32\n", idMsr));
15074
15075#ifdef VBOX_STRICT
15076 Assert(!pVmxTransient->fIsNestedGuest);
15077 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
15078 {
15079 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
15080 && idMsr != MSR_K6_EFER)
15081 {
15082 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
15083 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15084 }
15085 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15086 {
15087 Assert(pVmcsInfo->pvMsrBitmap);
15088 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15089 if (fMsrpm & VMXMSRPM_ALLOW_RD)
15090 {
15091 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
15092 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15093 }
15094 }
15095 }
15096#endif
15097
15098 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbExitInstr);
15099 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
15100 if (rcStrict == VINF_SUCCESS)
15101 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15102 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15103 {
15104 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15105 rcStrict = VINF_SUCCESS;
15106 }
15107 else
15108 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15109
15110 return rcStrict;
15111}
15112
15113
15114/**
15115 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
15116 */
15117HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15118{
15119 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15120
15121 /** @todo Optimize this: We currently drag in the whole MSR state
15122 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15123 * MSRs required. That would require changes to IEM and possibly CPUM too.
15124 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15125 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15126 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15127
15128 /*
15129 * The FS and GS base MSRs are not part of the above all-MSRs mask.
15130 * Although we don't need to fetch the base as it will be overwritten shortly, while
15131 * loading guest-state we would also load the entire segment register including limit
15132 * and attributes and thus we need to load them here.
15133 */
15134 switch (idMsr)
15135 {
15136 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15137 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15138 }
15139
15140 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15141 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15142 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15143 AssertRCReturn(rc, rc);
15144
15145 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
15146
15147 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbExitInstr);
15148 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
15149
15150 if (rcStrict == VINF_SUCCESS)
15151 {
15152 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15153
15154 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
15155 if ( idMsr == MSR_IA32_APICBASE
15156 || ( idMsr >= MSR_IA32_X2APIC_START
15157 && idMsr <= MSR_IA32_X2APIC_END))
15158 {
15159 /*
15160 * We've already saved the APIC related guest-state (TPR) in post-run phase.
15161 * When full APIC register virtualization is implemented we'll have to make
15162 * sure APIC state is saved from the VMCS before IEM changes it.
15163 */
15164 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
15165 }
15166 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
15167 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
15168 else if (idMsr == MSR_K6_EFER)
15169 {
15170 /*
15171 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
15172 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
15173 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
15174 */
15175 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
15176 }
15177
15178 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not used. */
15179 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
15180 {
15181 switch (idMsr)
15182 {
15183 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
15184 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
15185 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
15186 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
15187 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
15188 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
15189 default:
15190 {
15191 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15192 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
15193 else if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15194 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
15195 break;
15196 }
15197 }
15198 }
15199#ifdef VBOX_STRICT
15200 else
15201 {
15202 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
15203 switch (idMsr)
15204 {
15205 case MSR_IA32_SYSENTER_CS:
15206 case MSR_IA32_SYSENTER_EIP:
15207 case MSR_IA32_SYSENTER_ESP:
15208 case MSR_K8_FS_BASE:
15209 case MSR_K8_GS_BASE:
15210 {
15211 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
15212 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15213 }
15214
15215 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
15216 default:
15217 {
15218 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15219 {
15220 /* EFER MSR writes are always intercepted. */
15221 if (idMsr != MSR_K6_EFER)
15222 {
15223 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
15224 idMsr));
15225 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15226 }
15227 }
15228
15229 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15230 {
15231 Assert(pVmcsInfo->pvMsrBitmap);
15232 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15233 if (fMsrpm & VMXMSRPM_ALLOW_WR)
15234 {
15235 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
15236 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15237 }
15238 }
15239 break;
15240 }
15241 }
15242 }
15243#endif /* VBOX_STRICT */
15244 }
15245 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15246 {
15247 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15248 rcStrict = VINF_SUCCESS;
15249 }
15250 else
15251 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15252
15253 return rcStrict;
15254}
15255
15256
15257/**
15258 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
15259 */
15260HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15261{
15262 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15263
15264 /** @todo The guest has likely hit a contended spinlock. We might want to
15265 * poke a schedule different guest VCPU. */
15266 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15267 if (RT_SUCCESS(rc))
15268 return VINF_EM_RAW_INTERRUPT;
15269
15270 AssertMsgFailed(("hmR0VmxExitPause: Failed to increment RIP. rc=%Rrc\n", rc));
15271 return rc;
15272}
15273
15274
15275/**
15276 * VM-exit handler for when the TPR value is lowered below the specified
15277 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
15278 */
15279HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15280{
15281 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15282 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
15283
15284 /*
15285 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
15286 * We'll re-evaluate pending interrupts and inject them before the next VM
15287 * entry so we can just continue execution here.
15288 */
15289 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
15290 return VINF_SUCCESS;
15291}
15292
15293
15294/**
15295 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
15296 * VM-exit.
15297 *
15298 * @retval VINF_SUCCESS when guest execution can continue.
15299 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
15300 * @retval VERR_EM_RESCHEDULE_REM when we need to return to ring-3 due to
15301 * incompatible guest state for VMX execution (real-on-v86 case).
15302 */
15303HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15304{
15305 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15306 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
15307
15308 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15309 hmR0VmxReadExitQualVmcs(pVmxTransient);
15310 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15311
15312 VBOXSTRICTRC rcStrict;
15313 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15314 uint64_t const uExitQual = pVmxTransient->uExitQual;
15315 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
15316 switch (uAccessType)
15317 {
15318 /*
15319 * MOV to CRx.
15320 */
15321 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
15322 {
15323 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15324 AssertRCReturn(rc, rc);
15325
15326 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
15327 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
15328 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15329 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15330
15331 /*
15332 * MOV to CR3 only cause a VM-exit when one or more of the following are true:
15333 * - When nested paging isn't used.
15334 * - If the guest doesn't have paging enabled (intercept CR3 to update shadow page tables).
15335 * - We are executing in the VM debug loop.
15336 */
15337 Assert( iCrReg != 3
15338 || !pVM->hm.s.fNestedPaging
15339 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15340 || pVCpu->hm.s.fUsingDebugLoop);
15341
15342 /* MOV to CR8 writes only cause VM-exits when TPR shadow is not used. */
15343 Assert( iCrReg != 8
15344 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15345
15346 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15347 AssertMsg( rcStrict == VINF_SUCCESS
15348 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15349
15350 /*
15351 * This is a kludge for handling switches back to real mode when we try to use
15352 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
15353 * deal with special selector values, so we have to return to ring-3 and run
15354 * there till the selector values are V86 mode compatible.
15355 *
15356 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
15357 * latter is an alias for VINF_IEM_RAISED_XCPT which is asserted at the end of
15358 * this function.
15359 */
15360 if ( iCrReg == 0
15361 && rcStrict == VINF_SUCCESS
15362 && !pVM->hm.s.vmx.fUnrestrictedGuest
15363 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
15364 && (uOldCr0 & X86_CR0_PE)
15365 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
15366 {
15367 /** @todo Check selectors rather than returning all the time. */
15368 Assert(!pVmxTransient->fIsNestedGuest);
15369 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
15370 rcStrict = VINF_EM_RESCHEDULE_REM;
15371 }
15372 break;
15373 }
15374
15375 /*
15376 * MOV from CRx.
15377 */
15378 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
15379 {
15380 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15381 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15382
15383 /*
15384 * MOV from CR3 only cause a VM-exit when one or more of the following are true:
15385 * - When nested paging isn't used.
15386 * - If the guest doesn't have paging enabled (pass guest's CR3 rather than our identity mapped CR3).
15387 * - We are executing in the VM debug loop.
15388 */
15389 Assert( iCrReg != 3
15390 || !pVM->hm.s.fNestedPaging
15391 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15392 || pVCpu->hm.s.fUsingDebugLoop);
15393
15394 /* MOV from CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
15395 Assert( iCrReg != 8
15396 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15397
15398 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15399 break;
15400 }
15401
15402 /*
15403 * CLTS (Clear Task-Switch Flag in CR0).
15404 */
15405 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
15406 {
15407 rcStrict = hmR0VmxExitClts(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr);
15408 break;
15409 }
15410
15411 /*
15412 * LMSW (Load Machine-Status Word into CR0).
15413 * LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here.
15414 */
15415 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW:
15416 {
15417 RTGCPTR GCPtrEffDst;
15418 uint8_t const cbInstr = pVmxTransient->cbExitInstr;
15419 uint16_t const uMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual);
15420 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(uExitQual);
15421 if (fMemOperand)
15422 {
15423 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
15424 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
15425 }
15426 else
15427 GCPtrEffDst = NIL_RTGCPTR;
15428 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmcsInfo, cbInstr, uMsw, GCPtrEffDst);
15429 break;
15430 }
15431
15432 default:
15433 {
15434 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
15435 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
15436 }
15437 }
15438
15439 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
15440 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
15441 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15442
15443 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
15444 NOREF(pVM);
15445 return rcStrict;
15446}
15447
15448
15449/**
15450 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
15451 * VM-exit.
15452 */
15453HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15454{
15455 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15456 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
15457
15458 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15459 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15460 hmR0VmxReadExitQualVmcs(pVmxTransient);
15461 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15462 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
15463 | CPUMCTX_EXTRN_EFER);
15464 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
15465 AssertRCReturn(rc, rc);
15466
15467 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
15468 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
15469 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
15470 bool const fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
15471 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
15472 bool const fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
15473 bool const fDbgStepping = pVCpu->hm.s.fSingleInstruction;
15474 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
15475
15476 /*
15477 * Update exit history to see if this exit can be optimized.
15478 */
15479 VBOXSTRICTRC rcStrict;
15480 PCEMEXITREC pExitRec = NULL;
15481 if ( !fGstStepping
15482 && !fDbgStepping)
15483 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
15484 !fIOString
15485 ? !fIOWrite
15486 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
15487 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
15488 : !fIOWrite
15489 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
15490 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
15491 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
15492 if (!pExitRec)
15493 {
15494 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
15495 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
15496
15497 uint32_t const cbValue = s_aIOSizes[uIOSize];
15498 uint32_t const cbInstr = pVmxTransient->cbExitInstr;
15499 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
15500 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15501 if (fIOString)
15502 {
15503 /*
15504 * INS/OUTS - I/O String instruction.
15505 *
15506 * Use instruction-information if available, otherwise fall back on
15507 * interpreting the instruction.
15508 */
15509 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15510 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
15511 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
15512 if (fInsOutsInfo)
15513 {
15514 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15515 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
15516 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
15517 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
15518 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
15519 if (fIOWrite)
15520 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
15521 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
15522 else
15523 {
15524 /*
15525 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
15526 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
15527 * See Intel Instruction spec. for "INS".
15528 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
15529 */
15530 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
15531 }
15532 }
15533 else
15534 rcStrict = IEMExecOne(pVCpu);
15535
15536 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15537 fUpdateRipAlready = true;
15538 }
15539 else
15540 {
15541 /*
15542 * IN/OUT - I/O instruction.
15543 */
15544 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15545 uint32_t const uAndVal = s_aIOOpAnd[uIOSize];
15546 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
15547 if (fIOWrite)
15548 {
15549 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
15550 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
15551 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15552 && !pCtx->eflags.Bits.u1TF)
15553 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
15554 }
15555 else
15556 {
15557 uint32_t u32Result = 0;
15558 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
15559 if (IOM_SUCCESS(rcStrict))
15560 {
15561 /* Save result of I/O IN instr. in AL/AX/EAX. */
15562 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
15563 }
15564 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15565 && !pCtx->eflags.Bits.u1TF)
15566 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
15567 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
15568 }
15569 }
15570
15571 if (IOM_SUCCESS(rcStrict))
15572 {
15573 if (!fUpdateRipAlready)
15574 {
15575 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
15576 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15577 }
15578
15579 /*
15580 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
15581 * while booting Fedora 17 64-bit guest.
15582 *
15583 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
15584 */
15585 if (fIOString)
15586 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
15587
15588 /*
15589 * If any I/O breakpoints are armed, we need to check if one triggered
15590 * and take appropriate action.
15591 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
15592 */
15593 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
15594 AssertRCReturn(rc, rc);
15595
15596 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
15597 * execution engines about whether hyper BPs and such are pending. */
15598 uint32_t const uDr7 = pCtx->dr[7];
15599 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
15600 && X86_DR7_ANY_RW_IO(uDr7)
15601 && (pCtx->cr4 & X86_CR4_DE))
15602 || DBGFBpIsHwIoArmed(pVM)))
15603 {
15604 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
15605
15606 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
15607 VMMRZCallRing3Disable(pVCpu);
15608 HM_DISABLE_PREEMPT(pVCpu);
15609
15610 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
15611
15612 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
15613 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
15614 {
15615 /* Raise #DB. */
15616 if (fIsGuestDbgActive)
15617 ASMSetDR6(pCtx->dr[6]);
15618 if (pCtx->dr[7] != uDr7)
15619 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
15620
15621 hmR0VmxSetPendingXcptDB(pVCpu);
15622 }
15623 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
15624 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
15625 else if ( rcStrict2 != VINF_SUCCESS
15626 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
15627 rcStrict = rcStrict2;
15628 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
15629
15630 HM_RESTORE_PREEMPT();
15631 VMMRZCallRing3Enable(pVCpu);
15632 }
15633 }
15634
15635#ifdef VBOX_STRICT
15636 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15637 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
15638 Assert(!fIOWrite);
15639 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15640 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
15641 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
15642 Assert(fIOWrite);
15643 else
15644 {
15645# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
15646 * statuses, that the VMM device and some others may return. See
15647 * IOM_SUCCESS() for guidance. */
15648 AssertMsg( RT_FAILURE(rcStrict)
15649 || rcStrict == VINF_SUCCESS
15650 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
15651 || rcStrict == VINF_EM_DBG_BREAKPOINT
15652 || rcStrict == VINF_EM_RAW_GUEST_TRAP
15653 || rcStrict == VINF_EM_RAW_TO_R3
15654 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15655# endif
15656 }
15657#endif
15658 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
15659 }
15660 else
15661 {
15662 /*
15663 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
15664 */
15665 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15666 AssertRCReturn(rc2, rc2);
15667 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
15668 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
15669 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
15670 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15671 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
15672 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOSize));
15673
15674 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
15675 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15676
15677 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
15678 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15679 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
15680 }
15681 return rcStrict;
15682}
15683
15684
15685/**
15686 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
15687 * VM-exit.
15688 */
15689HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15690{
15691 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15692
15693 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
15694 hmR0VmxReadExitQualVmcs(pVmxTransient);
15695 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
15696 {
15697 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15698 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
15699 {
15700 uint32_t uErrCode;
15701 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
15702 {
15703 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15704 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
15705 }
15706 else
15707 uErrCode = 0;
15708
15709 RTGCUINTPTR GCPtrFaultAddress;
15710 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(pVmxTransient->uIdtVectoringInfo))
15711 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
15712 else
15713 GCPtrFaultAddress = 0;
15714
15715 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15716
15717 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
15718 pVmxTransient->cbExitInstr, uErrCode, GCPtrFaultAddress);
15719
15720 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo),
15721 VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo)));
15722 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
15723 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15724 }
15725 }
15726
15727 /* Fall back to the interpreter to emulate the task-switch. */
15728 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
15729 return VERR_EM_INTERPRETER;
15730}
15731
15732
15733/**
15734 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
15735 */
15736HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15737{
15738 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15739
15740 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15741 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
15742 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
15743 AssertRC(rc);
15744 return VINF_EM_DBG_STEPPED;
15745}
15746
15747
15748/**
15749 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
15750 */
15751HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15752{
15753 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15754 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
15755
15756 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15757 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15758 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15759 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15760 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15761
15762 /*
15763 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
15764 */
15765 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
15766 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15767 {
15768 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
15769 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
15770 {
15771 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
15772 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15773 }
15774 }
15775 else
15776 {
15777 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
15778 return rcStrict;
15779 }
15780
15781 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
15782 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15783 hmR0VmxReadExitQualVmcs(pVmxTransient);
15784 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15785 AssertRCReturn(rc, rc);
15786
15787 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
15788 uint32_t const uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
15789 switch (uAccessType)
15790 {
15791 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
15792 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
15793 {
15794 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
15795 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
15796 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
15797
15798 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
15799 GCPhys &= PAGE_BASE_GC_MASK;
15800 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
15801 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
15802 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
15803
15804 rcStrict = IOMR0MmioPhysHandler(pVCpu->CTX_SUFF(pVM), pVCpu,
15805 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW, GCPhys);
15806 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15807 if ( rcStrict == VINF_SUCCESS
15808 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
15809 || rcStrict == VERR_PAGE_NOT_PRESENT)
15810 {
15811 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
15812 | HM_CHANGED_GUEST_APIC_TPR);
15813 rcStrict = VINF_SUCCESS;
15814 }
15815 break;
15816 }
15817
15818 default:
15819 {
15820 Log4Func(("uAccessType=%#x\n", uAccessType));
15821 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
15822 break;
15823 }
15824 }
15825
15826 if (rcStrict != VINF_SUCCESS)
15827 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
15828 return rcStrict;
15829}
15830
15831
15832/**
15833 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
15834 * VM-exit.
15835 */
15836HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15837{
15838 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15839 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15840
15841 /* We might get this VM-exit if the nested-guest is not intercepting MOV DRx accesses. */
15842 if (!pVmxTransient->fIsNestedGuest)
15843 {
15844 /* We should -not- get this VM-exit if the guest's debug registers were active. */
15845 if (pVmxTransient->fWasGuestDebugStateActive)
15846 {
15847 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
15848 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
15849 }
15850
15851 if ( !pVCpu->hm.s.fSingleInstruction
15852 && !pVmxTransient->fWasHyperDebugStateActive)
15853 {
15854 Assert(!DBGFIsStepping(pVCpu));
15855 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
15856
15857 /* Don't intercept MOV DRx any more. */
15858 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
15859 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
15860 AssertRC(rc);
15861
15862 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
15863 VMMRZCallRing3Disable(pVCpu);
15864 HM_DISABLE_PREEMPT(pVCpu);
15865
15866 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
15867 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
15868 Assert(CPUMIsGuestDebugStateActive(pVCpu));
15869
15870 HM_RESTORE_PREEMPT();
15871 VMMRZCallRing3Enable(pVCpu);
15872
15873#ifdef VBOX_WITH_STATISTICS
15874 hmR0VmxReadExitQualVmcs(pVmxTransient);
15875 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
15876 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
15877 else
15878 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
15879#endif
15880 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
15881 return VINF_SUCCESS;
15882 }
15883 }
15884
15885 /*
15886 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
15887 * The EFER MSR is always up-to-date.
15888 * Update the segment registers and DR7 from the CPU.
15889 */
15890 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15891 hmR0VmxReadExitQualVmcs(pVmxTransient);
15892 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
15893 AssertRCReturn(rc, rc);
15894 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
15895
15896 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15897 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
15898 {
15899 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
15900 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
15901 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
15902 if (RT_SUCCESS(rc))
15903 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
15904 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
15905 }
15906 else
15907 {
15908 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
15909 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
15910 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
15911 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
15912 }
15913
15914 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
15915 if (RT_SUCCESS(rc))
15916 {
15917 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15918 AssertRCReturn(rc2, rc2);
15919 return VINF_SUCCESS;
15920 }
15921 return rc;
15922}
15923
15924
15925/**
15926 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
15927 * Conditional VM-exit.
15928 */
15929HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15930{
15931 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15932 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
15933
15934 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15935 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15936 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15937 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15938 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15939
15940 /*
15941 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
15942 */
15943 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
15944 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15945 {
15946 /*
15947 * In the unlikely case where delivering an event causes an EPT misconfig (MMIO), go back to
15948 * instruction emulation to inject the original event. Otherwise, injecting the original event
15949 * using hardware-assisted VMX would trigger the same EPT misconfig VM-exit again.
15950 */
15951 if (!pVCpu->hm.s.Event.fPending)
15952 { /* likely */ }
15953 else
15954 {
15955 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
15956#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
15957 /** @todo NSTVMX: Think about how this should be handled. */
15958 if (pVmxTransient->fIsNestedGuest)
15959 return VERR_VMX_IPE_3;
15960#endif
15961 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15962 }
15963 }
15964 else
15965 {
15966 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
15967 return rcStrict;
15968 }
15969
15970 /*
15971 * Get sufficient state and update the exit history entry.
15972 */
15973 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15974 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
15975 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15976 AssertRCReturn(rc, rc);
15977
15978 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
15979 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
15980 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
15981 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
15982 if (!pExitRec)
15983 {
15984 /*
15985 * If we succeed, resume guest execution.
15986 * If we fail in interpreting the instruction because we couldn't get the guest physical address
15987 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
15988 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
15989 * weird case. See @bugref{6043}.
15990 */
15991 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15992 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15993/** @todo bird: We can probably just go straight to IOM here and assume that
15994 * it's MMIO, then fall back on PGM if that hunch didn't work out so
15995 * well. However, we need to address that aliasing workarounds that
15996 * PGMR0Trap0eHandlerNPMisconfig implements. So, some care is needed.
15997 *
15998 * Might also be interesting to see if we can get this done more or
15999 * less locklessly inside IOM. Need to consider the lookup table
16000 * updating and use a bit more carefully first (or do all updates via
16001 * rendezvous) */
16002 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
16003 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
16004 if ( rcStrict == VINF_SUCCESS
16005 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16006 || rcStrict == VERR_PAGE_NOT_PRESENT)
16007 {
16008 /* Successfully handled MMIO operation. */
16009 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
16010 | HM_CHANGED_GUEST_APIC_TPR);
16011 rcStrict = VINF_SUCCESS;
16012 }
16013 }
16014 else
16015 {
16016 /*
16017 * Frequent exit or something needing probing. Call EMHistoryExec.
16018 */
16019 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
16020 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
16021
16022 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
16023 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16024
16025 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
16026 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
16027 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
16028 }
16029 return rcStrict;
16030}
16031
16032
16033/**
16034 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
16035 * VM-exit.
16036 */
16037HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16038{
16039 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16040 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
16041
16042 hmR0VmxReadExitQualVmcs(pVmxTransient);
16043 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16044 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16045 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16046 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16047 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16048
16049 /*
16050 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
16051 */
16052 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
16053 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16054 {
16055 /*
16056 * If delivery of an event causes an EPT violation (true nested #PF and not MMIO),
16057 * we shall resolve the nested #PF and re-inject the original event.
16058 */
16059 if (pVCpu->hm.s.Event.fPending)
16060 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
16061 }
16062 else
16063 {
16064 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
16065 return rcStrict;
16066 }
16067
16068 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16069 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
16070 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
16071 AssertRCReturn(rc, rc);
16072
16073 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
16074 uint64_t const uExitQual = pVmxTransient->uExitQual;
16075 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", uExitQual));
16076
16077 RTGCUINT uErrorCode = 0;
16078 if (uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
16079 uErrorCode |= X86_TRAP_PF_ID;
16080 if (uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
16081 uErrorCode |= X86_TRAP_PF_RW;
16082 if (uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
16083 uErrorCode |= X86_TRAP_PF_P;
16084
16085 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16086 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16087 Log4Func(("at %#RX64 (%#RX64 errcode=%#x) cs:rip=%#04x:%#RX64\n", GCPhys, uExitQual, uErrorCode, pCtx->cs.Sel, pCtx->rip));
16088
16089 /*
16090 * Handle the pagefault trap for the nested shadow table.
16091 */
16092 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
16093 rcStrict = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
16094 TRPMResetTrap(pVCpu);
16095
16096 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
16097 if ( rcStrict == VINF_SUCCESS
16098 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16099 || rcStrict == VERR_PAGE_NOT_PRESENT)
16100 {
16101 /* Successfully synced our nested page tables. */
16102 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
16103 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
16104 return VINF_SUCCESS;
16105 }
16106
16107 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
16108 return rcStrict;
16109}
16110
16111
16112#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16113/**
16114 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
16115 */
16116HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16117{
16118 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16119
16120 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16121 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16122 hmR0VmxReadExitQualVmcs(pVmxTransient);
16123 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16124 | CPUMCTX_EXTRN_HWVIRT
16125 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16126 AssertRCReturn(rc, rc);
16127
16128 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16129
16130 VMXVEXITINFO ExitInfo;
16131 RT_ZERO(ExitInfo);
16132 ExitInfo.uReason = pVmxTransient->uExitReason;
16133 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16134 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16135 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16136 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16137
16138 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
16139 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16140 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16141 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16142 {
16143 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16144 rcStrict = VINF_SUCCESS;
16145 }
16146 return rcStrict;
16147}
16148
16149
16150/**
16151 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
16152 */
16153HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16154{
16155 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16156
16157 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
16158 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16159 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16160 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16161 AssertRCReturn(rc, rc);
16162
16163 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16164
16165 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16166 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMLAUNCH);
16167 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16168 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16169 {
16170 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16171 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16172 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16173 }
16174 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16175 return rcStrict;
16176}
16177
16178
16179/**
16180 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
16181 */
16182HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16183{
16184 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16185
16186 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16187 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16188 hmR0VmxReadExitQualVmcs(pVmxTransient);
16189 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16190 | CPUMCTX_EXTRN_HWVIRT
16191 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16192 AssertRCReturn(rc, rc);
16193
16194 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16195
16196 VMXVEXITINFO ExitInfo;
16197 RT_ZERO(ExitInfo);
16198 ExitInfo.uReason = pVmxTransient->uExitReason;
16199 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16200 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16201 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16202 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16203
16204 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
16205 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16206 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16207 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16208 {
16209 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16210 rcStrict = VINF_SUCCESS;
16211 }
16212 return rcStrict;
16213}
16214
16215
16216/**
16217 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
16218 */
16219HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16220{
16221 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16222
16223 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16224 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16225 hmR0VmxReadExitQualVmcs(pVmxTransient);
16226 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16227 | CPUMCTX_EXTRN_HWVIRT
16228 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16229 AssertRCReturn(rc, rc);
16230
16231 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16232
16233 VMXVEXITINFO ExitInfo;
16234 RT_ZERO(ExitInfo);
16235 ExitInfo.uReason = pVmxTransient->uExitReason;
16236 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16237 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16238 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16239 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16240
16241 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
16242 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16243 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16244 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16245 {
16246 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16247 rcStrict = VINF_SUCCESS;
16248 }
16249 return rcStrict;
16250}
16251
16252
16253/**
16254 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Conditional VM-exit.
16255 */
16256HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16257{
16258 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16259
16260 /*
16261 * Strictly speaking we should not get VMREAD VM-exits for shadow VMCS fields and
16262 * thus might not need to import the shadow VMCS state, it's safer just in case
16263 * code elsewhere dares look at unsynced VMCS fields.
16264 */
16265 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16266 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16267 hmR0VmxReadExitQualVmcs(pVmxTransient);
16268 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16269 | CPUMCTX_EXTRN_HWVIRT
16270 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16271 AssertRCReturn(rc, rc);
16272
16273 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16274
16275 VMXVEXITINFO ExitInfo;
16276 RT_ZERO(ExitInfo);
16277 ExitInfo.uReason = pVmxTransient->uExitReason;
16278 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16279 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16280 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16281 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16282 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16283
16284 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
16285 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16286 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16287 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16288 {
16289 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16290 rcStrict = VINF_SUCCESS;
16291 }
16292 return rcStrict;
16293}
16294
16295
16296/**
16297 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
16298 */
16299HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16300{
16301 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16302
16303 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
16304 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16305 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16306 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16307 AssertRCReturn(rc, rc);
16308
16309 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16310
16311 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16312 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMRESUME);
16313 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16314 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16315 {
16316 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16317 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16318 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16319 }
16320 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16321 return rcStrict;
16322}
16323
16324
16325/**
16326 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Conditional VM-exit.
16327 */
16328HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16329{
16330 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16331
16332 /*
16333 * Although we should not get VMWRITE VM-exits for shadow VMCS fields, since our HM hook
16334 * gets invoked when IEM's VMWRITE instruction emulation modifies the current VMCS and it
16335 * flags re-loading the entire shadow VMCS, we should save the entire shadow VMCS here.
16336 */
16337 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16338 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16339 hmR0VmxReadExitQualVmcs(pVmxTransient);
16340 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16341 | CPUMCTX_EXTRN_HWVIRT
16342 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16343 AssertRCReturn(rc, rc);
16344
16345 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16346
16347 VMXVEXITINFO ExitInfo;
16348 RT_ZERO(ExitInfo);
16349 ExitInfo.uReason = pVmxTransient->uExitReason;
16350 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16351 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16352 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16353 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16354 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16355
16356 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
16357 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16358 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16359 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16360 {
16361 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16362 rcStrict = VINF_SUCCESS;
16363 }
16364 return rcStrict;
16365}
16366
16367
16368/**
16369 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
16370 */
16371HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16372{
16373 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16374
16375 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16376 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
16377 | CPUMCTX_EXTRN_HWVIRT
16378 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
16379 AssertRCReturn(rc, rc);
16380
16381 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16382
16383 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbExitInstr);
16384 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16385 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
16386 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16387 {
16388 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16389 rcStrict = VINF_SUCCESS;
16390 }
16391 return rcStrict;
16392}
16393
16394
16395/**
16396 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
16397 */
16398HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16399{
16400 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16401
16402 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16403 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16404 hmR0VmxReadExitQualVmcs(pVmxTransient);
16405 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16406 | CPUMCTX_EXTRN_HWVIRT
16407 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16408 AssertRCReturn(rc, rc);
16409
16410 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16411
16412 VMXVEXITINFO ExitInfo;
16413 RT_ZERO(ExitInfo);
16414 ExitInfo.uReason = pVmxTransient->uExitReason;
16415 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16416 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16417 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16418 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16419
16420 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
16421 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16422 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16423 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16424 {
16425 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16426 rcStrict = VINF_SUCCESS;
16427 }
16428 return rcStrict;
16429}
16430
16431
16432/**
16433 * VM-exit handler for INVVPID (VMX_EXIT_INVVPID). Unconditional VM-exit.
16434 */
16435HMVMX_EXIT_DECL hmR0VmxExitInvvpid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16436{
16437 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16438
16439 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16440 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16441 hmR0VmxReadExitQualVmcs(pVmxTransient);
16442 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16443 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16444 AssertRCReturn(rc, rc);
16445
16446 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16447
16448 VMXVEXITINFO ExitInfo;
16449 RT_ZERO(ExitInfo);
16450 ExitInfo.uReason = pVmxTransient->uExitReason;
16451 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16452 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16453 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16454 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16455
16456 VBOXSTRICTRC rcStrict = IEMExecDecodedInvvpid(pVCpu, &ExitInfo);
16457 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16458 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16459 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16460 {
16461 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16462 rcStrict = VINF_SUCCESS;
16463 }
16464 return rcStrict;
16465}
16466#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
16467/** @} */
16468
16469
16470#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16471/** @name Nested-guest VM-exit handlers.
16472 * @{
16473 */
16474/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16475/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Nested-guest VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16476/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16477
16478/**
16479 * Nested-guest VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
16480 * Conditional VM-exit.
16481 */
16482HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16483{
16484 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16485
16486 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16487
16488 uint64_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
16489 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
16490 Assert(VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo));
16491
16492 switch (uExitIntType)
16493 {
16494 /*
16495 * Physical NMIs:
16496 * We shouldn't direct host physical NMIs to the nested-guest. Dispatch it to the host.
16497 */
16498 case VMX_EXIT_INT_INFO_TYPE_NMI:
16499 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
16500
16501 /*
16502 * Hardware exceptions,
16503 * Software exceptions,
16504 * Privileged software exceptions:
16505 * Figure out if the exception must be delivered to the guest or the nested-guest.
16506 */
16507 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
16508 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
16509 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
16510 {
16511 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16512 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16513 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16514 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16515
16516 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16517 bool const fIntercept = CPUMIsGuestVmxXcptInterceptSet(pCtx, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo),
16518 pVmxTransient->uExitIntErrorCode);
16519 if (fIntercept)
16520 {
16521 /* Exit qualification is required for debug and page-fault exceptions. */
16522 hmR0VmxReadExitQualVmcs(pVmxTransient);
16523
16524 /*
16525 * For VM-exits due to software exceptions (those generated by INT3 or INTO) and privileged
16526 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
16527 * length. However, if delivery of a software interrupt, software exception or privileged
16528 * software exception causes a VM-exit, that too provides the VM-exit instruction length.
16529 */
16530 VMXVEXITINFO ExitInfo;
16531 RT_ZERO(ExitInfo);
16532 ExitInfo.uReason = pVmxTransient->uExitReason;
16533 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16534 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16535
16536 VMXVEXITEVENTINFO ExitEventInfo;
16537 RT_ZERO(ExitEventInfo);
16538 ExitEventInfo.uExitIntInfo = pVmxTransient->uExitIntInfo;
16539 ExitEventInfo.uExitIntErrCode = pVmxTransient->uExitIntErrorCode;
16540 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16541 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16542
16543#ifdef DEBUG_ramshankar
16544 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16545 Log4Func(("exit_int_info=%#RX32 err_code=%#RX32 exit_qual=%#RX64\n", pVmxTransient->uExitIntInfo,
16546 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual));
16547 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
16548 {
16549 Log4Func(("idt_info=%#RX32 idt_errcode=%#RX32 cr2=%#RX64\n", pVmxTransient->uIdtVectoringInfo,
16550 pVmxTransient->uIdtVectoringErrorCode, pCtx->cr2));
16551 }
16552#endif
16553 return IEMExecVmxVmexitXcpt(pVCpu, &ExitInfo, &ExitEventInfo);
16554 }
16555
16556 /* Nested paging is currently a requirement, otherwise we would need to handle shadow #PFs in hmR0VmxExitXcptPF. */
16557 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
16558 return hmR0VmxExitXcpt(pVCpu, pVmxTransient);
16559 }
16560
16561 /*
16562 * Software interrupts:
16563 * VM-exits cannot be caused by software interrupts.
16564 *
16565 * External interrupts:
16566 * This should only happen when "acknowledge external interrupts on VM-exit"
16567 * control is set. However, we never set this when executing a guest or
16568 * nested-guest. For nested-guests it is emulated while injecting interrupts into
16569 * the guest.
16570 */
16571 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
16572 case VMX_EXIT_INT_INFO_TYPE_EXT_INT:
16573 default:
16574 {
16575 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
16576 return VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
16577 }
16578 }
16579}
16580
16581
16582/**
16583 * Nested-guest VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT).
16584 * Unconditional VM-exit.
16585 */
16586HMVMX_EXIT_DECL hmR0VmxExitTripleFaultNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16587{
16588 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16589 return IEMExecVmxVmexitTripleFault(pVCpu);
16590}
16591
16592
16593/**
16594 * Nested-guest VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
16595 */
16596HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16597{
16598 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16599
16600 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT))
16601 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16602 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16603}
16604
16605
16606/**
16607 * Nested-guest VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
16608 */
16609HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16610{
16611 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16612
16613 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_NMI_WINDOW_EXIT))
16614 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16615 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16616}
16617
16618
16619/**
16620 * Nested-guest VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH).
16621 * Unconditional VM-exit.
16622 */
16623HMVMX_EXIT_DECL hmR0VmxExitTaskSwitchNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16624{
16625 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16626
16627 hmR0VmxReadExitQualVmcs(pVmxTransient);
16628 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16629 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16630 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16631
16632 VMXVEXITINFO ExitInfo;
16633 RT_ZERO(ExitInfo);
16634 ExitInfo.uReason = pVmxTransient->uExitReason;
16635 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16636 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16637
16638 VMXVEXITEVENTINFO ExitEventInfo;
16639 RT_ZERO(ExitEventInfo);
16640 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16641 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16642 return IEMExecVmxVmexitTaskSwitch(pVCpu, &ExitInfo, &ExitEventInfo);
16643}
16644
16645
16646/**
16647 * Nested-guest VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
16648 */
16649HMVMX_EXIT_DECL hmR0VmxExitHltNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16650{
16651 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16652
16653 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_HLT_EXIT))
16654 {
16655 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16656 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16657 }
16658 return hmR0VmxExitHlt(pVCpu, pVmxTransient);
16659}
16660
16661
16662/**
16663 * Nested-guest VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
16664 */
16665HMVMX_EXIT_DECL hmR0VmxExitInvlpgNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16666{
16667 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16668
16669 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
16670 {
16671 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16672 hmR0VmxReadExitQualVmcs(pVmxTransient);
16673
16674 VMXVEXITINFO ExitInfo;
16675 RT_ZERO(ExitInfo);
16676 ExitInfo.uReason = pVmxTransient->uExitReason;
16677 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16678 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16679 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16680 }
16681 return hmR0VmxExitInvlpg(pVCpu, pVmxTransient);
16682}
16683
16684
16685/**
16686 * Nested-guest VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
16687 */
16688HMVMX_EXIT_DECL hmR0VmxExitRdpmcNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16689{
16690 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16691
16692 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDPMC_EXIT))
16693 {
16694 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16695 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16696 }
16697 return hmR0VmxExitRdpmc(pVCpu, pVmxTransient);
16698}
16699
16700
16701/**
16702 * Nested-guest VM-exit handler for VMREAD (VMX_EXIT_VMREAD) and VMWRITE
16703 * (VMX_EXIT_VMWRITE). Conditional VM-exit.
16704 */
16705HMVMX_EXIT_DECL hmR0VmxExitVmreadVmwriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16706{
16707 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16708
16709 Assert( pVmxTransient->uExitReason == VMX_EXIT_VMREAD
16710 || pVmxTransient->uExitReason == VMX_EXIT_VMWRITE);
16711
16712 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16713
16714 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
16715 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
16716 uint64_t u64VmcsField = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
16717
16718 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
16719 if (!CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
16720 u64VmcsField &= UINT64_C(0xffffffff);
16721
16722 if (CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, pVmxTransient->uExitReason, u64VmcsField))
16723 {
16724 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16725 hmR0VmxReadExitQualVmcs(pVmxTransient);
16726
16727 VMXVEXITINFO ExitInfo;
16728 RT_ZERO(ExitInfo);
16729 ExitInfo.uReason = pVmxTransient->uExitReason;
16730 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16731 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16732 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
16733 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16734 }
16735
16736 if (pVmxTransient->uExitReason == VMX_EXIT_VMREAD)
16737 return hmR0VmxExitVmread(pVCpu, pVmxTransient);
16738 return hmR0VmxExitVmwrite(pVCpu, pVmxTransient);
16739}
16740
16741
16742/**
16743 * Nested-guest VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
16744 */
16745HMVMX_EXIT_DECL hmR0VmxExitRdtscNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16746{
16747 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16748
16749 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
16750 {
16751 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16752 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16753 }
16754
16755 return hmR0VmxExitRdtsc(pVCpu, pVmxTransient);
16756}
16757
16758
16759/**
16760 * Nested-guest VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX).
16761 * Conditional VM-exit.
16762 */
16763HMVMX_EXIT_DECL hmR0VmxExitMovCRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16764{
16765 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16766
16767 hmR0VmxReadExitQualVmcs(pVmxTransient);
16768 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16769
16770 VBOXSTRICTRC rcStrict;
16771 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual);
16772 switch (uAccessType)
16773 {
16774 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
16775 {
16776 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
16777 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
16778 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
16779 uint64_t const uNewCrX = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
16780
16781 bool fIntercept;
16782 switch (iCrReg)
16783 {
16784 case 0:
16785 case 4:
16786 fIntercept = CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX);
16787 break;
16788
16789 case 3:
16790 fIntercept = CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCrX);
16791 break;
16792
16793 case 8:
16794 fIntercept = CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_CR8_LOAD_EXIT);
16795 break;
16796
16797 default:
16798 fIntercept = false;
16799 break;
16800 }
16801 if (fIntercept)
16802 {
16803 VMXVEXITINFO ExitInfo;
16804 RT_ZERO(ExitInfo);
16805 ExitInfo.uReason = pVmxTransient->uExitReason;
16806 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16807 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16808 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16809 }
16810 else
16811 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
16812 break;
16813 }
16814
16815 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
16816 {
16817 /*
16818 * CR0/CR4 reads do not cause VM-exits, the read-shadow is used (subject to masking).
16819 * CR2 reads do not cause a VM-exit.
16820 * CR3 reads cause a VM-exit depending on the "CR3 store exiting" control.
16821 * CR8 reads cause a VM-exit depending on the "CR8 store exiting" control.
16822 */
16823 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
16824 if ( iCrReg == 3
16825 || iCrReg == 8)
16826 {
16827 static const uint32_t s_auCrXReadIntercepts[] = { 0, 0, 0, VMX_PROC_CTLS_CR3_STORE_EXIT, 0,
16828 0, 0, 0, VMX_PROC_CTLS_CR8_STORE_EXIT };
16829 uint32_t const uIntercept = s_auCrXReadIntercepts[iCrReg];
16830 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uIntercept))
16831 {
16832 VMXVEXITINFO ExitInfo;
16833 RT_ZERO(ExitInfo);
16834 ExitInfo.uReason = pVmxTransient->uExitReason;
16835 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16836 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16837 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16838 }
16839 else
16840 {
16841 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
16842 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
16843 }
16844 }
16845 else
16846 {
16847 AssertMsgFailed(("MOV from CR%d VM-exit must not happen\n", iCrReg));
16848 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, iCrReg);
16849 }
16850 break;
16851 }
16852
16853 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
16854 {
16855 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
16856 Assert(pVmcsNstGst);
16857 uint64_t const uGstHostMask = pVmcsNstGst->u64Cr0Mask.u;
16858 uint64_t const uReadShadow = pVmcsNstGst->u64Cr0ReadShadow.u;
16859 if ( (uGstHostMask & X86_CR0_TS)
16860 && (uReadShadow & X86_CR0_TS))
16861 {
16862 VMXVEXITINFO ExitInfo;
16863 RT_ZERO(ExitInfo);
16864 ExitInfo.uReason = pVmxTransient->uExitReason;
16865 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16866 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16867 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16868 }
16869 else
16870 rcStrict = hmR0VmxExitClts(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr);
16871 break;
16872 }
16873
16874 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
16875 {
16876 RTGCPTR GCPtrEffDst;
16877 uint16_t const uNewMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(pVmxTransient->uExitQual);
16878 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(pVmxTransient->uExitQual);
16879 if (fMemOperand)
16880 {
16881 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
16882 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
16883 }
16884 else
16885 GCPtrEffDst = NIL_RTGCPTR;
16886
16887 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
16888 {
16889 VMXVEXITINFO ExitInfo;
16890 RT_ZERO(ExitInfo);
16891 ExitInfo.uReason = pVmxTransient->uExitReason;
16892 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16893 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
16894 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16895 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16896 }
16897 else
16898 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, uNewMsw, GCPtrEffDst);
16899 break;
16900 }
16901
16902 default:
16903 {
16904 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
16905 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
16906 }
16907 }
16908
16909 if (rcStrict == VINF_IEM_RAISED_XCPT)
16910 {
16911 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16912 rcStrict = VINF_SUCCESS;
16913 }
16914 return rcStrict;
16915}
16916
16917
16918/**
16919 * Nested-guest VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX).
16920 * Conditional VM-exit.
16921 */
16922HMVMX_EXIT_DECL hmR0VmxExitMovDRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16923{
16924 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16925
16926 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MOV_DR_EXIT))
16927 {
16928 hmR0VmxReadExitQualVmcs(pVmxTransient);
16929 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16930
16931 VMXVEXITINFO ExitInfo;
16932 RT_ZERO(ExitInfo);
16933 ExitInfo.uReason = pVmxTransient->uExitReason;
16934 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16935 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16936 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16937 }
16938 return hmR0VmxExitMovDRx(pVCpu, pVmxTransient);
16939}
16940
16941
16942/**
16943 * Nested-guest VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR).
16944 * Conditional VM-exit.
16945 */
16946HMVMX_EXIT_DECL hmR0VmxExitIoInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16947{
16948 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16949
16950 hmR0VmxReadExitQualVmcs(pVmxTransient);
16951
16952 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
16953 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
16954 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
16955
16956 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
16957 uint8_t const cbAccess = s_aIOSizes[uIOSize];
16958 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, uIOPort, cbAccess))
16959 {
16960 /*
16961 * IN/OUT instruction:
16962 * - Provides VM-exit instruction length.
16963 *
16964 * INS/OUTS instruction:
16965 * - Provides VM-exit instruction length.
16966 * - Provides Guest-linear address.
16967 * - Optionally provides VM-exit instruction info (depends on CPU feature).
16968 */
16969 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16970 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16971
16972 /* Make sure we don't use stale/uninitialized VMX-transient info. below. */
16973 pVmxTransient->ExitInstrInfo.u = 0;
16974 pVmxTransient->uGuestLinearAddr = 0;
16975
16976 bool const fVmxInsOutsInfo = pVM->cpum.ro.GuestFeatures.fVmxInsOutInfo;
16977 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
16978 if (fIOString)
16979 {
16980 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
16981 if (fVmxInsOutsInfo)
16982 {
16983 Assert(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS)); /* Paranoia. */
16984 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16985 }
16986 }
16987
16988 VMXVEXITINFO ExitInfo;
16989 RT_ZERO(ExitInfo);
16990 ExitInfo.uReason = pVmxTransient->uExitReason;
16991 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16992 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16993 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
16994 ExitInfo.u64GuestLinearAddr = pVmxTransient->uGuestLinearAddr;
16995 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16996 }
16997 return hmR0VmxExitIoInstr(pVCpu, pVmxTransient);
16998}
16999
17000
17001/**
17002 * Nested-guest VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
17003 */
17004HMVMX_EXIT_DECL hmR0VmxExitRdmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17005{
17006 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17007
17008 uint32_t fMsrpm;
17009 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17010 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17011 else
17012 fMsrpm = VMXMSRPM_EXIT_RD;
17013
17014 if (fMsrpm & VMXMSRPM_EXIT_RD)
17015 {
17016 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17017 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17018 }
17019 return hmR0VmxExitRdmsr(pVCpu, pVmxTransient);
17020}
17021
17022
17023/**
17024 * Nested-guest VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
17025 */
17026HMVMX_EXIT_DECL hmR0VmxExitWrmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17027{
17028 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17029
17030 uint32_t fMsrpm;
17031 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17032 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17033 else
17034 fMsrpm = VMXMSRPM_EXIT_WR;
17035
17036 if (fMsrpm & VMXMSRPM_EXIT_WR)
17037 {
17038 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17039 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17040 }
17041 return hmR0VmxExitWrmsr(pVCpu, pVmxTransient);
17042}
17043
17044
17045/**
17046 * Nested-guest VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
17047 */
17048HMVMX_EXIT_DECL hmR0VmxExitMwaitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17049{
17050 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17051
17052 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MWAIT_EXIT))
17053 {
17054 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17055 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17056 }
17057 return hmR0VmxExitMwait(pVCpu, pVmxTransient);
17058}
17059
17060
17061/**
17062 * Nested-guest VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional
17063 * VM-exit.
17064 */
17065HMVMX_EXIT_DECL hmR0VmxExitMtfNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17066{
17067 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17068
17069 /** @todo NSTVMX: Should consider debugging nested-guests using VM debugger. */
17070 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17071 VMXVEXITINFO ExitInfo;
17072 RT_ZERO(ExitInfo);
17073 ExitInfo.uReason = pVmxTransient->uExitReason;
17074 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17075 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17076}
17077
17078
17079/**
17080 * Nested-guest VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
17081 */
17082HMVMX_EXIT_DECL hmR0VmxExitMonitorNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17083{
17084 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17085
17086 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MONITOR_EXIT))
17087 {
17088 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17089 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17090 }
17091 return hmR0VmxExitMonitor(pVCpu, pVmxTransient);
17092}
17093
17094
17095/**
17096 * Nested-guest VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
17097 */
17098HMVMX_EXIT_DECL hmR0VmxExitPauseNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17099{
17100 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17101
17102 /** @todo NSTVMX: Think about this more. Does the outer guest need to intercept
17103 * PAUSE when executing a nested-guest? If it does not, we would not need
17104 * to check for the intercepts here. Just call VM-exit... */
17105
17106 /* The CPU would have already performed the necessary CPL checks for PAUSE-loop exiting. */
17107 if ( CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_PAUSE_EXIT)
17108 || CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
17109 {
17110 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17111 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17112 }
17113 return hmR0VmxExitPause(pVCpu, pVmxTransient);
17114}
17115
17116
17117/**
17118 * Nested-guest VM-exit handler for when the TPR value is lowered below the
17119 * specified threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
17120 */
17121HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThresholdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17122{
17123 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17124
17125 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_TPR_SHADOW))
17126 {
17127 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17128 VMXVEXITINFO ExitInfo;
17129 RT_ZERO(ExitInfo);
17130 ExitInfo.uReason = pVmxTransient->uExitReason;
17131 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17132 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17133 }
17134 return hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient);
17135}
17136
17137
17138/**
17139 * Nested-guest VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional
17140 * VM-exit.
17141 */
17142HMVMX_EXIT_DECL hmR0VmxExitApicAccessNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17143{
17144 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17145
17146 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17147 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
17148 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
17149 hmR0VmxReadExitQualVmcs(pVmxTransient);
17150
17151 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
17152
17153 Log4Func(("at offset %#x type=%u\n", VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual),
17154 VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual)));
17155
17156 VMXVEXITINFO ExitInfo;
17157 RT_ZERO(ExitInfo);
17158 ExitInfo.uReason = pVmxTransient->uExitReason;
17159 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17160 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17161
17162 VMXVEXITEVENTINFO ExitEventInfo;
17163 RT_ZERO(ExitEventInfo);
17164 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
17165 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
17166 return IEMExecVmxVmexitApicAccess(pVCpu, &ExitInfo, &ExitEventInfo);
17167}
17168
17169
17170/**
17171 * Nested-guest VM-exit handler for APIC write emulation (VMX_EXIT_APIC_WRITE).
17172 * Conditional VM-exit.
17173 */
17174HMVMX_EXIT_DECL hmR0VmxExitApicWriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17175{
17176 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17177
17178 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_APIC_REG_VIRT));
17179 hmR0VmxReadExitQualVmcs(pVmxTransient);
17180 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17181}
17182
17183
17184/**
17185 * Nested-guest VM-exit handler for virtualized EOI (VMX_EXIT_VIRTUALIZED_EOI).
17186 * Conditional VM-exit.
17187 */
17188HMVMX_EXIT_DECL hmR0VmxExitVirtEoiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17189{
17190 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17191
17192 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_INT_DELIVERY));
17193 hmR0VmxReadExitQualVmcs(pVmxTransient);
17194 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17195}
17196
17197
17198/**
17199 * Nested-guest VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
17200 */
17201HMVMX_EXIT_DECL hmR0VmxExitRdtscpNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17202{
17203 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17204
17205 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
17206 {
17207 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_RDTSCP));
17208 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17209 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17210 }
17211 return hmR0VmxExitRdtscp(pVCpu, pVmxTransient);
17212}
17213
17214
17215/**
17216 * Nested-guest VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
17217 */
17218HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17219{
17220 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17221
17222 if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_WBINVD_EXIT))
17223 {
17224 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17225 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17226 }
17227 return hmR0VmxExitWbinvd(pVCpu, pVmxTransient);
17228}
17229
17230
17231/**
17232 * Nested-guest VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
17233 */
17234HMVMX_EXIT_DECL hmR0VmxExitInvpcidNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17235{
17236 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17237
17238 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
17239 {
17240 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_INVPCID));
17241 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17242 hmR0VmxReadExitQualVmcs(pVmxTransient);
17243 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17244
17245 VMXVEXITINFO ExitInfo;
17246 RT_ZERO(ExitInfo);
17247 ExitInfo.uReason = pVmxTransient->uExitReason;
17248 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17249 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17250 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17251 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17252 }
17253 return hmR0VmxExitInvpcid(pVCpu, pVmxTransient);
17254}
17255
17256
17257/**
17258 * Nested-guest VM-exit handler for invalid-guest state
17259 * (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error VM-exit.
17260 */
17261HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestStateNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17262{
17263 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17264
17265 /*
17266 * Currently this should never happen because we fully emulate VMLAUNCH/VMRESUME in IEM.
17267 * So if it does happen, it indicates a bug possibly in the hardware-assisted VMX code.
17268 * Handle it like it's in an invalid guest state of the outer guest.
17269 *
17270 * When the fast path is implemented, this should be changed to cause the corresponding
17271 * nested-guest VM-exit.
17272 */
17273 return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
17274}
17275
17276
17277/**
17278 * Nested-guest VM-exit handler for instructions that cause VM-exits uncondtionally
17279 * and only provide the instruction length.
17280 *
17281 * Unconditional VM-exit.
17282 */
17283HMVMX_EXIT_DECL hmR0VmxExitInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17284{
17285 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17286
17287#ifdef VBOX_STRICT
17288 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17289 switch (pVmxTransient->uExitReason)
17290 {
17291 case VMX_EXIT_ENCLS:
17292 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_ENCLS_EXIT));
17293 break;
17294
17295 case VMX_EXIT_VMFUNC:
17296 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_VMFUNC));
17297 break;
17298 }
17299#endif
17300
17301 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17302 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17303}
17304
17305
17306/**
17307 * Nested-guest VM-exit handler for instructions that provide instruction length as
17308 * well as more information.
17309 *
17310 * Unconditional VM-exit.
17311 */
17312HMVMX_EXIT_DECL hmR0VmxExitInstrWithInfoNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17313{
17314 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17315
17316#ifdef VBOX_STRICT
17317 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17318 switch (pVmxTransient->uExitReason)
17319 {
17320 case VMX_EXIT_GDTR_IDTR_ACCESS:
17321 case VMX_EXIT_LDTR_TR_ACCESS:
17322 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_DESC_TABLE_EXIT));
17323 break;
17324
17325 case VMX_EXIT_RDRAND:
17326 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDRAND_EXIT));
17327 break;
17328
17329 case VMX_EXIT_RDSEED:
17330 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDSEED_EXIT));
17331 break;
17332
17333 case VMX_EXIT_XSAVES:
17334 case VMX_EXIT_XRSTORS:
17335 /** @todo NSTVMX: Verify XSS-bitmap. */
17336 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_XSAVES_XRSTORS));
17337 break;
17338
17339 case VMX_EXIT_UMWAIT:
17340 case VMX_EXIT_TPAUSE:
17341 Assert(CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_RDTSC_EXIT));
17342 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_USER_WAIT_PAUSE));
17343 break;
17344 }
17345#endif
17346
17347 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17348 hmR0VmxReadExitQualVmcs(pVmxTransient);
17349 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17350
17351 VMXVEXITINFO ExitInfo;
17352 RT_ZERO(ExitInfo);
17353 ExitInfo.uReason = pVmxTransient->uExitReason;
17354 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17355 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17356 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17357 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17358}
17359
17360/** @} */
17361#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
17362
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette