VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 49889

Last change on this file since 49889 was 49889, checked in by vboxsync, 11 years ago

VMM/HMVMXR0: Comments.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 471.2 KB
Line 
1/* $Id: HMVMXR0.cpp 49889 2013-12-12 17:12:08Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/x86.h>
23#include <iprt/asm-amd64-x86.h>
24#include <iprt/thread.h>
25#include <iprt/string.h>
26
27#include "HMInternal.h"
28#include <VBox/vmm/vm.h>
29#include "HMVMXR0.h"
30#include <VBox/vmm/pdmapi.h>
31#include <VBox/vmm/dbgf.h>
32#include <VBox/vmm/iem.h>
33#include <VBox/vmm/iom.h>
34#include <VBox/vmm/selm.h>
35#include <VBox/vmm/tm.h>
36#ifdef VBOX_WITH_REM
37# include <VBox/vmm/rem.h>
38#endif
39#ifdef DEBUG_ramshankar
40# define HMVMX_SAVE_FULL_GUEST_STATE
41# define HMVMX_SYNC_FULL_GUEST_STATE
42# define HMVMX_ALWAYS_CHECK_GUEST_STATE
43# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
44# define HMVMX_ALWAYS_TRAP_PF
45# define HMVMX_ALWAYS_SWAP_FPU_STATE
46# define HMVMX_ALWAYS_FLUSH_TLB
47#endif
48
49
50/*******************************************************************************
51* Defined Constants And Macros *
52*******************************************************************************/
53#if defined(RT_ARCH_AMD64)
54# define HMVMX_IS_64BIT_HOST_MODE() (true)
55typedef RTHCUINTREG HMVMXHCUINTREG;
56#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
57extern "C" uint32_t g_fVMXIs64bitHost;
58# define HMVMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
59typedef uint64_t HMVMXHCUINTREG;
60#else
61# define HMVMX_IS_64BIT_HOST_MODE() (false)
62typedef RTHCUINTREG HMVMXHCUINTREG;
63#endif
64
65/** Use the function table. */
66#define HMVMX_USE_FUNCTION_TABLE
67
68/** Determine which tagged-TLB flush handler to use. */
69#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
70#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
71#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
72#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
73
74/** @name Updated-guest-state flags.
75 * @{ */
76#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
77#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
78#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
79#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
80#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
81#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
82#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
83#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
84#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
85#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
86#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
87#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
88#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
89#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
90#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
91#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
92#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
93#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
94#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(18)
95#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
96 | HMVMX_UPDATED_GUEST_RSP \
97 | HMVMX_UPDATED_GUEST_RFLAGS \
98 | HMVMX_UPDATED_GUEST_CR0 \
99 | HMVMX_UPDATED_GUEST_CR3 \
100 | HMVMX_UPDATED_GUEST_CR4 \
101 | HMVMX_UPDATED_GUEST_GDTR \
102 | HMVMX_UPDATED_GUEST_IDTR \
103 | HMVMX_UPDATED_GUEST_LDTR \
104 | HMVMX_UPDATED_GUEST_TR \
105 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
106 | HMVMX_UPDATED_GUEST_DEBUG \
107 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
108 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
109 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
110 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
111 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
112 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
113 | HMVMX_UPDATED_GUEST_APIC_STATE)
114/** @} */
115
116/** @name
117 * Flags to skip redundant reads of some common VMCS fields that are not part of
118 * the guest-CPU state but are in the transient structure.
119 */
120#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
121#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
124#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
125#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
126#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
127/** @} */
128
129/** @name
130 * States of the VMCS.
131 *
132 * This does not reflect all possible VMCS states but currently only those
133 * needed for maintaining the VMCS consistently even when thread-context hooks
134 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
135 */
136#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
137#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
138#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
139/** @} */
140
141/**
142 * Exception bitmap mask for real-mode guests (real-on-v86).
143 *
144 * We need to intercept all exceptions manually (except #PF). #NM is also
145 * handled separately, see hmR0VmxLoadSharedCR0(). #PF need not be intercepted
146 * even in real-mode if we have Nested Paging support.
147 */
148#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_NMI) \
149 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
150 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
151 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
152 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
153 | RT_BIT(X86_XCPT_MF) | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) \
154 | RT_BIT(X86_XCPT_XF))
155
156/**
157 * Exception bitmap mask for all contributory exceptions.
158 *
159 * Page fault is deliberately excluded here as it's conditional as to whether
160 * it's contributory or benign. Page faults are handled separately.
161 */
162#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
163 | RT_BIT(X86_XCPT_DE))
164
165/** Maximum VM-instruction error number. */
166#define HMVMX_INSTR_ERROR_MAX 28
167
168/** Profiling macro. */
169#ifdef HM_PROFILE_EXIT_DISPATCH
170# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
171# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
172#else
173# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
174# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
175#endif
176
177/** Assert that preemption is disabled or covered by thread-context hooks. */
178#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
179 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
180
181/** Assert that we haven't migrated CPUs when thread-context hooks are not
182 * used. */
183#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
184 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
185 ("Illegal migration! Entered on CPU %u Current %u\n", \
186 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
187
188/** Helper macro for VM-exit handlers called unexpectedly. */
189#define HMVMX_RETURN_UNEXPECTED_EXIT() \
190 do { \
191 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
192 return VERR_VMX_UNEXPECTED_EXIT; \
193 } while (0)
194
195
196/*******************************************************************************
197* Structures and Typedefs *
198*******************************************************************************/
199/**
200 * VMX transient state.
201 *
202 * A state structure for holding miscellaneous information across
203 * VMX non-root operation and restored after the transition.
204 */
205typedef struct VMXTRANSIENT
206{
207 /** The host's rflags/eflags. */
208 RTCCUINTREG uEflags;
209#if HC_ARCH_BITS == 32
210 uint32_t u32Alignment0;
211#endif
212 /** The guest's TPR value used for TPR shadowing. */
213 uint8_t u8GuestTpr;
214 /** Alignment. */
215 uint8_t abAlignment0[7];
216
217 /** The basic VM-exit reason. */
218 uint16_t uExitReason;
219 /** Alignment. */
220 uint16_t u16Alignment0;
221 /** The VM-exit interruption error code. */
222 uint32_t uExitIntErrorCode;
223 /** The VM-exit exit qualification. */
224 uint64_t uExitQualification;
225
226 /** The VM-exit interruption-information field. */
227 uint32_t uExitIntInfo;
228 /** The VM-exit instruction-length field. */
229 uint32_t cbInstr;
230 /** The VM-exit instruction-information field. */
231 union
232 {
233 /** Plain unsigned int representation. */
234 uint32_t u;
235 /** INS and OUTS information. */
236 struct
237 {
238 uint32_t u6Reserved0 : 7;
239 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
240 uint32_t u3AddrSize : 3;
241 uint32_t u5Reserved1 : 5;
242 /** The segment register (X86_SREG_XXX). */
243 uint32_t iSegReg : 3;
244 uint32_t uReserved2 : 14;
245 } StrIo;
246 } ExitInstrInfo;
247 /** Whether the VM-entry failed or not. */
248 bool fVMEntryFailed;
249 /** Alignment. */
250 uint8_t abAlignment1[3];
251
252 /** The VM-entry interruption-information field. */
253 uint32_t uEntryIntInfo;
254 /** The VM-entry exception error code field. */
255 uint32_t uEntryXcptErrorCode;
256 /** The VM-entry instruction length field. */
257 uint32_t cbEntryInstr;
258
259 /** IDT-vectoring information field. */
260 uint32_t uIdtVectoringInfo;
261 /** IDT-vectoring error code. */
262 uint32_t uIdtVectoringErrorCode;
263
264 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
265 uint32_t fVmcsFieldsRead;
266
267 /** Whether the guest FPU was active at the time of VM-exit. */
268 bool fWasGuestFPUStateActive;
269 /** Whether the guest debug state was active at the time of VM-exit. */
270 bool fWasGuestDebugStateActive;
271 /** Whether the hyper debug state was active at the time of VM-exit. */
272 bool fWasHyperDebugStateActive;
273 /** Whether TSC-offsetting should be setup before VM-entry. */
274 bool fUpdateTscOffsettingAndPreemptTimer;
275 /** Whether the VM-exit was caused by a page-fault during delivery of a
276 * contributory exception or a page-fault. */
277 bool fVectoringPF;
278} VMXTRANSIENT;
279AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
280AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
281AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
282AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
283AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
284/** Pointer to VMX transient state. */
285typedef VMXTRANSIENT *PVMXTRANSIENT;
286
287
288/**
289 * MSR-bitmap read permissions.
290 */
291typedef enum VMXMSREXITREAD
292{
293 /** Reading this MSR causes a VM-exit. */
294 VMXMSREXIT_INTERCEPT_READ = 0xb,
295 /** Reading this MSR does not cause a VM-exit. */
296 VMXMSREXIT_PASSTHRU_READ
297} VMXMSREXITREAD;
298/** Pointer to MSR-bitmap read permissions. */
299typedef VMXMSREXITREAD* PVMXMSREXITREAD;
300
301/**
302 * MSR-bitmap write permissions.
303 */
304typedef enum VMXMSREXITWRITE
305{
306 /** Writing to this MSR causes a VM-exit. */
307 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
308 /** Writing to this MSR does not cause a VM-exit. */
309 VMXMSREXIT_PASSTHRU_WRITE
310} VMXMSREXITWRITE;
311/** Pointer to MSR-bitmap write permissions. */
312typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
313
314
315/**
316 * VMX VM-exit handler.
317 *
318 * @returns VBox status code.
319 * @param pVCpu Pointer to the VMCPU.
320 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
321 * out-of-sync. Make sure to update the required
322 * fields before using them.
323 * @param pVmxTransient Pointer to the VMX-transient structure.
324 */
325#ifndef HMVMX_USE_FUNCTION_TABLE
326typedef int FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
327#else
328typedef DECLCALLBACK(int) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
329/** Pointer to VM-exit handler. */
330typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
331#endif
332
333
334/*******************************************************************************
335* Internal Functions *
336*******************************************************************************/
337static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush);
338static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr);
339static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
340 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntState);
341#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
342static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
343#endif
344#ifndef HMVMX_USE_FUNCTION_TABLE
345DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
346# define HMVMX_EXIT_DECL static int
347#else
348# define HMVMX_EXIT_DECL static DECLCALLBACK(int)
349#endif
350
351/** @name VM-exit handlers.
352 * @{
353 */
354static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
355static FNVMXEXITHANDLER hmR0VmxExitExtInt;
356static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
357static FNVMXEXITHANDLER hmR0VmxExitInitSignal;
358static FNVMXEXITHANDLER hmR0VmxExitSipi;
359static FNVMXEXITHANDLER hmR0VmxExitIoSmi;
360static FNVMXEXITHANDLER hmR0VmxExitSmi;
361static FNVMXEXITHANDLER hmR0VmxExitIntWindow;
362static FNVMXEXITHANDLER hmR0VmxExitNmiWindow;
363static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
364static FNVMXEXITHANDLER hmR0VmxExitCpuid;
365static FNVMXEXITHANDLER hmR0VmxExitGetsec;
366static FNVMXEXITHANDLER hmR0VmxExitHlt;
367static FNVMXEXITHANDLER hmR0VmxExitInvd;
368static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
369static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
370static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
371static FNVMXEXITHANDLER hmR0VmxExitRsm;
372static FNVMXEXITHANDLER hmR0VmxExitSetPendingXcptUD;
373static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
374static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
375static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
376static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
377static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
378static FNVMXEXITHANDLER hmR0VmxExitErrInvalidGuestState;
379static FNVMXEXITHANDLER hmR0VmxExitErrMsrLoad;
380static FNVMXEXITHANDLER hmR0VmxExitErrUndefined;
381static FNVMXEXITHANDLER hmR0VmxExitMwait;
382static FNVMXEXITHANDLER hmR0VmxExitMtf;
383static FNVMXEXITHANDLER hmR0VmxExitMonitor;
384static FNVMXEXITHANDLER hmR0VmxExitPause;
385static FNVMXEXITHANDLER hmR0VmxExitErrMachineCheck;
386static FNVMXEXITHANDLER hmR0VmxExitTprBelowThreshold;
387static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
388static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
389static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
390static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
391static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
392static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
393static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
394static FNVMXEXITHANDLER hmR0VmxExitWbinvd;
395static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
396static FNVMXEXITHANDLER hmR0VmxExitRdrand;
397static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
398/** @} */
399
400static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
401static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
402static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
403static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
404static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
405static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
406#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
407static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
408#endif
409static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
410
411/*******************************************************************************
412* Global Variables *
413*******************************************************************************/
414#ifdef HMVMX_USE_FUNCTION_TABLE
415
416/**
417 * VMX_EXIT dispatch table.
418 */
419static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
420{
421 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
422 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
423 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
424 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
425 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
426 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
427 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
428 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
429 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
430 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
431 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
432 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
433 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
434 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
435 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
436 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
437 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
438 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
439 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitSetPendingXcptUD,
440 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
441 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
442 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
443 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
444 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
445 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
446 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
447 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
448 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
449 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
450 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
451 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
452 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
453 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
454 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
455 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
456 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
457 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
458 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
459 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
460 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
461 /* 40 UNDEFINED */ hmR0VmxExitPause,
462 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
463 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
464 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
465 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
466 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
467 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
468 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
469 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
470 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
471 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
472 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
473 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
474 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
475 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
476 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
477 /* 56 UNDEFINED */ hmR0VmxExitErrUndefined,
478 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
479 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
480 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD
481};
482#endif /* HMVMX_USE_FUNCTION_TABLE */
483
484#ifdef VBOX_STRICT
485static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
486{
487 /* 0 */ "(Not Used)",
488 /* 1 */ "VMCALL executed in VMX root operation.",
489 /* 2 */ "VMCLEAR with invalid physical address.",
490 /* 3 */ "VMCLEAR with VMXON pointer.",
491 /* 4 */ "VMLAUNCH with non-clear VMCS.",
492 /* 5 */ "VMRESUME with non-launched VMCS.",
493 /* 6 */ "VMRESUME after VMXOFF",
494 /* 7 */ "VM entry with invalid control fields.",
495 /* 8 */ "VM entry with invalid host state fields.",
496 /* 9 */ "VMPTRLD with invalid physical address.",
497 /* 10 */ "VMPTRLD with VMXON pointer.",
498 /* 11 */ "VMPTRLD with incorrect revision identifier.",
499 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
500 /* 13 */ "VMWRITE to read-only VMCS component.",
501 /* 14 */ "(Not Used)",
502 /* 15 */ "VMXON executed in VMX root operation.",
503 /* 16 */ "VM entry with invalid executive-VMCS pointer.",
504 /* 17 */ "VM entry with non-launched executing VMCS.",
505 /* 18 */ "VM entry with executive-VMCS pointer not VMXON pointer.",
506 /* 19 */ "VMCALL with non-clear VMCS.",
507 /* 20 */ "VMCALL with invalid VM-exit control fields.",
508 /* 21 */ "(Not Used)",
509 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
510 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
511 /* 24 */ "VMCALL with invalid SMM-monitor features.",
512 /* 25 */ "VM entry with invalid VM-execution control fields in executive VMCS.",
513 /* 26 */ "VM entry with events blocked by MOV SS.",
514 /* 27 */ "(Not Used)",
515 /* 28 */ "Invalid operand to INVEPT/INVVPID."
516};
517#endif /* VBOX_STRICT */
518
519
520
521/**
522 * Updates the VM's last error record. If there was a VMX instruction error,
523 * reads the error data from the VMCS and updates VCPU's last error record as
524 * well.
525 *
526 * @param pVM Pointer to the VM.
527 * @param pVCpu Pointer to the VMCPU (can be NULL if @a rc is not
528 * VERR_VMX_UNABLE_TO_START_VM or
529 * VERR_VMX_INVALID_VMCS_FIELD).
530 * @param rc The error code.
531 */
532static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
533{
534 AssertPtr(pVM);
535 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
536 || rc == VERR_VMX_UNABLE_TO_START_VM)
537 {
538 AssertPtrReturnVoid(pVCpu);
539 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
540 }
541 pVM->hm.s.lLastError = rc;
542}
543
544
545/**
546 * Reads the VM-entry interruption-information field from the VMCS into the VMX
547 * transient structure.
548 *
549 * @returns VBox status code.
550 * @param pVmxTransient Pointer to the VMX transient structure.
551 *
552 * @remarks No-long-jump zone!!!
553 */
554DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
555{
556 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
557 AssertRCReturn(rc, rc);
558 return VINF_SUCCESS;
559}
560
561
562/**
563 * Reads the VM-entry exception error code field from the VMCS into
564 * the VMX transient structure.
565 *
566 * @returns VBox status code.
567 * @param pVmxTransient Pointer to the VMX transient structure.
568 *
569 * @remarks No-long-jump zone!!!
570 */
571DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
572{
573 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
574 AssertRCReturn(rc, rc);
575 return VINF_SUCCESS;
576}
577
578
579/**
580 * Reads the VM-entry exception error code field from the VMCS into
581 * the VMX transient structure.
582 *
583 * @returns VBox status code.
584 * @param pVmxTransient Pointer to the VMX transient structure.
585 *
586 * @remarks No-long-jump zone!!!
587 */
588DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
589{
590 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
591 AssertRCReturn(rc, rc);
592 return VINF_SUCCESS;
593}
594
595
596/**
597 * Reads the VM-exit interruption-information field from the VMCS into the VMX
598 * transient structure.
599 *
600 * @returns VBox status code.
601 * @param pVmxTransient Pointer to the VMX transient structure.
602 */
603DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
604{
605 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
606 {
607 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
608 AssertRCReturn(rc, rc);
609 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
610 }
611 return VINF_SUCCESS;
612}
613
614
615/**
616 * Reads the VM-exit interruption error code from the VMCS into the VMX
617 * transient structure.
618 *
619 * @returns VBox status code.
620 * @param pVmxTransient Pointer to the VMX transient structure.
621 */
622DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
623{
624 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
625 {
626 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
627 AssertRCReturn(rc, rc);
628 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
629 }
630 return VINF_SUCCESS;
631}
632
633
634/**
635 * Reads the VM-exit instruction length field from the VMCS into the VMX
636 * transient structure.
637 *
638 * @returns VBox status code.
639 * @param pVCpu Pointer to the VMCPU.
640 * @param pVmxTransient Pointer to the VMX transient structure.
641 */
642DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
643{
644 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
645 {
646 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
647 AssertRCReturn(rc, rc);
648 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
649 }
650 return VINF_SUCCESS;
651}
652
653
654/**
655 * Reads the VM-exit instruction-information field from the VMCS into
656 * the VMX transient structure.
657 *
658 * @returns VBox status code.
659 * @param pVmxTransient Pointer to the VMX transient structure.
660 */
661DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
662{
663 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
664 {
665 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
666 AssertRCReturn(rc, rc);
667 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
668 }
669 return VINF_SUCCESS;
670}
671
672
673/**
674 * Reads the exit qualification from the VMCS into the VMX transient structure.
675 *
676 * @returns VBox status code.
677 * @param pVCpu Pointer to the VMCPU (required for the VMCS cache
678 * case).
679 * @param pVmxTransient Pointer to the VMX transient structure.
680 */
681DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
682{
683 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
684 {
685 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
686 AssertRCReturn(rc, rc);
687 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
688 }
689 return VINF_SUCCESS;
690}
691
692
693/**
694 * Reads the IDT-vectoring information field from the VMCS into the VMX
695 * transient structure.
696 *
697 * @returns VBox status code.
698 * @param pVmxTransient Pointer to the VMX transient structure.
699 *
700 * @remarks No-long-jump zone!!!
701 */
702DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
703{
704 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
705 {
706 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
707 AssertRCReturn(rc, rc);
708 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
709 }
710 return VINF_SUCCESS;
711}
712
713
714/**
715 * Reads the IDT-vectoring error code from the VMCS into the VMX
716 * transient structure.
717 *
718 * @returns VBox status code.
719 * @param pVmxTransient Pointer to the VMX transient structure.
720 */
721DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
722{
723 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
724 {
725 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
726 AssertRCReturn(rc, rc);
727 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
728 }
729 return VINF_SUCCESS;
730}
731
732
733/**
734 * Enters VMX root mode operation on the current CPU.
735 *
736 * @returns VBox status code.
737 * @param pVM Pointer to the VM (optional, can be NULL, after
738 * a resume).
739 * @param HCPhysCpuPage Physical address of the VMXON region.
740 * @param pvCpuPage Pointer to the VMXON region.
741 */
742static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
743{
744 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
745 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
746 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
747
748 if (pVM)
749 {
750 /* Write the VMCS revision dword to the VMXON region. */
751 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
752 }
753
754 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
755 RTCCUINTREG uEflags = ASMIntDisableFlags();
756
757 /* Enable the VMX bit in CR4 if necessary. */
758 RTCCUINTREG uCr4 = ASMGetCR4();
759 if (!(uCr4 & X86_CR4_VMXE))
760 ASMSetCR4(uCr4 | X86_CR4_VMXE);
761
762 /* Enter VMX root mode. */
763 int rc = VMXEnable(HCPhysCpuPage);
764 if (RT_FAILURE(rc))
765 ASMSetCR4(uCr4);
766
767 /* Restore interrupts. */
768 ASMSetFlags(uEflags);
769 return rc;
770}
771
772
773/**
774 * Exits VMX root mode operation on the current CPU.
775 *
776 * @returns VBox status code.
777 */
778static int hmR0VmxLeaveRootMode(void)
779{
780 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
781
782 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
783 RTCCUINTREG uEflags = ASMIntDisableFlags();
784
785 /* If we're for some reason not in VMX root mode, then don't leave it. */
786 RTCCUINTREG uHostCR4 = ASMGetCR4();
787
788 int rc;
789 if (uHostCR4 & X86_CR4_VMXE)
790 {
791 /* Exit VMX root mode and clear the VMX bit in CR4. */
792 VMXDisable();
793 ASMSetCR4(uHostCR4 & ~X86_CR4_VMXE);
794 rc = VINF_SUCCESS;
795 }
796 else
797 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
798
799 /* Restore interrupts. */
800 ASMSetFlags(uEflags);
801 return rc;
802}
803
804
805/**
806 * Allocates and maps one physically contiguous page. The allocated page is
807 * zero'd out. (Used by various VT-x structures).
808 *
809 * @returns IPRT status code.
810 * @param pMemObj Pointer to the ring-0 memory object.
811 * @param ppVirt Where to store the virtual address of the
812 * allocation.
813 * @param pPhys Where to store the physical address of the
814 * allocation.
815 */
816DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
817{
818 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
819 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
820 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
821
822 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
823 if (RT_FAILURE(rc))
824 return rc;
825 *ppVirt = RTR0MemObjAddress(*pMemObj);
826 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
827 ASMMemZero32(*ppVirt, PAGE_SIZE);
828 return VINF_SUCCESS;
829}
830
831
832/**
833 * Frees and unmaps an allocated physical page.
834 *
835 * @param pMemObj Pointer to the ring-0 memory object.
836 * @param ppVirt Where to re-initialize the virtual address of
837 * allocation as 0.
838 * @param pHCPhys Where to re-initialize the physical address of the
839 * allocation as 0.
840 */
841DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
842{
843 AssertPtr(pMemObj);
844 AssertPtr(ppVirt);
845 AssertPtr(pHCPhys);
846 if (*pMemObj != NIL_RTR0MEMOBJ)
847 {
848 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
849 AssertRC(rc);
850 *pMemObj = NIL_RTR0MEMOBJ;
851 *ppVirt = 0;
852 *pHCPhys = 0;
853 }
854}
855
856
857/**
858 * Worker function to free VT-x related structures.
859 *
860 * @returns IPRT status code.
861 * @param pVM Pointer to the VM.
862 */
863static void hmR0VmxStructsFree(PVM pVM)
864{
865 for (VMCPUID i = 0; i < pVM->cCpus; i++)
866 {
867 PVMCPU pVCpu = &pVM->aCpus[i];
868 AssertPtr(pVCpu);
869
870 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
871 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
872
873 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
874 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
875
876 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
877 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
878 }
879
880 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
881#ifdef VBOX_WITH_CRASHDUMP_MAGIC
882 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
883#endif
884}
885
886
887/**
888 * Worker function to allocate VT-x related VM structures.
889 *
890 * @returns IPRT status code.
891 * @param pVM Pointer to the VM.
892 */
893static int hmR0VmxStructsAlloc(PVM pVM)
894{
895 /*
896 * Initialize members up-front so we can cleanup properly on allocation failure.
897 */
898#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
899 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
900 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
901 pVM->hm.s.vmx.HCPhys##a_Name = 0;
902
903#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
904 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
905 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
906 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
907
908#ifdef VBOX_WITH_CRASHDUMP_MAGIC
909 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
910#endif
911 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
912
913 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
914 for (VMCPUID i = 0; i < pVM->cCpus; i++)
915 {
916 PVMCPU pVCpu = &pVM->aCpus[i];
917 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
918 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
919 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
920 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
921 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
922 }
923#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
924#undef VMXLOCAL_INIT_VM_MEMOBJ
925
926 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
927 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
928 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
929 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
930
931 /*
932 * Allocate all the VT-x structures.
933 */
934 int rc = VINF_SUCCESS;
935#ifdef VBOX_WITH_CRASHDUMP_MAGIC
936 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
937 if (RT_FAILURE(rc))
938 goto cleanup;
939 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
940 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
941#endif
942
943 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
944 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
945 {
946 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
947 &pVM->hm.s.vmx.HCPhysApicAccess);
948 if (RT_FAILURE(rc))
949 goto cleanup;
950 }
951
952 /*
953 * Initialize per-VCPU VT-x structures.
954 */
955 for (VMCPUID i = 0; i < pVM->cCpus; i++)
956 {
957 PVMCPU pVCpu = &pVM->aCpus[i];
958 AssertPtr(pVCpu);
959
960 /* Allocate the VM control structure (VMCS). */
961 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
962 if (RT_FAILURE(rc))
963 goto cleanup;
964
965 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
966 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
967 {
968 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
969 &pVCpu->hm.s.vmx.HCPhysVirtApic);
970 if (RT_FAILURE(rc))
971 goto cleanup;
972 }
973
974 /* Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for transparent accesses of specific MSRs. */
975 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
976 {
977 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
978 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
979 if (RT_FAILURE(rc))
980 goto cleanup;
981 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
982 }
983
984 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
985 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
986 if (RT_FAILURE(rc))
987 goto cleanup;
988
989 /* Allocate the VM-exit MSR-load page for the host MSRs. */
990 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993 }
994
995 return VINF_SUCCESS;
996
997cleanup:
998 hmR0VmxStructsFree(pVM);
999 return rc;
1000}
1001
1002
1003/**
1004 * Does global VT-x initialization (called during module initialization).
1005 *
1006 * @returns VBox status code.
1007 */
1008VMMR0DECL(int) VMXR0GlobalInit(void)
1009{
1010#ifdef HMVMX_USE_FUNCTION_TABLE
1011 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1012# ifdef VBOX_STRICT
1013 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1014 Assert(g_apfnVMExitHandlers[i]);
1015# endif
1016#endif
1017 return VINF_SUCCESS;
1018}
1019
1020
1021/**
1022 * Does global VT-x termination (called during module termination).
1023 */
1024VMMR0DECL(void) VMXR0GlobalTerm()
1025{
1026 /* Nothing to do currently. */
1027}
1028
1029
1030/**
1031 * Sets up and activates VT-x on the current CPU.
1032 *
1033 * @returns VBox status code.
1034 * @param pCpu Pointer to the global CPU info struct.
1035 * @param pVM Pointer to the VM (can be NULL after a host resume
1036 * operation).
1037 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1038 * fEnabledByHost is true).
1039 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1040 * @a fEnabledByHost is true).
1041 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1042 * enable VT-x on the host.
1043 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1044 */
1045VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1046 void *pvMsrs)
1047{
1048 AssertReturn(pCpu, VERR_INVALID_PARAMETER);
1049 AssertReturn(pvMsrs, VERR_INVALID_PARAMETER);
1050 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1051
1052 /* Enable VT-x if it's not already enabled by the host. */
1053 if (!fEnabledByHost)
1054 {
1055 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1056 if (RT_FAILURE(rc))
1057 return rc;
1058 }
1059
1060 /*
1061 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1062 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1063 */
1064 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1065 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1066 {
1067 hmR0VmxFlushEpt(NULL /* pVCpu */, VMX_FLUSH_EPT_ALL_CONTEXTS);
1068 pCpu->fFlushAsidBeforeUse = false;
1069 }
1070 else
1071 pCpu->fFlushAsidBeforeUse = true;
1072
1073 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1074 ++pCpu->cTlbFlushes;
1075
1076 return VINF_SUCCESS;
1077}
1078
1079
1080/**
1081 * Deactivates VT-x on the current CPU.
1082 *
1083 * @returns VBox status code.
1084 * @param pCpu Pointer to the global CPU info struct.
1085 * @param pvCpuPage Pointer to the VMXON region.
1086 * @param HCPhysCpuPage Physical address of the VMXON region.
1087 *
1088 * @remarks This function should never be called when SUPR0EnableVTx() or
1089 * similar was used to enable VT-x on the host.
1090 */
1091VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1092{
1093 NOREF(pCpu);
1094 NOREF(pvCpuPage);
1095 NOREF(HCPhysCpuPage);
1096
1097 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1098 return hmR0VmxLeaveRootMode();
1099}
1100
1101
1102/**
1103 * Sets the permission bits for the specified MSR in the MSR bitmap.
1104 *
1105 * @param pVCpu Pointer to the VMCPU.
1106 * @param uMSR The MSR value.
1107 * @param enmRead Whether reading this MSR causes a VM-exit.
1108 * @param enmWrite Whether writing this MSR causes a VM-exit.
1109 */
1110static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1111{
1112 int32_t iBit;
1113 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1114
1115 /*
1116 * Layout:
1117 * 0x000 - 0x3ff - Low MSR read bits
1118 * 0x400 - 0x7ff - High MSR read bits
1119 * 0x800 - 0xbff - Low MSR write bits
1120 * 0xc00 - 0xfff - High MSR write bits
1121 */
1122 if (uMsr <= 0x00001FFF)
1123 iBit = uMsr;
1124 else if ( uMsr >= 0xC0000000
1125 && uMsr <= 0xC0001FFF)
1126 {
1127 iBit = (uMsr - 0xC0000000);
1128 pbMsrBitmap += 0x400;
1129 }
1130 else
1131 {
1132 AssertMsgFailed(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1133 return;
1134 }
1135
1136 Assert(iBit <= 0x1fff);
1137 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1138 ASMBitSet(pbMsrBitmap, iBit);
1139 else
1140 ASMBitClear(pbMsrBitmap, iBit);
1141
1142 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1143 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1144 else
1145 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1146}
1147
1148
1149#ifdef VBOX_STRICT
1150/**
1151 * Gets the permission bits for the specified MSR in the MSR bitmap.
1152 *
1153 * @returns VBox status code.
1154 * @retval VINF_SUCCESS if the specified MSR is found.
1155 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1156 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1157 *
1158 * @param pVCpu Pointer to the VMCPU.
1159 * @param uMsr The MSR.
1160 * @param penmRead Where to store the read permissions.
1161 * @param penmWrite Where to store the write permissions.
1162 */
1163static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1164{
1165 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1166 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1167 int32_t iBit;
1168 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1169
1170 /* See hmR0VmxSetMsrPermission() for the layout. */
1171 if (uMsr <= 0x00001FFF)
1172 iBit = uMsr;
1173 else if ( uMsr >= 0xC0000000
1174 && uMsr <= 0xC0001FFF)
1175 {
1176 iBit = (uMsr - 0xC0000000);
1177 pbMsrBitmap += 0x400;
1178 }
1179 else
1180 {
1181 AssertMsgFailed(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1182 return VERR_NOT_SUPPORTED;
1183 }
1184
1185 Assert(iBit <= 0x1fff);
1186 if (ASMBitTest(pbMsrBitmap, iBit))
1187 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1188 else
1189 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1190
1191 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1192 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1193 else
1194 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1195 return VINF_SUCCESS;
1196}
1197#endif /* VBOX_STRICT */
1198
1199
1200/**
1201 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1202 * area.
1203 *
1204 * @returns VBox status code.
1205 * @param pVCpu Pointer to the VMCPU.
1206 * @param cMsrs The number of MSRs.
1207 */
1208DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1209{
1210 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1211 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1212 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1213 {
1214 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1215 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1216 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1217 }
1218
1219 /* Update number of guest MSRs to load/store across the world-switch. */
1220 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1221 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRCReturn(rc, rc);
1222
1223 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1224 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1225
1226 /* Update the VCPU's copy of the MSR count. */
1227 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1228
1229 return VINF_SUCCESS;
1230}
1231
1232
1233/**
1234 * Adds a new (or updates the value of an existing) guest/host MSR
1235 * pair to be swapped during the world-switch as part of the
1236 * auto-load/store MSR area in the VMCS.
1237 *
1238 * @returns VBox status code.
1239 * @param pVCpu Pointer to the VMCPU.
1240 * @param uMsr The MSR.
1241 * @param uGuestMsr Value of the guest MSR.
1242 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1243 * necessary.
1244 */
1245static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr)
1246{
1247 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1248 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1249 uint32_t i;
1250 for (i = 0; i < cMsrs; i++)
1251 {
1252 if (pGuestMsr->u32Msr == uMsr)
1253 break;
1254 pGuestMsr++;
1255 }
1256
1257 bool fAdded = false;
1258 if (i == cMsrs)
1259 {
1260 ++cMsrs;
1261 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1262 AssertRCReturn(rc, rc);
1263
1264 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1265 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1266 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1267
1268 fAdded = true;
1269 }
1270
1271 /* Update the MSR values in the auto-load/store MSR area. */
1272 pGuestMsr->u32Msr = uMsr;
1273 pGuestMsr->u64Value = uGuestMsrValue;
1274
1275 /* Create/update the MSR slot in the host MSR area. */
1276 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1277 pHostMsr += i;
1278 pHostMsr->u32Msr = uMsr;
1279
1280 /*
1281 * Update the host MSR only when requested by the caller AND when we're
1282 * adding it to the auto-load/store area. Otherwise, it would have been
1283 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1284 */
1285 if ( fAdded
1286 && fUpdateHostMsr)
1287 {
1288 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1289 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1290 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1291 }
1292
1293 return VINF_SUCCESS;
1294}
1295
1296
1297/**
1298 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1299 * auto-load/store MSR area in the VMCS.
1300 *
1301 * Does not fail if the MSR in @a uMsr is not found in the auto-load/store MSR
1302 * area.
1303 *
1304 * @returns VBox status code.
1305 * @param pVCpu Pointer to the VMCPU.
1306 * @param uMsr The MSR.
1307 */
1308static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1309{
1310 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1311 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1312 for (uint32_t i = 0; i < cMsrs; i++)
1313 {
1314 /* Find the MSR. */
1315 if (pGuestMsr->u32Msr == uMsr)
1316 {
1317 /* If it's the last MSR, simply reduce the count. */
1318 if (i == cMsrs - 1)
1319 {
1320 --cMsrs;
1321 break;
1322 }
1323
1324 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1325 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1326 pLastGuestMsr += cMsrs;
1327 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1328 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1329
1330 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1331 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1332 pLastHostMsr += cMsrs;
1333 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1334 pHostMsr->u64Value = pLastHostMsr->u64Value;
1335 --cMsrs;
1336 break;
1337 }
1338 pGuestMsr++;
1339 }
1340
1341 /* Update the VMCS if the count changed (meaning the MSR was found). */
1342 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1343 {
1344 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1345 AssertRCReturn(rc, rc);
1346
1347 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1348 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1349 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1350 }
1351
1352 return VINF_SUCCESS;
1353}
1354
1355
1356/**
1357 * Checks if the specified guest MSR is part of the auto-load/store area in
1358 * the VMCS.
1359 *
1360 * @returns true if found, false otherwise.
1361 * @param pVCpu Pointer to the VMCPU.
1362 * @param uMsr The MSR to find.
1363 */
1364static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1365{
1366 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1367 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1368
1369 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1370 {
1371 if (pGuestMsr->u32Msr == uMsr)
1372 return true;
1373 }
1374 return false;
1375}
1376
1377
1378/**
1379 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1380 *
1381 * @param pVCpu Pointer to the VMCPU.
1382 *
1383 * @remarks No-long-jump zone!!!
1384 */
1385static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1386{
1387 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1388 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1389 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1390 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1391
1392 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1393 {
1394 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1395 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1396 }
1397
1398 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1399}
1400
1401
1402#if HC_ARCH_BITS == 64
1403/**
1404 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1405 * perform lazy restoration of the host MSRs while leaving VT-x.
1406 *
1407 * @param pVCpu Pointer to the VMCPU.
1408 *
1409 * @remarks No-long-jump zone!!!
1410 */
1411static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1412{
1413 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1414
1415 /*
1416 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1417 */
1418 if (!(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST))
1419 {
1420 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1421 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1422 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1423 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1424 pVCpu->hm.s.vmx.fRestoreHostMsrs |= VMX_RESTORE_HOST_MSR_SAVED_HOST;
1425 }
1426}
1427
1428
1429/**
1430 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1431 * lazily while leaving VT-x.
1432 *
1433 * @returns true if it does, false otherwise.
1434 * @param pVCpu Pointer to the VMCPU.
1435 * @param uMsr The MSR to check.
1436 */
1437static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1438{
1439 NOREF(pVCpu);
1440 switch (uMsr)
1441 {
1442 case MSR_K8_LSTAR:
1443 case MSR_K6_STAR:
1444 case MSR_K8_SF_MASK:
1445 case MSR_K8_KERNEL_GS_BASE:
1446 return true;
1447 }
1448 return false;
1449}
1450
1451
1452/**
1453 * Saves a set of guests MSRs back into the guest-CPU context.
1454 *
1455 * @param pVCpu Pointer to the VMCPU.
1456 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1457 * out-of-sync. Make sure to update the required fields
1458 * before using them.
1459 *
1460 * @remarks No-long-jump zone!!!
1461 */
1462static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1463{
1464 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1465 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1466
1467 if (pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST)
1468 {
1469 Assert(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_SAVED_HOST);
1470 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1471 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1472 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1473 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1474 }
1475}
1476
1477
1478/**
1479 * Loads a set of guests MSRs to allow read/passthru to the guest.
1480 *
1481 * The name of this function is slightly confusing. This function does NOT
1482 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1483 * common prefix for functions dealing with "lazy restoration" of the shared
1484 * MSRs.
1485 *
1486 * @param pVCpu Pointer to the VMCPU.
1487 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1488 * out-of-sync. Make sure to update the required fields
1489 * before using them.
1490 *
1491 * @remarks No-long-jump zone!!!
1492 */
1493static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1494{
1495 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1496 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1497
1498 Assert(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_SAVED_HOST);
1499 if (!(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST))
1500 {
1501#define VMXLOCAL_LAZY_LOAD_GUEST_MSR(uMsr, a_GuestMsr, a_HostMsr) \
1502 do { \
1503 if (pMixedCtx->msr##a_GuestMsr != pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr) \
1504 ASMWrMsr(uMsr, pMixedCtx->msr##a_GuestMsr); \
1505 else \
1506 Assert(ASMRdMsr(uMsr) == pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr); \
1507 } while (0)
1508
1509 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_LSTAR, LSTAR, LStar);
1510 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K6_STAR, STAR, Star);
1511 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_SF_MASK, SFMASK, SFMask);
1512 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_KERNEL_GS_BASE, KERNELGSBASE, KernelGSBase);
1513#undef VMXLOCAL_LAZY_LOAD_GUEST_MSR
1514 }
1515 else
1516 {
1517 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1518 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1519 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1520 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1521 }
1522 pVCpu->hm.s.vmx.fRestoreHostMsrs |= VMX_RESTORE_HOST_MSR_LOADED_GUEST;
1523}
1524
1525
1526/**
1527 * Performs lazy restoration of the set of host MSRs if they were previously
1528 * loaded with guest MSR values.
1529 *
1530 * @param pVCpu Pointer to the VMCPU.
1531 *
1532 * @remarks No-long-jump zone!!!
1533 * @remarks The guest MSRs should have been saved back into the guest-CPU
1534 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1535 */
1536static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1537{
1538 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1539 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1540
1541 if (pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST)
1542 {
1543 Assert(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_SAVED_HOST);
1544 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1545 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1546 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1547 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1548 }
1549 pVCpu->hm.s.vmx.fRestoreHostMsrs &= ~(VMX_RESTORE_HOST_MSR_LOADED_GUEST | VMX_RESTORE_HOST_MSR_SAVED_HOST);
1550}
1551#endif /* HC_ARCH_BITS == 64 */
1552
1553
1554#ifdef VBOX_STRICT
1555/**
1556 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1557 * VMCS are correct.
1558 *
1559 * @param pVCpu Pointer to the VMCPU.
1560 */
1561static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1562{
1563 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1564
1565 /* Verify MSR counts in the VMCS are what we think it should be. */
1566 uint32_t cMsrs;
1567 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1568 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1569
1570 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1571 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1572
1573 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1574 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1575
1576 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1577 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1578 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1579 {
1580 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1581 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32\n", pHostMsr->u32Msr,
1582 pGuestMsr->u32Msr));
1583
1584 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1585 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64\n", pHostMsr->u32Msr,
1586 pHostMsr->u64Value, u64Msr));
1587
1588 /* Verify that the permissions are as expected in the MSR bitmap. */
1589 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1590 {
1591 VMXMSREXITREAD enmRead;
1592 VMXMSREXITWRITE enmWrite;
1593 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1594 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1595 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 No passthru read permission!\n",
1596 pGuestMsr->u32Msr));
1597 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 No passthru write permission!\n",
1598 pGuestMsr->u32Msr));
1599 }
1600 }
1601}
1602# endif /* VBOX_STRICT */
1603
1604
1605/**
1606 * Flushes the TLB using EPT.
1607 *
1608 * @returns VBox status code.
1609 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1610 * enmFlush).
1611 * @param enmFlush Type of flush.
1612 *
1613 * @remarks Caller is responsible for making sure this function is called only
1614 * when NestedPaging is supported and providing @a enmFlush that is
1615 * supported by the CPU.
1616 * @remarks Can be called with interrupts disabled.
1617 */
1618static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush)
1619{
1620 uint64_t au64Descriptor[2];
1621 if (enmFlush == VMX_FLUSH_EPT_ALL_CONTEXTS)
1622 au64Descriptor[0] = 0;
1623 else
1624 {
1625 Assert(pVCpu);
1626 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1627 }
1628 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1629
1630 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1631 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1632 rc));
1633 if ( RT_SUCCESS(rc)
1634 && pVCpu)
1635 {
1636 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1637 }
1638}
1639
1640
1641/**
1642 * Flushes the TLB using VPID.
1643 *
1644 * @returns VBox status code.
1645 * @param pVM Pointer to the VM.
1646 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1647 * enmFlush).
1648 * @param enmFlush Type of flush.
1649 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1650 * on @a enmFlush).
1651 *
1652 * @remarks Can be called with interrupts disabled.
1653 */
1654static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr)
1655{
1656 NOREF(pVM);
1657 AssertPtr(pVM);
1658 Assert(pVM->hm.s.vmx.fVpid);
1659
1660 uint64_t au64Descriptor[2];
1661 if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS)
1662 {
1663 au64Descriptor[0] = 0;
1664 au64Descriptor[1] = 0;
1665 }
1666 else
1667 {
1668 AssertPtr(pVCpu);
1669 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1670 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1671 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1672 au64Descriptor[1] = GCPtr;
1673 }
1674
1675 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1676 AssertMsg(rc == VINF_SUCCESS,
1677 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1678 if ( RT_SUCCESS(rc)
1679 && pVCpu)
1680 {
1681 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1682 }
1683}
1684
1685
1686/**
1687 * Invalidates a guest page by guest virtual address. Only relevant for
1688 * EPT/VPID, otherwise there is nothing really to invalidate.
1689 *
1690 * @returns VBox status code.
1691 * @param pVM Pointer to the VM.
1692 * @param pVCpu Pointer to the VMCPU.
1693 * @param GCVirt Guest virtual address of the page to invalidate.
1694 */
1695VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1696{
1697 AssertPtr(pVM);
1698 AssertPtr(pVCpu);
1699 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1700
1701 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1702 if (!fFlushPending)
1703 {
1704 /*
1705 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1706 * See @bugref{6043} and @bugref{6177}.
1707 *
1708 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1709 * function maybe called in a loop with individual addresses.
1710 */
1711 if (pVM->hm.s.vmx.fVpid)
1712 {
1713 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1714 {
1715 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt);
1716 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1717 }
1718 else
1719 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1720 }
1721 else if (pVM->hm.s.fNestedPaging)
1722 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1723 }
1724
1725 return VINF_SUCCESS;
1726}
1727
1728
1729/**
1730 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1731 * otherwise there is nothing really to invalidate.
1732 *
1733 * @returns VBox status code.
1734 * @param pVM Pointer to the VM.
1735 * @param pVCpu Pointer to the VMCPU.
1736 * @param GCPhys Guest physical address of the page to invalidate.
1737 */
1738VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1739{
1740 NOREF(pVM); NOREF(GCPhys);
1741 LogFlowFunc(("%RGp\n", GCPhys));
1742
1743 /*
1744 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1745 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1746 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1747 */
1748 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1749 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1750 return VINF_SUCCESS;
1751}
1752
1753
1754/**
1755 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1756 * case where neither EPT nor VPID is supported by the CPU.
1757 *
1758 * @param pVM Pointer to the VM.
1759 * @param pVCpu Pointer to the VMCPU.
1760 * @param pCpu Pointer to the global HM struct.
1761 *
1762 * @remarks Called with interrupts disabled.
1763 */
1764static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1765{
1766 AssertPtr(pVCpu);
1767 AssertPtr(pCpu);
1768 NOREF(pVM);
1769
1770 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1771
1772 /** @todo TLB shootdown is currently not used. See hmQueueInvlPage(). */
1773#if 0
1774 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1775 pVCpu->hm.s.TlbShootdown.cPages = 0;
1776#endif
1777
1778 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1779 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1780 pVCpu->hm.s.fForceTLBFlush = false;
1781 return;
1782}
1783
1784
1785/**
1786 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1787 *
1788 * @param pVM Pointer to the VM.
1789 * @param pVCpu Pointer to the VMCPU.
1790 * @param pCpu Pointer to the global HM CPU struct.
1791 * @remarks All references to "ASID" in this function pertains to "VPID" in
1792 * Intel's nomenclature. The reason is, to avoid confusion in compare
1793 * statements since the host-CPU copies are named "ASID".
1794 *
1795 * @remarks Called with interrupts disabled.
1796 */
1797static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1798{
1799#ifdef VBOX_WITH_STATISTICS
1800 bool fTlbFlushed = false;
1801# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1802# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1803 if (!fTlbFlushed) \
1804 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1805 } while (0)
1806#else
1807# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1808# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1809#endif
1810
1811 AssertPtr(pVM);
1812 AssertPtr(pCpu);
1813 AssertPtr(pVCpu);
1814 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1815 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1816 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1817
1818
1819 /*
1820 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1821 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1822 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1823 */
1824 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1825 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1826 {
1827 ++pCpu->uCurrentAsid;
1828 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1829 {
1830 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1831 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1832 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1833 }
1834
1835 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1836 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1837 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1838
1839 /*
1840 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1841 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1842 */
1843 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1844 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1845 HMVMX_SET_TAGGED_TLB_FLUSHED();
1846 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
1847 }
1848
1849 /* Check for explicit TLB shootdowns. */
1850 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1851 {
1852 /*
1853 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
1854 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
1855 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
1856 * but not guest-physical mappings.
1857 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
1858 */
1859 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1860 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1861 HMVMX_SET_TAGGED_TLB_FLUSHED();
1862 }
1863
1864 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
1865 * where it is commented out. Support individual entry flushing
1866 * someday. */
1867#if 0
1868 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1869 {
1870 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1871
1872 /*
1873 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
1874 * as supported by the CPU.
1875 */
1876 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1877 {
1878 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1879 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1880 }
1881 else
1882 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1883
1884 HMVMX_SET_TAGGED_TLB_FLUSHED();
1885 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1886 pVCpu->hm.s.TlbShootdown.cPages = 0;
1887 }
1888#endif
1889
1890 pVCpu->hm.s.fForceTLBFlush = false;
1891
1892 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1893
1894 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1895 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1896 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1897 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1898 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1899 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
1900 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1901 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1902
1903 /* Update VMCS with the VPID. */
1904 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
1905 AssertRC(rc);
1906
1907#undef HMVMX_SET_TAGGED_TLB_FLUSHED
1908}
1909
1910
1911/**
1912 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
1913 *
1914 * @returns VBox status code.
1915 * @param pVM Pointer to the VM.
1916 * @param pVCpu Pointer to the VMCPU.
1917 * @param pCpu Pointer to the global HM CPU struct.
1918 *
1919 * @remarks Called with interrupts disabled.
1920 */
1921static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1922{
1923 AssertPtr(pVM);
1924 AssertPtr(pVCpu);
1925 AssertPtr(pCpu);
1926 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
1927 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
1928
1929 /*
1930 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1931 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
1932 */
1933 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1934 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1935 {
1936 pVCpu->hm.s.fForceTLBFlush = true;
1937 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1938 }
1939
1940 /* Check for explicit TLB shootdown flushes. */
1941 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1942 {
1943 pVCpu->hm.s.fForceTLBFlush = true;
1944 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1945 }
1946
1947 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1948 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1949
1950 if (pVCpu->hm.s.fForceTLBFlush)
1951 {
1952 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1953 pVCpu->hm.s.fForceTLBFlush = false;
1954 }
1955 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
1956 * where it is commented out. Support individual entry flushing
1957 * someday. */
1958#if 0
1959 else
1960 {
1961 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1962 {
1963 /* We cannot flush individual entries without VPID support. Flush using EPT. */
1964 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1965 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1966 }
1967 else
1968 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1969
1970 pVCpu->hm.s.TlbShootdown.cPages = 0;
1971 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1972 }
1973#endif
1974}
1975
1976
1977/**
1978 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
1979 *
1980 * @returns VBox status code.
1981 * @param pVM Pointer to the VM.
1982 * @param pVCpu Pointer to the VMCPU.
1983 * @param pCpu Pointer to the global HM CPU struct.
1984 *
1985 * @remarks Called with interrupts disabled.
1986 */
1987static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1988{
1989 AssertPtr(pVM);
1990 AssertPtr(pVCpu);
1991 AssertPtr(pCpu);
1992 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
1993 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
1994
1995 /*
1996 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1997 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1998 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1999 */
2000 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2001 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2002 {
2003 pVCpu->hm.s.fForceTLBFlush = true;
2004 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2005 }
2006
2007 /* Check for explicit TLB shootdown flushes. */
2008 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2009 {
2010 /*
2011 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2012 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2013 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2014 */
2015 pVCpu->hm.s.fForceTLBFlush = true;
2016 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2017 }
2018
2019 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2020 if (pVCpu->hm.s.fForceTLBFlush)
2021 {
2022 ++pCpu->uCurrentAsid;
2023 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2024 {
2025 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2026 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2027 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2028 }
2029
2030 pVCpu->hm.s.fForceTLBFlush = false;
2031 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2032 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2033 if (pCpu->fFlushAsidBeforeUse)
2034 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2035 }
2036 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
2037 * where it is commented out. Support individual entry flushing
2038 * someday. */
2039#if 0
2040 else
2041 {
2042 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
2043 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
2044 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
2045 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
2046
2047 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2048 {
2049 /* Flush individual guest entries using VPID or as little as possible with EPT as supported by the CPU. */
2050 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2051 {
2052 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
2053 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
2054 }
2055 else
2056 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2057
2058 pVCpu->hm.s.TlbShootdown.cPages = 0;
2059 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2060 }
2061 else
2062 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2063 }
2064#endif
2065
2066 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2067 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2068 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2069 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
2070 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2071 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2072
2073 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2074 AssertRC(rc);
2075}
2076
2077
2078/**
2079 * Flushes the guest TLB entry based on CPU capabilities.
2080 *
2081 * @param pVCpu Pointer to the VMCPU.
2082 * @param pCpu Pointer to the global HM CPU struct.
2083 */
2084DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2085{
2086#ifdef HMVMX_ALWAYS_FLUSH_TLB
2087 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2088#endif
2089 PVM pVM = pVCpu->CTX_SUFF(pVM);
2090 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2091 {
2092 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2093 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2094 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2095 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2096 default:
2097 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2098 break;
2099 }
2100
2101 /* VMCPU_FF_TLB_SHOOTDOWN is unused. */
2102 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN));
2103
2104 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer pending. It can be set by other EMTs. */
2105}
2106
2107
2108/**
2109 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2110 * TLB entries from the host TLB before VM-entry.
2111 *
2112 * @returns VBox status code.
2113 * @param pVM Pointer to the VM.
2114 */
2115static int hmR0VmxSetupTaggedTlb(PVM pVM)
2116{
2117 /*
2118 * Determine optimal flush type for Nested Paging.
2119 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2120 * guest execution (see hmR3InitFinalizeR0()).
2121 */
2122 if (pVM->hm.s.fNestedPaging)
2123 {
2124 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2125 {
2126 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2127 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT;
2128 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2129 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS;
2130 else
2131 {
2132 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2133 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
2134 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2135 }
2136
2137 /* Make sure the write-back cacheable memory type for EPT is supported. */
2138 if (!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB))
2139 {
2140 LogRel(("hmR0VmxSetupTaggedTlb: Unsupported EPTP memory type %#x.\n", pVM->hm.s.vmx.Msrs.u64EptVpidCaps));
2141 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
2142 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2143 }
2144 }
2145 else
2146 {
2147 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2148 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
2149 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2150 }
2151 }
2152
2153 /*
2154 * Determine optimal flush type for VPID.
2155 */
2156 if (pVM->hm.s.vmx.fVpid)
2157 {
2158 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2159 {
2160 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2161 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT;
2162 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2163 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS;
2164 else
2165 {
2166 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2167 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2168 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2169 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2170 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2171 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
2172 pVM->hm.s.vmx.fVpid = false;
2173 }
2174 }
2175 else
2176 {
2177 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2178 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2179 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
2180 pVM->hm.s.vmx.fVpid = false;
2181 }
2182 }
2183
2184 /*
2185 * Setup the handler for flushing tagged-TLBs.
2186 */
2187 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2188 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2189 else if (pVM->hm.s.fNestedPaging)
2190 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2191 else if (pVM->hm.s.vmx.fVpid)
2192 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2193 else
2194 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2195 return VINF_SUCCESS;
2196}
2197
2198
2199/**
2200 * Sets up pin-based VM-execution controls in the VMCS.
2201 *
2202 * @returns VBox status code.
2203 * @param pVM Pointer to the VM.
2204 * @param pVCpu Pointer to the VMCPU.
2205 */
2206static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2207{
2208 AssertPtr(pVM);
2209 AssertPtr(pVCpu);
2210
2211 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2212 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2213
2214 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts causes a VM-exits. */
2215 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts causes a VM-exit. */
2216 Assert(!(val & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI));
2217
2218 /* Enable the VMX preemption timer. */
2219 if (pVM->hm.s.vmx.fUsePreemptTimer)
2220 {
2221 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2222 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2223 }
2224
2225 if ((val & zap) != val)
2226 {
2227 LogRel(("hmR0VmxSetupPinCtls: invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2228 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2229 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2230 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2231 }
2232
2233 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2234 AssertRCReturn(rc, rc);
2235
2236 /* Update VCPU with the currently set pin-based VM-execution controls. */
2237 pVCpu->hm.s.vmx.u32PinCtls = val;
2238 return rc;
2239}
2240
2241
2242/**
2243 * Sets up processor-based VM-execution controls in the VMCS.
2244 *
2245 * @returns VBox status code.
2246 * @param pVM Pointer to the VM.
2247 * @param pVMCPU Pointer to the VMCPU.
2248 */
2249static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2250{
2251 AssertPtr(pVM);
2252 AssertPtr(pVCpu);
2253
2254 int rc = VERR_INTERNAL_ERROR_5;
2255 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2256 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2257
2258 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2259 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2260 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2261 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2262 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2263 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2264 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2265
2266 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2267 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2268 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2269 {
2270 LogRel(("hmR0VmxSetupProcCtls: unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2271 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2272 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2273 }
2274
2275 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2276 if (!pVM->hm.s.fNestedPaging)
2277 {
2278 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2279 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2280 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2281 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2282 }
2283
2284 /* Use TPR shadowing if supported by the CPU. */
2285 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2286 {
2287 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2288 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2289 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2290 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2291 AssertRCReturn(rc, rc);
2292
2293 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2294 /* CR8 writes causes a VM-exit based on TPR threshold. */
2295 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2296 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2297 }
2298 else
2299 {
2300 /*
2301 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2302 * Set this control only for 64-bit guests.
2303 */
2304 if (pVM->hm.s.fAllow64BitGuests)
2305 {
2306 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads causes a VM-exit. */
2307 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes causes a VM-exit. */
2308 }
2309 }
2310
2311 /* Use MSR-bitmaps if supported by the CPU. */
2312 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2313 {
2314 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2315
2316 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2317 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2318 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2319 AssertRCReturn(rc, rc);
2320
2321 /*
2322 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2323 * automatically as dedicated fields in the VMCS.
2324 */
2325 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2326 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2327 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2328 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2329 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2330
2331#if HC_ARCH_BITS == 64
2332 /*
2333 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2334 */
2335 if (pVM->hm.s.fAllow64BitGuests)
2336 {
2337 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2338 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2339 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2340 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2341 }
2342#endif
2343 }
2344
2345 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2346 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2347 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2348
2349 if ((val & zap) != val)
2350 {
2351 LogRel(("hmR0VmxSetupProcCtls: invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2352 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2353 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2354 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2355 }
2356
2357 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2358 AssertRCReturn(rc, rc);
2359
2360 /* Update VCPU with the currently set processor-based VM-execution controls. */
2361 pVCpu->hm.s.vmx.u32ProcCtls = val;
2362
2363 /*
2364 * Secondary processor-based VM-execution controls.
2365 */
2366 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2367 {
2368 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2369 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2370
2371 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2372 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2373
2374 if (pVM->hm.s.fNestedPaging)
2375 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2376 else
2377 {
2378 /*
2379 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2380 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2381 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2382 */
2383 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2384 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2385 }
2386
2387 if (pVM->hm.s.vmx.fVpid)
2388 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2389
2390 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2391 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2392
2393 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2394 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2395 * done dynamically. */
2396 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2397 {
2398 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2399 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2400 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2401 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2402 AssertRCReturn(rc, rc);
2403 }
2404
2405 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2406 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2407
2408 if ((val & zap) != val)
2409 {
2410 LogRel(("hmR0VmxSetupProcCtls: invalid secondary processor-based VM-execution controls combo! "
2411 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2412 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2413 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2414 }
2415
2416 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2417 AssertRCReturn(rc, rc);
2418
2419 /* Update VCPU with the currently set secondary processor-based VM-execution controls. */
2420 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2421 }
2422 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2423 {
2424 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2425 "available\n"));
2426 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2427 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2428 }
2429
2430 return VINF_SUCCESS;
2431}
2432
2433
2434/**
2435 * Sets up miscellaneous (everything other than Pin & Processor-based
2436 * VM-execution) control fields in the VMCS.
2437 *
2438 * @returns VBox status code.
2439 * @param pVM Pointer to the VM.
2440 * @param pVCpu Pointer to the VMCPU.
2441 */
2442static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2443{
2444 NOREF(pVM);
2445 AssertPtr(pVM);
2446 AssertPtr(pVCpu);
2447
2448 int rc = VERR_GENERAL_FAILURE;
2449
2450 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2451#if 0
2452 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2453 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0); AssertRCReturn(rc, rc);
2454 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0); AssertRCReturn(rc, rc);
2455
2456 /*
2457 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2458 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2459 * We thus use the exception bitmap to control it rather than use both.
2460 */
2461 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0); AssertRCReturn(rc, rc);
2462 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRCReturn(rc, rc);
2463
2464 /** @todo Explore possibility of using IO-bitmaps. */
2465 /* All IO & IOIO instructions cause VM-exits. */
2466 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0); AssertRCReturn(rc, rc);
2467 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0); AssertRCReturn(rc, rc);
2468
2469 /* Initialize the MSR-bitmap area. */
2470 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2471 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0); AssertRCReturn(rc, rc);
2472 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2473#endif
2474
2475 /* Setup MSR auto-load/store area. */
2476 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2477 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2478 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2479 AssertRCReturn(rc, rc);
2480 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2481 AssertRCReturn(rc, rc);
2482
2483 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2484 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2485 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2486 AssertRCReturn(rc, rc);
2487
2488 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2489 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2490 AssertRCReturn(rc, rc);
2491
2492 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2493#if 0
2494 /* Setup debug controls */
2495 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2496 AssertRCReturn(rc, rc);
2497 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2498 AssertRCReturn(rc, rc);
2499#endif
2500
2501 return rc;
2502}
2503
2504
2505/**
2506 * Sets up the initial exception bitmap in the VMCS based on static conditions
2507 * (i.e. conditions that cannot ever change after starting the VM).
2508 *
2509 * @returns VBox status code.
2510 * @param pVM Pointer to the VM.
2511 * @param pVCpu Pointer to the VMCPU.
2512 */
2513static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2514{
2515 AssertPtr(pVM);
2516 AssertPtr(pVCpu);
2517
2518 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2519
2520 uint32_t u32XcptBitmap = 0;
2521
2522 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2523 if (!pVM->hm.s.fNestedPaging)
2524 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2525
2526 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2527 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2528 AssertRCReturn(rc, rc);
2529 return rc;
2530}
2531
2532
2533/**
2534 * Sets up the initial guest-state mask. The guest-state mask is consulted
2535 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2536 * for the nested virtualization case (as it would cause a VM-exit).
2537 *
2538 * @param pVCpu Pointer to the VMCPU.
2539 */
2540static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2541{
2542 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2543 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2544 return VINF_SUCCESS;
2545}
2546
2547
2548/**
2549 * Does per-VM VT-x initialization.
2550 *
2551 * @returns VBox status code.
2552 * @param pVM Pointer to the VM.
2553 */
2554VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2555{
2556 LogFlowFunc(("pVM=%p\n", pVM));
2557
2558 int rc = hmR0VmxStructsAlloc(pVM);
2559 if (RT_FAILURE(rc))
2560 {
2561 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2562 return rc;
2563 }
2564
2565 return VINF_SUCCESS;
2566}
2567
2568
2569/**
2570 * Does per-VM VT-x termination.
2571 *
2572 * @returns VBox status code.
2573 * @param pVM Pointer to the VM.
2574 */
2575VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2576{
2577 LogFlowFunc(("pVM=%p\n", pVM));
2578
2579#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2580 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2581 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2582#endif
2583 hmR0VmxStructsFree(pVM);
2584 return VINF_SUCCESS;
2585}
2586
2587
2588/**
2589 * Sets up the VM for execution under VT-x.
2590 * This function is only called once per-VM during initialization.
2591 *
2592 * @returns VBox status code.
2593 * @param pVM Pointer to the VM.
2594 */
2595VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2596{
2597 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2598 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2599
2600 LogFlowFunc(("pVM=%p\n", pVM));
2601
2602 /*
2603 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2604 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0().
2605 */
2606 /* -XXX- change hmR3InitFinalizeR0Intel() to fail if pRealModeTSS alloc fails. */
2607 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2608 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2609 || !pVM->hm.s.vmx.pRealModeTSS))
2610 {
2611 LogRel(("VMXR0SetupVM: invalid real-on-v86 state.\n"));
2612 return VERR_INTERNAL_ERROR;
2613 }
2614
2615#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2616 /*
2617 * This is for the darwin 32-bit/PAE kernels trying to execute 64-bit guests. We don't bother with
2618 * the 32<->64 switcher in this case. This is a rare, legacy use-case with barely any test coverage.
2619 */
2620 if ( pVM->hm.s.fAllow64BitGuests
2621 && !HMVMX_IS_64BIT_HOST_MODE())
2622 {
2623 LogRel(("VMXR0SetupVM: Unsupported guest and host paging mode combination.\n"));
2624 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
2625 }
2626#endif
2627
2628 /* Initialize these always, see hmR3InitFinalizeR0().*/
2629 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE;
2630 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE;
2631
2632 /* Setup the tagged-TLB flush handlers. */
2633 int rc = hmR0VmxSetupTaggedTlb(pVM);
2634 if (RT_FAILURE(rc))
2635 {
2636 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2637 return rc;
2638 }
2639
2640 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2641 {
2642 PVMCPU pVCpu = &pVM->aCpus[i];
2643 AssertPtr(pVCpu);
2644 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2645
2646 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2647 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2648
2649 /* Set revision dword at the beginning of the VMCS structure. */
2650 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2651
2652 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2653 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2654 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2655 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2656
2657 /* Load this VMCS as the current VMCS. */
2658 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2659 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2660 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2661
2662 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2663 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2664 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2665
2666 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2667 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2668 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2669
2670 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2671 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2672 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2673
2674 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2675 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2676 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2677
2678 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2679 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2680 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2681
2682#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2683 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2684 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2685 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2686#endif
2687
2688 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2689 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2690 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2691 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2692
2693 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2694
2695 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2696 }
2697
2698 return VINF_SUCCESS;
2699}
2700
2701
2702/**
2703 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2704 * the VMCS.
2705 *
2706 * @returns VBox status code.
2707 * @param pVM Pointer to the VM.
2708 * @param pVCpu Pointer to the VMCPU.
2709 */
2710DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2711{
2712 NOREF(pVM); NOREF(pVCpu);
2713
2714 RTCCUINTREG uReg = ASMGetCR0();
2715 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2716 AssertRCReturn(rc, rc);
2717
2718#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2719 /* For the darwin 32-bit hybrid kernel, we need the 64-bit CR3 as it uses 64-bit paging. */
2720 if (HMVMX_IS_64BIT_HOST_MODE())
2721 {
2722 uint64_t uRegCR3 = HMR0Get64bitCR3();
2723 rc = VMXWriteVmcs64(VMX_VMCS_HOST_CR3, uRegCR3);
2724 }
2725 else
2726#endif
2727 {
2728 uReg = ASMGetCR3();
2729 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2730 }
2731 AssertRCReturn(rc, rc);
2732
2733 uReg = ASMGetCR4();
2734 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2735 AssertRCReturn(rc, rc);
2736 return rc;
2737}
2738
2739
2740#if HC_ARCH_BITS == 64
2741/**
2742 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2743 * requirements. See hmR0VmxSaveHostSegmentRegs().
2744 */
2745# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2746 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2747 { \
2748 bool fValidSelector = true; \
2749 if ((selValue) & X86_SEL_LDT) \
2750 { \
2751 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2752 fValidSelector = RT_BOOL(uAttr != ~0U && (uAttr & X86_DESC_P)); \
2753 } \
2754 if (fValidSelector) \
2755 { \
2756 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2757 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2758 } \
2759 (selValue) = 0; \
2760 }
2761#endif
2762
2763
2764/**
2765 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2766 * the host-state area in the VMCS.
2767 *
2768 * @returns VBox status code.
2769 * @param pVM Pointer to the VM.
2770 * @param pVCpu Pointer to the VMCPU.
2771 */
2772DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2773{
2774 NOREF(pVM);
2775 int rc = VERR_INTERNAL_ERROR_5;
2776
2777 /*
2778 * Host DS, ES, FS and GS segment registers.
2779 */
2780#if HC_ARCH_BITS == 64
2781 RTSEL uSelDS = ASMGetDS();
2782 RTSEL uSelES = ASMGetES();
2783 RTSEL uSelFS = ASMGetFS();
2784 RTSEL uSelGS = ASMGetGS();
2785#else
2786 RTSEL uSelDS = 0;
2787 RTSEL uSelES = 0;
2788 RTSEL uSelFS = 0;
2789 RTSEL uSelGS = 0;
2790#endif
2791
2792 /* Recalculate which host-state bits need to be manually restored. */
2793 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2794
2795 /*
2796 * Host CS and SS segment registers.
2797 */
2798#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2799 RTSEL uSelCS;
2800 RTSEL uSelSS;
2801 if (HMVMX_IS_64BIT_HOST_MODE())
2802 {
2803 uSelCS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
2804 uSelSS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
2805 }
2806 else
2807 {
2808 /* Seems darwin uses the LDT (TI flag is set) in the CS & SS selectors which VT-x doesn't like. */
2809 uSelCS = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
2810 uSelSS = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
2811 }
2812#else
2813 RTSEL uSelCS = ASMGetCS();
2814 RTSEL uSelSS = ASMGetSS();
2815#endif
2816
2817 /*
2818 * Host TR segment register.
2819 */
2820 RTSEL uSelTR = ASMGetTR();
2821
2822#if HC_ARCH_BITS == 64
2823 /*
2824 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2825 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2826 */
2827 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2828 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2829 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2830 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2831# undef VMXLOCAL_ADJUST_HOST_SEG
2832#endif
2833
2834 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2835 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2836 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2837 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2838 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2839 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2840 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2841 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2842 Assert(uSelCS);
2843 Assert(uSelTR);
2844
2845 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2846#if 0
2847 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2848 Assert(uSelSS != 0);
2849#endif
2850
2851 /* Write these host selector fields into the host-state area in the VMCS. */
2852 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_CS, uSelCS); AssertRCReturn(rc, rc);
2853 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_SS, uSelSS); AssertRCReturn(rc, rc);
2854#if HC_ARCH_BITS == 64
2855 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_DS, uSelDS); AssertRCReturn(rc, rc);
2856 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_ES, uSelES); AssertRCReturn(rc, rc);
2857 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_FS, uSelFS); AssertRCReturn(rc, rc);
2858 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_GS, uSelGS); AssertRCReturn(rc, rc);
2859#endif
2860 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_TR, uSelTR); AssertRCReturn(rc, rc);
2861
2862 /*
2863 * Host GDTR and IDTR.
2864 */
2865 RTGDTR Gdtr;
2866 RT_ZERO(Gdtr);
2867#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2868 if (HMVMX_IS_64BIT_HOST_MODE())
2869 {
2870 X86XDTR64 Gdtr64;
2871 X86XDTR64 Idtr64;
2872 HMR0Get64bitGdtrAndIdtr(&Gdtr64, &Idtr64);
2873 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, Gdtr64.uAddr); AssertRCReturn(rc, rc);
2874 rc = VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, Idtr64.uAddr); AssertRCReturn(rc, rc);
2875
2876 Gdtr.cbGdt = Gdtr64.cb;
2877 Gdtr.pGdt = (uintptr_t)Gdtr64.uAddr;
2878 }
2879 else
2880#endif
2881 {
2882 RTIDTR Idtr;
2883 ASMGetGDTR(&Gdtr);
2884 ASMGetIDTR(&Idtr);
2885 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRCReturn(rc, rc);
2886 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRCReturn(rc, rc);
2887
2888#if HC_ARCH_BITS == 64
2889 /*
2890 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
2891 * maximum limit (0xffff) on every VM-exit.
2892 */
2893 if (Gdtr.cbGdt != 0xffff)
2894 {
2895 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2896 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
2897 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
2898 }
2899
2900 /*
2901 * IDT limit is practically 0xfff. Therefore if the host has the limit as 0xfff, VT-x bloating the limit to 0xffff
2902 * is not a problem as it's not possible to get at them anyway. See Intel spec. 6.14.1 "64-Bit Mode IDT" and
2903 * Intel spec. 6.2 "Exception and Interrupt Vectors".
2904 */
2905 if (Idtr.cbIdt < 0x0fff)
2906 {
2907 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
2908 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
2909 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
2910 }
2911#endif
2912 }
2913
2914 /*
2915 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
2916 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
2917 */
2918 if ((uSelTR & X86_SEL_MASK) > Gdtr.cbGdt)
2919 {
2920 AssertMsgFailed(("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt));
2921 return VERR_VMX_INVALID_HOST_STATE;
2922 }
2923
2924 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
2925#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2926 if (HMVMX_IS_64BIT_HOST_MODE())
2927 {
2928 /* We need the 64-bit TR base for hybrid darwin. */
2929 uint64_t u64TRBase = X86DESC64_BASE((PX86DESC64)pDesc);
2930 rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, u64TRBase);
2931 }
2932 else
2933#endif
2934 {
2935 uintptr_t uTRBase;
2936#if HC_ARCH_BITS == 64
2937 uTRBase = X86DESC64_BASE(pDesc);
2938
2939 /*
2940 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
2941 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
2942 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
2943 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
2944 *
2945 * [1] See Intel spec. 3.5 "System Descriptor Types".
2946 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
2947 */
2948 Assert(pDesc->System.u4Type == 11);
2949 if ( pDesc->System.u16LimitLow != 0x67
2950 || pDesc->System.u4LimitHigh)
2951 {
2952 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
2953 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
2954
2955 /* Store the GDTR here as we need it while restoring TR. */
2956 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
2957 }
2958#else
2959 uTRBase = X86DESC_BASE(pDesc);
2960#endif
2961 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
2962 }
2963 AssertRCReturn(rc, rc);
2964
2965 /*
2966 * Host FS base and GS base.
2967 */
2968#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2969 if (HMVMX_IS_64BIT_HOST_MODE())
2970 {
2971 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
2972 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
2973 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRCReturn(rc, rc);
2974 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRCReturn(rc, rc);
2975
2976# if HC_ARCH_BITS == 64
2977 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
2978 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
2979 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
2980 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
2981 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
2982# endif
2983 }
2984#endif
2985 return rc;
2986}
2987
2988
2989/**
2990 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
2991 * host-state area of the VMCS. Theses MSRs will be automatically restored on
2992 * the host after every successful VM-exit.
2993 *
2994 * @returns VBox status code.
2995 * @param pVM Pointer to the VM.
2996 * @param pVCpu Pointer to the VMCPU.
2997 *
2998 * @remarks No-long-jump zone!!!
2999 */
3000DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3001{
3002 NOREF(pVM);
3003
3004 AssertPtr(pVCpu);
3005 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3006
3007 int rc = VINF_SUCCESS;
3008#if HC_ARCH_BITS == 64
3009 if (pVM->hm.s.fAllow64BitGuests)
3010 hmR0VmxLazySaveHostMsrs(pVCpu);
3011#endif
3012
3013 if (pVCpu->hm.s.vmx.cMsrs > 0)
3014 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
3015
3016 /*
3017 * Host Sysenter MSRs.
3018 */
3019 rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3020 AssertRCReturn(rc, rc);
3021#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3022 if (HMVMX_IS_64BIT_HOST_MODE())
3023 {
3024 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3025 AssertRCReturn(rc, rc);
3026 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3027 }
3028 else
3029 {
3030 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3031 AssertRCReturn(rc, rc);
3032 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3033 }
3034#elif HC_ARCH_BITS == 32
3035 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3036 AssertRCReturn(rc, rc);
3037 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3038#else
3039 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3040 AssertRCReturn(rc, rc);
3041 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3042#endif
3043 AssertRCReturn(rc, rc);
3044
3045 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT, IA32_EFER, also see
3046 * hmR0VmxSetupExitCtls() !! */
3047 return rc;
3048}
3049
3050
3051/**
3052 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3053 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3054 * controls".
3055 *
3056 * @returns VBox status code.
3057 * @param pVCpu Pointer to the VMCPU.
3058 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3059 * out-of-sync. Make sure to update the required fields
3060 * before using them.
3061 *
3062 * @remarks No-long-jump zone!!!
3063 */
3064DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3065{
3066 int rc = VINF_SUCCESS;
3067 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3068 {
3069 PVM pVM = pVCpu->CTX_SUFF(pVM);
3070 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3071 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3072
3073 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3074 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3075
3076 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3077 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3078 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3079 else
3080 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3081
3082 /*
3083 * The following should -not- be set (since we're not in SMM mode):
3084 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3085 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3086 */
3087
3088 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3089 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR,
3090 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR */
3091
3092 if ((val & zap) != val)
3093 {
3094 LogRel(("hmR0VmxLoadGuestEntryCtls: invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3095 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3096 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3097 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3098 }
3099
3100 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3101 AssertRCReturn(rc, rc);
3102
3103 /* Update VCPU with the currently set VM-exit controls. */
3104 pVCpu->hm.s.vmx.u32EntryCtls = val;
3105 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3106 }
3107 return rc;
3108}
3109
3110
3111/**
3112 * Sets up the VM-exit controls in the VMCS.
3113 *
3114 * @returns VBox status code.
3115 * @param pVM Pointer to the VM.
3116 * @param pVCpu Pointer to the VMCPU.
3117 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3118 * out-of-sync. Make sure to update the required fields
3119 * before using them.
3120 *
3121 * @remarks requires EFER.
3122 */
3123DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3124{
3125 NOREF(pMixedCtx);
3126
3127 int rc = VINF_SUCCESS;
3128 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3129 {
3130 PVM pVM = pVCpu->CTX_SUFF(pVM);
3131 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3132 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3133
3134 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3135 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3136
3137 /*
3138 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3139 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3140 */
3141#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3142 if (HMVMX_IS_64BIT_HOST_MODE())
3143 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3144 else
3145 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3146#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3147 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3148 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE; /* The switcher goes to long mode. */
3149 else
3150 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3151#endif
3152
3153 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3154 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3155
3156 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3157 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3158 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR,
3159 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR,
3160 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR. */
3161
3162 if (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER)
3163 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3164
3165 if ((val & zap) != val)
3166 {
3167 LogRel(("hmR0VmxSetupProcCtls: invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3168 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3169 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3170 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3171 }
3172
3173 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3174 AssertRCReturn(rc, rc);
3175
3176 /* Update VCPU with the currently set VM-exit controls. */
3177 pVCpu->hm.s.vmx.u32ExitCtls = val;
3178 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3179 }
3180 return rc;
3181}
3182
3183
3184/**
3185 * Loads the guest APIC and related state.
3186 *
3187 * @returns VBox status code.
3188 * @param pVM Pointer to the VM.
3189 * @param pVCpu Pointer to the VMCPU.
3190 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3191 * out-of-sync. Make sure to update the required fields
3192 * before using them.
3193 */
3194DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3195{
3196 NOREF(pMixedCtx);
3197
3198 int rc = VINF_SUCCESS;
3199 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3200 {
3201 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
3202 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3203 {
3204 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3205
3206 bool fPendingIntr = false;
3207 uint8_t u8Tpr = 0;
3208 uint8_t u8PendingIntr = 0;
3209 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3210 AssertRCReturn(rc, rc);
3211
3212 /*
3213 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
3214 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
3215 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
3216 * the interrupt when we VM-exit for other reasons.
3217 */
3218 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
3219 uint32_t u32TprThreshold = 0;
3220 if (fPendingIntr)
3221 {
3222 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3223 const uint8_t u8PendingPriority = (u8PendingIntr >> 4) & 0xf;
3224 const uint8_t u8TprPriority = (u8Tpr >> 4) & 0xf;
3225 if (u8PendingPriority <= u8TprPriority)
3226 u32TprThreshold = u8PendingPriority;
3227 else
3228 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
3229 }
3230 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3231
3232 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3233 AssertRCReturn(rc, rc);
3234 }
3235
3236 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3237 }
3238 return rc;
3239}
3240
3241
3242/**
3243 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3244 *
3245 * @returns Guest's interruptibility-state.
3246 * @param pVCpu Pointer to the VMCPU.
3247 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3248 * out-of-sync. Make sure to update the required fields
3249 * before using them.
3250 *
3251 * @remarks No-long-jump zone!!!
3252 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3253 */
3254DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3255{
3256 /*
3257 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
3258 * inhibit interrupts or clear any existing interrupt-inhibition.
3259 */
3260 uint32_t uIntrState = 0;
3261 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3262 {
3263 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3264 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3265 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3266 if (pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
3267 {
3268 /*
3269 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3270 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3271 */
3272 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3273 }
3274 else if (pMixedCtx->eflags.Bits.u1IF)
3275 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3276 else
3277 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3278 }
3279 return uIntrState;
3280}
3281
3282
3283/**
3284 * Loads the guest's interruptibility-state into the guest-state area in the
3285 * VMCS.
3286 *
3287 * @returns VBox status code.
3288 * @param pVCpu Pointer to the VMCPU.
3289 * @param uIntrState The interruptibility-state to set.
3290 */
3291static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3292{
3293 NOREF(pVCpu);
3294 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3295 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3296 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3297 AssertRCReturn(rc, rc);
3298 return rc;
3299}
3300
3301
3302/**
3303 * Loads the guest's RIP into the guest-state area in the VMCS.
3304 *
3305 * @returns VBox status code.
3306 * @param pVCpu Pointer to the VMCPU.
3307 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3308 * out-of-sync. Make sure to update the required fields
3309 * before using them.
3310 *
3311 * @remarks No-long-jump zone!!!
3312 */
3313static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3314{
3315 int rc = VINF_SUCCESS;
3316 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3317 {
3318 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3319 AssertRCReturn(rc, rc);
3320
3321 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3322 Log4(("Load: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pMixedCtx->rip, HMCPU_CF_VALUE(pVCpu)));
3323 }
3324 return rc;
3325}
3326
3327
3328/**
3329 * Loads the guest's RSP into the guest-state area in the VMCS.
3330 *
3331 * @returns VBox status code.
3332 * @param pVCpu Pointer to the VMCPU.
3333 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3334 * out-of-sync. Make sure to update the required fields
3335 * before using them.
3336 *
3337 * @remarks No-long-jump zone!!!
3338 */
3339static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3340{
3341 int rc = VINF_SUCCESS;
3342 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3343 {
3344 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3345 AssertRCReturn(rc, rc);
3346
3347 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3348 Log4(("Load: VMX_VMCS_GUEST_RSP=%#RX64\n", pMixedCtx->rsp));
3349 }
3350 return rc;
3351}
3352
3353
3354/**
3355 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3356 *
3357 * @returns VBox status code.
3358 * @param pVCpu Pointer to the VMCPU.
3359 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3360 * out-of-sync. Make sure to update the required fields
3361 * before using them.
3362 *
3363 * @remarks No-long-jump zone!!!
3364 */
3365static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3366{
3367 int rc = VINF_SUCCESS;
3368 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3369 {
3370 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3371 Let us assert it as such and use 32-bit VMWRITE. */
3372 Assert(!(pMixedCtx->rflags.u64 >> 32));
3373 X86EFLAGS Eflags = pMixedCtx->eflags;
3374 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3375 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3376
3377 /*
3378 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3379 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3380 */
3381 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3382 {
3383 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3384 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3385 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3386 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3387 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3388 }
3389
3390 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3391 AssertRCReturn(rc, rc);
3392
3393 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3394 Log4(("Load: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", Eflags.u32));
3395 }
3396 return rc;
3397}
3398
3399
3400/**
3401 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3402 *
3403 * @returns VBox status code.
3404 * @param pVCpu Pointer to the VMCPU.
3405 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3406 * out-of-sync. Make sure to update the required fields
3407 * before using them.
3408 *
3409 * @remarks No-long-jump zone!!!
3410 */
3411DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3412{
3413 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3414 AssertRCReturn(rc, rc);
3415 rc = hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3416 AssertRCReturn(rc, rc);
3417 rc = hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3418 AssertRCReturn(rc, rc);
3419 return rc;
3420}
3421
3422
3423/**
3424 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3425 * CR0 is partially shared with the host and we have to consider the FPU bits.
3426 *
3427 * @returns VBox status code.
3428 * @param pVM Pointer to the VM.
3429 * @param pVCpu Pointer to the VMCPU.
3430 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3431 * out-of-sync. Make sure to update the required fields
3432 * before using them.
3433 *
3434 * @remarks No-long-jump zone!!!
3435 */
3436static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3437{
3438 /*
3439 * Guest CR0.
3440 * Guest FPU.
3441 */
3442 int rc = VINF_SUCCESS;
3443 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3444 {
3445 Assert(!(pMixedCtx->cr0 >> 32));
3446 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3447 PVM pVM = pVCpu->CTX_SUFF(pVM);
3448
3449 /* The guest's view (read access) of its CR0 is unblemished. */
3450 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3451 AssertRCReturn(rc, rc);
3452 Log4(("Load: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", u32GuestCR0));
3453
3454 /* Setup VT-x's view of the guest CR0. */
3455 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3456 if (pVM->hm.s.fNestedPaging)
3457 {
3458 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3459 {
3460 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3461 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3462 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3463 }
3464 else
3465 {
3466 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3467 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3468 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3469 }
3470
3471 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3472 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3473 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3474
3475 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3476 AssertRCReturn(rc, rc);
3477 }
3478 else
3479 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3480
3481 /*
3482 * Guest FPU bits.
3483 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3484 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3485 */
3486 u32GuestCR0 |= X86_CR0_NE;
3487 bool fInterceptNM = false;
3488 if (CPUMIsGuestFPUStateActive(pVCpu))
3489 {
3490 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3491 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3492 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3493 }
3494 else
3495 {
3496 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3497 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3498 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3499 }
3500
3501 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3502 bool fInterceptMF = false;
3503 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3504 fInterceptMF = true;
3505
3506 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3507 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3508 {
3509 Assert(PDMVmmDevHeapIsEnabled(pVM));
3510 Assert(pVM->hm.s.vmx.pRealModeTSS);
3511 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3512 fInterceptNM = true;
3513 fInterceptMF = true;
3514 }
3515 else
3516 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3517
3518 if (fInterceptNM)
3519 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3520 else
3521 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3522
3523 if (fInterceptMF)
3524 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3525 else
3526 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3527
3528 /* Additional intercepts for debugging, define these yourself explicitly. */
3529#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3530 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3531 | RT_BIT(X86_XCPT_BP)
3532 | RT_BIT(X86_XCPT_DB)
3533 | RT_BIT(X86_XCPT_DE)
3534 | RT_BIT(X86_XCPT_NM)
3535 | RT_BIT(X86_XCPT_UD)
3536 | RT_BIT(X86_XCPT_NP)
3537 | RT_BIT(X86_XCPT_SS)
3538 | RT_BIT(X86_XCPT_GP)
3539 | RT_BIT(X86_XCPT_PF)
3540 | RT_BIT(X86_XCPT_MF)
3541 ;
3542#elif defined(HMVMX_ALWAYS_TRAP_PF)
3543 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3544#endif
3545
3546 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3547
3548 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3549 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3550 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3551 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3552 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3553 else
3554 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3555
3556 u32GuestCR0 |= uSetCR0;
3557 u32GuestCR0 &= uZapCR0;
3558 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3559
3560 /* Write VT-x's view of the guest CR0 into the VMCS and update the exception bitmap. */
3561 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3562 AssertRCReturn(rc, rc);
3563 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3564 AssertRCReturn(rc, rc);
3565 Log4(("Load: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", u32GuestCR0, uSetCR0, uZapCR0));
3566
3567 /*
3568 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3569 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3570 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3571 */
3572 uint32_t u32CR0Mask = 0;
3573 u32CR0Mask = X86_CR0_PE
3574 | X86_CR0_NE
3575 | X86_CR0_WP
3576 | X86_CR0_PG
3577 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3578 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3579 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3580
3581 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3582 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3583 * and @bugref{6944}. */
3584#if 0
3585 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3586 u32CR0Mask &= ~X86_CR0_PE;
3587#endif
3588 if (pVM->hm.s.fNestedPaging)
3589 u32CR0Mask &= ~X86_CR0_WP;
3590
3591 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3592 if (fInterceptNM)
3593 {
3594 u32CR0Mask |= X86_CR0_TS
3595 | X86_CR0_MP;
3596 }
3597
3598 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3599 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3600 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3601 AssertRCReturn(rc, rc);
3602 Log4(("Load: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", u32CR0Mask));
3603
3604 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3605 }
3606 return rc;
3607}
3608
3609
3610/**
3611 * Loads the guest control registers (CR3, CR4) into the guest-state area
3612 * in the VMCS.
3613 *
3614 * @returns VBox status code.
3615 * @param pVM Pointer to the VM.
3616 * @param pVCpu Pointer to the VMCPU.
3617 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3618 * out-of-sync. Make sure to update the required fields
3619 * before using them.
3620 *
3621 * @remarks No-long-jump zone!!!
3622 */
3623static int hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3624{
3625 int rc = VINF_SUCCESS;
3626 PVM pVM = pVCpu->CTX_SUFF(pVM);
3627
3628 /*
3629 * Guest CR2.
3630 * It's always loaded in the assembler code. Nothing to do here.
3631 */
3632
3633 /*
3634 * Guest CR3.
3635 */
3636 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3637 {
3638 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3639 if (pVM->hm.s.fNestedPaging)
3640 {
3641 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3642
3643 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3644 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3645 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3646 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3647
3648 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3649 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3650 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3651
3652 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3653 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3654 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x3f) == 0, /* Bits 6:11 MBZ. */
3655 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3656
3657 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3658 AssertRCReturn(rc, rc);
3659 Log4(("Load: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3660
3661 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3662 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3663 {
3664 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3665 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3666 {
3667 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]); AssertRCReturn(rc, rc);
3668 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
3669 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
3670 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
3671 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
3672 }
3673
3674 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3675 have Unrestricted Execution to handle the guest when it's not using paging. */
3676 GCPhysGuestCR3 = pMixedCtx->cr3;
3677 }
3678 else
3679 {
3680 /*
3681 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3682 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3683 * EPT takes care of translating it to host-physical addresses.
3684 */
3685 RTGCPHYS GCPhys;
3686 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3687 Assert(PDMVmmDevHeapIsEnabled(pVM));
3688
3689 /* We obtain it here every time as the guest could have relocated this PCI region. */
3690 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3691 AssertRCReturn(rc, rc);
3692
3693 GCPhysGuestCR3 = GCPhys;
3694 }
3695
3696 Log4(("Load: VMX_VMCS_GUEST_CR3=%#RGv (GstN)\n", GCPhysGuestCR3));
3697 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3698 }
3699 else
3700 {
3701 /* Non-nested paging case, just use the hypervisor's CR3. */
3702 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3703
3704 Log4(("Load: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", HCPhysGuestCR3));
3705 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3706 }
3707 AssertRCReturn(rc, rc);
3708
3709 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
3710 }
3711
3712 /*
3713 * Guest CR4.
3714 */
3715 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
3716 {
3717 Assert(!(pMixedCtx->cr4 >> 32));
3718 uint32_t u32GuestCR4 = pMixedCtx->cr4;
3719
3720 /* The guest's view of its CR4 is unblemished. */
3721 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
3722 AssertRCReturn(rc, rc);
3723 Log4(("Load: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", u32GuestCR4));
3724
3725 /* Setup VT-x's view of the guest CR4. */
3726 /*
3727 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
3728 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3729 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3730 */
3731 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3732 {
3733 Assert(pVM->hm.s.vmx.pRealModeTSS);
3734 Assert(PDMVmmDevHeapIsEnabled(pVM));
3735 u32GuestCR4 &= ~X86_CR4_VME;
3736 }
3737
3738 if (pVM->hm.s.fNestedPaging)
3739 {
3740 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
3741 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3742 {
3743 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3744 u32GuestCR4 |= X86_CR4_PSE;
3745 /* Our identity mapping is a 32-bit page directory. */
3746 u32GuestCR4 &= ~X86_CR4_PAE;
3747 }
3748 /* else use guest CR4.*/
3749 }
3750 else
3751 {
3752 /*
3753 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3754 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3755 */
3756 switch (pVCpu->hm.s.enmShadowMode)
3757 {
3758 case PGMMODE_REAL: /* Real-mode. */
3759 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3760 case PGMMODE_32_BIT: /* 32-bit paging. */
3761 {
3762 u32GuestCR4 &= ~X86_CR4_PAE;
3763 break;
3764 }
3765
3766 case PGMMODE_PAE: /* PAE paging. */
3767 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3768 {
3769 u32GuestCR4 |= X86_CR4_PAE;
3770 break;
3771 }
3772
3773 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3774 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3775#ifdef VBOX_ENABLE_64_BITS_GUESTS
3776 break;
3777#endif
3778 default:
3779 AssertFailed();
3780 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3781 }
3782 }
3783
3784 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3785 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3786 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3787 u32GuestCR4 |= uSetCR4;
3788 u32GuestCR4 &= uZapCR4;
3789
3790 /* Write VT-x's view of the guest CR4 into the VMCS. */
3791 Log4(("Load: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", u32GuestCR4, uSetCR4, uZapCR4));
3792 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
3793 AssertRCReturn(rc, rc);
3794
3795 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
3796 uint32_t u32CR4Mask = 0;
3797 u32CR4Mask = X86_CR4_VME
3798 | X86_CR4_PAE
3799 | X86_CR4_PGE
3800 | X86_CR4_PSE
3801 | X86_CR4_VMXE;
3802 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
3803 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
3804 AssertRCReturn(rc, rc);
3805
3806 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
3807 }
3808 return rc;
3809}
3810
3811
3812/**
3813 * Loads the guest debug registers into the guest-state area in the VMCS.
3814 * This also sets up whether #DB and MOV DRx accesses cause VM-exits.
3815 *
3816 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
3817 *
3818 * @returns VBox status code.
3819 * @param pVCpu Pointer to the VMCPU.
3820 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3821 * out-of-sync. Make sure to update the required fields
3822 * before using them.
3823 *
3824 * @remarks No-long-jump zone!!!
3825 */
3826static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3827{
3828 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
3829 return VINF_SUCCESS;
3830
3831#ifdef VBOX_STRICT
3832 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
3833 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
3834 {
3835 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
3836 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
3837 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
3838 }
3839#endif
3840
3841 int rc;
3842 PVM pVM = pVCpu->CTX_SUFF(pVM);
3843 bool fInterceptDB = false;
3844 bool fInterceptMovDRx = false;
3845 if ( pVCpu->hm.s.fSingleInstruction
3846 || DBGFIsStepping(pVCpu))
3847 {
3848 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
3849 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
3850 {
3851 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
3852 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3853 AssertRCReturn(rc, rc);
3854 Assert(fInterceptDB == false);
3855 }
3856 else
3857 {
3858 pMixedCtx->eflags.u32 |= X86_EFL_TF;
3859 pVCpu->hm.s.fClearTrapFlag = true;
3860 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3861 fInterceptDB = true;
3862 }
3863 }
3864
3865 if ( fInterceptDB
3866 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
3867 {
3868 /*
3869 * Use the combined guest and host DRx values found in the hypervisor
3870 * register set because the debugger has breakpoints active or someone
3871 * is single stepping on the host side without a monitor trap flag.
3872 *
3873 * Note! DBGF expects a clean DR6 state before executing guest code.
3874 */
3875#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3876 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
3877 && !CPUMIsHyperDebugStateActivePending(pVCpu))
3878 {
3879 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
3880 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
3881 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
3882 }
3883 else
3884#endif
3885 if (!CPUMIsHyperDebugStateActive(pVCpu))
3886 {
3887 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
3888 Assert(CPUMIsHyperDebugStateActive(pVCpu));
3889 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3890 }
3891
3892 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
3893 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
3894 AssertRCReturn(rc, rc);
3895
3896 pVCpu->hm.s.fUsingHyperDR7 = true;
3897 fInterceptDB = true;
3898 fInterceptMovDRx = true;
3899 }
3900 else
3901 {
3902 /*
3903 * If the guest has enabled debug registers, we need to load them prior to
3904 * executing guest code so they'll trigger at the right time.
3905 */
3906 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
3907 {
3908#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3909 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
3910 && !CPUMIsGuestDebugStateActivePending(pVCpu))
3911 {
3912 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
3913 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
3914 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
3915 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
3916 }
3917 else
3918#endif
3919 if (!CPUMIsGuestDebugStateActive(pVCpu))
3920 {
3921 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
3922 Assert(CPUMIsGuestDebugStateActive(pVCpu));
3923 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3924 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
3925 }
3926 Assert(!fInterceptDB);
3927 Assert(!fInterceptMovDRx);
3928 }
3929 /*
3930 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
3931 * must intercept #DB in order to maintain a correct DR6 guest value.
3932 */
3933#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3934 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
3935 && !CPUMIsGuestDebugStateActive(pVCpu))
3936#else
3937 else if (!CPUMIsGuestDebugStateActive(pVCpu))
3938#endif
3939 {
3940 fInterceptMovDRx = true;
3941 fInterceptDB = true;
3942 }
3943
3944 /* Update guest DR7. */
3945 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
3946 AssertRCReturn(rc, rc);
3947
3948 pVCpu->hm.s.fUsingHyperDR7 = false;
3949 }
3950
3951 /*
3952 * Update the exception bitmap regarding intercepting #DB generated by the guest.
3953 */
3954 if (fInterceptDB)
3955 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_DB);
3956 else if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3957 {
3958#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3959 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
3960#endif
3961 }
3962 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3963 AssertRCReturn(rc, rc);
3964
3965 /*
3966 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
3967 */
3968 if (fInterceptMovDRx)
3969 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
3970 else
3971 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
3972 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3973 AssertRCReturn(rc, rc);
3974
3975 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
3976 return VINF_SUCCESS;
3977}
3978
3979
3980#ifdef VBOX_STRICT
3981/**
3982 * Strict function to validate segment registers.
3983 *
3984 * @remarks ASSUMES CR0 is up to date.
3985 */
3986static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3987{
3988 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
3989 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
3990 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
3991 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3992 && ( !CPUMIsGuestInRealModeEx(pCtx)
3993 && !CPUMIsGuestInV86ModeEx(pCtx)))
3994 {
3995 /* Protected mode checks */
3996 /* CS */
3997 Assert(pCtx->cs.Attr.n.u1Present);
3998 Assert(!(pCtx->cs.Attr.u & 0xf00));
3999 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4000 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4001 || !(pCtx->cs.Attr.n.u1Granularity));
4002 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4003 || (pCtx->cs.Attr.n.u1Granularity));
4004 /* CS cannot be loaded with NULL in protected mode. */
4005 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS?!? */
4006 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4007 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4008 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4009 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4010 else
4011 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4012 /* SS */
4013 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4014 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4015 if ( !(pCtx->cr0 & X86_CR0_PE)
4016 || pCtx->cs.Attr.n.u4Type == 3)
4017 {
4018 Assert(!pCtx->ss.Attr.n.u2Dpl);
4019 }
4020 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4021 {
4022 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4023 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4024 Assert(pCtx->ss.Attr.n.u1Present);
4025 Assert(!(pCtx->ss.Attr.u & 0xf00));
4026 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4027 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4028 || !(pCtx->ss.Attr.n.u1Granularity));
4029 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4030 || (pCtx->ss.Attr.n.u1Granularity));
4031 }
4032 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4033 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4034 {
4035 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4036 Assert(pCtx->ds.Attr.n.u1Present);
4037 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4038 Assert(!(pCtx->ds.Attr.u & 0xf00));
4039 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4040 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4041 || !(pCtx->ds.Attr.n.u1Granularity));
4042 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4043 || (pCtx->ds.Attr.n.u1Granularity));
4044 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4045 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4046 }
4047 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4048 {
4049 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4050 Assert(pCtx->es.Attr.n.u1Present);
4051 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4052 Assert(!(pCtx->es.Attr.u & 0xf00));
4053 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4054 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4055 || !(pCtx->es.Attr.n.u1Granularity));
4056 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4057 || (pCtx->es.Attr.n.u1Granularity));
4058 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4059 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4060 }
4061 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4062 {
4063 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4064 Assert(pCtx->fs.Attr.n.u1Present);
4065 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4066 Assert(!(pCtx->fs.Attr.u & 0xf00));
4067 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4068 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4069 || !(pCtx->fs.Attr.n.u1Granularity));
4070 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4071 || (pCtx->fs.Attr.n.u1Granularity));
4072 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4073 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4074 }
4075 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4076 {
4077 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4078 Assert(pCtx->gs.Attr.n.u1Present);
4079 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4080 Assert(!(pCtx->gs.Attr.u & 0xf00));
4081 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4082 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4083 || !(pCtx->gs.Attr.n.u1Granularity));
4084 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4085 || (pCtx->gs.Attr.n.u1Granularity));
4086 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4087 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4088 }
4089 /* 64-bit capable CPUs. */
4090# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4091 if (HMVMX_IS_64BIT_HOST_MODE())
4092 {
4093 Assert(!(pCtx->cs.u64Base >> 32));
4094 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4095 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4096 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4097 }
4098# endif
4099 }
4100 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4101 || ( CPUMIsGuestInRealModeEx(pCtx)
4102 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4103 {
4104 /* Real and v86 mode checks. */
4105 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4106 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4107 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4108 {
4109 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4110 }
4111 else
4112 {
4113 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4114 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4115 }
4116
4117 /* CS */
4118 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4119 Assert(pCtx->cs.u32Limit == 0xffff);
4120 Assert(u32CSAttr == 0xf3);
4121 /* SS */
4122 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4123 Assert(pCtx->ss.u32Limit == 0xffff);
4124 Assert(u32SSAttr == 0xf3);
4125 /* DS */
4126 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4127 Assert(pCtx->ds.u32Limit == 0xffff);
4128 Assert(u32DSAttr == 0xf3);
4129 /* ES */
4130 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4131 Assert(pCtx->es.u32Limit == 0xffff);
4132 Assert(u32ESAttr == 0xf3);
4133 /* FS */
4134 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4135 Assert(pCtx->fs.u32Limit == 0xffff);
4136 Assert(u32FSAttr == 0xf3);
4137 /* GS */
4138 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4139 Assert(pCtx->gs.u32Limit == 0xffff);
4140 Assert(u32GSAttr == 0xf3);
4141 /* 64-bit capable CPUs. */
4142# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4143 if (HMVMX_IS_64BIT_HOST_MODE())
4144 {
4145 Assert(!(pCtx->cs.u64Base >> 32));
4146 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4147 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4148 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4149 }
4150# endif
4151 }
4152}
4153#endif /* VBOX_STRICT */
4154
4155
4156/**
4157 * Writes a guest segment register into the guest-state area in the VMCS.
4158 *
4159 * @returns VBox status code.
4160 * @param pVCpu Pointer to the VMCPU.
4161 * @param idxSel Index of the selector in the VMCS.
4162 * @param idxLimit Index of the segment limit in the VMCS.
4163 * @param idxBase Index of the segment base in the VMCS.
4164 * @param idxAccess Index of the access rights of the segment in the VMCS.
4165 * @param pSelReg Pointer to the segment selector.
4166 *
4167 * @remarks No-long-jump zone!!!
4168 */
4169static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4170 uint32_t idxAccess, PCPUMSELREG pSelReg)
4171{
4172 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4173 AssertRCReturn(rc, rc);
4174 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4175 AssertRCReturn(rc, rc);
4176 rc = VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4177 AssertRCReturn(rc, rc);
4178
4179 uint32_t u32Access = pSelReg->Attr.u;
4180 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4181 {
4182 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4183 u32Access = 0xf3;
4184 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4185 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4186 }
4187 else
4188 {
4189 /*
4190 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4191 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4192 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4193 * loaded in protected-mode have their attribute as 0.
4194 */
4195 if (!u32Access)
4196 u32Access = X86DESCATTR_UNUSABLE;
4197 }
4198
4199 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4200 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4201 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4202
4203 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4204 AssertRCReturn(rc, rc);
4205 return rc;
4206}
4207
4208
4209/**
4210 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4211 * into the guest-state area in the VMCS.
4212 *
4213 * @returns VBox status code.
4214 * @param pVM Pointer to the VM.
4215 * @param pVCPU Pointer to the VMCPU.
4216 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4217 * out-of-sync. Make sure to update the required fields
4218 * before using them.
4219 *
4220 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4221 * @remarks No-long-jump zone!!!
4222 */
4223static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4224{
4225 int rc = VERR_INTERNAL_ERROR_5;
4226 PVM pVM = pVCpu->CTX_SUFF(pVM);
4227
4228 /*
4229 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4230 */
4231 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4232 {
4233 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4234 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4235 {
4236 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4237 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4238 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4239 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4240 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4241 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4242 }
4243
4244#ifdef VBOX_WITH_REM
4245 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4246 {
4247 Assert(pVM->hm.s.vmx.pRealModeTSS);
4248 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4249 if ( pVCpu->hm.s.vmx.fWasInRealMode
4250 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4251 {
4252 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4253 in real-mode (e.g. OpenBSD 4.0) */
4254 REMFlushTBs(pVM);
4255 Log4(("Load: Switch to protected mode detected!\n"));
4256 pVCpu->hm.s.vmx.fWasInRealMode = false;
4257 }
4258 }
4259#endif
4260 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_CS, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4261 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4262 AssertRCReturn(rc, rc);
4263 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_SS, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4264 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4265 AssertRCReturn(rc, rc);
4266 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_DS, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4267 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4268 AssertRCReturn(rc, rc);
4269 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_ES, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4270 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4271 AssertRCReturn(rc, rc);
4272 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_FS, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4273 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4274 AssertRCReturn(rc, rc);
4275 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_GS, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4276 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4277 AssertRCReturn(rc, rc);
4278
4279#ifdef VBOX_STRICT
4280 /* Validate. */
4281 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4282#endif
4283
4284 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4285 Log4(("Load: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pMixedCtx->cs.Sel, pMixedCtx->cs.u64Base,
4286 pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4287 }
4288
4289 /*
4290 * Guest TR.
4291 */
4292 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4293 {
4294 /*
4295 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4296 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4297 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4298 */
4299 uint16_t u16Sel = 0;
4300 uint32_t u32Limit = 0;
4301 uint64_t u64Base = 0;
4302 uint32_t u32AccessRights = 0;
4303
4304 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4305 {
4306 u16Sel = pMixedCtx->tr.Sel;
4307 u32Limit = pMixedCtx->tr.u32Limit;
4308 u64Base = pMixedCtx->tr.u64Base;
4309 u32AccessRights = pMixedCtx->tr.Attr.u;
4310 }
4311 else
4312 {
4313 Assert(pVM->hm.s.vmx.pRealModeTSS);
4314 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4315
4316 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4317 RTGCPHYS GCPhys;
4318 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4319 AssertRCReturn(rc, rc);
4320
4321 X86DESCATTR DescAttr;
4322 DescAttr.u = 0;
4323 DescAttr.n.u1Present = 1;
4324 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4325
4326 u16Sel = 0;
4327 u32Limit = HM_VTX_TSS_SIZE;
4328 u64Base = GCPhys; /* in real-mode phys = virt. */
4329 u32AccessRights = DescAttr.u;
4330 }
4331
4332 /* Validate. */
4333 Assert(!(u16Sel & RT_BIT(2)));
4334 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4335 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4336 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4337 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4338 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4339 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4340 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4341 Assert( (u32Limit & 0xfff) == 0xfff
4342 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4343 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4344 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4345
4346 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_TR, u16Sel); AssertRCReturn(rc, rc);
4347 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRCReturn(rc, rc);
4348 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRCReturn(rc, rc);
4349 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRCReturn(rc, rc);
4350
4351 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4352 Log4(("Load: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", u64Base));
4353 }
4354
4355 /*
4356 * Guest GDTR.
4357 */
4358 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4359 {
4360 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt); AssertRCReturn(rc, rc);
4361 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt); AssertRCReturn(rc, rc);
4362
4363 /* Validate. */
4364 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4365
4366 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4367 Log4(("Load: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pMixedCtx->gdtr.pGdt));
4368 }
4369
4370 /*
4371 * Guest LDTR.
4372 */
4373 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4374 {
4375 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4376 uint32_t u32Access = 0;
4377 if (!pMixedCtx->ldtr.Attr.u)
4378 u32Access = X86DESCATTR_UNUSABLE;
4379 else
4380 u32Access = pMixedCtx->ldtr.Attr.u;
4381
4382 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_LDTR, pMixedCtx->ldtr.Sel); AssertRCReturn(rc, rc);
4383 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit); AssertRCReturn(rc, rc);
4384 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base); AssertRCReturn(rc, rc);
4385 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRCReturn(rc, rc);
4386
4387 /* Validate. */
4388 if (!(u32Access & X86DESCATTR_UNUSABLE))
4389 {
4390 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4391 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4392 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4393 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4394 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4395 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4396 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4397 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4398 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4399 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4400 }
4401
4402 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4403 Log4(("Load: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pMixedCtx->ldtr.u64Base));
4404 }
4405
4406 /*
4407 * Guest IDTR.
4408 */
4409 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4410 {
4411 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt); AssertRCReturn(rc, rc);
4412 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt); AssertRCReturn(rc, rc);
4413
4414 /* Validate. */
4415 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4416
4417 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4418 Log4(("Load: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pMixedCtx->idtr.pIdt));
4419 }
4420
4421 return VINF_SUCCESS;
4422}
4423
4424
4425/**
4426 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4427 * areas. These MSRs will automatically be loaded to the host CPU on every
4428 * successful VM entry and stored from the host CPU on every successful VM-exit.
4429 *
4430 * This also creates/updates MSR slots for the host MSRs. The actual host
4431 * MSR values are -not- updated here for performance reasons. See
4432 * hmR0VmxSaveHostMsrs().
4433 *
4434 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4435 *
4436 * @returns VBox status code.
4437 * @param pVCpu Pointer to the VMCPU.
4438 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4439 * out-of-sync. Make sure to update the required fields
4440 * before using them.
4441 *
4442 * @remarks No-long-jump zone!!!
4443 */
4444static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4445{
4446 AssertPtr(pVCpu);
4447 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4448
4449 /*
4450 * MSRs that we use the auto-load/store MSR area in the VMCS.
4451 */
4452 PVM pVM = pVCpu->CTX_SUFF(pVM);
4453 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4454 {
4455#if HC_ARCH_BITS == 32 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4456 if (pVM->hm.s.fAllow64BitGuests)
4457 {
4458 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false /* fUpdateHostMsr */);
4459 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false /* fUpdateHostMsr */);
4460 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false /* fUpdateHostMsr */);
4461 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false /* fUpdateHostMsr */);
4462# ifdef DEBUG
4463 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4464 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4465 Log4(("Load: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4466# endif
4467 }
4468#endif
4469 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4470 }
4471
4472 /*
4473 * Guest Sysenter MSRs.
4474 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4475 * VM-exits on WRMSRs for these MSRs.
4476 */
4477 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4478 {
4479 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4480 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4481 }
4482
4483 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4484 {
4485 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4486 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4487 }
4488
4489 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4490 {
4491 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4492 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4493 }
4494
4495 return VINF_SUCCESS;
4496}
4497
4498
4499/**
4500 * Loads the guest activity state into the guest-state area in the VMCS.
4501 *
4502 * @returns VBox status code.
4503 * @param pVCpu Pointer to the VMCPU.
4504 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4505 * out-of-sync. Make sure to update the required fields
4506 * before using them.
4507 *
4508 * @remarks No-long-jump zone!!!
4509 */
4510static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pCtx)
4511{
4512 NOREF(pCtx);
4513 /** @todo See if we can make use of other states, e.g.
4514 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4515 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4516 {
4517 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4518 AssertRCReturn(rc, rc);
4519
4520 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4521 }
4522 return VINF_SUCCESS;
4523}
4524
4525
4526/**
4527 * Sets up the appropriate function to run guest code.
4528 *
4529 * @returns VBox status code.
4530 * @param pVCpu Pointer to the VMCPU.
4531 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4532 * out-of-sync. Make sure to update the required fields
4533 * before using them.
4534 *
4535 * @remarks No-long-jump zone!!!
4536 */
4537static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4538{
4539 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4540 {
4541#ifndef VBOX_ENABLE_64_BITS_GUESTS
4542 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4543#endif
4544 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4545#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4546 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4547 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4548 {
4549 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4550 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_EXIT_CTLS | HM_CHANGED_VMX_ENTRY_CTLS);
4551 }
4552#else
4553 /* 64-bit host or hybrid host. */
4554 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4555#endif
4556 }
4557 else
4558 {
4559 /* Guest is not in long mode, use the 32-bit handler. */
4560#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4561 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4562 {
4563 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4564 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_EXIT_CTLS | HM_CHANGED_VMX_ENTRY_CTLS);
4565 }
4566#else
4567 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4568#endif
4569 }
4570 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4571 return VINF_SUCCESS;
4572}
4573
4574
4575/**
4576 * Wrapper for running the guest code in VT-x.
4577 *
4578 * @returns VBox strict status code.
4579 * @param pVM Pointer to the VM.
4580 * @param pVCpu Pointer to the VMCPU.
4581 * @param pCtx Pointer to the guest-CPU context.
4582 *
4583 * @remarks No-long-jump zone!!!
4584 */
4585DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4586{
4587 /*
4588 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4589 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4590 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4591 */
4592 const bool fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4593 /** @todo Add stats for resume vs launch. */
4594#ifdef VBOX_WITH_KERNEL_USING_XMM
4595 return HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4596#else
4597 return pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4598#endif
4599}
4600
4601
4602/**
4603 * Reports world-switch error and dumps some useful debug info.
4604 *
4605 * @param pVM Pointer to the VM.
4606 * @param pVCpu Pointer to the VMCPU.
4607 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4608 * @param pCtx Pointer to the guest-CPU context.
4609 * @param pVmxTransient Pointer to the VMX transient structure (only
4610 * exitReason updated).
4611 */
4612static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
4613{
4614 Assert(pVM);
4615 Assert(pVCpu);
4616 Assert(pCtx);
4617 Assert(pVmxTransient);
4618 HMVMX_ASSERT_PREEMPT_SAFE();
4619
4620 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
4621 switch (rcVMRun)
4622 {
4623 case VERR_VMX_INVALID_VMXON_PTR:
4624 AssertFailed();
4625 break;
4626 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4627 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4628 {
4629 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4630 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4631 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
4632 AssertRC(rc);
4633
4634 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4635 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4636 Cannot do it here as we may have been long preempted. */
4637
4638#ifdef VBOX_STRICT
4639 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4640 pVmxTransient->uExitReason));
4641 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
4642 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4643 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
4644 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
4645 else
4646 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
4647 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
4648 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
4649
4650 /* VMX control bits. */
4651 uint32_t u32Val;
4652 uint64_t u64Val;
4653 HMVMXHCUINTREG uHCReg;
4654 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
4655 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
4656 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
4657 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
4658 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
4659 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
4660 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
4661 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
4662 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
4663 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
4664 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
4665 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
4666 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
4667 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
4668 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
4669 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
4670 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
4671 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
4672 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
4673 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
4674 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
4675 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
4676 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4677 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
4678 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4679 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
4680 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
4681 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
4682 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
4683 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
4684 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
4685 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
4686 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
4687 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
4688 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
4689 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
4690 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
4691 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
4692 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
4693 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
4694 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
4695 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
4696
4697 /* Guest bits. */
4698 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
4699 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
4700 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
4701 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
4702 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
4703 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
4704 rc = VMXReadVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, &u32Val); AssertRC(rc);
4705 Log4(("VMX_VMCS16_GUEST_FIELD_VPID %u\n", u32Val));
4706
4707 /* Host bits. */
4708 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
4709 Log4(("Host CR0 %#RHr\n", uHCReg));
4710 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
4711 Log4(("Host CR3 %#RHr\n", uHCReg));
4712 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
4713 Log4(("Host CR4 %#RHr\n", uHCReg));
4714
4715 RTGDTR HostGdtr;
4716 PCX86DESCHC pDesc;
4717 ASMGetGDTR(&HostGdtr);
4718 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_CS, &u32Val); AssertRC(rc);
4719 Log4(("Host CS %#08x\n", u32Val));
4720 if (u32Val < HostGdtr.cbGdt)
4721 {
4722 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4723 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
4724 }
4725
4726 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_DS, &u32Val); AssertRC(rc);
4727 Log4(("Host DS %#08x\n", u32Val));
4728 if (u32Val < HostGdtr.cbGdt)
4729 {
4730 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4731 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
4732 }
4733
4734 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_ES, &u32Val); AssertRC(rc);
4735 Log4(("Host ES %#08x\n", u32Val));
4736 if (u32Val < HostGdtr.cbGdt)
4737 {
4738 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4739 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
4740 }
4741
4742 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_FS, &u32Val); AssertRC(rc);
4743 Log4(("Host FS %#08x\n", u32Val));
4744 if (u32Val < HostGdtr.cbGdt)
4745 {
4746 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4747 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
4748 }
4749
4750 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_GS, &u32Val); AssertRC(rc);
4751 Log4(("Host GS %#08x\n", u32Val));
4752 if (u32Val < HostGdtr.cbGdt)
4753 {
4754 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4755 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
4756 }
4757
4758 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_SS, &u32Val); AssertRC(rc);
4759 Log4(("Host SS %#08x\n", u32Val));
4760 if (u32Val < HostGdtr.cbGdt)
4761 {
4762 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4763 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
4764 }
4765
4766 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_TR, &u32Val); AssertRC(rc);
4767 Log4(("Host TR %#08x\n", u32Val));
4768 if (u32Val < HostGdtr.cbGdt)
4769 {
4770 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4771 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
4772 }
4773
4774 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
4775 Log4(("Host TR Base %#RHv\n", uHCReg));
4776 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
4777 Log4(("Host GDTR Base %#RHv\n", uHCReg));
4778 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
4779 Log4(("Host IDTR Base %#RHv\n", uHCReg));
4780 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
4781 Log4(("Host SYSENTER CS %#08x\n", u32Val));
4782 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
4783 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
4784 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
4785 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
4786 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
4787 Log4(("Host RSP %#RHv\n", uHCReg));
4788 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
4789 Log4(("Host RIP %#RHv\n", uHCReg));
4790# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4791 if (HMVMX_IS_64BIT_HOST_MODE())
4792 {
4793 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
4794 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
4795 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
4796 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
4797 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
4798 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
4799 }
4800# endif
4801#endif /* VBOX_STRICT */
4802 break;
4803 }
4804
4805 default:
4806 /* Impossible */
4807 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
4808 break;
4809 }
4810 NOREF(pVM); NOREF(pCtx);
4811}
4812
4813
4814#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4815#ifndef VMX_USE_CACHED_VMCS_ACCESSES
4816# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
4817#endif
4818#ifdef VBOX_STRICT
4819static bool hmR0VmxIsValidWriteField(uint32_t idxField)
4820{
4821 switch (idxField)
4822 {
4823 case VMX_VMCS_GUEST_RIP:
4824 case VMX_VMCS_GUEST_RSP:
4825 case VMX_VMCS_GUEST_SYSENTER_EIP:
4826 case VMX_VMCS_GUEST_SYSENTER_ESP:
4827 case VMX_VMCS_GUEST_GDTR_BASE:
4828 case VMX_VMCS_GUEST_IDTR_BASE:
4829 case VMX_VMCS_GUEST_CS_BASE:
4830 case VMX_VMCS_GUEST_DS_BASE:
4831 case VMX_VMCS_GUEST_ES_BASE:
4832 case VMX_VMCS_GUEST_FS_BASE:
4833 case VMX_VMCS_GUEST_GS_BASE:
4834 case VMX_VMCS_GUEST_SS_BASE:
4835 case VMX_VMCS_GUEST_LDTR_BASE:
4836 case VMX_VMCS_GUEST_TR_BASE:
4837 case VMX_VMCS_GUEST_CR3:
4838 return true;
4839 }
4840 return false;
4841}
4842
4843static bool hmR0VmxIsValidReadField(uint32_t idxField)
4844{
4845 switch (idxField)
4846 {
4847 /* Read-only fields. */
4848 case VMX_VMCS_RO_EXIT_QUALIFICATION:
4849 return true;
4850 }
4851 /* Remaining readable fields should also be writable. */
4852 return hmR0VmxIsValidWriteField(idxField);
4853}
4854#endif /* VBOX_STRICT */
4855
4856
4857/**
4858 * Executes the specified handler in 64-bit mode.
4859 *
4860 * @returns VBox status code.
4861 * @param pVM Pointer to the VM.
4862 * @param pVCpu Pointer to the VMCPU.
4863 * @param pCtx Pointer to the guest CPU context.
4864 * @param enmOp The operation to perform.
4865 * @param cbParam Number of parameters.
4866 * @param paParam Array of 32-bit parameters.
4867 */
4868VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
4869 uint32_t *paParam)
4870{
4871 int rc, rc2;
4872 PHMGLOBALCPUINFO pCpu;
4873 RTHCPHYS HCPhysCpuPage;
4874 RTCCUINTREG uOldEflags;
4875
4876 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
4877 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
4878 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
4879 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
4880
4881#ifdef VBOX_STRICT
4882 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
4883 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
4884
4885 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
4886 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
4887#endif
4888
4889 /* Disable interrupts. */
4890 uOldEflags = ASMIntDisableFlags();
4891
4892#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
4893 RTCPUID idHostCpu = RTMpCpuId();
4894 CPUMR0SetLApic(pVCpu, idHostCpu);
4895#endif
4896
4897 pCpu = HMR0GetCurrentCpu();
4898 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4899
4900 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
4901 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
4902
4903 /* Leave VMX Root Mode. */
4904 VMXDisable();
4905
4906 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4907
4908 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
4909 CPUMSetHyperEIP(pVCpu, enmOp);
4910 for (int i = (int)cbParam - 1; i >= 0; i--)
4911 CPUMPushHyper(pVCpu, paParam[i]);
4912
4913 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
4914
4915 /* Call the switcher. */
4916 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
4917 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
4918
4919 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
4920 /* Make sure the VMX instructions don't cause #UD faults. */
4921 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
4922
4923 /* Re-enter VMX Root Mode */
4924 rc2 = VMXEnable(HCPhysCpuPage);
4925 if (RT_FAILURE(rc2))
4926 {
4927 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4928 ASMSetFlags(uOldEflags);
4929 return rc2;
4930 }
4931
4932 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
4933 AssertRC(rc2);
4934 Assert(!(ASMGetFlags() & X86_EFL_IF));
4935 ASMSetFlags(uOldEflags);
4936 return rc;
4937}
4938
4939
4940/**
4941 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
4942 * supporting 64-bit guests.
4943 *
4944 * @returns VBox status code.
4945 * @param fResume Whether to VMLAUNCH or VMRESUME.
4946 * @param pCtx Pointer to the guest-CPU context.
4947 * @param pCache Pointer to the VMCS cache.
4948 * @param pVM Pointer to the VM.
4949 * @param pVCpu Pointer to the VMCPU.
4950 */
4951DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
4952{
4953 uint32_t aParam[6];
4954 PHMGLOBALCPUINFO pCpu = NULL;
4955 RTHCPHYS HCPhysCpuPage = 0;
4956 int rc = VERR_INTERNAL_ERROR_5;
4957
4958 pCpu = HMR0GetCurrentCpu();
4959 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4960
4961#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4962 pCache->uPos = 1;
4963 pCache->interPD = PGMGetInterPaeCR3(pVM);
4964 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
4965#endif
4966
4967#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
4968 pCache->TestIn.HCPhysCpuPage = 0;
4969 pCache->TestIn.HCPhysVmcs = 0;
4970 pCache->TestIn.pCache = 0;
4971 pCache->TestOut.HCPhysVmcs = 0;
4972 pCache->TestOut.pCache = 0;
4973 pCache->TestOut.pCtx = 0;
4974 pCache->TestOut.eflags = 0;
4975#endif
4976
4977 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
4978 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
4979 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
4980 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
4981 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
4982 aParam[5] = 0;
4983
4984#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4985 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
4986 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
4987#endif
4988 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, 6, &aParam[0]);
4989
4990#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4991 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
4992 Assert(pCtx->dr[4] == 10);
4993 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
4994#endif
4995
4996#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
4997 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
4998 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
4999 pVCpu->hm.s.vmx.HCPhysVmcs));
5000 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5001 pCache->TestOut.HCPhysVmcs));
5002 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5003 pCache->TestOut.pCache));
5004 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5005 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5006 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5007 pCache->TestOut.pCtx));
5008 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5009#endif
5010 return rc;
5011}
5012
5013
5014/**
5015 * Initialize the VMCS-Read cache. The VMCS cache is used for 32-bit hosts
5016 * running 64-bit guests (except 32-bit Darwin which runs with 64-bit paging in
5017 * 32-bit mode) for 64-bit fields that cannot be accessed in 32-bit mode. Some
5018 * 64-bit fields -can- be accessed (those that have a 32-bit FULL & HIGH part).
5019 *
5020 * @returns VBox status code.
5021 * @param pVM Pointer to the VM.
5022 * @param pVCpu Pointer to the VMCPU.
5023 */
5024static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5025{
5026#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5027{ \
5028 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5029 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5030 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5031 ++cReadFields; \
5032}
5033
5034 AssertPtr(pVM);
5035 AssertPtr(pVCpu);
5036 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5037 uint32_t cReadFields = 0;
5038
5039 /*
5040 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5041 * and serve to indicate exceptions to the rules.
5042 */
5043
5044 /* Guest-natural selector base fields. */
5045#if 0
5046 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5047 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5048 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5049#endif
5050 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5051 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5052 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5053 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5054 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5055 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5056 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5057 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5058 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5059 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5060 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5061 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5062#if 0
5063 /* Unused natural width guest-state fields. */
5064 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5065 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5066#endif
5067 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5068 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5069
5070 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5071#if 0
5072 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5073 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5074 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5075 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5076 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5077 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5078 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5079 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5080 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5081#endif
5082
5083 /* Natural width guest-state fields. */
5084 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5085#if 0
5086 /* Currently unused field. */
5087 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5088#endif
5089
5090 if (pVM->hm.s.fNestedPaging)
5091 {
5092 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5093 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5094 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5095 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5096 }
5097 else
5098 {
5099 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5100 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5101 }
5102
5103#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5104 return VINF_SUCCESS;
5105}
5106
5107
5108/**
5109 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5110 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5111 * darwin, running 64-bit guests).
5112 *
5113 * @returns VBox status code.
5114 * @param pVCpu Pointer to the VMCPU.
5115 * @param idxField The VMCS field encoding.
5116 * @param u64Val 16, 32 or 64-bit value.
5117 */
5118VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5119{
5120 int rc;
5121 switch (idxField)
5122 {
5123 /*
5124 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5125 */
5126 /* 64-bit Control fields. */
5127 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5128 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5129 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5130 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5131 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5132 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5133 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5134 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5135 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5136 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5137 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5138 case VMX_VMCS64_CTRL_EPTP_FULL:
5139 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5140 /* 64-bit Guest-state fields. */
5141 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5142 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5143 case VMX_VMCS64_GUEST_PAT_FULL:
5144 case VMX_VMCS64_GUEST_EFER_FULL:
5145 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5146 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5147 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5148 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5149 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5150 /* 64-bit Host-state fields. */
5151 case VMX_VMCS64_HOST_FIELD_PAT_FULL:
5152 case VMX_VMCS64_HOST_FIELD_EFER_FULL:
5153 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5154 {
5155 rc = VMXWriteVmcs32(idxField, u64Val);
5156 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5157 break;
5158 }
5159
5160 /*
5161 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5162 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5163 */
5164 /* Natural-width Guest-state fields. */
5165 case VMX_VMCS_GUEST_CR3:
5166 case VMX_VMCS_GUEST_ES_BASE:
5167 case VMX_VMCS_GUEST_CS_BASE:
5168 case VMX_VMCS_GUEST_SS_BASE:
5169 case VMX_VMCS_GUEST_DS_BASE:
5170 case VMX_VMCS_GUEST_FS_BASE:
5171 case VMX_VMCS_GUEST_GS_BASE:
5172 case VMX_VMCS_GUEST_LDTR_BASE:
5173 case VMX_VMCS_GUEST_TR_BASE:
5174 case VMX_VMCS_GUEST_GDTR_BASE:
5175 case VMX_VMCS_GUEST_IDTR_BASE:
5176 case VMX_VMCS_GUEST_RSP:
5177 case VMX_VMCS_GUEST_RIP:
5178 case VMX_VMCS_GUEST_SYSENTER_ESP:
5179 case VMX_VMCS_GUEST_SYSENTER_EIP:
5180 {
5181 if (!(u64Val >> 32))
5182 {
5183 /* If this field is 64-bit, VT-x will zero out the top bits. */
5184 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5185 }
5186 else
5187 {
5188 /* Assert that only the 32->64 switcher case should ever come here. */
5189 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5190 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5191 }
5192 break;
5193 }
5194
5195 default:
5196 {
5197 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5198 rc = VERR_INVALID_PARAMETER;
5199 break;
5200 }
5201 }
5202 AssertRCReturn(rc, rc);
5203 return rc;
5204}
5205
5206
5207/**
5208 * Queue up a VMWRITE by using the VMCS write cache. This is only used on 32-bit
5209 * hosts (except darwin) for 64-bit guests.
5210 *
5211 * @param pVCpu Pointer to the VMCPU.
5212 * @param idxField The VMCS field encoding.
5213 * @param u64Val 16, 32 or 64-bit value.
5214 */
5215VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5216{
5217 AssertPtr(pVCpu);
5218 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5219
5220 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5221 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5222
5223 /* Make sure there are no duplicates. */
5224 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5225 {
5226 if (pCache->Write.aField[i] == idxField)
5227 {
5228 pCache->Write.aFieldVal[i] = u64Val;
5229 return VINF_SUCCESS;
5230 }
5231 }
5232
5233 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5234 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5235 pCache->Write.cValidEntries++;
5236 return VINF_SUCCESS;
5237}
5238
5239/* Enable later when the assembly code uses these as callbacks. */
5240#if 0
5241/*
5242 * Loads the VMCS write-cache into the CPU (by executing VMWRITEs).
5243 *
5244 * @param pVCpu Pointer to the VMCPU.
5245 * @param pCache Pointer to the VMCS cache.
5246 *
5247 * @remarks No-long-jump zone!!!
5248 */
5249VMMR0DECL(void) VMXWriteCachedVmcsLoad(PVMCPU pVCpu, PVMCSCACHE pCache)
5250{
5251 AssertPtr(pCache);
5252 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5253 {
5254 int rc = VMXWriteVmcs64(pCache->Write.aField[i], pCache->Write.aFieldVal[i]);
5255 AssertRC(rc);
5256 }
5257 pCache->Write.cValidEntries = 0;
5258}
5259
5260
5261/**
5262 * Stores the VMCS read-cache from the CPU (by executing VMREADs).
5263 *
5264 * @param pVCpu Pointer to the VMCPU.
5265 * @param pCache Pointer to the VMCS cache.
5266 *
5267 * @remarks No-long-jump zone!!!
5268 */
5269VMMR0DECL(void) VMXReadCachedVmcsStore(PVMCPU pVCpu, PVMCSCACHE pCache)
5270{
5271 AssertPtr(pCache);
5272 for (uint32_t i = 0; i < pCache->Read.cValidEntries; i++)
5273 {
5274 int rc = VMXReadVmcs64(pCache->Read.aField[i], &pCache->Read.aFieldVal[i]);
5275 AssertRC(rc);
5276 }
5277}
5278#endif
5279#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
5280
5281
5282/**
5283 * Sets up the usage of TSC-offsetting and updates the VMCS. If offsetting is
5284 * not possible, cause VM-exits on RDTSC(P)s. Also sets up the VMX preemption
5285 * timer.
5286 *
5287 * @returns VBox status code.
5288 * @param pVCpu Pointer to the VMCPU.
5289 *
5290 * @remarks No-long-jump zone!!!
5291 */
5292static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5293{
5294 int rc = VERR_INTERNAL_ERROR_5;
5295 bool fOffsettedTsc = false;
5296 PVM pVM = pVCpu->CTX_SUFF(pVM);
5297 if (pVM->hm.s.vmx.fUsePreemptTimer)
5298 {
5299 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset);
5300
5301 /* Make sure the returned values have sane upper and lower boundaries. */
5302 uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage);
5303 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5304 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5305 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5306
5307 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5308 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5309 }
5310 else
5311 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset);
5312
5313 if (fOffsettedTsc)
5314 {
5315 uint64_t u64CurTSC = ASMReadTSC();
5316 if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
5317 {
5318 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5319 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5320
5321 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5322 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5323 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5324 }
5325 else
5326 {
5327 /* VM-exit on RDTSC(P) as we would otherwise pass decreasing TSC values to the guest. */
5328 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5329 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5330 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
5331 }
5332 }
5333 else
5334 {
5335 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5336 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5337 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5338 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5339 }
5340}
5341
5342
5343/**
5344 * Determines if an exception is a contributory exception. Contributory
5345 * exceptions are ones which can cause double-faults. Page-fault is
5346 * intentionally not included here as it's a conditional contributory exception.
5347 *
5348 * @returns true if the exception is contributory, false otherwise.
5349 * @param uVector The exception vector.
5350 */
5351DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5352{
5353 switch (uVector)
5354 {
5355 case X86_XCPT_GP:
5356 case X86_XCPT_SS:
5357 case X86_XCPT_NP:
5358 case X86_XCPT_TS:
5359 case X86_XCPT_DE:
5360 return true;
5361 default:
5362 break;
5363 }
5364 return false;
5365}
5366
5367
5368/**
5369 * Sets an event as a pending event to be injected into the guest.
5370 *
5371 * @param pVCpu Pointer to the VMCPU.
5372 * @param u32IntInfo The VM-entry interruption-information field.
5373 * @param cbInstr The VM-entry instruction length in bytes (for software
5374 * interrupts, exceptions and privileged software
5375 * exceptions).
5376 * @param u32ErrCode The VM-entry exception error code.
5377 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5378 * page-fault.
5379 *
5380 * @remarks Statistics counter assumes this is a guest event being injected or
5381 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5382 * always incremented.
5383 */
5384DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5385 RTGCUINTPTR GCPtrFaultAddress)
5386{
5387 Assert(!pVCpu->hm.s.Event.fPending);
5388 pVCpu->hm.s.Event.fPending = true;
5389 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5390 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5391 pVCpu->hm.s.Event.cbInstr = cbInstr;
5392 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5393
5394 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5395}
5396
5397
5398/**
5399 * Sets a double-fault (#DF) exception as pending-for-injection into the VM.
5400 *
5401 * @param pVCpu Pointer to the VMCPU.
5402 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5403 * out-of-sync. Make sure to update the required fields
5404 * before using them.
5405 */
5406DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5407{
5408 NOREF(pMixedCtx);
5409 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5410 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5411 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5412 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5413}
5414
5415
5416/**
5417 * Handle a condition that occurred while delivering an event through the guest
5418 * IDT.
5419 *
5420 * @returns VBox status code (informational error codes included).
5421 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5422 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
5423 * continue execution of the guest which will delivery the #DF.
5424 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5425 *
5426 * @param pVCpu Pointer to the VMCPU.
5427 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5428 * out-of-sync. Make sure to update the required fields
5429 * before using them.
5430 * @param pVmxTransient Pointer to the VMX transient structure.
5431 *
5432 * @remarks No-long-jump zone!!!
5433 */
5434static int hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5435{
5436 int rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
5437 AssertRCReturn(rc, rc);
5438 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5439 {
5440 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
5441 AssertRCReturn(rc, rc);
5442
5443 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5444 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5445 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5446
5447 typedef enum
5448 {
5449 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5450 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5451 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5452 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5453 } VMXREFLECTXCPT;
5454
5455 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5456 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5457 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5458 {
5459 if (uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5460 {
5461 enmReflect = VMXREFLECTXCPT_XCPT;
5462#ifdef VBOX_STRICT
5463 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5464 && uExitVector == X86_XCPT_PF)
5465 {
5466 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5467 }
5468#endif
5469 if ( uExitVector == X86_XCPT_PF
5470 && uIdtVector == X86_XCPT_PF)
5471 {
5472 pVmxTransient->fVectoringPF = true;
5473 Log4(("IDT: vcpu[%RU32] Vectoring #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5474 }
5475 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5476 && hmR0VmxIsContributoryXcpt(uExitVector)
5477 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5478 || uIdtVector == X86_XCPT_PF))
5479 {
5480 enmReflect = VMXREFLECTXCPT_DF;
5481 }
5482 else if (uIdtVector == X86_XCPT_DF)
5483 enmReflect = VMXREFLECTXCPT_TF;
5484 }
5485 else if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5486 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5487 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5488 {
5489 /*
5490 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and privileged software exception
5491 * (whatever they are) as they reoccur when restarting the instruction.
5492 */
5493 enmReflect = VMXREFLECTXCPT_XCPT;
5494 }
5495 }
5496 else
5497 {
5498 /*
5499 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5500 * interruption-information will not be valid and we end up here. In such cases, it is sufficient to reflect the
5501 * original exception to the guest after handling the VM-exit.
5502 */
5503 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5504 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5505 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5506 {
5507 enmReflect = VMXREFLECTXCPT_XCPT;
5508 }
5509 }
5510
5511 switch (enmReflect)
5512 {
5513 case VMXREFLECTXCPT_XCPT:
5514 {
5515 Assert( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5516 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5517 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5518
5519 uint32_t u32ErrCode = 0;
5520 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5521 {
5522 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5523 AssertRCReturn(rc, rc);
5524 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5525 }
5526
5527 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5528 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5529 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5530 rc = VINF_SUCCESS;
5531 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5532 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5533
5534 break;
5535 }
5536
5537 case VMXREFLECTXCPT_DF:
5538 {
5539 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5540 rc = VINF_HM_DOUBLE_FAULT;
5541 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5542 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5543
5544 break;
5545 }
5546
5547 case VMXREFLECTXCPT_TF:
5548 {
5549 rc = VINF_EM_RESET;
5550 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5551 uExitVector));
5552 break;
5553 }
5554
5555 default:
5556 Assert(rc == VINF_SUCCESS);
5557 break;
5558 }
5559 }
5560 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
5561 return rc;
5562}
5563
5564
5565/**
5566 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
5567 *
5568 * @returns VBox status code.
5569 * @param pVCpu Pointer to the VMCPU.
5570 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5571 * out-of-sync. Make sure to update the required fields
5572 * before using them.
5573 *
5574 * @remarks No-long-jump zone!!!
5575 */
5576static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5577{
5578 NOREF(pMixedCtx);
5579
5580 /* Since this can be called from our preemption hook it's safer to make the guest-CR0 update non-preemptible. */
5581 VMMRZCallRing3Disable(pVCpu);
5582 HM_DISABLE_PREEMPT_IF_NEEDED();
5583
5584 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
5585 {
5586 uint32_t uVal = 0;
5587 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
5588 AssertRCReturn(rc, rc);
5589
5590 uint32_t uShadow = 0;
5591 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
5592 AssertRCReturn(rc, rc);
5593
5594 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
5595 CPUMSetGuestCR0(pVCpu, uVal);
5596 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
5597 }
5598
5599 HM_RESTORE_PREEMPT_IF_NEEDED();
5600 VMMRZCallRing3Enable(pVCpu);
5601
5602 return VINF_SUCCESS;
5603}
5604
5605
5606/**
5607 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
5608 *
5609 * @returns VBox status code.
5610 * @param pVCpu Pointer to the VMCPU.
5611 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5612 * out-of-sync. Make sure to update the required fields
5613 * before using them.
5614 *
5615 * @remarks No-long-jump zone!!!
5616 */
5617static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5618{
5619 NOREF(pMixedCtx);
5620
5621 int rc = VINF_SUCCESS;
5622 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
5623 {
5624 uint32_t uVal = 0;
5625 uint32_t uShadow = 0;
5626 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
5627 AssertRCReturn(rc, rc);
5628 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
5629 AssertRCReturn(rc, rc);
5630
5631 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
5632 CPUMSetGuestCR4(pVCpu, uVal);
5633 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
5634 }
5635 return rc;
5636}
5637
5638
5639/**
5640 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
5641 *
5642 * @returns VBox status code.
5643 * @param pVCpu Pointer to the VMCPU.
5644 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5645 * out-of-sync. Make sure to update the required fields
5646 * before using them.
5647 *
5648 * @remarks No-long-jump zone!!!
5649 */
5650static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5651{
5652 int rc = VINF_SUCCESS;
5653 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
5654 {
5655 uint64_t u64Val = 0;
5656 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
5657 AssertRCReturn(rc, rc);
5658
5659 pMixedCtx->rip = u64Val;
5660 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
5661 }
5662 return rc;
5663}
5664
5665
5666/**
5667 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
5668 *
5669 * @returns VBox status code.
5670 * @param pVCpu Pointer to the VMCPU.
5671 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5672 * out-of-sync. Make sure to update the required fields
5673 * before using them.
5674 *
5675 * @remarks No-long-jump zone!!!
5676 */
5677static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5678{
5679 int rc = VINF_SUCCESS;
5680 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
5681 {
5682 uint64_t u64Val = 0;
5683 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
5684 AssertRCReturn(rc, rc);
5685
5686 pMixedCtx->rsp = u64Val;
5687 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
5688 }
5689 return rc;
5690}
5691
5692
5693/**
5694 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
5695 *
5696 * @returns VBox status code.
5697 * @param pVCpu Pointer to the VMCPU.
5698 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5699 * out-of-sync. Make sure to update the required fields
5700 * before using them.
5701 *
5702 * @remarks No-long-jump zone!!!
5703 */
5704static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5705{
5706 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
5707 {
5708 uint32_t uVal = 0;
5709 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
5710 AssertRCReturn(rc, rc);
5711
5712 pMixedCtx->eflags.u32 = uVal;
5713 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
5714 {
5715 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5716 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
5717
5718 pMixedCtx->eflags.Bits.u1VM = 0;
5719 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
5720 }
5721
5722 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
5723 }
5724 return VINF_SUCCESS;
5725}
5726
5727
5728/**
5729 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
5730 * guest-CPU context.
5731 */
5732DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5733{
5734 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
5735 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
5736 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
5737 return rc;
5738}
5739
5740
5741/**
5742 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
5743 * from the guest-state area in the VMCS.
5744 *
5745 * @param pVCpu Pointer to the VMCPU.
5746 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5747 * out-of-sync. Make sure to update the required fields
5748 * before using them.
5749 *
5750 * @remarks No-long-jump zone!!!
5751 */
5752static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5753{
5754 uint32_t uIntrState = 0;
5755 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
5756 AssertRC(rc);
5757
5758 if (!uIntrState)
5759 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5760 else
5761 {
5762 Assert( uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
5763 || uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
5764 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
5765 AssertRC(rc);
5766 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
5767 AssertRC(rc);
5768
5769 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
5770 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
5771 }
5772}
5773
5774
5775/**
5776 * Saves the guest's activity state.
5777 *
5778 * @returns VBox status code.
5779 * @param pVCpu Pointer to the VMCPU.
5780 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5781 * out-of-sync. Make sure to update the required fields
5782 * before using them.
5783 *
5784 * @remarks No-long-jump zone!!!
5785 */
5786static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5787{
5788 NOREF(pMixedCtx);
5789 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
5790 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
5791 return VINF_SUCCESS;
5792}
5793
5794
5795/**
5796 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
5797 * the current VMCS into the guest-CPU context.
5798 *
5799 * @returns VBox status code.
5800 * @param pVCpu Pointer to the VMCPU.
5801 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5802 * out-of-sync. Make sure to update the required fields
5803 * before using them.
5804 *
5805 * @remarks No-long-jump zone!!!
5806 */
5807static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5808{
5809 int rc = VINF_SUCCESS;
5810 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
5811 {
5812 uint32_t u32Val = 0;
5813 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
5814 pMixedCtx->SysEnter.cs = u32Val;
5815 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
5816 }
5817
5818 uint64_t u64Val = 0;
5819 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
5820 {
5821 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
5822 pMixedCtx->SysEnter.eip = u64Val;
5823 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
5824 }
5825 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
5826 {
5827 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
5828 pMixedCtx->SysEnter.esp = u64Val;
5829 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
5830 }
5831 return rc;
5832}
5833
5834
5835/**
5836 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
5837 * the CPU back into the guest-CPU context.
5838 *
5839 * @returns VBox status code.
5840 * @param pVCpu Pointer to the VMCPU.
5841 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5842 * out-of-sync. Make sure to update the required fields
5843 * before using them.
5844 *
5845 * @remarks No-long-jump zone!!!
5846 */
5847static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5848{
5849#if HC_ARCH_BITS == 64
5850 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
5851 {
5852 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
5853 VMMRZCallRing3Disable(pVCpu);
5854 HM_DISABLE_PREEMPT_IF_NEEDED();
5855
5856 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
5857 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
5858 {
5859 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
5860 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
5861 }
5862
5863 HM_RESTORE_PREEMPT_IF_NEEDED();
5864 VMMRZCallRing3Enable(pVCpu);
5865 }
5866 else
5867 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
5868#else
5869 NOREF(pMixedCtx);
5870 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
5871#endif
5872
5873 return VINF_SUCCESS;
5874}
5875
5876
5877/**
5878 * Saves the auto load/store'd guest MSRs from the current VMCS into
5879 * the guest-CPU context.
5880 *
5881 * @returns VBox status code.
5882 * @param pVCpu Pointer to the VMCPU.
5883 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5884 * out-of-sync. Make sure to update the required fields
5885 * before using them.
5886 *
5887 * @remarks No-long-jump zone!!!
5888 */
5889static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5890{
5891 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
5892 return VINF_SUCCESS;
5893
5894 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
5895 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
5896 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
5897 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
5898 {
5899 switch (pMsr->u32Msr)
5900 {
5901 case MSR_K8_TSC_AUX: CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, pMsr->u64Value); break;
5902 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
5903 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
5904 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
5905 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
5906 default:
5907 {
5908 AssertFailed();
5909 return VERR_HM_UNEXPECTED_LD_ST_MSR;
5910 }
5911 }
5912 }
5913
5914 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
5915 return VINF_SUCCESS;
5916}
5917
5918
5919/**
5920 * Saves the guest control registers from the current VMCS into the guest-CPU
5921 * context.
5922 *
5923 * @returns VBox status code.
5924 * @param pVCpu Pointer to the VMCPU.
5925 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5926 * out-of-sync. Make sure to update the required fields
5927 * before using them.
5928 *
5929 * @remarks No-long-jump zone!!!
5930 */
5931static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5932{
5933 /* Guest CR0. Guest FPU. */
5934 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
5935 AssertRCReturn(rc, rc);
5936
5937 /* Guest CR4. */
5938 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
5939 AssertRCReturn(rc, rc);
5940
5941 /* Guest CR2 - updated always during the world-switch or in #PF. */
5942 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
5943 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
5944 {
5945 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
5946 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
5947
5948 PVM pVM = pVCpu->CTX_SUFF(pVM);
5949 if ( pVM->hm.s.vmx.fUnrestrictedGuest
5950 || ( pVM->hm.s.fNestedPaging
5951 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
5952 {
5953 uint64_t u64Val = 0;
5954 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
5955 if (pMixedCtx->cr3 != u64Val)
5956 {
5957 CPUMSetGuestCR3(pVCpu, u64Val);
5958 if (VMMRZCallRing3IsEnabled(pVCpu))
5959 {
5960 PGMUpdateCR3(pVCpu, u64Val);
5961 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
5962 }
5963 else
5964 {
5965 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
5966 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
5967 }
5968 }
5969
5970 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
5971 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
5972 {
5973 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
5974 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
5975 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
5976 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
5977
5978 if (VMMRZCallRing3IsEnabled(pVCpu))
5979 {
5980 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5981 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
5982 }
5983 else
5984 {
5985 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
5986 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
5987 }
5988 }
5989 }
5990
5991 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
5992 }
5993
5994 /*
5995 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
5996 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
5997 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
5998 *
5999 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6000 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6001 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6002 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6003 *
6004 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6005 */
6006 if (VMMRZCallRing3IsEnabled(pVCpu))
6007 {
6008 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6009 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6010
6011 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6012 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6013
6014 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6015 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6016 }
6017
6018 return rc;
6019}
6020
6021
6022/**
6023 * Reads a guest segment register from the current VMCS into the guest-CPU
6024 * context.
6025 *
6026 * @returns VBox status code.
6027 * @param pVCpu Pointer to the VMCPU.
6028 * @param idxSel Index of the selector in the VMCS.
6029 * @param idxLimit Index of the segment limit in the VMCS.
6030 * @param idxBase Index of the segment base in the VMCS.
6031 * @param idxAccess Index of the access rights of the segment in the VMCS.
6032 * @param pSelReg Pointer to the segment selector.
6033 *
6034 * @remarks No-long-jump zone!!!
6035 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6036 * macro as that takes care of whether to read from the VMCS cache or
6037 * not.
6038 */
6039DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6040 PCPUMSELREG pSelReg)
6041{
6042 NOREF(pVCpu);
6043
6044 uint32_t u32Val = 0;
6045 int rc = VMXReadVmcs32(idxSel, &u32Val);
6046 AssertRCReturn(rc, rc);
6047 pSelReg->Sel = (uint16_t)u32Val;
6048 pSelReg->ValidSel = (uint16_t)u32Val;
6049 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6050
6051 rc = VMXReadVmcs32(idxLimit, &u32Val);
6052 AssertRCReturn(rc, rc);
6053 pSelReg->u32Limit = u32Val;
6054
6055 uint64_t u64Val = 0;
6056 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6057 AssertRCReturn(rc, rc);
6058 pSelReg->u64Base = u64Val;
6059
6060 rc = VMXReadVmcs32(idxAccess, &u32Val);
6061 AssertRCReturn(rc, rc);
6062 pSelReg->Attr.u = u32Val;
6063
6064 /*
6065 * If VT-x marks the segment as unusable, most other bits remain undefined:
6066 * - For CS the L, D and G bits have meaning.
6067 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6068 * - For the remaining data segments no bits are defined.
6069 *
6070 * The present bit and the unusable bit has been observed to be set at the
6071 * same time (the selector was supposed to invalid as we started executing
6072 * a V8086 interrupt in ring-0).
6073 *
6074 * What should be important for the rest of the VBox code, is that the P bit is
6075 * cleared. Some of the other VBox code recognizes the unusable bit, but
6076 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6077 * safe side here, we'll strip off P and other bits we don't care about. If
6078 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6079 *
6080 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6081 */
6082 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6083 {
6084 Assert(idxSel != VMX_VMCS16_GUEST_FIELD_TR); /* TR is the only selector that can never be unusable. */
6085
6086 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6087 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6088 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6089
6090 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6091#ifdef DEBUG_bird
6092 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6093 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6094 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6095#endif
6096 }
6097 return VINF_SUCCESS;
6098}
6099
6100
6101#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6102# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6103 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6104 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6105#else
6106# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6107 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6108 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6109#endif
6110
6111
6112/**
6113 * Saves the guest segment registers from the current VMCS into the guest-CPU
6114 * context.
6115 *
6116 * @returns VBox status code.
6117 * @param pVCpu Pointer to the VMCPU.
6118 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6119 * out-of-sync. Make sure to update the required fields
6120 * before using them.
6121 *
6122 * @remarks No-long-jump zone!!!
6123 */
6124static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6125{
6126 /* Guest segment registers. */
6127 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6128 {
6129 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); AssertRCReturn(rc, rc);
6130 rc = VMXLOCAL_READ_SEG(CS, cs); AssertRCReturn(rc, rc);
6131 rc = VMXLOCAL_READ_SEG(SS, ss); AssertRCReturn(rc, rc);
6132 rc = VMXLOCAL_READ_SEG(DS, ds); AssertRCReturn(rc, rc);
6133 rc = VMXLOCAL_READ_SEG(ES, es); AssertRCReturn(rc, rc);
6134 rc = VMXLOCAL_READ_SEG(FS, fs); AssertRCReturn(rc, rc);
6135 rc = VMXLOCAL_READ_SEG(GS, gs); AssertRCReturn(rc, rc);
6136
6137 /* Restore segment attributes for real-on-v86 mode hack. */
6138 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6139 {
6140 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6141 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6142 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6143 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6144 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6145 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6146 }
6147 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6148 }
6149
6150 return VINF_SUCCESS;
6151}
6152
6153
6154/**
6155 * Saves the guest descriptor table registers and task register from the current
6156 * VMCS into the guest-CPU context.
6157 *
6158 * @returns VBox status code.
6159 * @param pVCpu Pointer to the VMCPU.
6160 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6161 * out-of-sync. Make sure to update the required fields
6162 * before using them.
6163 *
6164 * @remarks No-long-jump zone!!!
6165 */
6166static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6167{
6168 int rc = VINF_SUCCESS;
6169
6170 /* Guest LDTR. */
6171 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6172 {
6173 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6174 AssertRCReturn(rc, rc);
6175 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6176 }
6177
6178 /* Guest GDTR. */
6179 uint64_t u64Val = 0;
6180 uint32_t u32Val = 0;
6181 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6182 {
6183 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6184 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6185 pMixedCtx->gdtr.pGdt = u64Val;
6186 pMixedCtx->gdtr.cbGdt = u32Val;
6187 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6188 }
6189
6190 /* Guest IDTR. */
6191 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6192 {
6193 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6194 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6195 pMixedCtx->idtr.pIdt = u64Val;
6196 pMixedCtx->idtr.cbIdt = u32Val;
6197 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6198 }
6199
6200 /* Guest TR. */
6201 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6202 {
6203 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6204 AssertRCReturn(rc, rc);
6205
6206 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6207 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6208 {
6209 rc = VMXLOCAL_READ_SEG(TR, tr);
6210 AssertRCReturn(rc, rc);
6211 }
6212 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6213 }
6214 return rc;
6215}
6216
6217#undef VMXLOCAL_READ_SEG
6218
6219
6220/**
6221 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6222 * context.
6223 *
6224 * @returns VBox status code.
6225 * @param pVCpu Pointer to the VMCPU.
6226 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6227 * out-of-sync. Make sure to update the required fields
6228 * before using them.
6229 *
6230 * @remarks No-long-jump zone!!!
6231 */
6232static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6233{
6234 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG))
6235 {
6236 if (!pVCpu->hm.s.fUsingHyperDR7)
6237 {
6238 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6239 uint32_t u32Val;
6240 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6241 pMixedCtx->dr[7] = u32Val;
6242 }
6243
6244 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG);
6245 }
6246 return VINF_SUCCESS;
6247}
6248
6249
6250/**
6251 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6252 *
6253 * @returns VBox status code.
6254 * @param pVCpu Pointer to the VMCPU.
6255 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6256 * out-of-sync. Make sure to update the required fields
6257 * before using them.
6258 *
6259 * @remarks No-long-jump zone!!!
6260 */
6261static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6262{
6263 NOREF(pMixedCtx);
6264
6265 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6266 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6267 return VINF_SUCCESS;
6268}
6269
6270
6271/**
6272 * Saves the entire guest state from the currently active VMCS into the
6273 * guest-CPU context. This essentially VMREADs all guest-data.
6274 *
6275 * @returns VBox status code.
6276 * @param pVCpu Pointer to the VMCPU.
6277 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6278 * out-of-sync. Make sure to update the required fields
6279 * before using them.
6280 */
6281static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6282{
6283 Assert(pVCpu);
6284 Assert(pMixedCtx);
6285
6286 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6287 return VINF_SUCCESS;
6288
6289 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6290 again on the ring-3 callback path, there is no real need to. */
6291 if (VMMRZCallRing3IsEnabled(pVCpu))
6292 VMMR0LogFlushDisable(pVCpu);
6293 else
6294 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6295 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6296
6297 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6298 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6299
6300 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6301 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6302
6303 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6304 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6305
6306 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6307 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6308
6309 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6310 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6311
6312 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6313 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6314
6315 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6316 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6317
6318 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6319 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6320
6321 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6322 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6323
6324 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6325 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6326
6327 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6328 ("Missed guest state bits while saving state; residue %RX32\n", HMVMXCPU_GST_VALUE(pVCpu)));
6329
6330 if (VMMRZCallRing3IsEnabled(pVCpu))
6331 VMMR0LogFlushEnable(pVCpu);
6332
6333 return rc;
6334}
6335
6336
6337/**
6338 * Check per-VM and per-VCPU force flag actions that require us to go back to
6339 * ring-3 for one reason or another.
6340 *
6341 * @returns VBox status code (information status code included).
6342 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6343 * ring-3.
6344 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6345 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6346 * interrupts)
6347 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6348 * all EMTs to be in ring-3.
6349 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6350 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6351 * to the EM loop.
6352 *
6353 * @param pVM Pointer to the VM.
6354 * @param pVCpu Pointer to the VMCPU.
6355 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6356 * out-of-sync. Make sure to update the required fields
6357 * before using them.
6358 */
6359static int hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6360{
6361 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6362
6363 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
6364 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
6365 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
6366 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6367 {
6368 /* We need the control registers now, make sure the guest-CPU context is updated. */
6369 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6370 AssertRCReturn(rc3, rc3);
6371
6372 /* Pending HM CR3 sync. */
6373 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6374 {
6375 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6376 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6377 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6378 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6379 }
6380
6381 /* Pending HM PAE PDPEs. */
6382 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6383 {
6384 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6385 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6386 }
6387
6388 /* Pending PGM C3 sync. */
6389 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6390 {
6391 int rc2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6392 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6393 if (rc2 != VINF_SUCCESS)
6394 {
6395 AssertRC(rc2);
6396 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", rc2));
6397 return rc2;
6398 }
6399 }
6400
6401 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6402 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6403 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6404 {
6405 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6406 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6407 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6408 return rc2;
6409 }
6410
6411 /* Pending VM request packets, such as hardware interrupts. */
6412 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6413 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6414 {
6415 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6416 return VINF_EM_PENDING_REQUEST;
6417 }
6418
6419 /* Pending PGM pool flushes. */
6420 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6421 {
6422 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6423 return VINF_PGM_POOL_FLUSH_PENDING;
6424 }
6425
6426 /* Pending DMA requests. */
6427 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6428 {
6429 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6430 return VINF_EM_RAW_TO_R3;
6431 }
6432 }
6433
6434 return VINF_SUCCESS;
6435}
6436
6437
6438/**
6439 * Converts any TRPM trap into a pending HM event. This is typically used when
6440 * entering from ring-3 (not longjmp returns).
6441 *
6442 * @param pVCpu Pointer to the VMCPU.
6443 */
6444static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6445{
6446 Assert(TRPMHasTrap(pVCpu));
6447 Assert(!pVCpu->hm.s.Event.fPending);
6448
6449 uint8_t uVector;
6450 TRPMEVENT enmTrpmEvent;
6451 RTGCUINT uErrCode;
6452 RTGCUINTPTR GCPtrFaultAddress;
6453 uint8_t cbInstr;
6454
6455 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6456 AssertRC(rc);
6457
6458 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6459 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
6460 if (enmTrpmEvent == TRPM_TRAP)
6461 {
6462 switch (uVector)
6463 {
6464 case X86_XCPT_BP:
6465 case X86_XCPT_OF:
6466 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6467 break;
6468
6469 case X86_XCPT_PF:
6470 case X86_XCPT_DF:
6471 case X86_XCPT_TS:
6472 case X86_XCPT_NP:
6473 case X86_XCPT_SS:
6474 case X86_XCPT_GP:
6475 case X86_XCPT_AC:
6476 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6477 /* no break! */
6478 default:
6479 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6480 break;
6481 }
6482 }
6483 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
6484 {
6485 if (uVector == X86_XCPT_NMI)
6486 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6487 else
6488 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6489 }
6490 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
6491 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6492 else
6493 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
6494
6495 rc = TRPMResetTrap(pVCpu);
6496 AssertRC(rc);
6497 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
6498 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
6499
6500 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
6501 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
6502}
6503
6504
6505/**
6506 * Converts any pending HM event into a TRPM trap. Typically used when leaving
6507 * VT-x to execute any instruction.
6508 *
6509 * @param pvCpu Pointer to the VMCPU.
6510 */
6511static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
6512{
6513 Assert(pVCpu->hm.s.Event.fPending);
6514
6515 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
6516 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
6517 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
6518 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
6519
6520 /* If a trap was already pending, we did something wrong! */
6521 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
6522
6523 TRPMEVENT enmTrapType;
6524 switch (uVectorType)
6525 {
6526 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6527 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6528 enmTrapType = TRPM_HARDWARE_INT;
6529 break;
6530
6531 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6532 enmTrapType = TRPM_SOFTWARE_INT;
6533 break;
6534
6535 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6536 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
6537 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6538 enmTrapType = TRPM_TRAP;
6539 break;
6540
6541 default:
6542 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
6543 enmTrapType = TRPM_32BIT_HACK;
6544 break;
6545 }
6546
6547 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
6548
6549 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
6550 AssertRC(rc);
6551
6552 if (fErrorCodeValid)
6553 TRPMSetErrorCode(pVCpu, uErrorCode);
6554
6555 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6556 && uVector == X86_XCPT_PF)
6557 {
6558 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
6559 }
6560 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6561 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6562 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6563 {
6564 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6565 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
6566 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
6567 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
6568 }
6569 pVCpu->hm.s.Event.fPending = false;
6570}
6571
6572
6573/**
6574 * Does the necessary state syncing before returning to ring-3 for any reason
6575 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
6576 *
6577 * @returns VBox status code.
6578 * @param pVM Pointer to the VM.
6579 * @param pVCpu Pointer to the VMCPU.
6580 * @param pMixedCtx Pointer to the guest-CPU context. The data may
6581 * be out-of-sync. Make sure to update the required
6582 * fields before using them.
6583 * @param fSaveGuestState Whether to save the guest state or not.
6584 *
6585 * @remarks No-long-jmp zone!!!
6586 */
6587static int hmR0VmxLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
6588{
6589 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6590 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6591
6592 RTCPUID idCpu = RTMpCpuId();
6593 Log4Func(("HostCpuId=%u\n", idCpu));
6594
6595 /*
6596 * IMPORTANT!!!
6597 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
6598 */
6599
6600 /* Save the guest state if necessary. */
6601 if ( fSaveGuestState
6602 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
6603 {
6604 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6605 AssertRCReturn(rc, rc);
6606 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
6607 }
6608
6609 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
6610 if (CPUMIsGuestFPUStateActive(pVCpu))
6611 {
6612 /* We shouldn't reload CR0 without saving it first. */
6613 if (!fSaveGuestState)
6614 {
6615 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6616 AssertRCReturn(rc, rc);
6617 }
6618 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
6619 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
6620 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
6621 }
6622
6623 /* Restore host debug registers if necessary and resync on next R0 reentry. */
6624#ifdef VBOX_STRICT
6625 if (CPUMIsHyperDebugStateActive(pVCpu))
6626 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
6627#endif
6628 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
6629 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
6630 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
6631 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
6632
6633#if HC_ARCH_BITS == 64
6634 /* Restore host-state bits that VT-x only restores partially. */
6635 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
6636 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
6637 {
6638 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
6639 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
6640 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
6641 }
6642#endif
6643
6644#if HC_ARCH_BITS == 64
6645 /* Restore the host MSRs as we're leaving VT-x context. */
6646 if ( pVM->hm.s.fAllow64BitGuests
6647 && pVCpu->hm.s.vmx.fRestoreHostMsrs)
6648 {
6649 /* We shouldn't reload the guest MSRs without saving it first. */
6650 if (!fSaveGuestState)
6651 {
6652 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6653 AssertRCReturn(rc, rc);
6654 }
6655 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
6656 hmR0VmxLazyRestoreHostMsrs(pVCpu);
6657 Assert(!pVCpu->hm.s.vmx.fRestoreHostMsrs);
6658 }
6659#endif
6660
6661 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
6662 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
6663 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
6664 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
6665 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
6666 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
6667 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
6668 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
6669
6670 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
6671
6672 /** @todo This partially defeats the purpose of having preemption hooks.
6673 * The problem is, deregistering the hooks should be moved to a place that
6674 * lasts until the EMT is about to be destroyed not everytime while leaving HM
6675 * context.
6676 */
6677 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
6678 {
6679 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
6680 AssertRCReturn(rc, rc);
6681
6682 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
6683 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
6684 }
6685 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
6686 NOREF(idCpu);
6687
6688 return VINF_SUCCESS;
6689}
6690
6691
6692/**
6693 * Leaves the VT-x session.
6694 *
6695 * @returns VBox status code.
6696 * @param pVM Pointer to the VM.
6697 * @param pVCpu Pointer to the VMCPU.
6698 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6699 * out-of-sync. Make sure to update the required fields
6700 * before using them.
6701 *
6702 * @remarks No-long-jmp zone!!!
6703 */
6704DECLINLINE(int) hmR0VmxLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6705{
6706 HM_DISABLE_PREEMPT_IF_NEEDED();
6707 HMVMX_ASSERT_CPU_SAFE();
6708 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6709 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6710
6711 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
6712 and done this from the VMXR0ThreadCtxCallback(). */
6713 if (!pVCpu->hm.s.fLeaveDone)
6714 {
6715 int rc2 = hmR0VmxLeave(pVM, pVCpu, pMixedCtx, true /* fSaveGuestState */);
6716 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT_IF_NEEDED(), rc2);
6717 pVCpu->hm.s.fLeaveDone = true;
6718 }
6719
6720 /*
6721 * IMPORTANT!!!
6722 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
6723 */
6724
6725 /* Deregister hook now that we've left HM context before re-enabling preemption. */
6726 /** @todo This is bad. Deregistering here means we need to VMCLEAR always
6727 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
6728 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
6729 VMMR0ThreadCtxHooksDeregister(pVCpu);
6730
6731 /* Leave HM context. This takes care of local init (term). */
6732 int rc = HMR0LeaveCpu(pVCpu);
6733
6734 HM_RESTORE_PREEMPT_IF_NEEDED();
6735
6736 return rc;
6737}
6738
6739
6740/**
6741 * Does the necessary state syncing before doing a longjmp to ring-3.
6742 *
6743 * @returns VBox status code.
6744 * @param pVM Pointer to the VM.
6745 * @param pVCpu Pointer to the VMCPU.
6746 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6747 * out-of-sync. Make sure to update the required fields
6748 * before using them.
6749 *
6750 * @remarks No-long-jmp zone!!!
6751 */
6752DECLINLINE(int) hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6753{
6754 return hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
6755}
6756
6757
6758/**
6759 * Take necessary actions before going back to ring-3.
6760 *
6761 * An action requires us to go back to ring-3. This function does the necessary
6762 * steps before we can safely return to ring-3. This is not the same as longjmps
6763 * to ring-3, this is voluntary and prepares the guest so it may continue
6764 * executing outside HM (recompiler/IEM).
6765 *
6766 * @returns VBox status code.
6767 * @param pVM Pointer to the VM.
6768 * @param pVCpu Pointer to the VMCPU.
6769 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6770 * out-of-sync. Make sure to update the required fields
6771 * before using them.
6772 * @param rcExit The reason for exiting to ring-3. Can be
6773 * VINF_VMM_UNKNOWN_RING3_CALL.
6774 */
6775static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
6776{
6777 Assert(pVM);
6778 Assert(pVCpu);
6779 Assert(pMixedCtx);
6780 HMVMX_ASSERT_PREEMPT_SAFE();
6781
6782 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
6783 {
6784 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
6785 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
6786 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6787 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
6788 }
6789
6790 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
6791 VMMRZCallRing3Disable(pVCpu);
6792 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, rcExit));
6793
6794 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
6795 if (pVCpu->hm.s.Event.fPending)
6796 {
6797 hmR0VmxPendingEventToTrpmTrap(pVCpu);
6798 Assert(!pVCpu->hm.s.Event.fPending);
6799 }
6800
6801 /* Save guest state and restore host state bits. */
6802 int rc = hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
6803 AssertRCReturn(rc, rc);
6804 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
6805
6806 /* Sync recompiler state. */
6807 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
6808 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
6809 | CPUM_CHANGED_LDTR
6810 | CPUM_CHANGED_GDTR
6811 | CPUM_CHANGED_IDTR
6812 | CPUM_CHANGED_TR
6813 | CPUM_CHANGED_HIDDEN_SEL_REGS);
6814 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6815 if ( pVM->hm.s.fNestedPaging
6816 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
6817 {
6818 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
6819 }
6820
6821 Assert(!pVCpu->hm.s.fClearTrapFlag);
6822
6823 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
6824 if (rcExit != VINF_EM_RAW_INTERRUPT)
6825 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6826
6827 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
6828
6829 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
6830 VMMRZCallRing3RemoveNotification(pVCpu);
6831 VMMRZCallRing3Enable(pVCpu);
6832
6833 return rc;
6834}
6835
6836
6837/**
6838 * VMMRZCallRing3() callback wrapper which saves the guest state before we
6839 * longjump to ring-3 and possibly get preempted.
6840 *
6841 * @returns VBox status code.
6842 * @param pVCpu Pointer to the VMCPU.
6843 * @param enmOperation The operation causing the ring-3 longjump.
6844 * @param pvUser Opaque pointer to the guest-CPU context. The data
6845 * may be out-of-sync. Make sure to update the required
6846 * fields before using them.
6847 */
6848DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
6849{
6850 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
6851 {
6852 /*
6853 * !!! IMPORTANT !!!
6854 * If you modify code here, make sure to check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs
6855 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
6856 */
6857 VMMRZCallRing3RemoveNotification(pVCpu);
6858 VMMRZCallRing3Disable(pVCpu);
6859 HM_DISABLE_PREEMPT_IF_NEEDED();
6860
6861 PVM pVM = pVCpu->CTX_SUFF(pVM);
6862 if (CPUMIsGuestFPUStateActive(pVCpu))
6863 CPUMR0SaveGuestFPU(pVM, pVCpu, (PCPUMCTX)pvUser);
6864
6865 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
6866
6867#if HC_ARCH_BITS == 64
6868 /* Restore host-state bits that VT-x only restores partially. */
6869 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
6870 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
6871 {
6872 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
6873 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
6874 }
6875#endif
6876
6877#if HC_ARCH_BITS == 64
6878 /* Restore the host MSRs as we're leaving VT-x context. */
6879 if ( pVM->hm.s.fAllow64BitGuests
6880 && pVCpu->hm.s.vmx.fRestoreHostMsrs)
6881 {
6882 hmR0VmxLazyRestoreHostMsrs(pVCpu);
6883 }
6884#endif
6885 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
6886 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
6887 {
6888 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
6889 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
6890 }
6891
6892 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
6893 VMMR0ThreadCtxHooksDeregister(pVCpu);
6894
6895 HMR0LeaveCpu(pVCpu);
6896 HM_RESTORE_PREEMPT_IF_NEEDED();
6897 return VINF_SUCCESS;
6898 }
6899
6900 Assert(pVCpu);
6901 Assert(pvUser);
6902 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6903 HMVMX_ASSERT_PREEMPT_SAFE();
6904
6905 VMMRZCallRing3Disable(pVCpu);
6906 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6907
6908 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32\n enmOperation=%d", pVCpu, pVCpu->idCpu,
6909 enmOperation));
6910
6911 int rc = hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
6912 AssertRCReturn(rc, rc);
6913
6914 VMMRZCallRing3Enable(pVCpu);
6915 return VINF_SUCCESS;
6916}
6917
6918
6919/**
6920 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
6921 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
6922 *
6923 * @param pVCpu Pointer to the VMCPU.
6924 */
6925DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
6926{
6927 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
6928 {
6929 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
6930 {
6931 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
6932 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
6933 AssertRC(rc);
6934 }
6935 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
6936}
6937
6938
6939/**
6940 * Evaluates the event to be delivered to the guest and sets it as the pending
6941 * event.
6942 *
6943 * @param pVCpu Pointer to the VMCPU.
6944 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6945 * out-of-sync. Make sure to update the required fields
6946 * before using them.
6947 */
6948static void hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6949{
6950 Assert(!pVCpu->hm.s.Event.fPending);
6951
6952 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
6953 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
6954 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
6955 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
6956
6957 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
6958 Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
6959 && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
6960 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
6961 Assert(!TRPMHasTrap(pVCpu));
6962
6963 /** @todo SMI. SMIs take priority over NMIs. */
6964 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
6965 {
6966 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
6967 if ( !fBlockMovSS
6968 && !fBlockSti)
6969 {
6970 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
6971 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
6972 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
6973 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6974
6975 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddres */);
6976 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
6977 }
6978 else
6979 hmR0VmxSetIntWindowExitVmcs(pVCpu);
6980 }
6981 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
6982 && !pVCpu->hm.s.fSingleInstruction)
6983 {
6984 /*
6985 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
6986 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
6987 * evaluated here and not set as pending, solely based on the force-flags.
6988 */
6989 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6990 AssertRC(rc);
6991 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
6992 if ( !fBlockInt
6993 && !fBlockSti
6994 && !fBlockMovSS)
6995 {
6996 uint8_t u8Interrupt;
6997 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
6998 if (RT_SUCCESS(rc))
6999 {
7000 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7001 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7002 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7003
7004 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7005 }
7006 else
7007 {
7008 /** @todo Does this actually happen? If not turn it into an assertion. */
7009 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
7010 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7011 }
7012 }
7013 else
7014 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7015 }
7016}
7017
7018
7019/**
7020 * Injects any pending events into the guest if the guest is in a state to
7021 * receive them.
7022 *
7023 * @returns VBox status code (informational status codes included).
7024 * @param pVCpu Pointer to the VMCPU.
7025 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7026 * out-of-sync. Make sure to update the required fields
7027 * before using them.
7028 */
7029static int hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7030{
7031 HMVMX_ASSERT_PREEMPT_SAFE();
7032 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7033
7034 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7035 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7036 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7037 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7038
7039 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7040 Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
7041 && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
7042 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7043 Assert(!TRPMHasTrap(pVCpu));
7044
7045 int rc = VINF_SUCCESS;
7046 if (pVCpu->hm.s.Event.fPending)
7047 {
7048#if defined(VBOX_STRICT) || defined(VBOX_WITH_STATISTICS)
7049 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7050 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7051 {
7052 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7053 AssertRCReturn(rc, rc);
7054 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7055 Assert(!fBlockInt);
7056 Assert(!fBlockSti);
7057 Assert(!fBlockMovSS);
7058 }
7059 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7060 {
7061 Assert(!fBlockSti);
7062 Assert(!fBlockMovSS);
7063 }
7064#endif
7065 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo));
7066 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7067 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, &uIntrState);
7068 AssertRCReturn(rc, rc);
7069
7070 /* Update the interruptibility-state as it could have been changed by
7071 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7072 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7073 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7074
7075#ifdef VBOX_WITH_STATISTICS
7076 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7077 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7078 else
7079 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7080#endif
7081 }
7082
7083 /* Delivery pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7084 if ( !pVCpu->hm.s.fSingleInstruction
7085 && !DBGFIsStepping(pVCpu))
7086 {
7087 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7088 AssertRCReturn(rc2, rc2);
7089 if (pMixedCtx->eflags.Bits.u1TF) /* We don't have any IA32_DEBUGCTL MSR for guests. Treat as all bits 0. */
7090 {
7091 /*
7092 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7093 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7094 * See Intel spec. 27.3.4 "Saving Non-Register State".
7095 */
7096 rc2 = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7097 AssertRCReturn(rc2, rc2);
7098 }
7099 }
7100 else
7101 {
7102 /* We are single-stepping in the hypervisor debugger, clear interrupt inhibition as setting the BS bit would mean
7103 delivering a #DB to the guest upon VM-entry when it shouldn't be. */
7104 uIntrState = 0;
7105 }
7106
7107 /*
7108 * There's no need to clear the VM entry-interruption information field here if we're not injecting anything.
7109 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7110 */
7111 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7112 AssertRC(rc2);
7113
7114 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
7115 NOREF(fBlockMovSS); NOREF(fBlockSti);
7116 return rc;
7117}
7118
7119
7120/**
7121 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
7122 *
7123 * @param pVCpu Pointer to the VMCPU.
7124 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7125 * out-of-sync. Make sure to update the required fields
7126 * before using them.
7127 */
7128DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7129{
7130 NOREF(pMixedCtx);
7131 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7132 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7133}
7134
7135
7136/**
7137 * Injects a double-fault (#DF) exception into the VM.
7138 *
7139 * @returns VBox status code (informational status code included).
7140 * @param pVCpu Pointer to the VMCPU.
7141 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7142 * out-of-sync. Make sure to update the required fields
7143 * before using them.
7144 */
7145DECLINLINE(int) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t *puIntrState)
7146{
7147 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7148 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7149 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7150 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7151 puIntrState);
7152}
7153
7154
7155/**
7156 * Sets a debug (#DB) exception as pending-for-injection into the VM.
7157 *
7158 * @param pVCpu Pointer to the VMCPU.
7159 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7160 * out-of-sync. Make sure to update the required fields
7161 * before using them.
7162 */
7163DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7164{
7165 NOREF(pMixedCtx);
7166 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7167 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7168 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7169}
7170
7171
7172/**
7173 * Sets an overflow (#OF) exception as pending-for-injection into the VM.
7174 *
7175 * @param pVCpu Pointer to the VMCPU.
7176 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7177 * out-of-sync. Make sure to update the required fields
7178 * before using them.
7179 * @param cbInstr The value of RIP that is to be pushed on the guest
7180 * stack.
7181 */
7182DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7183{
7184 NOREF(pMixedCtx);
7185 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7186 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7187 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7188}
7189
7190
7191/**
7192 * Injects a general-protection (#GP) fault into the VM.
7193 *
7194 * @returns VBox status code (informational status code included).
7195 * @param pVCpu Pointer to the VMCPU.
7196 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7197 * out-of-sync. Make sure to update the required fields
7198 * before using them.
7199 * @param u32ErrorCode The error code associated with the #GP.
7200 */
7201DECLINLINE(int) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7202 uint32_t *puIntrState)
7203{
7204 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7205 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7206 if (fErrorCodeValid)
7207 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7208 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7209 puIntrState);
7210}
7211
7212
7213/**
7214 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7215 *
7216 * @param pVCpu Pointer to the VMCPU.
7217 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7218 * out-of-sync. Make sure to update the required fields
7219 * before using them.
7220 * @param uVector The software interrupt vector number.
7221 * @param cbInstr The value of RIP that is to be pushed on the guest
7222 * stack.
7223 */
7224DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7225{
7226 NOREF(pMixedCtx);
7227 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7228 if ( uVector == X86_XCPT_BP
7229 || uVector == X86_XCPT_OF)
7230 {
7231 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7232 }
7233 else
7234 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7235 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7236}
7237
7238
7239/**
7240 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7241 * stack.
7242 *
7243 * @returns VBox status code (information status code included).
7244 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7245 * @param pVM Pointer to the VM.
7246 * @param pMixedCtx Pointer to the guest-CPU context.
7247 * @param uValue The value to push to the guest stack.
7248 */
7249DECLINLINE(int) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7250{
7251 /*
7252 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7253 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7254 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7255 */
7256 if (pMixedCtx->sp == 1)
7257 return VINF_EM_RESET;
7258 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7259 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7260 AssertRCReturn(rc, rc);
7261 return rc;
7262}
7263
7264
7265/**
7266 * Injects an event into the guest upon VM-entry by updating the relevant fields
7267 * in the VM-entry area in the VMCS.
7268 *
7269 * @returns VBox status code (informational error codes included).
7270 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7271 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7272 *
7273 * @param pVCpu Pointer to the VMCPU.
7274 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7275 * be out-of-sync. Make sure to update the required
7276 * fields before using them.
7277 * @param u64IntInfo The VM-entry interruption-information field.
7278 * @param cbInstr The VM-entry instruction length in bytes (for
7279 * software interrupts, exceptions and privileged
7280 * software exceptions).
7281 * @param u32ErrCode The VM-entry exception error code.
7282 * @param GCPtrFaultAddress The page-fault address for #PF exceptions.
7283 * @param puIntrState Pointer to the current guest interruptibility-state.
7284 * This interruptibility-state will be updated if
7285 * necessary. This cannot not be NULL.
7286 *
7287 * @remarks Requires CR0!
7288 * @remarks No-long-jump zone!!!
7289 */
7290static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7291 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState)
7292{
7293 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7294 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
7295 Assert(puIntrState);
7296 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7297
7298 const uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
7299 const uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
7300
7301#ifdef VBOX_STRICT
7302 /* Validate the error-code-valid bit for hardware exceptions. */
7303 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
7304 {
7305 switch (uVector)
7306 {
7307 case X86_XCPT_PF:
7308 case X86_XCPT_DF:
7309 case X86_XCPT_TS:
7310 case X86_XCPT_NP:
7311 case X86_XCPT_SS:
7312 case X86_XCPT_GP:
7313 case X86_XCPT_AC:
7314 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
7315 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7316 /* fallthru */
7317 default:
7318 break;
7319 }
7320 }
7321#endif
7322
7323 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7324 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7325 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
7326
7327 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7328
7329 /* We require CR0 to check if the guest is in real-mode. */
7330 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7331 AssertRCReturn(rc, rc);
7332
7333 /*
7334 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
7335 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
7336 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
7337 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7338 */
7339 if (CPUMIsGuestInRealModeEx(pMixedCtx))
7340 {
7341 PVM pVM = pVCpu->CTX_SUFF(pVM);
7342 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
7343 {
7344 Assert(PDMVmmDevHeapIsEnabled(pVM));
7345 Assert(pVM->hm.s.vmx.pRealModeTSS);
7346
7347 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
7348 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7349 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
7350 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
7351 AssertRCReturn(rc, rc);
7352 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
7353
7354 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7355 const size_t cbIdtEntry = sizeof(X86IDTR16);
7356 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
7357 {
7358 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7359 if (uVector == X86_XCPT_DF)
7360 return VINF_EM_RESET;
7361 else if (uVector == X86_XCPT_GP)
7362 {
7363 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7364 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, puIntrState);
7365 }
7366
7367 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
7368 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
7369 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */, puIntrState);
7370 }
7371
7372 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7373 uint16_t uGuestIp = pMixedCtx->ip;
7374 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
7375 {
7376 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7377 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7378 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
7379 }
7380 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
7381 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
7382
7383 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7384 X86IDTR16 IdtEntry;
7385 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
7386 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7387 AssertRCReturn(rc, rc);
7388
7389 /* Construct the stack frame for the interrupt/exception handler. */
7390 rc = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
7391 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
7392 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
7393 AssertRCReturn(rc, rc);
7394
7395 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7396 if (rc == VINF_SUCCESS)
7397 {
7398 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7399 pMixedCtx->rip = IdtEntry.offSel;
7400 pMixedCtx->cs.Sel = IdtEntry.uSel;
7401 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7402 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
7403 && uVector == X86_XCPT_PF)
7404 {
7405 pMixedCtx->cr2 = GCPtrFaultAddress;
7406 }
7407
7408 /* If any other guest-state bits are changed here, make sure to update
7409 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7410 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
7411 | HM_CHANGED_GUEST_RIP
7412 | HM_CHANGED_GUEST_RFLAGS
7413 | HM_CHANGED_GUEST_RSP);
7414
7415 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7416 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
7417 {
7418 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7419 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
7420 Log4(("Clearing inhibition due to STI.\n"));
7421 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
7422 }
7423 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x instrlen=%#x\n", u32IntInfo, u32ErrCode, cbInstr));
7424
7425 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7426 it, if we are returning to ring-3 before executing guest code. */
7427 pVCpu->hm.s.Event.fPending = false;
7428 }
7429 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
7430 return rc;
7431 }
7432 else
7433 {
7434 /*
7435 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
7436 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7437 */
7438 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7439 }
7440 }
7441
7442 /* Validate. */
7443 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7444 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK(u32IntInfo)); /* Bit 12 MBZ. */
7445 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
7446
7447 /* Inject. */
7448 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7449 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
7450 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7451 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7452
7453 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
7454 && uVector == X86_XCPT_PF)
7455 {
7456 pMixedCtx->cr2 = GCPtrFaultAddress;
7457 }
7458
7459 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
7460 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
7461
7462 AssertRCReturn(rc, rc);
7463 return rc;
7464}
7465
7466
7467/**
7468 * Clears the interrupt-window exiting control in the VMCS and if necessary
7469 * clears the current event in the VMCS as well.
7470 *
7471 * @returns VBox status code.
7472 * @param pVCpu Pointer to the VMCPU.
7473 *
7474 * @remarks Use this function only to clear events that have not yet been
7475 * delivered to the guest but are injected in the VMCS!
7476 * @remarks No-long-jump zone!!!
7477 */
7478static void hmR0VmxClearEventVmcs(PVMCPU pVCpu)
7479{
7480 int rc;
7481 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
7482
7483 /* Clear interrupt-window exiting control. */
7484 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
7485 {
7486 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7487 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7488 AssertRC(rc);
7489 }
7490
7491 if (!pVCpu->hm.s.Event.fPending)
7492 return;
7493
7494#ifdef VBOX_STRICT
7495 uint32_t u32EntryInfo;
7496 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
7497 AssertRC(rc);
7498 Assert(VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo));
7499#endif
7500
7501 /* Clear the entry-interruption field (including the valid bit). */
7502 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7503 AssertRC(rc);
7504
7505 /* Clear the pending debug exception field. */
7506 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
7507 AssertRC(rc);
7508}
7509
7510
7511/**
7512 * Enters the VT-x session.
7513 *
7514 * @returns VBox status code.
7515 * @param pVM Pointer to the VM.
7516 * @param pVCpu Pointer to the VMCPU.
7517 * @param pCpu Pointer to the CPU info struct.
7518 */
7519VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
7520{
7521 AssertPtr(pVM);
7522 AssertPtr(pVCpu);
7523 Assert(pVM->hm.s.vmx.fSupported);
7524 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7525 NOREF(pCpu); NOREF(pVM);
7526
7527 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7528 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
7529
7530#ifdef VBOX_STRICT
7531 /* Make sure we're in VMX root mode. */
7532 RTCCUINTREG u32HostCR4 = ASMGetCR4();
7533 if (!(u32HostCR4 & X86_CR4_VMXE))
7534 {
7535 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
7536 return VERR_VMX_X86_CR4_VMXE_CLEARED;
7537 }
7538#endif
7539
7540 /*
7541 * Load the VCPU's VMCS as the current (and active) one.
7542 */
7543 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
7544 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7545 if (RT_FAILURE(rc))
7546 return rc;
7547
7548 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
7549 pVCpu->hm.s.fLeaveDone = false;
7550 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
7551
7552 return VINF_SUCCESS;
7553}
7554
7555
7556/**
7557 * The thread-context callback (only on platforms which support it).
7558 *
7559 * @param enmEvent The thread-context event.
7560 * @param pVCpu Pointer to the VMCPU.
7561 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
7562 * @thread EMT(pVCpu)
7563 */
7564VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
7565{
7566 NOREF(fGlobalInit);
7567
7568 switch (enmEvent)
7569 {
7570 case RTTHREADCTXEVENT_PREEMPTING:
7571 {
7572 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7573 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
7574 VMCPU_ASSERT_EMT(pVCpu);
7575
7576 PVM pVM = pVCpu->CTX_SUFF(pVM);
7577 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
7578
7579 /* No longjmps (logger flushes, locks) in this fragile context. */
7580 VMMRZCallRing3Disable(pVCpu);
7581 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
7582
7583 /*
7584 * Restore host-state (FPU, debug etc.)
7585 */
7586 if (!pVCpu->hm.s.fLeaveDone)
7587 {
7588 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
7589 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
7590 hmR0VmxLeave(pVM, pVCpu, pMixedCtx, false /* fSaveGuestState */);
7591 pVCpu->hm.s.fLeaveDone = true;
7592 }
7593
7594 /* Leave HM context, takes care of local init (term). */
7595 int rc = HMR0LeaveCpu(pVCpu);
7596 AssertRC(rc); NOREF(rc);
7597
7598 /* Restore longjmp state. */
7599 VMMRZCallRing3Enable(pVCpu);
7600 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptPreempting);
7601 break;
7602 }
7603
7604 case RTTHREADCTXEVENT_RESUMED:
7605 {
7606 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7607 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
7608 VMCPU_ASSERT_EMT(pVCpu);
7609
7610 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
7611 VMMRZCallRing3Disable(pVCpu);
7612 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
7613
7614 /* Initialize the bare minimum state required for HM. This takes care of
7615 initializing VT-x if necessary (onlined CPUs, local init etc.) */
7616 int rc = HMR0EnterCpu(pVCpu);
7617 AssertRC(rc);
7618 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
7619
7620 /* Load the active VMCS as the current one. */
7621 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
7622 {
7623 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7624 AssertRC(rc); NOREF(rc);
7625 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
7626 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
7627 }
7628 pVCpu->hm.s.fLeaveDone = false;
7629
7630 /* Restore longjmp state. */
7631 VMMRZCallRing3Enable(pVCpu);
7632 break;
7633 }
7634
7635 default:
7636 break;
7637 }
7638}
7639
7640
7641/**
7642 * Saves the host state in the VMCS host-state.
7643 * Sets up the VM-exit MSR-load area.
7644 *
7645 * The CPU state will be loaded from these fields on every successful VM-exit.
7646 *
7647 * @returns VBox status code.
7648 * @param pVM Pointer to the VM.
7649 * @param pVCpu Pointer to the VMCPU.
7650 *
7651 * @remarks No-long-jump zone!!!
7652 */
7653static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
7654{
7655 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7656
7657 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
7658 return VINF_SUCCESS;
7659
7660 int rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
7661 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7662
7663 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
7664 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7665
7666 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
7667 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7668
7669 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
7670 return rc;
7671}
7672
7673
7674/**
7675 * Saves the host state in the VMCS host-state.
7676 *
7677 * @returns VBox status code.
7678 * @param pVM Pointer to the VM.
7679 * @param pVCpu Pointer to the VMCPU.
7680 *
7681 * @remarks No-long-jump zone!!!
7682 */
7683VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
7684{
7685 AssertPtr(pVM);
7686 AssertPtr(pVCpu);
7687
7688 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7689
7690 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
7691 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
7692 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7693 return hmR0VmxSaveHostState(pVM, pVCpu);
7694}
7695
7696
7697/**
7698 * Loads the guest state into the VMCS guest-state area. The CPU state will be
7699 * loaded from these fields on every successful VM-entry.
7700 *
7701 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas.
7702 * Sets up the VM-entry controls.
7703 * Sets up the appropriate VMX non-root function to execute guest code based on
7704 * the guest CPU mode.
7705 *
7706 * @returns VBox status code.
7707 * @param pVM Pointer to the VM.
7708 * @param pVCpu Pointer to the VMCPU.
7709 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7710 * out-of-sync. Make sure to update the required fields
7711 * before using them.
7712 *
7713 * @remarks No-long-jump zone!!!
7714 */
7715static int hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7716{
7717 AssertPtr(pVM);
7718 AssertPtr(pVCpu);
7719 AssertPtr(pMixedCtx);
7720 HMVMX_ASSERT_PREEMPT_SAFE();
7721
7722#ifdef LOG_ENABLED
7723 /** @todo r=ramshankar: I'm not able to use VMMRZCallRing3Disable() here,
7724 * probably not initialized yet? Anyway this will do for now.
7725 *
7726 * Update: Should be possible once VMXR0LoadGuestState() is removed as an
7727 * interface and disable ring-3 calls when thread-context hooks are not
7728 * available. */
7729 bool fCallerDisabledLogFlush = VMMR0IsLogFlushDisabled(pVCpu);
7730 VMMR0LogFlushDisable(pVCpu);
7731#endif
7732
7733 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7734
7735 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
7736
7737 /* Determine real-on-v86 mode. */
7738 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
7739 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
7740 && CPUMIsGuestInRealModeEx(pMixedCtx))
7741 {
7742 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
7743 }
7744
7745 /*
7746 * Load the guest-state into the VMCS.
7747 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
7748 * Ideally, assert that the cross-dependent bits are up to date at the point of using it.
7749 */
7750 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
7751 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7752
7753 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
7754 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
7755 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7756
7757 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
7758 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
7759 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7760
7761 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
7762 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7763
7764 rc = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
7765 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestCR3AndCR4: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7766
7767 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
7768 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
7769 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7770
7771 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
7772 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadSharedMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7773
7774 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
7775 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7776
7777 /*
7778 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
7779 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
7780 */
7781 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
7782 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7783
7784 /* Clear any unused and reserved bits. */
7785 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
7786
7787#ifdef LOG_ENABLED
7788 /* Only reenable log-flushing if the caller has it enabled. */
7789 if (!fCallerDisabledLogFlush)
7790 VMMR0LogFlushEnable(pVCpu);
7791#endif
7792
7793 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
7794 return rc;
7795}
7796
7797
7798/**
7799 * Loads the state shared between the host and guest into the VMCS.
7800 *
7801 * @param pVM Pointer to the VM.
7802 * @param pVCpu Pointer to the VMCPU.
7803 * @param pCtx Pointer to the guest-CPU context.
7804 *
7805 * @remarks No-long-jump zone!!!
7806 */
7807static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
7808{
7809 NOREF(pVM);
7810
7811 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7812 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7813
7814 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
7815 {
7816 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
7817 AssertRC(rc);
7818 }
7819
7820 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
7821 {
7822 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
7823 AssertRC(rc);
7824
7825 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
7826 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
7827 {
7828 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
7829 AssertRC(rc);
7830 }
7831 }
7832
7833 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
7834 {
7835#if HC_ARCH_BITS == 64
7836 if (pVM->hm.s.fAllow64BitGuests)
7837 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
7838#endif
7839 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
7840 }
7841
7842 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
7843 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
7844}
7845
7846
7847/**
7848 * Worker for loading the guest-state bits in the inner VT-x execution loop.
7849 *
7850 * @param pVM Pointer to the VM.
7851 * @param pVCpu Pointer to the VMCPU.
7852 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7853 * out-of-sync. Make sure to update the required fields
7854 * before using them.
7855 */
7856DECLINLINE(void) hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7857{
7858 HMVMX_ASSERT_PREEMPT_SAFE();
7859
7860 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
7861#ifdef HMVMX_SYNC_FULL_GUEST_STATE
7862 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7863#endif
7864
7865 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
7866 {
7867 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
7868 AssertRC(rc);
7869 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
7870 }
7871 else if (HMCPU_CF_VALUE(pVCpu))
7872 {
7873 int rc = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
7874 AssertRC(rc);
7875 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
7876 }
7877
7878 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
7879 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
7880 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
7881 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
7882
7883#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
7884 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
7885 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
7886 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
7887#endif
7888}
7889
7890
7891/**
7892 * Does the preparations before executing guest code in VT-x.
7893 *
7894 * This may cause longjmps to ring-3 and may even result in rescheduling to the
7895 * recompiler. We must be cautious what we do here regarding committing
7896 * guest-state information into the VMCS assuming we assuredly execute the
7897 * guest in VT-x mode. If we fall back to the recompiler after updating the VMCS
7898 * and clearing the common-state (TRPM/forceflags), we must undo those changes
7899 * so that the recompiler can (and should) use them when it resumes guest
7900 * execution. Otherwise such operations must be done when we can no longer
7901 * exit to ring-3.
7902 *
7903 * @returns Strict VBox status code.
7904 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
7905 * have been disabled.
7906 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
7907 * double-fault into the guest.
7908 * @retval VINF_* scheduling changes, we have to go back to ring-3.
7909 *
7910 * @param pVM Pointer to the VM.
7911 * @param pVCpu Pointer to the VMCPU.
7912 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7913 * out-of-sync. Make sure to update the required fields
7914 * before using them.
7915 * @param pVmxTransient Pointer to the VMX transient structure.
7916 */
7917static int hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7918{
7919 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7920
7921#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
7922 PGMRZDynMapFlushAutoSet(pVCpu);
7923#endif
7924
7925 /* Check force flag actions that might require us to go back to ring-3. */
7926 int rc = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx);
7927 if (rc != VINF_SUCCESS)
7928 return rc;
7929
7930#ifndef IEM_VERIFICATION_MODE_FULL
7931 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
7932 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
7933 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
7934 {
7935 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
7936 RTGCPHYS GCPhysApicBase;
7937 GCPhysApicBase = pMixedCtx->msrApicBase;
7938 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7939
7940 /* Unalias any existing mapping. */
7941 rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
7942 AssertRCReturn(rc, rc);
7943
7944 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
7945 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGv\n", GCPhysApicBase));
7946 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
7947 AssertRCReturn(rc, rc);
7948
7949 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
7950 }
7951#endif /* !IEM_VERIFICATION_MODE_FULL */
7952
7953 /* Load the guest state bits, we can handle longjmps/getting preempted here. */
7954 hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
7955
7956 /*
7957 * Evaluate events as pending-for-injection into the guest. Toggling of force-flags here is safe as long as
7958 * we update TRPM on premature exits to ring-3 before executing guest code. We must NOT restore the force-flags.
7959 */
7960 if (TRPMHasTrap(pVCpu))
7961 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
7962 else if (!pVCpu->hm.s.Event.fPending)
7963 hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
7964
7965 /*
7966 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
7967 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
7968 */
7969 rc = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx);
7970 if (RT_UNLIKELY(rc != VINF_SUCCESS))
7971 {
7972 Assert(rc == VINF_EM_RESET);
7973 return rc;
7974 }
7975
7976 /*
7977 * No longjmps to ring-3 from this point on!!!
7978 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
7979 * This also disables flushing of the R0-logger instance (if any).
7980 */
7981 VMMRZCallRing3Disable(pVCpu);
7982
7983 /*
7984 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
7985 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
7986 *
7987 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
7988 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
7989 *
7990 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
7991 * executing guest code.
7992 */
7993 pVmxTransient->uEflags = ASMIntDisableFlags();
7994 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
7995 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7996 {
7997 hmR0VmxClearEventVmcs(pVCpu);
7998 ASMSetFlags(pVmxTransient->uEflags);
7999 VMMRZCallRing3Enable(pVCpu);
8000 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8001 return VINF_EM_RAW_TO_R3;
8002 }
8003 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
8004 {
8005 hmR0VmxClearEventVmcs(pVCpu);
8006 ASMSetFlags(pVmxTransient->uEflags);
8007 VMMRZCallRing3Enable(pVCpu);
8008 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8009 return VINF_EM_RAW_INTERRUPT;
8010 }
8011
8012 /* We've injected any pending events. This is really the point of no return (to ring-3). */
8013 pVCpu->hm.s.Event.fPending = false;
8014
8015 return VINF_SUCCESS;
8016}
8017
8018
8019/**
8020 * Prepares to run guest code in VT-x and we've committed to doing so. This
8021 * means there is no backing out to ring-3 or anywhere else at this
8022 * point.
8023 *
8024 * @param pVM Pointer to the VM.
8025 * @param pVCpu Pointer to the VMCPU.
8026 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8027 * out-of-sync. Make sure to update the required fields
8028 * before using them.
8029 * @param pVmxTransient Pointer to the VMX transient structure.
8030 *
8031 * @remarks Called with preemption disabled.
8032 * @remarks No-long-jump zone!!!
8033 */
8034static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8035{
8036 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8037 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8038 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8039
8040 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8041 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
8042
8043 /*
8044 * If we are injecting events to a real-on-v86 mode guest, we may have to update
8045 * RIP and some other registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8046 * Reload only the necessary state, the assertion will catch if other parts of the code
8047 * change.
8048 */
8049 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
8050 {
8051 hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8052 hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8053 }
8054
8055#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8056 if (!CPUMIsGuestFPUStateActive(pVCpu))
8057 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8058 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8059#endif
8060
8061 if ( pVCpu->hm.s.fUseGuestFpu
8062 && !CPUMIsGuestFPUStateActive(pVCpu))
8063 {
8064 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8065 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8066 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8067 }
8068
8069 /*
8070 * The host MSR values the very first time around won't be updated, so we need to
8071 * fill those values in. Subsequently, it's updated as part of the host state.
8072 */
8073 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8074 && pVCpu->hm.s.vmx.cMsrs > 0)
8075 {
8076 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8077 }
8078
8079 /*
8080 * Load the host state bits as we may've been preempted (only happens when
8081 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8082 */
8083 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8084 {
8085 /* This ASSUMES that pfnStartVM has been set up already. */
8086 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8087 AssertRC(rc);
8088 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptSaveHostState);
8089 }
8090 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8091
8092 /*
8093 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8094 */
8095 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8096 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8097 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8098
8099 /* Store status of the shared guest-host state at the time of VM-entry. */
8100#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8101 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8102 {
8103 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8104 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8105 }
8106 else
8107#endif
8108 {
8109 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8110 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8111 }
8112 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8113
8114 /*
8115 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8116 */
8117 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8118 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
8119
8120 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
8121 RTCPUID idCurrentCpu = pCpu->idCpu;
8122 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8123 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8124 {
8125 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8126 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8127 }
8128
8129 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
8130 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8131 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8132 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8133
8134 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8135
8136 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8137 to start executing. */
8138
8139 /*
8140 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8141 */
8142 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8143 {
8144 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8145 {
8146 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8147 AssertRC(rc2);
8148 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8149 uint64_t u64GuestTscAuxMsr;
8150 rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAuxMsr);
8151 AssertRC(rc2);
8152 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, u64GuestTscAuxMsr, true /* fUpdateHostMsr */);
8153 }
8154 else
8155 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8156 }
8157#ifdef VBOX_STRICT
8158 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8159#endif
8160}
8161
8162
8163/**
8164 * Performs some essential restoration of state after running guest code in
8165 * VT-x.
8166 *
8167 * @param pVM Pointer to the VM.
8168 * @param pVCpu Pointer to the VMCPU.
8169 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8170 * out-of-sync. Make sure to update the required fields
8171 * before using them.
8172 * @param pVmxTransient Pointer to the VMX transient structure.
8173 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8174 *
8175 * @remarks Called with interrupts disabled, and returns with interrups enabled!
8176 *
8177 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8178 * unconditionally when it is safe to do so.
8179 */
8180static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8181{
8182 NOREF(pVM);
8183
8184 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8185
8186 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
8187 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
8188 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8189 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8190 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8191
8192 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8193 {
8194 /** @todo Find a way to fix hardcoding a guestimate. */
8195 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC()
8196 + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
8197 }
8198
8199 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8200 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8201 Assert(!(ASMGetFlags() & X86_EFL_IF));
8202 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8203
8204#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8205 if (CPUMIsGuestFPUStateActive(pVCpu))
8206 {
8207 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8208 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
8209 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8210 }
8211#endif
8212
8213 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8214 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8215 ASMSetFlags(pVmxTransient->uEflags); /* Enable interrupts. */
8216 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8217
8218 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8219 uint32_t uExitReason;
8220 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8221 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8222 AssertRC(rc);
8223 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8224 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8225
8226 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
8227 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
8228 {
8229 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
8230 pVmxTransient->fVMEntryFailed));
8231 return;
8232 }
8233
8234 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
8235 {
8236 /* Update the guest interruptibility-state from the VMCS. */
8237 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
8238#if defined(HMVMX_SYNC_FULL_GUEST_STATE) || defined(HMVMX_SAVE_FULL_GUEST_STATE)
8239 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8240 AssertRC(rc);
8241#endif
8242 /*
8243 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
8244 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
8245 * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
8246 * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
8247 */
8248 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8249 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
8250 {
8251 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
8252 AssertRC(rc);
8253 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
8254 }
8255 }
8256}
8257
8258
8259
8260/**
8261 * Runs the guest code using VT-x the normal way.
8262 *
8263 * @returns VBox status code.
8264 * @param pVM Pointer to the VM.
8265 * @param pVCpu Pointer to the VMCPU.
8266 * @param pCtx Pointer to the guest-CPU context.
8267 *
8268 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8269 */
8270static int hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8271{
8272 VMXTRANSIENT VmxTransient;
8273 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8274 int rc = VERR_INTERNAL_ERROR_5;
8275 uint32_t cLoops = 0;
8276
8277 for (;; cLoops++)
8278 {
8279 Assert(!HMR0SuspendPending());
8280 HMVMX_ASSERT_CPU_SAFE();
8281
8282 /* Preparatory work for running guest code, this may force us to return
8283 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8284 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8285 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
8286 if (rc != VINF_SUCCESS)
8287 break;
8288
8289 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
8290 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
8291 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
8292
8293 /* Restore any residual host-state and save any bits shared between host
8294 and guest into the guest-CPU state. Re-enables interrupts! */
8295 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
8296
8297 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8298 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8299 {
8300 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
8301 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
8302 return rc;
8303 }
8304
8305 /* Handle the VM-exit. */
8306 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8307 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8308 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8309 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
8310 HMVMX_START_EXIT_DISPATCH_PROF();
8311#ifdef HMVMX_USE_FUNCTION_TABLE
8312 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
8313#else
8314 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
8315#endif
8316 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
8317 if (rc != VINF_SUCCESS)
8318 break;
8319 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
8320 {
8321 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
8322 rc = VINF_EM_RAW_INTERRUPT;
8323 break;
8324 }
8325 }
8326
8327 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8328 return rc;
8329}
8330
8331
8332/**
8333 * Single steps guest code using VT-x.
8334 *
8335 * @returns VBox status code.
8336 * @param pVM Pointer to the VM.
8337 * @param pVCpu Pointer to the VMCPU.
8338 * @param pCtx Pointer to the guest-CPU context.
8339 *
8340 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
8341 */
8342static int hmR0VmxRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8343{
8344 VMXTRANSIENT VmxTransient;
8345 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8346 int rc = VERR_INTERNAL_ERROR_5;
8347 uint32_t cLoops = 0;
8348 uint16_t uCsStart = pCtx->cs.Sel;
8349 uint64_t uRipStart = pCtx->rip;
8350
8351 for (;; cLoops++)
8352 {
8353 Assert(!HMR0SuspendPending());
8354 HMVMX_ASSERT_CPU_SAFE();
8355
8356 /* Preparatory work for running guest code, this may force us to return
8357 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8358 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8359 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
8360 if (rc != VINF_SUCCESS)
8361 break;
8362
8363 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
8364 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
8365 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
8366
8367 /* Restore any residual host-state and save any bits shared between host
8368 and guest into the guest-CPU state. Re-enables interrupts! */
8369 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
8370
8371 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8372 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8373 {
8374 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
8375 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
8376 return rc;
8377 }
8378
8379 /* Handle the VM-exit. */
8380 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8381 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8382 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8383 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
8384 HMVMX_START_EXIT_DISPATCH_PROF();
8385#ifdef HMVMX_USE_FUNCTION_TABLE
8386 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
8387#else
8388 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
8389#endif
8390 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
8391 if (rc != VINF_SUCCESS)
8392 break;
8393 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
8394 {
8395 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
8396 rc = VINF_EM_RAW_INTERRUPT;
8397 break;
8398 }
8399
8400 /*
8401 * Did the RIP change, if so, consider it a single step.
8402 * Otherwise, make sure one of the TFs gets set.
8403 */
8404 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
8405 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
8406 AssertRCReturn(rc2, rc2);
8407 if ( pCtx->rip != uRipStart
8408 || pCtx->cs.Sel != uCsStart)
8409 {
8410 rc = VINF_EM_DBG_STEPPED;
8411 break;
8412 }
8413 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
8414 }
8415
8416 /*
8417 * Clear the X86_EFL_TF if necessary.
8418 */
8419 if (pVCpu->hm.s.fClearTrapFlag)
8420 {
8421 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
8422 AssertRCReturn(rc2, rc2);
8423 pVCpu->hm.s.fClearTrapFlag = false;
8424 pCtx->eflags.Bits.u1TF = 0;
8425 }
8426 /** @todo there seems to be issues with the resume flag when the monitor trap
8427 * flag is pending without being used. Seen early in bios init when
8428 * accessing APIC page in prot mode. */
8429
8430 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8431 return rc;
8432}
8433
8434
8435/**
8436 * Runs the guest code using VT-x.
8437 *
8438 * @returns VBox status code.
8439 * @param pVM Pointer to the VM.
8440 * @param pVCpu Pointer to the VMCPU.
8441 * @param pCtx Pointer to the guest-CPU context.
8442 */
8443VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8444{
8445 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8446 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
8447 HMVMX_ASSERT_PREEMPT_SAFE();
8448
8449 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
8450
8451 int rc;
8452 if (!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu))
8453 rc = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
8454 else
8455 rc = hmR0VmxRunGuestCodeStep(pVM, pVCpu, pCtx);
8456
8457 if (rc == VERR_EM_INTERPRETER)
8458 rc = VINF_EM_RAW_EMULATE_INSTR;
8459 else if (rc == VINF_EM_RESET)
8460 rc = VINF_EM_TRIPLE_FAULT;
8461
8462 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rc);
8463 if (RT_FAILURE(rc2))
8464 {
8465 pVCpu->hm.s.u32HMError = rc;
8466 rc = rc2;
8467 }
8468 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
8469 return rc;
8470}
8471
8472
8473#ifndef HMVMX_USE_FUNCTION_TABLE
8474DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
8475{
8476#ifdef DEBUG_ramshankar
8477# define SVVMCS() do { int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); } while (0)
8478# define LDVMCS() do { HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); } while (0)
8479#endif
8480 int rc;
8481 switch (rcReason)
8482 {
8483 case VMX_EXIT_EPT_MISCONFIG: /* SVVMCS(); */ rc = hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8484 case VMX_EXIT_EPT_VIOLATION: /* SVVMCS(); */ rc = hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8485 case VMX_EXIT_IO_INSTR: /* SVVMCS(); */ rc = hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8486 case VMX_EXIT_CPUID: /* SVVMCS(); */ rc = hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8487 case VMX_EXIT_RDTSC: /* SVVMCS(); */ rc = hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8488 case VMX_EXIT_RDTSCP: /* SVVMCS(); */ rc = hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8489 case VMX_EXIT_APIC_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8490 case VMX_EXIT_XCPT_OR_NMI: /* SVVMCS(); */ rc = hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8491 case VMX_EXIT_MOV_CRX: /* SVVMCS(); */ rc = hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8492 case VMX_EXIT_EXT_INT: /* SVVMCS(); */ rc = hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8493 case VMX_EXIT_INT_WINDOW: /* SVVMCS(); */ rc = hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8494 case VMX_EXIT_MWAIT: /* SVVMCS(); */ rc = hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8495 case VMX_EXIT_MONITOR: /* SVVMCS(); */ rc = hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8496 case VMX_EXIT_TASK_SWITCH: /* SVVMCS(); */ rc = hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8497 case VMX_EXIT_PREEMPT_TIMER: /* SVVMCS(); */ rc = hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8498 case VMX_EXIT_RDMSR: /* SVVMCS(); */ rc = hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8499 case VMX_EXIT_WRMSR: /* SVVMCS(); */ rc = hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8500 case VMX_EXIT_MOV_DRX: /* SVVMCS(); */ rc = hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8501 case VMX_EXIT_TPR_BELOW_THRESHOLD: /* SVVMCS(); */ rc = hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8502 case VMX_EXIT_HLT: /* SVVMCS(); */ rc = hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8503 case VMX_EXIT_INVD: /* SVVMCS(); */ rc = hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8504 case VMX_EXIT_INVLPG: /* SVVMCS(); */ rc = hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8505 case VMX_EXIT_RSM: /* SVVMCS(); */ rc = hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8506 case VMX_EXIT_MTF: /* SVVMCS(); */ rc = hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8507 case VMX_EXIT_PAUSE: /* SVVMCS(); */ rc = hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8508 case VMX_EXIT_XDTR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8509 case VMX_EXIT_TR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8510 case VMX_EXIT_WBINVD: /* SVVMCS(); */ rc = hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8511 case VMX_EXIT_XSETBV: /* SVVMCS(); */ rc = hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8512 case VMX_EXIT_RDRAND: /* SVVMCS(); */ rc = hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8513 case VMX_EXIT_INVPCID: /* SVVMCS(); */ rc = hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8514 case VMX_EXIT_GETSEC: /* SVVMCS(); */ rc = hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8515 case VMX_EXIT_RDPMC: /* SVVMCS(); */ rc = hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8516
8517 case VMX_EXIT_TRIPLE_FAULT: rc = hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient); break;
8518 case VMX_EXIT_NMI_WINDOW: rc = hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient); break;
8519 case VMX_EXIT_INIT_SIGNAL: rc = hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient); break;
8520 case VMX_EXIT_SIPI: rc = hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient); break;
8521 case VMX_EXIT_IO_SMI: rc = hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient); break;
8522 case VMX_EXIT_SMI: rc = hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient); break;
8523 case VMX_EXIT_ERR_MSR_LOAD: rc = hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient); break;
8524 case VMX_EXIT_ERR_INVALID_GUEST_STATE: rc = hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient); break;
8525 case VMX_EXIT_ERR_MACHINE_CHECK: rc = hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient); break;
8526
8527 case VMX_EXIT_VMCALL:
8528 case VMX_EXIT_VMCLEAR:
8529 case VMX_EXIT_VMLAUNCH:
8530 case VMX_EXIT_VMPTRLD:
8531 case VMX_EXIT_VMPTRST:
8532 case VMX_EXIT_VMREAD:
8533 case VMX_EXIT_VMRESUME:
8534 case VMX_EXIT_VMWRITE:
8535 case VMX_EXIT_VMXOFF:
8536 case VMX_EXIT_VMXON:
8537 case VMX_EXIT_INVEPT:
8538 case VMX_EXIT_INVVPID:
8539 case VMX_EXIT_VMFUNC:
8540 rc = hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
8541 break;
8542 default:
8543 rc = hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
8544 break;
8545 }
8546 return rc;
8547}
8548#endif
8549
8550#ifdef DEBUG
8551/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
8552# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
8553 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
8554
8555# define HMVMX_ASSERT_PREEMPT_CPUID() \
8556 do \
8557 { \
8558 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
8559 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
8560 } while (0)
8561
8562# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
8563 do { \
8564 AssertPtr(pVCpu); \
8565 AssertPtr(pMixedCtx); \
8566 AssertPtr(pVmxTransient); \
8567 Assert(pVmxTransient->fVMEntryFailed == false); \
8568 Assert(ASMIntAreEnabled()); \
8569 HMVMX_ASSERT_PREEMPT_SAFE(); \
8570 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
8571 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
8572 HMVMX_ASSERT_PREEMPT_SAFE(); \
8573 if (VMMR0IsLogFlushDisabled(pVCpu)) \
8574 HMVMX_ASSERT_PREEMPT_CPUID(); \
8575 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
8576 } while (0)
8577
8578# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
8579 do { \
8580 Log4Func(("\n")); \
8581 } while (0)
8582#else /* Release builds */
8583# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
8584 do { \
8585 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
8586 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
8587 } while (0)
8588# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
8589#endif
8590
8591
8592/**
8593 * Advances the guest RIP after reading it from the VMCS.
8594 *
8595 * @returns VBox status code.
8596 * @param pVCpu Pointer to the VMCPU.
8597 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8598 * out-of-sync. Make sure to update the required fields
8599 * before using them.
8600 * @param pVmxTransient Pointer to the VMX transient structure.
8601 *
8602 * @remarks No-long-jump zone!!!
8603 */
8604DECLINLINE(int) hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8605{
8606 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
8607 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
8608 AssertRCReturn(rc, rc);
8609
8610 pMixedCtx->rip += pVmxTransient->cbInstr;
8611 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
8612 return rc;
8613}
8614
8615
8616/**
8617 * Tries to determine what part of the guest-state VT-x has deemed as invalid
8618 * and update error record fields accordingly.
8619 *
8620 * @return VMX_IGS_* return codes.
8621 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
8622 * wrong with the guest state.
8623 *
8624 * @param pVM Pointer to the VM.
8625 * @param pVCpu Pointer to the VMCPU.
8626 * @param pCtx Pointer to the guest-CPU state.
8627 */
8628static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8629{
8630#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
8631#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
8632 uError = (err); \
8633 break; \
8634 } else do { } while (0)
8635
8636 int rc;
8637 uint32_t uError = VMX_IGS_ERROR;
8638 uint32_t u32Val;
8639 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
8640
8641 do
8642 {
8643 /*
8644 * CR0.
8645 */
8646 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
8647 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
8648 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
8649 See Intel spec. 26.3.1 "Checks on guest Guest Control Registers, Debug Registers and MSRs." */
8650 if (fUnrestrictedGuest)
8651 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
8652
8653 uint32_t u32GuestCR0;
8654 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
8655 AssertRCBreak(rc);
8656 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
8657 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
8658 if ( !fUnrestrictedGuest
8659 && (u32GuestCR0 & X86_CR0_PG)
8660 && !(u32GuestCR0 & X86_CR0_PE))
8661 {
8662 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
8663 }
8664
8665 /*
8666 * CR4.
8667 */
8668 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
8669 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
8670
8671 uint32_t u32GuestCR4;
8672 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
8673 AssertRCBreak(rc);
8674 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
8675 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
8676
8677 /*
8678 * IA32_DEBUGCTL MSR.
8679 */
8680 uint64_t u64Val;
8681 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
8682 AssertRCBreak(rc);
8683 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
8684 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
8685 {
8686 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
8687 }
8688 uint64_t u64DebugCtlMsr = u64Val;
8689
8690#ifdef VBOX_STRICT
8691 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
8692 AssertRCBreak(rc);
8693 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
8694#endif
8695 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
8696
8697 /*
8698 * RIP and RFLAGS.
8699 */
8700 uint32_t u32Eflags;
8701#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8702 if (HMVMX_IS_64BIT_HOST_MODE())
8703 {
8704 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
8705 AssertRCBreak(rc);
8706 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
8707 if ( !fLongModeGuest
8708 || !pCtx->cs.Attr.n.u1Long)
8709 {
8710 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
8711 }
8712 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
8713 * must be identical if the "IA32e mode guest" VM-entry control is 1
8714 * and CS.L is 1. No check applies if the CPU supports 64
8715 * linear-address bits. */
8716
8717 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
8718 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
8719 AssertRCBreak(rc);
8720 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
8721 VMX_IGS_RFLAGS_RESERVED);
8722 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
8723 u32Eflags = u64Val;
8724 }
8725 else
8726#endif
8727 {
8728 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
8729 AssertRCBreak(rc);
8730 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
8731 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
8732 }
8733
8734 if ( fLongModeGuest
8735 || ( fUnrestrictedGuest
8736 && !(u32GuestCR0 & X86_CR0_PE)))
8737 {
8738 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
8739 }
8740
8741 uint32_t u32EntryInfo;
8742 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
8743 AssertRCBreak(rc);
8744 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
8745 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
8746 {
8747 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
8748 }
8749
8750 /*
8751 * 64-bit checks.
8752 */
8753#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8754 if (HMVMX_IS_64BIT_HOST_MODE())
8755 {
8756 if ( fLongModeGuest
8757 && !fUnrestrictedGuest)
8758 {
8759 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
8760 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
8761 }
8762
8763 if ( !fLongModeGuest
8764 && (u32GuestCR4 & X86_CR4_PCIDE))
8765 {
8766 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
8767 }
8768
8769 /** @todo CR3 field must be such that bits 63:52 and bits in the range
8770 * 51:32 beyond the processor's physical-address width are 0. */
8771
8772 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
8773 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
8774 {
8775 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
8776 }
8777
8778 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
8779 AssertRCBreak(rc);
8780 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
8781
8782 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
8783 AssertRCBreak(rc);
8784 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
8785 }
8786#endif
8787
8788 /*
8789 * PERF_GLOBAL MSR.
8790 */
8791 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
8792 {
8793 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
8794 AssertRCBreak(rc);
8795 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
8796 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
8797 }
8798
8799 /*
8800 * PAT MSR.
8801 */
8802 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
8803 {
8804 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
8805 AssertRCBreak(rc);
8806 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
8807 for (unsigned i = 0; i < 8; i++)
8808 {
8809 uint8_t u8Val = (u64Val & 0x7);
8810 if ( u8Val != 0 /* UC */
8811 || u8Val != 1 /* WC */
8812 || u8Val != 4 /* WT */
8813 || u8Val != 5 /* WP */
8814 || u8Val != 6 /* WB */
8815 || u8Val != 7 /* UC- */)
8816 {
8817 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
8818 }
8819 u64Val >>= 3;
8820 }
8821 }
8822
8823 /*
8824 * EFER MSR.
8825 */
8826 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
8827 {
8828 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
8829 AssertRCBreak(rc);
8830 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
8831 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
8832 HMVMX_CHECK_BREAK((u64Val & MSR_K6_EFER_LMA) == (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
8833 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
8834 HMVMX_CHECK_BREAK( fUnrestrictedGuest
8835 || (u64Val & MSR_K6_EFER_LMA) == (u32GuestCR0 & X86_CR0_PG), VMX_IGS_EFER_LMA_PG_MISMATCH);
8836 }
8837
8838 /*
8839 * Segment registers.
8840 */
8841 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
8842 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
8843 if (!(u32Eflags & X86_EFL_VM))
8844 {
8845 /* CS */
8846 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
8847 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
8848 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
8849 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
8850 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
8851 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
8852 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
8853 /* CS cannot be loaded with NULL in protected mode. */
8854 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
8855 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
8856 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
8857 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
8858 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
8859 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
8860 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
8861 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
8862 else
8863 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
8864
8865 /* SS */
8866 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8867 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
8868 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
8869 if ( !(pCtx->cr0 & X86_CR0_PE)
8870 || pCtx->cs.Attr.n.u4Type == 3)
8871 {
8872 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
8873 }
8874 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
8875 {
8876 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
8877 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
8878 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
8879 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
8880 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
8881 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
8882 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
8883 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
8884 }
8885
8886 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
8887 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
8888 {
8889 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
8890 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
8891 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8892 || pCtx->ds.Attr.n.u4Type > 11
8893 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
8894 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
8895 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
8896 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
8897 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
8898 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
8899 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
8900 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8901 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
8902 }
8903 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
8904 {
8905 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
8906 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
8907 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8908 || pCtx->es.Attr.n.u4Type > 11
8909 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
8910 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
8911 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
8912 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
8913 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
8914 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
8915 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
8916 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8917 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
8918 }
8919 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
8920 {
8921 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
8922 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
8923 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8924 || pCtx->fs.Attr.n.u4Type > 11
8925 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
8926 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
8927 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
8928 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
8929 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
8930 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
8931 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
8932 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8933 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
8934 }
8935 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
8936 {
8937 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
8938 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
8939 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8940 || pCtx->gs.Attr.n.u4Type > 11
8941 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
8942 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
8943 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
8944 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
8945 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
8946 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
8947 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
8948 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8949 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
8950 }
8951 /* 64-bit capable CPUs. */
8952#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8953 if (HMVMX_IS_64BIT_HOST_MODE())
8954 {
8955 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
8956 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
8957 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
8958 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
8959 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
8960 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
8961 VMX_IGS_LONGMODE_SS_BASE_INVALID);
8962 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
8963 VMX_IGS_LONGMODE_DS_BASE_INVALID);
8964 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
8965 VMX_IGS_LONGMODE_ES_BASE_INVALID);
8966 }
8967#endif
8968 }
8969 else
8970 {
8971 /* V86 mode checks. */
8972 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
8973 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
8974 {
8975 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
8976 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
8977 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
8978 }
8979 else
8980 {
8981 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
8982 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
8983 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
8984 }
8985
8986 /* CS */
8987 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
8988 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
8989 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
8990 /* SS */
8991 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
8992 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
8993 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
8994 /* DS */
8995 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
8996 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
8997 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
8998 /* ES */
8999 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9000 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9001 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9002 /* FS */
9003 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9004 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9005 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9006 /* GS */
9007 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9008 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9009 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9010 /* 64-bit capable CPUs. */
9011#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9012 if (HMVMX_IS_64BIT_HOST_MODE())
9013 {
9014 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9015 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9016 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9017 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9018 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9019 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
9020 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9021 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
9022 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9023 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
9024 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9025 }
9026#endif
9027 }
9028
9029 /*
9030 * TR.
9031 */
9032 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9033 /* 64-bit capable CPUs. */
9034#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9035 if (HMVMX_IS_64BIT_HOST_MODE())
9036 {
9037 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9038 }
9039#endif
9040 if (fLongModeGuest)
9041 {
9042 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9043 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9044 }
9045 else
9046 {
9047 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9048 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9049 VMX_IGS_TR_ATTR_TYPE_INVALID);
9050 }
9051 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9052 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9053 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9054 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9055 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9056 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9057 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9058 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9059
9060 /*
9061 * GDTR and IDTR.
9062 */
9063#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9064 if (HMVMX_IS_64BIT_HOST_MODE())
9065 {
9066 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9067 AssertRCBreak(rc);
9068 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9069
9070 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9071 AssertRCBreak(rc);
9072 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9073 }
9074#endif
9075
9076 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9077 AssertRCBreak(rc);
9078 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9079
9080 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9081 AssertRCBreak(rc);
9082 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9083
9084 /*
9085 * Guest Non-Register State.
9086 */
9087 /* Activity State. */
9088 uint32_t u32ActivityState;
9089 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9090 AssertRCBreak(rc);
9091 HMVMX_CHECK_BREAK( !u32ActivityState
9092 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
9093 VMX_IGS_ACTIVITY_STATE_INVALID);
9094 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9095 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9096 uint32_t u32IntrState;
9097 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
9098 AssertRCBreak(rc);
9099 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
9100 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9101 {
9102 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9103 }
9104
9105 /** @todo Activity state and injecting interrupts. Left as a todo since we
9106 * currently don't use activity states but ACTIVE. */
9107
9108 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9109 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9110
9111 /* Guest interruptibility-state. */
9112 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9113 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9114 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
9115 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9116 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9117 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9118 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9119 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9120 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9121 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
9122 {
9123 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
9124 {
9125 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9126 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9127 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9128 }
9129 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9130 {
9131 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9132 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9133 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9134 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9135 }
9136 }
9137 /** @todo Assumes the processor is not in SMM. */
9138 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9139 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9140 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9141 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9142 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9143 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
9144 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
9145 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9146 {
9147 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
9148 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9149 }
9150
9151 /* Pending debug exceptions. */
9152 if (HMVMX_IS_64BIT_HOST_MODE())
9153 {
9154 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
9155 AssertRCBreak(rc);
9156 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9157 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9158 u32Val = u64Val; /* For pending debug exceptions checks below. */
9159 }
9160 else
9161 {
9162 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
9163 AssertRCBreak(rc);
9164 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9165 HMVMX_CHECK_BREAK(!(u64Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9166 }
9167
9168 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9169 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
9170 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9171 {
9172 if ( (u32Eflags & X86_EFL_TF)
9173 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9174 {
9175 /* Bit 14 is PendingDebug.BS. */
9176 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9177 }
9178 if ( !(u32Eflags & X86_EFL_TF)
9179 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9180 {
9181 /* Bit 14 is PendingDebug.BS. */
9182 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9183 }
9184 }
9185
9186 /* VMCS link pointer. */
9187 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
9188 AssertRCBreak(rc);
9189 if (u64Val != UINT64_C(0xffffffffffffffff))
9190 {
9191 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
9192 /** @todo Bits beyond the processor's physical-address width MBZ. */
9193 /** @todo 32-bit located in memory referenced by value of this field (as a
9194 * physical address) must contain the processor's VMCS revision ID. */
9195 /** @todo SMM checks. */
9196 }
9197
9198 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
9199 * not using Nested Paging? */
9200 if ( pVM->hm.s.fNestedPaging
9201 && !fLongModeGuest
9202 && CPUMIsGuestInPAEModeEx(pCtx))
9203 {
9204 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
9205 AssertRCBreak(rc);
9206 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9207
9208 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
9209 AssertRCBreak(rc);
9210 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9211
9212 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
9213 AssertRCBreak(rc);
9214 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9215
9216 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
9217 AssertRCBreak(rc);
9218 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9219 }
9220
9221 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
9222 if (uError == VMX_IGS_ERROR)
9223 uError = VMX_IGS_REASON_NOT_FOUND;
9224 } while (0);
9225
9226 pVCpu->hm.s.u32HMError = uError;
9227 return uError;
9228
9229#undef HMVMX_ERROR_BREAK
9230#undef HMVMX_CHECK_BREAK
9231}
9232
9233/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
9234/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
9235/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
9236
9237/** @name VM-exit handlers.
9238 * @{
9239 */
9240
9241/**
9242 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
9243 */
9244HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9245{
9246 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9247 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
9248 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
9249 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
9250 return VINF_SUCCESS;
9251 return VINF_EM_RAW_INTERRUPT;
9252}
9253
9254
9255/**
9256 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
9257 */
9258HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9259{
9260 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9261 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
9262
9263 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9264 AssertRCReturn(rc, rc);
9265
9266 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9267 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
9268 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
9269 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
9270
9271 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9272 {
9273 /*
9274 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
9275 * anything we inject is not going to cause a VM-exit directly for the event being injected.
9276 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
9277 *
9278 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
9279 */
9280 VMXDispatchHostNmi();
9281 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
9282 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9283 return VINF_SUCCESS;
9284 }
9285
9286 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
9287 rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
9288 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
9289 {
9290 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9291 return VINF_SUCCESS;
9292 }
9293 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
9294 {
9295 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9296 return rc;
9297 }
9298
9299 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
9300 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
9301 switch (uIntType)
9302 {
9303 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
9304 Assert(uVector == X86_XCPT_DB);
9305 /* no break */
9306 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
9307 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
9308 /* no break */
9309 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9310 {
9311 switch (uVector)
9312 {
9313 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
9314 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
9315 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
9316 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
9317 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
9318 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
9319#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
9320 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
9321 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9322 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
9323 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9324 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
9325 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9326 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
9327 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9328 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
9329 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9330#endif
9331 default:
9332 {
9333 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9334 AssertRCReturn(rc, rc);
9335
9336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
9337 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
9338 {
9339 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
9340 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
9341 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
9342
9343 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
9344 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9345 AssertRCReturn(rc, rc);
9346 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
9347 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
9348 0 /* GCPtrFaultAddress */);
9349 AssertRCReturn(rc, rc);
9350 }
9351 else
9352 {
9353 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
9354 pVCpu->hm.s.u32HMError = uVector;
9355 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
9356 }
9357 break;
9358 }
9359 }
9360 break;
9361 }
9362
9363 default:
9364 {
9365 pVCpu->hm.s.u32HMError = uExitIntInfo;
9366 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
9367 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
9368 break;
9369 }
9370 }
9371 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9372 return rc;
9373}
9374
9375
9376/**
9377 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
9378 */
9379HMVMX_EXIT_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9380{
9381 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9382
9383 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
9384 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
9385 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
9386 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9387 AssertRCReturn(rc, rc);
9388
9389 /* Deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and resume guest execution. */
9390 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
9391 return VINF_SUCCESS;
9392}
9393
9394
9395/**
9396 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
9397 */
9398HMVMX_EXIT_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9399{
9400 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9401 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
9402 HMVMX_RETURN_UNEXPECTED_EXIT();
9403}
9404
9405
9406/**
9407 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
9408 */
9409HMVMX_EXIT_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9410{
9411 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9412 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
9413 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9414}
9415
9416
9417/**
9418 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
9419 */
9420HMVMX_EXIT_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9421{
9422 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9423 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
9424 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9425}
9426
9427
9428/**
9429 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
9430 */
9431HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9432{
9433 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9434 PVM pVM = pVCpu->CTX_SUFF(pVM);
9435 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9436 if (RT_LIKELY(rc == VINF_SUCCESS))
9437 {
9438 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9439 Assert(pVmxTransient->cbInstr == 2);
9440 }
9441 else
9442 {
9443 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
9444 rc = VERR_EM_INTERPRETER;
9445 }
9446 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
9447 return rc;
9448}
9449
9450
9451/**
9452 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
9453 */
9454HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9455{
9456 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9457 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
9458 AssertRCReturn(rc, rc);
9459
9460 if (pMixedCtx->cr4 & X86_CR4_SMXE)
9461 return VINF_EM_RAW_EMULATE_INSTR;
9462
9463 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
9464 HMVMX_RETURN_UNEXPECTED_EXIT();
9465}
9466
9467
9468/**
9469 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
9470 */
9471HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9472{
9473 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9474 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
9475 AssertRCReturn(rc, rc);
9476
9477 PVM pVM = pVCpu->CTX_SUFF(pVM);
9478 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9479 if (RT_LIKELY(rc == VINF_SUCCESS))
9480 {
9481 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9482 Assert(pVmxTransient->cbInstr == 2);
9483 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
9484 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
9485 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9486 }
9487 else
9488 {
9489 AssertMsgFailed(("hmR0VmxExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
9490 rc = VERR_EM_INTERPRETER;
9491 }
9492 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
9493 return rc;
9494}
9495
9496
9497/**
9498 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
9499 */
9500HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9501{
9502 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9503 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
9504 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
9505 AssertRCReturn(rc, rc);
9506
9507 PVM pVM = pVCpu->CTX_SUFF(pVM);
9508 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
9509 if (RT_LIKELY(rc == VINF_SUCCESS))
9510 {
9511 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9512 Assert(pVmxTransient->cbInstr == 3);
9513 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
9514 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
9515 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9516 }
9517 else
9518 {
9519 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
9520 rc = VERR_EM_INTERPRETER;
9521 }
9522 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
9523 return rc;
9524}
9525
9526
9527/**
9528 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
9529 */
9530HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9531{
9532 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9533 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
9534 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); /** @todo review if CR0 is really required by EM. */
9535 AssertRCReturn(rc, rc);
9536
9537 PVM pVM = pVCpu->CTX_SUFF(pVM);
9538 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9539 if (RT_LIKELY(rc == VINF_SUCCESS))
9540 {
9541 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9542 Assert(pVmxTransient->cbInstr == 2);
9543 }
9544 else
9545 {
9546 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
9547 rc = VERR_EM_INTERPRETER;
9548 }
9549 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
9550 return rc;
9551}
9552
9553
9554/**
9555 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
9556 */
9557HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9558{
9559 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9560 PVM pVM = pVCpu->CTX_SUFF(pVM);
9561 Assert(!pVM->hm.s.fNestedPaging);
9562
9563 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9564 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
9565 AssertRCReturn(rc, rc);
9566
9567 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
9568 rc = VBOXSTRICTRC_VAL(rc2);
9569 if (RT_LIKELY(rc == VINF_SUCCESS))
9570 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9571 else
9572 {
9573 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
9574 pVmxTransient->uExitQualification, rc));
9575 }
9576 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
9577 return rc;
9578}
9579
9580
9581/**
9582 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
9583 */
9584HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9585{
9586 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9587 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9588 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9589 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9590 AssertRCReturn(rc, rc);
9591
9592 PVM pVM = pVCpu->CTX_SUFF(pVM);
9593 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9594 if (RT_LIKELY(rc == VINF_SUCCESS))
9595 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9596 else
9597 {
9598 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
9599 rc = VERR_EM_INTERPRETER;
9600 }
9601 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
9602 return rc;
9603}
9604
9605
9606/**
9607 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
9608 */
9609HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9610{
9611 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9612 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9613 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9614 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9615 AssertRCReturn(rc, rc);
9616
9617 PVM pVM = pVCpu->CTX_SUFF(pVM);
9618 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9619 rc = VBOXSTRICTRC_VAL(rc2);
9620 if (RT_LIKELY( rc == VINF_SUCCESS
9621 || rc == VINF_EM_HALT))
9622 {
9623 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9624 AssertRCReturn(rc3, rc3);
9625
9626 if ( rc == VINF_EM_HALT
9627 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
9628 {
9629 rc = VINF_SUCCESS;
9630 }
9631 }
9632 else
9633 {
9634 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
9635 rc = VERR_EM_INTERPRETER;
9636 }
9637 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
9638 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
9639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
9640 return rc;
9641}
9642
9643
9644/**
9645 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
9646 */
9647HMVMX_EXIT_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9648{
9649 /*
9650 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
9651 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
9652 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
9653 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
9654 */
9655 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9656 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9657 HMVMX_RETURN_UNEXPECTED_EXIT();
9658}
9659
9660
9661/**
9662 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
9663 */
9664HMVMX_EXIT_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9665{
9666 /*
9667 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
9668 * root operation. Only an STM (SMM transfer monitor) would get this exit when we (the executive monitor) execute a VMCALL
9669 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
9670 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
9671 */
9672 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9673 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9674 HMVMX_RETURN_UNEXPECTED_EXIT();
9675}
9676
9677
9678/**
9679 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
9680 */
9681HMVMX_EXIT_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9682{
9683 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
9684 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9685 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9686 HMVMX_RETURN_UNEXPECTED_EXIT();
9687}
9688
9689
9690/**
9691 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
9692 */
9693HMVMX_EXIT_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9694{
9695 /*
9696 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
9697 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
9698 * See Intel spec. 25.3 "Other Causes of VM-exits".
9699 */
9700 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9701 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9702 HMVMX_RETURN_UNEXPECTED_EXIT();
9703}
9704
9705
9706/**
9707 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
9708 * VM-exit.
9709 */
9710HMVMX_EXIT_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9711{
9712 /*
9713 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
9714 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
9715 *
9716 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
9717 * See Intel spec. "23.8 Restrictions on VMX operation".
9718 */
9719 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9720 return VINF_SUCCESS;
9721}
9722
9723
9724/**
9725 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
9726 * VM-exit.
9727 */
9728HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9729{
9730 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9731 return VINF_EM_RESET;
9732}
9733
9734
9735/**
9736 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
9737 */
9738HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9739{
9740 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9741 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
9742 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9743 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9744 AssertRCReturn(rc, rc);
9745
9746 pMixedCtx->rip++;
9747 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
9748 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
9749 rc = VINF_SUCCESS;
9750 else
9751 rc = VINF_EM_HALT;
9752
9753 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
9754 return rc;
9755}
9756
9757
9758/**
9759 * VM-exit handler for instructions that result in a #UD exception delivered to
9760 * the guest.
9761 */
9762HMVMX_EXIT_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9763{
9764 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9765 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
9766 return VINF_SUCCESS;
9767}
9768
9769
9770/**
9771 * VM-exit handler for expiry of the VMX preemption timer.
9772 */
9773HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9774{
9775 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9776
9777 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
9778 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9779
9780 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
9781 PVM pVM = pVCpu->CTX_SUFF(pVM);
9782 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
9783 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
9784 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
9785}
9786
9787
9788/**
9789 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
9790 */
9791HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9792{
9793 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9794
9795 /* We expose XSETBV to the guest, fallback to the recompiler for emulation. */
9796 /** @todo check if XSETBV is supported by the recompiler. */
9797 return VERR_EM_INTERPRETER;
9798}
9799
9800
9801/**
9802 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
9803 */
9804HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9805{
9806 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9807
9808 /* The guest should not invalidate the host CPU's TLBs, fallback to recompiler. */
9809 /** @todo implement EMInterpretInvpcid() */
9810 return VERR_EM_INTERPRETER;
9811}
9812
9813
9814/**
9815 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
9816 * Error VM-exit.
9817 */
9818HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9819{
9820 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9821 AssertRCReturn(rc, rc);
9822
9823 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
9824 NOREF(uInvalidReason);
9825
9826#ifdef VBOX_STRICT
9827 uint32_t uIntrState;
9828 HMVMXHCUINTREG uHCReg;
9829 uint64_t u64Val;
9830 uint32_t u32Val;
9831
9832 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
9833 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
9834 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
9835 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
9836 AssertRCReturn(rc, rc);
9837
9838 Log4(("uInvalidReason %u\n", uInvalidReason));
9839 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
9840 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
9841 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
9842 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
9843
9844 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
9845 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
9846 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
9847 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
9848 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
9849 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
9850 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
9851 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
9852 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
9853 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
9854 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
9855 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
9856#else
9857 NOREF(pVmxTransient);
9858#endif
9859
9860 HMDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
9861 return VERR_VMX_INVALID_GUEST_STATE;
9862}
9863
9864
9865/**
9866 * VM-exit handler for VM-entry failure due to an MSR-load
9867 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
9868 */
9869HMVMX_EXIT_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9870{
9871 NOREF(pVmxTransient);
9872 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
9873 HMVMX_RETURN_UNEXPECTED_EXIT();
9874}
9875
9876
9877/**
9878 * VM-exit handler for VM-entry failure due to a machine-check event
9879 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
9880 */
9881HMVMX_EXIT_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9882{
9883 NOREF(pVmxTransient);
9884 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
9885 HMVMX_RETURN_UNEXPECTED_EXIT();
9886}
9887
9888
9889/**
9890 * VM-exit handler for all undefined reasons. Should never ever happen.. in
9891 * theory.
9892 */
9893HMVMX_EXIT_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9894{
9895 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
9896 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
9897 return VERR_VMX_UNDEFINED_EXIT_CODE;
9898}
9899
9900
9901/**
9902 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
9903 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
9904 * Conditional VM-exit.
9905 */
9906HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9907{
9908 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9909
9910 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
9911 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
9912 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
9913 return VERR_EM_INTERPRETER;
9914 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9915 HMVMX_RETURN_UNEXPECTED_EXIT();
9916}
9917
9918
9919/**
9920 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
9921 */
9922HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9923{
9924 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9925
9926 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
9927 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
9928 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
9929 return VERR_EM_INTERPRETER;
9930 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9931 HMVMX_RETURN_UNEXPECTED_EXIT();
9932}
9933
9934
9935/**
9936 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
9937 */
9938HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9939{
9940 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9941
9942 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
9943 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9944 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9945 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9946 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
9947 {
9948 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
9949 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
9950 }
9951 AssertRCReturn(rc, rc);
9952 Log4(("CS:RIP=%04x:%#RX64 ECX=%X\n", pMixedCtx->cs.Sel, pMixedCtx->rip, pMixedCtx->ecx));
9953
9954#ifdef VBOX_STRICT
9955 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
9956 {
9957 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
9958 {
9959 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
9960 HMVMX_RETURN_UNEXPECTED_EXIT();
9961 }
9962# if HC_ARCH_BITS == 64
9963 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests
9964 && hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
9965 {
9966 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
9967 HMVMX_RETURN_UNEXPECTED_EXIT();
9968 }
9969# endif
9970 }
9971#endif
9972
9973 PVM pVM = pVCpu->CTX_SUFF(pVM);
9974 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9975 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
9976 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
9977 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
9978
9979 if (RT_LIKELY(rc == VINF_SUCCESS))
9980 {
9981 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9982 Assert(pVmxTransient->cbInstr == 2);
9983 }
9984 return rc;
9985}
9986
9987
9988/**
9989 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
9990 */
9991HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9992{
9993 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9994 PVM pVM = pVCpu->CTX_SUFF(pVM);
9995 int rc = VINF_SUCCESS;
9996
9997 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
9998 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9999 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10000 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10001 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10002 {
10003 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
10004 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
10005 }
10006 AssertRCReturn(rc, rc);
10007 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
10008
10009 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10010 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
10011 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
10012
10013 if (RT_LIKELY(rc == VINF_SUCCESS))
10014 {
10015 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10016
10017 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
10018 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
10019 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
10020 {
10021 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
10022 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
10023 EMInterpretWrmsr() changes it. */
10024 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10025 }
10026 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
10027 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10028
10029 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
10030 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10031 {
10032 switch (pMixedCtx->ecx)
10033 {
10034 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
10035 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
10036 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
10037 case MSR_K8_FS_BASE: /* no break */
10038 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
10039 default:
10040 {
10041 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10042 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
10043#if HC_ARCH_BITS == 64
10044 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10045 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
10046#endif
10047 break;
10048 }
10049 }
10050 }
10051#ifdef VBOX_STRICT
10052 else
10053 {
10054 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
10055 switch (pMixedCtx->ecx)
10056 {
10057 case MSR_IA32_SYSENTER_CS:
10058 case MSR_IA32_SYSENTER_EIP:
10059 case MSR_IA32_SYSENTER_ESP:
10060 case MSR_K8_FS_BASE:
10061 case MSR_K8_GS_BASE:
10062 {
10063 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
10064 HMVMX_RETURN_UNEXPECTED_EXIT();
10065 }
10066
10067 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
10068 default:
10069 {
10070 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10071 {
10072 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
10073 pMixedCtx->ecx));
10074 HMVMX_RETURN_UNEXPECTED_EXIT();
10075 }
10076
10077#if HC_ARCH_BITS == 64
10078 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10079 {
10080 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
10081 HMVMX_RETURN_UNEXPECTED_EXIT();
10082 }
10083#endif
10084 break;
10085 }
10086 }
10087 }
10088#endif /* VBOX_STRICT */
10089 }
10090 return rc;
10091}
10092
10093
10094/**
10095 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
10096 */
10097HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10098{
10099 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10100
10101 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT. */
10102 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
10103 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT)
10104 return VERR_EM_INTERPRETER;
10105 AssertMsgFailed(("Unexpected PAUSE exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10106 HMVMX_RETURN_UNEXPECTED_EXIT();
10107}
10108
10109
10110/**
10111 * VM-exit handler for when the TPR value is lowered below the specified
10112 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
10113 */
10114HMVMX_EXIT_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10115{
10116 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10117 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
10118
10119 /*
10120 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
10121 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectPendingEvent() and
10122 * resume guest execution.
10123 */
10124 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10125 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
10126 return VINF_SUCCESS;
10127}
10128
10129
10130/**
10131 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
10132 * VM-exit.
10133 *
10134 * @retval VINF_SUCCESS when guest execution can continue.
10135 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
10136 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
10137 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
10138 * recompiler.
10139 */
10140HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10141{
10142 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10143 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
10144 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10145 AssertRCReturn(rc, rc);
10146
10147 const RTGCUINTPTR uExitQualification = pVmxTransient->uExitQualification;
10148 const uint32_t uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
10149 PVM pVM = pVCpu->CTX_SUFF(pVM);
10150 switch (uAccessType)
10151 {
10152 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
10153 {
10154#if 0
10155 /* EMInterpretCRxWrite() references a lot of guest state (EFER, RFLAGS, Segment Registers, etc.) Sync entire state */
10156 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10157#else
10158 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10159 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10160 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10161#endif
10162 AssertRCReturn(rc, rc);
10163
10164 rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10165 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
10166 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
10167 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
10168
10169 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
10170 {
10171 case 0: /* CR0 */
10172 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10173 Log4(("CRX CR0 write rc=%d CR0=%#RX64\n", rc, pMixedCtx->cr0));
10174 break;
10175 case 2: /* CR2 */
10176 /* Nothing to do here, CR2 it's not part of the VMCS. */
10177 break;
10178 case 3: /* CR3 */
10179 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx));
10180 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
10181 Log4(("CRX CR3 write rc=%d CR3=%#RX64\n", rc, pMixedCtx->cr3));
10182 break;
10183 case 4: /* CR4 */
10184 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
10185 Log4(("CRX CR4 write rc=%d CR4=%#RX64\n", rc, pMixedCtx->cr4));
10186 break;
10187 case 8: /* CR8 */
10188 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
10189 /* CR8 contains the APIC TPR. Was updated by EMInterpretCRxWrite(). */
10190 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10191 break;
10192 default:
10193 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
10194 break;
10195 }
10196
10197 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
10198 break;
10199 }
10200
10201 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
10202 {
10203 /* EMInterpretCRxRead() requires EFER MSR, CS. */
10204 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10205 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10206 AssertRCReturn(rc, rc);
10207 Assert( !pVM->hm.s.fNestedPaging
10208 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
10209 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
10210
10211 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
10212 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
10213 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
10214
10215 rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10216 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
10217 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
10218 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
10219 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
10220 Log4(("CRX CR%d Read access rc=%d\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification), rc));
10221 break;
10222 }
10223
10224 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
10225 {
10226 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10227 AssertRCReturn(rc, rc);
10228 rc = EMInterpretCLTS(pVM, pVCpu);
10229 AssertRCReturn(rc, rc);
10230 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10231 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
10232 Log4(("CRX CLTS write rc=%d\n", rc));
10233 break;
10234 }
10235
10236 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
10237 {
10238 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10239 AssertRCReturn(rc, rc);
10240 rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
10241 if (RT_LIKELY(rc == VINF_SUCCESS))
10242 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10243 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
10244 Log4(("CRX LMSW write rc=%d\n", rc));
10245 break;
10246 }
10247
10248 default:
10249 {
10250 AssertMsgFailed(("Invalid access-type in Mov CRx exit qualification %#x\n", uAccessType));
10251 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
10252 }
10253 }
10254
10255 /* Validate possible error codes. */
10256 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_CHANGE_MODE || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_SYNC_CR3
10257 || rc == VERR_VMX_UNEXPECTED_EXCEPTION);
10258 if (RT_SUCCESS(rc))
10259 {
10260 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10261 AssertRCReturn(rc2, rc2);
10262 }
10263
10264 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
10265 return rc;
10266}
10267
10268
10269/**
10270 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
10271 * VM-exit.
10272 */
10273HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10274{
10275 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10276 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
10277
10278 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10279 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10280 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10281 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
10282 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
10283 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
10284 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
10285 AssertRCReturn(rc2, rc2);
10286
10287 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
10288 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
10289 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
10290 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
10291 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
10292 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
10293 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_HMVMX_IPE_1);
10294
10295 /* I/O operation lookup arrays. */
10296 static const uint32_t s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
10297 static const uint32_t s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
10298
10299 VBOXSTRICTRC rcStrict;
10300 const uint32_t cbValue = s_aIOSizes[uIOWidth];
10301 const uint32_t cbInstr = pVmxTransient->cbInstr;
10302 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
10303 PVM pVM = pVCpu->CTX_SUFF(pVM);
10304 if (fIOString)
10305 {
10306#if 0 /* Not yet ready. IEM gurus with debian 32-bit guest without NP (on ATA reads). See @bugref{5752#c158} */
10307 /*
10308 * INS/OUTS - I/O String instruction.
10309 *
10310 * Use instruction-information if available, otherwise fall back on
10311 * interpreting the instruction.
10312 */
10313 Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
10314 AssertReturn(pMixedCtx->dx == uIOPort, VERR_HMVMX_IPE_2);
10315 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
10316 {
10317 rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10318 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
10319 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10320 AssertRCReturn(rc2, rc2);
10321 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_HMVMX_IPE_3);
10322 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
10323 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
10324 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
10325 if (fIOWrite)
10326 {
10327 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
10328 pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
10329 }
10330 else
10331 {
10332 /*
10333 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
10334 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
10335 * See Intel Instruction spec. for "INS".
10336 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
10337 */
10338 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr);
10339 }
10340 }
10341 else
10342 {
10343 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
10344 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10345 AssertRCReturn(rc2, rc2);
10346 rcStrict = IEMExecOne(pVCpu);
10347 }
10348 /** @todo IEM needs to be setting these flags somehow. */
10349 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10350 fUpdateRipAlready = true;
10351#else
10352 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
10353 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
10354 if (RT_SUCCESS(rcStrict))
10355 {
10356 if (fIOWrite)
10357 {
10358 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
10359 (DISCPUMODE)pDis->uAddrMode, cbValue);
10360 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
10361 }
10362 else
10363 {
10364 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
10365 (DISCPUMODE)pDis->uAddrMode, cbValue);
10366 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
10367 }
10368 }
10369 else
10370 {
10371 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP %#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->rip));
10372 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10373 }
10374#endif
10375 }
10376 else
10377 {
10378 /*
10379 * IN/OUT - I/O instruction.
10380 */
10381 Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
10382 const uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
10383 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
10384 if (fIOWrite)
10385 {
10386 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
10387 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
10388 HMR0SavePendingIOPortWrite(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
10389 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
10390 }
10391 else
10392 {
10393 uint32_t u32Result = 0;
10394 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
10395 if (IOM_SUCCESS(rcStrict))
10396 {
10397 /* Save result of I/O IN instr. in AL/AX/EAX. */
10398 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
10399 }
10400 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
10401 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
10402 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
10403 }
10404 }
10405
10406 if (IOM_SUCCESS(rcStrict))
10407 {
10408 if (!fUpdateRipAlready)
10409 {
10410 pMixedCtx->rip += cbInstr;
10411 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10412 }
10413
10414 /*
10415 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
10416 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
10417 */
10418 if (fIOString)
10419 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
10420
10421 /*
10422 * If any I/O breakpoints are armed, we need to check if one triggered
10423 * and take appropriate action.
10424 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
10425 */
10426 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
10427 AssertRCReturn(rc2, rc2);
10428
10429 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
10430 * execution engines about whether hyper BPs and such are pending. */
10431 uint32_t const uDr7 = pMixedCtx->dr[7];
10432 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
10433 && X86_DR7_ANY_RW_IO(uDr7)
10434 && (pMixedCtx->cr4 & X86_CR4_DE))
10435 || DBGFBpIsHwIoArmed(pVM)))
10436 {
10437 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
10438
10439 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
10440 VMMRZCallRing3Disable(pVCpu);
10441 HM_DISABLE_PREEMPT_IF_NEEDED();
10442
10443 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /*fDr6*/);
10444
10445 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
10446 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
10447 {
10448 /* Raise #DB. */
10449 if (fIsGuestDbgActive)
10450 ASMSetDR6(pMixedCtx->dr[6]);
10451 if (pMixedCtx->dr[7] != uDr7)
10452 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10453
10454 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
10455 }
10456 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
10457 else if ( rcStrict2 != VINF_SUCCESS
10458 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
10459 rcStrict = rcStrict2;
10460
10461 HM_RESTORE_PREEMPT_IF_NEEDED();
10462 VMMRZCallRing3Enable(pVCpu);
10463 }
10464 }
10465
10466#ifdef DEBUG
10467 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
10468 Assert(!fIOWrite);
10469 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
10470 Assert(fIOWrite);
10471 else
10472 {
10473 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
10474 * statuses, that the VMM device and some others may return. See
10475 * IOM_SUCCESS() for guidance. */
10476 AssertMsg( RT_FAILURE(rcStrict)
10477 || rcStrict == VINF_SUCCESS
10478 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
10479 || rcStrict == VINF_EM_DBG_BREAKPOINT
10480 || rcStrict == VINF_EM_RAW_GUEST_TRAP
10481 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10482 }
10483#endif
10484
10485 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
10486 return VBOXSTRICTRC_TODO(rcStrict);
10487}
10488
10489
10490/**
10491 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
10492 * VM-exit.
10493 */
10494HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10495{
10496 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10497
10498 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
10499 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10500 AssertRCReturn(rc, rc);
10501 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
10502 {
10503 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
10504 AssertRCReturn(rc, rc);
10505 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
10506 {
10507 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
10508
10509 /* Software interrupts and exceptions will be regenerated when the recompiler restarts the instruction. */
10510 if ( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
10511 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
10512 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
10513 {
10514 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
10515 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
10516
10517 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
10518 Assert(!pVCpu->hm.s.Event.fPending);
10519 pVCpu->hm.s.Event.fPending = true;
10520 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
10521 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
10522 AssertRCReturn(rc, rc);
10523 if (fErrorCodeValid)
10524 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
10525 else
10526 pVCpu->hm.s.Event.u32ErrCode = 0;
10527 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
10528 && uVector == X86_XCPT_PF)
10529 {
10530 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
10531 }
10532
10533 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
10534 }
10535 }
10536 }
10537
10538 /** @todo Emulate task switch someday, currently just going back to ring-3 for
10539 * emulation. */
10540 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
10541 return VERR_EM_INTERPRETER;
10542}
10543
10544
10545/**
10546 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
10547 */
10548HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10549{
10550 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10551 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
10552 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
10553 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
10554 AssertRCReturn(rc, rc);
10555 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
10556 return VINF_EM_DBG_STEPPED;
10557}
10558
10559
10560/**
10561 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
10562 */
10563HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10564{
10565 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10566
10567 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10568 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10569 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10570 return VINF_SUCCESS;
10571 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10572 return rc;
10573
10574#if 0
10575 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
10576 * just sync the whole thing. */
10577 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10578#else
10579 /* Aggressive state sync. for now. */
10580 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10581 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10582 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10583#endif
10584 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10585 AssertRCReturn(rc, rc);
10586
10587 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
10588 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
10589 switch (uAccessType)
10590 {
10591 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
10592 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
10593 {
10594 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
10595 && VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) == 0x80)
10596 {
10597 AssertMsgFailed(("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
10598 }
10599
10600 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
10601 GCPhys &= PAGE_BASE_GC_MASK;
10602 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
10603 PVM pVM = pVCpu->CTX_SUFF(pVM);
10604 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGv Off=%#x\n", uAccessType, GCPhys,
10605 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
10606
10607 VBOXSTRICTRC rc2 = IOMMMIOPhysHandler(pVM, pVCpu,
10608 (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW,
10609 CPUMCTX2CORE(pMixedCtx), GCPhys);
10610 rc = VBOXSTRICTRC_VAL(rc2);
10611 Log4(("ApicAccess rc=%d\n", rc));
10612 if ( rc == VINF_SUCCESS
10613 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10614 || rc == VERR_PAGE_NOT_PRESENT)
10615 {
10616 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
10617 | HM_CHANGED_GUEST_RSP
10618 | HM_CHANGED_GUEST_RFLAGS
10619 | HM_CHANGED_VMX_GUEST_APIC_STATE);
10620 rc = VINF_SUCCESS;
10621 }
10622 break;
10623 }
10624
10625 default:
10626 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
10627 rc = VINF_EM_RAW_EMULATE_INSTR;
10628 break;
10629 }
10630
10631 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
10632 return rc;
10633}
10634
10635
10636/**
10637 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
10638 * VM-exit.
10639 */
10640HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10641{
10642 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10643
10644 /* We should -not- get this VM-exit if the guest's debug registers were active. */
10645 if (pVmxTransient->fWasGuestDebugStateActive)
10646 {
10647 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10648 HMVMX_RETURN_UNEXPECTED_EXIT();
10649 }
10650
10651 int rc = VERR_INTERNAL_ERROR_5;
10652 if ( !DBGFIsStepping(pVCpu)
10653 && !pVCpu->hm.s.fSingleInstruction
10654 && !pVmxTransient->fWasHyperDebugStateActive)
10655 {
10656 /* Don't intercept MOV DRx and #DB any more. */
10657 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
10658 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
10659 AssertRCReturn(rc, rc);
10660
10661 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10662 {
10663#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
10664 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
10665 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
10666 AssertRCReturn(rc, rc);
10667#endif
10668 }
10669
10670 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
10671 VMMRZCallRing3Disable(pVCpu);
10672 HM_DISABLE_PREEMPT_IF_NEEDED();
10673
10674 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
10675 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
10676 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
10677
10678 HM_RESTORE_PREEMPT_IF_NEEDED();
10679 VMMRZCallRing3Enable(pVCpu);
10680
10681#ifdef VBOX_WITH_STATISTICS
10682 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10683 AssertRCReturn(rc, rc);
10684 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
10685 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
10686 else
10687 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
10688#endif
10689 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
10690 return VINF_SUCCESS;
10691 }
10692
10693 /*
10694 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
10695 * Update the segment registers and DR7 from the CPU.
10696 */
10697 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10698 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10699 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
10700 AssertRCReturn(rc, rc);
10701 Log4(("CS:RIP=%04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
10702
10703 PVM pVM = pVCpu->CTX_SUFF(pVM);
10704 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
10705 {
10706 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10707 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
10708 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
10709 if (RT_SUCCESS(rc))
10710 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10711 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
10712 }
10713 else
10714 {
10715 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10716 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
10717 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
10718 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
10719 }
10720
10721 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
10722 if (RT_SUCCESS(rc))
10723 {
10724 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10725 AssertRCReturn(rc2, rc2);
10726 }
10727 return rc;
10728}
10729
10730
10731/**
10732 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
10733 * Conditional VM-exit.
10734 */
10735HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10736{
10737 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10738 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
10739
10740 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10741 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10742 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10743 return VINF_SUCCESS;
10744 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10745 return rc;
10746
10747 RTGCPHYS GCPhys = 0;
10748 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
10749
10750#if 0
10751 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
10752#else
10753 /* Aggressive state sync. for now. */
10754 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10755 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10756 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10757#endif
10758 AssertRCReturn(rc, rc);
10759
10760 /*
10761 * If we succeed, resume guest execution.
10762 * If we fail in interpreting the instruction because we couldn't get the guest physical address
10763 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
10764 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
10765 * weird case. See @bugref{6043}.
10766 */
10767 PVM pVM = pVCpu->CTX_SUFF(pVM);
10768 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
10769 rc = VBOXSTRICTRC_VAL(rc2);
10770 Log4(("EPT misconfig at %#RGv RIP=%#RX64 rc=%d\n", GCPhys, pMixedCtx->rip, rc));
10771 if ( rc == VINF_SUCCESS
10772 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10773 || rc == VERR_PAGE_NOT_PRESENT)
10774 {
10775 /* Successfully handled MMIO operation. */
10776 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
10777 | HM_CHANGED_GUEST_RSP
10778 | HM_CHANGED_GUEST_RFLAGS
10779 | HM_CHANGED_VMX_GUEST_APIC_STATE);
10780 rc = VINF_SUCCESS;
10781 }
10782 return rc;
10783}
10784
10785
10786/**
10787 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
10788 * VM-exit.
10789 */
10790HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10791{
10792 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10793 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
10794
10795 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10796 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10797 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10798 return VINF_SUCCESS;
10799 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10800 return rc;
10801
10802 RTGCPHYS GCPhys = 0;
10803 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
10804 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10805#if 0
10806 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
10807#else
10808 /* Aggressive state sync. for now. */
10809 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10810 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10811 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10812#endif
10813 AssertRCReturn(rc, rc);
10814
10815 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
10816 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
10817
10818 RTGCUINT uErrorCode = 0;
10819 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
10820 uErrorCode |= X86_TRAP_PF_ID;
10821 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
10822 uErrorCode |= X86_TRAP_PF_RW;
10823 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
10824 uErrorCode |= X86_TRAP_PF_P;
10825
10826 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
10827
10828 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:EIP=%04x:%#RX64\n", pVmxTransient->uExitQualification, GCPhys,
10829 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
10830
10831 /* Handle the pagefault trap for the nested shadow table. */
10832 PVM pVM = pVCpu->CTX_SUFF(pVM);
10833 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
10834 TRPMResetTrap(pVCpu);
10835
10836 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
10837 if ( rc == VINF_SUCCESS
10838 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10839 || rc == VERR_PAGE_NOT_PRESENT)
10840 {
10841 /* Successfully synced our nested page tables. */
10842 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
10843 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
10844 | HM_CHANGED_GUEST_RSP
10845 | HM_CHANGED_GUEST_RFLAGS);
10846 return VINF_SUCCESS;
10847 }
10848
10849 Log4(("EPT return to ring-3 rc=%Rrc\n", rc));
10850 return rc;
10851}
10852
10853/** @} */
10854
10855/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10856/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
10857/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10858
10859/** @name VM-exit exception handlers.
10860 * @{
10861 */
10862
10863/**
10864 * VM-exit exception handler for #MF (Math Fault: floating point exception).
10865 */
10866static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10867{
10868 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10869 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
10870
10871 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10872 AssertRCReturn(rc, rc);
10873
10874 if (!(pMixedCtx->cr0 & X86_CR0_NE))
10875 {
10876 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
10877 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
10878 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10879 AssertRCReturn(rc2, rc2);
10880 return rc;
10881 }
10882
10883 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
10884 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
10885 return rc;
10886}
10887
10888
10889/**
10890 * VM-exit exception handler for #BP (Breakpoint exception).
10891 */
10892static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10893{
10894 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10895 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
10896
10897 /** @todo Try optimize this by not saving the entire guest state unless
10898 * really needed. */
10899 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10900 AssertRCReturn(rc, rc);
10901
10902 PVM pVM = pVCpu->CTX_SUFF(pVM);
10903 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10904 if (rc == VINF_EM_RAW_GUEST_TRAP)
10905 {
10906 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10907 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10908 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
10909 AssertRCReturn(rc, rc);
10910
10911 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
10912 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
10913 }
10914
10915 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
10916 return rc;
10917}
10918
10919
10920/**
10921 * VM-exit exception handler for #DB (Debug exception).
10922 */
10923static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10924{
10925 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10926 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
10927 Log6(("XcptDB\n"));
10928
10929 /*
10930 * Get the DR6-like values from the exit qualification and pass it to DBGF
10931 * for processing.
10932 */
10933 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10934 AssertRCReturn(rc, rc);
10935
10936 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
10937 uint64_t uDR6 = X86_DR6_INIT_VAL;
10938 uDR6 |= ( pVmxTransient->uExitQualification
10939 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
10940
10941 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
10942 if (rc == VINF_EM_RAW_GUEST_TRAP)
10943 {
10944 /*
10945 * The exception was for the guest. Update DR6, DR7.GD and
10946 * IA32_DEBUGCTL.LBR before forwarding it.
10947 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
10948 */
10949 VMMRZCallRing3Disable(pVCpu);
10950 HM_DISABLE_PREEMPT_IF_NEEDED();
10951
10952 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
10953 pMixedCtx->dr[6] |= uDR6;
10954 if (CPUMIsGuestDebugStateActive(pVCpu))
10955 ASMSetDR6(pMixedCtx->dr[6]);
10956
10957 HM_RESTORE_PREEMPT_IF_NEEDED();
10958 VMMRZCallRing3Enable(pVCpu);
10959
10960 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
10961 AssertRCReturn(rc, rc);
10962
10963 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
10964 pMixedCtx->dr[7] &= ~X86_DR7_GD;
10965
10966 /* Paranoia. */
10967 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
10968 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
10969
10970 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
10971 AssertRCReturn(rc, rc);
10972
10973 /*
10974 * Raise #DB in the guest.
10975 *
10976 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
10977 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
10978 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
10979 *
10980 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
10981 */
10982 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10983 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10984 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
10985 AssertRCReturn(rc, rc);
10986 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
10987 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
10988 return VINF_SUCCESS;
10989 }
10990
10991 /*
10992 * Not a guest trap, must be a hypervisor related debug event then.
10993 * Update DR6 in case someone is interested in it.
10994 */
10995 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
10996 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
10997 CPUMSetHyperDR6(pVCpu, uDR6);
10998
10999 return rc;
11000}
11001
11002
11003/**
11004 * VM-exit exception handler for #NM (Device-not-available exception: floating
11005 * point exception).
11006 */
11007static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11008{
11009 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11010
11011 /* We require CR0 and EFER. EFER is always up-to-date. */
11012 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11013 AssertRCReturn(rc, rc);
11014
11015 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
11016 VMMRZCallRing3Disable(pVCpu);
11017 HM_DISABLE_PREEMPT_IF_NEEDED();
11018
11019 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
11020 if (pVmxTransient->fWasGuestFPUStateActive)
11021 {
11022 rc = VINF_EM_RAW_GUEST_TRAP;
11023 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
11024 }
11025 else
11026 {
11027#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11028 Assert(!pVmxTransient->fWasGuestFPUStateActive);
11029#endif
11030 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11031 Assert(rc == VINF_EM_RAW_GUEST_TRAP || (rc == VINF_SUCCESS && CPUMIsGuestFPUStateActive(pVCpu)));
11032 }
11033
11034 HM_RESTORE_PREEMPT_IF_NEEDED();
11035 VMMRZCallRing3Enable(pVCpu);
11036
11037 if (rc == VINF_SUCCESS)
11038 {
11039 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
11040 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
11041 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
11042 pVCpu->hm.s.fUseGuestFpu = true;
11043 }
11044 else
11045 {
11046 /* Forward #NM to the guest. */
11047 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
11048 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11049 AssertRCReturn(rc, rc);
11050 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11051 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
11052 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11053 }
11054
11055 return VINF_SUCCESS;
11056}
11057
11058
11059/**
11060 * VM-exit exception handler for #GP (General-protection exception).
11061 *
11062 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
11063 */
11064static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11065{
11066 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11067 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
11068
11069 int rc = VERR_INTERNAL_ERROR_5;
11070 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11071 {
11072#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11073 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
11074 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11075 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11076 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11077 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11078 AssertRCReturn(rc, rc);
11079 Log4(("#GP Gst: RIP %#RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u\n", pMixedCtx->rip, pVmxTransient->uExitIntErrorCode,
11080 pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu)));
11081 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11082 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11083 return rc;
11084#else
11085 /* We don't intercept #GP. */
11086 AssertMsgFailed(("Unexpected VM-exit caused by #GP exception\n"));
11087 NOREF(pVmxTransient);
11088 return VERR_VMX_UNEXPECTED_EXCEPTION;
11089#endif
11090 }
11091
11092 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11093 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
11094
11095 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
11096 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11097 AssertRCReturn(rc, rc);
11098
11099 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
11100 uint32_t cbOp = 0;
11101 PVM pVM = pVCpu->CTX_SUFF(pVM);
11102 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
11103 if (RT_SUCCESS(rc))
11104 {
11105 rc = VINF_SUCCESS;
11106 Assert(cbOp == pDis->cbInstr);
11107 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%#RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
11108 switch (pDis->pCurInstr->uOpcode)
11109 {
11110 case OP_CLI:
11111 {
11112 pMixedCtx->eflags.Bits.u1IF = 0;
11113 pMixedCtx->rip += pDis->cbInstr;
11114 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11115 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
11116 break;
11117 }
11118
11119 case OP_STI:
11120 {
11121 pMixedCtx->eflags.Bits.u1IF = 1;
11122 pMixedCtx->rip += pDis->cbInstr;
11123 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
11124 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
11125 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11126 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
11127 break;
11128 }
11129
11130 case OP_HLT:
11131 {
11132 rc = VINF_EM_HALT;
11133 pMixedCtx->rip += pDis->cbInstr;
11134 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
11135 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11136 break;
11137 }
11138
11139 case OP_POPF:
11140 {
11141 Log4(("POPF CS:RIP %04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
11142 uint32_t cbParm = 0;
11143 uint32_t uMask = 0;
11144 if (pDis->fPrefix & DISPREFIX_OPSIZE)
11145 {
11146 cbParm = 4;
11147 uMask = 0xffffffff;
11148 }
11149 else
11150 {
11151 cbParm = 2;
11152 uMask = 0xffff;
11153 }
11154
11155 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
11156 RTGCPTR GCPtrStack = 0;
11157 X86EFLAGS Eflags;
11158 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
11159 &GCPtrStack);
11160 if (RT_SUCCESS(rc))
11161 {
11162 Assert(sizeof(Eflags.u32) >= cbParm);
11163 Eflags.u32 = 0;
11164 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm);
11165 }
11166 if (RT_FAILURE(rc))
11167 {
11168 rc = VERR_EM_INTERPRETER;
11169 break;
11170 }
11171 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
11172 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
11173 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
11174 pMixedCtx->eflags.Bits.u1RF = 0; /* The RF bit is always cleared by POPF; see Intel Instruction reference. */
11175 pMixedCtx->esp += cbParm;
11176 pMixedCtx->esp &= uMask;
11177 pMixedCtx->rip += pDis->cbInstr;
11178
11179 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11180 | HM_CHANGED_GUEST_RSP
11181 | HM_CHANGED_GUEST_RFLAGS);
11182 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
11183 break;
11184 }
11185
11186 case OP_PUSHF:
11187 {
11188 uint32_t cbParm = 0;
11189 uint32_t uMask = 0;
11190 if (pDis->fPrefix & DISPREFIX_OPSIZE)
11191 {
11192 cbParm = 4;
11193 uMask = 0xffffffff;
11194 }
11195 else
11196 {
11197 cbParm = 2;
11198 uMask = 0xffff;
11199 }
11200
11201 /* Get the stack pointer & push the contents of eflags onto the stack. */
11202 RTGCPTR GCPtrStack = 0;
11203 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
11204 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
11205 if (RT_FAILURE(rc))
11206 {
11207 rc = VERR_EM_INTERPRETER;
11208 break;
11209 }
11210 X86EFLAGS Eflags = pMixedCtx->eflags;
11211 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
11212 Eflags.Bits.u1RF = 0;
11213 Eflags.Bits.u1VM = 0;
11214
11215 rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm);
11216 if (RT_FAILURE(rc))
11217 {
11218 rc = VERR_EM_INTERPRETER;
11219 break;
11220 }
11221 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
11222 pMixedCtx->esp -= cbParm;
11223 pMixedCtx->esp &= uMask;
11224 pMixedCtx->rip += pDis->cbInstr;
11225 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP);
11226 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
11227 break;
11228 }
11229
11230 case OP_IRET:
11231 {
11232 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
11233 * instruction reference. */
11234 RTGCPTR GCPtrStack = 0;
11235 uint32_t uMask = 0xffff;
11236 uint16_t aIretFrame[3];
11237 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
11238 {
11239 rc = VERR_EM_INTERPRETER;
11240 break;
11241 }
11242 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
11243 &GCPtrStack);
11244 if (RT_SUCCESS(rc))
11245 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
11246 if (RT_FAILURE(rc))
11247 {
11248 rc = VERR_EM_INTERPRETER;
11249 break;
11250 }
11251 pMixedCtx->eip = 0;
11252 pMixedCtx->ip = aIretFrame[0];
11253 pMixedCtx->cs.Sel = aIretFrame[1];
11254 pMixedCtx->cs.ValidSel = aIretFrame[1];
11255 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
11256 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
11257 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
11258 pMixedCtx->sp += sizeof(aIretFrame);
11259 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11260 | HM_CHANGED_GUEST_SEGMENT_REGS
11261 | HM_CHANGED_GUEST_RSP
11262 | HM_CHANGED_GUEST_RFLAGS);
11263 Log4(("IRET %#RX32 to %04x:%x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
11264 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
11265 break;
11266 }
11267
11268 case OP_INT:
11269 {
11270 uint16_t uVector = pDis->Param1.uValue & 0xff;
11271 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
11272 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
11273 break;
11274 }
11275
11276 case OP_INTO:
11277 {
11278 if (pMixedCtx->eflags.Bits.u1OF)
11279 {
11280 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
11281 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
11282 }
11283 break;
11284 }
11285
11286 default:
11287 {
11288 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
11289 EMCODETYPE_SUPERVISOR);
11290 rc = VBOXSTRICTRC_VAL(rc2);
11291 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
11292 Log4(("#GP rc=%Rrc\n", rc));
11293 break;
11294 }
11295 }
11296 }
11297 else
11298 rc = VERR_EM_INTERPRETER;
11299
11300 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
11301 ("#GP Unexpected rc=%Rrc\n", rc));
11302 return rc;
11303}
11304
11305
11306#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11307/**
11308 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
11309 * the exception reported in the VMX transient structure back into the VM.
11310 *
11311 * @remarks Requires uExitIntInfo in the VMX transient structure to be
11312 * up-to-date.
11313 */
11314static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11315{
11316 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11317
11318 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
11319 hmR0VmxCheckExitDueToEventDelivery(). */
11320 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11321 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11322 AssertRCReturn(rc, rc);
11323 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
11324
11325 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11326 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11327 return VINF_SUCCESS;
11328}
11329#endif
11330
11331
11332/**
11333 * VM-exit exception handler for #PF (Page-fault exception).
11334 */
11335static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11336{
11337 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11338 PVM pVM = pVCpu->CTX_SUFF(pVM);
11339 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11340 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11341 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11342 AssertRCReturn(rc, rc);
11343
11344#if defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) || defined(HMVMX_ALWAYS_TRAP_PF)
11345 if (pVM->hm.s.fNestedPaging)
11346 {
11347 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
11348 if (RT_LIKELY(!pVmxTransient->fVectoringPF))
11349 {
11350 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
11351 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11352 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
11353 }
11354 else
11355 {
11356 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
11357 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
11358 Log4(("Pending #DF due to vectoring #PF. NP\n"));
11359 }
11360 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
11361 return rc;
11362 }
11363#else
11364 Assert(!pVM->hm.s.fNestedPaging);
11365 NOREF(pVM);
11366#endif
11367
11368 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11369 AssertRCReturn(rc, rc);
11370
11371 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
11372 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
11373
11374 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
11375 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
11376 (RTGCPTR)pVmxTransient->uExitQualification);
11377
11378 Log4(("#PF: rc=%Rrc\n", rc));
11379 if (rc == VINF_SUCCESS)
11380 {
11381 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
11382 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
11383 * memory? We don't update the whole state here... */
11384 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11385 | HM_CHANGED_GUEST_RSP
11386 | HM_CHANGED_GUEST_RFLAGS
11387 | HM_CHANGED_VMX_GUEST_APIC_STATE);
11388 TRPMResetTrap(pVCpu);
11389 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
11390 return rc;
11391 }
11392 else if (rc == VINF_EM_RAW_GUEST_TRAP)
11393 {
11394 if (!pVmxTransient->fVectoringPF)
11395 {
11396 /* It's a guest page fault and needs to be reflected to the guest. */
11397 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
11398 TRPMResetTrap(pVCpu);
11399 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
11400 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
11401 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11402 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
11403 }
11404 else
11405 {
11406 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
11407 TRPMResetTrap(pVCpu);
11408 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
11409 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
11410 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
11411 }
11412
11413 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
11414 return VINF_SUCCESS;
11415 }
11416
11417 TRPMResetTrap(pVCpu);
11418 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
11419 return rc;
11420}
11421
11422/** @} */
11423
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette