VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 48370

Last change on this file since 48370 was 48370, checked in by vboxsync, 11 years ago

EM,HM: MWait fix, clearing the active bit too early.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 446.6 KB
Line 
1/* $Id: HMVMXR0.cpp 48370 2013-09-06 18:28:00Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/asm-amd64-x86.h>
23#include <iprt/thread.h>
24#include <iprt/string.h>
25
26#include "HMInternal.h"
27#include <VBox/vmm/vm.h>
28#include "HMVMXR0.h"
29#include <VBox/vmm/pdmapi.h>
30#include <VBox/vmm/dbgf.h>
31#include <VBox/vmm/iem.h>
32#include <VBox/vmm/iom.h>
33#include <VBox/vmm/selm.h>
34#include <VBox/vmm/tm.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#ifdef DEBUG_ramshankar
39#define HMVMX_SAVE_FULL_GUEST_STATE
40#define HMVMX_SYNC_FULL_GUEST_STATE
41#define HMVMX_ALWAYS_CHECK_GUEST_STATE
42#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
43#define HMVMX_ALWAYS_TRAP_PF
44#endif
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50#if defined(RT_ARCH_AMD64)
51# define HMVMX_IS_64BIT_HOST_MODE() (true)
52typedef RTHCUINTREG HMVMXHCUINTREG;
53#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
54extern "C" uint32_t g_fVMXIs64bitHost;
55# define HMVMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
56typedef uint64_t HMVMXHCUINTREG;
57#else
58# define HMVMX_IS_64BIT_HOST_MODE() (false)
59typedef RTHCUINTREG HMVMXHCUINTREG;
60#endif
61
62/** Use the function table. */
63#define HMVMX_USE_FUNCTION_TABLE
64
65/** Determine which tagged-TLB flush handler to use. */
66#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
67#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
68#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
69#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
70
71/** @name Updated-guest-state flags.
72 * @{ */
73#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
74#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
75#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
76#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
77#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
78#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
79#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
80#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
81#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
82#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
83#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
84#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
85#define HMVMX_UPDATED_GUEST_FS_BASE_MSR RT_BIT(12)
86#define HMVMX_UPDATED_GUEST_GS_BASE_MSR RT_BIT(13)
87#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(14)
88#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(15)
89#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(16)
90#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(17)
91#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(18)
92#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
93#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
94 | HMVMX_UPDATED_GUEST_RSP \
95 | HMVMX_UPDATED_GUEST_RFLAGS \
96 | HMVMX_UPDATED_GUEST_CR0 \
97 | HMVMX_UPDATED_GUEST_CR3 \
98 | HMVMX_UPDATED_GUEST_CR4 \
99 | HMVMX_UPDATED_GUEST_GDTR \
100 | HMVMX_UPDATED_GUEST_IDTR \
101 | HMVMX_UPDATED_GUEST_LDTR \
102 | HMVMX_UPDATED_GUEST_TR \
103 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
104 | HMVMX_UPDATED_GUEST_DEBUG \
105 | HMVMX_UPDATED_GUEST_FS_BASE_MSR \
106 | HMVMX_UPDATED_GUEST_GS_BASE_MSR \
107 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
108 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
109 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
110 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
111 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
112 | HMVMX_UPDATED_GUEST_APIC_STATE)
113/** @} */
114
115/** @name
116 * Flags to skip redundant reads of some common VMCS fields that are not part of
117 * the guest-CPU state but are in the transient structure.
118 */
119#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
120#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
124#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
125/** @} */
126
127/** @name
128 * States of the VMCS.
129 *
130 * This does not reflect all possible VMCS states but currently only those
131 * needed for maintaining the VMCS consistently even when thread-context hooks
132 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
133 */
134#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
135#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
136#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
137/** @} */
138
139/**
140 * Exception bitmap mask for real-mode guests (real-on-v86).
141 *
142 * We need to intercept all exceptions manually (except #PF). #NM is also
143 * handled separately, see hmR0VmxLoadGuestControlRegs(). #PF need not be
144 * intercepted even in real-mode if we have Nested Paging support.
145 */
146#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_NMI) \
147 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
148 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
149 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
150 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
151 | RT_BIT(X86_XCPT_MF) | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) \
152 | RT_BIT(X86_XCPT_XF))
153
154/**
155 * Exception bitmap mask for all contributory exceptions.
156 *
157 * Page fault is deliberately excluded here as it's conditional as to whether
158 * it's contributory or benign. Page faults are handled separately.
159 */
160#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
161 | RT_BIT(X86_XCPT_DE))
162
163/** Maximum VM-instruction error number. */
164#define HMVMX_INSTR_ERROR_MAX 28
165
166/** Profiling macro. */
167#ifdef HM_PROFILE_EXIT_DISPATCH
168# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
169# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
170#else
171# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
172# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
173#endif
174
175/** Assert that preemption is disabled or covered by thread-context hooks. */
176#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
177 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
178
179/** Assert that we haven't migrated CPUs when thread-context hooks are not
180 * used. */
181#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
182 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
183 ("Illegal migration! Entered on CPU %u Current %u\n", \
184 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
185
186/*******************************************************************************
187* Structures and Typedefs *
188*******************************************************************************/
189/**
190 * VMX transient state.
191 *
192 * A state structure for holding miscellaneous information across
193 * VMX non-root operation and restored after the transition.
194 */
195typedef struct VMXTRANSIENT
196{
197 /** The host's rflags/eflags. */
198 RTCCUINTREG uEflags;
199#if HC_ARCH_BITS == 32
200 uint32_t u32Alignment0;
201#endif
202 /** The guest's LSTAR MSR value used for TPR patching for 32-bit guests. */
203 uint64_t u64LStarMsr;
204 /** The guest's TPR value used for TPR shadowing. */
205 uint8_t u8GuestTpr;
206 /** Alignment. */
207 uint8_t abAlignment0[7];
208
209 /** The basic VM-exit reason. */
210 uint16_t uExitReason;
211 /** Alignment. */
212 uint16_t u16Alignment0;
213 /** The VM-exit interruption error code. */
214 uint32_t uExitIntrErrorCode;
215 /** The VM-exit exit qualification. */
216 uint64_t uExitQualification;
217
218 /** The VM-exit interruption-information field. */
219 uint32_t uExitIntrInfo;
220 /** The VM-exit instruction-length field. */
221 uint32_t cbInstr;
222 /** The VM-exit instruction-information field. */
223 union
224 {
225 /** Plain unsigned int representation. */
226 uint32_t u;
227 /** INS and OUTS information. */
228 struct
229 {
230 uint32_t u6Reserved0 : 6;
231 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
232 uint32_t u3AddrSize : 3;
233 uint32_t u5Reserved1 : 5;
234 /** The segment register (X86_SREG_XXX). */
235 uint32_t iSegReg : 3;
236 uint32_t uReserved2 : 14;
237 } StrIo;
238 } ExitInstrInfo;
239 /** Whether the VM-entry failed or not. */
240 bool fVMEntryFailed;
241 /** Alignment. */
242 uint8_t abAlignment1[3];
243
244 /** The VM-entry interruption-information field. */
245 uint32_t uEntryIntrInfo;
246 /** The VM-entry exception error code field. */
247 uint32_t uEntryXcptErrorCode;
248 /** The VM-entry instruction length field. */
249 uint32_t cbEntryInstr;
250
251 /** IDT-vectoring information field. */
252 uint32_t uIdtVectoringInfo;
253 /** IDT-vectoring error code. */
254 uint32_t uIdtVectoringErrorCode;
255
256 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
257 uint32_t fVmcsFieldsRead;
258 /** Whether TSC-offsetting should be setup before VM-entry. */
259 bool fUpdateTscOffsettingAndPreemptTimer;
260 /** Whether the VM-exit was caused by a page-fault during delivery of a
261 * contributory exception or a page-fault. */
262 bool fVectoringPF;
263} VMXTRANSIENT;
264AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
265AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntrInfo, sizeof(uint64_t));
266AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntrInfo, sizeof(uint64_t));
267AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
268/** Pointer to VMX transient state. */
269typedef VMXTRANSIENT *PVMXTRANSIENT;
270
271
272/**
273 * MSR-bitmap read permissions.
274 */
275typedef enum VMXMSREXITREAD
276{
277 /** Reading this MSR causes a VM-exit. */
278 VMXMSREXIT_INTERCEPT_READ = 0xb,
279 /** Reading this MSR does not cause a VM-exit. */
280 VMXMSREXIT_PASSTHRU_READ
281} VMXMSREXITREAD;
282
283/**
284 * MSR-bitmap write permissions.
285 */
286typedef enum VMXMSREXITWRITE
287{
288 /** Writing to this MSR causes a VM-exit. */
289 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
290 /** Writing to this MSR does not cause a VM-exit. */
291 VMXMSREXIT_PASSTHRU_WRITE
292} VMXMSREXITWRITE;
293
294/**
295 * VMX VM-exit handler.
296 *
297 * @returns VBox status code.
298 * @param pVCpu Pointer to the VMCPU.
299 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
300 * out-of-sync. Make sure to update the required
301 * fields before using them.
302 * @param pVmxTransient Pointer to the VMX-transient structure.
303 */
304#ifndef HMVMX_USE_FUNCTION_TABLE
305typedef int FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
306#else
307typedef DECLCALLBACK(int) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
308/** Pointer to VM-exit handler. */
309typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
310#endif
311
312
313/*******************************************************************************
314* Internal Functions *
315*******************************************************************************/
316static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush);
317static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr);
318static void hmR0VmxClearEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx);
319static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntrInfo, uint32_t cbInstr,
320 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState);
321#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
322static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
323#endif
324#ifndef HMVMX_USE_FUNCTION_TABLE
325DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
326# define HMVMX_EXIT_DECL static int
327#else
328# define HMVMX_EXIT_DECL static DECLCALLBACK(int)
329#endif
330
331/** @name VM-exit handlers.
332 * @{
333 */
334static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
335static FNVMXEXITHANDLER hmR0VmxExitExtInt;
336static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
337static FNVMXEXITHANDLER hmR0VmxExitInitSignal;
338static FNVMXEXITHANDLER hmR0VmxExitSipi;
339static FNVMXEXITHANDLER hmR0VmxExitIoSmi;
340static FNVMXEXITHANDLER hmR0VmxExitSmi;
341static FNVMXEXITHANDLER hmR0VmxExitIntWindow;
342static FNVMXEXITHANDLER hmR0VmxExitNmiWindow;
343static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
344static FNVMXEXITHANDLER hmR0VmxExitCpuid;
345static FNVMXEXITHANDLER hmR0VmxExitGetsec;
346static FNVMXEXITHANDLER hmR0VmxExitHlt;
347static FNVMXEXITHANDLER hmR0VmxExitInvd;
348static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
349static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
350static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
351static FNVMXEXITHANDLER hmR0VmxExitRsm;
352static FNVMXEXITHANDLER hmR0VmxExitSetPendingXcptUD;
353static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
354static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
355static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
356static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
357static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
358static FNVMXEXITHANDLER hmR0VmxExitErrInvalidGuestState;
359static FNVMXEXITHANDLER hmR0VmxExitErrMsrLoad;
360static FNVMXEXITHANDLER hmR0VmxExitErrUndefined;
361static FNVMXEXITHANDLER hmR0VmxExitMwait;
362static FNVMXEXITHANDLER hmR0VmxExitMtf;
363static FNVMXEXITHANDLER hmR0VmxExitMonitor;
364static FNVMXEXITHANDLER hmR0VmxExitPause;
365static FNVMXEXITHANDLER hmR0VmxExitErrMachineCheck;
366static FNVMXEXITHANDLER hmR0VmxExitTprBelowThreshold;
367static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
368static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
369static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
370static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
371static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
372static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
373static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
374static FNVMXEXITHANDLER hmR0VmxExitWbinvd;
375static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
376static FNVMXEXITHANDLER hmR0VmxExitRdrand;
377static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
378/** @} */
379
380static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
381static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
382static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
383static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
384static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
385static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
386static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
387static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
388
389/*******************************************************************************
390* Global Variables *
391*******************************************************************************/
392#ifdef HMVMX_USE_FUNCTION_TABLE
393
394/**
395 * VMX_EXIT dispatch table.
396 */
397static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
398{
399 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
400 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
401 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
402 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
403 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
404 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
405 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
406 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
407 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
408 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
409 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
410 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
411 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
412 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
413 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
414 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
415 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
416 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
417 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitSetPendingXcptUD,
418 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
419 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
420 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
421 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
422 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
423 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
424 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
425 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
426 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
427 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
428 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
429 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
430 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
431 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
432 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
433 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
434 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
435 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
436 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
437 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
438 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
439 /* 40 UNDEFINED */ hmR0VmxExitPause,
440 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
441 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
442 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
443 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
444 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
445 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
446 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
447 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
448 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
449 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
450 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
451 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
452 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
453 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
454 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
455 /* 56 UNDEFINED */ hmR0VmxExitErrUndefined,
456 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
457 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
458 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD
459};
460#endif /* HMVMX_USE_FUNCTION_TABLE */
461
462#ifdef VBOX_STRICT
463static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
464{
465 /* 0 */ "(Not Used)",
466 /* 1 */ "VMCALL executed in VMX root operation.",
467 /* 2 */ "VMCLEAR with invalid physical address.",
468 /* 3 */ "VMCLEAR with VMXON pointer.",
469 /* 4 */ "VMLAUNCH with non-clear VMCS.",
470 /* 5 */ "VMRESUME with non-launched VMCS.",
471 /* 6 */ "VMRESUME after VMXOFF",
472 /* 7 */ "VM entry with invalid control fields.",
473 /* 8 */ "VM entry with invalid host state fields.",
474 /* 9 */ "VMPTRLD with invalid physical address.",
475 /* 10 */ "VMPTRLD with VMXON pointer.",
476 /* 11 */ "VMPTRLD with incorrect revision identifier.",
477 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
478 /* 13 */ "VMWRITE to read-only VMCS component.",
479 /* 14 */ "(Not Used)",
480 /* 15 */ "VMXON executed in VMX root operation.",
481 /* 16 */ "VM entry with invalid executive-VMCS pointer.",
482 /* 17 */ "VM entry with non-launched executing VMCS.",
483 /* 18 */ "VM entry with executive-VMCS pointer not VMXON pointer.",
484 /* 19 */ "VMCALL with non-clear VMCS.",
485 /* 20 */ "VMCALL with invalid VM-exit control fields.",
486 /* 21 */ "(Not Used)",
487 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
488 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
489 /* 24 */ "VMCALL with invalid SMM-monitor features.",
490 /* 25 */ "VM entry with invalid VM-execution control fields in executive VMCS.",
491 /* 26 */ "VM entry with events blocked by MOV SS.",
492 /* 27 */ "(Not Used)",
493 /* 28 */ "Invalid operand to INVEPT/INVVPID."
494};
495#endif /* VBOX_STRICT */
496
497
498
499/**
500 * Updates the VM's last error record. If there was a VMX instruction error,
501 * reads the error data from the VMCS and updates VCPU's last error record as
502 * well.
503 *
504 * @param pVM Pointer to the VM.
505 * @param pVCpu Pointer to the VMCPU (can be NULL if @a rc is not
506 * VERR_VMX_UNABLE_TO_START_VM or
507 * VERR_VMX_INVALID_VMCS_FIELD).
508 * @param rc The error code.
509 */
510static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
511{
512 AssertPtr(pVM);
513 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
514 || rc == VERR_VMX_UNABLE_TO_START_VM)
515 {
516 AssertPtrReturnVoid(pVCpu);
517 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
518 }
519 pVM->hm.s.lLastError = rc;
520}
521
522
523/**
524 * Reads the VM-entry interruption-information field from the VMCS into the VMX
525 * transient structure.
526 *
527 * @returns VBox status code.
528 * @param pVmxTransient Pointer to the VMX transient structure.
529 *
530 * @remarks No-long-jump zone!!!
531 */
532DECLINLINE(int) hmR0VmxReadEntryIntrInfoVmcs(PVMXTRANSIENT pVmxTransient)
533{
534 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntrInfo);
535 AssertRCReturn(rc, rc);
536 return VINF_SUCCESS;
537}
538
539
540/**
541 * Reads the VM-entry exception error code field from the VMCS into
542 * the VMX transient structure.
543 *
544 * @returns VBox status code.
545 * @param pVmxTransient Pointer to the VMX transient structure.
546 *
547 * @remarks No-long-jump zone!!!
548 */
549DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
550{
551 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
552 AssertRCReturn(rc, rc);
553 return VINF_SUCCESS;
554}
555
556
557/**
558 * Reads the VM-entry exception error code field from the VMCS into
559 * the VMX transient structure.
560 *
561 * @returns VBox status code.
562 * @param pVCpu Pointer to the VMCPU.
563 * @param pVmxTransient Pointer to the VMX transient structure.
564 *
565 * @remarks No-long-jump zone!!!
566 */
567DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
568{
569 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
570 AssertRCReturn(rc, rc);
571 return VINF_SUCCESS;
572}
573
574
575/**
576 * Reads the VM-exit interruption-information field from the VMCS into the VMX
577 * transient structure.
578 *
579 * @returns VBox status code.
580 * @param pVCpu Pointer to the VMCPU.
581 * @param pVmxTransient Pointer to the VMX transient structure.
582 */
583DECLINLINE(int) hmR0VmxReadExitIntrInfoVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
584{
585 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
586 {
587 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntrInfo);
588 AssertRCReturn(rc, rc);
589 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
590 }
591 return VINF_SUCCESS;
592}
593
594
595/**
596 * Reads the VM-exit interruption error code from the VMCS into the VMX
597 * transient structure.
598 *
599 * @returns VBox status code.
600 * @param pVCpu Pointer to the VMCPU.
601 * @param pVmxTransient Pointer to the VMX transient structure.
602 */
603DECLINLINE(int) hmR0VmxReadExitIntrErrorCodeVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
604{
605 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
606 {
607 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntrErrorCode);
608 AssertRCReturn(rc, rc);
609 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
610 }
611 return VINF_SUCCESS;
612}
613
614
615/**
616 * Reads the VM-exit instruction length field from the VMCS into the VMX
617 * transient structure.
618 *
619 * @returns VBox status code.
620 * @param pVCpu Pointer to the VMCPU.
621 * @param pVmxTransient Pointer to the VMX transient structure.
622 */
623DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
624{
625 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
626 {
627 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
628 AssertRCReturn(rc, rc);
629 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
630 }
631 return VINF_SUCCESS;
632}
633
634
635/**
636 * Reads the VM-exit instruction-information field from the VMCS into
637 * the VMX transient structure.
638 *
639 * @returns VBox status code.
640 * @param pVCpu The cross context per CPU structure.
641 * @param pVmxTransient Pointer to the VMX transient structure.
642 */
643DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
644{
645 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
646 {
647 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->cbInstr);
648 AssertRCReturn(rc, rc);
649 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
650 }
651 return VINF_SUCCESS;
652}
653
654
655/**
656 * Reads the exit qualification from the VMCS into the VMX transient structure.
657 *
658 * @returns VBox status code.
659 * @param pVCpu Pointer to the VMCPU.
660 * @param pVmxTransient Pointer to the VMX transient structure.
661 */
662DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
663{
664 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
665 {
666 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification);
667 AssertRCReturn(rc, rc);
668 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
669 }
670 return VINF_SUCCESS;
671}
672
673
674/**
675 * Reads the IDT-vectoring information field from the VMCS into the VMX
676 * transient structure.
677 *
678 * @returns VBox status code.
679 * @param pVmxTransient Pointer to the VMX transient structure.
680 *
681 * @remarks No-long-jump zone!!!
682 */
683DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
684{
685 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
686 {
687 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
688 AssertRCReturn(rc, rc);
689 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
690 }
691 return VINF_SUCCESS;
692}
693
694
695/**
696 * Reads the IDT-vectoring error code from the VMCS into the VMX
697 * transient structure.
698 *
699 * @returns VBox status code.
700 * @param pVmxTransient Pointer to the VMX transient structure.
701 */
702DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
703{
704 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
705 {
706 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
707 AssertRCReturn(rc, rc);
708 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
709 }
710 return VINF_SUCCESS;
711}
712
713
714/**
715 * Enters VMX root mode operation on the current CPU.
716 *
717 * @returns VBox status code.
718 * @param pVM Pointer to the VM (optional, can be NULL, after
719 * a resume).
720 * @param HCPhysCpuPage Physical address of the VMXON region.
721 * @param pvCpuPage Pointer to the VMXON region.
722 */
723static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
724{
725 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
726 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
727 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
728
729 if (pVM)
730 {
731 /* Write the VMCS revision dword to the VMXON region. */
732 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
733 }
734
735 /* Enable the VMX bit in CR4 if necessary. */
736 RTCCUINTREG uCr4 = ASMGetCR4();
737 if (!(uCr4 & X86_CR4_VMXE))
738 ASMSetCR4(uCr4 | X86_CR4_VMXE);
739
740 /* Enter VMX root mode. */
741 int rc = VMXEnable(HCPhysCpuPage);
742 if (RT_FAILURE(rc))
743 ASMSetCR4(uCr4);
744
745 return rc;
746}
747
748
749/**
750 * Exits VMX root mode operation on the current CPU.
751 *
752 * @returns VBox status code.
753 */
754static int hmR0VmxLeaveRootMode(void)
755{
756 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
757
758 /* If we're for some reason not in VMX root mode, then don't leave it. */
759 RTCCUINTREG uHostCR4 = ASMGetCR4();
760 if (uHostCR4 & X86_CR4_VMXE)
761 {
762 /* Exit VMX root mode and clear the VMX bit in CR4. */
763 VMXDisable();
764 ASMSetCR4(uHostCR4 & ~X86_CR4_VMXE);
765 return VINF_SUCCESS;
766 }
767
768 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
769}
770
771
772/**
773 * Allocates and maps one physically contiguous page. The allocated page is
774 * zero'd out. (Used by various VT-x structures).
775 *
776 * @returns IPRT status code.
777 * @param pMemObj Pointer to the ring-0 memory object.
778 * @param ppVirt Where to store the virtual address of the
779 * allocation.
780 * @param pPhys Where to store the physical address of the
781 * allocation.
782 */
783DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
784{
785 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
786 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
787 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
788
789 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
790 if (RT_FAILURE(rc))
791 return rc;
792 *ppVirt = RTR0MemObjAddress(*pMemObj);
793 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
794 ASMMemZero32(*ppVirt, PAGE_SIZE);
795 return VINF_SUCCESS;
796}
797
798
799/**
800 * Frees and unmaps an allocated physical page.
801 *
802 * @param pMemObj Pointer to the ring-0 memory object.
803 * @param ppVirt Where to re-initialize the virtual address of
804 * allocation as 0.
805 * @param pHCPhys Where to re-initialize the physical address of the
806 * allocation as 0.
807 */
808DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
809{
810 AssertPtr(pMemObj);
811 AssertPtr(ppVirt);
812 AssertPtr(pHCPhys);
813 if (*pMemObj != NIL_RTR0MEMOBJ)
814 {
815 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
816 AssertRC(rc);
817 *pMemObj = NIL_RTR0MEMOBJ;
818 *ppVirt = 0;
819 *pHCPhys = 0;
820 }
821}
822
823
824/**
825 * Worker function to free VT-x related structures.
826 *
827 * @returns IPRT status code.
828 * @param pVM Pointer to the VM.
829 */
830static void hmR0VmxStructsFree(PVM pVM)
831{
832 for (VMCPUID i = 0; i < pVM->cCpus; i++)
833 {
834 PVMCPU pVCpu = &pVM->aCpus[i];
835 AssertPtr(pVCpu);
836
837#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
838 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
839 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
840#endif
841
842 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
843 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
844
845 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
846 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
847 }
848
849 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
850#ifdef VBOX_WITH_CRASHDUMP_MAGIC
851 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
852#endif
853}
854
855
856/**
857 * Worker function to allocate VT-x related VM structures.
858 *
859 * @returns IPRT status code.
860 * @param pVM Pointer to the VM.
861 */
862static int hmR0VmxStructsAlloc(PVM pVM)
863{
864 /*
865 * Initialize members up-front so we can cleanup properly on allocation failure.
866 */
867#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
868 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
869 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
870 pVM->hm.s.vmx.HCPhys##a_Name = 0;
871
872#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
873 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
874 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
875 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
876
877#ifdef VBOX_WITH_CRASHDUMP_MAGIC
878 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
879#endif
880 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
881
882 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
883 for (VMCPUID i = 0; i < pVM->cCpus; i++)
884 {
885 PVMCPU pVCpu = &pVM->aCpus[i];
886 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
887 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
888 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
889#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
890 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
891 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
892#endif
893 }
894#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
895#undef VMXLOCAL_INIT_VM_MEMOBJ
896
897 /*
898 * Allocate all the VT-x structures.
899 */
900 int rc = VINF_SUCCESS;
901#ifdef VBOX_WITH_CRASHDUMP_MAGIC
902 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
903 if (RT_FAILURE(rc))
904 goto cleanup;
905 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
906 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
907#endif
908
909 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
910 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
911 {
912 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
913 &pVM->hm.s.vmx.HCPhysApicAccess);
914 if (RT_FAILURE(rc))
915 goto cleanup;
916 }
917
918 /*
919 * Initialize per-VCPU VT-x structures.
920 */
921 for (VMCPUID i = 0; i < pVM->cCpus; i++)
922 {
923 PVMCPU pVCpu = &pVM->aCpus[i];
924 AssertPtr(pVCpu);
925
926 /* Allocate the VM control structure (VMCS). */
927 AssertReturn(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE, VERR_INTERNAL_ERROR);
928 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
929 if (RT_FAILURE(rc))
930 goto cleanup;
931
932 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
933 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
934 {
935 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
936 &pVCpu->hm.s.vmx.HCPhysVirtApic);
937 if (RT_FAILURE(rc))
938 goto cleanup;
939 }
940
941 /* Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for transparent accesses of specific MSRs. */
942 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
943 {
944 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
945 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
946 if (RT_FAILURE(rc))
947 goto cleanup;
948 memset(pVCpu->hm.s.vmx.pvMsrBitmap, 0xff, PAGE_SIZE);
949 }
950
951#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
952 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
953 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
954 if (RT_FAILURE(rc))
955 goto cleanup;
956
957 /* Allocate the VM-exit MSR-load page for the host MSRs. */
958 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
959 if (RT_FAILURE(rc))
960 goto cleanup;
961#endif
962 }
963
964 return VINF_SUCCESS;
965
966cleanup:
967 hmR0VmxStructsFree(pVM);
968 return rc;
969}
970
971
972/**
973 * Does global VT-x initialization (called during module initialization).
974 *
975 * @returns VBox status code.
976 */
977VMMR0DECL(int) VMXR0GlobalInit(void)
978{
979#ifdef HMVMX_USE_FUNCTION_TABLE
980 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
981# ifdef VBOX_STRICT
982 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
983 Assert(g_apfnVMExitHandlers[i]);
984# endif
985#endif
986 return VINF_SUCCESS;
987}
988
989
990/**
991 * Does global VT-x termination (called during module termination).
992 */
993VMMR0DECL(void) VMXR0GlobalTerm()
994{
995 /* Nothing to do currently. */
996}
997
998
999/**
1000 * Sets up and activates VT-x on the current CPU.
1001 *
1002 * @returns VBox status code.
1003 * @param pCpu Pointer to the global CPU info struct.
1004 * @param pVM Pointer to the VM (can be NULL after a host resume
1005 * operation).
1006 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1007 * fEnabledByHost is true).
1008 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1009 * @a fEnabledByHost is true).
1010 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1011 * enable VT-x on the host.
1012 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1013 */
1014VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1015 void *pvMsrs)
1016{
1017 AssertReturn(pCpu, VERR_INVALID_PARAMETER);
1018 AssertReturn(pvMsrs, VERR_INVALID_PARAMETER);
1019 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1020
1021 /* Enable VT-x if it's not already enabled by the host. */
1022 if (!fEnabledByHost)
1023 {
1024 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1025 if (RT_FAILURE(rc))
1026 return rc;
1027 }
1028
1029 /*
1030 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1031 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1032 */
1033 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1034 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1035 {
1036 hmR0VmxFlushEpt(NULL /* pVCpu */, VMX_FLUSH_EPT_ALL_CONTEXTS);
1037 pCpu->fFlushAsidBeforeUse = false;
1038 }
1039 else
1040 pCpu->fFlushAsidBeforeUse = true;
1041
1042 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1043 ++pCpu->cTlbFlushes;
1044
1045 return VINF_SUCCESS;
1046}
1047
1048
1049/**
1050 * Deactivates VT-x on the current CPU.
1051 *
1052 * @returns VBox status code.
1053 * @param pCpu Pointer to the global CPU info struct.
1054 * @param pvCpuPage Pointer to the VMXON region.
1055 * @param HCPhysCpuPage Physical address of the VMXON region.
1056 *
1057 * @remarks This function should never be called when SUPR0EnableVTx() or
1058 * similar was used to enable VT-x on the host.
1059 */
1060VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1061{
1062 NOREF(pCpu);
1063 NOREF(pvCpuPage);
1064 NOREF(HCPhysCpuPage);
1065
1066 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1067 return hmR0VmxLeaveRootMode();
1068}
1069
1070
1071/**
1072 * Sets the permission bits for the specified MSR in the MSR bitmap.
1073 *
1074 * @param pVCpu Pointer to the VMCPU.
1075 * @param uMSR The MSR value.
1076 * @param enmRead Whether reading this MSR causes a VM-exit.
1077 * @param enmWrite Whether writing this MSR causes a VM-exit.
1078 */
1079static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1080{
1081 int32_t iBit;
1082 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1083
1084 /*
1085 * Layout:
1086 * 0x000 - 0x3ff - Low MSR read bits
1087 * 0x400 - 0x7ff - High MSR read bits
1088 * 0x800 - 0xbff - Low MSR write bits
1089 * 0xc00 - 0xfff - High MSR write bits
1090 */
1091 if (uMsr <= 0x00001FFF)
1092 iBit = uMsr;
1093 else if ( uMsr >= 0xC0000000
1094 && uMsr <= 0xC0001FFF)
1095 {
1096 iBit = (uMsr - 0xC0000000);
1097 pbMsrBitmap += 0x400;
1098 }
1099 else
1100 {
1101 AssertMsgFailed(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1102 return;
1103 }
1104
1105 Assert(iBit <= 0x1fff);
1106 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1107 ASMBitSet(pbMsrBitmap, iBit);
1108 else
1109 ASMBitClear(pbMsrBitmap, iBit);
1110
1111 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1112 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1113 else
1114 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1115}
1116
1117
1118/**
1119 * Flushes the TLB using EPT.
1120 *
1121 * @returns VBox status code.
1122 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1123 * enmFlush).
1124 * @param enmFlush Type of flush.
1125 *
1126 * @remarks Caller is responsible for making sure this function is called only
1127 * when NestedPaging is supported and providing @a enmFlush that is
1128 * supported by the CPU.
1129 */
1130static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush)
1131{
1132 uint64_t au64Descriptor[2];
1133 if (enmFlush == VMX_FLUSH_EPT_ALL_CONTEXTS)
1134 au64Descriptor[0] = 0;
1135 else
1136 {
1137 Assert(pVCpu);
1138 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1139 }
1140 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1141
1142 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1143 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1144 rc));
1145 if ( RT_SUCCESS(rc)
1146 && pVCpu)
1147 {
1148 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1149 }
1150}
1151
1152
1153/**
1154 * Flushes the TLB using VPID.
1155 *
1156 * @returns VBox status code.
1157 * @param pVM Pointer to the VM.
1158 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1159 * enmFlush).
1160 * @param enmFlush Type of flush.
1161 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1162 * on @a enmFlush).
1163 */
1164static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr)
1165{
1166 AssertPtr(pVM);
1167 Assert(pVM->hm.s.vmx.fVpid);
1168
1169 uint64_t au64Descriptor[2];
1170 if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS)
1171 {
1172 au64Descriptor[0] = 0;
1173 au64Descriptor[1] = 0;
1174 }
1175 else
1176 {
1177 AssertPtr(pVCpu);
1178 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1179 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1180 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1181 au64Descriptor[1] = GCPtr;
1182 }
1183
1184 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1185 AssertMsg(rc == VINF_SUCCESS,
1186 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1187 if ( RT_SUCCESS(rc)
1188 && pVCpu)
1189 {
1190 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1191 }
1192}
1193
1194
1195/**
1196 * Invalidates a guest page by guest virtual address. Only relevant for
1197 * EPT/VPID, otherwise there is nothing really to invalidate.
1198 *
1199 * @returns VBox status code.
1200 * @param pVM Pointer to the VM.
1201 * @param pVCpu Pointer to the VMCPU.
1202 * @param GCVirt Guest virtual address of the page to invalidate.
1203 */
1204VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1205{
1206 AssertPtr(pVM);
1207 AssertPtr(pVCpu);
1208 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1209
1210 bool fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1211 if (!fFlushPending)
1212 {
1213 /*
1214 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1215 * See @bugref{6043} and @bugref{6177}.
1216 *
1217 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1218 * function maybe called in a loop with individual addresses.
1219 */
1220 if (pVM->hm.s.vmx.fVpid)
1221 {
1222 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1223 {
1224 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt);
1225 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1226 }
1227 else
1228 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1229 }
1230 else if (pVM->hm.s.fNestedPaging)
1231 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1232 }
1233
1234 return VINF_SUCCESS;
1235}
1236
1237
1238/**
1239 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1240 * otherwise there is nothing really to invalidate.
1241 *
1242 * @returns VBox status code.
1243 * @param pVM Pointer to the VM.
1244 * @param pVCpu Pointer to the VMCPU.
1245 * @param GCPhys Guest physical address of the page to invalidate.
1246 */
1247VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1248{
1249 LogFlowFunc(("%RGp\n", GCPhys));
1250
1251 /*
1252 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1253 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1254 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1255 */
1256 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1257 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1258 return VINF_SUCCESS;
1259}
1260
1261
1262/**
1263 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1264 * case where neither EPT nor VPID is supported by the CPU.
1265 *
1266 * @param pVM Pointer to the VM.
1267 * @param pVCpu Pointer to the VMCPU.
1268 * @param pCpu Pointer to the global HM struct.
1269 *
1270 * @remarks Called with interrupts disabled.
1271 */
1272static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1273{
1274 AssertPtr(pVCpu);
1275 AssertPtr(pCpu);
1276 NOREF(pVM);
1277
1278 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1279 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1280
1281 pVCpu->hm.s.TlbShootdown.cPages = 0;
1282 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1283 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1284 pVCpu->hm.s.fForceTLBFlush = false;
1285 return;
1286}
1287
1288
1289/**
1290 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1291 *
1292 * @param pVM Pointer to the VM.
1293 * @param pVCpu Pointer to the VMCPU.
1294 * @param pCpu Pointer to the global HM CPU struct.
1295 * @remarks All references to "ASID" in this function pertains to "VPID" in
1296 * Intel's nomenclature. The reason is, to avoid confusion in compare
1297 * statements since the host-CPU copies are named "ASID".
1298 *
1299 * @remarks Called with interrupts disabled.
1300 */
1301static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1302{
1303#ifdef VBOX_WITH_STATISTICS
1304 bool fTlbFlushed = false;
1305# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1306# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1307 if (!fTlbFlushed) \
1308 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1309 } while (0)
1310#else
1311# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1312# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1313#endif
1314
1315 AssertPtr(pVM);
1316 AssertPtr(pCpu);
1317 AssertPtr(pVCpu);
1318 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1319 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1320 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1321
1322
1323 /*
1324 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1325 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1326 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1327 */
1328 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1329 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1330 {
1331 ++pCpu->uCurrentAsid;
1332 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1333 {
1334 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1335 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1336 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1337 }
1338
1339 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1340 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1341 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1342
1343 /*
1344 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1345 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1346 */
1347 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1348 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1349 HMVMX_SET_TAGGED_TLB_FLUSHED();
1350 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
1351 }
1352
1353 /* Check for explicit TLB shootdowns. */
1354 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1355 {
1356 /*
1357 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
1358 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
1359 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
1360 * but not guest-physical mappings.
1361 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
1362 */
1363 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1364 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1365 HMVMX_SET_TAGGED_TLB_FLUSHED();
1366 }
1367
1368 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1369 * not be executed. See hmQueueInvlPage() where it is commented
1370 * out. Support individual entry flushing someday. */
1371 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1372 {
1373 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1374
1375 /*
1376 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
1377 * as supported by the CPU.
1378 */
1379 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1380 {
1381 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1382 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1383 }
1384 else
1385 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1386
1387 HMVMX_SET_TAGGED_TLB_FLUSHED();
1388 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1389 }
1390
1391 pVCpu->hm.s.TlbShootdown.cPages = 0;
1392 pVCpu->hm.s.fForceTLBFlush = false;
1393
1394 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1395
1396 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1397 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1398 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1399 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1400 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1401 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
1402 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1403 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1404
1405 /* Update VMCS with the VPID. */
1406 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
1407 AssertRC(rc);
1408
1409#undef HMVMX_SET_TAGGED_TLB_FLUSHED
1410}
1411
1412
1413/**
1414 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
1415 *
1416 * @returns VBox status code.
1417 * @param pVM Pointer to the VM.
1418 * @param pVCpu Pointer to the VMCPU.
1419 * @param pCpu Pointer to the global HM CPU struct.
1420 *
1421 * @remarks Called with interrupts disabled.
1422 */
1423static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1424{
1425 AssertPtr(pVM);
1426 AssertPtr(pVCpu);
1427 AssertPtr(pCpu);
1428 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
1429 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
1430
1431 /*
1432 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1433 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
1434 */
1435 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1436 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1437 {
1438 pVCpu->hm.s.fForceTLBFlush = true;
1439 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1440 }
1441
1442 /* Check for explicit TLB shootdown flushes. */
1443 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1444 {
1445 pVCpu->hm.s.fForceTLBFlush = true;
1446 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1447 }
1448
1449 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1450 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1451
1452 if (pVCpu->hm.s.fForceTLBFlush)
1453 {
1454 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1455 pVCpu->hm.s.fForceTLBFlush = false;
1456 }
1457 else
1458 {
1459 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1460 * not be executed. See hmQueueInvlPage() where it is commented
1461 * out. Support individual entry flushing someday. */
1462 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1463 {
1464 /* We cannot flush individual entries without VPID support. Flush using EPT. */
1465 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1466 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1467 }
1468 else
1469 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1470 }
1471
1472 pVCpu->hm.s.TlbShootdown.cPages = 0;
1473 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1474}
1475
1476
1477/**
1478 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
1479 *
1480 * @returns VBox status code.
1481 * @param pVM Pointer to the VM.
1482 * @param pVCpu Pointer to the VMCPU.
1483 * @param pCpu Pointer to the global HM CPU struct.
1484 *
1485 * @remarks Called with interrupts disabled.
1486 */
1487static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1488{
1489 AssertPtr(pVM);
1490 AssertPtr(pVCpu);
1491 AssertPtr(pCpu);
1492 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
1493 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
1494
1495 /*
1496 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1497 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1498 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1499 */
1500 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1501 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1502 {
1503 pVCpu->hm.s.fForceTLBFlush = true;
1504 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1505 }
1506
1507 /* Check for explicit TLB shootdown flushes. */
1508 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1509 {
1510 /*
1511 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
1512 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
1513 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
1514 */
1515 pVCpu->hm.s.fForceTLBFlush = true;
1516 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1517 }
1518
1519 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1520 if (pVCpu->hm.s.fForceTLBFlush)
1521 {
1522 ++pCpu->uCurrentAsid;
1523 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1524 {
1525 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
1526 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1527 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1528 }
1529
1530 pVCpu->hm.s.fForceTLBFlush = false;
1531 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1532 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1533 if (pCpu->fFlushAsidBeforeUse)
1534 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
1535 }
1536 else
1537 {
1538 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
1539 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
1540 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
1541 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
1542
1543 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
1544 * not be executed. See hmQueueInvlPage() where it is commented
1545 * out. Support individual entry flushing someday. */
1546 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1547 {
1548 /* Flush individual guest entries using VPID or as little as possible with EPT as supported by the CPU. */
1549 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1550 {
1551 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1552 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1553 }
1554 else
1555 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
1556 }
1557 else
1558 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1559 }
1560
1561 pVCpu->hm.s.TlbShootdown.cPages = 0;
1562 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1563
1564 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1565 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1566 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1567 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
1568 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1569 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1570
1571 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
1572 AssertRC(rc);
1573}
1574
1575
1576/**
1577 * Flushes the guest TLB entry based on CPU capabilities.
1578 *
1579 * @param pVCpu Pointer to the VMCPU.
1580 * @param pCpu Pointer to the global HM CPU struct.
1581 */
1582DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1583{
1584 PVM pVM = pVCpu->CTX_SUFF(pVM);
1585 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
1586 {
1587 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
1588 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
1589 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
1590 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
1591 default:
1592 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
1593 break;
1594 }
1595}
1596
1597
1598/**
1599 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
1600 * TLB entries from the host TLB before VM-entry.
1601 *
1602 * @returns VBox status code.
1603 * @param pVM Pointer to the VM.
1604 */
1605static int hmR0VmxSetupTaggedTlb(PVM pVM)
1606{
1607 /*
1608 * Determine optimal flush type for Nested Paging.
1609 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
1610 * guest execution (see hmR3InitFinalizeR0()).
1611 */
1612 if (pVM->hm.s.fNestedPaging)
1613 {
1614 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
1615 {
1616 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
1617 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT;
1618 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1619 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS;
1620 else
1621 {
1622 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
1623 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
1624 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1625 }
1626
1627 /* Make sure the write-back cacheable memory type for EPT is supported. */
1628 if (!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB))
1629 {
1630 LogRel(("hmR0VmxSetupTaggedTlb: Unsupported EPTP memory type %#x.\n", pVM->hm.s.vmx.Msrs.u64EptVpidCaps));
1631 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
1632 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1633 }
1634 }
1635 else
1636 {
1637 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
1638 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
1639 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1640 }
1641 }
1642
1643 /*
1644 * Determine optimal flush type for VPID.
1645 */
1646 if (pVM->hm.s.vmx.fVpid)
1647 {
1648 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
1649 {
1650 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
1651 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT;
1652 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
1653 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS;
1654 else
1655 {
1656 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
1657 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1658 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
1659 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1660 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
1661 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
1662 pVM->hm.s.vmx.fVpid = false;
1663 }
1664 }
1665 else
1666 {
1667 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
1668 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
1669 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
1670 pVM->hm.s.vmx.fVpid = false;
1671 }
1672 }
1673
1674 /*
1675 * Setup the handler for flushing tagged-TLBs.
1676 */
1677 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
1678 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
1679 else if (pVM->hm.s.fNestedPaging)
1680 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
1681 else if (pVM->hm.s.vmx.fVpid)
1682 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
1683 else
1684 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
1685 return VINF_SUCCESS;
1686}
1687
1688
1689/**
1690 * Sets up pin-based VM-execution controls in the VMCS.
1691 *
1692 * @returns VBox status code.
1693 * @param pVM Pointer to the VM.
1694 * @param pVCpu Pointer to the VMCPU.
1695 */
1696static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
1697{
1698 AssertPtr(pVM);
1699 AssertPtr(pVCpu);
1700
1701 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
1702 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
1703
1704 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts causes a VM-exits. */
1705 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts causes a VM-exit. */
1706 Assert(!(val & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI));
1707
1708 /* Enable the VMX preemption timer. */
1709 if (pVM->hm.s.vmx.fUsePreemptTimer)
1710 {
1711 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
1712 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
1713 }
1714
1715 if ((val & zap) != val)
1716 {
1717 LogRel(("hmR0VmxSetupPinCtls: invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
1718 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
1719 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
1720 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1721 }
1722
1723 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
1724 AssertRCReturn(rc, rc);
1725
1726 /* Update VCPU with the currently set pin-based VM-execution controls. */
1727 pVCpu->hm.s.vmx.u32PinCtls = val;
1728 return rc;
1729}
1730
1731
1732/**
1733 * Sets up processor-based VM-execution controls in the VMCS.
1734 *
1735 * @returns VBox status code.
1736 * @param pVM Pointer to the VM.
1737 * @param pVMCPU Pointer to the VMCPU.
1738 */
1739static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
1740{
1741 AssertPtr(pVM);
1742 AssertPtr(pVCpu);
1743
1744 int rc = VERR_INTERNAL_ERROR_5;
1745 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
1746 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
1747
1748 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
1749 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
1750 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
1751 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
1752 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
1753 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
1754 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
1755
1756 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
1757 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
1758 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
1759 {
1760 LogRel(("hmR0VmxSetupProcCtls: unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
1761 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
1762 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1763 }
1764
1765 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
1766 if (!pVM->hm.s.fNestedPaging)
1767 {
1768 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
1769 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
1770 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
1771 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
1772 }
1773
1774 /* Use TPR shadowing if supported by the CPU. */
1775 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1776 {
1777 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
1778 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
1779 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
1780 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
1781 AssertRCReturn(rc, rc);
1782
1783 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
1784 /* CR8 writes causes a VM-exit based on TPR threshold. */
1785 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
1786 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
1787 }
1788 else
1789 {
1790 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads causes a VM-exit. */
1791 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes causes a VM-exit. */
1792 }
1793
1794 /* Use MSR-bitmaps if supported by the CPU. */
1795 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1796 {
1797 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
1798
1799 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1800 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
1801 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1802 AssertRCReturn(rc, rc);
1803
1804 /*
1805 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
1806 * automatically (either as part of the MSR-load/store areas or dedicated fields in the VMCS).
1807 */
1808 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1809 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1810 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1811 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1812 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1813 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1814 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1815 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1816 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1817 }
1818
1819 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
1820 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1821 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
1822
1823 if ((val & zap) != val)
1824 {
1825 LogRel(("hmR0VmxSetupProcCtls: invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
1826 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
1827 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
1828 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1829 }
1830
1831 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
1832 AssertRCReturn(rc, rc);
1833
1834 /* Update VCPU with the currently set processor-based VM-execution controls. */
1835 pVCpu->hm.s.vmx.u32ProcCtls = val;
1836
1837 /*
1838 * Secondary processor-based VM-execution controls.
1839 */
1840 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
1841 {
1842 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
1843 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
1844
1845 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
1846 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
1847
1848 if (pVM->hm.s.fNestedPaging)
1849 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
1850 else
1851 {
1852 /*
1853 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
1854 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
1855 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
1856 */
1857 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
1858 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
1859 }
1860
1861 if (pVM->hm.s.vmx.fVpid)
1862 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
1863
1864 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1865 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
1866
1867 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
1868 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
1869 * done dynamically. */
1870 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
1871 {
1872 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
1873 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
1874 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
1875 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
1876 AssertRCReturn(rc, rc);
1877 }
1878
1879 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
1880 {
1881 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
1882 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1883 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1884 }
1885
1886 if ((val & zap) != val)
1887 {
1888 LogRel(("hmR0VmxSetupProcCtls: invalid secondary processor-based VM-execution controls combo! "
1889 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
1890 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1891 }
1892
1893 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
1894 AssertRCReturn(rc, rc);
1895
1896 /* Update VCPU with the currently set secondary processor-based VM-execution controls. */
1897 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
1898 }
1899 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
1900 {
1901 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
1902 "available\n"));
1903 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1904 }
1905
1906 return VINF_SUCCESS;
1907}
1908
1909
1910/**
1911 * Sets up miscellaneous (everything other than Pin & Processor-based
1912 * VM-execution) control fields in the VMCS.
1913 *
1914 * @returns VBox status code.
1915 * @param pVM Pointer to the VM.
1916 * @param pVCpu Pointer to the VMCPU.
1917 */
1918static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
1919{
1920 AssertPtr(pVM);
1921 AssertPtr(pVCpu);
1922
1923 int rc = VERR_GENERAL_FAILURE;
1924
1925 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
1926#if 0
1927 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestControlRegs())*/
1928 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0); AssertRCReturn(rc, rc);
1929 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0); AssertRCReturn(rc, rc);
1930
1931 /*
1932 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
1933 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
1934 * We thus use the exception bitmap to control it rather than use both.
1935 */
1936 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0); AssertRCReturn(rc, rc);
1937 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRCReturn(rc, rc);
1938
1939 /** @todo Explore possibility of using IO-bitmaps. */
1940 /* All IO & IOIO instructions cause VM-exits. */
1941 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0); AssertRCReturn(rc, rc);
1942 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0); AssertRCReturn(rc, rc);
1943
1944 /* Initialize the MSR-bitmap area. */
1945 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
1946 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0); AssertRCReturn(rc, rc);
1947 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
1948#endif
1949
1950#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
1951 /* Setup MSR autoloading/storing. */
1952 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
1953 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
1954 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
1955 AssertRCReturn(rc, rc);
1956 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
1957 AssertRCReturn(rc, rc);
1958
1959 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
1960 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
1961 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
1962 AssertRCReturn(rc, rc);
1963#endif
1964
1965 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
1966 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
1967 AssertRCReturn(rc, rc);
1968
1969 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
1970#if 0
1971 /* Setup debug controls */
1972 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
1973 AssertRCReturn(rc, rc);
1974 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
1975 AssertRCReturn(rc, rc);
1976#endif
1977
1978 return rc;
1979}
1980
1981
1982/**
1983 * Sets up the initial exception bitmap in the VMCS based on static conditions
1984 * (i.e. conditions that cannot ever change after starting the VM).
1985 *
1986 * @returns VBox status code.
1987 * @param pVM Pointer to the VM.
1988 * @param pVCpu Pointer to the VMCPU.
1989 */
1990static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
1991{
1992 AssertPtr(pVM);
1993 AssertPtr(pVCpu);
1994
1995 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1996
1997 uint32_t u32XcptBitmap = 0;
1998
1999 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2000 if (!pVM->hm.s.fNestedPaging)
2001 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2002
2003 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2004 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2005 AssertRCReturn(rc, rc);
2006 return rc;
2007}
2008
2009
2010/**
2011 * Sets up the initial guest-state mask. The guest-state mask is consulted
2012 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2013 * for the nested virtualization case (as it would cause a VM-exit).
2014 *
2015 * @param pVCpu Pointer to the VMCPU.
2016 */
2017static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2018{
2019 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2020 pVCpu->hm.s.vmx.fUpdatedGuestState = HMVMX_UPDATED_GUEST_ALL;
2021 return VINF_SUCCESS;
2022}
2023
2024
2025/**
2026 * Does per-VM VT-x initialization.
2027 *
2028 * @returns VBox status code.
2029 * @param pVM Pointer to the VM.
2030 */
2031VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2032{
2033 LogFlowFunc(("pVM=%p\n", pVM));
2034
2035 int rc = hmR0VmxStructsAlloc(pVM);
2036 if (RT_FAILURE(rc))
2037 {
2038 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2039 return rc;
2040 }
2041
2042 return VINF_SUCCESS;
2043}
2044
2045
2046/**
2047 * Does per-VM VT-x termination.
2048 *
2049 * @returns VBox status code.
2050 * @param pVM Pointer to the VM.
2051 */
2052VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2053{
2054 LogFlowFunc(("pVM=%p\n", pVM));
2055
2056#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2057 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2058 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2059#endif
2060 hmR0VmxStructsFree(pVM);
2061 return VINF_SUCCESS;
2062}
2063
2064
2065/**
2066 * Sets up the VM for execution under VT-x.
2067 * This function is only called once per-VM during initialization.
2068 *
2069 * @returns VBox status code.
2070 * @param pVM Pointer to the VM.
2071 */
2072VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2073{
2074 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2075 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2076
2077 LogFlowFunc(("pVM=%p\n", pVM));
2078
2079 /*
2080 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2081 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0().
2082 */
2083 /* -XXX- change hmR3InitFinalizeR0Intel() to fail if pRealModeTSS alloc fails. */
2084 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2085 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2086 || !pVM->hm.s.vmx.pRealModeTSS))
2087 {
2088 LogRel(("VMXR0SetupVM: invalid real-on-v86 state.\n"));
2089 return VERR_INTERNAL_ERROR;
2090 }
2091
2092#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2093 /*
2094 * This is for the darwin 32-bit/PAE kernels trying to execute 64-bit guests. We don't bother with
2095 * the 32<->64 switcher in this case. This is a rare, legacy use-case with barely any test coverage.
2096 */
2097 if ( pVM->hm.s.fAllow64BitGuests
2098 && !HMVMX_IS_64BIT_HOST_MODE())
2099 {
2100 LogRel(("VMXR0SetupVM: Unsupported guest and host paging mode combination.\n"));
2101 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
2102 }
2103#endif
2104
2105 /* Initialize these always, see hmR3InitFinalizeR0().*/
2106 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE;
2107 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE;
2108
2109 /* Setup the tagged-TLB flush handlers. */
2110 int rc = hmR0VmxSetupTaggedTlb(pVM);
2111 if (RT_FAILURE(rc))
2112 {
2113 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2114 return rc;
2115 }
2116
2117 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2118 {
2119 PVMCPU pVCpu = &pVM->aCpus[i];
2120 AssertPtr(pVCpu);
2121 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2122
2123 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2124 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2125
2126 /* Set revision dword at the beginning of the VMCS structure. */
2127 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2128
2129 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2130 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2131 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2132 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2133
2134 /* Load this VMCS as the current VMCS. */
2135 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2136 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2137 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2138
2139 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2140 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2141 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2142
2143 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2144 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2145 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2146
2147 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2148 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2149 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2150
2151 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2152 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2153 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2154
2155 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2156 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2157 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2158
2159#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2160 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2161 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2162 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2163#endif
2164
2165 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2166 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2167 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2168 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2169
2170 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2171
2172 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2173 }
2174
2175 return VINF_SUCCESS;
2176}
2177
2178
2179/**
2180 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2181 * the VMCS.
2182 *
2183 * @returns VBox status code.
2184 * @param pVM Pointer to the VM.
2185 * @param pVCpu Pointer to the VMCPU.
2186 */
2187DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2188{
2189 RTCCUINTREG uReg = ASMGetCR0();
2190 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2191 AssertRCReturn(rc, rc);
2192
2193#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2194 /* For the darwin 32-bit hybrid kernel, we need the 64-bit CR3 as it uses 64-bit paging. */
2195 if (HMVMX_IS_64BIT_HOST_MODE())
2196 {
2197 uint64_t uRegCR3 = HMR0Get64bitCR3();
2198 rc = VMXWriteVmcs64(VMX_VMCS_HOST_CR3, uRegCR3);
2199 }
2200 else
2201#endif
2202 {
2203 uReg = ASMGetCR3();
2204 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2205 }
2206 AssertRCReturn(rc, rc);
2207
2208 uReg = ASMGetCR4();
2209 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2210 AssertRCReturn(rc, rc);
2211 return rc;
2212}
2213
2214
2215/**
2216 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2217 * the host-state area in the VMCS.
2218 *
2219 * @returns VBox status code.
2220 * @param pVM Pointer to the VM.
2221 * @param pVCpu Pointer to the VMCPU.
2222 */
2223DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2224{
2225 int rc = VERR_INTERNAL_ERROR_5;
2226
2227 /*
2228 * Host DS, ES, FS and GS segment registers.
2229 */
2230#if HC_ARCH_BITS == 64
2231 RTSEL uSelDS = ASMGetDS();
2232 RTSEL uSelES = ASMGetES();
2233 RTSEL uSelFS = ASMGetFS();
2234 RTSEL uSelGS = ASMGetGS();
2235#else
2236 RTSEL uSelDS = 0;
2237 RTSEL uSelES = 0;
2238 RTSEL uSelFS = 0;
2239 RTSEL uSelGS = 0;
2240#endif
2241
2242 /* Recalculate which host-state bits need to be manually restored. */
2243 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2244
2245 /*
2246 * Host CS and SS segment registers.
2247 */
2248#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2249 RTSEL uSelCS;
2250 RTSEL uSelSS;
2251 if (HMVMX_IS_64BIT_HOST_MODE())
2252 {
2253 uSelCS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
2254 uSelSS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
2255 }
2256 else
2257 {
2258 /* Seems darwin uses the LDT (TI flag is set) in the CS & SS selectors which VT-x doesn't like. */
2259 uSelCS = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
2260 uSelSS = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
2261 }
2262#else
2263 RTSEL uSelCS = ASMGetCS();
2264 RTSEL uSelSS = ASMGetSS();
2265#endif
2266
2267 /*
2268 * Host TR segment register.
2269 */
2270 RTSEL uSelTR = ASMGetTR();
2271
2272#if HC_ARCH_BITS == 64
2273 /*
2274 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2275 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2276 */
2277 if (uSelDS & (X86_SEL_RPL | X86_SEL_LDT))
2278 {
2279 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_DS;
2280 pVCpu->hm.s.vmx.RestoreHost.uHostSelDS = uSelDS;
2281 uSelDS = 0;
2282 }
2283 if (uSelES & (X86_SEL_RPL | X86_SEL_LDT))
2284 {
2285 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_ES;
2286 pVCpu->hm.s.vmx.RestoreHost.uHostSelES = uSelES;
2287 uSelES = 0;
2288 }
2289 if (uSelFS & (X86_SEL_RPL | X86_SEL_LDT))
2290 {
2291 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_FS;
2292 pVCpu->hm.s.vmx.RestoreHost.uHostSelFS = uSelFS;
2293 uSelFS = 0;
2294 }
2295 if (uSelGS & (X86_SEL_RPL | X86_SEL_LDT))
2296 {
2297 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_GS;
2298 pVCpu->hm.s.vmx.RestoreHost.uHostSelGS = uSelGS;
2299 uSelGS = 0;
2300 }
2301#endif
2302
2303 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2304 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2305 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2306 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2307 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2308 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2309 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2310 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2311 Assert(uSelCS);
2312 Assert(uSelTR);
2313
2314 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2315#if 0
2316 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2317 Assert(uSelSS != 0);
2318#endif
2319
2320 /* Write these host selector fields into the host-state area in the VMCS. */
2321 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_CS, uSelCS); AssertRCReturn(rc, rc);
2322 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_SS, uSelSS); AssertRCReturn(rc, rc);
2323#if HC_ARCH_BITS == 64
2324 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_DS, uSelDS); AssertRCReturn(rc, rc);
2325 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_ES, uSelES); AssertRCReturn(rc, rc);
2326 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_FS, uSelFS); AssertRCReturn(rc, rc);
2327 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_GS, uSelGS); AssertRCReturn(rc, rc);
2328#endif
2329 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_TR, uSelTR); AssertRCReturn(rc, rc);
2330
2331 /*
2332 * Host GDTR and IDTR.
2333 */
2334 RTGDTR Gdtr;
2335 RT_ZERO(Gdtr);
2336#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2337 if (HMVMX_IS_64BIT_HOST_MODE())
2338 {
2339 X86XDTR64 Gdtr64;
2340 X86XDTR64 Idtr64;
2341 HMR0Get64bitGdtrAndIdtr(&Gdtr64, &Idtr64);
2342 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, Gdtr64.uAddr); AssertRCReturn(rc, rc);
2343 rc = VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, Idtr64.uAddr); AssertRCReturn(rc, rc);
2344
2345 Gdtr.cbGdt = Gdtr64.cb;
2346 Gdtr.pGdt = (uintptr_t)Gdtr64.uAddr;
2347 }
2348 else
2349#endif
2350 {
2351 RTIDTR Idtr;
2352 ASMGetGDTR(&Gdtr);
2353 ASMGetIDTR(&Idtr);
2354 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRCReturn(rc, rc);
2355 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRCReturn(rc, rc);
2356
2357#if HC_ARCH_BITS == 64
2358 /*
2359 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
2360 * maximum limit (0xffff) on every VM-exit.
2361 */
2362 if (Gdtr.cbGdt != 0xffff)
2363 {
2364 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2365 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
2366 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
2367 }
2368
2369 /*
2370 * IDT limit is practically 0xfff. Therefore if the host has the limit as 0xfff, VT-x bloating the limit to 0xffff
2371 * is not a problem as it's not possible to get at them anyway. See Intel spec. 6.14.1 "64-Bit Mode IDT" and
2372 * Intel spec. 6.2 "Exception and Interrupt Vectors".
2373 */
2374 if (Idtr.cbIdt < 0x0fff)
2375 {
2376 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
2377 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
2378 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
2379 }
2380#endif
2381 }
2382
2383 /*
2384 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
2385 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
2386 */
2387 if ((uSelTR & X86_SEL_MASK) > Gdtr.cbGdt)
2388 {
2389 AssertMsgFailed(("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt));
2390 return VERR_VMX_INVALID_HOST_STATE;
2391 }
2392
2393 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
2394#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2395 if (HMVMX_IS_64BIT_HOST_MODE())
2396 {
2397 /* We need the 64-bit TR base for hybrid darwin. */
2398 uint64_t u64TRBase = X86DESC64_BASE((PX86DESC64)pDesc);
2399 rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, u64TRBase);
2400 }
2401 else
2402#endif
2403 {
2404 uintptr_t uTRBase;
2405#if HC_ARCH_BITS == 64
2406 uTRBase = X86DESC64_BASE(pDesc);
2407
2408 /*
2409 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
2410 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
2411 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
2412 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
2413 *
2414 * [1] See Intel spec. 3.5 "System Descriptor Types".
2415 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
2416 */
2417 Assert(pDesc->System.u4Type == 11);
2418 if ( pDesc->System.u16LimitLow != 0x67
2419 || pDesc->System.u4LimitHigh)
2420 {
2421 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
2422 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
2423
2424 /* Store the GDTR here as we need it while restoring TR. */
2425 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
2426 }
2427#else
2428 uTRBase = X86DESC_BASE(pDesc);
2429#endif
2430 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
2431 }
2432 AssertRCReturn(rc, rc);
2433
2434 /*
2435 * Host FS base and GS base.
2436 */
2437#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2438 if (HMVMX_IS_64BIT_HOST_MODE())
2439 {
2440 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
2441 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
2442 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRCReturn(rc, rc);
2443 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRCReturn(rc, rc);
2444
2445# if HC_ARCH_BITS == 64
2446 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
2447 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
2448 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
2449 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
2450 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
2451# endif
2452 }
2453#endif
2454 return rc;
2455}
2456
2457
2458/**
2459 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
2460 * host-state area of the VMCS. Theses MSRs will be automatically restored on
2461 * the host after every successful VM exit.
2462 *
2463 * @returns VBox status code.
2464 * @param pVM Pointer to the VM.
2465 * @param pVCpu Pointer to the VMCPU.
2466 */
2467DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
2468{
2469 AssertPtr(pVCpu);
2470 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
2471
2472 int rc = VINF_SUCCESS;
2473#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
2474 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
2475 uint32_t cHostMsrs = 0;
2476 uint32_t u32HostExtFeatures = pVM->hm.s.cpuid.u32AMDFeatureEDX;
2477
2478 if (u32HostExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
2479 {
2480 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
2481
2482# if HC_ARCH_BITS == 64
2483 /* Paranoia. 64-bit code requires these bits to be set always. */
2484 Assert((u64HostEfer & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
2485
2486 /*
2487 * We currently do not save/restore host EFER, we just make sure it doesn't get modified by VT-x operation.
2488 * All guest accesses (read, write) on EFER cause VM-exits. If we are to conditionally load the guest EFER for
2489 * some reason (e.g. allow transparent reads) we would activate the code below.
2490 */
2491# if 0
2492 /* All our supported 64-bit host platforms must have NXE bit set. Otherwise we can change the below code to save EFER. */
2493 Assert(u64HostEfer & (MSR_K6_EFER_NXE));
2494 /* The SCE bit is only applicable in 64-bit mode. Save EFER if it doesn't match what the guest has.
2495 See Intel spec. 30.10.4.3 "Handling the SYSCALL and SYSRET Instructions". */
2496 if (CPUMIsGuestInLongMode(pVCpu))
2497 {
2498 uint64_t u64GuestEfer;
2499 rc = CPUMQueryGuestMsr(pVCpu, MSR_K6_EFER, &u64GuestEfer);
2500 AssertRC(rc);
2501
2502 if ((u64HostEfer & MSR_K6_EFER_SCE) != (u64GuestEfer & MSR_K6_EFER_SCE))
2503 {
2504 pHostMsr->u32Msr = MSR_K6_EFER;
2505 pHostMsr->u32Reserved = 0;
2506 pHostMsr->u64Value = u64HostEfer;
2507 pHostMsr++; cHostMsrs++;
2508 }
2509 }
2510# endif
2511# else /* HC_ARCH_BITS != 64 */
2512 pHostMsr->u32Msr = MSR_K6_EFER;
2513 pHostMsr->u32Reserved = 0;
2514# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2515 if (CPUMIsGuestInLongMode(pVCpu))
2516 {
2517 /* Must match the EFER value in our 64 bits switcher. */
2518 pHostMsr->u64Value = u64HostEfer | MSR_K6_EFER_LME | MSR_K6_EFER_SCE | MSR_K6_EFER_NXE;
2519 }
2520 else
2521# endif
2522 pHostMsr->u64Value = u64HostEfer;
2523 pHostMsr++; cHostMsrs++;
2524# endif /* HC_ARCH_BITS == 64 */
2525 }
2526
2527# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2528 if (HMVMX_IS_64BIT_HOST_MODE())
2529 {
2530 pHostMsr->u32Msr = MSR_K6_STAR;
2531 pHostMsr->u32Reserved = 0;
2532 pHostMsr->u64Value = ASMRdMsr(MSR_K6_STAR); /* legacy syscall eip, cs & ss */
2533 pHostMsr++; cHostMsrs++;
2534 pHostMsr->u32Msr = MSR_K8_LSTAR;
2535 pHostMsr->u32Reserved = 0;
2536 pHostMsr->u64Value = ASMRdMsr(MSR_K8_LSTAR); /* 64-bit mode syscall rip */
2537 pHostMsr++; cHostMsrs++;
2538 pHostMsr->u32Msr = MSR_K8_SF_MASK;
2539 pHostMsr->u32Reserved = 0;
2540 pHostMsr->u64Value = ASMRdMsr(MSR_K8_SF_MASK); /* syscall flag mask */
2541 pHostMsr++; cHostMsrs++;
2542 pHostMsr->u32Msr = MSR_K8_KERNEL_GS_BASE;
2543 pHostMsr->u32Reserved = 0;
2544 pHostMsr->u64Value = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); /* swapgs exchange value */
2545 pHostMsr++; cHostMsrs++;
2546 }
2547# endif
2548
2549 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
2550 if (RT_UNLIKELY(cHostMsrs > MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc)))
2551 {
2552 LogRel(("cHostMsrs=%u Cpu=%u\n", cHostMsrs, (unsigned)MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc)));
2553 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_HOST_MSR_STORAGE;
2554 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2555 }
2556
2557 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cHostMsrs);
2558#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
2559
2560 /*
2561 * Host Sysenter MSRs.
2562 */
2563 rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
2564 AssertRCReturn(rc, rc);
2565#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2566 if (HMVMX_IS_64BIT_HOST_MODE())
2567 {
2568 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
2569 AssertRCReturn(rc, rc);
2570 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
2571 }
2572 else
2573 {
2574 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
2575 AssertRCReturn(rc, rc);
2576 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
2577 }
2578#elif HC_ARCH_BITS == 32
2579 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
2580 AssertRCReturn(rc, rc);
2581 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
2582#else
2583 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
2584 AssertRCReturn(rc, rc);
2585 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
2586#endif
2587 AssertRCReturn(rc, rc);
2588
2589 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT, IA32_EFER, also see
2590 * hmR0VmxSetupExitCtls() !! */
2591 return rc;
2592}
2593
2594
2595/**
2596 * Sets up VM-entry controls in the VMCS. These controls can affect things done
2597 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
2598 * controls".
2599 *
2600 * @returns VBox status code.
2601 * @param pVCpu Pointer to the VMCPU.
2602 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2603 * out-of-sync. Make sure to update the required fields
2604 * before using them.
2605 *
2606 * @remarks No-long-jump zone!!!
2607 */
2608DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2609{
2610 int rc = VINF_SUCCESS;
2611 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_ENTRY_CTLS)
2612 {
2613 PVM pVM = pVCpu->CTX_SUFF(pVM);
2614 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
2615 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2616
2617 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
2618 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
2619
2620 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
2621 if (CPUMIsGuestInLongModeEx(pMixedCtx))
2622 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
2623 else
2624 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
2625
2626 /*
2627 * The following should not be set (since we're not in SMM mode):
2628 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
2629 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
2630 */
2631
2632 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
2633 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR,
2634 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR */
2635
2636 if ((val & zap) != val)
2637 {
2638 LogRel(("hmR0VmxLoadGuestEntryCtls: invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
2639 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
2640 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
2641 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2642 }
2643
2644 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
2645 AssertRCReturn(rc, rc);
2646
2647 /* Update VCPU with the currently set VM-exit controls. */
2648 pVCpu->hm.s.vmx.u32EntryCtls = val;
2649 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_ENTRY_CTLS;
2650 }
2651 return rc;
2652}
2653
2654
2655/**
2656 * Sets up the VM-exit controls in the VMCS.
2657 *
2658 * @returns VBox status code.
2659 * @param pVM Pointer to the VM.
2660 * @param pVCpu Pointer to the VMCPU.
2661 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2662 * out-of-sync. Make sure to update the required fields
2663 * before using them.
2664 *
2665 * @remarks requires EFER.
2666 */
2667DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2668{
2669 int rc = VINF_SUCCESS;
2670 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_EXIT_CTLS)
2671 {
2672 PVM pVM = pVCpu->CTX_SUFF(pVM);
2673 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
2674 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2675
2676 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
2677 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
2678
2679 /*
2680 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
2681 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
2682 */
2683#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2684 if (HMVMX_IS_64BIT_HOST_MODE())
2685 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
2686 else
2687 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
2688#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
2689 if (CPUMIsGuestInLongModeEx(pMixedCtx))
2690 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE; /* The switcher goes to long mode. */
2691 else
2692 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
2693#endif
2694
2695 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
2696 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
2697
2698 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
2699 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
2700 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR,
2701 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR,
2702 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR. */
2703
2704 if (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER)
2705 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
2706
2707 if ((val & zap) != val)
2708 {
2709 LogRel(("hmR0VmxSetupProcCtls: invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
2710 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
2711 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
2712 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2713 }
2714
2715 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
2716 AssertRCReturn(rc, rc);
2717
2718 /* Update VCPU with the currently set VM-exit controls. */
2719 pVCpu->hm.s.vmx.u32ExitCtls = val;
2720 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_EXIT_CTLS;
2721 }
2722 return rc;
2723}
2724
2725
2726/**
2727 * Loads the guest APIC and related state.
2728 *
2729 * @returns VBox status code.
2730 * @param pVM Pointer to the VM.
2731 * @param pVCpu Pointer to the VMCPU.
2732 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2733 * out-of-sync. Make sure to update the required fields
2734 * before using them.
2735 */
2736DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2737{
2738 int rc = VINF_SUCCESS;
2739 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_APIC_STATE)
2740 {
2741 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
2742 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2743 {
2744 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2745
2746 bool fPendingIntr = false;
2747 uint8_t u8Tpr = 0;
2748 uint8_t u8PendingIntr = 0;
2749 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
2750 AssertRCReturn(rc, rc);
2751
2752 /*
2753 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
2754 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
2755 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
2756 * the interrupt when we VM-exit for other reasons.
2757 */
2758 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
2759 uint32_t u32TprThreshold = 0;
2760 if (fPendingIntr)
2761 {
2762 /* Bits 3-0 of the TPR threshold field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
2763 const uint8_t u8PendingPriority = (u8PendingIntr >> 4);
2764 const uint8_t u8TprPriority = (u8Tpr >> 4) & 7;
2765 if (u8PendingPriority <= u8TprPriority)
2766 u32TprThreshold = u8PendingPriority;
2767 else
2768 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
2769 }
2770 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
2771
2772 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
2773 AssertRCReturn(rc, rc);
2774 }
2775
2776 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_APIC_STATE;
2777 }
2778 return rc;
2779}
2780
2781
2782/**
2783 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
2784 *
2785 * @returns Guest's interruptibility-state.
2786 * @param pVCpu Pointer to the VMCPU.
2787 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2788 * out-of-sync. Make sure to update the required fields
2789 * before using them.
2790 *
2791 * @remarks No-long-jump zone!!!
2792 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2793 */
2794DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2795{
2796 /*
2797 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2798 * inhibit interrupts or clear any existing interrupt-inhibition.
2799 */
2800 uint32_t uIntrState = 0;
2801 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2802 {
2803 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
2804 AssertMsg((pVCpu->hm.s.vmx.fUpdatedGuestState & (HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS))
2805 == (HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS), ("%#x\n", pVCpu->hm.s.vmx.fUpdatedGuestState));
2806 if (pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2807 {
2808 /*
2809 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2810 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
2811 */
2812 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2813 }
2814 else if (pMixedCtx->eflags.Bits.u1IF)
2815 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
2816 else
2817 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
2818 }
2819 return uIntrState;
2820}
2821
2822
2823/**
2824 * Loads the guest's interruptibility-state into the guest-state area in the
2825 * VMCS.
2826 *
2827 * @returns VBox status code.
2828 * @param pVCpu Pointer to the VMCPU.
2829 * @param uIntrState The interruptibility-state to set.
2830 */
2831static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
2832{
2833 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
2834 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
2835 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
2836 AssertRCReturn(rc, rc);
2837 return rc;
2838}
2839
2840
2841/**
2842 * Loads the guest's RIP into the guest-state area in the VMCS.
2843 *
2844 * @returns VBox status code.
2845 * @param pVCpu Pointer to the VMCPU.
2846 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2847 * out-of-sync. Make sure to update the required fields
2848 * before using them.
2849 *
2850 * @remarks No-long-jump zone!!!
2851 */
2852static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2853{
2854 int rc = VINF_SUCCESS;
2855 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RIP)
2856 {
2857 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
2858 AssertRCReturn(rc, rc);
2859 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RIP;
2860 Log4(("Load: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#x\n", pMixedCtx->rip, pVCpu->hm.s.fContextUseFlags));
2861 }
2862 return rc;
2863}
2864
2865
2866/**
2867 * Loads the guest's RSP into the guest-state area in the VMCS.
2868 *
2869 * @returns VBox status code.
2870 * @param pVCpu Pointer to the VMCPU.
2871 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2872 * out-of-sync. Make sure to update the required fields
2873 * before using them.
2874 *
2875 * @remarks No-long-jump zone!!!
2876 */
2877static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2878{
2879 int rc = VINF_SUCCESS;
2880 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RSP)
2881 {
2882 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
2883 AssertRCReturn(rc, rc);
2884 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RSP;
2885 Log4(("Load: VMX_VMCS_GUEST_RSP=%#RX64\n", pMixedCtx->rsp));
2886 }
2887 return rc;
2888}
2889
2890
2891/**
2892 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
2893 *
2894 * @returns VBox status code.
2895 * @param pVCpu Pointer to the VMCPU.
2896 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2897 * out-of-sync. Make sure to update the required fields
2898 * before using them.
2899 *
2900 * @remarks No-long-jump zone!!!
2901 */
2902static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2903{
2904 int rc = VINF_SUCCESS;
2905 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RFLAGS)
2906 {
2907 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
2908 Let us assert it as such and use 32-bit VMWRITE. */
2909 Assert(!(pMixedCtx->rflags.u64 >> 32));
2910 X86EFLAGS Eflags = pMixedCtx->eflags;
2911 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
2912 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
2913
2914 /*
2915 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM exit.
2916 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
2917 */
2918 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
2919 {
2920 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
2921 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
2922 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
2923 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
2924 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
2925 }
2926
2927 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
2928 AssertRCReturn(rc, rc);
2929
2930 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RFLAGS;
2931 Log4(("Load: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", Eflags.u32));
2932 }
2933 return rc;
2934}
2935
2936
2937/**
2938 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
2939 *
2940 * @returns VBox status code.
2941 * @param pVCpu Pointer to the VMCPU.
2942 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2943 * out-of-sync. Make sure to update the required fields
2944 * before using them.
2945 *
2946 * @remarks No-long-jump zone!!!
2947 */
2948DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2949{
2950 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
2951 AssertRCReturn(rc, rc);
2952 rc = hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
2953 AssertRCReturn(rc, rc);
2954 rc = hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
2955 AssertRCReturn(rc, rc);
2956 return rc;
2957}
2958
2959
2960/**
2961 * Loads the guest CR0 control register into the guest-state area in the VMCS.
2962 * CR0 is partially shared with the host and we have to consider the FPU bits.
2963 *
2964 * @returns VBox status code.
2965 * @param pVM Pointer to the VM.
2966 * @param pVCpu Pointer to the VMCPU.
2967 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2968 * out-of-sync. Make sure to update the required fields
2969 * before using them.
2970 *
2971 * @remarks No-long-jump zone!!!
2972 */
2973static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
2974{
2975 /*
2976 * Guest CR0.
2977 * Guest FPU.
2978 */
2979 int rc = VINF_SUCCESS;
2980 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
2981 {
2982 Assert(!(pMixedCtx->cr0 >> 32));
2983 uint32_t u32GuestCR0 = pMixedCtx->cr0;
2984 PVM pVM = pVCpu->CTX_SUFF(pVM);
2985
2986 /* The guest's view (read access) of its CR0 is unblemished. */
2987 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
2988 AssertRCReturn(rc, rc);
2989 Log4(("Load: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", u32GuestCR0));
2990
2991 /* Setup VT-x's view of the guest CR0. */
2992 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
2993 if (pVM->hm.s.fNestedPaging)
2994 {
2995 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
2996 {
2997 /* The guest has paging enabled, let it access CR3 without causing a VM exit if supported. */
2998 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2999 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3000 }
3001 else
3002 {
3003 /* The guest doesn't have paging enabled, make CR3 access to cause VM exits to update our shadow. */
3004 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3005 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3006 }
3007
3008 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3009 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3010 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3011
3012 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3013 AssertRCReturn(rc, rc);
3014 }
3015 else
3016 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3017
3018 /*
3019 * Guest FPU bits.
3020 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3021 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3022 */
3023 u32GuestCR0 |= X86_CR0_NE;
3024 bool fInterceptNM = false;
3025 if (CPUMIsGuestFPUStateActive(pVCpu))
3026 {
3027 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3028 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3029 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3030 }
3031 else
3032 {
3033 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3034 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3035 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3036 }
3037
3038 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3039 bool fInterceptMF = false;
3040 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3041 fInterceptMF = true;
3042
3043 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3044 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3045 {
3046 Assert(PDMVmmDevHeapIsEnabled(pVM));
3047 Assert(pVM->hm.s.vmx.pRealModeTSS);
3048 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3049 fInterceptNM = true;
3050 fInterceptMF = true;
3051 }
3052 else
3053 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3054
3055 if (fInterceptNM)
3056 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3057 else
3058 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3059
3060 if (fInterceptMF)
3061 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3062 else
3063 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3064
3065 /* Additional intercepts for debugging, define these yourself explicitly. */
3066#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3067 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3068 | RT_BIT(X86_XCPT_BP)
3069 | RT_BIT(X86_XCPT_DB)
3070 | RT_BIT(X86_XCPT_DE)
3071 | RT_BIT(X86_XCPT_NM)
3072 | RT_BIT(X86_XCPT_UD)
3073 | RT_BIT(X86_XCPT_NP)
3074 | RT_BIT(X86_XCPT_SS)
3075 | RT_BIT(X86_XCPT_GP)
3076 | RT_BIT(X86_XCPT_PF)
3077 | RT_BIT(X86_XCPT_MF)
3078 ;
3079#elif defined(HMVMX_ALWAYS_TRAP_PF)
3080 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3081#endif
3082
3083 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3084
3085 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3086 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3087 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3088 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3089 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3090 else
3091 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3092
3093 u32GuestCR0 |= uSetCR0;
3094 u32GuestCR0 &= uZapCR0;
3095 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3096
3097 /* Write VT-x's view of the guest CR0 into the VMCS and update the exception bitmap. */
3098 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3099 AssertRCReturn(rc, rc);
3100 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3101 AssertRCReturn(rc, rc);
3102 Log4(("Load: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", u32GuestCR0, uSetCR0, uZapCR0));
3103
3104 /*
3105 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3106 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3107 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3108 */
3109 uint32_t u32CR0Mask = 0;
3110 u32CR0Mask = X86_CR0_PE
3111 | X86_CR0_NE
3112 | X86_CR0_WP
3113 | X86_CR0_PG
3114 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3115 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3116 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3117 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3118 u32CR0Mask &= ~X86_CR0_PE;
3119 if (pVM->hm.s.fNestedPaging)
3120 u32CR0Mask &= ~X86_CR0_WP;
3121
3122 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3123 if (fInterceptNM)
3124 u32CR0Mask |= (X86_CR0_TS | X86_CR0_MP);
3125 else
3126 u32CR0Mask &= ~(X86_CR0_TS | X86_CR0_MP);
3127
3128 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3129 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3130 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3131 AssertRCReturn(rc, rc);
3132
3133 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
3134 }
3135 return rc;
3136}
3137
3138
3139/**
3140 * Loads the guest control registers (CR3, CR4) into the guest-state area
3141 * in the VMCS.
3142 *
3143 * @returns VBox status code.
3144 * @param pVM Pointer to the VM.
3145 * @param pVCpu Pointer to the VMCPU.
3146 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3147 * out-of-sync. Make sure to update the required fields
3148 * before using them.
3149 *
3150 * @remarks No-long-jump zone!!!
3151 */
3152static int hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3153{
3154 int rc = VINF_SUCCESS;
3155 PVM pVM = pVCpu->CTX_SUFF(pVM);
3156
3157 /*
3158 * Guest CR2.
3159 * It's always loaded in the assembler code. Nothing to do here.
3160 */
3161
3162 /*
3163 * Guest CR3.
3164 */
3165 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
3166 {
3167 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3168 if (pVM->hm.s.fNestedPaging)
3169 {
3170 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3171
3172 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3173 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3174 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3175 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3176
3177 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3178 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3179 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3180
3181 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3182 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3183 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x3f) == 0, /* Bits 6:11 MBZ. */
3184 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3185
3186 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3187 AssertRCReturn(rc, rc);
3188 Log4(("Load: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3189
3190 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3191 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3192 {
3193 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3194 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3195 {
3196 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]); AssertRCReturn(rc, rc);
3197 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
3198 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
3199 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
3200 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
3201 }
3202
3203 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3204 have Unrestricted Execution to handle the guest when it's not using paging. */
3205 GCPhysGuestCR3 = pMixedCtx->cr3;
3206 }
3207 else
3208 {
3209 /*
3210 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3211 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3212 * EPT takes care of translating it to host-physical addresses.
3213 */
3214 RTGCPHYS GCPhys;
3215 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3216 Assert(PDMVmmDevHeapIsEnabled(pVM));
3217
3218 /* We obtain it here every time as the guest could have relocated this PCI region. */
3219 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3220 AssertRCReturn(rc, rc);
3221
3222 GCPhysGuestCR3 = GCPhys;
3223 }
3224
3225 Log4(("Load: VMX_VMCS_GUEST_CR3=%#RGv (GstN)\n", GCPhysGuestCR3));
3226 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3227 }
3228 else
3229 {
3230 /* Non-nested paging case, just use the hypervisor's CR3. */
3231 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3232
3233 Log4(("Load: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", HCPhysGuestCR3));
3234 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3235 }
3236 AssertRCReturn(rc, rc);
3237
3238 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
3239 }
3240
3241 /*
3242 * Guest CR4.
3243 */
3244 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
3245 {
3246 Assert(!(pMixedCtx->cr4 >> 32));
3247 uint32_t u32GuestCR4 = pMixedCtx->cr4;
3248
3249 /* The guest's view of its CR4 is unblemished. */
3250 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
3251 AssertRCReturn(rc, rc);
3252 Log4(("Load: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", u32GuestCR4));
3253
3254 /* Setup VT-x's view of the guest CR4. */
3255 /*
3256 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
3257 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3258 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3259 */
3260 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3261 {
3262 Assert(pVM->hm.s.vmx.pRealModeTSS);
3263 Assert(PDMVmmDevHeapIsEnabled(pVM));
3264 u32GuestCR4 &= ~X86_CR4_VME;
3265 }
3266
3267 if (pVM->hm.s.fNestedPaging)
3268 {
3269 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
3270 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3271 {
3272 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3273 u32GuestCR4 |= X86_CR4_PSE;
3274 /* Our identity mapping is a 32 bits page directory. */
3275 u32GuestCR4 &= ~X86_CR4_PAE;
3276 }
3277 /* else use guest CR4.*/
3278 }
3279 else
3280 {
3281 /*
3282 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3283 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3284 */
3285 switch (pVCpu->hm.s.enmShadowMode)
3286 {
3287 case PGMMODE_REAL: /* Real-mode. */
3288 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3289 case PGMMODE_32_BIT: /* 32-bit paging. */
3290 {
3291 u32GuestCR4 &= ~X86_CR4_PAE;
3292 break;
3293 }
3294
3295 case PGMMODE_PAE: /* PAE paging. */
3296 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3297 {
3298 u32GuestCR4 |= X86_CR4_PAE;
3299 break;
3300 }
3301
3302 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3303 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3304#ifdef VBOX_ENABLE_64_BITS_GUESTS
3305 break;
3306#endif
3307 default:
3308 AssertFailed();
3309 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3310 }
3311 }
3312
3313 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3314 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3315 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3316 u32GuestCR4 |= uSetCR4;
3317 u32GuestCR4 &= uZapCR4;
3318
3319 /* Write VT-x's view of the guest CR4 into the VMCS. */
3320 Log4(("Load: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", u32GuestCR4, uSetCR4, uZapCR4));
3321 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
3322 AssertRCReturn(rc, rc);
3323
3324 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM exit. */
3325 uint32_t u32CR4Mask = 0;
3326 u32CR4Mask = X86_CR4_VME
3327 | X86_CR4_PAE
3328 | X86_CR4_PGE
3329 | X86_CR4_PSE
3330 | X86_CR4_VMXE;
3331 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
3332 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
3333 AssertRCReturn(rc, rc);
3334
3335 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
3336 }
3337 return rc;
3338}
3339
3340
3341/**
3342 * Loads the guest debug registers into the guest-state area in the VMCS.
3343 * This also sets up whether #DB and MOV DRx accesses cause VM exits.
3344 *
3345 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
3346 *
3347 * @returns VBox status code.
3348 * @param pVCpu Pointer to the VMCPU.
3349 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3350 * out-of-sync. Make sure to update the required fields
3351 * before using them.
3352 *
3353 * @remarks No-long-jump zone!!!
3354 */
3355static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3356{
3357 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
3358 return VINF_SUCCESS;
3359
3360#ifdef VBOX_STRICT
3361 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
3362 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
3363 {
3364 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
3365 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
3366 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
3367 }
3368#endif
3369
3370 int rc;
3371 PVM pVM = pVCpu->CTX_SUFF(pVM);
3372 bool fInterceptDB = false;
3373 bool fInterceptMovDRx = false;
3374 if (pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu))
3375 {
3376 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
3377 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
3378 {
3379 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
3380 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3381 AssertRCReturn(rc, rc);
3382 Assert(fInterceptDB == false);
3383 }
3384 else
3385 {
3386 pMixedCtx->eflags.u32 |= X86_EFL_TF;
3387 pVCpu->hm.s.fClearTrapFlag = true;
3388 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RFLAGS;
3389 fInterceptDB = true;
3390 }
3391 }
3392
3393 if (fInterceptDB || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
3394 {
3395 /*
3396 * Use the combined guest and host DRx values found in the hypervisor
3397 * register set because the debugger has breakpoints active or someone
3398 * is single stepping on the host side without a monitor trap flag.
3399 *
3400 * Note! DBGF expects a clean DR6 state before executing guest code.
3401 */
3402 if (!CPUMIsHyperDebugStateActive(pVCpu))
3403 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
3404 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3405 Assert(CPUMIsHyperDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
3406
3407 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
3408 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
3409 AssertRCReturn(rc, rc);
3410
3411 fInterceptDB = true;
3412 fInterceptMovDRx = true;
3413 }
3414 else
3415 {
3416 /*
3417 * If the guest has enabled debug registers, we need to load them prior to
3418 * executing guest code so they'll trigger at the right time.
3419 */
3420 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
3421 {
3422 if (!CPUMIsGuestDebugStateActive(pVCpu))
3423 {
3424 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
3425 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
3426 }
3427 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3428 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
3429 }
3430 /*
3431 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
3432 * must intercept #DB in order to maintain a correct DR6 guest value.
3433 */
3434 else if (!CPUMIsGuestDebugStateActive(pVCpu))
3435 {
3436 fInterceptMovDRx = true;
3437 fInterceptDB = true;
3438 }
3439
3440 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
3441 AssertRCReturn(rc, rc);
3442 }
3443
3444 /*
3445 * Update the exception bitmap regarding intercepting #DB generated by the guest.
3446 */
3447 if (fInterceptDB)
3448 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_DB);
3449 else if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3450 {
3451#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3452 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
3453#endif
3454 }
3455 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3456 AssertRCReturn(rc, rc);
3457
3458 /*
3459 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
3460 */
3461 if (fInterceptMovDRx)
3462 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
3463 else
3464 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
3465 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3466 AssertRCReturn(rc, rc);
3467
3468 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
3469 return VINF_SUCCESS;
3470}
3471
3472
3473#ifdef VBOX_STRICT
3474/**
3475 * Strict function to validate segment registers.
3476 *
3477 * @remarks ASSUMES CR0 is up to date.
3478 */
3479static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3480{
3481 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
3482 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
3483 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
3484 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3485 && ( !CPUMIsGuestInRealModeEx(pCtx)
3486 && !CPUMIsGuestInV86ModeEx(pCtx)))
3487 {
3488 /* Protected mode checks */
3489 /* CS */
3490 Assert(pCtx->cs.Attr.n.u1Present);
3491 Assert(!(pCtx->cs.Attr.u & 0xf00));
3492 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
3493 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
3494 || !(pCtx->cs.Attr.n.u1Granularity));
3495 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
3496 || (pCtx->cs.Attr.n.u1Granularity));
3497 /* CS cannot be loaded with NULL in protected mode. */
3498 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS?!? */
3499 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
3500 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
3501 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
3502 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
3503 else
3504 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
3505 /* SS */
3506 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
3507 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
3508 if ( !(pCtx->cr0 & X86_CR0_PE)
3509 || pCtx->cs.Attr.n.u4Type == 3)
3510 {
3511 Assert(!pCtx->ss.Attr.n.u2Dpl);
3512 }
3513 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
3514 {
3515 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
3516 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
3517 Assert(pCtx->ss.Attr.n.u1Present);
3518 Assert(!(pCtx->ss.Attr.u & 0xf00));
3519 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
3520 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
3521 || !(pCtx->ss.Attr.n.u1Granularity));
3522 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
3523 || (pCtx->ss.Attr.n.u1Granularity));
3524 }
3525 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
3526 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
3527 {
3528 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3529 Assert(pCtx->ds.Attr.n.u1Present);
3530 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
3531 Assert(!(pCtx->ds.Attr.u & 0xf00));
3532 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
3533 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
3534 || !(pCtx->ds.Attr.n.u1Granularity));
3535 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
3536 || (pCtx->ds.Attr.n.u1Granularity));
3537 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3538 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
3539 }
3540 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
3541 {
3542 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3543 Assert(pCtx->es.Attr.n.u1Present);
3544 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
3545 Assert(!(pCtx->es.Attr.u & 0xf00));
3546 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
3547 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
3548 || !(pCtx->es.Attr.n.u1Granularity));
3549 Assert( !(pCtx->es.u32Limit & 0xfff00000)
3550 || (pCtx->es.Attr.n.u1Granularity));
3551 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3552 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
3553 }
3554 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
3555 {
3556 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3557 Assert(pCtx->fs.Attr.n.u1Present);
3558 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
3559 Assert(!(pCtx->fs.Attr.u & 0xf00));
3560 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
3561 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
3562 || !(pCtx->fs.Attr.n.u1Granularity));
3563 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
3564 || (pCtx->fs.Attr.n.u1Granularity));
3565 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3566 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
3567 }
3568 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
3569 {
3570 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
3571 Assert(pCtx->gs.Attr.n.u1Present);
3572 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
3573 Assert(!(pCtx->gs.Attr.u & 0xf00));
3574 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
3575 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
3576 || !(pCtx->gs.Attr.n.u1Granularity));
3577 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
3578 || (pCtx->gs.Attr.n.u1Granularity));
3579 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
3580 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
3581 }
3582 /* 64-bit capable CPUs. */
3583# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3584 Assert(!(pCtx->cs.u64Base >> 32));
3585 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
3586 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
3587 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
3588# endif
3589 }
3590 else if ( CPUMIsGuestInV86ModeEx(pCtx)
3591 || ( CPUMIsGuestInRealModeEx(pCtx)
3592 && !pVM->hm.s.vmx.fUnrestrictedGuest))
3593 {
3594 /* Real and v86 mode checks. */
3595 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
3596 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
3597 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3598 {
3599 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
3600 }
3601 else
3602 {
3603 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
3604 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
3605 }
3606
3607 /* CS */
3608 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
3609 Assert(pCtx->cs.u32Limit == 0xffff);
3610 Assert(u32CSAttr == 0xf3);
3611 /* SS */
3612 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
3613 Assert(pCtx->ss.u32Limit == 0xffff);
3614 Assert(u32SSAttr == 0xf3);
3615 /* DS */
3616 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
3617 Assert(pCtx->ds.u32Limit == 0xffff);
3618 Assert(u32DSAttr == 0xf3);
3619 /* ES */
3620 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
3621 Assert(pCtx->es.u32Limit == 0xffff);
3622 Assert(u32ESAttr == 0xf3);
3623 /* FS */
3624 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
3625 Assert(pCtx->fs.u32Limit == 0xffff);
3626 Assert(u32FSAttr == 0xf3);
3627 /* GS */
3628 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
3629 Assert(pCtx->gs.u32Limit == 0xffff);
3630 Assert(u32GSAttr == 0xf3);
3631 /* 64-bit capable CPUs. */
3632# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3633 Assert(!(pCtx->cs.u64Base >> 32));
3634 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
3635 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
3636 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
3637# endif
3638 }
3639}
3640#endif /* VBOX_STRICT */
3641
3642
3643/**
3644 * Writes a guest segment register into the guest-state area in the VMCS.
3645 *
3646 * @returns VBox status code.
3647 * @param pVCpu Pointer to the VMCPU.
3648 * @param idxSel Index of the selector in the VMCS.
3649 * @param idxLimit Index of the segment limit in the VMCS.
3650 * @param idxBase Index of the segment base in the VMCS.
3651 * @param idxAccess Index of the access rights of the segment in the VMCS.
3652 * @param pSelReg Pointer to the segment selector.
3653 * @param pCtx Pointer to the guest-CPU context.
3654 *
3655 * @remarks No-long-jump zone!!!
3656 */
3657static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
3658 uint32_t idxAccess, PCPUMSELREG pSelReg, PCPUMCTX pCtx)
3659{
3660 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
3661 AssertRCReturn(rc, rc);
3662 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
3663 AssertRCReturn(rc, rc);
3664 rc = VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
3665 AssertRCReturn(rc, rc);
3666
3667 uint32_t u32Access = pSelReg->Attr.u;
3668 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3669 {
3670 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
3671 u32Access = 0xf3;
3672 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3673 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3674 }
3675 else
3676 {
3677 /*
3678 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
3679 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
3680 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
3681 * loaded in protected-mode have their attribute as 0.
3682 */
3683 if (!u32Access)
3684 u32Access = X86DESCATTR_UNUSABLE;
3685 }
3686
3687 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
3688 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
3689 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
3690
3691 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
3692 AssertRCReturn(rc, rc);
3693 return rc;
3694}
3695
3696
3697/**
3698 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
3699 * into the guest-state area in the VMCS.
3700 *
3701 * @returns VBox status code.
3702 * @param pVM Pointer to the VM.
3703 * @param pVCPU Pointer to the VMCPU.
3704 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3705 * out-of-sync. Make sure to update the required fields
3706 * before using them.
3707 *
3708 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
3709 * @remarks No-long-jump zone!!!
3710 */
3711static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3712{
3713 int rc = VERR_INTERNAL_ERROR_5;
3714 PVM pVM = pVCpu->CTX_SUFF(pVM);
3715
3716 /*
3717 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
3718 */
3719 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
3720 {
3721 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
3722 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3723 {
3724 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
3725 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
3726 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
3727 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
3728 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
3729 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
3730 }
3731
3732#ifdef VBOX_WITH_REM
3733 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
3734 {
3735 Assert(pVM->hm.s.vmx.pRealModeTSS);
3736 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
3737 if ( pVCpu->hm.s.vmx.fWasInRealMode
3738 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
3739 {
3740 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
3741 in real-mode (e.g. OpenBSD 4.0) */
3742 REMFlushTBs(pVM);
3743 Log4(("Load: Switch to protected mode detected!\n"));
3744 pVCpu->hm.s.vmx.fWasInRealMode = false;
3745 }
3746 }
3747#endif
3748 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_CS, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
3749 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs, pMixedCtx);
3750 AssertRCReturn(rc, rc);
3751 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_SS, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
3752 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss, pMixedCtx);
3753 AssertRCReturn(rc, rc);
3754 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_DS, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
3755 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds, pMixedCtx);
3756 AssertRCReturn(rc, rc);
3757 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_ES, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
3758 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es, pMixedCtx);
3759 AssertRCReturn(rc, rc);
3760 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_FS, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
3761 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs, pMixedCtx);
3762 AssertRCReturn(rc, rc);
3763 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_GS, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
3764 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs, pMixedCtx);
3765 AssertRCReturn(rc, rc);
3766
3767 Log4(("Load: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pMixedCtx->cs.Sel, pMixedCtx->cs.u64Base,
3768 pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
3769#ifdef VBOX_STRICT
3770 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
3771#endif
3772 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
3773 }
3774
3775 /*
3776 * Guest TR.
3777 */
3778 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
3779 {
3780 /*
3781 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
3782 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
3783 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
3784 */
3785 uint16_t u16Sel = 0;
3786 uint32_t u32Limit = 0;
3787 uint64_t u64Base = 0;
3788 uint32_t u32AccessRights = 0;
3789
3790 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3791 {
3792 u16Sel = pMixedCtx->tr.Sel;
3793 u32Limit = pMixedCtx->tr.u32Limit;
3794 u64Base = pMixedCtx->tr.u64Base;
3795 u32AccessRights = pMixedCtx->tr.Attr.u;
3796 }
3797 else
3798 {
3799 Assert(pVM->hm.s.vmx.pRealModeTSS);
3800 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
3801
3802 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
3803 RTGCPHYS GCPhys;
3804 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
3805 AssertRCReturn(rc, rc);
3806
3807 X86DESCATTR DescAttr;
3808 DescAttr.u = 0;
3809 DescAttr.n.u1Present = 1;
3810 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
3811
3812 u16Sel = 0;
3813 u32Limit = HM_VTX_TSS_SIZE;
3814 u64Base = GCPhys; /* in real-mode phys = virt. */
3815 u32AccessRights = DescAttr.u;
3816 }
3817
3818 /* Validate. */
3819 Assert(!(u16Sel & RT_BIT(2)));
3820 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
3821 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
3822 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
3823 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
3824 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
3825 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
3826 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
3827 Assert( (u32Limit & 0xfff) == 0xfff
3828 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
3829 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
3830 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
3831
3832 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_TR, u16Sel); AssertRCReturn(rc, rc);
3833 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRCReturn(rc, rc);
3834 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRCReturn(rc, rc);
3835 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRCReturn(rc, rc);
3836
3837 Log4(("Load: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", u64Base));
3838 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
3839 }
3840
3841 /*
3842 * Guest GDTR.
3843 */
3844 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
3845 {
3846 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt); AssertRCReturn(rc, rc);
3847 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt); AssertRCReturn(rc, rc);
3848
3849 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
3850 Log4(("Load: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pMixedCtx->gdtr.pGdt));
3851 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
3852 }
3853
3854 /*
3855 * Guest LDTR.
3856 */
3857 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
3858 {
3859 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
3860 uint32_t u32Access = 0;
3861 if (!pMixedCtx->ldtr.Attr.u)
3862 u32Access = X86DESCATTR_UNUSABLE;
3863 else
3864 u32Access = pMixedCtx->ldtr.Attr.u;
3865
3866 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_LDTR, pMixedCtx->ldtr.Sel); AssertRCReturn(rc, rc);
3867 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit); AssertRCReturn(rc, rc);
3868 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base); AssertRCReturn(rc, rc);
3869 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRCReturn(rc, rc);
3870
3871 /* Validate. */
3872 if (!(u32Access & X86DESCATTR_UNUSABLE))
3873 {
3874 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
3875 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
3876 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
3877 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
3878 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
3879 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
3880 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
3881 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
3882 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
3883 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
3884 }
3885
3886 Log4(("Load: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pMixedCtx->ldtr.u64Base));
3887 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
3888 }
3889
3890 /*
3891 * Guest IDTR.
3892 */
3893 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
3894 {
3895 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt); AssertRCReturn(rc, rc);
3896 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt); AssertRCReturn(rc, rc);
3897
3898 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
3899 Log4(("Load: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pMixedCtx->idtr.pIdt));
3900 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
3901 }
3902
3903 return VINF_SUCCESS;
3904}
3905
3906
3907/**
3908 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
3909 * areas. These MSRs will automatically be loaded to the host CPU on every
3910 * successful VM entry and stored from the host CPU on every successful VM exit.
3911 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
3912 *
3913 * @returns VBox status code.
3914 * @param pVCpu Pointer to the VMCPU.
3915 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3916 * out-of-sync. Make sure to update the required fields
3917 * before using them.
3918 *
3919 * @remarks No-long-jump zone!!!
3920 */
3921static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3922{
3923 AssertPtr(pVCpu);
3924 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
3925
3926 /*
3927 * MSRs covered by Auto-load/store: EFER, LSTAR, STAR, SF_MASK, TSC_AUX (RDTSCP).
3928 */
3929 int rc = VINF_SUCCESS;
3930 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
3931 {
3932#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
3933 PVM pVM = pVCpu->CTX_SUFF(pVM);
3934 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
3935 uint32_t cGuestMsrs = 0;
3936
3937 /* See Intel spec. 4.1.4 "Enumeration of Paging Features by CPUID". */
3938 /** @todo r=ramshankar: Optimize this further to do lazy restoration and only
3939 * when the guest really is in 64-bit mode. */
3940 bool fSupportsLongMode = CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
3941 if (fSupportsLongMode)
3942 {
3943 pGuestMsr->u32Msr = MSR_K8_LSTAR;
3944 pGuestMsr->u32Reserved = 0;
3945 pGuestMsr->u64Value = pMixedCtx->msrLSTAR; /* 64 bits mode syscall rip */
3946 pGuestMsr++; cGuestMsrs++;
3947 pGuestMsr->u32Msr = MSR_K6_STAR;
3948 pGuestMsr->u32Reserved = 0;
3949 pGuestMsr->u64Value = pMixedCtx->msrSTAR; /* legacy syscall eip, cs & ss */
3950 pGuestMsr++; cGuestMsrs++;
3951 pGuestMsr->u32Msr = MSR_K8_SF_MASK;
3952 pGuestMsr->u32Reserved = 0;
3953 pGuestMsr->u64Value = pMixedCtx->msrSFMASK; /* syscall flag mask */
3954 pGuestMsr++; cGuestMsrs++;
3955 pGuestMsr->u32Msr = MSR_K8_KERNEL_GS_BASE;
3956 pGuestMsr->u32Reserved = 0;
3957 pGuestMsr->u64Value = pMixedCtx->msrKERNELGSBASE; /* swapgs exchange value */
3958 pGuestMsr++; cGuestMsrs++;
3959 }
3960
3961 /*
3962 * RDTSCP requires the TSC_AUX MSR. Host and guest share the physical MSR. So we have to
3963 * load the guest's copy if the guest can execute RDTSCP without causing VM-exits.
3964 */
3965 if ( CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP)
3966 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP))
3967 {
3968 pGuestMsr->u32Msr = MSR_K8_TSC_AUX;
3969 pGuestMsr->u32Reserved = 0;
3970 rc = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pGuestMsr->u64Value);
3971 AssertRCReturn(rc, rc);
3972 pGuestMsr++; cGuestMsrs++;
3973 }
3974
3975 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
3976 if (cGuestMsrs > MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc))
3977 {
3978 LogRel(("CPU autoload/store MSR count in VMCS exceeded cGuestMsrs=%u.\n", cGuestMsrs));
3979 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
3980 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3981 }
3982
3983 /* Update the VCPU's copy of the guest MSR count. */
3984 pVCpu->hm.s.vmx.cGuestMsrs = cGuestMsrs;
3985 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cGuestMsrs); AssertRCReturn(rc, rc);
3986 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cGuestMsrs); AssertRCReturn(rc, rc);
3987#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
3988
3989 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_AUTO_MSRS;
3990 }
3991
3992 /*
3993 * Guest Sysenter MSRs.
3994 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
3995 * VM-exits on WRMSRs for these MSRs.
3996 */
3997 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
3998 {
3999 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4000 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_CS_MSR;
4001 }
4002 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4003 {
4004 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4005 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR;
4006 }
4007 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4008 {
4009 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4010 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR;
4011 }
4012
4013 return rc;
4014}
4015
4016
4017/**
4018 * Loads the guest activity state into the guest-state area in the VMCS.
4019 *
4020 * @returns VBox status code.
4021 * @param pVCpu Pointer to the VMCPU.
4022 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4023 * out-of-sync. Make sure to update the required fields
4024 * before using them.
4025 *
4026 * @remarks No-long-jump zone!!!
4027 */
4028static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pCtx)
4029{
4030 /** @todo See if we can make use of other states, e.g.
4031 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4032 int rc = VINF_SUCCESS;
4033 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_ACTIVITY_STATE)
4034 {
4035 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4036 AssertRCReturn(rc, rc);
4037 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_ACTIVITY_STATE;
4038 }
4039 return rc;
4040}
4041
4042
4043/**
4044 * Sets up the appropriate function to run guest code.
4045 *
4046 * @returns VBox status code.
4047 * @param pVCpu Pointer to the VMCPU.
4048 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4049 * out-of-sync. Make sure to update the required fields
4050 * before using them.
4051 *
4052 * @remarks No-long-jump zone!!!
4053 */
4054static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4055{
4056 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4057 {
4058#ifndef VBOX_ENABLE_64_BITS_GUESTS
4059 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4060#endif
4061 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4062#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4063 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4064 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4065 {
4066 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4067 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_EXIT_CTLS | HM_CHANGED_VMX_ENTRY_CTLS;
4068 }
4069#else
4070 /* 64-bit host or hybrid host. */
4071 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4072#endif
4073 }
4074 else
4075 {
4076 /* Guest is not in long mode, use the 32-bit handler. */
4077#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4078 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4079 {
4080 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4081 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_EXIT_CTLS | HM_CHANGED_VMX_ENTRY_CTLS;
4082 }
4083#else
4084 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4085#endif
4086 }
4087 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4088 return VINF_SUCCESS;
4089}
4090
4091
4092/**
4093 * Wrapper for running the guest code in VT-x.
4094 *
4095 * @returns VBox strict status code.
4096 * @param pVM Pointer to the VM.
4097 * @param pVCpu Pointer to the VMCPU.
4098 * @param pCtx Pointer to the guest-CPU context.
4099 *
4100 * @remarks No-long-jump zone!!!
4101 */
4102DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4103{
4104 /*
4105 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4106 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4107 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4108 */
4109 const bool fResumeVM = !!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4110 /** @todo Add stats for resume vs launch. */
4111#ifdef VBOX_WITH_KERNEL_USING_XMM
4112 return HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4113#else
4114 return pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4115#endif
4116}
4117
4118
4119/**
4120 * Reports world-switch error and dumps some useful debug info.
4121 *
4122 * @param pVM Pointer to the VM.
4123 * @param pVCpu Pointer to the VMCPU.
4124 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4125 * @param pCtx Pointer to the guest-CPU context.
4126 * @param pVmxTransient Pointer to the VMX transient structure (only
4127 * exitReason updated).
4128 */
4129static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
4130{
4131 Assert(pVM);
4132 Assert(pVCpu);
4133 Assert(pCtx);
4134 Assert(pVmxTransient);
4135 HMVMX_ASSERT_PREEMPT_SAFE();
4136
4137 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
4138 switch (rcVMRun)
4139 {
4140 case VERR_VMX_INVALID_VMXON_PTR:
4141 AssertFailed();
4142 break;
4143 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4144 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4145 {
4146 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4147 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4148 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
4149 AssertRC(rc);
4150
4151 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4152 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4153 Cannot do it here as we may have been long preempted. */
4154
4155#ifdef VBOX_STRICT
4156 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4157 pVmxTransient->uExitReason));
4158 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
4159 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4160 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
4161 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
4162 else
4163 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
4164 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
4165 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
4166
4167 /* VMX control bits. */
4168 uint32_t u32Val;
4169 uint64_t u64Val;
4170 HMVMXHCUINTREG uHCReg;
4171 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
4172 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
4173 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
4174 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
4175 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
4176 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
4177 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
4178 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
4179 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
4180 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
4181 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
4182 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
4183 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
4184 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
4185 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
4186 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
4187 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
4188 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
4189 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
4190 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
4191 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
4192 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
4193 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4194 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
4195 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4196 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
4197 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
4198 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
4199 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
4200 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
4201 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
4202 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
4203 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
4204 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
4205 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
4206 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
4207 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
4208 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
4209 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
4210 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
4211 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
4212 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
4213
4214 /* Guest bits. */
4215 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
4216 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
4217 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
4218 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
4219 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
4220 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
4221 rc = VMXReadVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, &u32Val); AssertRC(rc);
4222 Log4(("VMX_VMCS16_GUEST_FIELD_VPID %u\n", u32Val));
4223
4224 /* Host bits. */
4225 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
4226 Log4(("Host CR0 %#RHr\n", uHCReg));
4227 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
4228 Log4(("Host CR3 %#RHr\n", uHCReg));
4229 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
4230 Log4(("Host CR4 %#RHr\n", uHCReg));
4231
4232 RTGDTR HostGdtr;
4233 PCX86DESCHC pDesc;
4234 ASMGetGDTR(&HostGdtr);
4235 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_CS, &u32Val); AssertRC(rc);
4236 Log4(("Host CS %#08x\n", u32Val));
4237 if (u32Val < HostGdtr.cbGdt)
4238 {
4239 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4240 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
4241 }
4242
4243 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_DS, &u32Val); AssertRC(rc);
4244 Log4(("Host DS %#08x\n", u32Val));
4245 if (u32Val < HostGdtr.cbGdt)
4246 {
4247 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4248 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
4249 }
4250
4251 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_ES, &u32Val); AssertRC(rc);
4252 Log4(("Host ES %#08x\n", u32Val));
4253 if (u32Val < HostGdtr.cbGdt)
4254 {
4255 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4256 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
4257 }
4258
4259 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_FS, &u32Val); AssertRC(rc);
4260 Log4(("Host FS %#08x\n", u32Val));
4261 if (u32Val < HostGdtr.cbGdt)
4262 {
4263 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4264 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
4265 }
4266
4267 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_GS, &u32Val); AssertRC(rc);
4268 Log4(("Host GS %#08x\n", u32Val));
4269 if (u32Val < HostGdtr.cbGdt)
4270 {
4271 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4272 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
4273 }
4274
4275 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_SS, &u32Val); AssertRC(rc);
4276 Log4(("Host SS %#08x\n", u32Val));
4277 if (u32Val < HostGdtr.cbGdt)
4278 {
4279 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4280 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
4281 }
4282
4283 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_TR, &u32Val); AssertRC(rc);
4284 Log4(("Host TR %#08x\n", u32Val));
4285 if (u32Val < HostGdtr.cbGdt)
4286 {
4287 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4288 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
4289 }
4290
4291 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
4292 Log4(("Host TR Base %#RHv\n", uHCReg));
4293 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
4294 Log4(("Host GDTR Base %#RHv\n", uHCReg));
4295 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
4296 Log4(("Host IDTR Base %#RHv\n", uHCReg));
4297 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
4298 Log4(("Host SYSENTER CS %#08x\n", u32Val));
4299 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
4300 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
4301 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
4302 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
4303 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
4304 Log4(("Host RSP %#RHv\n", uHCReg));
4305 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
4306 Log4(("Host RIP %#RHv\n", uHCReg));
4307# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4308 if (HMVMX_IS_64BIT_HOST_MODE())
4309 {
4310 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
4311 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
4312 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
4313 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
4314 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
4315 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
4316 }
4317# endif
4318#endif /* VBOX_STRICT */
4319 break;
4320 }
4321
4322 default:
4323 /* Impossible */
4324 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
4325 break;
4326 }
4327 NOREF(pVM);
4328}
4329
4330
4331#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4332#ifndef VMX_USE_CACHED_VMCS_ACCESSES
4333# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
4334#endif
4335#ifdef VBOX_STRICT
4336static bool hmR0VmxIsValidWriteField(uint32_t idxField)
4337{
4338 switch (idxField)
4339 {
4340 case VMX_VMCS_GUEST_RIP:
4341 case VMX_VMCS_GUEST_RSP:
4342 case VMX_VMCS_GUEST_SYSENTER_EIP:
4343 case VMX_VMCS_GUEST_SYSENTER_ESP:
4344 case VMX_VMCS_GUEST_GDTR_BASE:
4345 case VMX_VMCS_GUEST_IDTR_BASE:
4346 case VMX_VMCS_GUEST_CS_BASE:
4347 case VMX_VMCS_GUEST_DS_BASE:
4348 case VMX_VMCS_GUEST_ES_BASE:
4349 case VMX_VMCS_GUEST_FS_BASE:
4350 case VMX_VMCS_GUEST_GS_BASE:
4351 case VMX_VMCS_GUEST_SS_BASE:
4352 case VMX_VMCS_GUEST_LDTR_BASE:
4353 case VMX_VMCS_GUEST_TR_BASE:
4354 case VMX_VMCS_GUEST_CR3:
4355 return true;
4356 }
4357 return false;
4358}
4359
4360static bool hmR0VmxIsValidReadField(uint32_t idxField)
4361{
4362 switch (idxField)
4363 {
4364 /* Read-only fields. */
4365 case VMX_VMCS_RO_EXIT_QUALIFICATION:
4366 return true;
4367 }
4368 /* Remaining readable fields should also be writable. */
4369 return hmR0VmxIsValidWriteField(idxField);
4370}
4371#endif /* VBOX_STRICT */
4372
4373
4374/**
4375 * Executes the specified handler in 64-bit mode.
4376 *
4377 * @returns VBox status code.
4378 * @param pVM Pointer to the VM.
4379 * @param pVCpu Pointer to the VMCPU.
4380 * @param pCtx Pointer to the guest CPU context.
4381 * @param enmOp The operation to perform.
4382 * @param cbParam Number of parameters.
4383 * @param paParam Array of 32-bit parameters.
4384 */
4385VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
4386 uint32_t *paParam)
4387{
4388 int rc, rc2;
4389 PHMGLOBALCPUINFO pCpu;
4390 RTHCPHYS HCPhysCpuPage;
4391 RTCCUINTREG uOldEflags;
4392
4393 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
4394 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
4395 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
4396 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
4397
4398#ifdef VBOX_STRICT
4399 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
4400 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
4401
4402 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
4403 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
4404#endif
4405
4406 /* Disable interrupts. */
4407 uOldEflags = ASMIntDisableFlags();
4408
4409#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
4410 RTCPUID idHostCpu = RTMpCpuId();
4411 CPUMR0SetLApic(pVCpu, idHostCpu);
4412#endif
4413
4414 pCpu = HMR0GetCurrentCpu();
4415 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4416
4417 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
4418 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
4419
4420 /* Leave VMX Root Mode. */
4421 VMXDisable();
4422
4423 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4424
4425 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
4426 CPUMSetHyperEIP(pVCpu, enmOp);
4427 for (int i = (int)cbParam - 1; i >= 0; i--)
4428 CPUMPushHyper(pVCpu, paParam[i]);
4429
4430 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
4431
4432 /* Call the switcher. */
4433 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
4434 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
4435
4436 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
4437 /* Make sure the VMX instructions don't cause #UD faults. */
4438 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
4439
4440 /* Re-enter VMX Root Mode */
4441 rc2 = VMXEnable(HCPhysCpuPage);
4442 if (RT_FAILURE(rc2))
4443 {
4444 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4445 ASMSetFlags(uOldEflags);
4446 return rc2;
4447 }
4448
4449 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
4450 AssertRC(rc2);
4451 Assert(!(ASMGetFlags() & X86_EFL_IF));
4452 ASMSetFlags(uOldEflags);
4453 return rc;
4454}
4455
4456
4457/**
4458 * Prepares for and executes VMLAUNCH (64 bits guests) for 32-bit hosts
4459 * supporting 64-bit guests.
4460 *
4461 * @returns VBox status code.
4462 * @param fResume Whether to VMLAUNCH or VMRESUME.
4463 * @param pCtx Pointer to the guest-CPU context.
4464 * @param pCache Pointer to the VMCS cache.
4465 * @param pVM Pointer to the VM.
4466 * @param pVCpu Pointer to the VMCPU.
4467 */
4468DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
4469{
4470 uint32_t aParam[6];
4471 PHMGLOBALCPUINFO pCpu = NULL;
4472 RTHCPHYS HCPhysCpuPage = 0;
4473 int rc = VERR_INTERNAL_ERROR_5;
4474
4475 pCpu = HMR0GetCurrentCpu();
4476 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4477
4478#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4479 pCache->uPos = 1;
4480 pCache->interPD = PGMGetInterPaeCR3(pVM);
4481 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
4482#endif
4483
4484#ifdef VBOX_STRICT
4485 pCache->TestIn.HCPhysCpuPage = 0;
4486 pCache->TestIn.HCPhysVmcs = 0;
4487 pCache->TestIn.pCache = 0;
4488 pCache->TestOut.HCPhysVmcs = 0;
4489 pCache->TestOut.pCache = 0;
4490 pCache->TestOut.pCtx = 0;
4491 pCache->TestOut.eflags = 0;
4492#endif
4493
4494 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
4495 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
4496 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
4497 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
4498 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
4499 aParam[5] = 0;
4500
4501#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4502 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
4503 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
4504#endif
4505 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, 6, &aParam[0]);
4506
4507#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4508 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
4509 Assert(pCtx->dr[4] == 10);
4510 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
4511#endif
4512
4513#ifdef VBOX_STRICT
4514 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
4515 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
4516 pVCpu->hm.s.vmx.HCPhysVmcs));
4517 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
4518 pCache->TestOut.HCPhysVmcs));
4519 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
4520 pCache->TestOut.pCache));
4521 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
4522 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
4523 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
4524 pCache->TestOut.pCtx));
4525 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
4526#endif
4527 return rc;
4528}
4529
4530
4531/**
4532 * Initialize the VMCS-Read cache. The VMCS cache is used for 32-bit hosts
4533 * running 64-bit guests (except 32-bit Darwin which runs with 64-bit paging in
4534 * 32-bit mode) for 64-bit fields that cannot be accessed in 32-bit mode. Some
4535 * 64-bit fields -can- be accessed (those that have a 32-bit FULL & HIGH part).
4536 *
4537 * @returns VBox status code.
4538 * @param pVM Pointer to the VM.
4539 * @param pVCpu Pointer to the VMCPU.
4540 */
4541static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
4542{
4543#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
4544{ \
4545 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
4546 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
4547 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
4548 ++cReadFields; \
4549}
4550
4551 AssertPtr(pVM);
4552 AssertPtr(pVCpu);
4553 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
4554 uint32_t cReadFields = 0;
4555
4556 /*
4557 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
4558 * and serve to indicate exceptions to the rules.
4559 */
4560
4561 /* Guest-natural selector base fields. */
4562#if 0
4563 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
4564 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
4565 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
4566#endif
4567 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
4568 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
4569 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
4570 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
4571 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
4572 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
4573 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
4574 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
4575 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
4576 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
4577 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
4578 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
4579#if 0
4580 /* Unused natural width guest-state fields. */
4581 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
4582 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
4583#endif
4584 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
4585 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
4586
4587 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
4588#if 0
4589 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
4590 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
4591 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
4592 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
4593 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
4594 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
4595 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
4596 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
4597 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
4598#endif
4599
4600 /* Natural width guest-state fields. */
4601 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
4602#if 0
4603 /* Currently unused field. */
4604 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
4605#endif
4606
4607 if (pVM->hm.s.fNestedPaging)
4608 {
4609 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
4610 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
4611 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
4612 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
4613 }
4614 else
4615 {
4616 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
4617 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
4618 }
4619
4620#undef VMXLOCAL_INIT_READ_CACHE_FIELD
4621 return VINF_SUCCESS;
4622}
4623
4624
4625/**
4626 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
4627 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
4628 * darwin, running 64-bit guests).
4629 *
4630 * @returns VBox status code.
4631 * @param pVCpu Pointer to the VMCPU.
4632 * @param idxField The VMCS field encoding.
4633 * @param u64Val 16, 32 or 64 bits value.
4634 */
4635VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
4636{
4637 int rc;
4638 switch (idxField)
4639 {
4640 /*
4641 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
4642 */
4643 /* 64-bit Control fields. */
4644 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
4645 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
4646 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
4647 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
4648 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
4649 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
4650 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
4651 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
4652 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
4653 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
4654 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
4655 case VMX_VMCS64_CTRL_EPTP_FULL:
4656 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
4657 /* 64-bit Guest-state fields. */
4658 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
4659 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
4660 case VMX_VMCS64_GUEST_PAT_FULL:
4661 case VMX_VMCS64_GUEST_EFER_FULL:
4662 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
4663 case VMX_VMCS64_GUEST_PDPTE0_FULL:
4664 case VMX_VMCS64_GUEST_PDPTE1_FULL:
4665 case VMX_VMCS64_GUEST_PDPTE2_FULL:
4666 case VMX_VMCS64_GUEST_PDPTE3_FULL:
4667 /* 64-bit Host-state fields. */
4668 case VMX_VMCS64_HOST_FIELD_PAT_FULL:
4669 case VMX_VMCS64_HOST_FIELD_EFER_FULL:
4670 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
4671 {
4672 rc = VMXWriteVmcs32(idxField, u64Val);
4673 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
4674 break;
4675 }
4676
4677 /*
4678 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
4679 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
4680 */
4681 /* Natural-width Guest-state fields. */
4682 case VMX_VMCS_GUEST_CR3:
4683 case VMX_VMCS_GUEST_ES_BASE:
4684 case VMX_VMCS_GUEST_CS_BASE:
4685 case VMX_VMCS_GUEST_SS_BASE:
4686 case VMX_VMCS_GUEST_DS_BASE:
4687 case VMX_VMCS_GUEST_FS_BASE:
4688 case VMX_VMCS_GUEST_GS_BASE:
4689 case VMX_VMCS_GUEST_LDTR_BASE:
4690 case VMX_VMCS_GUEST_TR_BASE:
4691 case VMX_VMCS_GUEST_GDTR_BASE:
4692 case VMX_VMCS_GUEST_IDTR_BASE:
4693 case VMX_VMCS_GUEST_RSP:
4694 case VMX_VMCS_GUEST_RIP:
4695 case VMX_VMCS_GUEST_SYSENTER_ESP:
4696 case VMX_VMCS_GUEST_SYSENTER_EIP:
4697 {
4698 if (!(u64Val >> 32))
4699 {
4700 /* If this field is 64-bit, VT-x will zero out the top bits. */
4701 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
4702 }
4703 else
4704 {
4705 /* Assert that only the 32->64 switcher case should ever come here. */
4706 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
4707 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
4708 }
4709 break;
4710 }
4711
4712 default:
4713 {
4714 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
4715 rc = VERR_INVALID_PARAMETER;
4716 break;
4717 }
4718 }
4719 AssertRCReturn(rc, rc);
4720 return rc;
4721}
4722
4723
4724/**
4725 * Queue up a VMWRITE by using the VMCS write cache. This is only used on 32-bit
4726 * hosts (except darwin) for 64-bit guests.
4727 *
4728 * @param pVCpu Pointer to the VMCPU.
4729 * @param idxField The VMCS field encoding.
4730 * @param u64Val 16, 32 or 64 bits value.
4731 */
4732VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
4733{
4734 AssertPtr(pVCpu);
4735 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
4736
4737 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
4738 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
4739
4740 /* Make sure there are no duplicates. */
4741 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
4742 {
4743 if (pCache->Write.aField[i] == idxField)
4744 {
4745 pCache->Write.aFieldVal[i] = u64Val;
4746 return VINF_SUCCESS;
4747 }
4748 }
4749
4750 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
4751 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
4752 pCache->Write.cValidEntries++;
4753 return VINF_SUCCESS;
4754}
4755
4756/* Enable later when the assembly code uses these as callbacks. */
4757#if 0
4758/*
4759 * Loads the VMCS write-cache into the CPU (by executing VMWRITEs).
4760 *
4761 * @param pVCpu Pointer to the VMCPU.
4762 * @param pCache Pointer to the VMCS cache.
4763 *
4764 * @remarks No-long-jump zone!!!
4765 */
4766VMMR0DECL(void) VMXWriteCachedVmcsLoad(PVMCPU pVCpu, PVMCSCACHE pCache)
4767{
4768 AssertPtr(pCache);
4769 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
4770 {
4771 int rc = VMXWriteVmcs64(pCache->Write.aField[i], pCache->Write.aFieldVal[i]);
4772 AssertRC(rc);
4773 }
4774 pCache->Write.cValidEntries = 0;
4775}
4776
4777
4778/**
4779 * Stores the VMCS read-cache from the CPU (by executing VMREADs).
4780 *
4781 * @param pVCpu Pointer to the VMCPU.
4782 * @param pCache Pointer to the VMCS cache.
4783 *
4784 * @remarks No-long-jump zone!!!
4785 */
4786VMMR0DECL(void) VMXReadCachedVmcsStore(PVMCPU pVCpu, PVMCSCACHE pCache)
4787{
4788 AssertPtr(pCache);
4789 for (uint32_t i = 0; i < pCache->Read.cValidEntries; i++)
4790 {
4791 int rc = VMXReadVmcs64(pCache->Read.aField[i], &pCache->Read.aFieldVal[i]);
4792 AssertRC(rc);
4793 }
4794}
4795#endif
4796#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
4797
4798
4799/**
4800 * Sets up the usage of TSC-offsetting and updates the VMCS. If offsetting is
4801 * not possible, cause VM-exits on RDTSC(P)s. Also sets up the VMX preemption
4802 * timer.
4803 *
4804 * @returns VBox status code.
4805 * @param pVCpu Pointer to the VMCPU.
4806 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4807 * out-of-sync. Make sure to update the required fields
4808 * before using them.
4809 * @remarks No-long-jump zone!!!
4810 */
4811static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4812{
4813 int rc = VERR_INTERNAL_ERROR_5;
4814 bool fOffsettedTsc = false;
4815 PVM pVM = pVCpu->CTX_SUFF(pVM);
4816 if (pVM->hm.s.vmx.fUsePreemptTimer)
4817 {
4818 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset);
4819
4820 /* Make sure the returned values have sane upper and lower boundaries. */
4821 uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage);
4822 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
4823 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
4824 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
4825
4826 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
4827 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
4828 }
4829 else
4830 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset);
4831
4832 if (fOffsettedTsc)
4833 {
4834 uint64_t u64CurTSC = ASMReadTSC();
4835 if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
4836 {
4837 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
4838 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
4839
4840 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
4841 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
4842 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
4843 }
4844 else
4845 {
4846 /* VM-exit on RDTSC(P) as we would otherwise pass decreasing TSC values to the guest. */
4847 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
4848 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
4849 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
4850 }
4851 }
4852 else
4853 {
4854 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
4855 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
4856 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
4857 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
4858 }
4859}
4860
4861
4862/**
4863 * Determines if an exception is a contributory exception. Contributory
4864 * exceptions are ones which can cause double-faults. Page-fault is
4865 * intentionally not included here as it's a conditional contributory exception.
4866 *
4867 * @returns true if the exception is contributory, false otherwise.
4868 * @param uVector The exception vector.
4869 */
4870DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
4871{
4872 switch (uVector)
4873 {
4874 case X86_XCPT_GP:
4875 case X86_XCPT_SS:
4876 case X86_XCPT_NP:
4877 case X86_XCPT_TS:
4878 case X86_XCPT_DE:
4879 return true;
4880 default:
4881 break;
4882 }
4883 return false;
4884}
4885
4886
4887/**
4888 * Sets an event as a pending event to be injected into the guest.
4889 *
4890 * @param pVCpu Pointer to the VMCPU.
4891 * @param u32IntrInfo The VM-entry interruption-information field.
4892 * @param cbInstr The VM-entry instruction length in bytes (for software
4893 * interrupts, exceptions and privileged software
4894 * exceptions).
4895 * @param u32ErrCode The VM-entry exception error code.
4896 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
4897 * page-fault.
4898 *
4899 * @remarks Statistics counter assumes this is a guest event being injected or
4900 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
4901 * always incremented.
4902 */
4903DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntrInfo, uint32_t cbInstr, uint32_t u32ErrCode,
4904 RTGCUINTPTR GCPtrFaultAddress)
4905{
4906 Assert(!pVCpu->hm.s.Event.fPending);
4907 pVCpu->hm.s.Event.fPending = true;
4908 pVCpu->hm.s.Event.u64IntrInfo = u32IntrInfo;
4909 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
4910 pVCpu->hm.s.Event.cbInstr = cbInstr;
4911 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
4912
4913 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
4914}
4915
4916
4917/**
4918 * Sets a double-fault (#DF) exception as pending-for-injection into the VM.
4919 *
4920 * @param pVCpu Pointer to the VMCPU.
4921 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4922 * out-of-sync. Make sure to update the required fields
4923 * before using them.
4924 */
4925DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4926{
4927 uint32_t u32IntrInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
4928 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
4929 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
4930 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
4931}
4932
4933
4934/**
4935 * Handle a condition that occurred while delivering an event through the guest
4936 * IDT.
4937 *
4938 * @returns VBox status code (informational error codes included).
4939 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
4940 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
4941 * continue execution of the guest which will delivery the #DF.
4942 * @retval VINF_EM_RESET if we detected a triple-fault condition.
4943 *
4944 * @param pVCpu Pointer to the VMCPU.
4945 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4946 * out-of-sync. Make sure to update the required fields
4947 * before using them.
4948 * @param pVmxTransient Pointer to the VMX transient structure.
4949 *
4950 * @remarks No-long-jump zone!!!
4951 */
4952static int hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
4953{
4954 int rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
4955 AssertRCReturn(rc, rc);
4956 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
4957 {
4958 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
4959 AssertRCReturn(rc, rc);
4960
4961 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
4962 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntrInfo);
4963 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
4964
4965 typedef enum
4966 {
4967 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
4968 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
4969 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
4970 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
4971 } VMXREFLECTXCPT;
4972
4973 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
4974 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
4975 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntrInfo))
4976 {
4977 if (uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
4978 {
4979 enmReflect = VMXREFLECTXCPT_XCPT;
4980#ifdef VBOX_STRICT
4981 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
4982 && uExitVector == X86_XCPT_PF)
4983 {
4984 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
4985 }
4986#endif
4987 if ( uExitVector == X86_XCPT_PF
4988 && uIdtVector == X86_XCPT_PF)
4989 {
4990 pVmxTransient->fVectoringPF = true;
4991 Log4(("IDT: vcpu[%RU32] Vectoring #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
4992 }
4993 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
4994 && hmR0VmxIsContributoryXcpt(uExitVector)
4995 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
4996 || uIdtVector == X86_XCPT_PF))
4997 {
4998 enmReflect = VMXREFLECTXCPT_DF;
4999 }
5000 else if (uIdtVector == X86_XCPT_DF)
5001 enmReflect = VMXREFLECTXCPT_TF;
5002 }
5003 else if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5004 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5005 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5006 {
5007 /*
5008 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and privileged software exception
5009 * (whatever they are) as they reoccur when restarting the instruction.
5010 */
5011 enmReflect = VMXREFLECTXCPT_XCPT;
5012 }
5013 }
5014 else
5015 {
5016 /*
5017 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5018 * interruption-information will not be valid and we end up here. In such cases, it is sufficient to reflect the
5019 * original exception to the guest after handling the VM-exit.
5020 */
5021 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5022 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5023 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5024 {
5025 enmReflect = VMXREFLECTXCPT_XCPT;
5026 }
5027 }
5028
5029 switch (enmReflect)
5030 {
5031 case VMXREFLECTXCPT_XCPT:
5032 {
5033 Assert( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5034 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5035 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5036
5037 uint32_t u32ErrCode = 0;
5038 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5039 {
5040 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5041 AssertRCReturn(rc, rc);
5042 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5043 }
5044
5045 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5046 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INTR_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5047 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5048 rc = VINF_SUCCESS;
5049 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5050 pVCpu->hm.s.Event.u64IntrInfo, pVCpu->hm.s.Event.u32ErrCode));
5051
5052 break;
5053 }
5054
5055 case VMXREFLECTXCPT_DF:
5056 {
5057 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5058 rc = VINF_HM_DOUBLE_FAULT;
5059 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5060 pVCpu->hm.s.Event.u64IntrInfo, uIdtVector, uExitVector));
5061
5062 break;
5063 }
5064
5065 case VMXREFLECTXCPT_TF:
5066 {
5067 rc = VINF_EM_RESET;
5068 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5069 uExitVector));
5070 break;
5071 }
5072
5073 default:
5074 Assert(rc == VINF_SUCCESS);
5075 break;
5076 }
5077 }
5078 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
5079 return rc;
5080}
5081
5082
5083/**
5084 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
5085 *
5086 * @returns VBox status code.
5087 * @param pVCpu Pointer to the VMCPU.
5088 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5089 * out-of-sync. Make sure to update the required fields
5090 * before using them.
5091 *
5092 * @remarks No-long-jump zone!!!
5093 */
5094static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5095{
5096 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0))
5097 {
5098 uint32_t uVal = 0;
5099 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
5100 AssertRCReturn(rc, rc);
5101 uint32_t uShadow = 0;
5102 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
5103 AssertRCReturn(rc, rc);
5104
5105 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
5106 CPUMSetGuestCR0(pVCpu, uVal);
5107 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR0;
5108 }
5109 return VINF_SUCCESS;
5110}
5111
5112
5113/**
5114 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
5115 *
5116 * @returns VBox status code.
5117 * @param pVCpu Pointer to the VMCPU.
5118 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5119 * out-of-sync. Make sure to update the required fields
5120 * before using them.
5121 *
5122 * @remarks No-long-jump zone!!!
5123 */
5124static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5125{
5126 int rc = VINF_SUCCESS;
5127 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR4))
5128 {
5129 uint32_t uVal = 0;
5130 uint32_t uShadow = 0;
5131 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
5132 AssertRCReturn(rc, rc);
5133 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
5134 AssertRCReturn(rc, rc);
5135
5136 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
5137 CPUMSetGuestCR4(pVCpu, uVal);
5138 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR4;
5139 }
5140 return rc;
5141}
5142
5143
5144/**
5145 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
5146 *
5147 * @returns VBox status code.
5148 * @param pVCpu Pointer to the VMCPU.
5149 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5150 * out-of-sync. Make sure to update the required fields
5151 * before using them.
5152 *
5153 * @remarks No-long-jump zone!!!
5154 */
5155static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5156{
5157 int rc = VINF_SUCCESS;
5158 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RIP))
5159 {
5160 uint64_t u64Val = 0;
5161 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
5162 AssertRCReturn(rc, rc);
5163
5164 pMixedCtx->rip = u64Val;
5165 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RIP;
5166 }
5167 return rc;
5168}
5169
5170
5171/**
5172 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
5173 *
5174 * @returns VBox status code.
5175 * @param pVCpu Pointer to the VMCPU.
5176 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5177 * out-of-sync. Make sure to update the required fields
5178 * before using them.
5179 *
5180 * @remarks No-long-jump zone!!!
5181 */
5182static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5183{
5184 int rc = VINF_SUCCESS;
5185 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RSP))
5186 {
5187 uint64_t u64Val = 0;
5188 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
5189 AssertRCReturn(rc, rc);
5190
5191 pMixedCtx->rsp = u64Val;
5192 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RSP;
5193 }
5194 return rc;
5195}
5196
5197
5198/**
5199 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
5200 *
5201 * @returns VBox status code.
5202 * @param pVCpu Pointer to the VMCPU.
5203 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5204 * out-of-sync. Make sure to update the required fields
5205 * before using them.
5206 *
5207 * @remarks No-long-jump zone!!!
5208 */
5209static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5210{
5211 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS))
5212 {
5213 uint32_t uVal = 0;
5214 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
5215 AssertRCReturn(rc, rc);
5216
5217 pMixedCtx->eflags.u32 = uVal;
5218 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
5219 {
5220 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5221 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
5222
5223 pMixedCtx->eflags.Bits.u1VM = 0;
5224 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
5225 }
5226
5227 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RFLAGS;
5228 }
5229 return VINF_SUCCESS;
5230}
5231
5232
5233/**
5234 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
5235 * guest-CPU context.
5236 */
5237DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5238{
5239 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
5240 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
5241 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
5242 return rc;
5243}
5244
5245
5246/**
5247 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
5248 * from the guest-state area in the VMCS.
5249 *
5250 * @param pVCpu Pointer to the VMCPU.
5251 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5252 * out-of-sync. Make sure to update the required fields
5253 * before using them.
5254 *
5255 * @remarks No-long-jump zone!!!
5256 */
5257static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5258{
5259 uint32_t uIntrState = 0;
5260 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
5261 AssertRC(rc);
5262
5263 if (!uIntrState)
5264 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5265 else
5266 {
5267 Assert( uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
5268 || uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
5269 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
5270 AssertRC(rc);
5271 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
5272 AssertRC(rc);
5273
5274 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
5275 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
5276 }
5277}
5278
5279
5280/**
5281 * Saves the guest's activity state.
5282 *
5283 * @returns VBox status code.
5284 * @param pVCpu Pointer to the VMCPU.
5285 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5286 * out-of-sync. Make sure to update the required fields
5287 * before using them.
5288 *
5289 * @remarks No-long-jump zone!!!
5290 */
5291static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5292{
5293 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
5294 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_ACTIVITY_STATE;
5295 return VINF_SUCCESS;
5296}
5297
5298
5299/**
5300 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
5301 * the current VMCS into the guest-CPU context.
5302 *
5303 * @returns VBox status code.
5304 * @param pVCpu Pointer to the VMCPU.
5305 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5306 * out-of-sync. Make sure to update the required fields
5307 * before using them.
5308 *
5309 * @remarks No-long-jump zone!!!
5310 */
5311static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5312{
5313 int rc = VINF_SUCCESS;
5314 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
5315 {
5316 uint32_t u32Val = 0;
5317 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
5318 pMixedCtx->SysEnter.cs = u32Val;
5319 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR;
5320 }
5321
5322 uint64_t u64Val = 0;
5323 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
5324 {
5325 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
5326 pMixedCtx->SysEnter.eip = u64Val;
5327 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR;
5328 }
5329 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
5330 {
5331 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
5332 pMixedCtx->SysEnter.esp = u64Val;
5333 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR;
5334 }
5335 return rc;
5336}
5337
5338
5339/**
5340 * Saves the guest FS_BASE MSRs from the current VMCS into the guest-CPU
5341 * context.
5342 *
5343 * @returns VBox status code.
5344 * @param pVCpu Pointer to the VMCPU.
5345 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5346 * out-of-sync. Make sure to update the required fields
5347 * before using them.
5348 *
5349 * @remarks No-long-jump zone!!!
5350 */
5351static int hmR0VmxSaveGuestFSBaseMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5352{
5353 int rc = VINF_SUCCESS;
5354 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_FS_BASE_MSR))
5355 {
5356 uint64_t u64Val = 0;
5357 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_FS_BASE, &u64Val); AssertRCReturn(rc, rc);
5358 pMixedCtx->fs.u64Base = u64Val;
5359 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_FS_BASE_MSR;
5360 }
5361 return rc;
5362}
5363
5364
5365/**
5366 * Saves the guest GS_BASE MSRs from the current VMCS into the guest-CPU
5367 * context.
5368 *
5369 * @returns VBox status code.
5370 * @param pVCpu Pointer to the VMCPU.
5371 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5372 * out-of-sync. Make sure to update the required fields
5373 * before using them.
5374 *
5375 * @remarks No-long-jump zone!!!
5376 */
5377static int hmR0VmxSaveGuestGSBaseMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5378{
5379 int rc = VINF_SUCCESS;
5380 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_GS_BASE_MSR))
5381 {
5382 uint64_t u64Val = 0;
5383 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GS_BASE, &u64Val); AssertRCReturn(rc, rc);
5384 pMixedCtx->gs.u64Base = u64Val;
5385 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_GS_BASE_MSR;
5386 }
5387 return rc;
5388}
5389
5390
5391/**
5392 * Saves the auto load/store'd guest MSRs from the current VMCS into the
5393 * guest-CPU context. Currently these are LSTAR, STAR, SFMASK, KERNEL-GS BASE
5394 * and TSC_AUX.
5395 *
5396 * @returns VBox status code.
5397 * @param pVCpu Pointer to the VMCPU.
5398 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5399 * out-of-sync. Make sure to update the required fields
5400 * before using them.
5401 *
5402 * @remarks No-long-jump zone!!!
5403 */
5404static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5405{
5406 if (pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS)
5407 return VINF_SUCCESS;
5408
5409#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
5410 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cGuestMsrs; i++)
5411 {
5412 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
5413 pMsr += i;
5414 switch (pMsr->u32Msr)
5415 {
5416 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
5417 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
5418 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
5419 case MSR_K8_TSC_AUX: CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, pMsr->u64Value); break;
5420 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
5421 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit. */ break;
5422 default:
5423 {
5424 AssertFailed();
5425 return VERR_HM_UNEXPECTED_LD_ST_MSR;
5426 }
5427 }
5428 }
5429#endif
5430
5431 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS;
5432 return VINF_SUCCESS;
5433}
5434
5435
5436/**
5437 * Saves the guest control registers from the current VMCS into the guest-CPU
5438 * context.
5439 *
5440 * @returns VBox status code.
5441 * @param pVCpu Pointer to the VMCPU.
5442 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5443 * out-of-sync. Make sure to update the required fields
5444 * before using them.
5445 *
5446 * @remarks No-long-jump zone!!!
5447 */
5448static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5449{
5450 /* Guest CR0. Guest FPU. */
5451 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
5452 AssertRCReturn(rc, rc);
5453
5454 /* Guest CR4. */
5455 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
5456 AssertRCReturn(rc, rc);
5457
5458 /* Guest CR2 - updated always during the world-switch or in #PF. */
5459 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
5460 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR3))
5461 {
5462 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0);
5463 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR4);
5464
5465 PVM pVM = pVCpu->CTX_SUFF(pVM);
5466 if ( pVM->hm.s.vmx.fUnrestrictedGuest
5467 || ( pVM->hm.s.fNestedPaging
5468 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
5469 {
5470 uint64_t u64Val = 0;
5471 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
5472 if (pMixedCtx->cr3 != u64Val)
5473 {
5474 CPUMSetGuestCR3(pVCpu, u64Val);
5475 if (VMMRZCallRing3IsEnabled(pVCpu))
5476 {
5477 PGMUpdateCR3(pVCpu, u64Val);
5478 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
5479 }
5480 else
5481 {
5482 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
5483 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
5484 }
5485 }
5486
5487 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
5488 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
5489 {
5490 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
5491 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
5492 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
5493 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
5494
5495 if (VMMRZCallRing3IsEnabled(pVCpu))
5496 {
5497 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5498 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
5499 }
5500 else
5501 {
5502 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
5503 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
5504 }
5505 }
5506 }
5507
5508 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR3;
5509 }
5510
5511 /*
5512 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
5513 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
5514 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
5515 *
5516 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
5517 */
5518 if (VMMRZCallRing3IsEnabled(pVCpu))
5519 {
5520 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
5521 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
5522
5523 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
5524 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5525
5526 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
5527 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
5528 }
5529
5530 return rc;
5531}
5532
5533
5534/**
5535 * Reads a guest segment register from the current VMCS into the guest-CPU
5536 * context.
5537 *
5538 * @returns VBox status code.
5539 * @param pVCpu Pointer to the VMCPU.
5540 * @param idxSel Index of the selector in the VMCS.
5541 * @param idxLimit Index of the segment limit in the VMCS.
5542 * @param idxBase Index of the segment base in the VMCS.
5543 * @param idxAccess Index of the access rights of the segment in the VMCS.
5544 * @param pSelReg Pointer to the segment selector.
5545 *
5546 * @remarks No-long-jump zone!!!
5547 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
5548 * macro as that takes care of whether to read from the VMCS cache or
5549 * not.
5550 */
5551DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
5552 PCPUMSELREG pSelReg)
5553{
5554 uint32_t u32Val = 0;
5555 int rc = VMXReadVmcs32(idxSel, &u32Val);
5556 AssertRCReturn(rc, rc);
5557 pSelReg->Sel = (uint16_t)u32Val;
5558 pSelReg->ValidSel = (uint16_t)u32Val;
5559 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
5560
5561 rc = VMXReadVmcs32(idxLimit, &u32Val);
5562 AssertRCReturn(rc, rc);
5563 pSelReg->u32Limit = u32Val;
5564
5565 uint64_t u64Val = 0;
5566 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
5567 AssertRCReturn(rc, rc);
5568 pSelReg->u64Base = u64Val;
5569
5570 rc = VMXReadVmcs32(idxAccess, &u32Val);
5571 AssertRCReturn(rc, rc);
5572 pSelReg->Attr.u = u32Val;
5573
5574 /*
5575 * If VT-x marks the segment as unusable, most other bits remain undefined:
5576 * - For CS the L, D and G bits have meaning.
5577 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
5578 * - For the remaining data segments no bits are defined.
5579 *
5580 * The present bit and the unusable bit has been observed to be set at the
5581 * same time (the selector was supposed to invalid as we started executing
5582 * a V8086 interrupt in ring-0).
5583 *
5584 * What should be important for the rest of the VBox code that the P bit is
5585 * cleared. Some of the other VBox code recognizes the unusable bit, but
5586 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
5587 * safe side here, we'll strip off P and other bits we don't care about. If
5588 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
5589 *
5590 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
5591 */
5592 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
5593 {
5594 Assert(idxSel != VMX_VMCS16_GUEST_FIELD_TR); /* TR is the only selector that can never be unusable. */
5595
5596 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
5597 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
5598 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
5599
5600 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
5601#ifdef DEBUG_bird
5602 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
5603 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
5604 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
5605#endif
5606 }
5607 return VINF_SUCCESS;
5608}
5609
5610
5611#ifdef VMX_USE_CACHED_VMCS_ACCESSES
5612# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
5613 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
5614 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
5615#else
5616# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
5617 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
5618 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
5619#endif
5620
5621
5622/**
5623 * Saves the guest segment registers from the current VMCS into the guest-CPU
5624 * context.
5625 *
5626 * @returns VBox status code.
5627 * @param pVCpu Pointer to the VMCPU.
5628 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5629 * out-of-sync. Make sure to update the required fields
5630 * before using them.
5631 *
5632 * @remarks No-long-jump zone!!!
5633 */
5634static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5635{
5636 /* Guest segment registers. */
5637 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SEGMENT_REGS))
5638 {
5639 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); AssertRCReturn(rc, rc);
5640 rc = VMXLOCAL_READ_SEG(CS, cs); AssertRCReturn(rc, rc);
5641 rc = VMXLOCAL_READ_SEG(SS, ss); AssertRCReturn(rc, rc);
5642 rc = VMXLOCAL_READ_SEG(DS, ds); AssertRCReturn(rc, rc);
5643 rc = VMXLOCAL_READ_SEG(ES, es); AssertRCReturn(rc, rc);
5644 rc = VMXLOCAL_READ_SEG(FS, fs); AssertRCReturn(rc, rc);
5645 rc = VMXLOCAL_READ_SEG(GS, gs); AssertRCReturn(rc, rc);
5646
5647 /* Restore segment attributes for real-on-v86 mode hack. */
5648 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
5649 {
5650 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
5651 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
5652 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
5653 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
5654 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
5655 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
5656 }
5657 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SEGMENT_REGS;
5658 }
5659
5660 return VINF_SUCCESS;
5661}
5662
5663
5664/**
5665 * Saves the guest descriptor table registers and task register from the current
5666 * VMCS into the guest-CPU context.
5667 *
5668 * @returns VBox status code.
5669 * @param pVCpu Pointer to the VMCPU.
5670 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5671 * out-of-sync. Make sure to update the required fields
5672 * before using them.
5673 *
5674 * @remarks No-long-jump zone!!!
5675 */
5676static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5677{
5678 int rc = VINF_SUCCESS;
5679
5680 /* Guest LDTR. */
5681 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_LDTR))
5682 {
5683 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
5684 AssertRCReturn(rc, rc);
5685 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_LDTR;
5686 }
5687
5688 /* Guest GDTR. */
5689 uint64_t u64Val = 0;
5690 uint32_t u32Val = 0;
5691 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_GDTR))
5692 {
5693 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
5694 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
5695 pMixedCtx->gdtr.pGdt = u64Val;
5696 pMixedCtx->gdtr.cbGdt = u32Val;
5697 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_GDTR;
5698 }
5699
5700 /* Guest IDTR. */
5701 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_IDTR))
5702 {
5703 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
5704 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
5705 pMixedCtx->idtr.pIdt = u64Val;
5706 pMixedCtx->idtr.cbIdt = u32Val;
5707 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_IDTR;
5708 }
5709
5710 /* Guest TR. */
5711 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_TR))
5712 {
5713 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
5714 AssertRCReturn(rc, rc);
5715
5716 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
5717 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
5718 {
5719 rc = VMXLOCAL_READ_SEG(TR, tr);
5720 AssertRCReturn(rc, rc);
5721 }
5722 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_TR;
5723 }
5724 return rc;
5725}
5726
5727#undef VMXLOCAL_READ_SEG
5728
5729
5730/**
5731 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
5732 * context.
5733 *
5734 * @returns VBox status code.
5735 * @param pVCpu Pointer to the VMCPU.
5736 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5737 * out-of-sync. Make sure to update the required fields
5738 * before using them.
5739 *
5740 * @remarks No-long-jump zone!!!
5741 */
5742static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5743{
5744 if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_DEBUG))
5745 {
5746 if (!CPUMIsHyperDebugStateActive(pVCpu))
5747 {
5748 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
5749 uint32_t u32Val;
5750 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
5751 pMixedCtx->dr[7] = u32Val;
5752 }
5753
5754 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_DEBUG;
5755 }
5756 return VINF_SUCCESS;
5757}
5758
5759
5760/**
5761 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
5762 *
5763 * @returns VBox status code.
5764 * @param pVCpu Pointer to the VMCPU.
5765 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5766 * out-of-sync. Make sure to update the required fields
5767 * before using them.
5768 *
5769 * @remarks No-long-jump zone!!!
5770 */
5771static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5772{
5773 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
5774 pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_APIC_STATE;
5775 return VINF_SUCCESS;
5776}
5777
5778
5779/**
5780 * Saves the entire guest state from the currently active VMCS into the
5781 * guest-CPU context. This essentially VMREADs all guest-data.
5782 *
5783 * @returns VBox status code.
5784 * @param pVCpu Pointer to the VMCPU.
5785 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5786 * out-of-sync. Make sure to update the required fields
5787 * before using them.
5788 */
5789static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5790{
5791 Assert(pVCpu);
5792 Assert(pMixedCtx);
5793
5794 if (pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL)
5795 return VINF_SUCCESS;
5796
5797 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
5798 again on the ring-3 callback path, there is no real need to. */
5799 if (VMMRZCallRing3IsEnabled(pVCpu))
5800 VMMR0LogFlushDisable(pVCpu);
5801 else
5802 Assert(VMMR0IsLogFlushDisabled(pVCpu));
5803 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
5804
5805 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
5806 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5807
5808 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
5809 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5810
5811 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
5812 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5813
5814 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
5815 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5816
5817 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
5818 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5819
5820 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
5821 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5822
5823 rc = hmR0VmxSaveGuestFSBaseMsr(pVCpu, pMixedCtx);
5824 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestFSBaseMsr failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5825
5826 rc = hmR0VmxSaveGuestGSBaseMsr(pVCpu, pMixedCtx);
5827 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestGSBaseMsr failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5828
5829 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
5830 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5831
5832 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
5833 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5834
5835 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
5836 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
5837
5838 AssertMsg(pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL,
5839 ("Missed guest state bits while saving state; residue %RX32\n", pVCpu->hm.s.vmx.fUpdatedGuestState));
5840
5841 if (VMMRZCallRing3IsEnabled(pVCpu))
5842 VMMR0LogFlushEnable(pVCpu);
5843
5844 return rc;
5845}
5846
5847
5848/**
5849 * Check per-VM and per-VCPU force flag actions that require us to go back to
5850 * ring-3 for one reason or another.
5851 *
5852 * @returns VBox status code (information status code included).
5853 * @retval VINF_SUCCESS if we don't have any actions that require going back to
5854 * ring-3.
5855 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
5856 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
5857 * interrupts)
5858 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
5859 * all EMTs to be in ring-3.
5860 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
5861 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
5862 * to the EM loop.
5863 *
5864 * @param pVM Pointer to the VM.
5865 * @param pVCpu Pointer to the VMCPU.
5866 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5867 * out-of-sync. Make sure to update the required fields
5868 * before using them.
5869 */
5870static int hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5871{
5872 Assert(VMMRZCallRing3IsEnabled(pVCpu));
5873
5874 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
5875 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
5876 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
5877 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
5878 {
5879 /* We need the control registers now, make sure the guest-CPU context is updated. */
5880 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
5881 AssertRCReturn(rc3, rc3);
5882
5883 /* Pending HM CR3 sync. */
5884 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
5885 {
5886 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
5887 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
5888 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
5889 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
5890 }
5891
5892 /* Pending HM PAE PDPEs. */
5893 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
5894 {
5895 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5896 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
5897 }
5898
5899 /* Pending PGM C3 sync. */
5900 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
5901 {
5902 int rc2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
5903 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
5904 if (rc2 != VINF_SUCCESS)
5905 {
5906 AssertRC(rc2);
5907 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", rc2));
5908 return rc2;
5909 }
5910 }
5911
5912 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
5913 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
5914 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
5915 {
5916 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
5917 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
5918 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
5919 return rc2;
5920 }
5921
5922 /* Pending VM request packets, such as hardware interrupts. */
5923 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
5924 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
5925 {
5926 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
5927 return VINF_EM_PENDING_REQUEST;
5928 }
5929
5930 /* Pending PGM pool flushes. */
5931 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
5932 {
5933 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
5934 return VINF_PGM_POOL_FLUSH_PENDING;
5935 }
5936
5937 /* Pending DMA requests. */
5938 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
5939 {
5940 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
5941 return VINF_EM_RAW_TO_R3;
5942 }
5943 }
5944
5945 return VINF_SUCCESS;
5946}
5947
5948
5949/**
5950 * Converts any TRPM trap into a pending HM event. This is typically used when
5951 * entering from ring-3 (not longjmp returns).
5952 *
5953 * @param pVCpu Pointer to the VMCPU.
5954 */
5955static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
5956{
5957 Assert(TRPMHasTrap(pVCpu));
5958 Assert(!pVCpu->hm.s.Event.fPending);
5959
5960 uint8_t uVector;
5961 TRPMEVENT enmTrpmEvent;
5962 RTGCUINT uErrCode;
5963 RTGCUINTPTR GCPtrFaultAddress;
5964 uint8_t cbInstr;
5965
5966 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
5967 AssertRC(rc);
5968
5969 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntrInfo. */
5970 uint32_t u32IntrInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
5971 if (enmTrpmEvent == TRPM_TRAP)
5972 {
5973 switch (uVector)
5974 {
5975 case X86_XCPT_BP:
5976 case X86_XCPT_OF:
5977 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5978 break;
5979
5980 case X86_XCPT_PF:
5981 case X86_XCPT_DF:
5982 case X86_XCPT_TS:
5983 case X86_XCPT_NP:
5984 case X86_XCPT_SS:
5985 case X86_XCPT_GP:
5986 case X86_XCPT_AC:
5987 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5988 /* no break! */
5989 default:
5990 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5991 break;
5992 }
5993 }
5994 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
5995 {
5996 if (uVector == X86_XCPT_NMI)
5997 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5998 else
5999 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6000 }
6001 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
6002 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6003 else
6004 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
6005
6006 rc = TRPMResetTrap(pVCpu);
6007 AssertRC(rc);
6008 Log4(("TRPM->HM event: u32IntrInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
6009 u32IntrInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
6010
6011 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, uErrCode, GCPtrFaultAddress);
6012 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
6013}
6014
6015
6016/**
6017 * Converts any pending HM event into a TRPM trap. Typically used when leaving
6018 * VT-x to execute any instruction.
6019 *
6020 * @param pvCpu Pointer to the VMCPU.
6021 */
6022static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
6023{
6024 Assert(pVCpu->hm.s.Event.fPending);
6025
6026 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo);
6027 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo);
6028 bool fErrorCodeValid = !!VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo);
6029 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
6030
6031 /* If a trap was already pending, we did something wrong! */
6032 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
6033
6034 TRPMEVENT enmTrapType;
6035 switch (uVectorType)
6036 {
6037 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6038 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6039 enmTrapType = TRPM_HARDWARE_INT;
6040 break;
6041
6042 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6043 enmTrapType = TRPM_SOFTWARE_INT;
6044 break;
6045
6046 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6047 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
6048 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6049 enmTrapType = TRPM_TRAP;
6050 break;
6051
6052 default:
6053 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
6054 enmTrapType = TRPM_32BIT_HACK;
6055 break;
6056 }
6057
6058 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
6059
6060 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
6061 AssertRC(rc);
6062
6063 if (fErrorCodeValid)
6064 TRPMSetErrorCode(pVCpu, uErrorCode);
6065
6066 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6067 && uVector == X86_XCPT_PF)
6068 {
6069 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
6070 }
6071 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6072 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6073 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6074 {
6075 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6076 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
6077 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
6078 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
6079 }
6080 pVCpu->hm.s.Event.fPending = false;
6081}
6082
6083
6084/**
6085 * Does the necessary state syncing before returning to ring-3 for any reason
6086 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
6087 *
6088 * @returns VBox status code.
6089 * @param pVM Pointer to the VM.
6090 * @param pVCpu Pointer to the VMCPU.
6091 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6092 * out-of-sync. Make sure to update the required fields
6093 * before using them.
6094 *
6095 * @remarks No-long-jmp zone!!!
6096 */
6097static int hmR0VmxLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6098{
6099 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6100 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6101
6102 RTCPUID idCpu = RTMpCpuId();
6103 Log4Func(("HostCpuId=%u\n", idCpu));
6104
6105 /* Save the guest state if necessary. */
6106 if (pVCpu->hm.s.vmx.fUpdatedGuestState != HMVMX_UPDATED_GUEST_ALL)
6107 {
6108 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6109 AssertRCReturn(rc, rc);
6110 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL);
6111 }
6112
6113 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
6114 if (CPUMIsGuestFPUStateActive(pVCpu))
6115 {
6116 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
6117 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
6118 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
6119 }
6120
6121 /* Restore host debug registers if necessary and resync on next R0 reentry. */
6122#ifdef VBOX_STRICT
6123 if (CPUMIsHyperDebugStateActive(pVCpu))
6124 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
6125#endif
6126 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
6127 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
6128 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
6129 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
6130
6131#if HC_ARCH_BITS == 64
6132 /* Restore host-state bits that VT-x only restores partially. */
6133 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
6134 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
6135 {
6136 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
6137 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
6138 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
6139 }
6140#endif
6141
6142 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
6143 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
6144 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
6145 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
6146 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
6147 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
6148 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
6149 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
6150
6151 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
6152
6153 /** @todo This kinda defeats the purpose of having preemption hooks.
6154 * The problem is, deregistering the hooks should be moved to a place that
6155 * lasts until the EMT is about to be destroyed not everytime while leaving HM
6156 * context.
6157 */
6158 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
6159 {
6160 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
6161 AssertRCReturn(rc, rc);
6162
6163 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
6164 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
6165 }
6166 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
6167 NOREF(idCpu);
6168
6169 return VINF_SUCCESS;
6170}
6171
6172
6173/**
6174 * Leaves the VT-x session.
6175 *
6176 * @returns VBox status code.
6177 * @param pVM Pointer to the VM.
6178 * @param pVCpu Pointer to the VMCPU.
6179 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6180 * out-of-sync. Make sure to update the required fields
6181 * before using them.
6182 *
6183 * @remarks No-long-jmp zone!!!
6184 */
6185DECLINLINE(int) hmR0VmxLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6186{
6187 HM_DISABLE_PREEMPT_IF_NEEDED();
6188 HMVMX_ASSERT_CPU_SAFE();
6189 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6190 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6191
6192 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
6193 and done this from the VMXR0ThreadCtxCallback(). */
6194 if (!pVCpu->hm.s.fLeaveDone)
6195 {
6196 int rc2 = hmR0VmxLeave(pVM, pVCpu, pMixedCtx);
6197 AssertRCReturn(rc2, rc2);
6198 pVCpu->hm.s.fLeaveDone = true;
6199 }
6200
6201 /* Deregister hook now that we've left HM context before re-enabling preemption. */
6202 /** @todo This is bad. Deregistering here means we need to VMCLEAR always
6203 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
6204 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
6205 VMMR0ThreadCtxHooksDeregister(pVCpu);
6206
6207 /* Leave HM context. This takes care of local init (term). */
6208 int rc = HMR0LeaveCpu(pVCpu);
6209
6210 HM_RESTORE_PREEMPT_IF_NEEDED();
6211
6212 return rc;
6213}
6214
6215
6216/**
6217 * Does the necessary state syncing before doing a longjmp to ring-3.
6218 *
6219 * @returns VBox status code.
6220 * @param pVM Pointer to the VM.
6221 * @param pVCpu Pointer to the VMCPU.
6222 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6223 * out-of-sync. Make sure to update the required fields
6224 * before using them.
6225 *
6226 * @remarks No-long-jmp zone!!!
6227 */
6228DECLINLINE(int) hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6229{
6230 return hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
6231}
6232
6233
6234/**
6235 * Take necessary actions before going back to ring-3.
6236 *
6237 * An action requires us to go back to ring-3. This function does the necessary
6238 * steps before we can safely return to ring-3. This is not the same as longjmps
6239 * to ring-3, this is voluntary and prepares the guest so it may continue
6240 * executing outside HM (recompiler/IEM).
6241 *
6242 * @returns VBox status code.
6243 * @param pVM Pointer to the VM.
6244 * @param pVCpu Pointer to the VMCPU.
6245 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6246 * out-of-sync. Make sure to update the required fields
6247 * before using them.
6248 * @param rcExit The reason for exiting to ring-3. Can be
6249 * VINF_VMM_UNKNOWN_RING3_CALL.
6250 */
6251static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
6252{
6253 Assert(pVM);
6254 Assert(pVCpu);
6255 Assert(pMixedCtx);
6256 HMVMX_ASSERT_PREEMPT_SAFE();
6257
6258 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_GUEST_STATE))
6259 {
6260 /* We've done what is required in hmR0VmxExitErrInvalidGuestState(). We're not going to continue guest execution... */
6261 return VINF_SUCCESS;
6262 }
6263 else if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
6264 {
6265 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
6266 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
6267 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6268 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
6269 return VINF_SUCCESS;
6270 }
6271
6272 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
6273 VMMRZCallRing3Disable(pVCpu);
6274 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, rcExit));
6275
6276 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
6277 if (pVCpu->hm.s.Event.fPending)
6278 {
6279 hmR0VmxPendingEventToTrpmTrap(pVCpu);
6280 Assert(!pVCpu->hm.s.Event.fPending);
6281 }
6282
6283 /* Save guest state and restore host state bits. */
6284 int rc = hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
6285 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
6286
6287 /* Sync recompiler state. */
6288 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
6289 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
6290 | CPUM_CHANGED_LDTR
6291 | CPUM_CHANGED_GDTR
6292 | CPUM_CHANGED_IDTR
6293 | CPUM_CHANGED_TR
6294 | CPUM_CHANGED_HIDDEN_SEL_REGS);
6295 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0);
6296 if ( pVM->hm.s.fNestedPaging
6297 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
6298 {
6299 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
6300 }
6301
6302 /*
6303 * Clear the X86_EFL_TF if necessary.
6304 */
6305 if (pVCpu->hm.s.fClearTrapFlag)
6306 {
6307 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS);
6308 pMixedCtx->eflags.Bits.u1TF = 0;
6309 pVCpu->hm.s.fClearTrapFlag = false;
6310 }
6311 /** @todo there seems to be issues with the resume flag when the monitor trap
6312 * flag is pending without being used. Seen early in bios init when
6313 * accessing APIC page in prot mode. */
6314
6315 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
6316 if (rcExit != VINF_EM_RAW_INTERRUPT)
6317 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
6318
6319 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
6320
6321 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
6322 VMMRZCallRing3RemoveNotification(pVCpu);
6323 VMMRZCallRing3Enable(pVCpu);
6324
6325 return rc;
6326}
6327
6328
6329/**
6330 * VMMRZCallRing3() callback wrapper which saves the guest state before we
6331 * longjump to ring-3 and possibly get preempted.
6332 *
6333 * @returns VBox status code.
6334 * @param pVCpu Pointer to the VMCPU.
6335 * @param enmOperation The operation causing the ring-3 longjump.
6336 * @param pvUser Opaque pointer to the guest-CPU context. The data
6337 * may be out-of-sync. Make sure to update the required
6338 * fields before using them.
6339 *
6340 * @remarks Must never be called with @a enmOperation ==
6341 * VMMCALLRING3_VM_R0_ASSERTION. We can't assert it here because if it
6342 * it -does- get called with VMMCALLRING3_VM_R0_ASSERTION, we'll end up
6343 * with an infinite recursion.
6344 */
6345DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
6346{
6347 /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion. */
6348 Assert(pVCpu);
6349 Assert(pvUser);
6350 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6351 HMVMX_ASSERT_PREEMPT_SAFE();
6352
6353 VMMRZCallRing3Disable(pVCpu);
6354 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6355
6356 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
6357 int rc = hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
6358 AssertRCReturn(rc, rc);
6359
6360 VMMRZCallRing3Enable(pVCpu);
6361 return VINF_SUCCESS;
6362}
6363
6364
6365/**
6366 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
6367 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
6368 *
6369 * @param pVCpu Pointer to the VMCPU.
6370 */
6371DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
6372{
6373 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
6374 {
6375 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
6376 {
6377 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
6378 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
6379 AssertRC(rc);
6380 }
6381 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
6382}
6383
6384
6385/**
6386 * Evaluates the event to be delivered to the guest and sets it as the pending
6387 * event.
6388 *
6389 * @param pVCpu Pointer to the VMCPU.
6390 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6391 * out-of-sync. Make sure to update the required fields
6392 * before using them.
6393 */
6394static void hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6395{
6396 Assert(!pVCpu->hm.s.Event.fPending);
6397
6398 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
6399 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
6400 bool fBlockMovSS = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
6401 bool fBlockSti = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
6402
6403 Assert(!fBlockSti || (pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS));
6404 Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
6405 && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
6406 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
6407 Assert(!TRPMHasTrap(pVCpu));
6408
6409 /** @todo SMI. SMIs take priority over NMIs. */
6410 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
6411 {
6412 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
6413 if ( !fBlockMovSS
6414 && !fBlockSti)
6415 {
6416 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
6417 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
6418 uint32_t u32IntrInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
6419 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6420
6421 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddres */);
6422 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
6423 }
6424 else
6425 hmR0VmxSetIntWindowExitVmcs(pVCpu);
6426 }
6427 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
6428 && !pVCpu->hm.s.fSingleInstruction)
6429 {
6430 /*
6431 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
6432 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
6433 * evaluated here and not set as pending, solely based on the force-flags.
6434 */
6435 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6436 AssertRC(rc);
6437 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
6438 if ( !fBlockInt
6439 && !fBlockSti
6440 && !fBlockMovSS)
6441 {
6442 uint8_t u8Interrupt;
6443 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
6444 if (RT_SUCCESS(rc))
6445 {
6446 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
6447 uint32_t u32IntrInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
6448 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6449
6450 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
6451 }
6452 else
6453 {
6454 /** @todo Does this actually happen? If not turn it into an assertion. */
6455 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
6456 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
6457 }
6458 }
6459 else
6460 hmR0VmxSetIntWindowExitVmcs(pVCpu);
6461 }
6462}
6463
6464
6465/**
6466 * Injects any pending events into the guest if the guest is in a state to
6467 * receive them.
6468 *
6469 * @returns VBox status code (informational status codes included).
6470 * @param pVCpu Pointer to the VMCPU.
6471 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6472 * out-of-sync. Make sure to update the required fields
6473 * before using them.
6474 */
6475static int hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6476{
6477 HMVMX_ASSERT_PREEMPT_SAFE();
6478 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6479
6480 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
6481 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
6482 bool fBlockMovSS = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
6483 bool fBlockSti = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
6484
6485 Assert(!fBlockSti || (pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS));
6486 Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
6487 && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
6488 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
6489 Assert(!TRPMHasTrap(pVCpu));
6490
6491 int rc = VINF_SUCCESS;
6492 if (pVCpu->hm.s.Event.fPending)
6493 {
6494#if defined(VBOX_STRICT) || defined(VBOX_WITH_STATISTICS)
6495 uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo);
6496 if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
6497 {
6498 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6499 AssertRCReturn(rc, rc);
6500 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
6501 Assert(!fBlockInt);
6502 Assert(!fBlockSti);
6503 Assert(!fBlockMovSS);
6504 }
6505 else if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
6506 {
6507 Assert(!fBlockSti);
6508 Assert(!fBlockMovSS);
6509 }
6510#endif
6511 Log4(("Injecting pending event vcpu[%RU32] u64IntrInfo=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntrInfo));
6512 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntrInfo, pVCpu->hm.s.Event.cbInstr,
6513 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, &uIntrState);
6514 AssertRCReturn(rc, rc);
6515
6516 /* Update the interruptibility-state as it could have been changed by
6517 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
6518 fBlockMovSS = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
6519 fBlockSti = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
6520
6521#ifdef VBOX_WITH_STATISTICS
6522 if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
6523 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
6524 else
6525 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
6526#endif
6527 }
6528
6529 /* Delivery pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
6530 int rc2 = VINF_SUCCESS;
6531 if ( fBlockSti
6532 || fBlockMovSS)
6533 {
6534 if (!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu))
6535 {
6536 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS);
6537 if (pMixedCtx->eflags.Bits.u1TF) /* We don't have any IA32_DEBUGCTL MSR for guests. Treat as all bits 0. */
6538 {
6539 /*
6540 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
6541 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
6542 * See Intel spec. 27.3.4 "Saving Non-Register State".
6543 */
6544 rc2 = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
6545 AssertRCReturn(rc, rc);
6546 }
6547 }
6548 else
6549 {
6550 /* We are single-stepping in the hypervisor debugger, clear interrupt inhibition as setting the BS bit would mean
6551 delivering a #DB to the guest upon VM-entry when it shouldn't be. */
6552 uIntrState = 0;
6553 }
6554 }
6555
6556 /*
6557 * There's no need to clear the VM entry-interruption information field here if we're not injecting anything.
6558 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
6559 */
6560 rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
6561 AssertRC(rc2);
6562
6563 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
6564 return rc;
6565}
6566
6567
6568/**
6569 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
6570 *
6571 * @param pVCpu Pointer to the VMCPU.
6572 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6573 * out-of-sync. Make sure to update the required fields
6574 * before using them.
6575 */
6576DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6577{
6578 uint32_t u32IntrInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
6579 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6580}
6581
6582
6583/**
6584 * Injects a double-fault (#DF) exception into the VM.
6585 *
6586 * @returns VBox status code (informational status code included).
6587 * @param pVCpu Pointer to the VMCPU.
6588 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6589 * out-of-sync. Make sure to update the required fields
6590 * before using them.
6591 */
6592DECLINLINE(int) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t *puIntrState)
6593{
6594 uint32_t u32IntrInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
6595 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6596 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6597 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
6598 puIntrState);
6599}
6600
6601
6602/**
6603 * Sets a debug (#DB) exception as pending-for-injection into the VM.
6604 *
6605 * @param pVCpu Pointer to the VMCPU.
6606 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6607 * out-of-sync. Make sure to update the required fields
6608 * before using them.
6609 */
6610DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6611{
6612 uint32_t u32IntrInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
6613 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6614 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6615}
6616
6617
6618/**
6619 * Sets an overflow (#OF) exception as pending-for-injection into the VM.
6620 *
6621 * @param pVCpu Pointer to the VMCPU.
6622 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6623 * out-of-sync. Make sure to update the required fields
6624 * before using them.
6625 * @param cbInstr The value of RIP that is to be pushed on the guest
6626 * stack.
6627 */
6628DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
6629{
6630 uint32_t u32IntrInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
6631 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6632 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6633}
6634
6635
6636/**
6637 * Injects a general-protection (#GP) fault into the VM.
6638 *
6639 * @returns VBox status code (informational status code included).
6640 * @param pVCpu Pointer to the VMCPU.
6641 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6642 * out-of-sync. Make sure to update the required fields
6643 * before using them.
6644 * @param u32ErrorCode The error code associated with the #GP.
6645 */
6646DECLINLINE(int) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
6647 uint32_t *puIntrState)
6648{
6649 uint32_t u32IntrInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
6650 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6651 if (fErrorCodeValid)
6652 u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6653 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
6654 puIntrState);
6655}
6656
6657
6658/**
6659 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
6660 *
6661 * @param pVCpu Pointer to the VMCPU.
6662 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6663 * out-of-sync. Make sure to update the required fields
6664 * before using them.
6665 * @param uVector The software interrupt vector number.
6666 * @param cbInstr The value of RIP that is to be pushed on the guest
6667 * stack.
6668 */
6669DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
6670{
6671 uint32_t u32IntrInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
6672 if ( uVector == X86_XCPT_BP
6673 || uVector == X86_XCPT_OF)
6674 {
6675 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6676 }
6677 else
6678 u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6679 hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6680}
6681
6682
6683/**
6684 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
6685 * stack.
6686 *
6687 * @returns VBox status code (information status code included).
6688 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
6689 * @param pVM Pointer to the VM.
6690 * @param pMixedCtx Pointer to the guest-CPU context.
6691 * @param uValue The value to push to the guest stack.
6692 */
6693DECLINLINE(int) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
6694{
6695 /*
6696 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
6697 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
6698 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
6699 */
6700 if (pMixedCtx->sp == 1)
6701 return VINF_EM_RESET;
6702 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
6703 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
6704 AssertRCReturn(rc, rc);
6705 return rc;
6706}
6707
6708
6709/**
6710 * Injects an event into the guest upon VM-entry by updating the relevant fields
6711 * in the VM-entry area in the VMCS.
6712 *
6713 * @returns VBox status code (informational error codes included).
6714 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
6715 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
6716 *
6717 * @param pVCpu Pointer to the VMCPU.
6718 * @param pMixedCtx Pointer to the guest-CPU context. The data may
6719 * be out-of-sync. Make sure to update the required
6720 * fields before using them.
6721 * @param u64IntrInfo The VM-entry interruption-information field.
6722 * @param cbInstr The VM-entry instruction length in bytes (for
6723 * software interrupts, exceptions and privileged
6724 * software exceptions).
6725 * @param u32ErrCode The VM-entry exception error code.
6726 * @param GCPtrFaultAddress The page-fault address for #PF exceptions.
6727 * @param puIntrState Pointer to the current guest interruptibility-state.
6728 * This interruptibility-state will be updated if
6729 * necessary. This cannot not be NULL.
6730 *
6731 * @remarks Requires CR0!
6732 * @remarks No-long-jump zone!!!
6733 */
6734static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntrInfo, uint32_t cbInstr,
6735 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState)
6736{
6737 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
6738 AssertMsg(u64IntrInfo >> 32 == 0, ("%#RX64\n", u64IntrInfo));
6739 Assert(puIntrState);
6740 uint32_t u32IntrInfo = (uint32_t)u64IntrInfo;
6741
6742 const uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntrInfo);
6743 const uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo);
6744
6745#ifdef VBOX_STRICT
6746 /* Validate the error-code-valid bit for hardware exceptions. */
6747 if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
6748 {
6749 switch (uVector)
6750 {
6751 case X86_XCPT_PF:
6752 case X86_XCPT_DF:
6753 case X86_XCPT_TS:
6754 case X86_XCPT_NP:
6755 case X86_XCPT_SS:
6756 case X86_XCPT_GP:
6757 case X86_XCPT_AC:
6758 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntrInfo),
6759 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
6760 /* fallthru */
6761 default:
6762 break;
6763 }
6764 }
6765#endif
6766
6767 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
6768 Assert( uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
6769 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
6770
6771 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
6772
6773 /* We require CR0 to check if the guest is in real-mode. */
6774 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6775 AssertRCReturn(rc, rc);
6776
6777 /*
6778 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
6779 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
6780 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
6781 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
6782 */
6783 if (CPUMIsGuestInRealModeEx(pMixedCtx))
6784 {
6785 PVM pVM = pVCpu->CTX_SUFF(pVM);
6786 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
6787 {
6788 Assert(PDMVmmDevHeapIsEnabled(pVM));
6789 Assert(pVM->hm.s.vmx.pRealModeTSS);
6790
6791 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
6792 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6793 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6794 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6795 AssertRCReturn(rc, rc);
6796 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RIP);
6797
6798 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
6799 const size_t cbIdtEntry = sizeof(X86IDTR16);
6800 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
6801 {
6802 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
6803 if (uVector == X86_XCPT_DF)
6804 return VINF_EM_RESET;
6805 else if (uVector == X86_XCPT_GP)
6806 {
6807 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
6808 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, puIntrState);
6809 }
6810
6811 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
6812 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
6813 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */, puIntrState);
6814 }
6815
6816 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
6817 uint16_t uGuestIp = pMixedCtx->ip;
6818 if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
6819 {
6820 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
6821 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
6822 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
6823 }
6824 else if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
6825 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
6826
6827 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
6828 X86IDTR16 IdtEntry;
6829 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
6830 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
6831 AssertRCReturn(rc, rc);
6832
6833 /* Construct the stack frame for the interrupt/exception handler. */
6834 rc = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
6835 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
6836 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
6837 AssertRCReturn(rc, rc);
6838
6839 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
6840 if (rc == VINF_SUCCESS)
6841 {
6842 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
6843 pMixedCtx->rip = IdtEntry.offSel;
6844 pMixedCtx->cs.Sel = IdtEntry.uSel;
6845 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
6846 if ( uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
6847 && uVector == X86_XCPT_PF)
6848 {
6849 pMixedCtx->cr2 = GCPtrFaultAddress;
6850 }
6851
6852 /* If any other guest-state bits are changed here, make sure to update
6853 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
6854 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS
6855 | HM_CHANGED_GUEST_RIP
6856 | HM_CHANGED_GUEST_RFLAGS
6857 | HM_CHANGED_GUEST_RSP;
6858
6859 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
6860 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
6861 {
6862 Assert( uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
6863 && uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
6864 Log4(("Clearing inhibition due to STI.\n"));
6865 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
6866 }
6867 Log4(("Injecting real-mode: u32IntrInfo=%#x u32ErrCode=%#x instrlen=%#x\n", u32IntrInfo, u32ErrCode, cbInstr));
6868
6869 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
6870 it, if we are returning to ring-3 before executing guest code. */
6871 pVCpu->hm.s.Event.fPending = false;
6872 }
6873 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
6874 return rc;
6875 }
6876 else
6877 {
6878 /*
6879 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
6880 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6881 */
6882 u32IntrInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6883 }
6884 }
6885
6886 /* Validate. */
6887 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntrInfo)); /* Bit 31 (Valid bit) must be set by caller. */
6888 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK(u32IntrInfo)); /* Bit 12 MBZ. */
6889 Assert(!(u32IntrInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
6890
6891 /* Inject. */
6892 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntrInfo);
6893 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntrInfo))
6894 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
6895 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
6896
6897 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
6898 && uVector == X86_XCPT_PF)
6899 {
6900 pMixedCtx->cr2 = GCPtrFaultAddress;
6901 }
6902
6903 Log4(("Injecting vcpu[%RU32] u32IntrInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
6904 u32IntrInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
6905
6906 AssertRCReturn(rc, rc);
6907 return rc;
6908}
6909
6910
6911/**
6912 * Clears the current event in the VMCS.
6913 *
6914 * @returns VBox status code.
6915 * @param pVCpu Pointer to the VMCPU.
6916 *
6917 * @remarks Use this function only to clear events that have not yet been
6918 * delivered to the guest but are injected in the VMCS!
6919 * @remarks No-long-jump zone!!!
6920 */
6921static void hmR0VmxClearEventVmcs(PVMCPU pVCpu)
6922{
6923 if (!pVCpu->hm.s.Event.fPending)
6924 return;
6925
6926#ifdef VBOX_STRICT
6927 uint32_t u32EntryInfo;
6928 int rc2 = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
6929 AssertRC(rc2);
6930 Assert(VMX_ENTRY_INTERRUPTION_INFO_VALID(u32EntryInfo));
6931#endif
6932
6933 /* Clear the entry-interruption field (including the valid bit). */
6934 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
6935 AssertRC(rc);
6936
6937 /* Clear the pending debug exception field. */
6938 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
6939 AssertRC(rc);
6940}
6941
6942
6943/**
6944 * Enters the VT-x session.
6945 *
6946 * @returns VBox status code.
6947 * @param pVM Pointer to the VM.
6948 * @param pVCpu Pointer to the VMCPU.
6949 * @param pCpu Pointer to the CPU info struct.
6950 */
6951VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
6952{
6953 AssertPtr(pVM);
6954 AssertPtr(pVCpu);
6955 Assert(pVM->hm.s.vmx.fSupported);
6956 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6957 NOREF(pCpu);
6958
6959 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
6960 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
6961
6962#ifdef VBOX_STRICT
6963 /* Make sure we're in VMX root mode. */
6964 RTCCUINTREG u32HostCR4 = ASMGetCR4();
6965 if (!(u32HostCR4 & X86_CR4_VMXE))
6966 {
6967 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
6968 return VERR_VMX_X86_CR4_VMXE_CLEARED;
6969 }
6970#endif
6971
6972 /*
6973 * Load the VCPU's VMCS as the current (and active) one.
6974 */
6975 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
6976 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
6977 if (RT_FAILURE(rc))
6978 return rc;
6979
6980 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
6981 pVCpu->hm.s.fLeaveDone = false;
6982 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
6983
6984 return VINF_SUCCESS;
6985}
6986
6987
6988/**
6989 * The thread-context callback (only on platforms which support it).
6990 *
6991 * @param enmEvent The thread-context event.
6992 * @param pVCpu Pointer to the VMCPU.
6993 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
6994 * @thread EMT.
6995 */
6996VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
6997{
6998 switch (enmEvent)
6999 {
7000 case RTTHREADCTXEVENT_PREEMPTING:
7001 {
7002 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7003 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
7004 VMCPU_ASSERT_EMT(pVCpu);
7005
7006 PVM pVM = pVCpu->CTX_SUFF(pVM);
7007 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
7008
7009 /* No longjmps (logger flushes, locks) in this fragile context. */
7010 VMMRZCallRing3Disable(pVCpu);
7011 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
7012
7013 /* Save the guest-state, restore host-state (FPU, debug etc.). */
7014 if (!pVCpu->hm.s.fLeaveDone)
7015 {
7016 hmR0VmxLeave(pVM, pVCpu, pMixedCtx);
7017 pVCpu->hm.s.fLeaveDone = true;
7018 }
7019
7020 /* Leave HM context, takes care of local init (term). */
7021 int rc = HMR0LeaveCpu(pVCpu);
7022 AssertRC(rc); NOREF(rc);
7023
7024 /* Restore longjmp state. */
7025 VMMRZCallRing3Enable(pVCpu);
7026 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptPreempting);
7027 break;
7028 }
7029
7030 case RTTHREADCTXEVENT_RESUMED:
7031 {
7032 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7033 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
7034 VMCPU_ASSERT_EMT(pVCpu);
7035
7036 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
7037 VMMRZCallRing3Disable(pVCpu);
7038 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
7039
7040 /* Initialize the bare minimum state required for HM. This takes care of
7041 initializing VT-x if necessary (onlined CPUs, local init etc.) */
7042 int rc = HMR0EnterCpu(pVCpu);
7043 AssertRC(rc);
7044 Assert(pVCpu->hm.s.fContextUseFlags & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
7045
7046 /* Load the active VMCS as the current one. */
7047 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
7048 {
7049 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7050 AssertRC(rc); NOREF(rc);
7051 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
7052 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
7053 }
7054 pVCpu->hm.s.fLeaveDone = false;
7055
7056 /* Restore longjmp state. */
7057 VMMRZCallRing3Enable(pVCpu);
7058 break;
7059 }
7060
7061 default:
7062 break;
7063 }
7064}
7065
7066
7067/**
7068 * Saves the host state in the VMCS host-state.
7069 * Sets up the VM-exit MSR-load area.
7070 *
7071 * The CPU state will be loaded from these fields on every successful VM-exit.
7072 *
7073 * @returns VBox status code.
7074 * @param pVM Pointer to the VM.
7075 * @param pVCpu Pointer to the VMCPU.
7076 *
7077 * @remarks No-long-jump zone!!!
7078 */
7079static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
7080{
7081 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7082
7083 if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT))
7084 return VINF_SUCCESS;
7085
7086 int rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
7087 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7088
7089 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
7090 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7091
7092 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
7093 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7094
7095 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
7096 return rc;
7097}
7098
7099
7100/**
7101 * Saves the host state in the VMCS host-state.
7102 *
7103 * @returns VBox status code.
7104 * @param pVM Pointer to the VM.
7105 * @param pVCpu Pointer to the VMCPU.
7106 *
7107 * @remarks No-long-jump zone!!!
7108 */
7109VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
7110{
7111 AssertPtr(pVM);
7112 AssertPtr(pVCpu);
7113
7114 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7115
7116 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
7117 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
7118 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7119 return hmR0VmxSaveHostState(pVM, pVCpu);
7120}
7121
7122
7123/**
7124 * Loads the guest state into the VMCS guest-state area. The CPU state will be
7125 * loaded from these fields on every successful VM-entry.
7126 *
7127 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas.
7128 * Sets up the VM-entry controls.
7129 * Sets up the appropriate VMX non-root function to execute guest code based on
7130 * the guest CPU mode.
7131 *
7132 * @returns VBox status code.
7133 * @param pVM Pointer to the VM.
7134 * @param pVCpu Pointer to the VMCPU.
7135 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7136 * out-of-sync. Make sure to update the required fields
7137 * before using them.
7138 *
7139 * @remarks No-long-jump zone!!!
7140 */
7141static int hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7142{
7143 AssertPtr(pVM);
7144 AssertPtr(pVCpu);
7145 AssertPtr(pMixedCtx);
7146 HMVMX_ASSERT_PREEMPT_SAFE();
7147
7148#ifdef LOG_ENABLED
7149 /** @todo r=ramshankar: I'm not able to use VMMRZCallRing3Disable() here,
7150 * probably not initialized yet? Anyway this will do for now.
7151 *
7152 * Update: Should be possible once VMXR0LoadGuestState() is removed as an
7153 * interface and disable ring-3 calls when thread-context hooks are not
7154 * available. */
7155 bool fCallerDisabledLogFlush = VMMR0IsLogFlushDisabled(pVCpu);
7156 VMMR0LogFlushDisable(pVCpu);
7157#endif
7158
7159 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7160
7161 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
7162
7163 /* Determine real-on-v86 mode. */
7164 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
7165 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
7166 && CPUMIsGuestInRealModeEx(pMixedCtx))
7167 {
7168 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
7169 }
7170
7171 /*
7172 * Load the guest-state into the VMCS.
7173 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
7174 * Ideally, assert that the cross-dependent bits are up to date at the point of using it.
7175 */
7176 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
7177 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7178
7179 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
7180 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
7181 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7182
7183 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
7184 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
7185 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7186
7187 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
7188 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7189
7190 rc = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
7191 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestCR3AndCR4: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7192
7193 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
7194 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
7195 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7196
7197 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
7198 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7199
7200 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
7201 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7202
7203 /*
7204 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
7205 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
7206 */
7207 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
7208 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7209
7210 /* Clear any unused and reserved bits. */
7211 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
7212
7213#ifdef LOG_ENABLED
7214 /* Only reenable log-flushing if the caller has it enabled. */
7215 if (!fCallerDisabledLogFlush)
7216 VMMR0LogFlushEnable(pVCpu);
7217#endif
7218
7219 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
7220 return rc;
7221}
7222
7223
7224/**
7225 * Loads the state shared between the host and guest into the VMCS.
7226 *
7227 * @param pVM Pointer to the VM.
7228 * @param pVCpu Pointer to the VMCPU.
7229 * @param pCtx Pointer to the guest-CPU context.
7230 *
7231 * @remarks No-long-jump zone!!!
7232 */
7233static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
7234{
7235 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7236 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7237
7238 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
7239 {
7240 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
7241 AssertRC(rc);
7242 }
7243
7244 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG)
7245 {
7246 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
7247 AssertRC(rc);
7248
7249 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
7250 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RFLAGS)
7251 {
7252 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
7253 AssertRC(rc);
7254 }
7255 }
7256
7257 AssertMsg(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_GUEST_SHARED_STATE), ("fContextUseFlags=%#x\n",
7258 pVCpu->hm.s.fContextUseFlags));
7259}
7260
7261
7262/**
7263 * Worker for loading the guest-state bits in the inner VT-x execution loop.
7264 *
7265 * @param pVM Pointer to the VM.
7266 * @param pVCpu Pointer to the VMCPU.
7267 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7268 * out-of-sync. Make sure to update the required fields
7269 * before using them.
7270 */
7271DECLINLINE(void) hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7272{
7273 HMVMX_ASSERT_PREEMPT_SAFE();
7274
7275 Log5(("LoadFlags=%#RX32\n", pVCpu->hm.s.fContextUseFlags));
7276#ifdef HMVMX_SYNC_FULL_GUEST_STATE
7277 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
7278#endif
7279
7280 if (pVCpu->hm.s.fContextUseFlags == HM_CHANGED_GUEST_RIP)
7281 {
7282 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
7283 AssertRC(rc);
7284 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
7285 }
7286 else if (pVCpu->hm.s.fContextUseFlags)
7287 {
7288 int rc = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
7289 AssertRC(rc);
7290 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
7291 }
7292
7293 /* All the guest state bits should be loaded except maybe the host context and shared host/guest bits. */
7294 AssertMsg( !(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST)
7295 || !(pVCpu->hm.s.fContextUseFlags & ~(HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE)),
7296 ("fContextUseFlags=%#x\n", pVCpu->hm.s.fContextUseFlags));
7297
7298#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
7299 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
7300 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
7301 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
7302#endif
7303}
7304
7305
7306/**
7307 * Does the preparations before executing guest code in VT-x.
7308 *
7309 * This may cause longjmps to ring-3 and may even result in rescheduling to the
7310 * recompiler. We must be cautious what we do here regarding committing
7311 * guest-state information into the VMCS assuming we assuredly execute the
7312 * guest in VT-x mode. If we fall back to the recompiler after updating the VMCS
7313 * and clearing the common-state (TRPM/forceflags), we must undo those changes
7314 * so that the recompiler can (and should) use them when it resumes guest
7315 * execution. Otherwise such operations must be done when we can no longer
7316 * exit to ring-3.
7317 *
7318 * @returns Strict VBox status code.
7319 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
7320 * have been disabled.
7321 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
7322 * double-fault into the guest.
7323 * @retval VINF_* scheduling changes, we have to go back to ring-3.
7324 *
7325 * @param pVM Pointer to the VM.
7326 * @param pVCpu Pointer to the VMCPU.
7327 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7328 * out-of-sync. Make sure to update the required fields
7329 * before using them.
7330 * @param pVmxTransient Pointer to the VMX transient structure.
7331 *
7332 * @remarks Called with preemption disabled. In the VINF_SUCCESS return case
7333 * interrupts will be disabled.
7334 */
7335static int hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7336{
7337 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7338
7339#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
7340 PGMRZDynMapFlushAutoSet(pVCpu);
7341#endif
7342
7343 /* Check force flag actions that might require us to go back to ring-3. */
7344 int rc = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx);
7345 if (rc != VINF_SUCCESS)
7346 return rc;
7347
7348#ifndef IEM_VERIFICATION_MODE_FULL
7349 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
7350 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
7351 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
7352 {
7353 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
7354 RTGCPHYS GCPhysApicBase;
7355 GCPhysApicBase = pMixedCtx->msrApicBase;
7356 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7357
7358 /* Unalias any existing mapping. */
7359 rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
7360 AssertRCReturn(rc, rc);
7361
7362 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
7363 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGv\n", GCPhysApicBase));
7364 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
7365 AssertRCReturn(rc, rc);
7366
7367 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
7368 }
7369#endif /* !IEM_VERIFICATION_MODE_FULL */
7370
7371 /* Load the guest state bits, we can handle longjmps/getting preempted here. */
7372 hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
7373
7374 /*
7375 * Evaluate events as pending-for-injection into the guest. Toggling of force-flags here is safe as long as
7376 * we update TRPM on premature exits to ring-3 before executing guest code. We must NOT restore the force-flags.
7377 */
7378 if (TRPMHasTrap(pVCpu))
7379 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
7380 else if (!pVCpu->hm.s.Event.fPending)
7381 hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
7382
7383 /*
7384 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
7385 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
7386 */
7387 rc = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx);
7388 if (RT_UNLIKELY(rc != VINF_SUCCESS))
7389 {
7390 Assert(rc == VINF_EM_RESET);
7391 return rc;
7392 }
7393
7394 /*
7395 * No longjmps to ring-3 from this point on!!!
7396 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
7397 * This also disables flushing of the R0-logger instance (if any).
7398 */
7399 VMMRZCallRing3Disable(pVCpu);
7400
7401 /*
7402 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
7403 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
7404 *
7405 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
7406 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
7407 *
7408 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
7409 * executing guest code.
7410 */
7411 pVmxTransient->uEflags = ASMIntDisableFlags();
7412 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
7413 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7414 {
7415 hmR0VmxClearEventVmcs(pVCpu);
7416 ASMSetFlags(pVmxTransient->uEflags);
7417 VMMRZCallRing3Enable(pVCpu);
7418 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7419 return VINF_EM_RAW_TO_R3;
7420 }
7421 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
7422 {
7423 hmR0VmxClearEventVmcs(pVCpu);
7424 ASMSetFlags(pVmxTransient->uEflags);
7425 VMMRZCallRing3Enable(pVCpu);
7426 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
7427 return VINF_EM_RAW_INTERRUPT;
7428 }
7429
7430 /* We've injected any pending events. This is really the point of no return (to ring-3). */
7431 pVCpu->hm.s.Event.fPending = false;
7432
7433 return VINF_SUCCESS;
7434}
7435
7436
7437/**
7438 * Prepares to run guest code in VT-x and we've committed to doing so. This
7439 * means there is no backing out to ring-3 or anywhere else at this
7440 * point.
7441 *
7442 * @param pVM Pointer to the VM.
7443 * @param pVCpu Pointer to the VMCPU.
7444 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7445 * out-of-sync. Make sure to update the required fields
7446 * before using them.
7447 * @param pVmxTransient Pointer to the VMX transient structure.
7448 *
7449 * @remarks Called with preemption disabled.
7450 * @remarks No-long-jump zone!!!
7451 */
7452static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7453{
7454 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7455 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7456 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7457
7458 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
7459 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
7460
7461 /*
7462 * If we are injecting events to a real-on-v86 mode guest, we may have to update
7463 * RIP and some other registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
7464 * Reload only the necessary state, the assertion will catch if other parts of the code
7465 * change.
7466 */
7467 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
7468 {
7469 hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
7470 hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
7471 }
7472
7473 /*
7474 * Load the host state bits as we may've been preempted (only happens when
7475 * thread-context hooks are used).
7476 */
7477 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT)
7478 {
7479 /* This ASSUMES that pfnStartVM has been set up already. */
7480 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
7481 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
7482 AssertRC(rc);
7483 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptSaveHostState);
7484 }
7485 Assert(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT));
7486
7487 /*
7488 * Load the state shared between host and guest (FPU, debug).
7489 */
7490 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_GUEST_SHARED_STATE)
7491 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
7492 AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags=%#x\n", pVCpu->hm.s.fContextUseFlags));
7493
7494 /*
7495 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
7496 */
7497 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7498 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
7499
7500 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
7501 RTCPUID idCurrentCpu = pCpu->idCpu;
7502 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
7503 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
7504 {
7505 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pMixedCtx);
7506 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
7507 }
7508
7509 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
7510 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
7511 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
7512 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
7513
7514 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
7515
7516 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
7517 to start executing. */
7518
7519#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
7520 /*
7521 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
7522 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
7523 */
7524 if ( (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
7525 && !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
7526 {
7527 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
7528 uint64_t u64HostTscAux = 0;
7529 int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64HostTscAux);
7530 AssertRC(rc2);
7531 ASMWrMsr(MSR_K8_TSC_AUX, u64HostTscAux);
7532 }
7533#endif
7534}
7535
7536
7537/**
7538 * Performs some essential restoration of state after running guest code in
7539 * VT-x.
7540 *
7541 * @param pVM Pointer to the VM.
7542 * @param pVCpu Pointer to the VMCPU.
7543 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
7544 * out-of-sync. Make sure to update the required fields
7545 * before using them.
7546 * @param pVmxTransient Pointer to the VMX transient structure.
7547 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
7548 *
7549 * @remarks Called with interrupts disabled, and returns with interrups enabled!
7550 *
7551 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
7552 * unconditionally when it is safe to do so.
7553 */
7554static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
7555{
7556 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7557
7558 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
7559 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
7560 pVCpu->hm.s.vmx.fUpdatedGuestState = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
7561 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
7562 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
7563
7564 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
7565 {
7566#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
7567 /* Restore host's TSC_AUX. */
7568 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
7569 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
7570#endif
7571 /** @todo Find a way to fix hardcoding a guestimate. */
7572 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC()
7573 + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
7574 }
7575
7576 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
7577 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
7578 Assert(!(ASMGetFlags() & X86_EFL_IF));
7579 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
7580
7581 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
7582 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
7583 ASMSetFlags(pVmxTransient->uEflags); /* Enable interrupts. */
7584 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
7585
7586 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
7587 uint32_t uExitReason;
7588 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
7589 rc |= hmR0VmxReadEntryIntrInfoVmcs(pVmxTransient);
7590 AssertRC(rc);
7591 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
7592 pVmxTransient->fVMEntryFailed = !!VMX_ENTRY_INTERRUPTION_INFO_VALID(pVmxTransient->uEntryIntrInfo);
7593
7594 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
7595 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
7596 {
7597 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
7598 pVmxTransient->fVMEntryFailed));
7599 return;
7600 }
7601
7602 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
7603 {
7604 /* Update the guest interruptibility-state from the VMCS. */
7605 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
7606#if defined(HMVMX_SYNC_FULL_GUEST_STATE) || defined(HMVMX_SAVE_FULL_GUEST_STATE)
7607 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7608 AssertRC(rc);
7609#endif
7610 /*
7611 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
7612 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
7613 * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
7614 * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
7615 */
7616 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7617 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
7618 {
7619 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
7620 AssertRC(rc);
7621 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
7622 }
7623 }
7624}
7625
7626
7627
7628/**
7629 * Runs the guest code using VT-x the normal way.
7630 *
7631 * @returns VBox status code.
7632 * @param pVM Pointer to the VM.
7633 * @param pVCpu Pointer to the VMCPU.
7634 * @param pCtx Pointer to the guest-CPU context.
7635 *
7636 * @note Mostly the same as hmR0VmxRunGuestCodeStep.
7637 * @remarks Called with preemption disabled.
7638 */
7639static int hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
7640{
7641 VMXTRANSIENT VmxTransient;
7642 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
7643 int rc = VERR_INTERNAL_ERROR_5;
7644 uint32_t cLoops = 0;
7645
7646 for (;; cLoops++)
7647 {
7648 Assert(!HMR0SuspendPending());
7649 HMVMX_ASSERT_CPU_SAFE();
7650
7651 /* Preparatory work for running guest code, this may force us to return
7652 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
7653 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
7654 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
7655 if (rc != VINF_SUCCESS)
7656 break;
7657
7658 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
7659 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
7660 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
7661
7662 /* Restore any residual host-state and save any bits shared between host
7663 and guest into the guest-CPU state. Re-enables interrupts! */
7664 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
7665
7666 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
7667 if (RT_UNLIKELY(rc != VINF_SUCCESS))
7668 {
7669 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
7670 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
7671 return rc;
7672 }
7673
7674 /* Handle the VM-exit. */
7675 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
7676 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
7677 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
7678 HMVMX_START_EXIT_DISPATCH_PROF();
7679#ifdef HMVMX_USE_FUNCTION_TABLE
7680 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
7681#else
7682 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
7683#endif
7684 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
7685 if (rc != VINF_SUCCESS)
7686 break;
7687 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
7688 {
7689 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
7690 rc = VINF_EM_RAW_INTERRUPT;
7691 break;
7692 }
7693 }
7694
7695 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
7696 return rc;
7697}
7698
7699
7700/**
7701 * Single steps guest code using VT-x.
7702 *
7703 * @returns VBox status code.
7704 * @param pVM Pointer to the VM.
7705 * @param pVCpu Pointer to the VMCPU.
7706 * @param pCtx Pointer to the guest-CPU context.
7707 *
7708 * @note Mostly the same as hmR0VmxRunGuestCodeNormal.
7709 * @remarks Called with preemption disabled.
7710 */
7711static int hmR0VmxRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
7712{
7713 VMXTRANSIENT VmxTransient;
7714 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
7715 int rc = VERR_INTERNAL_ERROR_5;
7716 uint32_t cLoops = 0;
7717 uint16_t uCsStart = pCtx->cs.Sel;
7718 uint64_t uRipStart = pCtx->rip;
7719
7720 for (;; cLoops++)
7721 {
7722 Assert(!HMR0SuspendPending());
7723 HMVMX_ASSERT_CPU_SAFE();
7724
7725 /* Preparatory work for running guest code, this may force us to return
7726 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
7727 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
7728 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
7729 if (rc != VINF_SUCCESS)
7730 break;
7731
7732 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
7733 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
7734 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
7735
7736 /* Restore any residual host-state and save any bits shared between host
7737 and guest into the guest-CPU state. Re-enables interrupts! */
7738 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
7739
7740 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
7741 if (RT_UNLIKELY(rc != VINF_SUCCESS))
7742 {
7743 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
7744 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
7745 return rc;
7746 }
7747
7748 /* Handle the VM-exit. */
7749 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
7750 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
7751 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
7752 HMVMX_START_EXIT_DISPATCH_PROF();
7753#ifdef HMVMX_USE_FUNCTION_TABLE
7754 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
7755#else
7756 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
7757#endif
7758 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
7759 if (rc != VINF_SUCCESS)
7760 break;
7761 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
7762 {
7763 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
7764 rc = VINF_EM_RAW_INTERRUPT;
7765 break;
7766 }
7767
7768 /*
7769 * Did the RIP change, if so, consider it a single step.
7770 * Otherwise, make sure one of the TFs gets set.
7771 */
7772 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
7773 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
7774 AssertRCReturn(rc2, rc2);
7775 if ( pCtx->rip != uRipStart
7776 || pCtx->cs.Sel != uCsStart)
7777 {
7778 rc = VINF_EM_DBG_STEPPED;
7779 break;
7780 }
7781 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
7782 }
7783
7784 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
7785 return rc;
7786}
7787
7788
7789/**
7790 * Runs the guest code using VT-x.
7791 *
7792 * @returns VBox status code.
7793 * @param pVM Pointer to the VM.
7794 * @param pVCpu Pointer to the VMCPU.
7795 * @param pCtx Pointer to the guest-CPU context.
7796 *
7797 * @remarks Called with preemption disabled.
7798 */
7799VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
7800{
7801 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7802 Assert(pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL);
7803 HMVMX_ASSERT_PREEMPT_SAFE();
7804
7805 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
7806
7807 int rc;
7808 if (!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu))
7809 rc = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
7810 else
7811 rc = hmR0VmxRunGuestCodeStep(pVM, pVCpu, pCtx);
7812
7813 if (rc == VERR_EM_INTERPRETER)
7814 rc = VINF_EM_RAW_EMULATE_INSTR;
7815 else if (rc == VINF_EM_RESET)
7816 rc = VINF_EM_TRIPLE_FAULT;
7817
7818 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rc);
7819 if (RT_FAILURE(rc2))
7820 {
7821 pVCpu->hm.s.u32HMError = rc;
7822 rc = rc2;
7823 }
7824 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
7825 return rc;
7826}
7827
7828
7829#ifndef HMVMX_USE_FUNCTION_TABLE
7830DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
7831{
7832 int rc;
7833 switch (rcReason)
7834 {
7835 case VMX_EXIT_EPT_MISCONFIG: rc = hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient); break;
7836 case VMX_EXIT_EPT_VIOLATION: rc = hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient); break;
7837 case VMX_EXIT_IO_INSTR: rc = hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient); break;
7838 case VMX_EXIT_CPUID: rc = hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient); break;
7839 case VMX_EXIT_RDTSC: rc = hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient); break;
7840 case VMX_EXIT_RDTSCP: rc = hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient); break;
7841 case VMX_EXIT_APIC_ACCESS: rc = hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient); break;
7842 case VMX_EXIT_XCPT_OR_NMI: rc = hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient); break;
7843 case VMX_EXIT_MOV_CRX: rc = hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient); break;
7844 case VMX_EXIT_EXT_INT: rc = hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient); break;
7845 case VMX_EXIT_INT_WINDOW: rc = hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient); break;
7846 case VMX_EXIT_MWAIT: rc = hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient); break;
7847 case VMX_EXIT_MONITOR: rc = hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient); break;
7848 case VMX_EXIT_TASK_SWITCH: rc = hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient); break;
7849 case VMX_EXIT_PREEMPT_TIMER: rc = hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient); break;
7850 case VMX_EXIT_RDMSR: rc = hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient); break;
7851 case VMX_EXIT_WRMSR: rc = hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient); break;
7852 case VMX_EXIT_MOV_DRX: rc = hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient); break;
7853 case VMX_EXIT_TPR_BELOW_THRESHOLD: rc = hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient); break;
7854 case VMX_EXIT_HLT: rc = hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient); break;
7855 case VMX_EXIT_INVD: rc = hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient); break;
7856 case VMX_EXIT_INVLPG: rc = hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient); break;
7857 case VMX_EXIT_RSM: rc = hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient); break;
7858 case VMX_EXIT_MTF: rc = hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient); break;
7859 case VMX_EXIT_PAUSE: rc = hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient); break;
7860 case VMX_EXIT_XDTR_ACCESS: rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); break;
7861 case VMX_EXIT_TR_ACCESS: rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); break;
7862 case VMX_EXIT_WBINVD: rc = hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient); break;
7863 case VMX_EXIT_XSETBV: rc = hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient); break;
7864 case VMX_EXIT_RDRAND: rc = hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient); break;
7865 case VMX_EXIT_INVPCID: rc = hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient); break;
7866 case VMX_EXIT_GETSEC: rc = hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient); break;
7867 case VMX_EXIT_RDPMC: rc = hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient); break;
7868
7869 case VMX_EXIT_TRIPLE_FAULT: rc = hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient); break;
7870 case VMX_EXIT_NMI_WINDOW: rc = hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient); break;
7871 case VMX_EXIT_INIT_SIGNAL: rc = hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient); break;
7872 case VMX_EXIT_SIPI: rc = hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient); break;
7873 case VMX_EXIT_IO_SMI: rc = hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient); break;
7874 case VMX_EXIT_SMI: rc = hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient); break;
7875 case VMX_EXIT_ERR_MSR_LOAD: rc = hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient); break;
7876 case VMX_EXIT_ERR_INVALID_GUEST_STATE: rc = hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient); break;
7877 case VMX_EXIT_ERR_MACHINE_CHECK: rc = hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient); break;
7878
7879 case VMX_EXIT_VMCALL:
7880 case VMX_EXIT_VMCLEAR:
7881 case VMX_EXIT_VMLAUNCH:
7882 case VMX_EXIT_VMPTRLD:
7883 case VMX_EXIT_VMPTRST:
7884 case VMX_EXIT_VMREAD:
7885 case VMX_EXIT_VMRESUME:
7886 case VMX_EXIT_VMWRITE:
7887 case VMX_EXIT_VMXOFF:
7888 case VMX_EXIT_VMXON:
7889 case VMX_EXIT_INVEPT:
7890 case VMX_EXIT_INVVPID:
7891 case VMX_EXIT_VMFUNC:
7892 rc = hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
7893 break;
7894 default:
7895 rc = hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
7896 break;
7897 }
7898 return rc;
7899}
7900#endif
7901
7902#ifdef DEBUG
7903/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
7904# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
7905 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
7906
7907# define HMVMX_ASSERT_PREEMPT_CPUID() \
7908 do \
7909 { \
7910 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
7911 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
7912 } while (0)
7913
7914# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
7915 do { \
7916 AssertPtr(pVCpu); \
7917 AssertPtr(pMixedCtx); \
7918 AssertPtr(pVmxTransient); \
7919 Assert(pVmxTransient->fVMEntryFailed == false); \
7920 Assert(ASMIntAreEnabled()); \
7921 HMVMX_ASSERT_PREEMPT_SAFE(); \
7922 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
7923 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
7924 HMVMX_ASSERT_PREEMPT_SAFE(); \
7925 if (VMMR0IsLogFlushDisabled(pVCpu)) \
7926 HMVMX_ASSERT_PREEMPT_CPUID(); \
7927 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
7928 } while (0)
7929
7930# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
7931 do { \
7932 Log4Func(("\n")); \
7933 } while(0)
7934#else /* Release builds */
7935# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() do { HMVMX_STOP_EXIT_DISPATCH_PROF(); } while(0)
7936# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while(0)
7937#endif
7938
7939
7940/**
7941 * Advances the guest RIP after reading it from the VMCS.
7942 *
7943 * @returns VBox status code.
7944 * @param pVCpu Pointer to the VMCPU.
7945 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
7946 * out-of-sync. Make sure to update the required fields
7947 * before using them.
7948 * @param pVmxTransient Pointer to the VMX transient structure.
7949 *
7950 * @remarks No-long-jump zone!!!
7951 */
7952DECLINLINE(int) hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7953{
7954 int rc = hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
7955 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
7956 AssertRCReturn(rc, rc);
7957
7958 pMixedCtx->rip += pVmxTransient->cbInstr;
7959 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
7960 return rc;
7961}
7962
7963
7964/**
7965 * Tries to determine what part of the guest-state VT-x has deemed as invalid
7966 * and update error record fields accordingly.
7967 *
7968 * @return VMX_IGS_* return codes.
7969 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
7970 * wrong with the guest state.
7971 *
7972 * @param pVM Pointer to the VM.
7973 * @param pVCpu Pointer to the VMCPU.
7974 * @param pCtx Pointer to the guest-CPU state.
7975 */
7976static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
7977{
7978#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
7979#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
7980 uError = (err); \
7981 break; \
7982 } else do {} while (0)
7983/* Duplicate of IEM_IS_CANONICAL(). */
7984#define HMVMX_IS_CANONICAL(a_u64Addr) ((uint64_t)(a_u64Addr) + UINT64_C(0x800000000000) < UINT64_C(0x1000000000000))
7985
7986 int rc;
7987 uint64_t u64Val;
7988 uint32_t u32Val;
7989 uint32_t uError = VMX_IGS_ERROR;
7990 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
7991
7992 do
7993 {
7994 /*
7995 * CR0.
7996 */
7997 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
7998 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
7999 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
8000 See Intel spec. 26.3.1 "Checks on guest Guest Control Registers, Debug Registers and MSRs." */
8001 if (fUnrestrictedGuest)
8002 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
8003
8004 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
8005 AssertRCBreak(rc);
8006 HMVMX_CHECK_BREAK((u32Val & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
8007 HMVMX_CHECK_BREAK(!(u32Val & ~uZapCR0), VMX_IGS_CR0_FIXED0);
8008 if ( !fUnrestrictedGuest
8009 && (u32Val & X86_CR0_PG)
8010 && !(u32Val & X86_CR0_PE))
8011 {
8012 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
8013 }
8014
8015 /*
8016 * CR4.
8017 */
8018 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
8019 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
8020 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
8021 AssertRCBreak(rc);
8022 HMVMX_CHECK_BREAK((u32Val & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
8023 HMVMX_CHECK_BREAK(!(u32Val & ~uZapCR4), VMX_IGS_CR4_FIXED0);
8024
8025 /*
8026 * IA32_DEBUGCTL MSR.
8027 */
8028 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
8029 AssertRCBreak(rc);
8030 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
8031 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
8032 {
8033 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
8034 }
8035 uint64_t u64DebugCtlMsr = u64Val;
8036
8037#ifdef VBOX_STRICT
8038 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
8039 AssertRCBreak(rc);
8040 Assert(u32Val == pVCpu->hm.s.vmx.u32ProcCtls);
8041#endif
8042 bool const fLongModeGuest = !!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
8043
8044 /*
8045 * RIP and RFLAGS.
8046 */
8047 uint32_t u32Eflags;
8048#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8049 if (HMVMX_IS_64BIT_HOST_MODE())
8050 {
8051 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
8052 AssertRCBreak(rc);
8053 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
8054 if ( !fLongModeGuest
8055 || !pCtx->cs.Attr.n.u1Long)
8056 {
8057 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
8058 }
8059 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
8060 * must be identical if the "IA32e mode guest" VM-entry control is 1
8061 * and CS.L is 1. No check applies if the CPU supports 64
8062 * linear-address bits. */
8063
8064 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
8065 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
8066 AssertRCBreak(rc);
8067 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
8068 VMX_IGS_RFLAGS_RESERVED);
8069 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
8070 u32Eflags = u64Val;
8071 }
8072 else
8073#endif
8074 {
8075 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
8076 AssertRCBreak(rc);
8077 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
8078 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
8079 }
8080
8081 if ( fLongModeGuest
8082 || !(pCtx->cr0 & X86_CR0_PE))
8083 {
8084 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
8085 }
8086
8087 uint32_t u32EntryInfo;
8088 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
8089 AssertRCBreak(rc);
8090 if ( VMX_ENTRY_INTERRUPTION_INFO_VALID(u32EntryInfo)
8091 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
8092 {
8093 HMVMX_CHECK_BREAK(u32Val & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
8094 }
8095
8096 /*
8097 * 64-bit checks.
8098 */
8099#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8100 if (HMVMX_IS_64BIT_HOST_MODE())
8101 {
8102 if ( fLongModeGuest
8103 && !fUnrestrictedGuest)
8104 {
8105 HMVMX_CHECK_BREAK(CPUMIsGuestPagingEnabledEx(pCtx), VMX_IGS_CR0_PG_LONGMODE);
8106 HMVMX_CHECK_BREAK((pCtx->cr4 & X86_CR4_PAE), VMX_IGS_CR4_PAE_LONGMODE);
8107 }
8108
8109 if ( !fLongModeGuest
8110 && (pCtx->cr4 & X86_CR4_PCIDE))
8111 {
8112 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
8113 }
8114
8115 /** @todo CR3 field must be such that bits 63:52 and bits in the range
8116 * 51:32 beyond the processor's physical-address width are 0. */
8117
8118 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
8119 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
8120 {
8121 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
8122 }
8123
8124 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
8125 AssertRCBreak(rc);
8126 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
8127
8128 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
8129 AssertRCBreak(rc);
8130 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
8131 }
8132#endif
8133
8134 /*
8135 * PERF_GLOBAL MSR.
8136 */
8137 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
8138 {
8139 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
8140 AssertRCBreak(rc);
8141 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
8142 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
8143 }
8144
8145 /*
8146 * PAT MSR.
8147 */
8148 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
8149 {
8150 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
8151 AssertRCBreak(rc);
8152 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
8153 for (unsigned i = 0; i < 8; i++)
8154 {
8155 uint8_t u8Val = (u64Val & 0x7);
8156 if ( u8Val != 0 /* UC */
8157 || u8Val != 1 /* WC */
8158 || u8Val != 4 /* WT */
8159 || u8Val != 5 /* WP */
8160 || u8Val != 6 /* WB */
8161 || u8Val != 7 /* UC- */)
8162 {
8163 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
8164 }
8165 u64Val >>= 3;
8166 }
8167 }
8168
8169 /*
8170 * EFER MSR.
8171 */
8172 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
8173 {
8174 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
8175 AssertRCBreak(rc);
8176 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
8177 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
8178 HMVMX_CHECK_BREAK((u64Val & MSR_K6_EFER_LMA) == (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
8179 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
8180 HMVMX_CHECK_BREAK( fUnrestrictedGuest
8181 || (u64Val & MSR_K6_EFER_LMA) == (pCtx->cr0 & X86_CR0_PG), VMX_IGS_EFER_LMA_PG_MISMATCH);
8182 }
8183
8184 /*
8185 * Segment registers.
8186 */
8187 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
8188 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
8189 if (!(u32Eflags & X86_EFL_VM))
8190 {
8191 /* CS */
8192 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
8193 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
8194 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
8195 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
8196 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
8197 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
8198 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
8199 /* CS cannot be loaded with NULL in protected mode. */
8200 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
8201 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
8202 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
8203 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
8204 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
8205 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
8206 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
8207 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
8208 else
8209 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
8210
8211 /* SS */
8212 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8213 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
8214 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
8215 if ( !(pCtx->cr0 & X86_CR0_PE)
8216 || pCtx->cs.Attr.n.u4Type == 3)
8217 {
8218 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
8219 }
8220 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
8221 {
8222 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
8223 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
8224 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
8225 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
8226 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
8227 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
8228 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
8229 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
8230 }
8231
8232 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
8233 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
8234 {
8235 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
8236 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
8237 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8238 || pCtx->ds.Attr.n.u4Type > 11
8239 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
8240 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
8241 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
8242 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
8243 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
8244 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
8245 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
8246 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8247 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
8248 }
8249 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
8250 {
8251 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
8252 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
8253 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8254 || pCtx->es.Attr.n.u4Type > 11
8255 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
8256 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
8257 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
8258 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
8259 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
8260 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
8261 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
8262 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8263 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
8264 }
8265 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
8266 {
8267 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
8268 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
8269 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8270 || pCtx->fs.Attr.n.u4Type > 11
8271 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
8272 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
8273 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
8274 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
8275 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
8276 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
8277 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
8278 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8279 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
8280 }
8281 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
8282 {
8283 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
8284 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
8285 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8286 || pCtx->gs.Attr.n.u4Type > 11
8287 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
8288 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
8289 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
8290 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
8291 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
8292 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
8293 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
8294 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8295 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
8296 }
8297 /* 64-bit capable CPUs. */
8298#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8299 if (HMVMX_IS_64BIT_HOST_MODE())
8300 {
8301 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
8302 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
8303 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
8304 || HMVMX_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
8305 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
8306 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
8307 VMX_IGS_LONGMODE_SS_BASE_INVALID);
8308 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
8309 VMX_IGS_LONGMODE_DS_BASE_INVALID);
8310 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
8311 VMX_IGS_LONGMODE_ES_BASE_INVALID);
8312 }
8313#endif
8314 }
8315 else
8316 {
8317 /* V86 mode checks. */
8318 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
8319 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
8320 {
8321 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
8322 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
8323 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
8324 }
8325 else
8326 {
8327 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
8328 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
8329 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
8330 }
8331
8332 /* CS */
8333 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
8334 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
8335 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
8336 /* SS */
8337 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
8338 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
8339 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
8340 /* DS */
8341 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
8342 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
8343 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
8344 /* ES */
8345 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
8346 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
8347 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
8348 /* FS */
8349 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
8350 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
8351 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
8352 /* GS */
8353 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
8354 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
8355 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
8356 /* 64-bit capable CPUs. */
8357#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8358 if (HMVMX_IS_64BIT_HOST_MODE())
8359 {
8360 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
8361 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
8362 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
8363 || HMVMX_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
8364 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
8365 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
8366 VMX_IGS_LONGMODE_SS_BASE_INVALID);
8367 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
8368 VMX_IGS_LONGMODE_DS_BASE_INVALID);
8369 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
8370 VMX_IGS_LONGMODE_ES_BASE_INVALID);
8371 }
8372#endif
8373 }
8374
8375 /*
8376 * TR.
8377 */
8378 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
8379 /* 64-bit capable CPUs. */
8380#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8381 if (HMVMX_IS_64BIT_HOST_MODE())
8382 {
8383 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
8384 }
8385#endif
8386 if (fLongModeGuest)
8387 {
8388 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
8389 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
8390 }
8391 else
8392 {
8393 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
8394 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
8395 VMX_IGS_TR_ATTR_TYPE_INVALID);
8396 }
8397 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
8398 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
8399 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
8400 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
8401 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
8402 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
8403 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
8404 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
8405
8406 /*
8407 * GDTR and IDTR.
8408 */
8409#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8410 if (HMVMX_IS_64BIT_HOST_MODE())
8411 {
8412 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
8413 AssertRCBreak(rc);
8414 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
8415
8416 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
8417 AssertRCBreak(rc);
8418 HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
8419 }
8420#endif
8421
8422 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
8423 AssertRCBreak(rc);
8424 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
8425
8426 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
8427 AssertRCBreak(rc);
8428 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
8429
8430 /*
8431 * Guest Non-Register State.
8432 */
8433 /* Activity State. */
8434 uint32_t u32ActivityState;
8435 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
8436 AssertRCBreak(rc);
8437 HMVMX_CHECK_BREAK( !u32ActivityState
8438 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
8439 VMX_IGS_ACTIVITY_STATE_INVALID);
8440 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
8441 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
8442 uint32_t u32IntrState;
8443 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
8444 AssertRCBreak(rc);
8445 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
8446 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8447 {
8448 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
8449 }
8450
8451 /** @todo Activity state and injecting interrupts. Left as a todo since we
8452 * currently don't use activity states but ACTIVE. */
8453
8454 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
8455 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
8456
8457 /* Guest interruptibility-state. */
8458 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
8459 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
8460 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
8461 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
8462 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
8463 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
8464 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
8465 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
8466 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
8467 if (VMX_ENTRY_INTERRUPTION_INFO_VALID(u32EntryInfo))
8468 {
8469 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
8470 {
8471 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8472 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
8473 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
8474 }
8475 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
8476 {
8477 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
8478 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
8479 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
8480 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
8481 }
8482 }
8483 /** @todo Assumes the processor is not in SMM. */
8484 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
8485 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
8486 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
8487 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
8488 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
8489 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
8490 && VMX_ENTRY_INTERRUPTION_INFO_VALID(u32EntryInfo)
8491 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
8492 {
8493 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
8494 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
8495 }
8496
8497 /* Pending debug exceptions. */
8498 if (HMVMX_IS_64BIT_HOST_MODE())
8499 {
8500 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
8501 AssertRCBreak(rc);
8502 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
8503 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
8504 u32Val = u64Val; /* For pending debug exceptions checks below. */
8505 }
8506 else
8507 {
8508 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
8509 AssertRCBreak(rc);
8510 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
8511 HMVMX_CHECK_BREAK(!(u64Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
8512 }
8513
8514 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8515 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
8516 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
8517 {
8518 if ( (u32Eflags & X86_EFL_TF)
8519 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
8520 {
8521 /* Bit 14 is PendingDebug.BS. */
8522 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
8523 }
8524 if ( !(u32Eflags & X86_EFL_TF)
8525 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
8526 {
8527 /* Bit 14 is PendingDebug.BS. */
8528 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
8529 }
8530 }
8531
8532 /* VMCS link pointer. */
8533 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
8534 AssertRCBreak(rc);
8535 if (u64Val != UINT64_C(0xffffffffffffffff))
8536 {
8537 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
8538 /** @todo Bits beyond the processor's physical-address width MBZ. */
8539 /** @todo 32-bit located in memory referenced by value of this field (as a
8540 * physical address) must contain the processor's VMCS revision ID. */
8541 /** @todo SMM checks. */
8542 }
8543
8544 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries. */
8545
8546 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
8547 if (uError == VMX_IGS_ERROR)
8548 uError = VMX_IGS_REASON_NOT_FOUND;
8549 } while (0);
8550
8551 pVCpu->hm.s.u32HMError = uError;
8552 return uError;
8553
8554#undef HMVMX_ERROR_BREAK
8555#undef HMVMX_CHECK_BREAK
8556#undef HMVMX_IS_CANONICAL
8557}
8558
8559/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
8560/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
8561/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
8562
8563/** @name VM-exit handlers.
8564 * @{
8565 */
8566
8567/**
8568 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
8569 */
8570HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8571{
8572 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8573 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
8574 /* 32-bit Windows hosts (4 cores) has trouble with this; causes higher interrupt latency. */
8575#if HC_ARCH_BITS == 64
8576 Assert(ASMIntAreEnabled());
8577 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUsePreemptTimer)
8578 return VINF_SUCCESS;
8579#endif
8580 return VINF_EM_RAW_INTERRUPT;
8581}
8582
8583
8584/**
8585 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
8586 */
8587HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8588{
8589 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8590 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
8591
8592 int rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
8593 AssertRCReturn(rc, rc);
8594
8595 uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntrInfo);
8596 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
8597 && uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8598 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntrInfo));
8599
8600 if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
8601 {
8602 /*
8603 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
8604 * anything we inject is not going to cause a VM-exit directly for the event being injected.
8605 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
8606 *
8607 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
8608 */
8609 VMXDispatchHostNmi();
8610 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
8611 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
8612 return VINF_SUCCESS;
8613 }
8614
8615 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
8616 rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
8617 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
8618 {
8619 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
8620 return VINF_SUCCESS;
8621 }
8622 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
8623 {
8624 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
8625 return rc;
8626 }
8627
8628 uint32_t uExitIntrInfo = pVmxTransient->uExitIntrInfo;
8629 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntrInfo);
8630 switch (uIntrType)
8631 {
8632 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
8633 Assert(uVector == X86_XCPT_DB || uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8634 /* no break */
8635 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
8636 {
8637 switch (uVector)
8638 {
8639 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
8640 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
8641 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
8642 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
8643 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
8644 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
8645#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
8646 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
8647 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
8648 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
8649 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
8650 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
8651 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
8652 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
8653 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
8654 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
8655 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
8656#endif
8657 default:
8658 {
8659 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8660 AssertRCReturn(rc, rc);
8661
8662 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
8663 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
8664 {
8665 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
8666 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
8667 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
8668
8669 rc = hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
8670 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
8671 AssertRCReturn(rc, rc);
8672 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntrInfo),
8673 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode,
8674 0 /* GCPtrFaultAddress */);
8675 AssertRCReturn(rc, rc);
8676 }
8677 else
8678 {
8679 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
8680 pVCpu->hm.s.u32HMError = uVector;
8681 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
8682 }
8683 break;
8684 }
8685 }
8686 break;
8687 }
8688
8689 default:
8690 {
8691 pVCpu->hm.s.u32HMError = uExitIntrInfo;
8692 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE;
8693 AssertMsgFailed(("Unexpected interruption code %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntrInfo)));
8694 break;
8695 }
8696 }
8697 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
8698 return rc;
8699}
8700
8701
8702/**
8703 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
8704 */
8705HMVMX_EXIT_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8706{
8707 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8708
8709 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
8710 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
8711 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
8712 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
8713 AssertRCReturn(rc, rc);
8714
8715 /* Deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and resume guest execution. */
8716 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
8717 return VINF_SUCCESS;
8718}
8719
8720
8721/**
8722 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
8723 */
8724HMVMX_EXIT_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8725{
8726 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8727 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
8728 pVCpu->hm.s.u32HMError = VMX_EXIT_NMI_WINDOW;
8729 return VERR_VMX_UNEXPECTED_EXIT_CODE;
8730}
8731
8732
8733/**
8734 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
8735 */
8736HMVMX_EXIT_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8737{
8738 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8739 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
8740 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8741}
8742
8743
8744/**
8745 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
8746 */
8747HMVMX_EXIT_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8748{
8749 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8750 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
8751 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8752}
8753
8754
8755/**
8756 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
8757 */
8758HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8759{
8760 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8761 PVM pVM = pVCpu->CTX_SUFF(pVM);
8762 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
8763 if (RT_LIKELY(rc == VINF_SUCCESS))
8764 {
8765 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8766 Assert(pVmxTransient->cbInstr == 2);
8767 }
8768 else
8769 {
8770 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
8771 rc = VERR_EM_INTERPRETER;
8772 }
8773 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
8774 return rc;
8775}
8776
8777
8778/**
8779 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
8780 */
8781HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8782{
8783 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8784 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
8785 AssertRCReturn(rc, rc);
8786
8787 if (pMixedCtx->cr4 & X86_CR4_SMXE)
8788 return VINF_EM_RAW_EMULATE_INSTR;
8789
8790 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
8791 pVCpu->hm.s.u32HMError = VMX_EXIT_GETSEC;
8792 return VERR_VMX_UNEXPECTED_EXIT_CODE;
8793}
8794
8795
8796/**
8797 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
8798 */
8799HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8800{
8801 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8802 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
8803 AssertRCReturn(rc, rc);
8804
8805 PVM pVM = pVCpu->CTX_SUFF(pVM);
8806 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
8807 if (RT_LIKELY(rc == VINF_SUCCESS))
8808 {
8809 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8810 Assert(pVmxTransient->cbInstr == 2);
8811 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
8812 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
8813 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
8814 }
8815 else
8816 {
8817 AssertMsgFailed(("hmR0VmxExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
8818 rc = VERR_EM_INTERPRETER;
8819 }
8820 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
8821 return rc;
8822}
8823
8824
8825/**
8826 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
8827 */
8828HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8829{
8830 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8831 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
8832 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
8833 AssertRCReturn(rc, rc);
8834
8835 PVM pVM = pVCpu->CTX_SUFF(pVM);
8836 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
8837 if (RT_LIKELY(rc == VINF_SUCCESS))
8838 {
8839 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8840 Assert(pVmxTransient->cbInstr == 3);
8841 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
8842 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
8843 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
8844 }
8845 else
8846 {
8847 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
8848 rc = VERR_EM_INTERPRETER;
8849 }
8850 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
8851 return rc;
8852}
8853
8854
8855/**
8856 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
8857 */
8858HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8859{
8860 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8861 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
8862 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); /** @todo review if CR0 is really required by EM. */
8863 AssertRCReturn(rc, rc);
8864
8865 PVM pVM = pVCpu->CTX_SUFF(pVM);
8866 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
8867 if (RT_LIKELY(rc == VINF_SUCCESS))
8868 {
8869 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8870 Assert(pVmxTransient->cbInstr == 2);
8871 }
8872 else
8873 {
8874 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
8875 rc = VERR_EM_INTERPRETER;
8876 }
8877 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
8878 return rc;
8879}
8880
8881
8882/**
8883 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
8884 */
8885HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8886{
8887 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8888 PVM pVM = pVCpu->CTX_SUFF(pVM);
8889 Assert(!pVM->hm.s.fNestedPaging);
8890
8891 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
8892 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
8893 AssertRCReturn(rc, rc);
8894
8895 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
8896 rc = VBOXSTRICTRC_VAL(rc2);
8897 if (RT_LIKELY(rc == VINF_SUCCESS))
8898 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8899 else
8900 {
8901 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
8902 pVmxTransient->uExitQualification, rc));
8903 }
8904 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
8905 return rc;
8906}
8907
8908
8909/**
8910 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
8911 */
8912HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8913{
8914 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8915 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8916 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8917 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8918 AssertRCReturn(rc, rc);
8919
8920 PVM pVM = pVCpu->CTX_SUFF(pVM);
8921 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
8922 if (RT_LIKELY(rc == VINF_SUCCESS))
8923 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8924 else
8925 {
8926 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
8927 rc = VERR_EM_INTERPRETER;
8928 }
8929 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
8930 return rc;
8931}
8932
8933
8934/**
8935 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
8936 */
8937HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8938{
8939 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
8940 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8941 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8942 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8943 AssertRCReturn(rc, rc);
8944
8945 PVM pVM = pVCpu->CTX_SUFF(pVM);
8946 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
8947 rc = VBOXSTRICTRC_VAL(rc2);
8948 if (RT_LIKELY( rc == VINF_SUCCESS
8949 || rc == VINF_EM_HALT))
8950 {
8951 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
8952 AssertRCReturn(rc3, rc3);
8953
8954 if ( rc == VINF_EM_HALT
8955 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
8956 {
8957 rc = VINF_SUCCESS;
8958 }
8959 }
8960 else
8961 {
8962 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
8963 rc = VERR_EM_INTERPRETER;
8964 }
8965 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
8966 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
8967 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
8968 return rc;
8969}
8970
8971
8972/**
8973 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
8974 */
8975HMVMX_EXIT_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8976{
8977 /*
8978 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
8979 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
8980 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
8981 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
8982 */
8983 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
8984 pVCpu->hm.s.u32HMError = VMX_EXIT_RSM;
8985 return VERR_VMX_UNEXPECTED_EXIT_CODE;
8986}
8987
8988
8989/**
8990 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
8991 */
8992HMVMX_EXIT_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8993{
8994 /*
8995 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
8996 * root operation. Only an STM (SMM transfer monitor) would get this exit when we (the executive monitor) execute a VMCALL
8997 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
8998 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
8999 */
9000 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9001 pVCpu->hm.s.u32HMError = VMX_EXIT_SMI;
9002 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9003}
9004
9005
9006/**
9007 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
9008 */
9009HMVMX_EXIT_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9010{
9011 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
9012 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9013 pVCpu->hm.s.u32HMError = VMX_EXIT_IO_SMI;
9014 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9015}
9016
9017
9018/**
9019 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
9020 */
9021HMVMX_EXIT_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9022{
9023 /*
9024 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
9025 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
9026 * See Intel spec. 25.3 "Other Causes of VM-exits".
9027 */
9028 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9029 pVCpu->hm.s.u32HMError = VMX_EXIT_SIPI;
9030 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9031}
9032
9033
9034/**
9035 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
9036 * VM-exit.
9037 */
9038HMVMX_EXIT_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9039{
9040 /*
9041 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
9042 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
9043 *
9044 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
9045 * See Intel spec. "23.8 Restrictions on VMX operation".
9046 */
9047 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9048 return VINF_SUCCESS;
9049}
9050
9051
9052/**
9053 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
9054 * VM-exit.
9055 */
9056HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9057{
9058 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9059 return VINF_EM_RESET;
9060}
9061
9062
9063/**
9064 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
9065 */
9066HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9067{
9068 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9069 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
9070 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9071 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9072 AssertRCReturn(rc, rc);
9073
9074 pMixedCtx->rip++;
9075 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
9076 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
9077 rc = VINF_SUCCESS;
9078 else
9079 rc = VINF_EM_HALT;
9080
9081 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
9082 return rc;
9083}
9084
9085
9086/**
9087 * VM-exit handler for instructions that result in a #UD exception delivered to
9088 * the guest.
9089 */
9090HMVMX_EXIT_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9091{
9092 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9093 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
9094 return VINF_SUCCESS;
9095}
9096
9097
9098/**
9099 * VM-exit handler for expiry of the VMX preemption timer.
9100 */
9101HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9102{
9103 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9104
9105 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
9106 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9107
9108 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
9109 PVM pVM = pVCpu->CTX_SUFF(pVM);
9110 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
9111 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
9112 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
9113}
9114
9115
9116/**
9117 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
9118 */
9119HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9120{
9121 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9122
9123 /* We expose XSETBV to the guest, fallback to the recompiler for emulation. */
9124 /** @todo check if XSETBV is supported by the recompiler. */
9125 return VERR_EM_INTERPRETER;
9126}
9127
9128
9129/**
9130 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
9131 */
9132HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9133{
9134 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9135
9136 /* The guest should not invalidate the host CPU's TLBs, fallback to recompiler. */
9137 /** @todo implement EMInterpretInvpcid() */
9138 return VERR_EM_INTERPRETER;
9139}
9140
9141
9142/**
9143 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
9144 * Error VM-exit.
9145 */
9146HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9147{
9148 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9149 AssertRCReturn(rc, rc);
9150
9151 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
9152 NOREF(uInvalidReason);
9153
9154#ifdef VBOX_STRICT
9155 uint32_t uIntrState;
9156 HMVMXHCUINTREG uHCReg;
9157 uint64_t u64Val;
9158 uint32_t u32Val;
9159
9160 rc = hmR0VmxReadEntryIntrInfoVmcs(pVmxTransient);
9161 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
9162 rc |= hmR0VmxReadEntryInstrLenVmcs(pVCpu, pVmxTransient);
9163 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
9164 AssertRCReturn(rc, rc);
9165
9166 Log4(("uInvalidReason %u\n", uInvalidReason));
9167 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntrInfo));
9168 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
9169 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
9170 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
9171
9172 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
9173 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
9174 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
9175 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
9176 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
9177 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
9178 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
9179 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
9180 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
9181 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
9182 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
9183 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
9184#endif
9185
9186 PVM pVM = pVCpu->CTX_SUFF(pVM);
9187 HMDumpRegs(pVM, pVCpu, pMixedCtx);
9188
9189 return VERR_VMX_INVALID_GUEST_STATE;
9190}
9191
9192
9193/**
9194 * VM-exit handler for VM-entry failure due to an MSR-load
9195 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
9196 */
9197HMVMX_EXIT_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9198{
9199 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9200 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9201}
9202
9203
9204/**
9205 * VM-exit handler for VM-entry failure due to a machine-check event
9206 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
9207 */
9208HMVMX_EXIT_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9209{
9210 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9211 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9212}
9213
9214
9215/**
9216 * VM-exit handler for all undefined reasons. Should never ever happen.. in
9217 * theory.
9218 */
9219HMVMX_EXIT_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9220{
9221 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
9222 return VERR_VMX_UNDEFINED_EXIT_CODE;
9223}
9224
9225
9226/**
9227 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
9228 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
9229 * Conditional VM-exit.
9230 */
9231HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9232{
9233 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9234
9235 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
9236 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
9237 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
9238 return VERR_EM_INTERPRETER;
9239 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9240 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9241}
9242
9243
9244/**
9245 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
9246 */
9247HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9248{
9249 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9250
9251 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
9252 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
9253 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
9254 return VERR_EM_INTERPRETER;
9255 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9256 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9257}
9258
9259
9260/**
9261 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
9262 */
9263HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9264{
9265 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9266
9267 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
9268 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9269 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9270 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9271 AssertRCReturn(rc, rc);
9272 Log4(("CS:RIP=%04x:%#RX64 ECX=%X\n", pMixedCtx->cs.Sel, pMixedCtx->rip, pMixedCtx->ecx));
9273
9274 PVM pVM = pVCpu->CTX_SUFF(pVM);
9275 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9276 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
9277 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
9278 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
9279
9280 if (RT_LIKELY(rc == VINF_SUCCESS))
9281 {
9282 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9283 Assert(pVmxTransient->cbInstr == 2);
9284 }
9285 return rc;
9286}
9287
9288
9289/**
9290 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
9291 */
9292HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9293{
9294 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9295 PVM pVM = pVCpu->CTX_SUFF(pVM);
9296 int rc = VINF_SUCCESS;
9297
9298 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
9299 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9300 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9301 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9302 AssertRCReturn(rc, rc);
9303 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
9304
9305 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9306 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
9307 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
9308
9309 if (RT_LIKELY(rc == VINF_SUCCESS))
9310 {
9311 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9312
9313 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
9314 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
9315 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
9316 {
9317 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
9318 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
9319 EMInterpretWrmsr() changes it. */
9320 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
9321 }
9322 else if (pMixedCtx->ecx == MSR_K6_EFER) /* EFER is the only MSR we auto-load but don't allow write-passthrough. */
9323 {
9324 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
9325 AssertRCReturn(rc, rc);
9326 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_AUTO_MSRS;
9327 }
9328 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
9329 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9330
9331 /* Update MSRs that are part of the VMCS when MSR-bitmaps are not supported. */
9332 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
9333 {
9334 switch (pMixedCtx->ecx)
9335 {
9336 case MSR_IA32_SYSENTER_CS: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_CS_MSR; break;
9337 case MSR_IA32_SYSENTER_EIP: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_EIP_MSR; break;
9338 case MSR_IA32_SYSENTER_ESP: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_ESP_MSR; break;
9339 case MSR_K8_FS_BASE: /* no break */
9340 case MSR_K8_GS_BASE: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS; break;
9341 case MSR_K8_KERNEL_GS_BASE: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_AUTO_MSRS; break;
9342 }
9343 }
9344#ifdef VBOX_STRICT
9345 else
9346 {
9347 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
9348 switch (pMixedCtx->ecx)
9349 {
9350 case MSR_IA32_SYSENTER_CS:
9351 case MSR_IA32_SYSENTER_EIP:
9352 case MSR_IA32_SYSENTER_ESP:
9353 case MSR_K8_FS_BASE:
9354 case MSR_K8_GS_BASE:
9355 {
9356 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
9357 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9358 }
9359
9360 case MSR_K8_LSTAR:
9361 case MSR_K6_STAR:
9362 case MSR_K8_SF_MASK:
9363 case MSR_K8_TSC_AUX:
9364 case MSR_K8_KERNEL_GS_BASE:
9365 {
9366 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
9367 pMixedCtx->ecx));
9368 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9369 }
9370 }
9371 }
9372#endif /* VBOX_STRICT */
9373 }
9374 return rc;
9375}
9376
9377
9378/**
9379 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
9380 */
9381HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9382{
9383 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9384
9385 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT. */
9386 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
9387 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT)
9388 return VERR_EM_INTERPRETER;
9389 AssertMsgFailed(("Unexpected PAUSE exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9390 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9391}
9392
9393
9394/**
9395 * VM-exit handler for when the TPR value is lowered below the specified
9396 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
9397 */
9398HMVMX_EXIT_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9399{
9400 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9401 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
9402
9403 /*
9404 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
9405 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and
9406 * resume guest execution.
9407 */
9408 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
9409 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
9410 return VINF_SUCCESS;
9411}
9412
9413
9414/**
9415 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
9416 * VM-exit.
9417 *
9418 * @retval VINF_SUCCESS when guest execution can continue.
9419 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
9420 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
9421 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
9422 * recompiler.
9423 */
9424HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9425{
9426 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9427 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
9428 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9429 AssertRCReturn(rc, rc);
9430
9431 const RTGCUINTPTR uExitQualification = pVmxTransient->uExitQualification;
9432 const uint32_t uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
9433 PVM pVM = pVCpu->CTX_SUFF(pVM);
9434 switch (uAccessType)
9435 {
9436 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
9437 {
9438#if 0
9439 /* EMInterpretCRxWrite() references a lot of guest state (EFER, RFLAGS, Segment Registers, etc.) Sync entire state */
9440 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9441#else
9442 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
9443 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
9444 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9445#endif
9446 AssertRCReturn(rc, rc);
9447
9448 rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
9449 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
9450 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
9451 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
9452
9453 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
9454 {
9455 case 0: /* CR0 */
9456 Log4(("CRX CR0 write rc=%d CR0=%#RX64\n", rc, pMixedCtx->cr0));
9457 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
9458 break;
9459 case 2: /* C2 **/
9460 /* Nothing to do here, CR2 it's not part of the VMCS. */
9461 break;
9462 case 3: /* CR3 */
9463 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx));
9464 Log4(("CRX CR3 write rc=%d CR3=%#RX64\n", rc, pMixedCtx->cr3));
9465 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
9466 break;
9467 case 4: /* CR4 */
9468 Log4(("CRX CR4 write rc=%d CR4=%#RX64\n", rc, pMixedCtx->cr4));
9469 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
9470 break;
9471 case 8: /* CR8 */
9472 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
9473 /* CR8 contains the APIC TPR. Was updated by EMInterpretCRxWrite(). */
9474 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
9475 break;
9476 default:
9477 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
9478 break;
9479 }
9480
9481 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
9482 break;
9483 }
9484
9485 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
9486 {
9487 /* EMInterpretCRxRead() requires EFER MSR, CS. */
9488 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9489 AssertRCReturn(rc, rc);
9490 Assert( !pVM->hm.s.fNestedPaging
9491 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
9492 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
9493
9494 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
9495 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
9496 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
9497
9498 rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
9499 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
9500 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
9501 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
9502 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
9503 Log4(("CRX CR%d Read access rc=%d\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification), rc));
9504 break;
9505 }
9506
9507 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
9508 {
9509 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9510 AssertRCReturn(rc, rc);
9511 rc = EMInterpretCLTS(pVM, pVCpu);
9512 AssertRCReturn(rc, rc);
9513 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
9514 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
9515 Log4(("CRX CLTS write rc=%d\n", rc));
9516 break;
9517 }
9518
9519 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
9520 {
9521 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9522 AssertRCReturn(rc, rc);
9523 rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
9524 if (RT_LIKELY(rc == VINF_SUCCESS))
9525 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
9526 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
9527 Log4(("CRX LMSW write rc=%d\n", rc));
9528 break;
9529 }
9530
9531 default:
9532 {
9533 AssertMsgFailed(("Invalid access-type in Mov CRx exit qualification %#x\n", uAccessType));
9534 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
9535 }
9536 }
9537
9538 /* Validate possible error codes. */
9539 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_CHANGE_MODE || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_SYNC_CR3
9540 || rc == VERR_VMX_UNEXPECTED_EXCEPTION);
9541 if (RT_SUCCESS(rc))
9542 {
9543 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9544 AssertRCReturn(rc2, rc2);
9545 }
9546
9547 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
9548 return rc;
9549}
9550
9551
9552/**
9553 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
9554 * VM-exit.
9555 */
9556HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9557{
9558 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9559 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
9560
9561 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9562 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
9563 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9564 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
9565 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
9566 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
9567 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
9568 AssertRCReturn(rc2, rc2);
9569
9570 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
9571 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
9572 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
9573 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
9574 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
9575 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
9576 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_HMVMX_IPE_1);
9577
9578 /* I/O operation lookup arrays. */
9579 static const uint32_t s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
9580 static const uint32_t s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
9581
9582 VBOXSTRICTRC rcStrict;
9583 const uint32_t cbValue = s_aIOSizes[uIOWidth];
9584 const uint32_t cbInstr = pVmxTransient->cbInstr;
9585 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
9586 PVM pVM = pVCpu->CTX_SUFF(pVM);
9587 if (fIOString)
9588 {
9589 /*
9590 * INS/OUTS - I/O String instruction.
9591 *
9592 * Use instruction-information if available, otherwise fall back on
9593 * interpreting the instruction.
9594 */
9595 Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
9596#if 0 /* Not quite ready, seem iSegReg assertion trigger once... Do we perhaps need to always read that in longjmp / preempt scenario? */
9597 AssertReturn(pMixedCtx->dx == uIOPort, VERR_HMVMX_IPE_2);
9598 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
9599 {
9600 rc2 = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
9601 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
9602 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9603 AssertRCReturn(rc2, rc2);
9604 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_HMVMX_IPE_3);
9605 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
9606 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
9607 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
9608 if (fIOWrite)
9609 {
9610 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
9611 pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
9612 //if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
9613 // hmR0SavePendingIOPortWriteStr(pVCpu, pMixedCtx->rip, cbValue, enmAddrMode, fRep, cbInstr,
9614 // pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
9615 }
9616 else
9617 {
9618 AssertMsgReturn(pVmxTransient->ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES,
9619 ("%#x (%#llx)\n", pVmxTransient->ExitInstrInfo.StrIo.iSegReg, pVmxTransient->ExitInstrInfo.u),
9620 VERR_HMVMX_IPE_4);
9621 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr);
9622 //if (rcStrict == VINF_IOM_R3_IOPORT_READ)
9623 // hmR0SavePendingIOPortReadStr(pVCpu, pMixedCtx->rip, cbValue, enmAddrMode, fRep, cbInstr);
9624 }
9625 }
9626 else
9627 {
9628 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
9629 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9630 AssertRCReturn(rc2, rc2);
9631 rcStrict = IEMExecOne(pVCpu);
9632 }
9633 /** @todo IEM needs to be setting these flags somehow. */
9634 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
9635 fUpdateRipAlready = true;
9636#else
9637 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
9638 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
9639 if (RT_SUCCESS(rcStrict))
9640 {
9641 if (fIOWrite)
9642 {
9643 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
9644 (DISCPUMODE)pDis->uAddrMode, cbValue);
9645 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
9646 }
9647 else
9648 {
9649 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
9650 (DISCPUMODE)pDis->uAddrMode, cbValue);
9651 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
9652 }
9653 }
9654 else
9655 {
9656 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP %#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->rip));
9657 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
9658 }
9659#endif
9660 }
9661 else
9662 {
9663 /*
9664 * IN/OUT - I/O instruction.
9665 */
9666 Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
9667 const uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
9668 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
9669 if (fIOWrite)
9670 {
9671 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
9672 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
9673 HMR0SavePendingIOPortWrite(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
9674 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
9675 }
9676 else
9677 {
9678 uint32_t u32Result = 0;
9679 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
9680 if (IOM_SUCCESS(rcStrict))
9681 {
9682 /* Save result of I/O IN instr. in AL/AX/EAX. */
9683 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
9684 }
9685 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
9686 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
9687 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
9688 }
9689 }
9690
9691 if (IOM_SUCCESS(rcStrict))
9692 {
9693 if (!fUpdateRipAlready)
9694 {
9695 pMixedCtx->rip += cbInstr;
9696 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
9697 }
9698
9699 /*
9700 * If any I/O breakpoints are armed, we need to check if one triggered
9701 * and take appropriate action.
9702 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
9703 */
9704 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
9705 AssertRCReturn(rc2, rc2);
9706
9707 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
9708 * execution engines about whether hyper BPs and such are pending. */
9709 uint32_t const uDr7 = pMixedCtx->dr[7];
9710 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
9711 && X86_DR7_ANY_RW_IO(uDr7)
9712 && (pMixedCtx->cr4 & X86_CR4_DE))
9713 || DBGFBpIsHwIoArmed(pVM)))
9714 {
9715 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
9716
9717 /* We're playing with the host CPU state here, make sure we don't preempt. */
9718 HM_DISABLE_PREEMPT_IF_NEEDED();
9719 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /*fDr6*/);
9720
9721 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
9722 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
9723 {
9724 /* Raise #DB. */
9725 if (fIsGuestDbgActive)
9726 ASMSetDR6(pMixedCtx->dr[6]);
9727 if (pMixedCtx->dr[7] != uDr7)
9728 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
9729
9730 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
9731 }
9732 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
9733 else if ( rcStrict2 != VINF_SUCCESS
9734 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
9735 rcStrict = rcStrict2;
9736
9737 HM_RESTORE_PREEMPT_IF_NEEDED();
9738 }
9739 }
9740
9741#ifdef DEBUG
9742 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
9743 Assert(!fIOWrite);
9744 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
9745 Assert(fIOWrite);
9746 else
9747 {
9748 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
9749 * statuses, that the VMM device and some others may return. See
9750 * IOM_SUCCESS() for guidance. */
9751 AssertMsg( RT_FAILURE(rcStrict)
9752 || rcStrict == VINF_SUCCESS
9753 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
9754 || rcStrict == VINF_EM_DBG_BREAKPOINT
9755 || rcStrict == VINF_EM_RAW_GUEST_TRAP
9756 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
9757 }
9758#endif
9759
9760 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
9761 return VBOXSTRICTRC_TODO(rcStrict);
9762}
9763
9764
9765/**
9766 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
9767 * VM-exit.
9768 */
9769HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9770{
9771 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9772
9773 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
9774 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9775 AssertRCReturn(rc, rc);
9776 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
9777 {
9778 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
9779 AssertRCReturn(rc, rc);
9780 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
9781 {
9782 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
9783
9784 /* Software interrupts and exceptions will be regenerated when the recompiler restarts the instruction. */
9785 if ( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
9786 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
9787 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
9788 {
9789 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
9790 bool fErrorCodeValid = !!VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
9791
9792 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
9793 Assert(!pVCpu->hm.s.Event.fPending);
9794 pVCpu->hm.s.Event.fPending = true;
9795 pVCpu->hm.s.Event.u64IntrInfo = pVmxTransient->uIdtVectoringInfo;
9796 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
9797 AssertRCReturn(rc, rc);
9798 if (fErrorCodeValid)
9799 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
9800 else
9801 pVCpu->hm.s.Event.u32ErrCode = 0;
9802 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
9803 && uVector == X86_XCPT_PF)
9804 {
9805 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
9806 }
9807
9808 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
9809 }
9810 }
9811 }
9812
9813 /** @todo Emulate task switch someday, currently just going back to ring-3 for
9814 * emulation. */
9815 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
9816 return VERR_EM_INTERPRETER;
9817}
9818
9819
9820/**
9821 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
9822 */
9823HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9824{
9825 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9826 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
9827 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
9828 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9829 AssertRCReturn(rc, rc);
9830 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
9831 return VINF_EM_DBG_STEPPED;
9832}
9833
9834
9835/**
9836 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
9837 */
9838HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9839{
9840 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9841
9842 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
9843 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
9844 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
9845 return VINF_SUCCESS;
9846 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
9847 return rc;
9848
9849#if 0
9850 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
9851 * just sync the whole thing. */
9852 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9853#else
9854 /* Aggressive state sync. for now. */
9855 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
9856 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
9857 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9858#endif
9859 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9860 AssertRCReturn(rc, rc);
9861
9862 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
9863 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
9864 switch (uAccessType)
9865 {
9866 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
9867 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
9868 {
9869 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9870 && VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) == 0x80)
9871 {
9872 AssertMsgFailed(("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
9873 }
9874
9875 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
9876 GCPhys &= PAGE_BASE_GC_MASK;
9877 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
9878 PVM pVM = pVCpu->CTX_SUFF(pVM);
9879 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGv Off=%#x\n", uAccessType, GCPhys,
9880 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
9881
9882 VBOXSTRICTRC rc2 = IOMMMIOPhysHandler(pVM, pVCpu,
9883 (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW,
9884 CPUMCTX2CORE(pMixedCtx), GCPhys);
9885 rc = VBOXSTRICTRC_VAL(rc2);
9886 Log4(("ApicAccess rc=%d\n", rc));
9887 if ( rc == VINF_SUCCESS
9888 || rc == VERR_PAGE_TABLE_NOT_PRESENT
9889 || rc == VERR_PAGE_NOT_PRESENT)
9890 {
9891 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
9892 | HM_CHANGED_VMX_GUEST_APIC_STATE;
9893 rc = VINF_SUCCESS;
9894 }
9895 break;
9896 }
9897
9898 default:
9899 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
9900 rc = VINF_EM_RAW_EMULATE_INSTR;
9901 break;
9902 }
9903
9904 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
9905 return rc;
9906}
9907
9908
9909/**
9910 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
9911 * VM-exit.
9912 */
9913HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9914{
9915 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9916
9917 /* We should -not- get this VM-exit if the guest is debugging. */
9918 if (CPUMIsGuestDebugStateActive(pVCpu))
9919 {
9920 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9921 return VERR_VMX_UNEXPECTED_EXIT_CODE;
9922 }
9923
9924 int rc = VERR_INTERNAL_ERROR_5;
9925 if ( !DBGFIsStepping(pVCpu)
9926 && !pVCpu->hm.s.fSingleInstruction
9927 && !CPUMIsHyperDebugStateActive(pVCpu))
9928 {
9929 /* Don't intercept MOV DRx and #DB any more. */
9930 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
9931 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9932 AssertRCReturn(rc, rc);
9933
9934 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
9935 {
9936#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
9937 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
9938 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9939 AssertRCReturn(rc, rc);
9940#endif
9941 }
9942
9943 /* We're playing with the host CPU state here, make sure we can't preempt. */
9944 HM_DISABLE_PREEMPT_IF_NEEDED();
9945
9946 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
9947 PVM pVM = pVCpu->CTX_SUFF(pVM);
9948 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
9949 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
9950
9951 HM_RESTORE_PREEMPT_IF_NEEDED();
9952
9953#ifdef VBOX_WITH_STATISTICS
9954 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9955 AssertRCReturn(rc, rc);
9956 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
9957 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
9958 else
9959 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
9960#endif
9961 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
9962 return VINF_SUCCESS;
9963 }
9964
9965 /*
9966 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date, see
9967 * hmR0VmxSaveGuestAutoLoadStoreMsrs(). Update only the segment registers from the CPU.
9968 */
9969 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9970 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9971 AssertRCReturn(rc, rc);
9972 Log4(("CS:RIP=%04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
9973
9974 PVM pVM = pVCpu->CTX_SUFF(pVM);
9975 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
9976 {
9977 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
9978 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
9979 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
9980 if (RT_SUCCESS(rc))
9981 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
9982 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
9983 }
9984 else
9985 {
9986 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
9987 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
9988 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
9989 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
9990 }
9991
9992 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
9993 if (RT_SUCCESS(rc))
9994 {
9995 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9996 AssertRCReturn(rc2, rc2);
9997 }
9998 return rc;
9999}
10000
10001
10002/**
10003 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
10004 * Conditional VM-exit.
10005 */
10006HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10007{
10008 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10009 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
10010
10011 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10012 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10013 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10014 return VINF_SUCCESS;
10015 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10016 return rc;
10017
10018 RTGCPHYS GCPhys = 0;
10019 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
10020
10021#if 0
10022 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
10023#else
10024 /* Aggressive state sync. for now. */
10025 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10026 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10027 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10028#endif
10029 AssertRCReturn(rc, rc);
10030
10031 /*
10032 * If we succeed, resume guest execution.
10033 * If we fail in interpreting the instruction because we couldn't get the guest physical address
10034 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
10035 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
10036 * weird case. See @bugref{6043}.
10037 */
10038 PVM pVM = pVCpu->CTX_SUFF(pVM);
10039 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
10040 rc = VBOXSTRICTRC_VAL(rc2);
10041 Log4(("EPT misconfig at %#RGv RIP=%#RX64 rc=%d\n", GCPhys, pMixedCtx->rip, rc));
10042 if ( rc == VINF_SUCCESS
10043 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10044 || rc == VERR_PAGE_NOT_PRESENT)
10045 {
10046 /* Successfully handled MMIO operation. */
10047 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
10048 | HM_CHANGED_VMX_GUEST_APIC_STATE;
10049 rc = VINF_SUCCESS;
10050 }
10051 return rc;
10052}
10053
10054
10055/**
10056 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
10057 * VM-exit.
10058 */
10059HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10060{
10061 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10062 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
10063
10064 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10065 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10066 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10067 return VINF_SUCCESS;
10068 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10069 return rc;
10070
10071 RTGCPHYS GCPhys = 0;
10072 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
10073 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10074#if 0
10075 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
10076#else
10077 /* Aggressive state sync. for now. */
10078 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10079 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10080 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10081#endif
10082 AssertRCReturn(rc, rc);
10083
10084 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
10085 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
10086
10087 RTGCUINT uErrorCode = 0;
10088 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
10089 uErrorCode |= X86_TRAP_PF_ID;
10090 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
10091 uErrorCode |= X86_TRAP_PF_RW;
10092 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
10093 uErrorCode |= X86_TRAP_PF_P;
10094
10095 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
10096
10097 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:EIP=%04x:%#RX64\n", pVmxTransient->uExitQualification, GCPhys,
10098 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
10099
10100 /* Handle the pagefault trap for the nested shadow table. */
10101 PVM pVM = pVCpu->CTX_SUFF(pVM);
10102 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
10103 TRPMResetTrap(pVCpu);
10104
10105 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
10106 if ( rc == VINF_SUCCESS
10107 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10108 || rc == VERR_PAGE_NOT_PRESENT)
10109 {
10110 /* Successfully synced our nested page tables. */
10111 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
10112 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS;
10113 return VINF_SUCCESS;
10114 }
10115
10116 Log4(("EPT return to ring-3 rc=%d\n"));
10117 return rc;
10118}
10119
10120/** @} */
10121
10122/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10123/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
10124/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10125
10126/** @name VM-exit exception handlers.
10127 * @{
10128 */
10129
10130/**
10131 * VM-exit exception handler for #MF (Math Fault: floating point exception).
10132 */
10133static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10134{
10135 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10136 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
10137
10138 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10139 AssertRCReturn(rc, rc);
10140
10141 if (!(pMixedCtx->cr0 & X86_CR0_NE))
10142 {
10143 /* Old-style FPU error reporting needs some extra work. */
10144 /** @todo don't fall back to the recompiler, but do it manually. */
10145 return VERR_EM_INTERPRETER;
10146 }
10147
10148 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10149 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
10150 return rc;
10151}
10152
10153
10154/**
10155 * VM-exit exception handler for #BP (Breakpoint exception).
10156 */
10157static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10158{
10159 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10160 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
10161
10162 /** @todo Try optimize this by not saving the entire guest state unless
10163 * really needed. */
10164 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10165 AssertRCReturn(rc, rc);
10166
10167 PVM pVM = pVCpu->CTX_SUFF(pVM);
10168 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10169 if (rc == VINF_EM_RAW_GUEST_TRAP)
10170 {
10171 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
10172 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
10173 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
10174 AssertRCReturn(rc, rc);
10175
10176 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10177 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
10178 }
10179
10180 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
10181 return rc;
10182}
10183
10184
10185/**
10186 * VM-exit exception handler for #DB (Debug exception).
10187 */
10188static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10189{
10190 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10191 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
10192 Log6(("XcptDB\n"));
10193
10194 /*
10195 * Get the DR6-like values from the exit qualification and pass it to DBGF
10196 * for processing.
10197 */
10198 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10199 AssertRCReturn(rc, rc);
10200
10201 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
10202 uint64_t uDR6 = X86_DR6_INIT_VAL;
10203 uDR6 |= ( pVmxTransient->uExitQualification
10204 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
10205
10206 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
10207 if (rc == VINF_EM_RAW_GUEST_TRAP)
10208 {
10209 /*
10210 * The exception was for the guest. Update DR6, DR7.GD and
10211 * IA32_DEBUGCTL.LBR before forwarding it.
10212 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
10213 */
10214 HM_DISABLE_PREEMPT_IF_NEEDED();
10215
10216 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
10217 pMixedCtx->dr[6] |= uDR6;
10218 if (CPUMIsGuestDebugStateActive(pVCpu))
10219 ASMSetDR6(pMixedCtx->dr[6]);
10220
10221 HM_RESTORE_PREEMPT_IF_NEEDED();
10222
10223 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
10224 AssertRCReturn(rc, rc);
10225
10226 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
10227 pMixedCtx->dr[7] &= ~X86_DR7_GD;
10228
10229 /* Paranoia. */
10230 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
10231 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
10232
10233 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
10234 AssertRCReturn(rc, rc);
10235
10236 /*
10237 * Raise #DB in the guest.
10238 */
10239 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
10240 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
10241 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
10242 AssertRCReturn(rc, rc);
10243 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10244 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
10245 return VINF_SUCCESS;
10246 }
10247
10248 /*
10249 * Not a guest trap, must be a hypervisor related debug event then.
10250 * Update DR6 in case someone is interested in it.
10251 */
10252 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
10253 AssertReturn(CPUMIsHyperDebugStateActive(pVCpu), VERR_HM_IPE_5);
10254 CPUMSetHyperDR6(pVCpu, uDR6);
10255
10256 return rc;
10257}
10258
10259
10260/**
10261 * VM-exit exception handler for #NM (Device-not-available exception: floating
10262 * point exception).
10263 */
10264static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10265{
10266 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10267
10268#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
10269 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
10270#endif
10271
10272 /* We require CR0 and EFER. EFER is always up-to-date. */
10273 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10274 AssertRCReturn(rc, rc);
10275
10276 /* We're playing with the host CPU state here, have to disable preemption. */
10277 HM_DISABLE_PREEMPT_IF_NEEDED();
10278
10279 /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
10280 PVM pVM = pVCpu->CTX_SUFF(pVM);
10281 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
10282 if (rc == VINF_SUCCESS)
10283 {
10284 Assert(CPUMIsGuestFPUStateActive(pVCpu));
10285 HM_RESTORE_PREEMPT_IF_NEEDED();
10286
10287 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
10288 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
10289 return VINF_SUCCESS;
10290 }
10291
10292 HM_RESTORE_PREEMPT_IF_NEEDED();
10293
10294 /* Forward #NM to the guest. */
10295 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
10296 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
10297 AssertRCReturn(rc, rc);
10298 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10299 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
10300 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
10301 return rc;
10302}
10303
10304
10305/**
10306 * VM-exit exception handler for #GP (General-protection exception).
10307 *
10308 * @remarks Requires pVmxTransient->uExitIntrInfo to be up-to-date.
10309 */
10310static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10311{
10312 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10313 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
10314
10315 int rc = VERR_INTERNAL_ERROR_5;
10316 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10317 {
10318#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
10319 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
10320 rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
10321 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
10322 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
10323 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10324 AssertRCReturn(rc, rc);
10325 Log4(("#GP Gst: RIP %#RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u\n", pMixedCtx->rip, pVmxTransient->uExitIntrErrorCode,
10326 pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu)));
10327 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10328 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
10329 return rc;
10330#else
10331 /* We don't intercept #GP. */
10332 AssertMsgFailed(("Unexpected VM-exit caused by #GP exception\n"));
10333 return VERR_VMX_UNEXPECTED_EXCEPTION;
10334#endif
10335 }
10336
10337 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
10338 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
10339
10340 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
10341 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10342 AssertRCReturn(rc, rc);
10343
10344 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
10345 uint32_t cbOp = 0;
10346 PVM pVM = pVCpu->CTX_SUFF(pVM);
10347 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
10348 if (RT_SUCCESS(rc))
10349 {
10350 rc = VINF_SUCCESS;
10351 Assert(cbOp == pDis->cbInstr);
10352 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%#RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
10353 switch (pDis->pCurInstr->uOpcode)
10354 {
10355 case OP_CLI:
10356 {
10357 pMixedCtx->eflags.Bits.u1IF = 0;
10358 pMixedCtx->rip += pDis->cbInstr;
10359 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS;
10360 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
10361 break;
10362 }
10363
10364 case OP_STI:
10365 {
10366 pMixedCtx->eflags.Bits.u1IF = 1;
10367 pMixedCtx->rip += pDis->cbInstr;
10368 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
10369 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
10370 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS;
10371 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
10372 break;
10373 }
10374
10375 case OP_HLT:
10376 {
10377 rc = VINF_EM_HALT;
10378 pMixedCtx->rip += pDis->cbInstr;
10379 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
10380 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
10381 break;
10382 }
10383
10384 case OP_POPF:
10385 {
10386 Log4(("POPF CS:RIP %04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
10387 uint32_t cbParm = 0;
10388 uint32_t uMask = 0;
10389 if (pDis->fPrefix & DISPREFIX_OPSIZE)
10390 {
10391 cbParm = 4;
10392 uMask = 0xffffffff;
10393 }
10394 else
10395 {
10396 cbParm = 2;
10397 uMask = 0xffff;
10398 }
10399
10400 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
10401 RTGCPTR GCPtrStack = 0;
10402 X86EFLAGS Eflags;
10403 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
10404 &GCPtrStack);
10405 if (RT_SUCCESS(rc))
10406 {
10407 Assert(sizeof(Eflags.u32) >= cbParm);
10408 Eflags.u32 = 0;
10409 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm);
10410 }
10411 if (RT_FAILURE(rc))
10412 {
10413 rc = VERR_EM_INTERPRETER;
10414 break;
10415 }
10416 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
10417 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
10418 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
10419 /* The RF bit is always cleared by POPF; see Intel Instruction reference for POPF. */
10420 pMixedCtx->eflags.Bits.u1RF = 0;
10421 pMixedCtx->esp += cbParm;
10422 pMixedCtx->esp &= uMask;
10423 pMixedCtx->rip += pDis->cbInstr;
10424 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS;
10425 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
10426 break;
10427 }
10428
10429 case OP_PUSHF:
10430 {
10431 uint32_t cbParm = 0;
10432 uint32_t uMask = 0;
10433 if (pDis->fPrefix & DISPREFIX_OPSIZE)
10434 {
10435 cbParm = 4;
10436 uMask = 0xffffffff;
10437 }
10438 else
10439 {
10440 cbParm = 2;
10441 uMask = 0xffff;
10442 }
10443
10444 /* Get the stack pointer & push the contents of eflags onto the stack. */
10445 RTGCPTR GCPtrStack = 0;
10446 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
10447 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
10448 if (RT_FAILURE(rc))
10449 {
10450 rc = VERR_EM_INTERPRETER;
10451 break;
10452 }
10453 X86EFLAGS Eflags = pMixedCtx->eflags;
10454 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
10455 Eflags.Bits.u1RF = 0;
10456 Eflags.Bits.u1VM = 0;
10457
10458 rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm);
10459 if (RT_FAILURE(rc))
10460 {
10461 rc = VERR_EM_INTERPRETER;
10462 break;
10463 }
10464 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
10465 pMixedCtx->esp -= cbParm;
10466 pMixedCtx->esp &= uMask;
10467 pMixedCtx->rip += pDis->cbInstr;
10468 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP;
10469 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
10470 break;
10471 }
10472
10473 case OP_IRET:
10474 {
10475 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
10476 * instruction reference. */
10477 RTGCPTR GCPtrStack = 0;
10478 uint32_t uMask = 0xffff;
10479 uint16_t aIretFrame[3];
10480 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
10481 {
10482 rc = VERR_EM_INTERPRETER;
10483 break;
10484 }
10485 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
10486 &GCPtrStack);
10487 if (RT_SUCCESS(rc))
10488 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
10489 if (RT_FAILURE(rc))
10490 {
10491 rc = VERR_EM_INTERPRETER;
10492 break;
10493 }
10494 pMixedCtx->eip = 0;
10495 pMixedCtx->ip = aIretFrame[0];
10496 pMixedCtx->cs.Sel = aIretFrame[1];
10497 pMixedCtx->cs.ValidSel = aIretFrame[1];
10498 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
10499 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
10500 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
10501 pMixedCtx->sp += sizeof(aIretFrame);
10502 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_SEGMENT_REGS | HM_CHANGED_GUEST_RSP
10503 | HM_CHANGED_GUEST_RFLAGS;
10504 Log4(("IRET %#RX32 to %04x:%x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
10505 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
10506 break;
10507 }
10508
10509 case OP_INT:
10510 {
10511 uint16_t uVector = pDis->Param1.uValue & 0xff;
10512 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
10513 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
10514 break;
10515 }
10516
10517 case OP_INTO:
10518 {
10519 if (pMixedCtx->eflags.Bits.u1OF)
10520 {
10521 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
10522 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
10523 }
10524 break;
10525 }
10526
10527 default:
10528 {
10529 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
10530 EMCODETYPE_SUPERVISOR);
10531 rc = VBOXSTRICTRC_VAL(rc2);
10532 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
10533 Log4(("#GP rc=%Rrc\n", rc));
10534 break;
10535 }
10536 }
10537 }
10538 else
10539 rc = VERR_EM_INTERPRETER;
10540
10541 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
10542 ("#GP Unexpected rc=%Rrc\n", rc));
10543 return rc;
10544}
10545
10546
10547/**
10548 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
10549 * the exception reported in the VMX transient structure back into the VM.
10550 *
10551 * @remarks Requires uExitIntrInfo in the VMX transient structure to be
10552 * up-to-date.
10553 */
10554static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10555{
10556 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10557
10558 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
10559 hmR0VmxCheckExitDueToEventDelivery(). */
10560 int rc = hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
10561 rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
10562 AssertRCReturn(rc, rc);
10563 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
10564
10565 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10566 pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
10567 return VINF_SUCCESS;
10568}
10569
10570
10571/**
10572 * VM-exit exception handler for #PF (Page-fault exception).
10573 */
10574static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10575{
10576 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10577 PVM pVM = pVCpu->CTX_SUFF(pVM);
10578 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10579 rc |= hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
10580 rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
10581 AssertRCReturn(rc, rc);
10582
10583#if defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) || defined(HMVMX_ALWAYS_TRAP_PF)
10584 if (pVM->hm.s.fNestedPaging)
10585 {
10586 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
10587 if (RT_LIKELY(!pVmxTransient->fVectoringPF))
10588 {
10589 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
10590 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10591 0 /* cbInstr */, pVmxTransient->uExitIntrErrorCode, pVmxTransient->uExitQualification);
10592 }
10593 else
10594 {
10595 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
10596 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
10597 Log4(("Pending #DF due to vectoring #PF. NP\n"));
10598 }
10599 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
10600 return rc;
10601 }
10602#else
10603 Assert(!pVM->hm.s.fNestedPaging);
10604#endif
10605
10606 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10607 AssertRCReturn(rc, rc);
10608
10609 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
10610 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntrErrorCode, pMixedCtx->cr3));
10611
10612 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntrErrorCode);
10613 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntrErrorCode, CPUMCTX2CORE(pMixedCtx),
10614 (RTGCPTR)pVmxTransient->uExitQualification);
10615
10616 Log4(("#PF: rc=%Rrc\n", rc));
10617 if (rc == VINF_SUCCESS)
10618 {
10619 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
10620 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
10621 * memory? We don't update the whole state here... */
10622 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
10623 | HM_CHANGED_VMX_GUEST_APIC_STATE;
10624 TRPMResetTrap(pVCpu);
10625 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
10626 return rc;
10627 }
10628 else if (rc == VINF_EM_RAW_GUEST_TRAP)
10629 {
10630 if (!pVmxTransient->fVectoringPF)
10631 {
10632 /* It's a guest page fault and needs to be reflected to the guest. */
10633 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
10634 TRPMResetTrap(pVCpu);
10635 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
10636 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
10637 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
10638 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
10639 }
10640 else
10641 {
10642 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
10643 TRPMResetTrap(pVCpu);
10644 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
10645 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
10646 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
10647 }
10648
10649 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
10650 return VINF_SUCCESS;
10651 }
10652
10653 TRPMResetTrap(pVCpu);
10654 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
10655 return rc;
10656}
10657
10658/** @} */
10659
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette