VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 45856

Last change on this file since 45856 was 45856, checked in by vboxsync, 12 years ago

VMM: STAM counter descriptions, cleanup. Fixed a few erroneous stats in the new VT-x code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 375.3 KB
Line 
1/* $Id: HMVMXR0.cpp 45856 2013-04-30 23:12:38Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24#include <iprt/string.h>
25
26#include "HMInternal.h"
27#include <VBox/vmm/vm.h>
28#include "HWVMXR0.h"
29#include <VBox/vmm/pdmapi.h>
30#include <VBox/vmm/dbgf.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#ifdef VBOX_WITH_REM
35# include <VBox/vmm/rem.h>
36#endif
37#ifdef DEBUG_ramshankar
38#define HMVMX_SAVE_FULL_GUEST_STATE
39#define HMVMX_SYNC_FULL_GUEST_STATE
40#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
41#define HMVMX_ALWAYS_TRAP_PF
42#endif
43
44
45/*******************************************************************************
46* Defined Constants And Macros *
47*******************************************************************************/
48#define HMVMXHCUINTREG RTHCUINTREG
49#if defined(RT_ARCH_AMD64)
50# define HMVMX_IS_64BIT_HOST_MODE() (true)
51#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
52extern "C" uint32_t g_fVMXIs64bitHost;
53# define HMVMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
54# undef HMVMXHCUINTREG
55# define HMVMXHCUINTREG uint64_t
56#else
57# define HMVMX_IS_64BIT_HOST_MODE() (false)
58#endif
59
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** This bit indicates the segment selector is unusable in VT-x. */
64#define HMVMX_SEL_UNUSABLE RT_BIT(16)
65
66/** Determine which tagged-TLB flush handler to use. */
67#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
68#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
69#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
70#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
71
72/** Updated-guest-state flags. */
73#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
74#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
75#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
76#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
77#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
78#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
79#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
80#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
81#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
82#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
83#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
84#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
85#define HMVMX_UPDATED_GUEST_FS_BASE_MSR RT_BIT(12)
86#define HMVMX_UPDATED_GUEST_GS_BASE_MSR RT_BIT(13)
87#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(14)
88#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(15)
89#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(16)
90#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(17)
91#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(18)
92#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
93#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
94 | HMVMX_UPDATED_GUEST_RSP \
95 | HMVMX_UPDATED_GUEST_RFLAGS \
96 | HMVMX_UPDATED_GUEST_CR0 \
97 | HMVMX_UPDATED_GUEST_CR3 \
98 | HMVMX_UPDATED_GUEST_CR4 \
99 | HMVMX_UPDATED_GUEST_GDTR \
100 | HMVMX_UPDATED_GUEST_IDTR \
101 | HMVMX_UPDATED_GUEST_LDTR \
102 | HMVMX_UPDATED_GUEST_TR \
103 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
104 | HMVMX_UPDATED_GUEST_DEBUG \
105 | HMVMX_UPDATED_GUEST_FS_BASE_MSR \
106 | HMVMX_UPDATED_GUEST_GS_BASE_MSR \
107 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
108 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
109 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
110 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
111 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
112 | HMVMX_UPDATED_GUEST_APIC_STATE)
113
114/**
115 * Flags to skip redundant reads of some common VMCS fields that are not part of
116 * the guest-CPU state but are in the transient structure.
117 */
118#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
119#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
124
125/**
126 * Exception bitmap mask for real-mode guests (real-on-v86). We need to intercept all exceptions manually (except #PF).
127 * #NM is also handled spearetely, see hmR0VmxLoadGuestControlRegs(). #PF need not be intercepted even in real-mode if
128 * we have Nested Paging support.
129 */
130#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_NMI) \
131 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
132 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
133 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
134 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
135 | RT_BIT(X86_XCPT_MF) | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) \
136 | RT_BIT(X86_XCPT_XF))
137
138/**
139 * Exception bitmap mask for all contributory exceptions.
140 */
141#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
142 | RT_BIT(X86_XCPT_DE))
143
144/** Maximum VM-instruction error number. */
145#define HMVMX_INSTR_ERROR_MAX 28
146
147
148/*******************************************************************************
149* Structures and Typedefs *
150*******************************************************************************/
151/**
152 * A state structure for holding miscellaneous information across
153 * VMX non-root operation and restored after the transition.
154 */
155typedef struct VMXTRANSIENT
156{
157 /** The host's rflags/eflags. */
158 RTCCUINTREG uEFlags;
159#if HC_ARCH_BITS == 32
160 uint32_t u32Alignment0;
161#endif
162 /** The guest's LSTAR MSR value used for TPR patching for 32-bit guests. */
163 uint64_t u64LStarMsr;
164 /** The guest's TPR value used for TPR shadowing. */
165 uint8_t u8GuestTpr;
166 /** Alignment. */
167 uint8_t abAlignment0[6];
168
169 /** The basic VM-exit reason. */
170 uint16_t uExitReason;
171 /** Alignment. */
172 uint16_t u16Alignment0;
173 /** The VM-exit interruption error code. */
174 uint32_t uExitIntrErrorCode;
175 /** The VM-exit exit qualification. */
176 RTGCUINTPTR uExitQualification;
177#if GC_ARCH_BITS == 32
178 /** Alignment. */
179 uint32_t u32Alignment1;
180#endif
181
182 /** The VM-exit interruption-information field. */
183 uint32_t uExitIntrInfo;
184 /** The VM-exit instruction-length field. */
185 uint32_t cbInstr;
186 /** Whether the VM-entry failed or not. */
187 bool fVMEntryFailed;
188 /** Alignment. */
189 uint8_t abAlignment1[5];
190
191 /** The VM-entry interruption-information field. */
192 uint32_t uEntryIntrInfo;
193 /** The VM-entry exception error code field. */
194 uint32_t uEntryXcptErrorCode;
195 /** The VM-entry instruction length field. */
196 uint32_t cbEntryInstr;
197
198 /** IDT-vectoring information field. */
199 uint32_t uIdtVectoringInfo;
200 /** IDT-vectoring error code. */
201 uint32_t uIdtVectoringErrorCode;
202
203 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
204 uint32_t fVmcsFieldsRead;
205 /** Whether TSC-offsetting should be setup before VM-entry. */
206 bool fUpdateTscOffsettingAndPreemptTimer;
207 /** Whether the VM-exit was caused by a page-fault during delivery of a
208 * contributary exception or a page-fault. */
209 bool fVectoringPF;
210} VMXTRANSIENT, *PVMXTRANSIENT;
211AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
212AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntrInfo, sizeof(uint64_t));
213AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntrInfo, sizeof(uint64_t));
214
215
216/**
217 * MSR-bitmap read permissions.
218 */
219typedef enum VMXMSREXITREAD
220{
221 /** Reading this MSR causes a VM-exit. */
222 VMXMSREXIT_INTERCEPT_READ = 0xb,
223 /** Reading this MSR does not cause a VM-exit. */
224 VMXMSREXIT_PASSTHRU_READ
225} VMXMSREXITREAD;
226
227/**
228 * MSR-bitmap write permissions.
229 */
230typedef enum VMXMSREXITWRITE
231{
232 /** Writing to this MSR causes a VM-exit. */
233 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
234 /** Writing to this MSR does not cause a VM-exit. */
235 VMXMSREXIT_PASSTHRU_WRITE
236} VMXMSREXITWRITE;
237
238
239/*******************************************************************************
240* Internal Functions *
241*******************************************************************************/
242static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr);
243static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntrInfo, uint32_t cbInstr,
244 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState);
245#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
246static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
247#endif
248#ifndef HMVMX_USE_FUNCTION_TABLE
249DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
250#endif
251
252static DECLCALLBACK(int) hmR0VmxExitXcptNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
253static DECLCALLBACK(int) hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
254static DECLCALLBACK(int) hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
255static DECLCALLBACK(int) hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
256static DECLCALLBACK(int) hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
257static DECLCALLBACK(int) hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
258static DECLCALLBACK(int) hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
259static DECLCALLBACK(int) hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
260static DECLCALLBACK(int) hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
261static DECLCALLBACK(int) hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
262static DECLCALLBACK(int) hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
263static DECLCALLBACK(int) hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
264static DECLCALLBACK(int) hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
265static DECLCALLBACK(int) hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
266static DECLCALLBACK(int) hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
267static DECLCALLBACK(int) hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
268static DECLCALLBACK(int) hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
269static DECLCALLBACK(int) hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
270static DECLCALLBACK(int) hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
271static DECLCALLBACK(int) hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
272static DECLCALLBACK(int) hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
273static DECLCALLBACK(int) hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
274static DECLCALLBACK(int) hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
275static DECLCALLBACK(int) hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
276static DECLCALLBACK(int) hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
277static DECLCALLBACK(int) hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
278static DECLCALLBACK(int) hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
279static DECLCALLBACK(int) hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
280static DECLCALLBACK(int) hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
281static DECLCALLBACK(int) hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
282static DECLCALLBACK(int) hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
283static DECLCALLBACK(int) hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
284static DECLCALLBACK(int) hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
285static DECLCALLBACK(int) hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
286static DECLCALLBACK(int) hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
287static DECLCALLBACK(int) hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
288static DECLCALLBACK(int) hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
289static DECLCALLBACK(int) hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
290static DECLCALLBACK(int) hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
291static DECLCALLBACK(int) hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
292static DECLCALLBACK(int) hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
293static DECLCALLBACK(int) hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
294static DECLCALLBACK(int) hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
295static DECLCALLBACK(int) hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
296
297static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
298static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
299static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
300static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
301static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
302static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
303static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
304
305
306/*******************************************************************************
307* Global Variables *
308*******************************************************************************/
309#ifdef HMVMX_USE_FUNCTION_TABLE
310/**
311 * VM-exit handler.
312 *
313 * @returns VBox status code.
314 * @param pVCpu Pointer to the VMCPU.
315 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
316 * out-of-sync. Make sure to update the required
317 * fields before using them.
318 * @param pVmxTransient Pointer to the VMX-transient structure.
319 */
320typedef DECLCALLBACK(int) FNVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
321/** Pointer to VM-exit handler. */
322typedef FNVMEXITHANDLER *const PFNVMEXITHANDLER;
323
324/**
325 * VMX_EXIT dispatch table.
326 */
327static const PFNVMEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
328{
329 /* 00 VMX_EXIT_XCPT_NMI */ hmR0VmxExitXcptNmi,
330 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
331 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
332 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
333 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
334 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
335 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
336 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
337 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
338 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
339 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
340 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
341 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
342 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
343 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
344 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
345 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
346 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
347 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitSetPendingXcptUD,
348 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
349 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
350 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
351 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
352 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
353 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
354 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
355 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
356 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
357 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
358 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
359 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
360 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
361 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
362 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
363 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
364 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
365 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
366 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
367 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
368 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
369 /* 40 UNDEFINED */ hmR0VmxExitPause,
370 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
371 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
372 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
373 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
374 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
375 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
376 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
377 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
378 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
379 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
380 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
381 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
382 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
383 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
384 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
385 /* 56 UNDEFINED */ hmR0VmxExitErrUndefined,
386 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
387 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
388 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD
389};
390#endif /* HMVMX_USE_FUNCTION_TABLE */
391
392#ifdef VBOX_STRICT
393static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
394{
395 /* 0 */ "(Not Used)",
396 /* 1 */ "VMCALL executed in VMX root operation.",
397 /* 2 */ "VMCLEAR with invalid physical address.",
398 /* 3 */ "VMCLEAR with VMXON pointer.",
399 /* 4 */ "VMLAUNCH with non-clear VMCS.",
400 /* 5 */ "VMRESUME with non-launched VMCS.",
401 /* 6 */ "VMRESUME after VMXOFF",
402 /* 7 */ "VM entry with invalid control fields.",
403 /* 8 */ "VM entry with invalid host state fields.",
404 /* 9 */ "VMPTRLD with invalid physical address.",
405 /* 10 */ "VMPTRLD with VMXON pointer.",
406 /* 11 */ "VMPTRLD with incorrect revision identifier.",
407 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
408 /* 13 */ "VMWRITE to read-only VMCS component.",
409 /* 14 */ "(Not Used)",
410 /* 15 */ "VMXON executed in VMX root operation.",
411 /* 16 */ "VM entry with invalid executive-VMCS pointer.",
412 /* 17 */ "VM entry with non-launched executing VMCS.",
413 /* 18 */ "VM entry with executive-VMCS pointer not VMXON pointer.",
414 /* 19 */ "VMCALL with non-clear VMCS.",
415 /* 20 */ "VMCALL with invalid VM-exit control fields.",
416 /* 21 */ "(Not Used)",
417 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
418 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
419 /* 24 */ "VMCALL with invalid SMM-monitor features.",
420 /* 25 */ "VM entry with invalid VM-execution control fields in executive VMCS.",
421 /* 26 */ "VM entry with events blocked by MOV SS.",
422 /* 27 */ "(Not Used)",
423 /* 28 */ "Invalid operand to INVEPT/INVVPID."
424};
425#endif /* VBOX_STRICT */
426
427
428
429/**
430 * Updates the VM's last error record. If there was a VMX instruction error,
431 * reads the error data from the VMCS and updates VCPU's last error record as
432 * well.
433 *
434 * @param pVM Pointer to the VM.
435 * @param pVCpu Pointer to the VMCPU (can be NULL if @a rc is not
436 * VERR_VMX_UNABLE_TO_START_VM or
437 * VERR_VMX_INVALID_VMCS_FIELD).
438 * @param rc The error code.
439 */
440static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
441{
442 AssertPtr(pVM);
443 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
444 || rc == VERR_VMX_UNABLE_TO_START_VM)
445 {
446 AssertPtrReturnVoid(pVCpu);
447 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.lasterror.u32InstrError);
448 }
449 pVM->hm.s.lLastError = rc;
450}
451
452
453/**
454 * Reads the VM-entry interruption-information field from the VMCS into the VMX
455 * transient structure.
456 *
457 * @returns VBox status code.
458 * @param pVmxTransient Pointer to the VMX transient structure.
459 *
460 * @remarks No-long-jump zone!!!
461 */
462DECLINLINE(int) hmR0VmxReadEntryIntrInfoVmcs(PVMXTRANSIENT pVmxTransient)
463{
464 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntrInfo);
465 AssertRCReturn(rc, rc);
466 return VINF_SUCCESS;
467}
468
469
470/**
471 * Reads the VM-entry exception error code field from the VMCS into
472 * the VMX transient structure.
473 *
474 * @returns VBox status code.
475 * @param pVmxTransient Pointer to the VMX transient structure.
476 *
477 * @remarks No-long-jump zone!!!
478 */
479DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
480{
481 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
482 AssertRCReturn(rc, rc);
483 return VINF_SUCCESS;
484}
485
486
487/**
488 * Reads the VM-entry exception error code field from the VMCS into
489 * the VMX transient structure.
490 *
491 * @returns VBox status code.
492 * @param pVCpu Pointer to the VMCPU.
493 * @param pVmxTransient Pointer to the VMX transient structure.
494 *
495 * @remarks No-long-jump zone!!!
496 */
497DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
498{
499 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
500 AssertRCReturn(rc, rc);
501 return VINF_SUCCESS;
502}
503
504
505/**
506 * Reads the VM-exit interruption-information field from the VMCS into the VMX
507 * transient structure.
508 *
509 * @returns VBox status code.
510 * @param pVCpu Pointer to the VMCPU.
511 * @param pVmxTransient Pointer to the VMX transient structure.
512 */
513DECLINLINE(int) hmR0VmxReadExitIntrInfoVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
514{
515 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
516 {
517 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntrInfo);
518 AssertRCReturn(rc, rc);
519 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
520 }
521 return VINF_SUCCESS;
522}
523
524
525/**
526 * Reads the VM-exit interruption error code from the VMCS into the VMX
527 * transient structure.
528 *
529 * @returns VBox status code.
530 * @param pVCpu Pointer to the VMCPU.
531 * @param pVmxTransient Pointer to the VMX transient structure.
532 */
533DECLINLINE(int) hmR0VmxReadExitIntrErrorCodeVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
534{
535 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
536 {
537 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntrErrorCode);
538 AssertRCReturn(rc, rc);
539 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
540 }
541 return VINF_SUCCESS;
542}
543
544
545/**
546 * Reads the VM-exit instruction length field from the VMCS into the VMX
547 * transient structure.
548 *
549 * @returns VBox status code.
550 * @param pVCpu Pointer to the VMCPU.
551 * @param pVmxTransient Pointer to the VMX transient structure.
552 */
553DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
554{
555 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
556 {
557 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
558 AssertRCReturn(rc, rc);
559 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
560 }
561 return VINF_SUCCESS;
562}
563
564
565/**
566 * Reads the exit qualification from the VMCS into the VMX transient structure.
567 *
568 * @returns VBox status code.
569 * @param pVCpu Pointer to the VMCPU.
570 * @param pVmxTransient Pointer to the VMX transient structure.
571 */
572DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
573{
574 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
575 {
576 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification);
577 AssertRCReturn(rc, rc);
578 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
579 }
580 return VINF_SUCCESS;
581}
582
583
584/**
585 * Reads the IDT-vectoring information field from the VMCS into the VMX
586 * transient structure.
587 *
588 * @returns VBox status code.
589 * @param pVmxTransient Pointer to the VMX transient structure.
590 *
591 * @remarks No-long-jump zone!!!
592 */
593DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
594{
595 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
596 {
597 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
598 AssertRCReturn(rc, rc);
599 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
600 }
601 return VINF_SUCCESS;
602}
603
604
605/**
606 * Reads the IDT-vectoring error code from the VMCS into the VMX
607 * transient structure.
608 *
609 * @returns VBox status code.
610 * @param pVmxTransient Pointer to the VMX transient structure.
611 */
612DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
613{
614 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
615 {
616 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
617 AssertRCReturn(rc, rc);
618 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
619 }
620 return VINF_SUCCESS;
621}
622
623
624/**
625 * Enters VMX root mode operation on the current CPU.
626 *
627 * @returns VBox status code.
628 * @param pVM Pointer to the VM (optional, can be NULL, after
629 * a resume).
630 * @param HCPhysCpuPage Physical address of the VMXON region.
631 * @param pvCpuPage Pointer to the VMXON region.
632 */
633static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
634{
635 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
636 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
637 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
638
639 if (pVM)
640 {
641 /* Write the VMCS revision dword to the VMXON region. */
642 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
643 }
644
645 /* Enable the VMX bit in CR4 if necessary. */
646 RTCCUINTREG uCr4 = ASMGetCR4();
647 if (!(uCr4 & X86_CR4_VMXE))
648 ASMSetCR4(uCr4 | X86_CR4_VMXE);
649
650 /* Enter VMX root mode. */
651 int rc = VMXEnable(HCPhysCpuPage);
652 if (RT_FAILURE(rc))
653 ASMSetCR4(uCr4);
654
655 return rc;
656}
657
658
659/**
660 * Exits VMX root mode operation on the current CPU.
661 *
662 * @returns VBox status code.
663 */
664static int hmR0VmxLeaveRootMode(void)
665{
666 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
667
668 /* If we're for some reason not in VMX root mode, then don't leave it. */
669 if (ASMGetCR4() & X86_CR4_VMXE)
670 {
671 /* Exit VMX root mode and clear the VMX bit in CR4 */
672 VMXDisable();
673 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
674 return VINF_SUCCESS;
675 }
676
677 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
678}
679
680
681/**
682 * Allocates and maps one physically contiguous page. The allocated page is
683 * zero'd out. (Used by various VT-x structures).
684 *
685 * @returns IPRT status code.
686 * @param pMemObj Pointer to the ring-0 memory object.
687 * @param ppVirt Where to store the virtual address of the
688 * allocation.
689 * @param pPhys Where to store the physical address of the
690 * allocation.
691 */
692DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
693{
694 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
695 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
696 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
697
698 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
699 if (RT_FAILURE(rc))
700 return rc;
701 *ppVirt = RTR0MemObjAddress(*pMemObj);
702 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
703 ASMMemZero32(*ppVirt, PAGE_SIZE);
704 return VINF_SUCCESS;
705}
706
707
708/**
709 * Frees and unmaps an allocated physical page.
710 *
711 * @param pMemObj Pointer to the ring-0 memory object.
712 * @param ppVirt Where to re-initialize the virtual address of
713 * allocation as 0.
714 * @param pHCPhys Where to re-initialize the physical address of the
715 * allocation as 0.
716 */
717DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
718{
719 AssertPtr(pMemObj);
720 AssertPtr(ppVirt);
721 AssertPtr(pHCPhys);
722 if (*pMemObj != NIL_RTR0MEMOBJ)
723 {
724 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
725 AssertRC(rc);
726 *pMemObj = NIL_RTR0MEMOBJ;
727 *ppVirt = 0;
728 *pHCPhys = 0;
729 }
730}
731
732
733/**
734 * Worker function to free VT-x related structures.
735 *
736 * @returns IPRT status code.
737 * @param pVM Pointer to the VM.
738 */
739static void hmR0VmxStructsFree(PVM pVM)
740{
741 for (VMCPUID i = 0; i < pVM->cCpus; i++)
742 {
743 PVMCPU pVCpu = &pVM->aCpus[i];
744 AssertPtr(pVCpu);
745
746#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
747 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
748 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
749#endif
750
751 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
752 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
753
754 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
755 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
756 }
757
758 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
759#ifdef VBOX_WITH_CRASHDUMP_MAGIC
760 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
761#endif
762}
763
764
765/**
766 * Worker function to allocate VT-x related VM structures.
767 *
768 * @returns IPRT status code.
769 * @param pVM Pointer to the VM.
770 */
771static int hmR0VmxStructsAlloc(PVM pVM)
772{
773 /*
774 * Initialize members up-front so we can cleanup properly on allocation failure.
775 */
776#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
777 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
778 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
779 pVM->hm.s.vmx.HCPhys##a_Name = 0;
780
781#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
782 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
783 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
784 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
785
786#ifdef VBOX_WITH_CRASHDUMP_MAGIC
787 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
788#endif
789 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
790
791 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
792 for (VMCPUID i = 0; i < pVM->cCpus; i++)
793 {
794 PVMCPU pVCpu = &pVM->aCpus[i];
795 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
796 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
797 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
798#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
799 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
800 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
801#endif
802 }
803#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
804#undef VMXLOCAL_INIT_VM_MEMOBJ
805
806 /*
807 * Allocate all the VT-x structures.
808 */
809 int rc = VINF_SUCCESS;
810#ifdef VBOX_WITH_CRASHDUMP_MAGIC
811 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
812 if (RT_FAILURE(rc))
813 goto cleanup;
814 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
815 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xDEADBEEFDEADBEEF);
816#endif
817
818 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
819 if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
820 {
821 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
822 &pVM->hm.s.vmx.HCPhysApicAccess);
823 if (RT_FAILURE(rc))
824 goto cleanup;
825 }
826
827 /*
828 * Initialize per-VCPU VT-x structures.
829 */
830 for (VMCPUID i =0; i < pVM->cCpus; i++)
831 {
832 PVMCPU pVCpu = &pVM->aCpus[i];
833 AssertPtr(pVCpu);
834
835 /* Allocate the VM control structure (VMCS). */
836 AssertReturn(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.msr.vmx_basic_info) <= PAGE_SIZE, VERR_INTERNAL_ERROR);
837 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
838 if (RT_FAILURE(rc))
839 goto cleanup;
840
841 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
842 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
843 {
844 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
845 &pVCpu->hm.s.vmx.HCPhysVirtApic);
846 if (RT_FAILURE(rc))
847 goto cleanup;
848 }
849
850 /* Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for transparent accesses of specific MSRs. */
851 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
852 {
853 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
854 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
855 if (RT_FAILURE(rc))
856 goto cleanup;
857 memset(pVCpu->hm.s.vmx.pvMsrBitmap, 0xff, PAGE_SIZE);
858 }
859
860#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
861 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
862 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
863 if (RT_FAILURE(rc))
864 goto cleanup;
865
866 /* Allocate the VM-exit MSR-load page for the host MSRs. */
867 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
868 if (RT_FAILURE(rc))
869 goto cleanup;
870#endif
871 }
872
873 return VINF_SUCCESS;
874
875cleanup:
876 hmR0VmxStructsFree(pVM);
877 return rc;
878}
879
880
881/**
882 * Does global VT-x initialization (called during module initialization).
883 *
884 * @returns VBox status code.
885 */
886VMMR0DECL(int) VMXR0GlobalInit(void)
887{
888#ifdef HMVMX_USE_FUNCTION_TABLE
889 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
890# ifdef VBOX_STRICT
891 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
892 Assert(g_apfnVMExitHandlers[i]);
893# endif
894#endif
895 return VINF_SUCCESS;
896}
897
898
899/**
900 * Does global VT-x termination (called during module termination).
901 */
902VMMR0DECL(void) VMXR0GlobalTerm()
903{
904 /* Nothing to do currently. */
905}
906
907
908/**
909 * Sets up and activates VT-x on the current CPU.
910 *
911 * @returns VBox status code.
912 * @param pCpu Pointer to the global CPU info struct.
913 * @param pVM Pointer to the VM (can be NULL after a host resume
914 * operation).
915 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
916 * fEnabledByHost is true).
917 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
918 * @a fEnabledByHost is true).
919 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
920 * enable VT-x/AMD-V on the host.
921 */
922VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
923{
924 AssertReturn(pCpu, VERR_INVALID_PARAMETER);
925 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
926
927 if (!fEnabledByHost)
928 {
929 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
930 if (RT_FAILURE(rc))
931 return rc;
932 }
933
934 /*
935 * Flush all VPIDs (in case we or any other hypervisor have been using VPIDs) so that
936 * we can avoid an explicit flush while using new VPIDs. We would still need to flush
937 * each time while reusing a VPID after hitting the MaxASID limit once.
938 */
939 if ( pVM
940 && pVM->hm.s.vmx.fVpid
941 && (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS))
942 {
943 hmR0VmxFlushVpid(pVM, NULL /* pvCpu */, VMX_FLUSH_VPID_ALL_CONTEXTS, 0 /* GCPtr */);
944 pCpu->fFlushAsidBeforeUse = false;
945 }
946 else
947 pCpu->fFlushAsidBeforeUse = true;
948
949 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
950 ++pCpu->cTlbFlushes;
951
952 return VINF_SUCCESS;
953}
954
955
956/**
957 * Deactivates VT-x on the current CPU.
958 *
959 * @returns VBox status code.
960 * @param pCpu Pointer to the global CPU info struct.
961 * @param pvCpuPage Pointer to the VMXON region.
962 * @param HCPhysCpuPage Physical address of the VMXON region.
963 */
964VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
965{
966 NOREF(pCpu);
967 NOREF(pvCpuPage);
968 NOREF(HCPhysCpuPage);
969
970 hmR0VmxLeaveRootMode();
971 return VINF_SUCCESS;
972}
973
974
975/**
976 * Sets the permission bits for the specified MSR in the MSR bitmap.
977 *
978 * @param pVCpu Pointer to the VMCPU.
979 * @param uMSR The MSR value.
980 * @param enmRead Whether reading this MSR causes a VM-exit.
981 * @param enmWrite Whether writing this MSR causes a VM-exit.
982 */
983static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
984{
985 int32_t iBit;
986 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
987
988 /*
989 * Layout:
990 * 0x000 - 0x3ff - Low MSR read bits
991 * 0x400 - 0x7ff - High MSR read bits
992 * 0x800 - 0xbff - Low MSR write bits
993 * 0xc00 - 0xfff - High MSR write bits
994 */
995 if (uMsr <= 0x00001FFF)
996 iBit = uMsr;
997 else if ( uMsr >= 0xC0000000
998 && uMsr <= 0xC0001FFF)
999 {
1000 iBit = (uMsr - 0xC0000000);
1001 pbMsrBitmap += 0x400;
1002 }
1003 else
1004 {
1005 AssertMsgFailed(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1006 return;
1007 }
1008
1009 Assert(iBit <= 0x1fff);
1010 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1011 ASMBitSet(pbMsrBitmap, iBit);
1012 else
1013 ASMBitClear(pbMsrBitmap, iBit);
1014
1015 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1016 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1017 else
1018 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1019}
1020
1021
1022/**
1023 * Flushes the TLB using EPT.
1024 *
1025 * @returns VBox status code.
1026 * @param pVM Pointer to the VM.
1027 * @param pVCpu Pointer to the VMCPU.
1028 * @param enmFlush Type of flush.
1029 */
1030static void hmR0VmxFlushEpt(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush)
1031{
1032 AssertPtr(pVM);
1033 Assert(pVM->hm.s.fNestedPaging);
1034
1035 LogFlowFunc(("pVM=%p pVCpu=%p enmFlush=%d\n", pVM, pVCpu, enmFlush));
1036
1037 uint64_t descriptor[2];
1038 descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1039 descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1040
1041 int rc = VMXR0InvEPT(enmFlush, &descriptor[0]);
1042 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu->hm.s.vmx.HCPhysEPTP, rc));
1043 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1044}
1045
1046
1047/**
1048 * Flushes the TLB using VPID.
1049 *
1050 * @returns VBox status code.
1051 * @param pVM Pointer to the VM.
1052 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1053 * enmFlush).
1054 * @param enmFlush Type of flush.
1055 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1056 * on @a enmFlush).
1057 */
1058static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr)
1059{
1060 AssertPtr(pVM);
1061 Assert(pVM->hm.s.vmx.fVpid);
1062
1063 uint64_t descriptor[2];
1064 if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS)
1065 {
1066 descriptor[0] = 0;
1067 descriptor[1] = 0;
1068 }
1069 else
1070 {
1071 AssertPtr(pVCpu);
1072 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1073 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1074 descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1075 descriptor[1] = GCPtr;
1076 }
1077
1078 int rc = VMXR0InvVPID(enmFlush, &descriptor[0]); NOREF(rc);
1079 AssertMsg(rc == VINF_SUCCESS,
1080 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1081 if ( RT_SUCCESS(rc)
1082 && pVCpu)
1083 {
1084 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1085 }
1086}
1087
1088
1089/**
1090 * Invalidates a guest page by guest virtual address. Only relevant for
1091 * EPT/VPID, otherwise there is nothing really to invalidate.
1092 *
1093 * @returns VBox status code.
1094 * @param pVM Pointer to the VM.
1095 * @param pVCpu Pointer to the VMCPU.
1096 * @param GCVirt Guest virtual address of the page to invalidate.
1097 */
1098VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1099{
1100 AssertPtr(pVM);
1101 AssertPtr(pVCpu);
1102 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1103
1104 bool fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1105 if (!fFlushPending)
1106 {
1107 /*
1108 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1109 * See @bugref{6043} and @bugref{6177}.
1110 *
1111 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1112 * function maybe called in a loop with individual addresses.
1113 */
1114 if (pVM->hm.s.vmx.fVpid)
1115 {
1116 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1117 {
1118 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt);
1119 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1120 }
1121 else
1122 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1123 }
1124 else if (pVM->hm.s.fNestedPaging)
1125 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1126 }
1127
1128 return VINF_SUCCESS;
1129}
1130
1131
1132/**
1133 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1134 * otherwise there is nothing really to invalidate.
1135 *
1136 * @returns VBox status code.
1137 * @param pVM Pointer to the VM.
1138 * @param pVCpu Pointer to the VMCPU.
1139 * @param GCPhys Guest physical address of the page to invalidate.
1140 */
1141VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1142{
1143 LogFlowFunc(("%RGp\n", GCPhys));
1144
1145 /*
1146 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1147 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1148 * This function might be called in a loop.
1149 */
1150 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1151 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1152 return VINF_SUCCESS;
1153}
1154
1155
1156/**
1157 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1158 * case where neither EPT nor VPID is supported by the CPU.
1159 *
1160 * @param pVM Pointer to the VM.
1161 * @param pVCpu Pointer to the VMCPU.
1162 *
1163 * @remarks Called with interrupts disabled.
1164 */
1165static DECLCALLBACK(void) hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu)
1166{
1167 NOREF(pVM);
1168 AssertPtr(pVCpu);
1169 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1170 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1171
1172 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
1173 AssertPtr(pCpu);
1174
1175 pVCpu->hm.s.TlbShootdown.cPages = 0;
1176 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1177 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1178 pVCpu->hm.s.fForceTLBFlush = false;
1179 return;
1180}
1181
1182
1183/**
1184 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1185 *
1186 * @param pVM Pointer to the VM.
1187 * @param pVCpu Pointer to the VMCPU.
1188 * @remarks All references to "ASID" in this function pertains to "VPID" in
1189 * Intel's nomenclature. The reason is, to avoid confusion in compare
1190 * statements since the host-CPU copies are named "ASID".
1191 *
1192 * @remarks Called with interrupts disabled.
1193 */
1194static DECLCALLBACK(void) hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu)
1195{
1196 AssertPtr(pVM);
1197 AssertPtr(pVCpu);
1198 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1199 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1200 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1201
1202 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
1203 AssertPtr(pCpu);
1204
1205 /*
1206 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1207 * This can happen both for start & resume due to long jumps back to ring-3.
1208 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1209 * or the host Cpu is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1210 */
1211 bool fNewASID = false;
1212 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1213 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1214 {
1215 pVCpu->hm.s.fForceTLBFlush = true;
1216 fNewASID = true;
1217 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1218 }
1219
1220 /*
1221 * Check for explicit TLB shootdowns.
1222 */
1223 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1224 {
1225 pVCpu->hm.s.fForceTLBFlush = true;
1226 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1227 }
1228
1229 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1230 if (pVCpu->hm.s.fForceTLBFlush)
1231 {
1232 if (fNewASID)
1233 {
1234 ++pCpu->uCurrentAsid;
1235 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1236 {
1237 pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */
1238 pCpu->cTlbFlushes++;
1239 pCpu->fFlushAsidBeforeUse = true;
1240 }
1241
1242 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1243 if (pCpu->fFlushAsidBeforeUse)
1244 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
1245 }
1246 else
1247 {
1248 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
1249 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_SINGLE_CONTEXT, 0 /* GCPtr */);
1250 else
1251 hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1252 }
1253
1254 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1255 pVCpu->hm.s.fForceTLBFlush = false;
1256 }
1257 else
1258 {
1259 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
1260 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
1261 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
1262 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
1263
1264 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1265 * not be executed. See hmQueueInvlPage() where it is commented
1266 * out. Support individual entry flushing someday. */
1267 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1268 {
1269 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1270
1271 /*
1272 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
1273 * as supported by the CPU.
1274 */
1275 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1276 {
1277 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1278 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1279 }
1280 else
1281 hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1282 }
1283 else
1284 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1285 }
1286 pVCpu->hm.s.TlbShootdown.cPages = 0;
1287 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1288
1289 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1290 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1291 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1292 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
1293 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1294 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1295
1296 /* Update VMCS with the VPID. */
1297 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
1298 AssertRC(rc);
1299}
1300
1301
1302/**
1303 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
1304 *
1305 * @returns VBox status code.
1306 * @param pVM Pointer to the VM.
1307 * @param pVCpu Pointer to the VMCPU.
1308 *
1309 * @remarks Called with interrupts disabled.
1310 */
1311static DECLCALLBACK(void) hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu)
1312{
1313 AssertPtr(pVM);
1314 AssertPtr(pVCpu);
1315 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
1316 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
1317
1318 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
1319 AssertPtr(pCpu);
1320
1321 /*
1322 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1323 * This can happen both for start & resume due to long jumps back to ring-3.
1324 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
1325 */
1326 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1327 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1328 {
1329 pVCpu->hm.s.fForceTLBFlush = true;
1330 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1331 }
1332
1333 /* Check for explicit TLB shootdown flushes. */
1334 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1335 {
1336 pVCpu->hm.s.fForceTLBFlush = true;
1337 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1338 }
1339
1340 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1341 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1342
1343 if (pVCpu->hm.s.fForceTLBFlush)
1344 {
1345 hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1346 pVCpu->hm.s.fForceTLBFlush = false;
1347 }
1348 else
1349 {
1350 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1351 * not be executed. See hmQueueInvlPage() where it is commented
1352 * out. Support individual entry flushing someday. */
1353 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1354 {
1355 /* We cannot flush individual entries without VPID support. Flush using EPT. */
1356 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1357 hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1358 }
1359 else
1360 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1361 }
1362
1363 pVCpu->hm.s.TlbShootdown.cPages = 0;
1364 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1365}
1366
1367
1368/**
1369 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
1370 *
1371 * @returns VBox status code.
1372 * @param pVM Pointer to the VM.
1373 * @param pVCpu Pointer to the VMCPU.
1374 *
1375 * @remarks Called with interrupts disabled.
1376 */
1377static DECLCALLBACK(void) hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu)
1378{
1379 AssertPtr(pVM);
1380 AssertPtr(pVCpu);
1381 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
1382 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
1383
1384 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
1385
1386 /*
1387 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1388 * This can happen both for start & resume due to long jumps back to ring-3.
1389 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1390 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1391 */
1392 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1393 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1394 {
1395 pVCpu->hm.s.fForceTLBFlush = true;
1396 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1397 }
1398
1399 /* Check for explicit TLB shootdown flushes. */
1400 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1401 {
1402 /*
1403 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
1404 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
1405 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
1406 */
1407 pVCpu->hm.s.fForceTLBFlush = true;
1408 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1409 }
1410
1411 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1412 if (pVCpu->hm.s.fForceTLBFlush)
1413 {
1414 ++pCpu->uCurrentAsid;
1415 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1416 {
1417 pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */
1418 pCpu->fFlushAsidBeforeUse = true;
1419 pCpu->cTlbFlushes++;
1420 }
1421
1422 pVCpu->hm.s.fForceTLBFlush = false;
1423 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1424 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1425 if (pCpu->fFlushAsidBeforeUse)
1426 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
1427 }
1428 else
1429 {
1430 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
1431 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
1432 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
1433 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
1434
1435 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1436 * not be executed. See hmQueueInvlPage() where it is commented
1437 * out. Support individual entry flushing someday. */
1438 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1439 {
1440 /* Flush individual guest entries using VPID or as little as possible with EPT as supported by the CPU. */
1441 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1442 {
1443 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1444 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1445 }
1446 else
1447 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
1448 }
1449 else
1450 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1451 }
1452
1453 pVCpu->hm.s.TlbShootdown.cPages = 0;
1454 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1455
1456 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1457 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1458 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1459 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
1460 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1461 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1462
1463 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
1464 AssertRC(rc);
1465}
1466
1467
1468/**
1469 * Flushes the guest TLB entry based on CPU capabilities.
1470 *
1471 * @param pVCpu Pointer to the VMCPU.
1472 */
1473DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu)
1474{
1475 PVM pVM = pVCpu->CTX_SUFF(pVM);
1476 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
1477 {
1478 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu); break;
1479 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu); break;
1480 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu); break;
1481 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu); break;
1482 default:
1483 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
1484 break;
1485 }
1486}
1487
1488
1489/**
1490 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
1491 * TLB entries from the host TLB before VM-entry.
1492 *
1493 * @returns VBox status code.
1494 * @param pVM Pointer to the VM.
1495 */
1496static int hmR0VmxSetupTaggedTlb(PVM pVM)
1497{
1498 /*
1499 * Determine optimal flush type for nested paging.
1500 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
1501 * guest execution (see hmR3InitFinalizeR0()).
1502 */
1503 if (pVM->hm.s.fNestedPaging)
1504 {
1505 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
1506 {
1507 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
1508 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT;
1509 else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1510 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS;
1511 else
1512 {
1513 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
1514 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
1515 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1516 }
1517
1518 /* Make sure the write-back cacheable memory type for EPT is supported. */
1519 if (!(pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB))
1520 {
1521 LogRel(("hmR0VmxSetupTaggedTlb: Unsupported EPTP memory type %#x.\n", pVM->hm.s.vmx.msr.vmx_ept_vpid_caps));
1522 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
1523 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1524 }
1525 }
1526 else
1527 {
1528 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
1529 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
1530 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1531 }
1532 }
1533
1534 /*
1535 * Determine optimal flush type for VPID.
1536 */
1537 if (pVM->hm.s.vmx.fVpid)
1538 {
1539 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
1540 {
1541 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
1542 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT;
1543 else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
1544 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS;
1545 else
1546 {
1547 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
1548 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1549 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
1550 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1551 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
1552 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
1553 pVM->hm.s.vmx.fVpid = false;
1554 }
1555 }
1556 else
1557 {
1558 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
1559 Log(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
1560 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
1561 pVM->hm.s.vmx.fVpid = false;
1562 }
1563 }
1564
1565 /*
1566 * Setup the handler for flushing tagged-TLBs.
1567 */
1568 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
1569 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
1570 else if (pVM->hm.s.fNestedPaging)
1571 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
1572 else if (pVM->hm.s.vmx.fVpid)
1573 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
1574 else
1575 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
1576 return VINF_SUCCESS;
1577}
1578
1579
1580/**
1581 * Sets up pin-based VM-execution controls in the VMCS.
1582 *
1583 * @returns VBox status code.
1584 * @param pVM Pointer to the VM.
1585 * @param pVCpu Pointer to the VMCPU.
1586 */
1587static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
1588{
1589 AssertPtr(pVM);
1590 AssertPtr(pVCpu);
1591
1592 uint32_t val = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0; /* Bits set here must always be set. */
1593 uint32_t zap = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1; /* Bits cleared here must always be cleared. */
1594
1595 val |= VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_EXT_INT_EXIT /* External interrupts causes a VM-exits. */
1596 | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_NMI_EXIT; /* Non-maskable interrupts causes a VM-exit. */
1597 Assert(!(val & VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_VIRTUAL_NMI));
1598
1599 /* Enable the VMX preemption timer. */
1600 if (pVM->hm.s.vmx.fUsePreemptTimer)
1601 {
1602 Assert(pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_PREEMPT_TIMER);
1603 val |= VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_PREEMPT_TIMER;
1604 }
1605
1606 if ((val & zap) != val)
1607 {
1608 LogRel(("hmR0VmxSetupPinCtls: invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
1609 pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0, val, zap));
1610 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1611 }
1612
1613 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, val);
1614 AssertRCReturn(rc, rc);
1615
1616 /* Update VCPU with the currently set pin-based VM-execution controls. */
1617 pVCpu->hm.s.vmx.u32PinCtls = val;
1618 return rc;
1619}
1620
1621
1622/**
1623 * Sets up processor-based VM-execution controls in the VMCS.
1624 *
1625 * @returns VBox status code.
1626 * @param pVM Pointer to the VM.
1627 * @param pVMCPU Pointer to the VMCPU.
1628 */
1629static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
1630{
1631 AssertPtr(pVM);
1632 AssertPtr(pVCpu);
1633
1634 int rc = VERR_INTERNAL_ERROR_5;
1635 uint32_t val = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0; /* Bits set here must be set in the VMCS. */
1636 uint32_t zap = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
1637
1638 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT /* HLT causes a VM-exit. */
1639 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
1640 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
1641 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
1642 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
1643 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
1644 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
1645
1646 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
1647 if ( !(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT)
1648 || (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT))
1649 {
1650 LogRel(("hmR0VmxSetupProcCtls: unsupported VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT combo!"));
1651 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1652 }
1653
1654 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
1655 if (!pVM->hm.s.fNestedPaging)
1656 {
1657 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
1658 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
1659 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1660 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
1661 }
1662
1663 /* Use TPR shadowing if supported by the CPU. */
1664 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
1665 {
1666 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
1667 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
1668 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
1669 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
1670 AssertRCReturn(rc, rc);
1671
1672 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
1673 /* CR8 writes causes a VM-exit based on TPR threshold. */
1674 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT));
1675 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT));
1676 }
1677 else
1678 {
1679 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT /* CR8 reads causes a VM-exit. */
1680 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT; /* CR8 writes causes a VM-exit. */
1681 }
1682
1683 /* Use MSR-bitmaps if supported by the CPU. */
1684 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
1685 {
1686 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS;
1687
1688 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1689 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
1690 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1691 AssertRCReturn(rc, rc);
1692
1693 /*
1694 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
1695 * automatically (either as part of the MSR-load/store areas or dedicated fields in the VMCS).
1696 */
1697 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1698 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1699 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1700 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1701 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1702 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1703 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1704 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1705 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1706 }
1707
1708 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
1709 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1710 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
1711
1712 if ((val & zap) != val)
1713 {
1714 LogRel(("hmR0VmxSetupProcCtls: invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
1715 pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0, val, zap));
1716 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1717 }
1718
1719 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, val);
1720 AssertRCReturn(rc, rc);
1721
1722 /* Update VCPU with the currently set processor-based VM-execution controls. */
1723 pVCpu->hm.s.vmx.u32ProcCtls = val;
1724
1725 /*
1726 * Secondary processor-based VM-execution controls.
1727 */
1728 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
1729 {
1730 val = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
1731 zap = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
1732
1733 if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
1734 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
1735
1736 if (pVM->hm.s.fNestedPaging)
1737 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
1738 else
1739 {
1740 /*
1741 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
1742 * VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT when INVPCID is executed by the guest.
1743 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
1744 */
1745 if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
1746 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
1747 }
1748
1749 if (pVM->hm.s.vmx.fVpid)
1750 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
1751
1752 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1753 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
1754
1755 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
1756 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
1757 * done dynamically. */
1758 if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
1759 {
1760 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
1761 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
1762 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
1763 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
1764 AssertRCReturn(rc, rc);
1765 }
1766
1767 if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
1768 {
1769 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
1770 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
1771 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1772 }
1773
1774 if ((val & zap) != val)
1775 {
1776 LogRel(("hmR0VmxSetupProcCtls: invalid secondary processor-based VM-execution controls combo! "
1777 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0, val, zap));
1778 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1779 }
1780
1781 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS2, val);
1782 AssertRCReturn(rc, rc);
1783
1784 /* Update VCPU with the currently set secondary processor-based VM-execution controls. */
1785 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
1786 }
1787
1788 return VINF_SUCCESS;
1789}
1790
1791
1792/**
1793 * Sets up miscellaneous (everything other than Pin & Processor-based
1794 * VM-execution) control fields in the VMCS.
1795 *
1796 * @returns VBox status code.
1797 * @param pVM Pointer to the VM.
1798 * @param pVCpu Pointer to the VMCPU.
1799 */
1800static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
1801{
1802 AssertPtr(pVM);
1803 AssertPtr(pVCpu);
1804
1805 int rc = VERR_GENERAL_FAILURE;
1806
1807 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestControlRegs())*/
1808 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
1809
1810 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
1811
1812 /*
1813 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
1814 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
1815 * We thus use the exception bitmap to control it rather than use both.
1816 */
1817 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
1818 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
1819
1820 /** @todo Explore possibility of using IO-bitmaps. */
1821 /* All IO & IOIO instructions cause VM-exits. */
1822 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
1823 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
1824
1825#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
1826 /* Setup MSR autoloading/autostoring. */
1827 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
1828 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
1829 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
1830 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
1831 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
1832 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
1833
1834 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
1835 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
1836 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
1837 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
1838#else
1839 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
1840 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
1841 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
1842#endif
1843
1844 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
1845 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
1846
1847 /* Setup debug controls */
1848 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo think about this. */
1849 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
1850 AssertRCReturn(rc, rc);
1851 return rc;
1852}
1853
1854
1855/**
1856 * Sets up the initial exception bitmap in the VMCS based on static conditions
1857 * (i.e. conditions that cannot ever change at runtime).
1858 *
1859 * @returns VBox status code.
1860 * @param pVM Pointer to the VM.
1861 * @param pVCpu Pointer to the VMCPU.
1862 */
1863static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
1864{
1865 AssertPtr(pVM);
1866 AssertPtr(pVCpu);
1867
1868 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1869
1870 uint32_t u32XcptBitmap = 0;
1871
1872 /* Without nested paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
1873 if (!pVM->hm.s.fNestedPaging)
1874 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
1875
1876 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
1877 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
1878 AssertRCReturn(rc, rc);
1879 return rc;
1880}
1881
1882
1883/**
1884 * Sets up the initial guest-state mask. The guest-state mask is consulted
1885 * before reading guest-state fields from the VMCS as VMREADs can be expensive
1886 * for the nested virtualization case (as it would cause a VM-exit).
1887 *
1888 * @param pVCpu Pointer to the VMCPU.
1889 */
1890static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
1891{
1892 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
1893 pVCpu->hm.s.vmx.fUpdatedGuestState = HMVMX_UPDATED_GUEST_ALL;
1894 return VINF_SUCCESS;
1895}
1896
1897
1898/**
1899 * Does per-VM VT-x initialization.
1900 *
1901 * @returns VBox status code.
1902 * @param pVM Pointer to the VM.
1903 */
1904VMMR0DECL(int) VMXR0InitVM(PVM pVM)
1905{
1906 LogFlowFunc(("pVM=%p\n", pVM));
1907
1908 int rc = hmR0VmxStructsAlloc(pVM);
1909 if (RT_FAILURE(rc))
1910 {
1911 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
1912 return rc;
1913 }
1914
1915 return VINF_SUCCESS;
1916}
1917
1918
1919/**
1920 * Does per-VM VT-x termination.
1921 *
1922 * @returns VBox status code.
1923 * @param pVM Pointer to the VM.
1924 */
1925VMMR0DECL(int) VMXR0TermVM(PVM pVM)
1926{
1927 LogFlowFunc(("pVM=%p\n", pVM));
1928
1929#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1930 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
1931 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
1932#endif
1933 hmR0VmxStructsFree(pVM);
1934 return VINF_SUCCESS;
1935}
1936
1937
1938/**
1939 * Sets up the VM for execution under VT-x.
1940 * This function is only called once per-VM during initalization.
1941 *
1942 * @returns VBox status code.
1943 * @param pVM Pointer to the VM.
1944 */
1945VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
1946{
1947 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
1948 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1949
1950 LogFlowFunc(("pVM=%p\n", pVM));
1951
1952 /*
1953 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
1954 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0().
1955 */
1956 /* -XXX- change hmR3InitFinalizeR0() to fail if pRealModeTSS alloc fails. */
1957 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
1958 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
1959 || !pVM->hm.s.vmx.pRealModeTSS))
1960 {
1961 LogRel(("VMXR0SetupVM: invalid real-on-v86 state.\n"));
1962 return VERR_INTERNAL_ERROR;
1963 }
1964
1965 /* Initialize these always, see hmR3InitFinalizeR0().*/
1966 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE;
1967 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE;
1968
1969 /* Setup the tagged-TLB flush handlers. */
1970 int rc = hmR0VmxSetupTaggedTlb(pVM);
1971 if (RT_FAILURE(rc))
1972 {
1973 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
1974 return rc;
1975 }
1976
1977 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1978 {
1979 PVMCPU pVCpu = &pVM->aCpus[i];
1980 AssertPtr(pVCpu);
1981 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
1982
1983 /* Set revision dword at the beginning of the VMCS structure. */
1984 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
1985
1986 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
1987 rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
1988 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVMCS failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
1989 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
1990
1991 /* Load this VMCS as the current VMCS. */
1992 rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
1993 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVMCS failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
1994 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
1995
1996 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
1997 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
1998 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
1999
2000 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2001 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2002 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2003
2004 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2005 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2006 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2007
2008 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2009 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2010 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2011
2012 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2013 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2014 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2015
2016#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2017 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2018 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2019 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2020#endif
2021
2022 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2023 rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
2024 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVMCS(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2025 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2026
2027 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2028 }
2029
2030 return VINF_SUCCESS;
2031}
2032
2033
2034/**
2035 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2036 * the VMCS.
2037 *
2038 * @returns VBox status code.
2039 * @param pVM Pointer to the VM.
2040 * @param pVCpu Pointer to the VMCPU.
2041 */
2042DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2043{
2044 RTCCUINTREG uReg = ASMGetCR0();
2045 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2046
2047#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2048 /* For the darwin 32-bit hybrid kernel, we need the 64-bit CR3 as it uses 64-bit paging. */
2049 if (HMVMX_IS_64BIT_HOST_MODE())
2050 {
2051 uint64_t uRegCR3 = hmR0Get64bitCR3();
2052 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_CR3, uRegCR3);
2053 }
2054 else
2055#endif
2056 {
2057 uReg = ASMGetCR3();
2058 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2059 }
2060
2061 uReg = ASMGetCR4();
2062 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2063 AssertRCReturn(rc, rc);
2064 return rc;
2065}
2066
2067
2068/**
2069 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2070 * the host-state area in the VMCS.
2071 *
2072 * @returns VBox status code.
2073 * @param pVM Pointer to the VM.
2074 * @param pVCpu Pointer to the VMCPU.
2075 */
2076DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2077{
2078 int rc = VERR_INTERNAL_ERROR_5;
2079 RTSEL uSelCS = 0;
2080 RTSEL uSelSS = 0;
2081 RTSEL uSelDS = 0;
2082 RTSEL uSelES = 0;
2083 RTSEL uSelFS = 0;
2084 RTSEL uSelGS = 0;
2085 RTSEL uSelTR = 0;
2086
2087 /*
2088 * Host Selector registers.
2089 */
2090#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2091 if (HMVMX_IS_64BIT_HOST_MODE())
2092 {
2093 uSelCS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
2094 uSelSS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
2095 }
2096 else
2097 {
2098 /* Seems darwin uses the LDT (TI flag is set) in the CS & SS selectors which VT-x doesn't like. */
2099 uSelCS = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
2100 uSelSS = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
2101 }
2102#else
2103 uSelCS = ASMGetCS();
2104 uSelSS = ASMGetSS();
2105#endif
2106
2107 /* Note: VT-x is picky about the RPL of the selectors here; we'll restore them manually. */
2108 uSelTR = ASMGetTR();
2109
2110 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2111 /** @todo Verify if we have any platform that actually run with DS or ES with
2112 * RPL != 0 in kernel space. */
2113 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2114 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2115 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2116 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2117 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2118 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2119 Assert(uSelCS != 0);
2120 Assert(uSelTR != 0);
2121
2122 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2123#if 0
2124 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE))
2125 Assert(uSelSS != 0);
2126#endif
2127
2128 /* Write these host selector fields into the host-state area in the VMCS. */
2129 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_CS, uSelCS);
2130 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_SS, uSelSS);
2131 /* Avoid the VMWRITEs as we set the following segments to 0 and the VMCS fields are already 0 (since g_HvmR0 is static) */
2132#if 0
2133 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_DS, uSelDS);
2134 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_ES, uSelES);
2135 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_FS, uSelFS);
2136 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_GS, uSelGS);
2137#endif
2138 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_TR, uSelTR);
2139 AssertRCReturn(rc, rc);
2140
2141 /*
2142 * Host GDTR and IDTR.
2143 */
2144 /** @todo Despite VT-x -not- restoring the limits on GDTR and IDTR it should
2145 * be safe to -not- save and restore GDTR and IDTR in the assembly
2146 * code and just do it here and don't care if the limits are zapped on
2147 * VM-exit. */
2148 RTGDTR Gdtr;
2149 RT_ZERO(Gdtr);
2150#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2151 if (HMVMX_IS_64BIT_HOST_MODE())
2152 {
2153 X86XDTR64 Gdtr64;
2154 X86XDTR64 Idtr64;
2155 hmR0Get64bitGdtrAndIdtr(&Gdtr64, &Idtr64);
2156 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, Gdtr64.uAddr);
2157 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, Idtr64.uAddr);
2158 Gdtr.cbGdt = Gdtr64.cb;
2159 Gdtr.pGdt = (uintptr_t)Gdtr64.uAddr;
2160 }
2161 else
2162#endif
2163 {
2164 RTIDTR Idtr;
2165 ASMGetGDTR(&Gdtr);
2166 ASMGetIDTR(&Idtr);
2167 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2168 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2169 }
2170 AssertRCReturn(rc, rc);
2171
2172 /*
2173 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
2174 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
2175 */
2176 if ((uSelTR & X86_SEL_MASK) > Gdtr.cbGdt)
2177 {
2178 AssertMsgFailed(("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit.TR=%RTsel Gdtr.cbGdt=%#x\n", uSelTR, Gdtr.cbGdt));
2179 return VERR_VMX_INVALID_HOST_STATE;
2180 }
2181
2182 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
2183#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2184 if (HMVMX_IS_64BIT_HOST_MODE())
2185 {
2186 /* We need the 64-bit TR base for hybrid darwin. */
2187 uint64_t u64TRBase = X86DESC64_BASE((PX86DESC64)pDesc);
2188 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, u64TRBase);
2189 }
2190 else
2191#endif
2192 {
2193 uintptr_t uTRBase;
2194#if HC_ARCH_BITS == 64
2195 uTRBase = X86DESC64_BASE(pDesc);
2196#else
2197 uTRBase = X86DESC_BASE(pDesc);
2198#endif
2199 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
2200 }
2201 AssertRCReturn(rc, rc);
2202
2203 /*
2204 * Host FS base and GS base.
2205 * For 32-bit hosts the base is handled by the assembly code where we push/pop FS and GS which .
2206 * would take care of the bases. In 64-bit, the MSRs come into play.
2207 */
2208#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2209 if (HMVMX_IS_64BIT_HOST_MODE())
2210 {
2211 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
2212 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
2213 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_FS_BASE, u64FSBase);
2214 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_GS_BASE, u64GSBase);
2215 AssertRCReturn(rc, rc);
2216 }
2217#endif
2218 return rc;
2219}
2220
2221
2222/**
2223 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
2224 * host-state area of the VMCS. Theses MSRs will be automatically restored on
2225 * the host after every successful VM exit.
2226 *
2227 * @returns VBox status code.
2228 * @param pVM Pointer to the VM.
2229 * @param pVCpu Pointer to the VMCPU.
2230 */
2231DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
2232{
2233 AssertPtr(pVCpu);
2234 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
2235
2236 int rc = VINF_SUCCESS;
2237#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
2238 PVMXMSR pHostMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvHostMsr;
2239 uint32_t cHostMsrs = 0;
2240 uint32_t u32HostExtFeatures = pVM->hm.s.cpuid.u32AMDFeatureEDX;
2241
2242 if (u32HostExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
2243 {
2244 pHostMsr->u32IndexMSR = MSR_K6_EFER;
2245 pHostMsr->u32Reserved = 0;
2246# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2247 if (CPUMIsGuestInLongMode(pVCpu))
2248 {
2249 /* Must match the EFER value in our 64 bits switcher. */
2250 pHostMsr->u64Value = ASMRdMsr(MSR_K6_EFER) | MSR_K6_EFER_LME | MSR_K6_EFER_SCE | MSR_K6_EFER_NXE;
2251 }
2252 else
2253# endif
2254 pHostMsr->u64Value = ASMRdMsr(MSR_K6_EFER);
2255 pHostMsr++; cHostMsrs++;
2256 }
2257
2258# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2259 if (HMVMX_IS_64BIT_HOST_MODE())
2260 {
2261 pHostMsr->u32IndexMSR = MSR_K6_STAR;
2262 pHostMsr->u32Reserved = 0;
2263 pHostMsr->u64Value = ASMRdMsr(MSR_K6_STAR); /* legacy syscall eip, cs & ss */
2264 pHostMsr++; cHostMsrs++;
2265 pHostMsr->u32IndexMSR = MSR_K8_LSTAR;
2266 pHostMsr->u32Reserved = 0;
2267 pHostMsr->u64Value = ASMRdMsr(MSR_K8_LSTAR); /* 64-bit mode syscall rip */
2268 pHostMsr++; cHostMsrs++;
2269 pHostMsr->u32IndexMSR = MSR_K8_SF_MASK;
2270 pHostMsr->u32Reserved = 0;
2271 pHostMsr->u64Value = ASMRdMsr(MSR_K8_SF_MASK); /* syscall flag mask */
2272 pHostMsr++; cHostMsrs++;
2273 pHostMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
2274 pHostMsr->u32Reserved = 0;
2275 pHostMsr->u64Value = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); /* swapgs exchange value */
2276 pHostMsr++; cHostMsrs++;
2277 }
2278# endif
2279
2280 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
2281 if (RT_UNLIKELY(cHostMsrs > MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc)))
2282 {
2283 LogRel(("cHostMsrs=%u Cpu=%u\n", cHostMsrs, (unsigned)MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc)));
2284 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2285 }
2286
2287 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cHostMsrs);
2288#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
2289
2290 /*
2291 * Host Sysenter MSRs.
2292 */
2293 rc |= VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
2294# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2295 if (HMVMX_IS_64BIT_HOST_MODE())
2296 {
2297 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
2298 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
2299 }
2300 else
2301 {
2302 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
2303 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
2304 }
2305# elif HC_ARCH_BITS == 32
2306 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
2307 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
2308# else
2309 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
2310 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
2311# endif
2312 AssertRCReturn(rc, rc);
2313
2314 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT, IA32_EFER, also see
2315 * hmR0VmxSetupExitCtls() !! */
2316 return rc;
2317}
2318
2319
2320/**
2321 * Sets up VM-entry controls in the VMCS. These controls can affect things done
2322 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
2323 * controls".
2324 *
2325 * @returns VBox status code.
2326 * @param pVCpu Pointer to the VMCPU.
2327 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2328 * out-of-sync. Make sure to update the required fields
2329 * before using them.
2330 *
2331 * @remarks No-long-jump zone!!!
2332 */
2333DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2334{
2335 int rc = VINF_SUCCESS;
2336 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_ENTRY_CTLS)
2337 {
2338 PVM pVM = pVCpu->CTX_SUFF(pVM);
2339 uint32_t val = pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0; /* Bits set here must be set in the VMCS. */
2340 uint32_t zap = pVM->hm.s.vmx.msr.vmx_entry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2341
2342 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
2343 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_DEBUG;
2344
2345 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
2346 if (CPUMIsGuestInLongModeEx(pMixedCtx))
2347 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_IA32E_MODE_GUEST;
2348 else
2349 Assert(!(val & VMX_VMCS_CTRL_ENTRY_CONTROLS_IA32E_MODE_GUEST));
2350
2351 /*
2352 * The following should not be set (since we're not in SMM mode):
2353 * - VMX_VMCS_CTRL_ENTRY_CONTROLS_ENTRY_SMM
2354 * - VMX_VMCS_CTRL_ENTRY_CONTROLS_DEACTIVATE_DUALMON
2355 */
2356
2357 /** @todo VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_GUEST_PERF_MSR,
2358 * VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_GUEST_PAT_MSR,
2359 * VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_GUEST_EFER_MSR */
2360
2361 if ((val & zap) != val)
2362 {
2363 LogRel(("hmR0VmxLoadGuestEntryCtls: invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
2364 pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0, val, zap));
2365 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2366 }
2367
2368 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_CONTROLS, val);
2369 AssertRCReturn(rc, rc);
2370
2371 /* Update VCPU with the currently set VM-exit controls. */
2372 pVCpu->hm.s.vmx.u32EntryCtls = val;
2373 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_ENTRY_CTLS;
2374 }
2375 return rc;
2376}
2377
2378
2379/**
2380 * Sets up the VM-exit controls in the VMCS.
2381 *
2382 * @returns VBox status code.
2383 * @param pVM Pointer to the VM.
2384 * @param pVCpu Pointer to the VMCPU.
2385 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2386 * out-of-sync. Make sure to update the required fields
2387 * before using them.
2388 *
2389 * @remarks requires EFER.
2390 */
2391DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2392{
2393 int rc = VINF_SUCCESS;
2394 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_EXIT_CTLS)
2395 {
2396 PVM pVM = pVCpu->CTX_SUFF(pVM);
2397 uint32_t val = pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0; /* Bits set here must be set in the VMCS. */
2398 uint32_t zap = pVM->hm.s.vmx.msr.vmx_exit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2399
2400 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
2401 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_DEBUG;
2402
2403 /* Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary. */
2404#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2405 if (HMVMX_IS_64BIT_HOST_MODE())
2406 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE;
2407 else
2408 Assert(!(val & VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE));
2409#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
2410 if (CPUMIsGuestInLongModeEx(pMixedCtx))
2411 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE; /* The switcher goes to long mode. */
2412 else
2413 Assert(!(val & VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE));
2414#endif
2415
2416 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
2417 Assert(!(val & VMX_VMCS_CTRL_EXIT_CONTROLS_ACK_EXT_INT));
2418
2419 /** @todo VMX_VMCS_CTRL_EXIT_CONTROLS_LOAD_PERF_MSR,
2420 * VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_GUEST_PAT_MSR,
2421 * VMX_VMCS_CTRL_EXIT_CONTROLS_LOAD_HOST_PAT_MSR,
2422 * VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_GUEST_EFER_MSR,
2423 * VMX_VMCS_CTRL_EXIT_CONTROLS_LOAD_HOST_EFER_MSR. */
2424
2425 if (pVM->hm.s.vmx.msr.vmx_exit.n.allowed1 & VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_VMX_PREEMPT_TIMER)
2426 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_VMX_PREEMPT_TIMER;
2427
2428 if ((val & zap) != val)
2429 {
2430 LogRel(("hmR0VmxSetupProcCtls: invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
2431 pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0, val, zap));
2432 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2433 }
2434
2435 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_CONTROLS, val);
2436 AssertRCReturn(rc, rc);
2437
2438 /* Update VCPU with the currently set VM-exit controls. */
2439 pVCpu->hm.s.vmx.u32ExitCtls = val;
2440 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_EXIT_CTLS;
2441 }
2442 return rc;
2443}
2444
2445
2446/**
2447 * Loads the guest APIC and related state.
2448 *
2449 * @returns VBox status code.
2450 * @param pVM Pointer to the VM.
2451 * @param pVCpu Pointer to the VMCPU.
2452 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2453 * out-of-sync. Make sure to update the required fields
2454 * before using them.
2455 */
2456DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2457{
2458 int rc = VINF_SUCCESS;
2459 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_APIC_STATE)
2460 {
2461 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
2462 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
2463 {
2464 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2465
2466 bool fPendingIntr = false;
2467 uint8_t u8GuestTpr = 0;
2468 rc = PDMApicGetTPR(pVCpu, &u8GuestTpr, &fPendingIntr);
2469 AssertRCReturn(rc, rc);
2470
2471 /*
2472 * If there are external interrupts pending but masked by the TPR value, apply the threshold so that if the guest
2473 * lowers the TPR, it would cause a VM-exit and we can deliver the interrupt.
2474 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
2475 * the interrupt when we VM-exit for other reasons.
2476 */
2477 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8GuestTpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
2478 /* Bits 3-0 of the TPR threshold field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2479 uint32_t u32TprThreshold = fPendingIntr ? (u8GuestTpr >> 4) : 0;
2480 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
2481
2482 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
2483 AssertRCReturn(rc, rc);
2484
2485 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
2486 if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
2487 {
2488 Assert(!CPUMIsGuestInLongModeEx(pMixedCtx)); /* EFER always up-to-date. */
2489 pMixedCtx->msrLSTAR = u8GuestTpr;
2490 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
2491 {
2492 /* If there are interrupts pending, intercept CR8 writes, otherwise don't intercept CR8 reads or writes. */
2493 if (fPendingIntr)
2494 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_INTERCEPT_WRITE);
2495 else
2496 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2497 }
2498 }
2499 }
2500
2501 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_APIC_STATE;
2502 }
2503 return rc;
2504}
2505
2506
2507/**
2508 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
2509 *
2510 * @returns
2511 * @param pVCpu Pointer to the VMCPU.
2512 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2513 * out-of-sync. Make sure to update the required fields
2514 * before using them.
2515 *
2516 * @remarks No-long-jump zone!!!
2517 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2518 */
2519DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2520{
2521 /*
2522 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2523 * inhibit interrupts or clear any existing interrupt-inhibition.
2524 */
2525 uint32_t uIntrState = 0;
2526 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2527 {
2528 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
2529 AssertMsg((pVCpu->hm.s.vmx.fUpdatedGuestState & (HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS))
2530 == (HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS), ("%#x\n", pVCpu->hm.s.vmx.fUpdatedGuestState));
2531 if (pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2532 {
2533 /*
2534 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2535 * VT-x the flag's condition to be cleared is met and thus the cleared state is correct.
2536 */
2537 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2538 }
2539 else if (pMixedCtx->eflags.Bits.u1IF)
2540 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
2541 else
2542 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
2543 }
2544 return uIntrState;
2545}
2546
2547
2548/**
2549 * Loads the guest's interruptibility-state into the guest-state area in the
2550 * VMCS.
2551 *
2552 * @returns VBox status code.
2553 * @param pVCpu Pointer to the VMCPU.
2554 * @param uIntrState The interruptibility-state to set.
2555 */
2556static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
2557{
2558 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
2559 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
2560 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
2561 AssertRCReturn(rc, rc);
2562 return rc;
2563}
2564
2565
2566/**
2567 * Loads the guest's RIP into the guest-state area in the VMCS.
2568 *
2569 * @returns VBox status code.
2570 * @param pVCpu Pointer to the VMCPU.
2571 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2572 * out-of-sync. Make sure to update the required fields
2573 * before using them.
2574 *
2575 * @remarks No-long-jump zone!!!
2576 */
2577static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2578{
2579 int rc = VINF_SUCCESS;
2580 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RIP)
2581 {
2582 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
2583 AssertRCReturn(rc, rc);
2584 Log(("Load: VMX_VMCS_GUEST_RIP=%#RX64\n", pMixedCtx->rip));
2585 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RIP;
2586 }
2587 return rc;
2588}
2589
2590
2591/**
2592 * Loads the guest's RSP into the guest-state area in the VMCS.
2593 *
2594 * @returns VBox status code.
2595 * @param pVCpu Pointer to the VMCPU.
2596 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2597 * out-of-sync. Make sure to update the required fields
2598 * before using them.
2599 *
2600 * @remarks No-long-jump zone!!!
2601 */
2602static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2603{
2604 int rc = VINF_SUCCESS;
2605 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RSP)
2606 {
2607 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
2608 AssertRCReturn(rc, rc);
2609 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RSP;
2610 }
2611 return rc;
2612}
2613
2614
2615/**
2616 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
2617 *
2618 * @returns VBox status code.
2619 * @param pVCpu Pointer to the VMCPU.
2620 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2621 * out-of-sync. Make sure to update the required fields
2622 * before using them.
2623 *
2624 * @remarks No-long-jump zone!!!
2625 */
2626static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2627{
2628 int rc = VINF_SUCCESS;
2629 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RFLAGS)
2630 {
2631 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
2632 Let us assert it as such and use 32-bit VMWRITE. */
2633 Assert(!(pMixedCtx->rflags.u64 >> 32));
2634 X86EFLAGS uEFlags = pMixedCtx->eflags;
2635 uEFlags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
2636 uEFlags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
2637
2638 /*
2639 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM exit.
2640 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
2641 */
2642 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
2643 {
2644 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
2645 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
2646 pVCpu->hm.s.vmx.RealMode.eflags.u32 = uEFlags.u32; /* Save the original eflags of the real-mode guest. */
2647 uEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
2648 uEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
2649 }
2650
2651 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, uEFlags.u32);
2652 AssertRCReturn(rc, rc);
2653
2654 Log(("Load: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", uEFlags.u32));
2655 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RFLAGS;
2656 }
2657 return rc;
2658}
2659
2660
2661/**
2662 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
2663 *
2664 * @returns VBox status code.
2665 * @param pVCpu Pointer to the VMCPU.
2666 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2667 * out-of-sync. Make sure to update the required fields
2668 * before using them.
2669 *
2670 * @remarks No-long-jump zone!!!
2671 */
2672static int hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2673{
2674 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
2675 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
2676 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
2677 return rc;
2678}
2679
2680
2681/**
2682 * Loads the guest control registers (CR0, CR3, CR4) into the guest-state area
2683 * in the VMCS.
2684 *
2685 * @returns VBox status code.
2686 * @param pVM Pointer to the VM.
2687 * @param pVCpu Pointer to the VMCPU.
2688 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2689 * out-of-sync. Make sure to update the required fields
2690 * before using them.
2691 *
2692 * @remarks No-long-jump zone!!!
2693 */
2694static int hmR0VmxLoadGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pCtx)
2695{
2696 int rc = VINF_SUCCESS;
2697 PVM pVM = pVCpu->CTX_SUFF(pVM);
2698
2699 /*
2700 * Guest CR0.
2701 * Guest FPU.
2702 */
2703 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
2704 {
2705 Assert(!(pCtx->cr0 >> 32));
2706 uint32_t u32GuestCR0 = pCtx->cr0;
2707
2708 /* The guest's view (read access) of its CR0 is unblemished. */
2709 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
2710 AssertRCReturn(rc, rc);
2711 Log(("Load: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", u32GuestCR0));
2712
2713 /* Setup VT-x's view of the guest CR0. */
2714 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
2715 if (pVM->hm.s.fNestedPaging)
2716 {
2717 if (CPUMIsGuestPagingEnabledEx(pCtx))
2718 {
2719 /* The guest has paging enabled, let it access CR3 without causing a VM exit if supported. */
2720 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
2721 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT);
2722 }
2723 else
2724 {
2725 /* The guest doesn't have paging enabled, make CR3 access to cause VM exits to update our shadow. */
2726 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
2727 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
2728 }
2729
2730 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
2731 AssertRCReturn(rc, rc);
2732 }
2733 else
2734 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a VM-exit. */
2735
2736 /*
2737 * Guest FPU bits.
2738 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
2739 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
2740 */
2741 u32GuestCR0 |= X86_CR0_NE;
2742 bool fInterceptNM = false;
2743 if (CPUMIsGuestFPUStateActive(pVCpu))
2744 {
2745 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
2746 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
2747 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
2748 }
2749 else
2750 {
2751 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
2752 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
2753 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
2754 }
2755
2756 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
2757 bool fInterceptMF = false;
2758 if (!(pCtx->cr0 & X86_CR0_NE))
2759 fInterceptMF = true;
2760
2761 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
2762 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
2763 {
2764 Assert(PDMVmmDevHeapIsEnabled(pVM));
2765 Assert(pVM->hm.s.vmx.pRealModeTSS);
2766 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
2767 fInterceptNM = true;
2768 fInterceptMF = true;
2769 }
2770 else
2771 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
2772
2773 if (fInterceptNM)
2774 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
2775 else
2776 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
2777
2778 if (fInterceptMF)
2779 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
2780 else
2781 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
2782
2783 /* Additional intercepts for debugging, define these yourself explicitly. */
2784#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
2785 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_BP)
2786 | RT_BIT(X86_XCPT_DB)
2787 | RT_BIT(X86_XCPT_DE)
2788 | RT_BIT(X86_XCPT_NM)
2789 | RT_BIT(X86_XCPT_UD)
2790 | RT_BIT(X86_XCPT_NP)
2791 | RT_BIT(X86_XCPT_SS)
2792 | RT_BIT(X86_XCPT_GP)
2793 | RT_BIT(X86_XCPT_PF)
2794 | RT_BIT(X86_XCPT_MF);
2795#elif defined(HMVMX_ALWAYS_TRAP_PF)
2796 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2797#endif
2798
2799 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
2800
2801 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
2802 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.msr.vmx_cr0_fixed0 & pVM->hm.s.vmx.msr.vmx_cr0_fixed1);
2803 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.msr.vmx_cr0_fixed0 | pVM->hm.s.vmx.msr.vmx_cr0_fixed1);
2804 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
2805 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
2806 else
2807 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
2808
2809 u32GuestCR0 |= uSetCR0;
2810 u32GuestCR0 &= uZapCR0;
2811 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
2812
2813 /* Write VT-x's view of the guest CR0 into the VMCS and update the exception bitmap. */
2814 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
2815 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
2816 Log(("Load: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", u32GuestCR0, uSetCR0, uZapCR0));
2817
2818 /*
2819 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
2820 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
2821 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
2822 */
2823 uint64_t u64CR0Mask = 0;
2824 u64CR0Mask = X86_CR0_PE
2825 | X86_CR0_NE
2826 | X86_CR0_WP
2827 | X86_CR0_PG
2828 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
2829 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
2830 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
2831 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2832 u64CR0Mask &= ~X86_CR0_PE;
2833 if (pVM->hm.s.fNestedPaging)
2834 u64CR0Mask &= ~X86_CR0_WP;
2835
2836 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
2837 if (fInterceptNM)
2838 u64CR0Mask |= (X86_CR0_TS | X86_CR0_MP);
2839 else
2840 u64CR0Mask &= ~(X86_CR0_TS | X86_CR0_MP);
2841
2842 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
2843 pVCpu->hm.s.vmx.cr0_mask = u64CR0Mask;
2844 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64CR0Mask);
2845 AssertRCReturn(rc, rc);
2846
2847 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
2848 }
2849
2850 /*
2851 * Guest CR2.
2852 * It's always loaded in the assembler code. Nothing to do here.
2853 */
2854
2855 /*
2856 * Guest CR3.
2857 */
2858 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
2859 {
2860 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
2861 if (pVM->hm.s.fNestedPaging)
2862 {
2863 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
2864
2865 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
2866 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
2867 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
2868 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
2869
2870 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
2871 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
2872 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
2873
2874 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
2875 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
2876 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x3f) == 0, /* Bits 6:11 MBZ. */
2877 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
2878
2879 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
2880 AssertRCReturn(rc, rc);
2881 Log(("Load: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
2882
2883 if ( pVM->hm.s.vmx.fUnrestrictedGuest
2884 || CPUMIsGuestPagingEnabledEx(pCtx))
2885 {
2886 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
2887 if (CPUMIsGuestInPAEModeEx(pCtx))
2888 {
2889 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
2890 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
2891 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
2892 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
2893 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
2894 AssertRCReturn(rc, rc);
2895 }
2896
2897 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
2898 have Unrestricted Execution to handle the guest when it's not using paging. */
2899 GCPhysGuestCR3 = pCtx->cr3;
2900 }
2901 else
2902 {
2903 /*
2904 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
2905 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
2906 * EPT takes care of translating it to host-physical addresses.
2907 */
2908 RTGCPHYS GCPhys;
2909 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
2910 Assert(PDMVmmDevHeapIsEnabled(pVM));
2911
2912 /* We obtain it here every time as the guest could have relocated this PCI region. */
2913 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
2914 AssertRCReturn(rc, rc);
2915
2916 GCPhysGuestCR3 = GCPhys;
2917 }
2918 }
2919 else
2920 {
2921 /* Non-nested paging case, just use the hypervisor's CR3. */
2922 GCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
2923 }
2924
2925 Log(("Load: VMX_VMCS_GUEST_CR3=%#RGv\n", GCPhysGuestCR3));
2926 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
2927 AssertRCReturn(rc, rc);
2928
2929 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
2930 }
2931
2932 /*
2933 * Guest CR4.
2934 */
2935 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
2936 {
2937 Assert(!(pCtx->cr4 >> 32));
2938 uint32_t u32GuestCR4 = pCtx->cr4;
2939
2940 /* The guest's view of its CR4 is unblemished. */
2941 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
2942 AssertRCReturn(rc, rc);
2943 Log(("Load: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", u32GuestCR4));
2944
2945 /* Setup VT-x's view of the guest CR4. */
2946 /*
2947 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
2948 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
2949 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
2950 */
2951 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
2952 {
2953 Assert(pVM->hm.s.vmx.pRealModeTSS);
2954 Assert(PDMVmmDevHeapIsEnabled(pVM));
2955 u32GuestCR4 &= ~X86_CR4_VME;
2956 }
2957
2958 if (pVM->hm.s.fNestedPaging)
2959 {
2960 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
2961 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2962 {
2963 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
2964 u32GuestCR4 |= X86_CR4_PSE;
2965 /* Our identity mapping is a 32 bits page directory. */
2966 u32GuestCR4 &= ~X86_CR4_PAE;
2967 }
2968 /* else use guest CR4.*/
2969 }
2970 else
2971 {
2972 /*
2973 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
2974 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
2975 */
2976 switch (pVCpu->hm.s.enmShadowMode)
2977 {
2978 case PGMMODE_REAL: /* Real-mode. */
2979 case PGMMODE_PROTECTED: /* Protected mode without paging. */
2980 case PGMMODE_32_BIT: /* 32-bit paging. */
2981 {
2982 u32GuestCR4 &= ~X86_CR4_PAE;
2983 break;
2984 }
2985
2986 case PGMMODE_PAE: /* PAE paging. */
2987 case PGMMODE_PAE_NX: /* PAE paging with NX. */
2988 {
2989 u32GuestCR4 |= X86_CR4_PAE;
2990 break;
2991 }
2992
2993 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
2994 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
2995#ifdef VBOX_ENABLE_64_BITS_GUESTS
2996 break;
2997#endif
2998 default:
2999 AssertFailed();
3000 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3001 }
3002 }
3003
3004 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3005 uint64_t uSetCR4 = (pVM->hm.s.vmx.msr.vmx_cr4_fixed0 & pVM->hm.s.vmx.msr.vmx_cr4_fixed1);
3006 uint64_t uZapCR4 = (pVM->hm.s.vmx.msr.vmx_cr4_fixed0 | pVM->hm.s.vmx.msr.vmx_cr4_fixed1);
3007 u32GuestCR4 |= uSetCR4;
3008 u32GuestCR4 &= uZapCR4;
3009
3010 /* Write VT-x's view of the guest CR4 into the VMCS. */
3011 Log(("Load: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", u32GuestCR4, uSetCR4, uZapCR4));
3012 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
3013
3014 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM exit. */
3015 uint64_t u64CR4Mask = 0;
3016 u64CR4Mask = X86_CR4_VME
3017 | X86_CR4_PAE
3018 | X86_CR4_PGE
3019 | X86_CR4_PSE
3020 | X86_CR4_VMXE;
3021 pVCpu->hm.s.vmx.cr4_mask = u64CR4Mask;
3022 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64CR4Mask);
3023 AssertRCReturn(rc, rc);
3024
3025 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
3026 }
3027 return rc;
3028}
3029
3030
3031/**
3032 * Loads the guest debug registers into the guest-state area in the VMCS.
3033 * This also sets up whether #DB and MOV DRx accesses cause VM exits.
3034 *
3035 * @returns VBox status code.
3036 * @param pVCpu Pointer to the VMCPU.
3037 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3038 * out-of-sync. Make sure to update the required fields
3039 * before using them.
3040 *
3041 * @remarks No-long-jump zone!!!
3042 */
3043static int hmR0VmxLoadGuestDebugRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3044{
3045 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
3046 return VINF_SUCCESS;
3047
3048#ifdef VBOX_STRICT
3049 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
3050 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_DEBUG)
3051 {
3052 Assert(!(pMixedCtx->dr[7] >> 32)); /* upper 32 bits are reserved (MBZ). */
3053 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
3054 Assert((pMixedCtx->dr[7] & 0xd800) == 0); /* bits 15, 14, 12, 11 are reserved (MBZ). */
3055 Assert((pMixedCtx->dr[7] & 0x400) == 0x400); /* bit 10 is reserved (MB1). */
3056 }
3057#endif
3058
3059 int rc = VERR_INTERNAL_ERROR_5;
3060 PVM pVM = pVCpu->CTX_SUFF(pVM);
3061 bool fInterceptDB = false;
3062 bool fInterceptMovDRx = false;
3063 if (DBGFIsStepping(pVCpu))
3064 {
3065 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
3066 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG)
3067 {
3068 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG;
3069 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
3070 AssertRCReturn(rc, rc);
3071 Assert(fInterceptDB == false);
3072 }
3073 else
3074 fInterceptDB = true;
3075 }
3076
3077 if (CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
3078 {
3079 if (!CPUMIsHyperDebugStateActive(pVCpu))
3080 {
3081 rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pMixedCtx, true /* include DR6 */);
3082 AssertRC(rc);
3083 }
3084 Assert(CPUMIsHyperDebugStateActive(pVCpu));
3085 fInterceptMovDRx = true;
3086 }
3087 else if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
3088 {
3089 if (!CPUMIsGuestDebugStateActive(pVCpu))
3090 {
3091 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pMixedCtx, true /* include DR6 */);
3092 AssertRC(rc);
3093 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
3094 }
3095 Assert(CPUMIsGuestDebugStateActive(pVCpu));
3096 Assert(fInterceptMovDRx == false);
3097 }
3098 else if (!CPUMIsGuestDebugStateActive(pVCpu))
3099 {
3100 /* For the first time we would need to intercept MOV DRx accesses even when the guest debug registers aren't loaded. */
3101 fInterceptMovDRx = true;
3102 }
3103
3104 /* Update the exception bitmap regarding intercepting #DB generated by the guest. */
3105 if (fInterceptDB)
3106 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_DB);
3107 else if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3108 {
3109#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3110 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
3111#endif
3112 }
3113
3114 /* Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions. */
3115 if (fInterceptMovDRx)
3116 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
3117 else
3118 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
3119
3120 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3121 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
3122
3123 /* The guest's view of its DR7 is unblemished. */
3124 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
3125
3126 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
3127 return rc;
3128}
3129
3130
3131#ifdef VBOX_STRICT
3132/**
3133 * Strict function to validate segment registers.
3134 */
3135static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3136{
3137 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
3138 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0);
3139 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS);
3140 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3141 && ( !CPUMIsGuestInRealModeEx(pCtx)
3142 && !CPUMIsGuestInV86ModeEx(pCtx)))
3143 {
3144 /* Protected mode checks */
3145 /* CS */
3146 Assert(pCtx->cs.Attr.n.u1Present);
3147 Assert(!(pCtx->cs.Attr.u & 0xf00));
3148 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
3149 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
3150 || !(pCtx->cs.Attr.n.u1Granularity));
3151 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
3152 || (pCtx->cs.Attr.n.u1Granularity));
3153 Assert(pCtx->cs.Attr.u && pCtx->cs.Attr.u != HMVMX_SEL_UNUSABLE); /* CS cannot be loaded with NULL in protected mode. */
3154 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
3155 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
3156 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
3157 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
3158 else
3159 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
3160 /* SS */
3161 if (pCtx->ss.Attr.u && pCtx->ss.Attr.u != HMVMX_SEL_UNUSABLE)
3162 {
3163 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
3164 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
3165 Assert(pCtx->ss.Attr.n.u1Present);
3166 Assert(!(pCtx->ss.Attr.u & 0xf00));
3167 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
3168 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
3169 || !(pCtx->ss.Attr.n.u1Granularity));
3170 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
3171 || (pCtx->ss.Attr.n.u1Granularity));
3172 }
3173 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
3174 /* CR0 might not be up-to-date here always, hence disabled. */
3175#if 0
3176 if (!pCtx->cr0 & X86_CR0_PE)
3177 Assert(!pCtx->ss.Attr.n.u2Dpl);
3178#endif
3179 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
3180 if (pCtx->ds.Attr.u && pCtx->ds.Attr.u != HMVMX_SEL_UNUSABLE)
3181 {
3182 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3183 Assert(pCtx->ds.Attr.n.u1Present);
3184 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
3185 Assert(!(pCtx->ds.Attr.u & 0xf00));
3186 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
3187 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
3188 || !(pCtx->ds.Attr.n.u1Granularity));
3189 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
3190 || (pCtx->ds.Attr.n.u1Granularity));
3191 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3192 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
3193 }
3194 if (pCtx->es.Attr.u && pCtx->es.Attr.u != HMVMX_SEL_UNUSABLE)
3195 {
3196 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3197 Assert(pCtx->es.Attr.n.u1Present);
3198 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
3199 Assert(!(pCtx->es.Attr.u & 0xf00));
3200 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
3201 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
3202 || !(pCtx->es.Attr.n.u1Granularity));
3203 Assert( !(pCtx->es.u32Limit & 0xfff00000)
3204 || (pCtx->es.Attr.n.u1Granularity));
3205 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3206 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
3207 }
3208 if (pCtx->fs.Attr.u && pCtx->fs.Attr.u != HMVMX_SEL_UNUSABLE)
3209 {
3210 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3211 Assert(pCtx->fs.Attr.n.u1Present);
3212 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
3213 Assert(!(pCtx->fs.Attr.u & 0xf00));
3214 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
3215 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
3216 || !(pCtx->fs.Attr.n.u1Granularity));
3217 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
3218 || (pCtx->fs.Attr.n.u1Granularity));
3219 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3220 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
3221 }
3222 if (pCtx->gs.Attr.u && pCtx->gs.Attr.u != HMVMX_SEL_UNUSABLE)
3223 {
3224 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3225 Assert(pCtx->gs.Attr.n.u1Present);
3226 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
3227 Assert(!(pCtx->gs.Attr.u & 0xf00));
3228 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
3229 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
3230 || !(pCtx->gs.Attr.n.u1Granularity));
3231 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
3232 || (pCtx->gs.Attr.n.u1Granularity));
3233 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3234 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
3235 }
3236 /* 64-bit capable CPUs. */
3237# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3238 Assert(!(pCtx->cs.u64Base >> 32));
3239 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
3240 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
3241 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
3242# endif
3243 }
3244 else if ( CPUMIsGuestInV86ModeEx(pCtx)
3245 || ( CPUMIsGuestInRealModeEx(pCtx)
3246 && !pVM->hm.s.vmx.fUnrestrictedGuest))
3247 {
3248 /* Real and v86 mode checks. */
3249 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
3250 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
3251 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3252 {
3253 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
3254 }
3255 else
3256 {
3257 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
3258 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
3259 }
3260
3261 /* CS */
3262 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
3263 Assert(pCtx->cs.u32Limit == 0xffff);
3264 Assert(u32CSAttr == 0xf3);
3265 /* SS */
3266 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
3267 Assert(pCtx->ss.u32Limit == 0xffff);
3268 Assert(u32SSAttr == 0xf3);
3269 /* DS */
3270 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
3271 Assert(pCtx->ds.u32Limit == 0xffff);
3272 Assert(u32DSAttr == 0xf3);
3273 /* ES */
3274 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
3275 Assert(pCtx->es.u32Limit == 0xffff);
3276 Assert(u32ESAttr == 0xf3);
3277 /* FS */
3278 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
3279 Assert(pCtx->fs.u32Limit == 0xffff);
3280 Assert(u32FSAttr == 0xf3);
3281 /* GS */
3282 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
3283 Assert(pCtx->gs.u32Limit == 0xffff);
3284 Assert(u32GSAttr == 0xf3);
3285 /* 64-bit capable CPUs. */
3286# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3287 Assert(!(pCtx->cs.u64Base >> 32));
3288 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
3289 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
3290 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
3291# endif
3292 }
3293}
3294#endif /* VBOX_STRICT */
3295
3296
3297/**
3298 * Writes a guest segment register into the guest-state area in the VMCS.
3299 *
3300 * @returns VBox status code.
3301 * @param pVCpu Pointer to the VMCPU.
3302 * @param idxSel Index of the selector in the VMCS.
3303 * @param idxLimit Index of the segment limit in the VMCS.
3304 * @param idxBase Index of the segment base in the VMCS.
3305 * @param idxAccess Index of the access rights of the segment in the VMCS.
3306 * @param pSelReg Pointer to the segment selector.
3307 * @param pCtx Pointer to the guest-CPU context.
3308 *
3309 * @remarks No-long-jump zone!!!
3310 */
3311static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
3312 uint32_t idxAccess, PCPUMSELREG pSelReg, PCPUMCTX pCtx)
3313{
3314 int rc;
3315 rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
3316 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
3317 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
3318 AssertRCReturn(rc, rc);
3319
3320 uint32_t u32Access = pSelReg->Attr.u;
3321 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3322 {
3323 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
3324 u32Access = 0xf3;
3325 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3326 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3327 }
3328 else
3329 {
3330 /*
3331 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
3332 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
3333 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
3334 * loaded in protected-mode have their attribute as 0.
3335 */
3336 if (!u32Access)
3337 u32Access = HMVMX_SEL_UNUSABLE;
3338 }
3339
3340 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
3341 AssertMsg((u32Access == HMVMX_SEL_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
3342 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
3343
3344 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
3345 AssertRCReturn(rc, rc);
3346 return rc;
3347}
3348
3349
3350/**
3351 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
3352 * into the guest-state area in the VMCS.
3353 *
3354 * @returns VBox status code.
3355 * @param pVM Pointer to the VM.
3356 * @param pVCPU Pointer to the VMCPU.
3357 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3358 * out-of-sync. Make sure to update the required fields
3359 * before using them.
3360 *
3361 * @remarks No-long-jump zone!!!
3362 */
3363static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3364{
3365 int rc = VERR_INTERNAL_ERROR_5;
3366 PVM pVM = pVCpu->CTX_SUFF(pVM);
3367
3368 /*
3369 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
3370 */
3371 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
3372 {
3373 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
3374 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3375 {
3376 pVCpu->hm.s.vmx.RealMode.uAttrCS.u = pMixedCtx->cs.Attr.u;
3377 pVCpu->hm.s.vmx.RealMode.uAttrSS.u = pMixedCtx->ss.Attr.u;
3378 pVCpu->hm.s.vmx.RealMode.uAttrDS.u = pMixedCtx->ds.Attr.u;
3379 pVCpu->hm.s.vmx.RealMode.uAttrES.u = pMixedCtx->es.Attr.u;
3380 pVCpu->hm.s.vmx.RealMode.uAttrFS.u = pMixedCtx->fs.Attr.u;
3381 pVCpu->hm.s.vmx.RealMode.uAttrGS.u = pMixedCtx->gs.Attr.u;
3382 }
3383
3384#ifdef VBOX_WITH_REM
3385 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
3386 {
3387 Assert(pVM->hm.s.vmx.pRealModeTSS);
3388 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
3389 if ( pVCpu->hm.s.vmx.fWasInRealMode
3390 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
3391 {
3392 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
3393 in real-mode (e.g. OpenBSD 4.0) */
3394 REMFlushTBs(pVM);
3395 Log(("Load: Switch to protected mode detected!\n"));
3396 pVCpu->hm.s.vmx.fWasInRealMode = false;
3397 }
3398 }
3399#endif
3400 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_CS, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
3401 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs, pMixedCtx);
3402 rc |= hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_SS, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
3403 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss, pMixedCtx);
3404 rc |= hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_DS, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
3405 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds, pMixedCtx);
3406 rc |= hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_ES, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
3407 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es, pMixedCtx);
3408 rc |= hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_FS, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
3409 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs, pMixedCtx);
3410 rc |= hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_GS, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
3411 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs, pMixedCtx);
3412 AssertRCReturn(rc, rc);
3413
3414#ifdef VBOX_STRICT
3415 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
3416#endif
3417 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
3418 }
3419
3420 /*
3421 * Guest TR.
3422 */
3423 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
3424 {
3425 /*
3426 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
3427 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
3428 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
3429 */
3430 uint16_t u16Sel = 0;
3431 uint32_t u32Limit = 0;
3432 uint64_t u64Base = 0;
3433 uint32_t u32AccessRights = 0;
3434
3435 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3436 {
3437 u16Sel = pMixedCtx->tr.Sel;
3438 u32Limit = pMixedCtx->tr.u32Limit;
3439 u64Base = pMixedCtx->tr.u64Base;
3440 u32AccessRights = pMixedCtx->tr.Attr.u;
3441 }
3442 else
3443 {
3444 Assert(pVM->hm.s.vmx.pRealModeTSS);
3445 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
3446
3447 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
3448 RTGCPHYS GCPhys;
3449 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
3450 AssertRCReturn(rc, rc);
3451
3452 X86DESCATTR DescAttr;
3453 DescAttr.u = 0;
3454 DescAttr.n.u1Present = 1;
3455 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
3456
3457 u16Sel = 0;
3458 u32Limit = HM_VTX_TSS_SIZE;
3459 u64Base = GCPhys; /* in real-mode phys = virt. */
3460 u32AccessRights = DescAttr.u;
3461 }
3462
3463 /* Validate. */
3464 Assert(!(u16Sel & RT_BIT(2)));
3465 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
3466 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
3467 AssertMsg(!(u32AccessRights & HMVMX_SEL_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
3468 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
3469 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
3470 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
3471 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
3472 Assert( (u32Limit & 0xfff) == 0xfff
3473 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
3474 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
3475 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
3476
3477 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_TR, u16Sel);
3478 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
3479 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
3480 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
3481 AssertRCReturn(rc, rc);
3482
3483 Log(("Load: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", u64Base));
3484 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
3485 }
3486
3487 /*
3488 * Guest GDTR.
3489 */
3490 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
3491 {
3492 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
3493 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
3494 AssertRCReturn(rc, rc);
3495
3496 Assert(!(pMixedCtx->gdtr.cbGdt & UINT64_C(0xffff0000))); /* Bits 31:16 MBZ. */
3497 Log(("Load: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pMixedCtx->gdtr.pGdt));
3498 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
3499 }
3500
3501 /*
3502 * Guest LDTR.
3503 */
3504 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
3505 {
3506 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
3507 uint32_t u32Access = 0;
3508 if (!pMixedCtx->ldtr.Attr.u)
3509 u32Access = HMVMX_SEL_UNUSABLE;
3510 else
3511 u32Access = pMixedCtx->ldtr.Attr.u;
3512
3513 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_LDTR, pMixedCtx->ldtr.Sel);
3514 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
3515 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
3516 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
3517 AssertRCReturn(rc, rc);
3518
3519 /* Validate. */
3520 if (!(u32Access & HMVMX_SEL_UNUSABLE))
3521 {
3522 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
3523 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
3524 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
3525 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
3526 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
3527 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
3528 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
3529 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
3530 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
3531 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
3532 }
3533
3534 Log(("Load: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pMixedCtx->ldtr.u64Base));
3535 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
3536 }
3537
3538 /*
3539 * Guest IDTR.
3540 */
3541 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
3542 {
3543 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
3544 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
3545 AssertRCReturn(rc, rc);
3546
3547 Assert(!(pMixedCtx->idtr.cbIdt & UINT64_C(0xffff0000))); /* Bits 31:16 MBZ. */
3548 Log(("Load: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pMixedCtx->idtr.pIdt));
3549 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
3550 }
3551
3552 return VINF_SUCCESS;
3553}
3554
3555
3556/**
3557 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
3558 * areas. These MSRs will automatically be loaded to the host CPU on every
3559 * successful VM entry and stored from the host CPU on every successful VM exit.
3560 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
3561 *
3562 * @returns VBox status code.
3563 * @param pVCpu Pointer to the VMCPU.
3564 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3565 * out-of-sync. Make sure to update the required fields
3566 * before using them.
3567 *
3568 * @remarks No-long-jump zone!!!
3569 */
3570static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3571{
3572 AssertPtr(pVCpu);
3573 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
3574
3575 /*
3576 * MSRs covered by Auto-load/store: EFER, LSTAR, STAR, SF_MASK, TSC_AUX (RDTSCP).
3577 */
3578 int rc = VINF_SUCCESS;
3579 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
3580 {
3581#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
3582 PVM pVM = pVCpu->CTX_SUFF(pVM);
3583 PVMXMSR pGuestMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
3584 uint32_t cGuestMsrs = 0;
3585
3586 /* See Intel spec. 4.1.4 "Enumeration of Paging Features by CPUID". */
3587 const bool fSupportsNX = CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
3588 const bool fSupportsLongMode = CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
3589 if (fSupportsNX || fSupportsLongMode)
3590 {
3591 /** @todo support save IA32_EFER, i.e.
3592 * VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_GUEST_EFER_MSR, in which case the
3593 * guest EFER need not be part of the VM-entry MSR-load area. */
3594 pGuestMsr->u32IndexMSR = MSR_K6_EFER;
3595 pGuestMsr->u32Reserved = 0;
3596 pGuestMsr->u64Value = pMixedCtx->msrEFER;
3597 /* VT-x will complain if only MSR_K6_EFER_LME is set. See Intel spec. 26.4 "Loading MSRs" for details. */
3598 if (!CPUMIsGuestInLongModeEx(pMixedCtx))
3599 pGuestMsr->u64Value &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
3600 pGuestMsr++; cGuestMsrs++;
3601 if (fSupportsLongMode)
3602 {
3603 pGuestMsr->u32IndexMSR = MSR_K8_LSTAR;
3604 pGuestMsr->u32Reserved = 0;
3605 pGuestMsr->u64Value = pMixedCtx->msrLSTAR; /* 64 bits mode syscall rip */
3606 pGuestMsr++; cGuestMsrs++;
3607 pGuestMsr->u32IndexMSR = MSR_K6_STAR;
3608 pGuestMsr->u32Reserved = 0;
3609 pGuestMsr->u64Value = pMixedCtx->msrSTAR; /* legacy syscall eip, cs & ss */
3610 pGuestMsr++; cGuestMsrs++;
3611 pGuestMsr->u32IndexMSR = MSR_K8_SF_MASK;
3612 pGuestMsr->u32Reserved = 0;
3613 pGuestMsr->u64Value = pMixedCtx->msrSFMASK; /* syscall flag mask */
3614 pGuestMsr++; cGuestMsrs++;
3615 pGuestMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
3616 pGuestMsr->u32Reserved = 0;
3617 pGuestMsr->u64Value = pMixedCtx->msrKERNELGSBASE; /* swapgs exchange value */
3618 pGuestMsr++; cGuestMsrs++;
3619 }
3620 }
3621
3622 /*
3623 * RDTSCP requires the TSC_AUX MSR. Host and guest share the physical MSR. So we have to
3624 * load the guest's copy if the guest can execute RDTSCP without causing VM-exits.
3625 */
3626 if ( CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP)
3627 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP))
3628 {
3629 pGuestMsr->u32IndexMSR = MSR_K8_TSC_AUX;
3630 pGuestMsr->u32Reserved = 0;
3631 rc = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pGuestMsr->u64Value);
3632 AssertRCReturn(rc, rc);
3633 pGuestMsr++; cGuestMsrs++;
3634 }
3635
3636 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
3637 if (cGuestMsrs > MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc))
3638 {
3639 LogRel(("CPU autoload/store MSR count in VMCS exceeded cGuestMsrs=%u.\n", cGuestMsrs));
3640 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3641 }
3642
3643 /* Update the VCPU's copy of the guest MSR count. */
3644 pVCpu->hm.s.vmx.cGuestMsrs = cGuestMsrs;
3645 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cGuestMsrs);
3646 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cGuestMsrs);
3647 AssertRCReturn(rc, rc);
3648#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
3649
3650 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_AUTO_MSRS;
3651 }
3652
3653 /*
3654 * Guest Sysenter MSRs.
3655 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
3656 * VM-exits on WRMSRs for these MSRs.
3657 */
3658 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
3659 {
3660 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs);
3661 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_CS_MSR;
3662 }
3663 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
3664 {
3665 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip);
3666 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR;
3667 }
3668 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
3669 {
3670 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp);
3671 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR;
3672 }
3673 AssertRCReturn(rc, rc);
3674
3675 return rc;
3676}
3677
3678
3679/**
3680 * Loads the guest activity state into the guest-state area in the VMCS.
3681 *
3682 * @returns VBox status code.
3683 * @param pVCpu Pointer to the VMCPU.
3684 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3685 * out-of-sync. Make sure to update the required fields
3686 * before using them.
3687 *
3688 * @remarks No-long-jump zone!!!
3689 */
3690static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pCtx)
3691{
3692 /** @todo See if we can make use of other states, e.g.
3693 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
3694 int rc = VINF_SUCCESS;
3695 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_ACTIVITY_STATE)
3696 {
3697 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
3698 AssertRCReturn(rc, rc);
3699 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_ACTIVITY_STATE;
3700 }
3701 return rc;
3702}
3703
3704
3705/**
3706 * Sets up the appropriate function to run guest code.
3707 *
3708 * @returns VBox status code.
3709 * @param pVCpu Pointer to the VMCPU.
3710 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3711 * out-of-sync. Make sure to update the required fields
3712 * before using them.
3713 *
3714 * @remarks No-long-jump zone!!!
3715 */
3716static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3717{
3718 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3719 {
3720#ifndef VBOX_ENABLE_64_BITS_GUESTS
3721 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3722#endif
3723 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
3724#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3725 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
3726 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
3727#else
3728 /* 64-bit host or hybrid host. */
3729 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
3730#endif
3731 }
3732 else
3733 {
3734 /* Guest is not in long mode, use the 32-bit handler. */
3735 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
3736 }
3737 Assert(pVCpu->hm.s.vmx.pfnStartVM);
3738 return VINF_SUCCESS;
3739}
3740
3741
3742/**
3743 * Wrapper for running the guest code in VT-x.
3744 *
3745 * @returns VBox strict status code.
3746 * @param pVM Pointer to the VM.
3747 * @param pVCpu Pointer to the VMCPU.
3748 * @param pCtx Pointer to the guest-CPU context.
3749 *
3750 * @remarks No-long-jump zone!!!
3751 */
3752DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3753{
3754 /*
3755 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
3756 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
3757 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
3758 */
3759#ifdef VBOX_WITH_KERNEL_USING_XMM
3760 return hmR0VMXStartVMWrapXMM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
3761#else
3762 return pVCpu->hm.s.vmx.pfnStartVM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
3763#endif
3764}
3765
3766
3767/**
3768 * Report world-switch error and dump some useful debug info.
3769 *
3770 * @param pVM Pointer to the VM.
3771 * @param pVCpu Pointer to the VMCPU.
3772 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
3773 * @param pCtx Pointer to the guest-CPU context.
3774 * @param pVmxTransient Pointer to the VMX transient structure (only
3775 * exitReason updated).
3776 */
3777static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
3778{
3779 Assert(pVM);
3780 Assert(pVCpu);
3781 Assert(pCtx);
3782 Assert(pVmxTransient);
3783 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3784
3785 Log(("VM-entry failure: %Rrc\n", rcVMRun));
3786 switch (rcVMRun)
3787 {
3788 case VERR_VMX_INVALID_VMXON_PTR:
3789 AssertFailed();
3790 break;
3791 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
3792 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
3793 {
3794 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.lasterror.u32ExitReason);
3795 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.lasterror.u32InstrError);
3796 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
3797 AssertRC(rc);
3798
3799#ifdef VBOX_STRICT
3800 Log(("uExitReason %#x (VmxTransient %#x)\n", pVCpu->hm.s.vmx.lasterror.u32ExitReason,
3801 pVmxTransient->uExitReason));
3802 Log(("Exit Qualification %#x\n", pVmxTransient->uExitQualification));
3803 Log(("InstrError %#x\n", pVCpu->hm.s.vmx.lasterror.u32InstrError));
3804 if (pVCpu->hm.s.vmx.lasterror.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
3805 Log(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.lasterror.u32InstrError]));
3806 else
3807 Log(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
3808
3809 /* VMX control bits. */
3810 uint32_t u32Val;
3811 uint64_t u64Val;
3812 HMVMXHCUINTREG uHCReg;
3813 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, &u32Val); AssertRC(rc);
3814 Log(("VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS %#RX32\n", u32Val));
3815 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, &u32Val); AssertRC(rc);
3816 Log(("VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS %#RX32\n", u32Val));
3817 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS2, &u32Val); AssertRC(rc);
3818 Log(("VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS2 %#RX32\n", u32Val));
3819 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_CONTROLS, &u32Val); AssertRC(rc);
3820 Log(("VMX_VMCS32_CTRL_ENTRY_CONTROLS %#RX32\n", u32Val));
3821 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_CONTROLS, &u32Val); AssertRC(rc);
3822 Log(("VMX_VMCS32_CTRL_EXIT_CONTROLS %#RX32\n", u32Val));
3823 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
3824 Log(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
3825 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
3826 Log(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
3827 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
3828 Log(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
3829 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
3830 Log(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
3831 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
3832 Log(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
3833 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
3834 Log(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
3835 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
3836 Log(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
3837 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
3838 Log(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
3839 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
3840 Log(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
3841 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
3842 Log(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
3843 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
3844 Log(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
3845 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
3846 Log(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
3847 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
3848 Log(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
3849 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
3850 Log(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
3851 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
3852 Log(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
3853 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
3854 Log(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
3855
3856 /* Guest bits. */
3857 RTGCUINTREG uGCReg;
3858 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &uGCReg); AssertRC(rc);
3859 Log(("Old Guest Rip %#RGv New %#RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)uGCReg));
3860 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &uGCReg); AssertRC(rc);
3861 Log(("Old Guest Rsp %#RGv New %#RGv\n", (RTGCPTR)pCtx->rsp, (RTGCPTR)uGCReg));
3862 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
3863 Log(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
3864 rc = VMXReadVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, &u32Val); AssertRC(rc);
3865 Log(("VMX_VMCS16_GUEST_FIELD_VPID %u\n", u32Val));
3866
3867 /* Host bits. */
3868 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
3869 Log(("Host CR0 %#RHr\n", uHCReg));
3870 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
3871 Log(("Host CR3 %#RHr\n", uHCReg));
3872 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
3873 Log(("Host CR4 %#RHr\n", uHCReg));
3874
3875 RTGDTR HostGdtr;
3876 PCX86DESCHC pDesc;
3877 ASMGetGDTR(&HostGdtr);
3878 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_CS, &u32Val);
3879 Log(("Host CS %#08x\n", u32Val));
3880 if (u32Val < HostGdtr.cbGdt)
3881 {
3882 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
3883 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
3884 }
3885
3886 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_DS, &u32Val); AssertRC(rc);
3887 Log(("Host DS %#08x\n", u32Val));
3888 if (u32Val < HostGdtr.cbGdt)
3889 {
3890 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
3891 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
3892 }
3893
3894 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_ES, &u32Val); AssertRC(rc);
3895 Log(("Host ES %#08x\n", u32Val));
3896 if (u32Val < HostGdtr.cbGdt)
3897 {
3898 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
3899 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
3900 }
3901
3902 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_FS, &u32Val); AssertRC(rc);
3903 Log(("Host FS %#08x\n", u32Val));
3904 if (u32Val < HostGdtr.cbGdt)
3905 {
3906 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
3907 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
3908 }
3909
3910 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_GS, &u32Val); AssertRC(rc);
3911 Log(("Host GS %#08x\n", u32Val));
3912 if (u32Val < HostGdtr.cbGdt)
3913 {
3914 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
3915 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
3916 }
3917
3918 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_SS, &u32Val); AssertRC(rc);
3919 Log(("Host SS %#08x\n", u32Val));
3920 if (u32Val < HostGdtr.cbGdt)
3921 {
3922 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
3923 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
3924 }
3925
3926 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_TR, &u32Val); AssertRC(rc);
3927 Log(("Host TR %#08x\n", u32Val));
3928 if (u32Val < HostGdtr.cbGdt)
3929 {
3930 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
3931 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
3932 }
3933
3934 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
3935 Log(("Host TR Base %#RHv\n", uHCReg));
3936 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
3937 Log(("Host GDTR Base %#RHv\n", uHCReg));
3938 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
3939 Log(("Host IDTR Base %#RHv\n", uHCReg));
3940 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
3941 Log(("Host SYSENTER CS %#08x\n", u32Val));
3942 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
3943 Log(("Host SYSENTER EIP %#RHv\n", uHCReg));
3944 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
3945 Log(("Host SYSENTER ESP %#RHv\n", uHCReg));
3946 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
3947 Log(("Host RSP %#RHv\n", uHCReg));
3948 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
3949 Log(("Host RIP %#RHv\n", uHCReg));
3950# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3951 if (HMVMX_IS_64BIT_HOST_MODE())
3952 {
3953 Log(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
3954 Log(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
3955 Log(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
3956 Log(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
3957 Log(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
3958 Log(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
3959 }
3960# endif
3961#endif /* VBOX_STRICT */
3962 break;
3963 }
3964
3965 default:
3966 /* Impossible */
3967 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
3968 break;
3969 }
3970 NOREF(pVM);
3971}
3972
3973
3974#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3975#ifndef VMX_USE_CACHED_VMCS_ACCESSES
3976# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
3977#endif
3978#ifdef VBOX_STRICT
3979static bool hmR0VmxIsValidWriteField(uint32_t idxField)
3980{
3981 switch (idxField)
3982 {
3983 case VMX_VMCS_GUEST_RIP:
3984 case VMX_VMCS_GUEST_RSP:
3985 case VMX_VMCS_GUEST_DR7:
3986 case VMX_VMCS_GUEST_SYSENTER_EIP:
3987 case VMX_VMCS_GUEST_SYSENTER_ESP:
3988 case VMX_VMCS_GUEST_GDTR_BASE:
3989 case VMX_VMCS_GUEST_IDTR_BASE:
3990 case VMX_VMCS_GUEST_CS_BASE:
3991 case VMX_VMCS_GUEST_DS_BASE:
3992 case VMX_VMCS_GUEST_ES_BASE:
3993 case VMX_VMCS_GUEST_FS_BASE:
3994 case VMX_VMCS_GUEST_GS_BASE:
3995 case VMX_VMCS_GUEST_SS_BASE:
3996 case VMX_VMCS_GUEST_LDTR_BASE:
3997 case VMX_VMCS_GUEST_TR_BASE:
3998 case VMX_VMCS_GUEST_CR3:
3999 return true;
4000 }
4001 return false;
4002}
4003
4004static bool hmR0VmxIsValidReadField(uint32_t idxField)
4005{
4006 switch (idxField)
4007 {
4008 /* Read-only fields. */
4009 case VMX_VMCS_RO_EXIT_QUALIFICATION:
4010 return true;
4011 }
4012 /* Remaining readable fields should also be writable. */
4013 return hmR0VmxIsValidWriteField(idxField);
4014}
4015#endif /* VBOX_STRICT */
4016
4017/**
4018 * Executes the specified handler in 64-bit mode.
4019 *
4020 * @returns VBox status code.
4021 * @param pVM Pointer to the VM.
4022 * @param pVCpu Pointer to the VMCPU.
4023 * @param pCtx Pointer to the guest CPU context.
4024 * @param enmOp The operation to perform.
4025 * @param cbParam Number of parameters.
4026 * @param paParam Array of 32-bit parameters.
4027 */
4028VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
4029 uint32_t *paParam)
4030{
4031 int rc, rc2;
4032 PHMGLOBLCPUINFO pCpu;
4033 RTHCPHYS HCPhysCpuPage;
4034 RTCCUINTREG uOldEFlags;
4035
4036 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
4037 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
4038 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
4039 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
4040
4041#ifdef VBOX_STRICT
4042 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
4043 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
4044
4045 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
4046 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
4047#endif
4048
4049 /* Disable interrupts. */
4050 uOldEFlags = ASMIntDisableFlags();
4051
4052#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
4053 RTCPUID idHostCpu = RTMpCpuId();
4054 CPUMR0SetLApic(pVM, idHostCpu);
4055#endif
4056
4057 pCpu = HMR0GetCurrentCpu();
4058 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4059
4060 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
4061 VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
4062
4063 /* Leave VMX Root Mode. */
4064 VMXDisable();
4065
4066 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4067
4068 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
4069 CPUMSetHyperEIP(pVCpu, enmOp);
4070 for (int i = (int)cbParam - 1; i >= 0; i--)
4071 CPUMPushHyper(pVCpu, paParam[i]);
4072
4073 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
4074
4075 /* Call the switcher. */
4076 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
4077 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
4078
4079 /** @todo replace with hmR0VmxEnterRootMode() and LeaveRootMode(). */
4080 /* Make sure the VMX instructions don't cause #UD faults. */
4081 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
4082
4083 /* Re-enter VMX Root Mode */
4084 rc2 = VMXEnable(HCPhysCpuPage);
4085 if (RT_FAILURE(rc2))
4086 {
4087 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4088 ASMSetFlags(uOldEFlags);
4089 return rc2;
4090 }
4091
4092 rc2 = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
4093 AssertRC(rc2);
4094 Assert(!(ASMGetFlags() & X86_EFL_IF));
4095 ASMSetFlags(uOldEFlags);
4096 return rc;
4097}
4098
4099
4100/**
4101 * Prepares for and executes VMLAUNCH (64 bits guests) for 32-bit hosts
4102 * supporting 64-bit guests.
4103 *
4104 * @returns VBox status code.
4105 * @param fResume Whether to VMLAUNCH or VMRESUME.
4106 * @param pCtx Pointer to the guest-CPU context.
4107 * @param pCache Pointer to the VMCS cache.
4108 * @param pVM Pointer to the VM.
4109 * @param pVCpu Pointer to the VMCPU.
4110 */
4111DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
4112{
4113 uint32_t aParam[6];
4114 PHMGLOBLCPUINFO pCpu = NULL;
4115 RTHCPHYS HCPhysCpuPage = 0;
4116 int rc = VERR_INTERNAL_ERROR_5;
4117
4118 pCpu = HMR0GetCurrentCpu();
4119 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4120
4121#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4122 pCache->uPos = 1;
4123 pCache->interPD = PGMGetInterPaeCR3(pVM);
4124 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
4125#endif
4126
4127#ifdef VBOX_STRICT
4128 pCache->TestIn.HCPhysCpuPage = 0;
4129 pCache->TestIn.HCPhysVmcs = 0;
4130 pCache->TestIn.pCache = 0;
4131 pCache->TestOut.HCPhysVmcs = 0;
4132 pCache->TestOut.pCache = 0;
4133 pCache->TestOut.pCtx = 0;
4134 pCache->TestOut.eflags = 0;
4135#endif
4136
4137 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
4138 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
4139 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
4140 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
4141 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
4142 aParam[5] = 0;
4143
4144#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4145 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
4146 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
4147#endif
4148 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, 6, &aParam[0]);
4149
4150#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4151 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
4152 Assert(pCtx->dr[4] == 10);
4153 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
4154#endif
4155
4156#ifdef VBOX_STRICT
4157 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
4158 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
4159 pVCpu->hm.s.vmx.HCPhysVmcs));
4160 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
4161 pCache->TestOut.HCPhysVmcs));
4162 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
4163 pCache->TestOut.pCache));
4164 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
4165 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
4166 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
4167 pCache->TestOut.pCtx));
4168 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
4169#endif
4170 return rc;
4171}
4172
4173
4174/**
4175 * Initialize the VMCS-Read cache. The VMCS cache is used for 32-bit hosts
4176 * running 64-bit guests (except 32-bit Darwin which runs with 64-bit paging in
4177 * 32-bit mode) for 64-bit fields that cannot be accessed in 32-bit mode. Some
4178 * 64-bit fields -can- be accessed (those that have a 32-bit FULL & HIGH part).
4179 *
4180 * @returns VBox status code.
4181 * @param pVM Pointer to the VM.
4182 * @param pVCpu Pointer to the VMCPU.
4183 */
4184static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
4185{
4186#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
4187{ \
4188 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
4189 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
4190 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
4191 ++cReadFields; \
4192}
4193
4194 AssertPtr(pVM);
4195 AssertPtr(pVCpu);
4196 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
4197 uint32_t cReadFields = 0;
4198
4199 /* Guest-natural selector base fields */
4200#if 0
4201 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
4202 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
4203 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
4204#endif
4205 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
4206 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
4207 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
4208 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
4209 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
4210 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
4211 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
4212 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
4213 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
4214 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
4215 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DR7);
4216 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
4217 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
4218#if 0
4219 /* Unused natural width guest-state fields. */
4220 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
4221 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
4222#endif
4223 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
4224 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
4225
4226 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
4227#if 0
4228 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
4229 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
4230 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
4231 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
4232 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
4233 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
4234 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
4235 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
4236 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
4237#endif
4238
4239 /* Natural width guest-state fields. */
4240 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
4241#if 0
4242 /* Currently unused field. */
4243 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
4244#endif
4245
4246 if (pVM->hm.s.fNestedPaging)
4247 {
4248 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
4249 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
4250 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
4251 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
4252 }
4253 else
4254 {
4255 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
4256 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
4257 }
4258
4259#undef VMXLOCAL_INIT_READ_CACHE_FIELD
4260 return VINF_SUCCESS;
4261}
4262
4263
4264/**
4265 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
4266 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
4267 * darwin, running 64-bit guests).
4268 *
4269 * @returns VBox status code.
4270 * @param pVCpu Pointer to the VMCPU.
4271 * @param idxField The VMCS field encoding.
4272 * @param u64Val 16, 32 or 64 bits value.
4273 */
4274VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
4275{
4276 int rc;
4277 switch (idxField)
4278 {
4279 /*
4280 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
4281 */
4282 /* 64-bit Control fields. */
4283 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
4284 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
4285 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
4286 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
4287 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
4288 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
4289 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
4290 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
4291 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
4292 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
4293 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
4294 case VMX_VMCS64_CTRL_EPTP_FULL:
4295 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
4296 /* 64-bit Guest-state fields. */
4297 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
4298 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
4299 case VMX_VMCS64_GUEST_PAT_FULL:
4300 case VMX_VMCS64_GUEST_EFER_FULL:
4301 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
4302 case VMX_VMCS64_GUEST_PDPTE0_FULL:
4303 case VMX_VMCS64_GUEST_PDPTE1_FULL:
4304 case VMX_VMCS64_GUEST_PDPTE2_FULL:
4305 case VMX_VMCS64_GUEST_PDPTE3_FULL:
4306 /* 64-bit Host-state fields. */
4307 case VMX_VMCS64_HOST_FIELD_PAT_FULL:
4308 case VMX_VMCS64_HOST_FIELD_EFER_FULL:
4309 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
4310 {
4311 rc = VMXWriteVmcs32(idxField, u64Val);
4312 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
4313 break;
4314 }
4315
4316 /*
4317 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
4318 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
4319 */
4320 /* Natural-width Guest-state fields. */
4321 case VMX_VMCS_GUEST_CR3:
4322 case VMX_VMCS_GUEST_ES_BASE:
4323 case VMX_VMCS_GUEST_CS_BASE:
4324 case VMX_VMCS_GUEST_SS_BASE:
4325 case VMX_VMCS_GUEST_DS_BASE:
4326 case VMX_VMCS_GUEST_FS_BASE:
4327 case VMX_VMCS_GUEST_GS_BASE:
4328 case VMX_VMCS_GUEST_LDTR_BASE:
4329 case VMX_VMCS_GUEST_TR_BASE:
4330 case VMX_VMCS_GUEST_GDTR_BASE:
4331 case VMX_VMCS_GUEST_IDTR_BASE:
4332 case VMX_VMCS_GUEST_DR7:
4333 case VMX_VMCS_GUEST_RSP:
4334 case VMX_VMCS_GUEST_RIP:
4335 case VMX_VMCS_GUEST_SYSENTER_ESP:
4336 case VMX_VMCS_GUEST_SYSENTER_EIP:
4337 {
4338 if (!(u64Val >> 32))
4339 {
4340 /* If this field is 64-bit, VT-x will zero out the top bits. */
4341 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
4342 }
4343 else
4344 {
4345 /* Assert that only the 32->64 switcher case should ever come here. */
4346 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
4347 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
4348 }
4349 break;
4350 }
4351
4352 default:
4353 {
4354 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
4355 rc = VERR_INVALID_PARAMETER;
4356 break;
4357 }
4358 }
4359 AssertRCReturn(rc, rc);
4360 return rc;
4361}
4362
4363
4364/**
4365 * Queue up a VMWRITE by using the VMCS write cache. This is only used on 32-bit
4366 * hosts (except darwin) for 64-bit guests.
4367 *
4368 * @param pVCpu Pointer to the VMCPU.
4369 * @param idxField The VMCS field encoding.
4370 * @param u64Val 16, 32 or 64 bits value.
4371 */
4372VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
4373{
4374 AssertPtr(pVCpu);
4375 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
4376
4377 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
4378 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
4379
4380 /* Make sure there are no duplicates. */
4381 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
4382 {
4383 if (pCache->Write.aField[i] == idxField)
4384 {
4385 pCache->Write.aFieldVal[i] = u64Val;
4386 return VINF_SUCCESS;
4387 }
4388 }
4389
4390 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
4391 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
4392 pCache->Write.cValidEntries++;
4393 return VINF_SUCCESS;
4394}
4395
4396/* Enable later when the assembly code uses these as callbacks. */
4397#if 0
4398/*
4399 * Loads the VMCS write-cache into the CPU (by executing VMWRITEs).
4400 *
4401 * @param pVCpu Pointer to the VMCPU.
4402 * @param pCache Pointer to the VMCS cache.
4403 *
4404 * @remarks No-long-jump zone!!!
4405 */
4406VMMR0DECL(void) VMXWriteCachedVmcsLoad(PVMCPU pVCpu, PVMCSCACHE pCache)
4407{
4408 AssertPtr(pCache);
4409 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
4410 {
4411 int rc = VMXWriteVmcs64(pCache->Write.aField[i], pCache->Write.aFieldVal[i]);
4412 AssertRC(rc);
4413 }
4414 pCache->Write.cValidEntries = 0;
4415}
4416
4417
4418/**
4419 * Stores the VMCS read-cache from the CPU (by executing VMREADs).
4420 *
4421 * @param pVCpu Pointer to the VMCPU.
4422 * @param pCache Pointer to the VMCS cache.
4423 *
4424 * @remarks No-long-jump zone!!!
4425 */
4426VMMR0DECL(void) VMXReadCachedVmcsStore(PVMCPU pVCpu, PVMCSCACHE pCache)
4427{
4428 AssertPtr(pCache);
4429 for (uint32_t i = 0; i < pCache->Read.cValidEntries; i++)
4430 {
4431 int rc = VMXReadVmcs64(pCache->Read.aField[i], &pCache->Read.aFieldVal[i]);
4432 AssertRC(rc);
4433 }
4434}
4435#endif
4436#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
4437
4438
4439/**
4440 * Sets up the usage of TSC-offsetting and updates the VMCS. If offsetting is
4441 * not possible, cause VM-exits on RDTSC(P)s. Also sets up the VMX preemption
4442 * timer.
4443 *
4444 * @returns VBox status code.
4445 * @param pVCpu Pointer to the VMCPU.
4446 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4447 * out-of-sync. Make sure to update the required fields
4448 * before using them.
4449 * @remarks No-long-jump zone!!!
4450 */
4451static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4452{
4453 int rc = VERR_INTERNAL_ERROR_5;
4454 bool fOffsettedTsc = false;
4455 PVM pVM = pVCpu->CTX_SUFF(pVM);
4456 if (pVM->hm.s.vmx.fUsePreemptTimer)
4457 {
4458 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset);
4459
4460 /* Make sure the returned values have sane upper and lower boundaries. */
4461 uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage);
4462 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
4463 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
4464 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
4465
4466 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
4467 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
4468 }
4469 else
4470 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset);
4471
4472 if (fOffsettedTsc)
4473 {
4474 uint64_t u64CurTSC = ASMReadTSC();
4475 if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
4476 {
4477 /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
4478 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
4479
4480 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
4481 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
4482 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4483 }
4484 else
4485 {
4486 /* VM-exit on RDTSC(P) as we would otherwise pass decreasing TSC values to the guest. */
4487 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
4488 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
4489 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
4490 }
4491 }
4492 else
4493 {
4494 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
4495 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
4496 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
4497 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4498 }
4499}
4500
4501
4502/**
4503 * Determines if an exception is a contributory exception. Contributory
4504 * exceptions are ones which can cause double-faults. Page-fault is
4505 * intentionally not included here as it's a conditional contributory exception.
4506 *
4507 * @returns true if the exception is contributory, false otherwise.
4508 * @param uVector The exception vector.
4509 */
4510DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
4511{
4512 switch (uVector)
4513 {
4514 case X86_XCPT_GP:
4515 case X86_XCPT_SS:
4516 case X86_XCPT_NP:
4517 case X86_XCPT_TS:
4518 case X86_XCPT_DE:
4519 return true;
4520 default:
4521 break;
4522 }
4523 return false;
4524}
4525
4526
4527/**
4528 * Sets an event as a pending event to be injected into the guest.
4529 *
4530 * @param pVCpu Pointer to the VMCPU.
4531 * @param u32IntrInfo The VM-entry interruption-information field.
4532 * @param cbInstr The VM-entry instruction length in bytes (for software
4533 * interrupts, exceptions and privileged software
4534 * exceptions).
4535 * @param u32ErrCode The VM-entry exception error code.
4536 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
4537 * page-fault.
4538 */
4539DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntrInfo, uint32_t cbInstr, uint32_t u32ErrCode,
4540 RTGCUINTPTR GCPtrFaultAddress)
4541{
4542 Assert(!pVCpu->hm.s.Event.fPending);
4543 pVCpu->hm.s.Event.fPending = true;
4544 pVCpu->hm.s.Event.u64IntrInfo = u32IntrInfo;
4545 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
4546 pVCpu->hm.s.Event.cbInstr = cbInstr;
4547 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
4548}
4549
4550
4551/**
4552 * Sets a double-fault (#DF) exception as pending-for-injection into the VM.
4553 *
4554 * @param pVCpu Pointer to the VMCPU.
4555 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4556 * out-of-sync. Make sure to update the required fields
4557 * before using them.
4558 */
4559DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4560{
4561 /* Inject the double-fault. */
4562 uint32_t u32IntrInfo = X86_XCPT_DF | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
4563 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
4564 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
4565 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
4566}
4567
4568
4569/**
4570 * Handle a condition that occurred while delivering an event through the guest
4571 * IDT.
4572 *
4573 * @returns VBox status code (informational error codes included).
4574 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
4575 * @retval VINF_VMX_DOUBLE_FAULT if a #DF condition was detected and we ought to
4576 * continue execution of the guest which will delivery the #DF.
4577 * @retval VINF_EM_RESET if we detected a triple-fault condition.
4578 *
4579 * @param pVCpu Pointer to the VMCPU.
4580 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4581 * out-of-sync. Make sure to update the required fields
4582 * before using them.
4583 * @param pVmxTransient Pointer to the VMX transient structure.
4584 *
4585 * @remarks No-long-jump zone!!!
4586 */
4587static int hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
4588{
4589 int rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
4590 AssertRC(rc);
4591 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
4592 {
4593 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
4594 AssertRCReturn(rc, rc);
4595
4596 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
4597 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntrInfo);
4598 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
4599
4600 typedef enum
4601 {
4602 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
4603 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
4604 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
4605 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
4606 } VMXREFLECTXCPT;
4607
4608 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
4609 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
4610 if (uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
4611 {
4612 enmReflect = VMXREFLECTXCPT_XCPT;
4613#ifdef VBOX_STRICT
4614 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
4615 && uExitVector == X86_XCPT_PF)
4616 {
4617 Log(("IDT: Contributory #PF uCR2=%#RGv\n", pMixedCtx->cr2));
4618 }
4619#endif
4620 if ( uExitVector == X86_XCPT_PF
4621 && uIdtVector == X86_XCPT_PF)
4622 {
4623 pVmxTransient->fVectoringPF = true;
4624 Log(("IDT: Vectoring #PF uCR2=%#RGv\n", pMixedCtx->cr2));
4625 }
4626 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
4627 && hmR0VmxIsContributoryXcpt(uExitVector)
4628 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
4629 || uIdtVector == X86_XCPT_PF))
4630 {
4631 enmReflect = VMXREFLECTXCPT_DF;
4632 }
4633 else if (uIdtVector == X86_XCPT_DF)
4634 enmReflect = VMXREFLECTXCPT_TF;
4635 }
4636 else if ( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
4637 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
4638 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
4639 {
4640 /*
4641 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and privileged software exception
4642 * (whatever they are) as they reoccur when restarting the instruction.
4643 */
4644 enmReflect = VMXREFLECTXCPT_XCPT;
4645 }
4646
4647 switch (enmReflect)
4648 {
4649 case VMXREFLECTXCPT_XCPT:
4650 {
4651 uint32_t u32ErrCode = 0;
4652 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo))
4653 {
4654 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
4655 AssertRCReturn(rc, rc);
4656 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
4657 }
4658
4659 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
4660 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INTR_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
4661 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
4662 rc = VINF_SUCCESS;
4663 Log(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntrInfo,
4664 pVCpu->hm.s.Event.u32ErrCode));
4665 break;
4666 }
4667
4668 case VMXREFLECTXCPT_DF:
4669 {
4670 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
4671 rc = VINF_VMX_DOUBLE_FAULT;
4672 Log(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntrInfo,
4673 uIdtVector, uExitVector));
4674 break;
4675 }
4676
4677 case VMXREFLECTXCPT_TF:
4678 {
4679 Log(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
4680 rc = VINF_EM_RESET;
4681 break;
4682 }
4683
4684 default:
4685 Assert(rc == VINF_SUCCESS);
4686 break;
4687 }
4688 }
4689 Assert(rc == VINF_SUCCESS || rc == VINF_VMX_DOUBLE_FAULT || rc == VINF_EM_RESET);
4690 return rc;
4691}
4692
4693
4694/**
4695 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
4696 *
4697 * @returns VBox status code.
4698 * @param pVCpu Pointer to the VMCPU.
4699 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4700 * out-of-sync. Make sure to update the required fields
4701 * before using them.
4702 *
4703 * @remarks No-long-jump zone!!!
4704 */
4705static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4706{
4707 int rc = VINF_SUCCESS;
4708 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0))
4709 {
4710 uint32_t uVal = 0;
4711 uint32_t uShadow = 0;
4712 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
4713 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
4714 AssertRCReturn(rc, rc);
4715 uVal = (uShadow & pVCpu->hm.s.vmx.cr0_mask) | (uVal & ~pVCpu->hm.s.vmx.cr0_mask);
4716 CPUMSetGuestCR0(pVCpu, uVal);
4717 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR0;
4718 }
4719 return rc;
4720}
4721
4722
4723/**
4724 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
4725 *
4726 * @returns VBox status code.
4727 * @param pVCpu Pointer to the VMCPU.
4728 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4729 * out-of-sync. Make sure to update the required fields
4730 * before using them.
4731 *
4732 * @remarks No-long-jump zone!!!
4733 */
4734static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4735{
4736 int rc = VINF_SUCCESS;
4737 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR4))
4738 {
4739 uint32_t uVal = 0;
4740 uint32_t uShadow = 0;
4741 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
4742 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
4743 AssertRCReturn(rc, rc);
4744 uVal = (uShadow & pVCpu->hm.s.vmx.cr4_mask) | (uVal & ~pVCpu->hm.s.vmx.cr4_mask);
4745 CPUMSetGuestCR4(pVCpu, uVal);
4746 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR4;
4747 }
4748 return rc;
4749}
4750
4751
4752/**
4753 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
4754 *
4755 * @returns VBox status code.
4756 * @param pVCpu Pointer to the VMCPU.
4757 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4758 * out-of-sync. Make sure to update the required fields
4759 * before using them.
4760 *
4761 * @remarks No-long-jump zone!!!
4762 */
4763static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4764{
4765 int rc = VINF_SUCCESS;
4766 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RIP))
4767 {
4768 RTGCUINTREG uVal = 0;
4769 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &uVal);
4770 AssertRCReturn(rc, rc);
4771 pMixedCtx->rip = uVal;
4772 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RIP;
4773 }
4774 return rc;
4775}
4776
4777
4778/**
4779 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
4780 *
4781 * @returns VBox status code.
4782 * @param pVCpu Pointer to the VMCPU.
4783 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4784 * out-of-sync. Make sure to update the required fields
4785 * before using them.
4786 *
4787 * @remarks No-long-jump zone!!!
4788 */
4789static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4790{
4791 int rc = VINF_SUCCESS;
4792 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RSP))
4793 {
4794 RTGCUINTREG uVal = 0;
4795 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &uVal);
4796 AssertRCReturn(rc, rc);
4797 pMixedCtx->rsp = uVal;
4798 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RSP;
4799 }
4800 return rc;
4801}
4802
4803
4804/**
4805 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
4806 *
4807 * @returns VBox status code.
4808 * @param pVCpu Pointer to the VMCPU.
4809 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4810 * out-of-sync. Make sure to update the required fields
4811 * before using them.
4812 *
4813 * @remarks No-long-jump zone!!!
4814 */
4815static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4816{
4817 int rc = VINF_SUCCESS;
4818 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS))
4819 {
4820 uint32_t uVal = 0;
4821 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
4822 AssertRCReturn(rc, rc);
4823 pMixedCtx->eflags.u32 = uVal;
4824
4825 /* Undo our real-on-v86-mode changes to eflags if necessary. */
4826 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4827 {
4828 PVM pVM = pVCpu->CTX_SUFF(pVM);
4829 Assert(pVM->hm.s.vmx.pRealModeTSS);
4830 Log(("Saving real-mode RFLAGS VT-x view=%#RX64\n", pMixedCtx->rflags.u64));
4831 pMixedCtx->eflags.Bits.u1VM = 0;
4832 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.eflags.Bits.u2IOPL;
4833 }
4834
4835 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RFLAGS;
4836 }
4837 return rc;
4838}
4839
4840
4841/**
4842 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
4843 * guest-CPU context.
4844 */
4845DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4846{
4847 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
4848 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
4849 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
4850 return rc;
4851}
4852
4853
4854/**
4855 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
4856 * from the guest-state area in the VMCS.
4857 *
4858 * @param pVCpu Pointer to the VMCPU.
4859 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4860 * out-of-sync. Make sure to update the required fields
4861 * before using them.
4862 *
4863 * @remarks No-long-jump zone!!!
4864 */
4865static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4866{
4867 uint32_t uIntrState = 0;
4868 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
4869 AssertRC(rc);
4870
4871 if (!uIntrState)
4872 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
4873 else
4874 {
4875 Assert( uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
4876 || uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
4877 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
4878 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
4879 AssertRC(rc);
4880 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
4881 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
4882 }
4883}
4884
4885
4886/**
4887 * Saves the guest's activity state.
4888 *
4889 * @returns VBox status code.
4890 * @param pVCpu Pointer to the VMCPU.
4891 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4892 * out-of-sync. Make sure to update the required fields
4893 * before using them.
4894 *
4895 * @remarks No-long-jump zone!!!
4896 */
4897static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4898{
4899 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
4900 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_ACTIVITY_STATE;
4901 return VINF_SUCCESS;
4902}
4903
4904
4905/**
4906 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
4907 * the current VMCS into the guest-CPU context.
4908 *
4909 * @returns VBox status code.
4910 * @param pVCpu Pointer to the VMCPU.
4911 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4912 * out-of-sync. Make sure to update the required fields
4913 * before using them.
4914 *
4915 * @remarks No-long-jump zone!!!
4916 */
4917static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4918{
4919 int rc = VINF_SUCCESS;
4920 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
4921 {
4922 uint32_t u32Val = 0;
4923 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
4924 pMixedCtx->SysEnter.cs = u32Val;
4925 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR;
4926 }
4927
4928 RTGCUINTREG uGCVal = 0;
4929 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
4930 {
4931 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &uGCVal); AssertRCReturn(rc, rc);
4932 pMixedCtx->SysEnter.eip = uGCVal;
4933 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR;
4934 }
4935 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
4936 {
4937 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &uGCVal); AssertRCReturn(rc, rc);
4938 pMixedCtx->SysEnter.esp = uGCVal;
4939 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR;
4940 }
4941 return rc;
4942}
4943
4944
4945/**
4946 * Saves the guest FS_BASE MSRs from the current VMCS into the guest-CPU
4947 * context.
4948 *
4949 * @returns VBox status code.
4950 * @param pVCpu Pointer to the VMCPU.
4951 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4952 * out-of-sync. Make sure to update the required fields
4953 * before using them.
4954 *
4955 * @remarks No-long-jump zone!!!
4956 */
4957static int hmR0VmxSaveGuestFSBaseMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4958{
4959 int rc = VINF_SUCCESS;
4960 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_FS_BASE_MSR))
4961 {
4962 RTGCUINTREG uVal = 0;
4963 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_FS_BASE, &uVal); AssertRCReturn(rc, rc);
4964 pMixedCtx->fs.u64Base = uVal;
4965 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_FS_BASE_MSR;
4966 }
4967 return rc;
4968}
4969
4970
4971/**
4972 * Saves the guest GS_BASE MSRs from the current VMCS into the guest-CPU
4973 * context.
4974 *
4975 * @returns VBox status code.
4976 * @param pVCpu Pointer to the VMCPU.
4977 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4978 * out-of-sync. Make sure to update the required fields
4979 * before using them.
4980 *
4981 * @remarks No-long-jump zone!!!
4982 */
4983static int hmR0VmxSaveGuestGSBaseMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4984{
4985 int rc = VINF_SUCCESS;
4986 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_GS_BASE_MSR))
4987 {
4988 RTGCUINTREG uVal = 0;
4989 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GS_BASE, &uVal); AssertRCReturn(rc, rc);
4990 pMixedCtx->gs.u64Base = uVal;
4991 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_GS_BASE_MSR;
4992 }
4993 return rc;
4994}
4995
4996
4997/**
4998 * Saves the auto load/store'd guest MSRs from the current VMCS into the
4999 * guest-CPU context. Currently these are LSTAR, STAR, SFMASK and TSC_AUX.
5000 *
5001 * @returns VBox status code.
5002 * @param pVCpu Pointer to the VMCPU.
5003 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5004 * out-of-sync. Make sure to update the required fields
5005 * before using them.
5006 *
5007 * @remarks No-long-jump zone!!!
5008 */
5009static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5010{
5011 if (pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS)
5012 return VINF_SUCCESS;
5013
5014#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
5015 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cGuestMsrs; i++)
5016 {
5017 PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
5018 pMsr += i;
5019 switch (pMsr->u32IndexMSR)
5020 {
5021 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
5022 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
5023 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
5024 case MSR_K8_TSC_AUX: CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, pMsr->u64Value); break;
5025 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
5026 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit. */ break;
5027 default:
5028 {
5029 AssertFailed();
5030 return VERR_HM_UNEXPECTED_LD_ST_MSR;
5031 }
5032 }
5033 }
5034#endif
5035
5036 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS;
5037 return VINF_SUCCESS;
5038}
5039
5040
5041/**
5042 * Saves the guest control registers from the current VMCS into the guest-CPU
5043 * context.
5044 *
5045 * @returns VBox status code.
5046 * @param pVCpu Pointer to the VMCPU.
5047 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5048 * out-of-sync. Make sure to update the required fields
5049 * before using them.
5050 *
5051 * @remarks No-long-jump zone!!!
5052 */
5053static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5054{
5055 /* Guest CR0. Guest FPU. */
5056 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
5057
5058 /* Guest CR4. */
5059 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
5060 AssertRCReturn(rc, rc);
5061
5062 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
5063 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR3))
5064 {
5065 PVM pVM = pVCpu->CTX_SUFF(pVM);
5066 if ( pVM->hm.s.fNestedPaging
5067 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
5068 {
5069 RTGCUINTREG uVal = 0;
5070 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &uVal);
5071 if (pMixedCtx->cr3 != uVal)
5072 {
5073 CPUMSetGuestCR3(pVCpu, uVal);
5074 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
5075 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
5076 }
5077
5078 /* We require EFER to check PAE mode. */
5079 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
5080
5081 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
5082 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR. */
5083 {
5084 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
5085 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
5086 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
5087 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
5088 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
5089 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
5090 }
5091 AssertRCReturn(rc, rc);
5092 }
5093
5094 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR3;
5095 }
5096 return rc;
5097}
5098
5099
5100/**
5101 * Reads a guest segment register from the current VMCS into the guest-CPU
5102 * context.
5103 *
5104 * @returns VBox status code.
5105 * @param pVCpu Pointer to the VMCPU.
5106 * @param idxSel Index of the selector in the VMCS.
5107 * @param idxLimit Index of the segment limit in the VMCS.
5108 * @param idxBase Index of the segment base in the VMCS.
5109 * @param idxAccess Index of the access rights of the segment in the VMCS.
5110 * @param pSelReg Pointer to the segment selector.
5111 *
5112 * @remarks No-long-jump zone!!!
5113 * @remarks Never call this function directly. Use the VMXLOCAL_READ_SEG() macro
5114 * as that takes care of whether to read from the VMCS cache or not.
5115 */
5116DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
5117 PCPUMSELREG pSelReg)
5118{
5119 uint32_t u32Val = 0;
5120 int rc = VMXReadVmcs32(idxSel, &u32Val);
5121 pSelReg->Sel = (uint16_t)u32Val;
5122 pSelReg->ValidSel = (uint16_t)u32Val;
5123 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
5124
5125 rc |= VMXReadVmcs32(idxLimit, &u32Val);
5126 pSelReg->u32Limit = u32Val;
5127
5128 RTGCUINTREG uGCVal = 0;
5129 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &uGCVal);
5130 pSelReg->u64Base = uGCVal;
5131
5132 rc |= VMXReadVmcs32(idxAccess, &u32Val);
5133 pSelReg->Attr.u = u32Val;
5134 AssertRCReturn(rc, rc);
5135
5136 /*
5137 * If VT-x marks the segment as unusable, the rest of the attributes are undefined.
5138 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers.
5139 */
5140 if (pSelReg->Attr.u & HMVMX_SEL_UNUSABLE)
5141 {
5142 Assert(idxSel != VMX_VMCS16_GUEST_FIELD_TR);
5143 pSelReg->Attr.u = HMVMX_SEL_UNUSABLE;
5144 }
5145 return rc;
5146}
5147
5148
5149/**
5150 * Saves the guest segment registers from the current VMCS into the guest-CPU
5151 * context.
5152 *
5153 * @returns VBox status code.
5154 * @param pVCpu Pointer to the VMCPU.
5155 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5156 * out-of-sync. Make sure to update the required fields
5157 * before using them.
5158 *
5159 * @remarks No-long-jump zone!!!
5160 */
5161static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5162{
5163#ifdef VMX_USE_CACHED_VMCS_ACCESSES
5164#define VMXLOCAL_READ_SEG(Sel, CtxSel) \
5165 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
5166 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
5167#else
5168#define VMXLOCAL_READ_SEG(Sel, CtxSel) \
5169 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
5170 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
5171#endif
5172
5173 int rc = VINF_SUCCESS;
5174
5175 /* Guest segment registers. */
5176 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SEGMENT_REGS))
5177 {
5178 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
5179 rc |= VMXLOCAL_READ_SEG(CS, cs);
5180 rc |= VMXLOCAL_READ_SEG(SS, ss);
5181 rc |= VMXLOCAL_READ_SEG(DS, ds);
5182 rc |= VMXLOCAL_READ_SEG(ES, es);
5183 rc |= VMXLOCAL_READ_SEG(FS, fs);
5184 rc |= VMXLOCAL_READ_SEG(GS, gs);
5185 AssertRCReturn(rc, rc);
5186
5187 /* Restore segment attributes for real-on-v86 mode hack. */
5188 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
5189 {
5190 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrCS.u;
5191 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrSS.u;
5192 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrDS.u;
5193 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrES.u;
5194 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrFS.u;
5195 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrGS.u;
5196 }
5197 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SEGMENT_REGS;
5198 }
5199
5200 /* Guest LDTR. */
5201 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_LDTR))
5202 {
5203 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
5204 AssertRCReturn(rc, rc);
5205 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_LDTR;
5206 }
5207
5208 /* Guest GDTR. */
5209 RTGCUINTREG uGCVal = 0;
5210 uint32_t u32Val = 0;
5211 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_GDTR))
5212 {
5213 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &uGCVal);
5214 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
5215 pMixedCtx->gdtr.pGdt = uGCVal;
5216 pMixedCtx->gdtr.cbGdt = u32Val;
5217 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_GDTR;
5218 }
5219
5220 /* Guest IDTR. */
5221 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_IDTR))
5222 {
5223 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &uGCVal);
5224 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
5225 pMixedCtx->idtr.pIdt = uGCVal;
5226 pMixedCtx->idtr.cbIdt = u32Val;
5227 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_IDTR;
5228 }
5229
5230 /* Guest TR. */
5231 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_TR))
5232 {
5233 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
5234
5235 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
5236 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
5237 rc |= VMXLOCAL_READ_SEG(TR, tr);
5238 AssertRCReturn(rc, rc);
5239 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_TR;
5240 }
5241 return rc;
5242}
5243
5244
5245/**
5246 * Saves the guest debug registers from the current VMCS into the guest-CPU
5247 * context.
5248 *
5249 * @returns VBox status code.
5250 * @param pVCpu Pointer to the VMCPU.
5251 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5252 * out-of-sync. Make sure to update the required fields
5253 * before using them.
5254 *
5255 * @remarks No-long-jump zone!!!
5256 */
5257static int hmR0VmxSaveGuestDebugRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5258{
5259 int rc = VINF_SUCCESS;
5260 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_DEBUG))
5261 {
5262 RTGCUINTREG uVal;
5263 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_DR7, &uVal); AssertRCReturn(rc, rc);
5264 pMixedCtx->dr[7] = uVal;
5265
5266 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_DEBUG;
5267 }
5268 return rc;
5269}
5270
5271
5272/**
5273 * Saves the guest APIC state from the currentl VMCS into the guest-CPU context.
5274 *
5275 * @returns VBox status code.
5276 * @param pVCpu Pointer to the VMCPU.
5277 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5278 * out-of-sync. Make sure to update the required fields
5279 * before using them.
5280 *
5281 * @remarks No-long-jump zone!!!
5282 */
5283static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5284{
5285 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
5286 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_APIC_STATE;
5287 return VINF_SUCCESS;
5288}
5289
5290
5291/**
5292 * Saves the entire guest state from the currently active VMCS into the
5293 * guest-CPU context. This essentially VMREADs all guest-data.
5294 *
5295 * @returns VBox status code.
5296 * @param pVCpu Pointer to the VMCPU.
5297 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5298 * out-of-sync. Make sure to update the required fields
5299 * before using them.
5300 */
5301static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5302{
5303 Assert(pVCpu);
5304 Assert(pMixedCtx);
5305
5306 if (pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL)
5307 return VINF_SUCCESS;
5308
5309 VMMRZCallRing3Disable(pVCpu);
5310 Assert(VMMR0IsLogFlushDisabled(pVCpu));
5311 LogFunc(("\n"));
5312
5313 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
5314 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5315
5316 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
5317 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5318
5319 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
5320 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5321
5322 rc = hmR0VmxSaveGuestDebugRegs(pVCpu, pMixedCtx);
5323 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDebugRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5324
5325 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
5326 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5327
5328 rc = hmR0VmxSaveGuestFSBaseMsr(pVCpu, pMixedCtx);
5329 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestFSBaseMsr failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5330
5331 rc = hmR0VmxSaveGuestGSBaseMsr(pVCpu, pMixedCtx);
5332 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestGSBaseMsr failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5333
5334 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
5335 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5336
5337 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
5338 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5339
5340 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
5341 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDebugRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5342
5343 AssertMsg(pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL,
5344 ("Missed guest state bits while saving state; residue %RX32\n", pVCpu->hm.s.vmx.fUpdatedGuestState));
5345
5346 VMMRZCallRing3Enable(pVCpu);
5347 return rc;
5348}
5349
5350
5351/**
5352 * Check per-VM and per-VCPU force flag actions that require us to go back to
5353 * ring-3 for one reason or another.
5354 *
5355 * @returns VBox status code (information status code included).
5356 * @retval VINF_SUCCESS if we don't have any actions that require going back to
5357 * ring-3.
5358 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
5359 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
5360 * interrupts)
5361 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
5362 * all EMTs to be in ring-3.
5363 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
5364 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
5365 * to the EM loop.
5366 *
5367 * @param pVM Pointer to the VM.
5368 * @param pVCpu Pointer to the VMCPU.
5369 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5370 * out-of-sync. Make sure to update the required fields
5371 * before using them.
5372 */
5373static int hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5374{
5375 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5376
5377 int rc = VERR_INTERNAL_ERROR_5;
5378 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
5379 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
5380 | VMCPU_FF_REQUEST | VMCPU_FF_HM_UPDATE_CR3 | VMCPU_FF_HM_UPDATE_PAE_PDPES))
5381 {
5382 /* We need the control registers now, make sure the guest-CPU context is updated. */
5383 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
5384 AssertRCReturn(rc, rc);
5385
5386 /* Pending HM CR3 sync. */
5387 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
5388 {
5389 rc = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
5390 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
5391 }
5392 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
5393 {
5394 rc = PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5395 AssertRC(rc);
5396 }
5397
5398 /* Pending PGM C3 sync. */
5399 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
5400 {
5401 rc = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
5402 if (rc != VINF_SUCCESS)
5403 {
5404 AssertRC(rc);
5405 Log(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
5406 return rc;
5407 }
5408 }
5409
5410 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
5411 /* -XXX- what was that about single stepping? */
5412 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
5413 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
5414 {
5415 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
5416 rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
5417 Log(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
5418 return rc;
5419 }
5420
5421 /* Pending VM request packets, such as hardware interrupts. */
5422 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
5423 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
5424 {
5425 Log(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
5426 return VINF_EM_PENDING_REQUEST;
5427 }
5428
5429 /* Pending PGM pool flushes. */
5430 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
5431 {
5432 Log(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
5433 return VINF_PGM_POOL_FLUSH_PENDING;
5434 }
5435
5436 /* Pending DMA requests. */
5437 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
5438 {
5439 Log(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
5440 return VINF_EM_RAW_TO_R3;
5441 }
5442 }
5443
5444 /* Paranoia. */
5445 Assert(rc != VERR_EM_INTERPRETER);
5446 return VINF_SUCCESS;
5447}
5448
5449
5450/**
5451 * Converts any TRPM trap into a pending VMX event. This is typically used when
5452 * entering from ring-3 (not longjmp returns).
5453 *
5454 * @param pVCpu Pointer to the VMCPU.
5455 * @param pCtx Pointer to the guest-CPU context.
5456 */
5457static void hmR0VmxUpdatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
5458{
5459 if (!TRPMHasTrap(pVCpu))
5460 {
5461 Assert(!pVCpu->hm.s.Event.fPending);
5462 return;
5463 }
5464
5465 uint8_t uVector;
5466 TRPMEVENT enmTrpmEvent;
5467 RTGCUINT uErrCode;
5468 RTGCUINTPTR GCPtrFaultAddress;
5469 uint8_t cbInstr;
5470
5471 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
5472 AssertRC(rc);
5473
5474 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntrInfo. */
5475 uint32_t u32IntrInfo = uVector | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5476 if (enmTrpmEvent == TRPM_TRAP)
5477 {
5478 switch (uVector)
5479 {
5480 case X86_XCPT_BP:
5481 case X86_XCPT_OF:
5482 {
5483 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5484 break;
5485 }
5486
5487 case X86_XCPT_PF:
5488 case X86_XCPT_DF:
5489 case X86_XCPT_TS:
5490 case X86_XCPT_NP:
5491 case X86_XCPT_SS:
5492 case X86_XCPT_GP:
5493 case X86_XCPT_AC:
5494 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5495 /* no break! */
5496 default:
5497 {
5498 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5499 break;
5500 }
5501 }
5502 }
5503 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
5504 {
5505 if (uVector != X86_XCPT_NMI)
5506 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5507 else
5508 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5509 }
5510 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
5511 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5512 else
5513 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
5514
5515 rc = TRPMResetTrap(pVCpu);
5516 AssertRC(rc);
5517 Log(("Converting TRPM trap: u32IntrInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
5518 u32IntrInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
5519 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, uErrCode, GCPtrFaultAddress);
5520}
5521
5522
5523/**
5524 * Converts any pending VMX event into a TRPM trap. Typically used when leaving
5525 * VT-x to execute any instruction.
5526 *
5527 * @param pvCpu Pointer to the VMCPU.
5528 */
5529static void hmR0VmxUpdateTRPM(PVMCPU pVCpu)
5530{
5531 if (pVCpu->hm.s.Event.fPending)
5532 {
5533 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo);
5534 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo);
5535 bool fErrorCodeValid = !!VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo);
5536 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
5537
5538 /* If a trap was already pending, we did something wrong! */
5539 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
5540
5541 TRPMEVENT enmTrapType;
5542 switch (uVectorType)
5543 {
5544 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5545 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5546 enmTrapType = TRPM_HARDWARE_INT;
5547 break;
5548 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5549 enmTrapType = TRPM_SOFTWARE_INT;
5550 break;
5551 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5552 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
5553 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5554 enmTrapType = TRPM_TRAP;
5555 break;
5556 default:
5557 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
5558 enmTrapType = TRPM_32BIT_HACK;
5559 break;
5560 }
5561
5562 Log(("Converting pending HM event to TRPM trap uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
5563 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
5564 AssertRC(rc);
5565
5566 if (fErrorCodeValid)
5567 TRPMSetErrorCode(pVCpu, uErrorCode);
5568 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5569 && uVector == X86_XCPT_PF)
5570 {
5571 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
5572 }
5573 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5574 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5575 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
5576 {
5577 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5578 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
5579 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
5580 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
5581 }
5582 pVCpu->hm.s.Event.fPending = false;
5583 }
5584}
5585
5586
5587/**
5588 * Does the necessary state syncing before doing a longjmp to ring-3.
5589 *
5590 * @param pVM Pointer to the VM.
5591 * @param pVCpu Pointer to the VMCPU.
5592 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5593 * out-of-sync. Make sure to update the required fields
5594 * before using them.
5595 * @param rcExit The reason for exiting to ring-3. Can be
5596 * VINF_VMM_UNKNOWN_RING3_CALL.
5597 *
5598 * @remarks No-long-jmp zone!!!
5599 */
5600static void hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
5601{
5602 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
5603 Assert(VMMR0IsLogFlushDisabled(pVCpu));
5604
5605 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
5606 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL);
5607 AssertRC(rc);
5608
5609 /* Restore FPU state if necessary and resync on next R0 reentry .*/
5610 if (CPUMIsGuestFPUStateActive(pVCpu))
5611 {
5612 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
5613 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
5614 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
5615 }
5616
5617 /* Restore debug registers if necessary and resync on next R0 reentry. */
5618 if (CPUMIsGuestDebugStateActive(pVCpu))
5619 {
5620 CPUMR0SaveGuestDebugState(pVM, pVCpu, pMixedCtx, true /* save DR6 */);
5621 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5622 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
5623 }
5624 else if (CPUMIsHyperDebugStateActive(pVCpu))
5625 {
5626 CPUMR0LoadHostDebugState(pVM, pVCpu);
5627 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT);
5628 }
5629
5630 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
5631 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
5632 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
5633 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
5634 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
5635 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
5636}
5637
5638
5639/**
5640 * An action requires us to go back to ring-3. This function does the necessary
5641 * steps before we can safely return to ring-3. This is not the same as longjmps
5642 * to ring-3, this is voluntary.
5643 *
5644 * @param pVM Pointer to the VM.
5645 * @param pVCpu Pointer to the VMCPU.
5646 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5647 * out-of-sync. Make sure to update the required fields
5648 * before using them.
5649 * @param rcExit The reason for exiting to ring-3. Can be
5650 * VINF_VMM_UNKNOWN_RING3_CALL.
5651 */
5652static void hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
5653{
5654 Assert(pVM);
5655 Assert(pVCpu);
5656 Assert(pMixedCtx);
5657 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5658
5659 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_GUEST_STATE))
5660 {
5661 /* We want to see what the guest-state was before VM-entry, don't resync here, as we won't continue guest execution. */
5662 return;
5663 }
5664 else if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
5665 {
5666 VMXGetActivateVMCS(&pVCpu->hm.s.vmx.lasterror.u64VMCSPhys);
5667 pVCpu->hm.s.vmx.lasterror.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
5668 pVCpu->hm.s.vmx.lasterror.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5669 pVCpu->hm.s.vmx.lasterror.idCurrentCpu = RTMpCpuId();
5670 return;
5671 }
5672
5673 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
5674 VMMRZCallRing3Disable(pVCpu);
5675 Log(("hmR0VmxExitToRing3: rcExit=%d\n", rcExit));
5676
5677 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
5678 hmR0VmxUpdateTRPM(pVCpu);
5679
5680 /* Sync. the guest state. */
5681 hmR0VmxLongJmpToRing3(pVM, pVCpu, pMixedCtx, rcExit);
5682 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
5683
5684 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
5685 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
5686 | CPUM_CHANGED_LDTR
5687 | CPUM_CHANGED_GDTR
5688 | CPUM_CHANGED_IDTR
5689 | CPUM_CHANGED_TR
5690 | CPUM_CHANGED_HIDDEN_SEL_REGS);
5691
5692 /* On our way back from ring-3 the following needs to be done. */
5693 /** @todo This can change with preemption hooks. */
5694 if (rcExit == VINF_EM_RAW_INTERRUPT)
5695 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
5696 else
5697 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
5698
5699 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
5700 VMMRZCallRing3Enable(pVCpu);
5701}
5702
5703
5704/**
5705 * VMMRZCallRing3 callback wrapper which saves the guest state before we
5706 * longjump to ring-3 and possibly get preempted.
5707 *
5708 * @param pVCpu Pointer to the VMCPU.
5709 * @param enmOperation The operation causing the ring-3 longjump.
5710 * @param pvUser The user argument (pointer to the possibly
5711 * out-of-date guest-CPU context).
5712 *
5713 * @remarks Must never be called with @a enmOperation ==
5714 * VMMCALLRING3_VM_R0_ASSERTION.
5715 */
5716DECLCALLBACK(void) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
5717{
5718 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
5719 Assert(pVCpu);
5720 Assert(pvUser);
5721 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5722 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5723
5724 VMMRZCallRing3Disable(pVCpu);
5725 Assert(VMMR0IsLogFlushDisabled(pVCpu));
5726 Log(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3\n"));
5727 hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser, VINF_VMM_UNKNOWN_RING3_CALL);
5728 VMMRZCallRing3Enable(pVCpu);
5729}
5730
5731
5732/**
5733 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
5734 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
5735 *
5736 * @returns VBox status code.
5737 * @param pVCpu Pointer to the VMCPU.
5738 */
5739DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
5740{
5741 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT))
5742 {
5743 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT))
5744 {
5745 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT;
5746 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
5747 AssertRC(rc);
5748 }
5749 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
5750}
5751
5752
5753/**
5754 * Injects any pending events into the guest if the guest is in a state to
5755 * receive them.
5756 *
5757 * @returns VBox status code (informational status codes included).
5758 * @param pVCpu Pointer to the VMCPU.
5759 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5760 * out-of-sync. Make sure to update the required fields
5761 * before using them.
5762 */
5763static int hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5764{
5765 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
5766 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
5767 bool fBlockMovSS = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
5768 bool fBlockSti = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
5769
5770 Assert(!fBlockSti || (pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS));
5771 Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
5772 && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
5773 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
5774
5775 int rc = VINF_SUCCESS;
5776 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
5777 {
5778 uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo);
5779 bool fInject = true;
5780 if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
5781 {
5782 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
5783 AssertRCReturn(rc, rc);
5784 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
5785 if ( fBlockInt
5786 || fBlockSti
5787 || fBlockMovSS)
5788 {
5789 fInject = false;
5790 }
5791 }
5792 else if ( uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
5793 && ( fBlockMovSS
5794 || fBlockSti))
5795 {
5796 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
5797 fInject = false;
5798 }
5799
5800 if (fInject)
5801 {
5802 Log(("Injecting pending event\n"));
5803 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntrInfo, pVCpu->hm.s.Event.cbInstr,
5804 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, &uIntrState);
5805 AssertRCReturn(rc, rc);
5806 pVCpu->hm.s.Event.fPending = false;
5807 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntReinject);
5808 }
5809 else
5810 hmR0VmxSetIntWindowExitVmcs(pVCpu);
5811 } /** @todo SMI. SMIs take priority over NMIs. */
5812 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
5813 {
5814 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
5815 if ( !fBlockMovSS
5816 && !fBlockSti)
5817 {
5818 Log(("Injecting NMI\n"));
5819 RTGCUINTPTR uIntrInfo;
5820 uIntrInfo = X86_XCPT_NMI | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5821 uIntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5822 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, uIntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */,
5823 0 /* GCPtrFaultAddress */, &uIntrState);
5824 AssertRCReturn(rc, rc);
5825 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
5826 }
5827 else
5828 hmR0VmxSetIntWindowExitVmcs(pVCpu);
5829 }
5830 else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
5831 {
5832 /* Check if there are guest external interrupts (PIC/APIC) pending and inject them if the guest can receive them. */
5833 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
5834 AssertRCReturn(rc, rc);
5835 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
5836 if ( !fBlockInt
5837 && !fBlockSti
5838 && !fBlockMovSS)
5839 {
5840 uint8_t u8Interrupt;
5841 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
5842 if (RT_SUCCESS(rc))
5843 {
5844 Log(("Injecting interrupt u8Interrupt=%#x\n", u8Interrupt));
5845 uint32_t u32IntrInfo = u8Interrupt | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5846 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5847 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */,
5848 0 /* GCPtrFaultAddress */, &uIntrState);
5849 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject);
5850 }
5851 else
5852 {
5853 /** @todo Does this actually happen? If not turn it into an assertion. */
5854 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
5855 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
5856 rc = VINF_SUCCESS;
5857 }
5858 }
5859 else
5860 hmR0VmxSetIntWindowExitVmcs(pVCpu);
5861 }
5862
5863 /*
5864 * Delivery pending debug exception if the guest is single-stepping. The interruptibility-state could have been changed by
5865 * hmR0VmxInjectEventVmcs() (e.g. real-on-v86 injecting software interrupts), re-evaluate it and set the BS bit.
5866 */
5867 fBlockMovSS = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
5868 fBlockSti = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
5869 int rc2 = VINF_SUCCESS;
5870 if ( fBlockSti
5871 || fBlockMovSS)
5872 {
5873 if (!DBGFIsStepping(pVCpu))
5874 {
5875 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS);
5876 if (pMixedCtx->eflags.Bits.u1TF) /* We don't have any IA32_DEBUGCTL MSR for guests. Treat as all bits 0. */
5877 {
5878 /*
5879 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD, VMX_EXIT_MTF
5880 * VMX_EXIT_APIC_WRITE, VMX_EXIT_VIRTUALIZED_EOI. See Intel spec. 27.3.4 "Saving Non-Register State".
5881 */
5882 rc2 = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
5883 }
5884 }
5885 else
5886 {
5887 /* We are single-stepping in the hypervisor debugger, clear interrupt inhibition as setting the BS bit would mean
5888 delivering a #DB to the guest upon VM-entry when it shouldn't be. */
5889 uIntrState = 0;
5890 }
5891 }
5892
5893 /*
5894 * There's no need to clear the VM entry-interruption information field here if we're not injecting anything.
5895 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
5896 */
5897 rc2 |= hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
5898 AssertRC(rc2);
5899
5900 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
5901 return rc;
5902}
5903
5904
5905/**
5906 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
5907 *
5908 * @param pVCpu Pointer to the VMCPU.
5909 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5910 * out-of-sync. Make sure to update the required fields
5911 * before using them.
5912 */
5913DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5914{
5915 uint32_t u32IntrInfo = X86_XCPT_UD | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5916 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5917}
5918
5919
5920/**
5921 * Injects a double-fault (#DF) exception into the VM.
5922 *
5923 * @returns VBox status code (informational status code included).
5924 * @param pVCpu Pointer to the VMCPU.
5925 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5926 * out-of-sync. Make sure to update the required fields
5927 * before using them.
5928 */
5929DECLINLINE(int) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t *puIntrState)
5930{
5931 uint32_t u32IntrInfo = X86_XCPT_DF | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5932 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5933 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5934 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
5935 puIntrState);
5936}
5937
5938
5939/**
5940 * Sets a debug (#DB) exception as pending-for-injection into the VM.
5941 *
5942 * @param pVCpu Pointer to the VMCPU.
5943 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5944 * out-of-sync. Make sure to update the required fields
5945 * before using them.
5946 */
5947DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5948{
5949 uint32_t u32IntrInfo = X86_XCPT_DB | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5950 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5951 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5952}
5953
5954
5955/**
5956 * Sets an overflow (#OF) exception as pending-for-injection into the VM.
5957 *
5958 * @param pVCpu Pointer to the VMCPU.
5959 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5960 * out-of-sync. Make sure to update the required fields
5961 * before using them.
5962 * @param cbInstr The value of RIP that is to be pushed on the guest
5963 * stack.
5964 */
5965DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
5966{
5967 uint32_t u32IntrInfo = X86_XCPT_OF | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5968 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5969 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5970}
5971
5972
5973/**
5974 * Injects a general-protection (#GP) fault into the VM.
5975 *
5976 * @returns VBox status code (informational status code included).
5977 * @param pVCpu Pointer to the VMCPU.
5978 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5979 * out-of-sync. Make sure to update the required fields
5980 * before using them.
5981 * @param u32ErrorCode The error code associated with the #GP.
5982 */
5983DECLINLINE(int) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
5984 uint32_t *puIntrState)
5985{
5986 uint32_t u32IntrInfo = X86_XCPT_GP | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
5987 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5988 if (fErrorCodeValid)
5989 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5990 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
5991 puIntrState);
5992}
5993
5994
5995/**
5996 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
5997 *
5998 * @param pVCpu Pointer to the VMCPU.
5999 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6000 * out-of-sync. Make sure to update the required fields
6001 * before using them.
6002 * @param uVector The software interrupt vector number.
6003 * @param cbInstr The value of RIP that is to be pushed on the guest
6004 * stack.
6005 */
6006DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
6007{
6008 uint32_t u32IntrInfo = uVector | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
6009 if ( uVector == X86_XCPT_BP
6010 || uVector == X86_XCPT_OF)
6011 {
6012 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6013 }
6014 else
6015 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6016 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6017}
6018
6019
6020/**
6021 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
6022 * stack.
6023 *
6024 * @returns VBox status code (information status code included).
6025 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
6026 * @param pVM Pointer to the VM.
6027 * @param pMixedCtx Pointer to the guest-CPU context.
6028 * @param uValue The value to push to the guest stack.
6029 */
6030DECLINLINE(int) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
6031{
6032 /*
6033 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
6034 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
6035 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
6036 */
6037 if (pMixedCtx->sp == 1)
6038 return VINF_EM_RESET;
6039 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
6040 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
6041 AssertRCReturn(rc, rc);
6042 return rc;
6043}
6044
6045
6046/**
6047 * Injects an event into the guest upon VM-entry by updating the relevant fields
6048 * in the VM-entry area in the VMCS.
6049 *
6050 * @returns VBox status code (informational error codes included).
6051 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
6052 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
6053 *
6054 * @param pVCpu Pointer to the VMCPU.
6055 * @param pMixedCtx Pointer to the guest-CPU context. The data may
6056 * be out-of-sync. Make sure to update the required
6057 * fields before using them.
6058 * @param u64IntrInfo The VM-entry interruption-information field.
6059 * @param cbInstr The VM-entry instruction length in bytes (for
6060 * software interrupts, exceptions and privileged
6061 * software exceptions).
6062 * @param u32ErrCode The VM-entry exception error code.
6063 * @param GCPtrFaultAddress The page-fault address for #PF exceptions.
6064 * @param puIntrState Pointer to the current guest interruptibility-state.
6065 * This interruptibility-state will be updated if
6066 * necessary. This cannot not be NULL.
6067 *
6068 * @remarks No-long-jump zone!!!
6069 * @remarks Requires CR0!
6070 */
6071static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntrInfo, uint32_t cbInstr,
6072 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState)
6073{
6074 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
6075 AssertMsg(u64IntrInfo >> 32 == 0, ("%#RX64\n", u64IntrInfo));
6076 Assert(puIntrState);
6077 uint32_t u32IntrInfo = (uint32_t)u64IntrInfo;
6078
6079 const uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntrInfo);
6080 const uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo);
6081
6082 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
6083 Assert( uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
6084 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
6085
6086 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
6087
6088 /* We require CR0 to check if the guest is in real-mode. */
6089 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6090 AssertRCReturn(rc, rc);
6091
6092 /*
6093 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
6094 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
6095 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
6096 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
6097 */
6098 if (CPUMIsGuestInRealModeEx(pMixedCtx))
6099 {
6100 PVM pVM = pVCpu->CTX_SUFF(pVM);
6101 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
6102 {
6103 Assert(PDMVmmDevHeapIsEnabled(pVM));
6104 Assert(pVM->hm.s.vmx.pRealModeTSS);
6105
6106 /* Save the required guest state bits from the VMCS. */
6107 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6108 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6109 AssertRCReturn(rc, rc);
6110
6111 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
6112 const size_t cbIdtEntry = 4;
6113 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
6114 {
6115 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
6116 if (uVector == X86_XCPT_DF)
6117 return VINF_EM_RESET;
6118 else if (uVector == X86_XCPT_GP)
6119 {
6120 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
6121 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, puIntrState);
6122 }
6123
6124 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
6125 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
6126 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */, puIntrState);
6127 }
6128
6129 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
6130 uint16_t uGuestIp = pMixedCtx->ip;
6131 if (VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
6132 {
6133 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
6134 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
6135 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
6136 }
6137 else if (VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
6138 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
6139
6140 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
6141 uint16_t offIdtEntry = 0;
6142 RTSEL selIdtEntry = 0;
6143 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
6144 rc = PGMPhysSimpleReadGCPhys(pVM, &offIdtEntry, GCPhysIdtEntry, sizeof(offIdtEntry));
6145 rc |= PGMPhysSimpleReadGCPhys(pVM, &selIdtEntry, GCPhysIdtEntry + 2, sizeof(selIdtEntry));
6146 AssertRCReturn(rc, rc);
6147
6148 /* Construct the stack frame for the interrupt/exception handler. */
6149 rc = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
6150 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
6151 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
6152 AssertRCReturn(rc, rc);
6153
6154 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
6155 if (rc == VINF_SUCCESS)
6156 {
6157 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
6158 pMixedCtx->rip = offIdtEntry;
6159 pMixedCtx->cs.Sel = selIdtEntry;
6160 pMixedCtx->cs.u64Base = selIdtEntry << cbIdtEntry;
6161 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
6162 && uVector == X86_XCPT_PF)
6163 {
6164 pMixedCtx->cr2 = GCPtrFaultAddress;
6165 }
6166 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS
6167 | HM_CHANGED_GUEST_RIP
6168 | HM_CHANGED_GUEST_RFLAGS
6169 | HM_CHANGED_GUEST_RSP;
6170
6171 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
6172 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
6173 {
6174 Assert( uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
6175 && uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
6176 Log(("Clearing inhibition due to STI.\n"));
6177 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
6178 }
6179 Log(("Injecting real-mode: u32IntrInfo=%#x u32ErrCode=%#x instrlen=%#x\n", u32IntrInfo, u32ErrCode, cbInstr));
6180 }
6181 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
6182 return rc;
6183 }
6184 else
6185 {
6186 /*
6187 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
6188 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6189 */
6190 u32IntrInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6191 }
6192 }
6193
6194 /* Validate. */
6195 Assert(VMX_EXIT_INTERRUPTION_INFO_VALID(u32IntrInfo)); /* Bit 31 (Valid bit) must be set by caller. */
6196 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK(u32IntrInfo)); /* Bit 12 MBZ. */
6197 Assert(!(u32IntrInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
6198
6199 /* Inject. */
6200 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntrInfo);
6201 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntrInfo))
6202 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
6203 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
6204
6205 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
6206 && uVector == X86_XCPT_PF)
6207 {
6208 pMixedCtx->cr2 = GCPtrFaultAddress;
6209 }
6210 Log(("Injecting u32IntrInfo=%#x u32ErrCode=%#x cbInstr=%#x uCR2=%#RGv\n", u32IntrInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
6211
6212 AssertRCReturn(rc, rc);
6213 return rc;
6214}
6215
6216
6217/**
6218 * Enters the VT-x session.
6219 *
6220 * @returns VBox status code.
6221 * @param pVM Pointer to the VM.
6222 * @param pVCpu Pointer to the VMCPU.
6223 * @param pCpu Pointer to the CPU info struct.
6224 */
6225VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
6226{
6227 AssertPtr(pVM);
6228 AssertPtr(pVCpu);
6229 Assert(pVM->hm.s.vmx.fSupported);
6230 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6231 NOREF(pCpu);
6232
6233 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
6234
6235 /* Make sure we're in VMX root mode. */
6236 RTCCUINTREG u32HostCR4 = ASMGetCR4();
6237 if (!(u32HostCR4 & X86_CR4_VMXE))
6238 {
6239 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
6240 return VERR_VMX_X86_CR4_VMXE_CLEARED;
6241 }
6242
6243 /* Load the active VMCS as the current one. */
6244 int rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
6245 if (RT_FAILURE(rc))
6246 return rc;
6247
6248 /** @todo this will change with preemption hooks where can can VMRESUME as long
6249 * as we're no preempted. */
6250 pVCpu->hm.s.fResumeVM = false;
6251 return VINF_SUCCESS;
6252}
6253
6254
6255/**
6256 * Leaves the VT-x session.
6257 *
6258 * @returns VBox status code.
6259 * @param pVM Pointer to the VM.
6260 * @param pVCpu Pointer to the VMCPU.
6261 * @param pCtx Pointer to the guest-CPU context.
6262 */
6263VMMR0DECL(int) VMXR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
6264{
6265 AssertPtr(pVCpu);
6266 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6267 NOREF(pVM);
6268 NOREF(pCtx);
6269
6270 /** @todo this will change with preemption hooks where we only VMCLEAR when
6271 * we are actually going to be preempted, not all the time like we
6272 * currently do. */
6273 /*
6274 * Sync the current VMCS (writes back internal data back into the VMCS region in memory)
6275 * and mark the VMCS launch-state as "clear".
6276 */
6277 int rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
6278 return rc;
6279}
6280
6281
6282/**
6283 * Saves the host state in the VMCS host-state.
6284 * Sets up the VM-exit MSR-load area.
6285 *
6286 * The CPU state will be loaded from these fields on every successful VM-exit.
6287 *
6288 * @returns VBox status code.
6289 * @param pVM Pointer to the VM.
6290 * @param pVCpu Pointer to the VMCPU.
6291 *
6292 * @remarks No-long-jump zone!!!
6293 */
6294VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
6295{
6296 AssertPtr(pVM);
6297 AssertPtr(pVCpu);
6298 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6299
6300 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
6301
6302 /* Nothing to do if the host-state-changed flag isn't set. This will later be optimized when preemption hooks are in place. */
6303 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT))
6304 return VINF_SUCCESS;
6305
6306 int rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
6307 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6308
6309 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
6310 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6311
6312 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
6313 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6314
6315 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
6316 return rc;
6317}
6318
6319
6320/**
6321 * Loads the guest state into the VMCS guest-state area. The CPU state will be
6322 * loaded from these fields on every successful VM-entry.
6323 *
6324 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas.
6325 * Sets up the VM-entry controls.
6326 * Sets up the appropriate VMX non-root function to execute guest code based on
6327 * the guest CPU mode.
6328 *
6329 * @returns VBox status code.
6330 * @param pVM Pointer to the VM.
6331 * @param pVCpu Pointer to the VMCPU.
6332 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6333 * out-of-sync. Make sure to update the required fields
6334 * before using them.
6335 *
6336 * @remarks No-long-jump zone!!!
6337 */
6338VMMR0DECL(int) VMXR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6339{
6340 AssertPtr(pVM);
6341 AssertPtr(pVCpu);
6342 AssertPtr(pMixedCtx);
6343 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6344
6345 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
6346
6347 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
6348
6349 /* Determine real-on-v86 mode. */
6350 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
6351 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
6352 && CPUMIsGuestInRealModeEx(pMixedCtx))
6353 {
6354 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
6355 }
6356
6357 /** @todo if the order of loading is important, inform it via comments here */
6358 int rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
6359 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6360
6361 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
6362 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6363
6364 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
6365 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6366
6367 rc = hmR0VmxLoadGuestControlRegs(pVCpu, pMixedCtx);
6368 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestControlRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6369
6370 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
6371 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6372
6373 rc = hmR0VmxLoadGuestDebugRegs(pVCpu, pMixedCtx);
6374 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestDebugRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6375
6376 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
6377 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6378
6379 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
6380 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6381
6382 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
6383 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestGprs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6384
6385 rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
6386 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
6387
6388 AssertMsg(!pVCpu->hm.s.fContextUseFlags,
6389 ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
6390 pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
6391
6392 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
6393 return rc;
6394}
6395
6396
6397/**
6398 * Does the preparations before executing guest code in VT-x.
6399 *
6400 * This may cause longjmps to ring-3 and may even result in rescheduling to the
6401 * recompiler. We must be cautious what we do here regarding committing
6402 * guest-state information into the the VMCS assuming we assuredly execute the
6403 * guest in VT-x. If we fall back to the recompiler after updating VMCS and
6404 * clearing the common-state (TRPM/forceflags), we must undo those changes so
6405 * that the recompiler can (and should) use them when it resumes guest
6406 * execution. Otherwise such operations must be done when we can no longer
6407 * exit to ring-3.
6408 *
6409 * @returns VBox status code (informational status codes included).
6410 * @retval VINF_SUCCESS if we can proceed with running the guest.
6411 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a double-fault
6412 * into the guest.
6413 * @retval VINF_* scheduling changes, we have to go back to ring-3.
6414 *
6415 * @param pVM Pointer to the VM.
6416 * @param pVCpu Pointer to the VMCPU.
6417 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6418 * out-of-sync. Make sure to update the required fields
6419 * before using them.
6420 * @param pVmxTransient Pointer to the VMX transient structure.
6421 *
6422 * @remarks Called with preemption disabled.
6423 */
6424DECLINLINE(int) hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
6425{
6426 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6427
6428#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
6429 PGMRZDynMapFlushAutoSet(pVCpu);
6430#endif
6431
6432 /* Check force flag actions that might require us to go back to ring-3. */
6433 int rc = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx);
6434 if (rc != VINF_SUCCESS)
6435 return rc;
6436
6437 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
6438 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
6439 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
6440 {
6441 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
6442 RTGCPHYS GCPhysApicBase;
6443 GCPhysApicBase = pMixedCtx->msrApicBase;
6444 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6445
6446 /* Unalias any existing mapping. */
6447 rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
6448 AssertRCReturn(rc, rc);
6449
6450 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
6451 Log(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGv\n", GCPhysApicBase));
6452 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
6453 AssertRCReturn(rc, rc);
6454
6455 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
6456 }
6457
6458#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
6459 /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
6460 pVmxTransient->uEFlags = ASMIntDisableFlags();
6461 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
6462 {
6463 ASMSetFlags(pVmxTransient->uEFlags);
6464 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
6465 /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
6466 return VINF_EM_RAW_INTERRUPT;
6467 }
6468 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
6469 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
6470#endif
6471
6472 /*
6473 * This clears force-flags, TRPM traps & pending HM events. We cannot safely restore the state if we exit to ring-3
6474 * (before running guest code) after calling this function (e.g. how do we reverse the effects of calling PDMGetInterrupt()?)
6475 * This is why this is done after all possible exits-to-ring-3 paths in this code.
6476 */
6477 /** @todo r=bird: You reverse the effect of calling PDMGetInterrupt by
6478 * handing it over to TPRM like we do in REMR3StateBack using
6479 * TRPMAssertTrap and the other setters. */
6480 rc = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx);
6481 AssertRCReturn(rc, rc);
6482 return rc;
6483}
6484
6485
6486/**
6487 * Prepares to run guest code in VT-x and we've committed to doing so. This
6488 * means there is no backing out to ring-3 or anywhere else at this
6489 * point.
6490 *
6491 * @param pVM Pointer to the VM.
6492 * @param pVCpu Pointer to the VMCPU.
6493 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6494 * out-of-sync. Make sure to update the required fields
6495 * before using them.
6496 * @param pVmxTransient Pointer to the VMX transient structure.
6497 *
6498 * @remarks Called with preemption disabled.
6499 * @remarks No-long-jump zone!!!
6500 */
6501DECLINLINE(void) hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
6502{
6503 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6504 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6505
6506#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
6507 /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
6508 pVmxTransient->uEFlags = ASMIntDisableFlags();
6509 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
6510#endif
6511
6512 /* Load the required guest state bits (for guest-state changes in the inner execution loop). */
6513 Assert(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT));
6514 Log4(("LoadFlags=%#RX32\n", pVCpu->hm.s.fContextUseFlags));
6515#ifdef HMVMX_SYNC_FULL_GUEST_STATE
6516 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
6517#endif
6518 int rc = VINF_SUCCESS;
6519 if (pVCpu->hm.s.fContextUseFlags == HM_CHANGED_GUEST_RIP)
6520 {
6521 rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
6522 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
6523 }
6524 else if (pVCpu->hm.s.fContextUseFlags)
6525 {
6526 rc = VMXR0LoadGuestState(pVM, pVCpu, pMixedCtx);
6527 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
6528 }
6529 AssertRC(rc);
6530 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
6531
6532 /* Cache the TPR-shadow for checking on every VM-exit if it might have changed. */
6533 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
6534 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
6535
6536 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
6537 || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
6538 {
6539 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pMixedCtx);
6540 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
6541 }
6542
6543 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
6544 hmR0VmxFlushTaggedTlb(pVCpu); /* Invalidate the appropriate guest entries from the TLB. */
6545 Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
6546
6547 /*
6548 * TPR patching (only active for 32-bit guests on 64-bit capable CPUs) when the CPU does not supported virtualizing
6549 * APIC accesses feature (VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC).
6550 */
6551 if (pVM->hm.s.fTPRPatchingActive)
6552 {
6553 Assert(!CPUMIsGuestInLongMode(pVCpu));
6554
6555 /* Need guest's LSTAR MSR (which is part of the auto load/store MSRs in the VMCS), ensure we have the updated one. */
6556 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6557 AssertRC(rc);
6558
6559 /* The patch code uses the LSTAR as it's not used by a guest in 32-bit mode implicitly (i.e. SYSCALL is 64-bit only). */
6560 pVmxTransient->u64LStarMsr = ASMRdMsr(MSR_K8_LSTAR);
6561 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR); /* pMixedCtx->msrLSTAR contains the guest's TPR,
6562 see hmR0VmxLoadGuestApicState(). */
6563 }
6564
6565#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
6566 /*
6567 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
6568 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
6569 */
6570 if ( (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
6571 && !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT))
6572 {
6573 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
6574 uint64_t u64HostTscAux = 0;
6575 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64HostTscAux);
6576 AssertRC(rc2);
6577 ASMWrMsr(MSR_K8_TSC_AUX, u64HostTscAux);
6578 }
6579#endif
6580
6581 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
6582 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
6583 to start executing. */
6584}
6585
6586
6587/**
6588 * Performs some essential restoration of state after running guest code in
6589 * VT-x.
6590 *
6591 * @param pVM Pointer to the VM.
6592 * @param pVCpu Pointer to the VMCPU.
6593 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6594 * out-of-sync. Make sure to update the required fields
6595 * before using them.
6596 * @param pVmxTransient Pointer to the VMX transient structure.
6597 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
6598 *
6599 * @remarks Called with interrupts disabled.
6600 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
6601 * unconditionally when it is safe to do so.
6602 */
6603DECLINLINE(void) hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
6604{
6605 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6606 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
6607
6608 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
6609 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
6610 pVCpu->hm.s.vmx.fUpdatedGuestState = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
6611 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
6612 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
6613
6614 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT))
6615 {
6616#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
6617 /* Restore host's TSC_AUX. */
6618 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
6619 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
6620#endif
6621 /** @todo Find a way to fix hardcoding a guestimate. */
6622 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC()
6623 + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
6624 }
6625
6626 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
6627 Assert(!(ASMGetFlags() & X86_EFL_IF));
6628 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
6629
6630 /* Restore the effects of TPR patching if any. */
6631 if (pVM->hm.s.fTPRPatchingActive)
6632 {
6633 int rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6634 AssertRC(rc);
6635 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR); /* MSR_K8_LSTAR contains the guest TPR. */
6636 ASMWrMsr(MSR_K8_LSTAR, pVmxTransient->u64LStarMsr);
6637 }
6638
6639 ASMSetFlags(pVmxTransient->uEFlags); /* Enable interrupts. */
6640 pVCpu->hm.s.fResumeVM = true; /* Use VMRESUME instead of VMLAUNCH in the next run. */
6641
6642 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
6643 uint32_t uExitReason;
6644 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
6645 rc |= hmR0VmxReadEntryIntrInfoVmcs(pVmxTransient);
6646 AssertRC(rc);
6647 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
6648 pVmxTransient->fVMEntryFailed = !!VMX_ENTRY_INTERRUPTION_INFO_VALID(pVmxTransient->uEntryIntrInfo);
6649
6650 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pMixedCtx);
6651 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
6652
6653 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
6654 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
6655 {
6656 Log(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
6657 return;
6658 }
6659
6660 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
6661 {
6662 /* Update the guest interruptibility-state from the VMCS. */
6663 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
6664#if defined(HMVMX_SYNC_FULL_GUEST_STATE) || defined(HMVMX_SAVE_FULL_GUEST_STATE)
6665 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6666 AssertRC(rc);
6667#endif
6668 /*
6669 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
6670 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3; also why
6671 * we do it outside of hmR0VmxSaveGuestState() which must never cause longjmps.
6672 */
6673 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
6674 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
6675 {
6676 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
6677 AssertRC(rc);
6678 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
6679 }
6680 }
6681}
6682
6683
6684/**
6685 * Runs the guest code using VT-x.
6686 *
6687 * @returns VBox status code.
6688 * @param pVM Pointer to the VM.
6689 * @param pVCpu Pointer to the VMCPU.
6690 * @param pCtx Pointer to the guest-CPU context.
6691 *
6692 * @remarks Called with preemption disabled.
6693 */
6694VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
6695{
6696 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6697 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6698
6699 VMXTRANSIENT VmxTransient;
6700 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
6701 int rc = VERR_INTERNAL_ERROR_5;
6702 uint32_t cLoops = 0;
6703 hmR0VmxUpdatePendingEvent(pVCpu, pCtx);
6704
6705 for (;; cLoops++)
6706 {
6707 Assert(!HMR0SuspendPending());
6708 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
6709 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
6710 (unsigned)RTMpCpuId(), cLoops));
6711
6712 /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
6713 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
6714 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
6715 if (rc != VINF_SUCCESS)
6716 break;
6717
6718 /*
6719 * No longjmps to ring-3 from this point on!!!
6720 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
6721 * This also disables flushing of the R0-logger instance (if any).
6722 */
6723 VMMRZCallRing3Disable(pVCpu);
6724 VMMRZCallRing3RemoveNotification(pVCpu);
6725 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
6726
6727 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
6728 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
6729
6730 /*
6731 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
6732 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
6733 */
6734 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
6735 if (RT_UNLIKELY(rc != VINF_SUCCESS)) /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
6736 {
6737 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
6738 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
6739 return rc;
6740 }
6741
6742 /* Handle the VM-exit. */
6743 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
6744 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
6745 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
6746#ifdef HM_PROFILE_EXIT_DISPATCH
6747 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed);
6748#endif
6749#ifdef HMVMX_USE_FUNCTION_TABLE
6750 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
6751#else
6752 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
6753#endif
6754 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
6755 if (rc != VINF_SUCCESS)
6756 break;
6757 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
6758 {
6759 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
6760 rc = VINF_EM_RAW_INTERRUPT;
6761 break;
6762 }
6763 }
6764
6765 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
6766 if (rc == VERR_EM_INTERPRETER)
6767 rc = VINF_EM_RAW_EMULATE_INSTR;
6768 else if (rc == VINF_EM_RESET)
6769 rc = VINF_EM_TRIPLE_FAULT;
6770 hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rc);
6771 return rc;
6772}
6773
6774
6775#ifndef HMVMX_USE_FUNCTION_TABLE
6776DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
6777{
6778 int rc;
6779 switch (rcReason)
6780 {
6781 case VMX_EXIT_EPT_MISCONFIG: rc = hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient); break;
6782 case VMX_EXIT_EPT_VIOLATION: rc = hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient); break;
6783 case VMX_EXIT_IO_INSTR: rc = hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient); break;
6784 case VMX_EXIT_CPUID: rc = hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient); break;
6785 case VMX_EXIT_RDTSC: rc = hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient); break;
6786 case VMX_EXIT_RDTSCP: rc = hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient); break;
6787 case VMX_EXIT_APIC_ACCESS: rc = hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient); break;
6788 case VMX_EXIT_XCPT_NMI: rc = hmR0VmxExitXcptNmi(pVCpu, pMixedCtx, pVmxTransient); break;
6789 case VMX_EXIT_MOV_CRX: rc = hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient); break;
6790 case VMX_EXIT_EXT_INT: rc = hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient); break;
6791 case VMX_EXIT_INT_WINDOW: rc = hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient); break;
6792 case VMX_EXIT_MWAIT: rc = hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient); break;
6793 case VMX_EXIT_MONITOR: rc = hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient); break;
6794 case VMX_EXIT_TASK_SWITCH: rc = hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient); break;
6795 case VMX_EXIT_PREEMPT_TIMER: rc = hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient); break;
6796 case VMX_EXIT_RDMSR: rc = hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient); break;
6797 case VMX_EXIT_WRMSR: rc = hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient); break;
6798 case VMX_EXIT_MOV_DRX: rc = hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient); break;
6799 case VMX_EXIT_TPR_BELOW_THRESHOLD: rc = hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient); break;
6800 case VMX_EXIT_HLT: rc = hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient); break;
6801 case VMX_EXIT_INVD: rc = hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient); break;
6802 case VMX_EXIT_INVLPG: rc = hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient); break;
6803 case VMX_EXIT_RSM: rc = hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient); break;
6804 case VMX_EXIT_MTF: rc = hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient); break;
6805 case VMX_EXIT_PAUSE: rc = hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient); break;
6806 case VMX_EXIT_XDTR_ACCESS: rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); break;
6807 case VMX_EXIT_TR_ACCESS: rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); break;
6808 case VMX_EXIT_WBINVD: rc = hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient); break;
6809 case VMX_EXIT_XSETBV: rc = hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient); break;
6810 case VMX_EXIT_RDRAND: rc = hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient); break;
6811 case VMX_EXIT_INVPCID: rc = hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient); break;
6812 case VMX_EXIT_GETSEC: rc = hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient); break;
6813 case VMX_EXIT_RDPMC: rc = hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient); break;
6814
6815 case VMX_EXIT_TRIPLE_FAULT: rc = hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient); break;
6816 case VMX_EXIT_NMI_WINDOW: rc = hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient); break;
6817 case VMX_EXIT_INIT_SIGNAL: rc = hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient); break;
6818 case VMX_EXIT_SIPI: rc = hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient); break;
6819 case VMX_EXIT_IO_SMI: rc = hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient); break;
6820 case VMX_EXIT_SMI: rc = hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient); break;
6821 case VMX_EXIT_ERR_MSR_LOAD: rc = hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient); break;
6822 case VMX_EXIT_ERR_INVALID_GUEST_STATE: rc = hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient); break;
6823 case VMX_EXIT_ERR_MACHINE_CHECK: rc = hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient); break;
6824
6825 case VMX_EXIT_VMCALL:
6826 case VMX_EXIT_VMCLEAR:
6827 case VMX_EXIT_VMLAUNCH:
6828 case VMX_EXIT_VMPTRLD:
6829 case VMX_EXIT_VMPTRST:
6830 case VMX_EXIT_VMREAD:
6831 case VMX_EXIT_VMRESUME:
6832 case VMX_EXIT_VMWRITE:
6833 case VMX_EXIT_VMXOFF:
6834 case VMX_EXIT_VMXON:
6835 case VMX_EXIT_INVEPT:
6836 case VMX_EXIT_INVVPID:
6837 case VMX_EXIT_VMFUNC:
6838 rc = hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
6839 break;
6840 default:
6841 rc = hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
6842 break;
6843 }
6844 return rc;
6845}
6846#endif
6847
6848
6849/** Profiling macro. */
6850#ifdef HM_PROFILE_EXIT_DISPATCH
6851# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
6852#else
6853# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
6854#endif
6855
6856
6857#ifdef DEBUG
6858/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
6859# define VMX_ASSERT_PREEMPT_CPUID_VAR() \
6860 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
6861# define VMX_ASSERT_PREEMPT_CPUID() \
6862 do \
6863 { \
6864 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
6865 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
6866 } while (0)
6867
6868# define VMX_VALIDATE_EXIT_HANDLER_PARAMS() \
6869 do { \
6870 AssertPtr(pVCpu); \
6871 AssertPtr(pMixedCtx); \
6872 AssertPtr(pVmxTransient); \
6873 Assert(pVmxTransient->fVMEntryFailed == false); \
6874 Assert(ASMIntAreEnabled()); \
6875 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
6876 VMX_ASSERT_PREEMPT_CPUID_VAR(); \
6877 LogFunc(("vcpu[%u] vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n", \
6878 (unsigned)pVCpu->idCpu)); \
6879 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
6880 if (VMMR0IsLogFlushDisabled(pVCpu)) \
6881 VMX_ASSERT_PREEMPT_CPUID(); \
6882 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
6883 } while (0)
6884# define VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
6885 do { \
6886 LogFunc(("\n")); \
6887 } while(0)
6888#else /* Release builds */
6889# define VMX_VALIDATE_EXIT_HANDLER_PARAMS() do { HMVMX_STOP_EXIT_DISPATCH_PROF(); } while(0)
6890# define VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while(0)
6891#endif
6892
6893
6894/**
6895 * Advances the guest RIP after reading it from the VMCS.
6896 *
6897 * @returns VBox status code.
6898 * @param pVCpu Pointer to the VMCPU.
6899 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6900 * out-of-sync. Make sure to update the required fields
6901 * before using them.
6902 * @param pVmxTransient Pointer to the VMX transient structure.
6903 *
6904 * @remarks No-long-jump zone!!!
6905 */
6906DECLINLINE(int) hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
6907{
6908 int rc = hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
6909 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6910 AssertRCReturn(rc, rc);
6911
6912 pMixedCtx->rip += pVmxTransient->cbInstr;
6913 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
6914 return rc;
6915}
6916
6917
6918/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6919/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
6920/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
6921/**
6922 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
6923 */
6924static DECLCALLBACK(int) hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
6925{
6926 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
6927 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
6928#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
6929 Assert(ASMIntAreEnabled());
6930 return VINF_SUCCESS;
6931#else
6932 return VINF_EM_RAW_INTERRUPT;
6933#endif
6934}
6935
6936
6937/**
6938 * VM-exit handler for exceptions and NMIs (VMX_EXIT_XCPT_NMI).
6939 */
6940static DECLCALLBACK(int) hmR0VmxExitXcptNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
6941{
6942 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
6943 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
6944
6945 int rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
6946 AssertRCReturn(rc, rc);
6947
6948 uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntrInfo);
6949 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_CONTROLS_ACK_EXT_INT)
6950 && uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
6951
6952 if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
6953 {
6954 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
6955 return VINF_EM_RAW_INTERRUPT;
6956 }
6957
6958 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
6959 rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
6960 if (RT_UNLIKELY(rc == VINF_VMX_DOUBLE_FAULT))
6961 {
6962 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
6963 return VINF_SUCCESS;
6964 }
6965 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
6966 {
6967 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
6968 return rc;
6969 }
6970
6971 uint32_t uExitIntrInfo = pVmxTransient->uExitIntrInfo;
6972 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntrInfo);
6973 switch (uIntrType)
6974 {
6975 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
6976 Assert(uVector == X86_XCPT_DB || uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
6977 /* no break */
6978 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
6979 {
6980 switch (uVector)
6981 {
6982 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
6983 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
6984 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
6985 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
6986 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
6987 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
6988#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
6989 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
6990 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
6991 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
6992 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
6993 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
6994 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
6995 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
6996 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
6997 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
6998 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
6999#endif
7000 default:
7001 {
7002 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7003 AssertRCReturn(rc, rc);
7004
7005 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
7006 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
7007 {
7008 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
7009 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
7010 rc = hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
7011 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
7012 AssertRCReturn(rc, rc);
7013 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntrInfo),
7014 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode,
7015 0 /* GCPtrFaultAddress */);
7016 AssertRCReturn(rc, rc);
7017 }
7018 else
7019 {
7020 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
7021 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
7022 }
7023 break;
7024 }
7025 }
7026 break;
7027 }
7028
7029 case VMX_EXIT_INTERRUPTION_INFO_TYPE_DB_XCPT:
7030 default:
7031 {
7032 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE;
7033 AssertMsgFailed(("Unexpected interruption code %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntrInfo)));
7034 break;
7035 }
7036 }
7037 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
7038 return rc;
7039}
7040
7041
7042/**
7043 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
7044 */
7045static DECLCALLBACK(int) hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7046{
7047 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7048
7049 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
7050 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT);
7051 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT;
7052 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
7053 AssertRCReturn(rc, rc);
7054
7055 /* Deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and resume guest execution. */
7056 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
7057 return VINF_SUCCESS;
7058}
7059
7060
7061/**
7062 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
7063 */
7064static DECLCALLBACK(int) hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7065{
7066 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7067 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
7068 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7069}
7070
7071
7072/**
7073 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
7074 */
7075static DECLCALLBACK(int) hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7076{
7077 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7078 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
7079 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7080}
7081
7082
7083/**
7084 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
7085 */
7086static DECLCALLBACK(int) hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7087{
7088 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7089 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
7090 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7091}
7092
7093
7094/**
7095 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
7096 */
7097static DECLCALLBACK(int) hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7098{
7099 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7100 PVM pVM = pVCpu->CTX_SUFF(pVM);
7101 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
7102 if (RT_LIKELY(rc == VINF_SUCCESS))
7103 {
7104 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7105 Assert(pVmxTransient->cbInstr == 2);
7106 }
7107 else
7108 {
7109 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
7110 rc = VERR_EM_INTERPRETER;
7111 }
7112 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
7113 return rc;
7114}
7115
7116
7117/**
7118 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
7119 */
7120static DECLCALLBACK(int) hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7121{
7122 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7123 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
7124 AssertRCReturn(rc, rc);
7125
7126 if (pMixedCtx->cr4 & X86_CR4_SMXE)
7127 return VINF_EM_RAW_EMULATE_INSTR;
7128
7129 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
7130 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7131}
7132
7133
7134/**
7135 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
7136 */
7137static DECLCALLBACK(int) hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7138{
7139 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7140 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
7141 AssertRCReturn(rc, rc);
7142
7143 PVM pVM = pVCpu->CTX_SUFF(pVM);
7144 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
7145 if (RT_LIKELY(rc == VINF_SUCCESS))
7146 {
7147 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7148 Assert(pVmxTransient->cbInstr == 2);
7149 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
7150 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TSC_OFFSETTING)
7151 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
7152 }
7153 else
7154 {
7155 AssertMsgFailed(("hmR0VmxExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
7156 rc = VERR_EM_INTERPRETER;
7157 }
7158 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
7159 return rc;
7160}
7161
7162
7163/**
7164 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
7165 */
7166static DECLCALLBACK(int) hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7167{
7168 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7169 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
7170 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
7171 AssertRCReturn(rc, rc);
7172
7173 PVM pVM = pVCpu->CTX_SUFF(pVM);
7174 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
7175 if (RT_LIKELY(rc == VINF_SUCCESS))
7176 {
7177 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7178 Assert(pVmxTransient->cbInstr == 3);
7179 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
7180 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TSC_OFFSETTING)
7181 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
7182 }
7183 else
7184 {
7185 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
7186 rc = VERR_EM_INTERPRETER;
7187 }
7188 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
7189 return rc;
7190}
7191
7192
7193/**
7194 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
7195 */
7196static DECLCALLBACK(int) hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7197{
7198 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7199 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
7200 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); /** @todo review if CR0 is really required by EM. */
7201 AssertRCReturn(rc, rc);
7202
7203 PVM pVM = pVCpu->CTX_SUFF(pVM);
7204 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
7205 if (RT_LIKELY(rc == VINF_SUCCESS))
7206 {
7207 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7208 Assert(pVmxTransient->cbInstr == 2);
7209 }
7210 else
7211 {
7212 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
7213 rc = VERR_EM_INTERPRETER;
7214 }
7215 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
7216 return rc;
7217}
7218
7219
7220/**
7221 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
7222 */
7223static DECLCALLBACK(int) hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7224{
7225 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7226 PVM pVM = pVCpu->CTX_SUFF(pVM);
7227 Assert(!pVM->hm.s.fNestedPaging);
7228
7229 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
7230 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7231 AssertRCReturn(rc, rc);
7232
7233 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
7234 rc = VBOXSTRICTRC_VAL(rc2);
7235 if (RT_LIKELY(rc == VINF_SUCCESS))
7236 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7237 else
7238 {
7239 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RGv failed with %Rrc\n",
7240 pVmxTransient->uExitQualification, rc));
7241 }
7242 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
7243 return rc;
7244}
7245
7246
7247/**
7248 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
7249 */
7250static DECLCALLBACK(int) hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7251{
7252 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7253 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7254 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7255 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7256 AssertRCReturn(rc, rc);
7257
7258 PVM pVM = pVCpu->CTX_SUFF(pVM);
7259 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
7260 if (RT_LIKELY(rc == VINF_SUCCESS))
7261 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7262 else
7263 {
7264 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
7265 rc = VERR_EM_INTERPRETER;
7266 }
7267 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
7268 return rc;
7269}
7270
7271
7272/**
7273 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
7274 */
7275static DECLCALLBACK(int) hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7276{
7277 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7278 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7279 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7280 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7281 AssertRCReturn(rc, rc);
7282
7283 PVM pVM = pVCpu->CTX_SUFF(pVM);
7284 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
7285 rc = VBOXSTRICTRC_VAL(rc2);
7286 if (RT_LIKELY( rc == VINF_SUCCESS
7287 || rc == VINF_EM_HALT))
7288 {
7289 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7290 AssertRCReturn(rc3, rc3);
7291
7292 if ( rc == VINF_EM_HALT
7293 && EMShouldContinueAfterHalt(pVCpu, pMixedCtx))
7294 {
7295 rc = VINF_SUCCESS;
7296 }
7297 }
7298 else
7299 {
7300 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
7301 rc = VERR_EM_INTERPRETER;
7302 }
7303 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
7304 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
7305 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
7306 return rc;
7307}
7308
7309
7310/**
7311 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
7312 */
7313static DECLCALLBACK(int) hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7314{
7315 /*
7316 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
7317 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
7318 * executing VMCALL in VMX root operation. If we get here something funny is going on.
7319 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
7320 */
7321 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7322 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7323}
7324
7325
7326/**
7327 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
7328 */
7329static DECLCALLBACK(int) hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7330{
7331 /*
7332 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
7333 * root operation. If we get there there is something funny going on.
7334 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
7335 */
7336 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7337 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7338}
7339
7340
7341/**
7342 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
7343 */
7344static DECLCALLBACK(int) hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7345{
7346 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
7347 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7348 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7349}
7350
7351
7352/**
7353 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
7354 */
7355static DECLCALLBACK(int) hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7356{
7357 /*
7358 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
7359 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
7360 * See Intel spec. 25.3 "Other Causes of VM-exits".
7361 */
7362 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7363 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7364}
7365
7366
7367/**
7368 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
7369 * VM-exit.
7370 */
7371static DECLCALLBACK(int) hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7372{
7373 /*
7374 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM. See Intel spec. "33.14.1 Default Treatment of
7375 * SMI Delivery" and "29.3 VMX Instructions" for "VMXON". It is -NOT- blocked in VMX non-root operation so we can potentially
7376 * still get these exits. See Intel spec. "23.8 Restrictions on VMX operation".
7377 */
7378 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7379 return VINF_SUCCESS; /** @todo r=ramshankar: correct?. */
7380}
7381
7382
7383/**
7384 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
7385 * VM-exit.
7386 */
7387static DECLCALLBACK(int) hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7388{
7389 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7390 return VINF_EM_RESET;
7391}
7392
7393
7394/**
7395 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
7396 */
7397static DECLCALLBACK(int) hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7398{
7399 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7400 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT);
7401 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
7402 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7403 AssertRCReturn(rc, rc);
7404
7405 pMixedCtx->rip++;
7406 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
7407 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
7408 rc = VINF_SUCCESS;
7409 else
7410 rc = VINF_EM_HALT;
7411
7412 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
7413 return rc;
7414}
7415
7416
7417/**
7418 * VM-exit handler for instructions that result in a #UD exception delivered to the guest.
7419 */
7420static DECLCALLBACK(int) hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7421{
7422 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7423 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
7424 return VINF_SUCCESS;
7425}
7426
7427
7428/**
7429 * VM-exit handler for expiry of the VMX preemption timer.
7430 */
7431static DECLCALLBACK(int) hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7432{
7433 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7434
7435 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
7436 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
7437
7438 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
7439 PVM pVM = pVCpu->CTX_SUFF(pVM);
7440 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
7441 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
7442 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
7443}
7444
7445
7446/**
7447 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
7448 */
7449static DECLCALLBACK(int) hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7450{
7451 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7452 /* We expose XSETBV to the guest, fallback to the recompiler for emulation. */
7453 /** @todo check if XSETBV is supported by the recompiler. */
7454 return VERR_EM_INTERPRETER;
7455}
7456
7457
7458/**
7459 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
7460 */
7461static DECLCALLBACK(int) hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7462{
7463 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7464 /* The guest should not invalidate the host CPU's TLBs, fallback to recompiler. */
7465 /** @todo implement EMInterpretInvpcid() */
7466 return VERR_EM_INTERPRETER;
7467}
7468
7469
7470/**
7471 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
7472 * Error VM-exit.
7473 */
7474static DECLCALLBACK(int) hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7475{
7476 uint32_t uIntrState;
7477 HMVMXHCUINTREG uHCReg;
7478 uint64_t u64Val;
7479 uint32_t u32Val;
7480
7481 int rc = hmR0VmxReadEntryIntrInfoVmcs(pVmxTransient);
7482 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
7483 rc |= hmR0VmxReadEntryInstrLenVmcs(pVCpu, pVmxTransient);
7484 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
7485 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7486 AssertRCReturn(rc, rc);
7487
7488 Log(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntrInfo));
7489 Log(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
7490 Log(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
7491 Log(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
7492
7493 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
7494 Log(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
7495 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
7496 Log(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
7497 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
7498 Log(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
7499 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
7500 Log(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
7501 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
7502 Log(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
7503 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
7504 Log(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
7505
7506 PVM pVM = pVCpu->CTX_SUFF(pVM);
7507 HMDumpRegs(pVM, pVCpu, pMixedCtx);
7508
7509 return VERR_VMX_INVALID_GUEST_STATE;
7510}
7511
7512
7513/**
7514 * VM-exit handler for VM-entry failure due to an MSR-load
7515 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
7516 */
7517static DECLCALLBACK(int) hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7518{
7519 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7520 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7521}
7522
7523
7524/**
7525 * VM-exit handler for VM-entry failure due to a machine-check event
7526 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
7527 */
7528static DECLCALLBACK(int) hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7529{
7530 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7531 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7532}
7533
7534
7535/**
7536 * VM-exit handler for all undefined reasons. Should never ever happen.. in
7537 * theory.
7538 */
7539static DECLCALLBACK(int) hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7540{
7541 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
7542 return VERR_VMX_UNDEFINED_EXIT_CODE;
7543}
7544
7545
7546/**
7547 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
7548 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
7549 * Conditional VM-exit.
7550 */
7551static DECLCALLBACK(int) hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7552{
7553 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7554 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
7555 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
7556 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
7557 return VERR_EM_INTERPRETER;
7558 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7559 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7560}
7561
7562
7563/**
7564 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
7565 */
7566static DECLCALLBACK(int) hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7567{
7568 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7569 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
7570 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
7571 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
7572 return VERR_EM_INTERPRETER;
7573 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7574 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7575}
7576
7577
7578/**
7579 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
7580 */
7581static DECLCALLBACK(int) hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7582{
7583 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7584 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
7585 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7586 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7587 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7588 AssertRCReturn(rc, rc);
7589
7590 PVM pVM = pVCpu->CTX_SUFF(pVM);
7591 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
7592 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
7593 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
7594 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
7595
7596 if (RT_LIKELY(rc == VINF_SUCCESS))
7597 {
7598 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7599 Assert(pVmxTransient->cbInstr == 2);
7600 }
7601 return rc;
7602}
7603
7604
7605/**
7606 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
7607 */
7608static DECLCALLBACK(int) hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7609{
7610 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7611 PVM pVM = pVCpu->CTX_SUFF(pVM);
7612 int rc = VINF_SUCCESS;
7613
7614 /* If TPR patching is active, LSTAR holds the guest TPR, writes to it must be propagated to the APIC. */
7615 if ( pVM->hm.s.fTPRPatchingActive
7616 && pMixedCtx->ecx == MSR_K8_LSTAR)
7617 {
7618 Assert(!CPUMIsGuestInLongModeEx(pMixedCtx)); /* Requires EFER but it's always up-to-date. */
7619 if ((pMixedCtx->eax & 0xff) != pVmxTransient->u8GuestTpr)
7620 {
7621 rc = PDMApicSetTPR(pVCpu, pMixedCtx->eax & 0xff);
7622 AssertRC(rc);
7623 }
7624
7625 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7626 Assert(pVmxTransient->cbInstr == 2);
7627 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
7628 return VINF_SUCCESS;
7629 }
7630
7631 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
7632 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7633 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7634 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7635 AssertRCReturn(rc, rc);
7636 Log(("ecx=%#RX32\n", pMixedCtx->ecx));
7637
7638 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
7639 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
7640 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
7641
7642 if (RT_LIKELY(rc == VINF_SUCCESS))
7643 {
7644 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7645
7646 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
7647 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
7648 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
7649 {
7650 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_APIC_STATE);
7651 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
7652 }
7653 else if (pMixedCtx->ecx == MSR_K6_EFER) /* EFER is the only MSR we auto-load but don't allow write-passthrough. */
7654 {
7655 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
7656 AssertRCReturn(rc, rc);
7657 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_AUTO_MSRS;
7658 }
7659 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
7660 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
7661
7662 /* Update MSRs that are part of the VMCS when MSR-bitmaps are not supported. */
7663 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)))
7664 {
7665 switch (pMixedCtx->ecx)
7666 {
7667 case MSR_IA32_SYSENTER_CS: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_CS_MSR; break;
7668 case MSR_IA32_SYSENTER_EIP: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_EIP_MSR; break;
7669 case MSR_IA32_SYSENTER_ESP: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_ESP_MSR; break;
7670 case MSR_K8_FS_BASE: /* no break */
7671 case MSR_K8_GS_BASE: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS; break;
7672 /* MSR_K8_KERNEL_GS_BASE: Nothing to do as it's not part of the VMCS. Manually loaded each time on VM-entry. */
7673 }
7674 }
7675#ifdef VBOX_STRICT
7676 else
7677 {
7678 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
7679 switch (pMixedCtx->ecx)
7680 {
7681 case MSR_IA32_SYSENTER_CS:
7682 case MSR_IA32_SYSENTER_EIP:
7683 case MSR_IA32_SYSENTER_ESP:
7684 case MSR_K8_FS_BASE:
7685 case MSR_K8_GS_BASE:
7686 {
7687 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
7688 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7689 }
7690
7691 case MSR_K8_LSTAR:
7692 case MSR_K6_STAR:
7693 case MSR_K8_SF_MASK:
7694 case MSR_K8_TSC_AUX:
7695 case MSR_K8_KERNEL_GS_BASE:
7696 {
7697 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
7698 pMixedCtx->ecx));
7699 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7700 }
7701 }
7702 }
7703#endif /* VBOX_STRICT */
7704 }
7705 return rc;
7706}
7707
7708
7709/**
7710 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
7711 */
7712static DECLCALLBACK(int) hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7713{
7714 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7715 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_PAUSE_EXIT. */
7716 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
7717 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_PAUSE_EXIT)
7718 return VERR_EM_INTERPRETER;
7719 AssertMsgFailed(("Unexpected PAUSE exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
7720 return VERR_VMX_UNEXPECTED_EXIT_CODE;
7721}
7722
7723
7724/**
7725 * VM-exit handler for when the TPR value is lowered below the specified
7726 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
7727 */
7728static DECLCALLBACK(int) hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7729{
7730 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7731 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW);
7732
7733 /*
7734 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
7735 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and
7736 * resume guest execution.
7737 */
7738 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
7739 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
7740 return VINF_SUCCESS;
7741}
7742
7743
7744/**
7745 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
7746 * VM-exit.
7747 *
7748 * @retval VINF_SUCCESS when guest execution can continue.
7749 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
7750 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
7751 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
7752 * recompiler.
7753 */
7754static DECLCALLBACK(int) hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7755{
7756 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7757 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
7758 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
7759 AssertRCReturn(rc, rc);
7760
7761 const RTGCUINTPTR uExitQualification = pVmxTransient->uExitQualification;
7762 const uint32_t uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
7763 PVM pVM = pVCpu->CTX_SUFF(pVM);
7764 switch (uAccessType)
7765 {
7766 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
7767 {
7768#if 0
7769 /* EMInterpretCRxWrite() references a lot of guest state (EFER, RFLAGS, Segment Registers, etc.) Sync entire state */
7770 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7771#else
7772 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
7773 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7774 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7775#endif
7776 AssertRCReturn(rc, rc);
7777
7778 rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
7779 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
7780 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
7781 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
7782
7783 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
7784 {
7785 case 0: /* CR0 */
7786 Log(("CRX CR0 write rc=%d CR0=%#RGv\n", rc, pMixedCtx->cr0));
7787 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
7788 break;
7789 case 2: /* C2 **/
7790 /* Nothing to do here, CR2 it's not part of the VMCS. */
7791 break;
7792 case 3: /* CR3 */
7793 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx));
7794 Log(("CRX CR3 write rc=%d CR3=%#RGv\n", rc, pMixedCtx->cr3));
7795 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
7796 break;
7797 case 4: /* CR4 */
7798 Log(("CRX CR4 write rc=%d CR4=%#RGv\n", rc, pMixedCtx->cr4));
7799 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
7800 break;
7801 case 8: /* CR8 */
7802 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
7803 /* CR8 contains the APIC TPR. Was updated by EMInterpretCRxWrite(). */
7804 /* We don't need to update HM_CHANGED_VMX_GUEST_APIC_STATE here as this -cannot- happen with TPR shadowing. */
7805 break;
7806 default:
7807 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
7808 break;
7809 }
7810
7811 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
7812 break;
7813 }
7814
7815 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
7816 {
7817 /* EMInterpretCRxRead() requires EFER MSR, CS. */
7818 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7819 AssertRCReturn(rc, rc);
7820 Assert( !pVM->hm.s.fNestedPaging
7821 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
7822 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
7823
7824 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
7825 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
7826 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
7827
7828 rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
7829 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
7830 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
7831 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
7832 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
7833 Log(("CRX CR%d Read access rc=%d\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification), rc));
7834 break;
7835 }
7836
7837 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
7838 {
7839 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7840 AssertRCReturn(rc, rc);
7841 rc = EMInterpretCLTS(pVM, pVCpu);
7842 AssertRCReturn(rc, rc);
7843 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
7844 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
7845 Log(("CRX CLTS write rc=%d\n", rc));
7846 break;
7847 }
7848
7849 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
7850 {
7851 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7852 AssertRCReturn(rc, rc);
7853 rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
7854 if (RT_LIKELY(rc == VINF_SUCCESS))
7855 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
7856 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
7857 Log(("CRX LMSW write rc=%d\n", rc));
7858 break;
7859 }
7860
7861 default:
7862 {
7863 AssertMsgFailed(("Invalid access-type in Mov CRx exit qualification %#x\n", uAccessType));
7864 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
7865 }
7866 }
7867
7868 /* Validate possible error codes. */
7869 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_CHANGE_MODE || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_SYNC_CR3
7870 || rc == VERR_VMX_UNEXPECTED_EXCEPTION);
7871 if (RT_SUCCESS(rc))
7872 {
7873 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
7874 AssertRCReturn(rc2, rc2);
7875 }
7876
7877 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
7878 return rc;
7879}
7880
7881
7882/**
7883 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
7884 * VM-exit.
7885 */
7886static DECLCALLBACK(int) hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7887{
7888 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
7889 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
7890
7891 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
7892 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
7893 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
7894 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
7895 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
7896 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
7897 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
7898 AssertRCReturn(rc, rc);
7899 Log(("CS:RIP=%04x:%#RGv\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
7900
7901 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
7902 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
7903 uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
7904 bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
7905 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
7906 bool fIOString = (VMX_EXIT_QUALIFICATION_IO_STRING(pVmxTransient->uExitQualification) == 1);
7907 Assert(uIOWidth == 0 || uIOWidth == 1 || uIOWidth == 3);
7908
7909 /* I/O operation lookup arrays. */
7910 static const uint32_t s_aIOSize[4] = { 1, 2, 0, 4 }; /* Size of the I/O Accesses. */
7911 static const uint32_t s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
7912
7913 const uint32_t cbSize = s_aIOSize[uIOWidth];
7914 const uint32_t cbInstr = pVmxTransient->cbInstr;
7915 PVM pVM = pVCpu->CTX_SUFF(pVM);
7916 if (fIOString)
7917 {
7918 /* INS/OUTS - I/O String instruction. */
7919 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
7920 /** @todo for now manually disassemble later optimize by getting the fields from
7921 * the VMCS. */
7922 /** @todo VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR contains the flat pointer
7923 * operand of the instruction. VMX_VMCS32_RO_EXIT_INSTR_INFO contains
7924 * segment prefix info. */
7925 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
7926 if (RT_SUCCESS(rc))
7927 {
7928 if (fIOWrite)
7929 {
7930 VBOXSTRICTRC rc2 = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
7931 (DISCPUMODE)pDis->uAddrMode, cbSize);
7932 rc = VBOXSTRICTRC_VAL(rc2);
7933 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
7934 }
7935 else
7936 {
7937 VBOXSTRICTRC rc2 = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
7938 (DISCPUMODE)pDis->uAddrMode, cbSize);
7939 rc = VBOXSTRICTRC_VAL(rc2);
7940 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
7941 }
7942 }
7943 else
7944 {
7945 AssertMsg(rc == VERR_EM_INTERPRETER, ("rc=%Rrc RIP %#RX64\n", rc, pMixedCtx->rip));
7946 rc = VINF_EM_RAW_EMULATE_INSTR;
7947 }
7948 }
7949 else
7950 {
7951 /* IN/OUT - I/O instruction. */
7952 const uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
7953 Assert(!VMX_EXIT_QUALIFICATION_IO_REP(pVmxTransient->uExitQualification));
7954 if (fIOWrite)
7955 {
7956 VBOXSTRICTRC rc2 = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbSize);
7957 rc = VBOXSTRICTRC_VAL(rc2);
7958 if (rc == VINF_IOM_R3_IOPORT_WRITE)
7959 HMR0SavePendingIOPortWrite(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbSize);
7960 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
7961 }
7962 else
7963 {
7964 uint32_t u32Result = 0;
7965 VBOXSTRICTRC rc2 = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbSize);
7966 rc = VBOXSTRICTRC_VAL(rc2);
7967 if (IOM_SUCCESS(rc))
7968 {
7969 /* Save result of I/O IN instr. in AL/AX/EAX. */
7970 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
7971 }
7972 else if (rc == VINF_IOM_R3_IOPORT_READ)
7973 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbSize);
7974 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
7975 }
7976 }
7977
7978 if (IOM_SUCCESS(rc))
7979 {
7980 pMixedCtx->rip += cbInstr;
7981 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
7982 if (RT_LIKELY(rc == VINF_SUCCESS))
7983 {
7984 rc = hmR0VmxSaveGuestDebugRegs(pVCpu, pMixedCtx); /* For DR7. */
7985 AssertRCReturn(rc, rc);
7986
7987 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
7988 if (pMixedCtx->dr[7] & X86_DR7_ENABLED_MASK)
7989 {
7990 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
7991 for (unsigned i = 0; i < 4; i++)
7992 {
7993 uint32_t uBPLen = s_aIOSize[X86_DR7_GET_LEN(pMixedCtx->dr[7], i)];
7994 if ( ( uIOPort >= pMixedCtx->dr[i]
7995 && uIOPort < pMixedCtx->dr[i] + uBPLen)
7996 && (pMixedCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
7997 && (pMixedCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
7998 {
7999 Assert(CPUMIsGuestDebugStateActive(pVCpu));
8000 uint64_t uDR6 = ASMGetDR6();
8001
8002 /* Clear all breakpoint status flags and set the one we just hit. */
8003 uDR6 &= ~(X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3);
8004 uDR6 |= (uint64_t)RT_BIT(i);
8005
8006 /*
8007 * Note: AMD64 Architecture Programmer's Manual 13.1:
8008 * Bits 15:13 of the DR6 register is never cleared by the processor and must
8009 * be cleared by software after the contents have been read.
8010 */
8011 ASMSetDR6(uDR6);
8012
8013 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
8014 pMixedCtx->dr[7] &= ~X86_DR7_GD;
8015
8016 /* Paranoia. */
8017 pMixedCtx->dr[7] &= 0xffffffff; /* Upper 32 bits reserved. */
8018 pMixedCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
8019 pMixedCtx->dr[7] |= 0x400; /* MB1. */
8020
8021 /* Resync DR7 */
8022 /** @todo probably cheaper to just reload DR7, nothing else needs changing. */
8023 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
8024
8025 /* Set #DB to be injected into the VM and continue guest execution. */
8026 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
8027 break;
8028 }
8029 }
8030 }
8031 }
8032 }
8033
8034#ifdef DEBUG
8035 if (rc == VINF_IOM_R3_IOPORT_READ)
8036 Assert(!fIOWrite);
8037 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
8038 Assert(fIOWrite);
8039 else
8040 {
8041 AssertMsg( RT_FAILURE(rc)
8042 || rc == VINF_SUCCESS
8043 || rc == VINF_EM_RAW_EMULATE_INSTR
8044 || rc == VINF_EM_RAW_GUEST_TRAP
8045 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
8046 }
8047#endif
8048
8049 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
8050 return rc;
8051}
8052
8053
8054/**
8055 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
8056 * VM-exit.
8057 */
8058static DECLCALLBACK(int) hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8059{
8060 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
8061
8062 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
8063 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8064 AssertRCReturn(rc, rc);
8065 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
8066 {
8067 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
8068 AssertRCReturn(rc, rc);
8069 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
8070 {
8071 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
8072 /* Software interrupts and exceptions will be regenerated when the recompiler restarts the instruction. */
8073 if ( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
8074 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
8075 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
8076 {
8077 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
8078 bool fErrorCodeValid = !!VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
8079
8080 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
8081 Assert(!pVCpu->hm.s.Event.fPending);
8082 pVCpu->hm.s.Event.fPending = true;
8083 pVCpu->hm.s.Event.u64IntrInfo = pVmxTransient->uIdtVectoringInfo;
8084 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
8085 AssertRCReturn(rc, rc);
8086 if (fErrorCodeValid)
8087 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
8088 else
8089 pVCpu->hm.s.Event.u32ErrCode = 0;
8090 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
8091 && uVector == X86_XCPT_PF)
8092 {
8093 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
8094 }
8095 Log(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
8096 }
8097 }
8098 }
8099 /** @todo Emulate task switch someday, currently just going back to ring-3 for
8100 * emulation. */
8101 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
8102 return VERR_EM_INTERPRETER;
8103}
8104
8105
8106/**
8107 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
8108 */
8109static DECLCALLBACK(int) hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8110{
8111 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
8112 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG);
8113 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG;
8114 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
8115 AssertRCReturn(rc, rc);
8116 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
8117 return VINF_EM_DBG_STOP;
8118}
8119
8120
8121/**
8122 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
8123 */
8124static DECLCALLBACK(int) hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8125{
8126 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
8127
8128 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
8129 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
8130 if (RT_UNLIKELY(rc == VINF_VMX_DOUBLE_FAULT))
8131 return VINF_SUCCESS;
8132 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
8133 return rc;
8134
8135#if 0
8136 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
8137 * just sync the whole thing. */
8138 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8139#else
8140 /* Aggressive state sync. for now. */
8141 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8142 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
8143 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8144#endif
8145 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8146 AssertRCReturn(rc, rc);
8147
8148 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
8149 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
8150 switch (uAccessType)
8151 {
8152 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
8153 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
8154 {
8155 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
8156 && VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) == 0x80)
8157 {
8158 AssertMsgFailed(("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
8159 }
8160
8161 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
8162 GCPhys &= PAGE_BASE_GC_MASK;
8163 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
8164 PVM pVM = pVCpu->CTX_SUFF(pVM);
8165 Log(("ApicAccess uAccessType=%#x GCPhys=%RGp Off=%#x\n", uAccessType, GCPhys,
8166 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
8167
8168 VBOXSTRICTRC rc2 = IOMMMIOPhysHandler(pVM, pVCpu,
8169 (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW,
8170 CPUMCTX2CORE(pMixedCtx), GCPhys);
8171 rc = VBOXSTRICTRC_VAL(rc2);
8172 Log(("ApicAccess rc=%d\n", rc));
8173 if ( rc == VINF_SUCCESS
8174 || rc == VERR_PAGE_TABLE_NOT_PRESENT
8175 || rc == VERR_PAGE_NOT_PRESENT)
8176 {
8177 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
8178 | HM_CHANGED_VMX_GUEST_APIC_STATE;
8179 rc = VINF_SUCCESS;
8180 }
8181 break;
8182 }
8183
8184 default:
8185 Log(("ApicAccess uAccessType=%#x\n", uAccessType));
8186 rc = VINF_EM_RAW_EMULATE_INSTR;
8187 break;
8188 }
8189
8190 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
8191 return rc;
8192}
8193
8194
8195/**
8196 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
8197 * VM-exit.
8198 */
8199static DECLCALLBACK(int) hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8200{
8201 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
8202
8203 /* We should -not- get this VM-exit if the guest is debugging. */
8204 if (CPUMIsGuestDebugStateActive(pVCpu))
8205 {
8206 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
8207 return VERR_VMX_UNEXPECTED_EXIT_CODE;
8208 }
8209
8210 int rc = VERR_INTERNAL_ERROR_5;
8211 if ( !DBGFIsStepping(pVCpu)
8212 && !CPUMIsHyperDebugStateActive(pVCpu))
8213 {
8214 /* Don't intercept MOV DRx. */
8215 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
8216 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
8217 AssertRCReturn(rc, rc);
8218
8219 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
8220 PVM pVM = pVCpu->CTX_SUFF(pVM);
8221 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pMixedCtx, true /* include DR6 */);
8222 AssertRC(rc);
8223 Assert(CPUMIsGuestDebugStateActive(pVCpu));
8224
8225#ifdef VBOX_WITH_STATISTICS
8226 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8227 AssertRCReturn(rc, rc);
8228 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
8229 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
8230 else
8231 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
8232#endif
8233 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
8234 return VINF_SUCCESS;
8235 }
8236
8237 /*
8238 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date, see
8239 * hmR0VmxSaveGuestAutoLoadStoreMsrs(). Update only the segment registers from the CPU.
8240 */
8241 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8242 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8243 AssertRCReturn(rc, rc);
8244
8245 PVM pVM = pVCpu->CTX_SUFF(pVM);
8246 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
8247 {
8248 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
8249 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
8250 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
8251 if (RT_SUCCESS(rc))
8252 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
8253 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
8254 }
8255 else
8256 {
8257 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
8258 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
8259 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
8260 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
8261 }
8262
8263 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
8264 if (RT_SUCCESS(rc))
8265 {
8266 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8267 AssertRCReturn(rc2, rc2);
8268 }
8269 return rc;
8270}
8271
8272
8273/**
8274 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
8275 * Conditional VM-exit.
8276 */
8277static DECLCALLBACK(int) hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8278{
8279 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
8280 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
8281
8282 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
8283 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
8284 if (RT_UNLIKELY(rc == VINF_VMX_DOUBLE_FAULT))
8285 return VINF_SUCCESS;
8286 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
8287 return rc;
8288
8289 RTGCPHYS GCPhys = 0;
8290 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
8291
8292#if 0
8293 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
8294#else
8295 /* Aggressive state sync. for now. */
8296 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8297 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
8298 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8299#endif
8300 AssertRCReturn(rc, rc);
8301
8302 /*
8303 * If we succeed, resume guest execution.
8304 * If we fail in interpreting the instruction because we couldn't get the guest physical address
8305 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
8306 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
8307 * weird case. See @bugref{6043}.
8308 */
8309 PVM pVM = pVCpu->CTX_SUFF(pVM);
8310 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
8311 rc = VBOXSTRICTRC_VAL(rc2);
8312 Log(("EPT misconfig at %#RGv RIP=%#RGv rc=%d\n", GCPhys, pMixedCtx->rip, rc));
8313 if ( rc == VINF_SUCCESS
8314 || rc == VERR_PAGE_TABLE_NOT_PRESENT
8315 || rc == VERR_PAGE_NOT_PRESENT)
8316 {
8317 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
8318 | HM_CHANGED_VMX_GUEST_APIC_STATE;
8319 return VINF_SUCCESS;
8320 }
8321 return rc;
8322}
8323
8324
8325/**
8326 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
8327 * VM-exit.
8328 */
8329static DECLCALLBACK(int) hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8330{
8331 VMX_VALIDATE_EXIT_HANDLER_PARAMS();
8332 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
8333
8334 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
8335 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
8336 if (RT_UNLIKELY(rc == VINF_VMX_DOUBLE_FAULT))
8337 return VINF_SUCCESS;
8338 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
8339 return rc;
8340
8341 RTGCPHYS GCPhys = 0;
8342 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
8343 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8344#if 0
8345 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
8346#else
8347 /* Aggressive state sync. for now. */
8348 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8349 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
8350 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8351#endif
8352 AssertRCReturn(rc, rc);
8353
8354 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
8355 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RGv", pVmxTransient->uExitQualification));
8356
8357 RTGCUINT uErrorCode = 0;
8358 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
8359 uErrorCode |= X86_TRAP_PF_ID;
8360 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
8361 uErrorCode |= X86_TRAP_PF_RW;
8362 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
8363 uErrorCode |= X86_TRAP_PF_P;
8364
8365 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
8366
8367 Log(("EPT violation %#x at %#RGv ErrorCode %#x CS:EIP=%04x:%#RX64\n", (uint32_t)pVmxTransient->uExitQualification, GCPhys,
8368 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
8369
8370 /* Handle the pagefault trap for the nested shadow table. */
8371 PVM pVM = pVCpu->CTX_SUFF(pVM);
8372 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
8373 TRPMResetTrap(pVCpu);
8374
8375 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
8376 if ( rc == VINF_SUCCESS
8377 || rc == VERR_PAGE_TABLE_NOT_PRESENT
8378 || rc == VERR_PAGE_NOT_PRESENT)
8379 {
8380 /* Successfully synced our shadow page tables or emulation MMIO instruction. */
8381 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
8382 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
8383 | HM_CHANGED_VMX_GUEST_APIC_STATE;
8384 return VINF_SUCCESS;
8385 }
8386
8387 Log(("EPT return to ring-3 rc=%d\n"));
8388 return rc;
8389}
8390
8391
8392/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
8393/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
8394/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
8395/**
8396 * VM-exit exception handler for #MF (Math Fault: floating point exception).
8397 */
8398static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8399{
8400 VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
8401 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
8402
8403 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8404 AssertRCReturn(rc, rc);
8405
8406 if (!(pMixedCtx->cr0 & X86_CR0_NE))
8407 {
8408 /* Old-style FPU error reporting needs some extra work. */
8409 /** @todo don't fall back to the recompiler, but do it manually. */
8410 return VERR_EM_INTERPRETER;
8411 }
8412 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8413 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
8414 return rc;
8415}
8416
8417
8418/**
8419 * VM-exit exception handler for #BP (Breakpoint exception).
8420 */
8421static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8422{
8423 VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
8424 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
8425
8426 /** @todo Try optimize this by not saving the entire guest state unless
8427 * really needed. */
8428 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8429 AssertRCReturn(rc, rc);
8430
8431 PVM pVM = pVCpu->CTX_SUFF(pVM);
8432 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
8433 if (rc == VINF_EM_RAW_GUEST_TRAP)
8434 {
8435 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
8436 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
8437 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
8438 AssertRCReturn(rc, rc);
8439
8440 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8441 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
8442 }
8443
8444 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
8445 return rc;
8446}
8447
8448
8449/**
8450 * VM-exit exception handler for #DB (Debug exception).
8451 */
8452static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8453{
8454 VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
8455 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
8456
8457 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8458 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8459 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8460 AssertRCReturn(rc, rc);
8461
8462 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
8463 uint64_t uDR6 = X86_DR6_INIT_VAL;
8464 uDR6 |= (pVmxTransient->uExitQualification
8465 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
8466 PVM pVM = pVCpu->CTX_SUFF(pVM);
8467 rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6);
8468 if (rc == VINF_EM_RAW_GUEST_TRAP)
8469 {
8470 /* DR6, DR7.GD and IA32_DEBUGCTL.LBR are not updated yet. See Intel spec. 27.1 "Architectural State before a VM-Exit". */
8471 pMixedCtx->dr[6] = uDR6;
8472
8473 if (CPUMIsGuestDebugStateActive(pVCpu))
8474 ASMSetDR6(pMixedCtx->dr[6]);
8475
8476 rc = hmR0VmxSaveGuestDebugRegs(pVCpu, pMixedCtx);
8477
8478 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
8479 pMixedCtx->dr[7] &= ~X86_DR7_GD;
8480
8481 /* Paranoia. */
8482 pMixedCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
8483 pMixedCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
8484 pMixedCtx->dr[7] |= 0x400; /* must be one */
8485
8486 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
8487 AssertRCReturn(rc,rc);
8488
8489 int rc2 = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
8490 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
8491 rc2 |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
8492 AssertRCReturn(rc2, rc2);
8493 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8494 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
8495 rc = VINF_SUCCESS;
8496 }
8497
8498 return rc;
8499}
8500
8501
8502/**
8503 * VM-exit exception handler for #NM (Device-not-available exception: floating
8504 * point exception).
8505 */
8506static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8507{
8508 VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
8509
8510#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
8511 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8512#endif
8513
8514 /* We require CR0 and EFER. EFER is always up-to-date. */
8515 int rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
8516 AssertRCReturn(rc, rc);
8517
8518 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
8519 PVM pVM = pVCpu->CTX_SUFF(pVM);
8520 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8521 if (rc == VINF_SUCCESS)
8522 {
8523 Assert(CPUMIsGuestFPUStateActive(pVCpu));
8524 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
8525 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
8526 return VINF_SUCCESS;
8527 }
8528
8529 /* Forward #NM to the guest. */
8530 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
8531 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
8532 AssertRCReturn(rc, rc);
8533 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8534 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
8535 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
8536 return rc;
8537}
8538
8539
8540/**
8541 * VM-exit exception handler for #GP (General-protection exception).
8542 *
8543 * @remarks Requires pVmxTransient->uExitIntrInfo to be up-to-date.
8544 */
8545static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8546{
8547 VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
8548 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
8549
8550 int rc = VERR_INTERNAL_ERROR_5;
8551 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
8552 {
8553#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
8554 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
8555 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
8556 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
8557 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
8558 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8559 AssertRCReturn(rc, rc);
8560 Log(("#GP Gst: RIP %#RX64 ErrorCode=%#x CR0=%#RGv CPL=%u\n", pMixedCtx->rip, pVmxTransient->uExitIntrErrorCode,
8561 pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu)));
8562 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8563 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
8564 return rc;
8565#else
8566 /* We don't intercept #GP. */
8567 AssertMsgFailed(("Unexpected VM-exit caused by #GP exception\n"));
8568 return VERR_VMX_UNEXPECTED_EXCEPTION;
8569#endif
8570 }
8571
8572 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
8573 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
8574
8575 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
8576 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8577 AssertRCReturn(rc, rc);
8578
8579 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
8580 uint32_t cbOp = 0;
8581 PVM pVM = pVCpu->CTX_SUFF(pVM);
8582 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
8583 if (RT_SUCCESS(rc))
8584 {
8585 rc = VINF_SUCCESS;
8586 Assert(cbOp == pDis->cbInstr);
8587 Log(("#GP Disas OpCode=%u CS:EIP %04x:%#RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
8588 switch (pDis->pCurInstr->uOpcode)
8589 {
8590 case OP_CLI:
8591 pMixedCtx->eflags.Bits.u1IF = 0;
8592 pMixedCtx->rip += pDis->cbInstr;
8593 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS;
8594 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
8595 break;
8596
8597 case OP_STI:
8598 pMixedCtx->eflags.Bits.u1IF = 1;
8599 pMixedCtx->rip += pDis->cbInstr;
8600 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
8601 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
8602 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS;
8603 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
8604 break;
8605
8606 case OP_HLT:
8607 rc = VINF_EM_HALT;
8608 pMixedCtx->rip += pDis->cbInstr;
8609 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
8610 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
8611 break;
8612
8613 case OP_POPF:
8614 {
8615 Log(("POPF CS:RIP %04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
8616 uint32_t cbParm = 0;
8617 uint32_t uMask = 0;
8618 if (pDis->fPrefix & DISPREFIX_OPSIZE)
8619 {
8620 cbParm = 4;
8621 uMask = 0xffffffff;
8622 }
8623 else
8624 {
8625 cbParm = 2;
8626 uMask = 0xffff;
8627 }
8628
8629 /* Get the stack pointer & pop the contents of the stack onto EFlags. */
8630 RTGCPTR GCPtrStack = 0;
8631 X86EFLAGS uEflags;
8632 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
8633 &GCPtrStack);
8634 if (RT_SUCCESS(rc))
8635 {
8636 Assert(sizeof(uEflags.u32) >= cbParm);
8637 uEflags.u32 = 0;
8638 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &uEflags.u32, cbParm);
8639 }
8640 if (RT_FAILURE(rc))
8641 {
8642 rc = VERR_EM_INTERPRETER;
8643 break;
8644 }
8645 Log(("POPF %x -> %#RGv mask=%x RIP=%#RX64\n", uEflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
8646 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
8647 | (uEflags.u32 & X86_EFL_POPF_BITS & uMask);
8648 /* The RF bit is always cleared by POPF; see Intel Instruction reference for POPF. */
8649 pMixedCtx->eflags.Bits.u1RF = 0;
8650 pMixedCtx->esp += cbParm;
8651 pMixedCtx->esp &= uMask;
8652 pMixedCtx->rip += pDis->cbInstr;
8653 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS;
8654 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
8655 break;
8656 }
8657
8658 case OP_PUSHF:
8659 {
8660 uint32_t cbParm = 0;
8661 uint32_t uMask = 0;
8662 if (pDis->fPrefix & DISPREFIX_OPSIZE)
8663 {
8664 cbParm = 4;
8665 uMask = 0xffffffff;
8666 }
8667 else
8668 {
8669 cbParm = 2;
8670 uMask = 0xffff;
8671 }
8672
8673 /* Get the stack pointer & push the contents of eflags onto the stack. */
8674 RTGCPTR GCPtrStack = 0;
8675 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
8676 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
8677 if (RT_FAILURE(rc))
8678 {
8679 rc = VERR_EM_INTERPRETER;
8680 break;
8681 }
8682 X86EFLAGS uEflags;
8683 uEflags = pMixedCtx->eflags;
8684 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
8685 uEflags.Bits.u1RF = 0;
8686 uEflags.Bits.u1VM = 0;
8687
8688 rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &uEflags.u, cbParm);
8689 if (RT_FAILURE(rc))
8690 {
8691 rc = VERR_EM_INTERPRETER;
8692 break;
8693 }
8694 Log(("PUSHF %x -> %#RGv\n", uEflags.u, GCPtrStack));
8695 pMixedCtx->esp -= cbParm;
8696 pMixedCtx->esp &= uMask;
8697 pMixedCtx->rip += pDis->cbInstr;
8698 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP;
8699 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
8700 break;
8701 }
8702
8703 case OP_IRET:
8704 {
8705 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
8706 * instruction reference. */
8707 RTGCPTR GCPtrStack = 0;
8708 uint32_t uMask = 0xffff;
8709 uint16_t aIretFrame[3];
8710 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
8711 {
8712 rc = VERR_EM_INTERPRETER;
8713 break;
8714 }
8715 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
8716 &GCPtrStack);
8717 if (RT_SUCCESS(rc))
8718 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
8719 if (RT_FAILURE(rc))
8720 {
8721 rc = VERR_EM_INTERPRETER;
8722 break;
8723 }
8724 pMixedCtx->eip = 0;
8725 pMixedCtx->ip = aIretFrame[0];
8726 pMixedCtx->cs.Sel = aIretFrame[1];
8727 pMixedCtx->cs.ValidSel = aIretFrame[1];
8728 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
8729 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
8730 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
8731 pMixedCtx->sp += sizeof(aIretFrame);
8732 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_SEGMENT_REGS | HM_CHANGED_GUEST_RSP
8733 | HM_CHANGED_GUEST_RFLAGS;
8734 Log(("IRET %#RX32 to %04x:%x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
8735 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
8736 break;
8737 }
8738
8739 case OP_INT:
8740 {
8741 uint16_t uVector = pDis->Param1.uValue & 0xff;
8742 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
8743 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
8744 break;
8745 }
8746
8747 case OP_INTO:
8748 {
8749 if (pMixedCtx->eflags.Bits.u1OF)
8750 {
8751 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
8752 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
8753 }
8754 break;
8755 }
8756
8757 default:
8758 {
8759 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
8760 EMCODETYPE_SUPERVISOR);
8761 rc = VBOXSTRICTRC_VAL(rc2);
8762 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
8763 Log(("#GP rc=%Rrc\n", rc));
8764 break;
8765 }
8766 }
8767 }
8768 else
8769 rc = VERR_EM_INTERPRETER;
8770
8771 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
8772 ("#GP Unexpected rc=%Rrc\n", rc));
8773 return rc;
8774}
8775
8776
8777/**
8778 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
8779 * the exception reported in the VMX transient structure back into the VM.
8780 *
8781 * @remarks Requires uExitIntrInfo, uExitIntrErrorCode, cbInstr fields in the
8782 * VMX transient structure to be up-to-date.
8783 */
8784static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8785{
8786 VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
8787
8788 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
8789 hmR0VmxCheckExitDueToEventDelivery(). */
8790 int rc = hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
8791 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
8792 AssertRCReturn(rc, rc);
8793 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
8794 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8795 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
8796 return VINF_SUCCESS;
8797}
8798
8799
8800/**
8801 * VM-exit exception handler for #PF (Page-fault exception).
8802 */
8803static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8804{
8805 VMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
8806 PVM pVM = pVCpu->CTX_SUFF(pVM);
8807 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8808 rc |= hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
8809 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
8810 AssertRCReturn(rc, rc);
8811
8812#if defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) || defined(HMVMX_ALWAYS_TRAP_PF)
8813 if (pVM->hm.s.fNestedPaging)
8814 {
8815 if (RT_LIKELY(!pVmxTransient->fVectoringPF))
8816 {
8817 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
8818 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
8819 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8820 0 /* cbInstr */, pVmxTransient->uExitIntrErrorCode, pVmxTransient->uExitQualification);
8821 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
8822 }
8823 else
8824 {
8825 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
8826 pVCpu->hm.s.Event.fPending = false; /* A vectoring #PF. */
8827 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
8828 Log(("Pending #DF due to vectoring #PF. NP\n"));
8829 }
8830 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
8831 return rc;
8832 }
8833#else
8834 Assert(!pVM->hm.s.fNestedPaging);
8835#endif
8836
8837#ifdef VBOX_HM_WITH_GUEST_PATCHING
8838 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
8839 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8840 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8841 AssertRCReturn(rc, rc);
8842 /* Shortcut for APIC TPR access, only for 32-bit guests. */
8843 if ( pVM->hm.s.fTRPPatchingAllowed
8844 && pVM->hm.s.pGuestPatchMem
8845 && (pVmxTransient->uExitQualification & 0xfff) == 0x80 /* TPR offset */
8846 && !(pVmxTransient->uExitIntrErrorCode & X86_TRAP_PF_P) /* Page not present */
8847 && CPUMGetGuestCPL(pVCpu) == 0 /* Requires CR0, EFLAGS, segments. */
8848 && !CPUMIsGuestInLongModeEx(pMixedCtx) /* Requires EFER. */
8849 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
8850 {
8851 RTGCPHYS GCPhys;
8852 RTGCPHYS GCPhysApicBase = (pMixedCtx->msrApicBase & PAGE_BASE_GC_MASK);
8853 rc = PGMGstGetPage(pVCpu, (RTGCPTR)pVmxTransient->uExitQualification, NULL /* pfFlags */, &GCPhys);
8854 if ( rc == VINF_SUCCESS
8855 && GCPhys == GCPhysApicBase)
8856 {
8857 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
8858 AssertRCReturn(rc, rc);
8859
8860 /* Only attempt to patch the instruction once. */
8861 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pMixedCtx->eip);
8862 if (!pPatch)
8863 return VINF_EM_HM_PATCH_TPR_INSTR;
8864 }
8865 }
8866#endif
8867
8868 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8869 AssertRCReturn(rc, rc);
8870
8871 Log(("#PF: cr2=%#RGv cs:rip=%#04x:%#RGv uErrCode %#RX32 cr3=%#RGv\n", pVmxTransient->uExitQualification, pMixedCtx->cs.Sel,
8872 pMixedCtx->rip, pVmxTransient->uExitIntrErrorCode, pMixedCtx->cr3));
8873
8874 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntrErrorCode);
8875 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntrErrorCode, CPUMCTX2CORE(pMixedCtx),
8876 (RTGCPTR)pVmxTransient->uExitQualification);
8877
8878 Log(("#PF: rc=%Rrc\n", rc));
8879 if (rc == VINF_SUCCESS)
8880 {
8881 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
8882 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
8883 * memory? We don't update the whole state here... */
8884 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
8885 | HM_CHANGED_VMX_GUEST_APIC_STATE;
8886 TRPMResetTrap(pVCpu);
8887 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
8888 return rc;
8889 }
8890 else if (rc == VINF_EM_RAW_GUEST_TRAP)
8891 {
8892 if (!pVmxTransient->fVectoringPF)
8893 {
8894 /* It's a guest page fault and needs to be reflected to the guest. */
8895 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
8896 TRPMResetTrap(pVCpu);
8897 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
8898 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
8899 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
8900 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
8901 }
8902 else
8903 {
8904 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
8905 TRPMResetTrap(pVCpu);
8906 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF for replace it with #DF. */
8907 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
8908 Log(("#PF: Pending #DF due to vectoring #PF\n"));
8909 }
8910
8911 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
8912 return VINF_SUCCESS;
8913 }
8914
8915 TRPMResetTrap(pVCpu);
8916 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
8917 return rc;
8918}
8919
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette