VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 50271

Last change on this file since 50271 was 50271, checked in by vboxsync, 11 years ago

VMM/HMVMXR0: Comment clarification.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 472.1 KB
Line 
1/* $Id: HMVMXR0.cpp 50271 2014-01-29 14:25:25Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/x86.h>
23#include <iprt/asm-amd64-x86.h>
24#include <iprt/thread.h>
25#include <iprt/string.h>
26
27#include "HMInternal.h"
28#include <VBox/vmm/vm.h>
29#include "HMVMXR0.h"
30#include <VBox/vmm/pdmapi.h>
31#include <VBox/vmm/dbgf.h>
32#include <VBox/vmm/iem.h>
33#include <VBox/vmm/iom.h>
34#include <VBox/vmm/selm.h>
35#include <VBox/vmm/tm.h>
36#ifdef VBOX_WITH_REM
37# include <VBox/vmm/rem.h>
38#endif
39#ifdef DEBUG_ramshankar
40# define HMVMX_SAVE_FULL_GUEST_STATE
41# define HMVMX_SYNC_FULL_GUEST_STATE
42# define HMVMX_ALWAYS_CHECK_GUEST_STATE
43# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
44# define HMVMX_ALWAYS_TRAP_PF
45# define HMVMX_ALWAYS_SWAP_FPU_STATE
46# define HMVMX_ALWAYS_FLUSH_TLB
47#endif
48
49
50/*******************************************************************************
51* Defined Constants And Macros *
52*******************************************************************************/
53#if defined(RT_ARCH_AMD64)
54# define HMVMX_IS_64BIT_HOST_MODE() (true)
55typedef RTHCUINTREG HMVMXHCUINTREG;
56#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
57extern "C" uint32_t g_fVMXIs64bitHost;
58# define HMVMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
59typedef uint64_t HMVMXHCUINTREG;
60#else
61# define HMVMX_IS_64BIT_HOST_MODE() (false)
62typedef RTHCUINTREG HMVMXHCUINTREG;
63#endif
64
65/** Use the function table. */
66#define HMVMX_USE_FUNCTION_TABLE
67
68/** Determine which tagged-TLB flush handler to use. */
69#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
70#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
71#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
72#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
73
74/** @name Updated-guest-state flags.
75 * @{ */
76#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
77#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
78#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
79#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
80#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
81#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
82#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
83#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
84#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
85#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
86#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
87#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
88#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
89#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
90#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
91#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
92#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
93#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
94#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(18)
95#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
96 | HMVMX_UPDATED_GUEST_RSP \
97 | HMVMX_UPDATED_GUEST_RFLAGS \
98 | HMVMX_UPDATED_GUEST_CR0 \
99 | HMVMX_UPDATED_GUEST_CR3 \
100 | HMVMX_UPDATED_GUEST_CR4 \
101 | HMVMX_UPDATED_GUEST_GDTR \
102 | HMVMX_UPDATED_GUEST_IDTR \
103 | HMVMX_UPDATED_GUEST_LDTR \
104 | HMVMX_UPDATED_GUEST_TR \
105 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
106 | HMVMX_UPDATED_GUEST_DEBUG \
107 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
108 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
109 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
110 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
111 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
112 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
113 | HMVMX_UPDATED_GUEST_APIC_STATE)
114/** @} */
115
116/** @name
117 * Flags to skip redundant reads of some common VMCS fields that are not part of
118 * the guest-CPU state but are in the transient structure.
119 */
120#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
121#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
124#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
125#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
126#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
127/** @} */
128
129/** @name
130 * States of the VMCS.
131 *
132 * This does not reflect all possible VMCS states but currently only those
133 * needed for maintaining the VMCS consistently even when thread-context hooks
134 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
135 */
136#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
137#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
138#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
139/** @} */
140
141/**
142 * Exception bitmap mask for real-mode guests (real-on-v86).
143 *
144 * We need to intercept all exceptions manually (except #PF). #NM is also
145 * handled separately, see hmR0VmxLoadSharedCR0(). #PF need not be intercepted
146 * even in real-mode if we have Nested Paging support.
147 */
148#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_NMI) \
149 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
150 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
151 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
152 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
153 | RT_BIT(X86_XCPT_MF) | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) \
154 | RT_BIT(X86_XCPT_XF))
155
156/**
157 * Exception bitmap mask for all contributory exceptions.
158 *
159 * Page fault is deliberately excluded here as it's conditional as to whether
160 * it's contributory or benign. Page faults are handled separately.
161 */
162#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
163 | RT_BIT(X86_XCPT_DE))
164
165/** Maximum VM-instruction error number. */
166#define HMVMX_INSTR_ERROR_MAX 28
167
168/** Profiling macro. */
169#ifdef HM_PROFILE_EXIT_DISPATCH
170# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
171# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
172#else
173# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
174# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
175#endif
176
177/** Assert that preemption is disabled or covered by thread-context hooks. */
178#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
179 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
180
181/** Assert that we haven't migrated CPUs when thread-context hooks are not
182 * used. */
183#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
184 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
185 ("Illegal migration! Entered on CPU %u Current %u\n", \
186 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
187
188/** Helper macro for VM-exit handlers called unexpectedly. */
189#define HMVMX_RETURN_UNEXPECTED_EXIT() \
190 do { \
191 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
192 return VERR_VMX_UNEXPECTED_EXIT; \
193 } while (0)
194
195
196/*******************************************************************************
197* Structures and Typedefs *
198*******************************************************************************/
199/**
200 * VMX transient state.
201 *
202 * A state structure for holding miscellaneous information across
203 * VMX non-root operation and restored after the transition.
204 */
205typedef struct VMXTRANSIENT
206{
207 /** The host's rflags/eflags. */
208 RTCCUINTREG uEflags;
209#if HC_ARCH_BITS == 32
210 uint32_t u32Alignment0;
211#endif
212 /** The guest's TPR value used for TPR shadowing. */
213 uint8_t u8GuestTpr;
214 /** Alignment. */
215 uint8_t abAlignment0[7];
216
217 /** The basic VM-exit reason. */
218 uint16_t uExitReason;
219 /** Alignment. */
220 uint16_t u16Alignment0;
221 /** The VM-exit interruption error code. */
222 uint32_t uExitIntErrorCode;
223 /** The VM-exit exit qualification. */
224 uint64_t uExitQualification;
225
226 /** The VM-exit interruption-information field. */
227 uint32_t uExitIntInfo;
228 /** The VM-exit instruction-length field. */
229 uint32_t cbInstr;
230 /** The VM-exit instruction-information field. */
231 union
232 {
233 /** Plain unsigned int representation. */
234 uint32_t u;
235 /** INS and OUTS information. */
236 struct
237 {
238 uint32_t u6Reserved0 : 7;
239 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
240 uint32_t u3AddrSize : 3;
241 uint32_t u5Reserved1 : 5;
242 /** The segment register (X86_SREG_XXX). */
243 uint32_t iSegReg : 3;
244 uint32_t uReserved2 : 14;
245 } StrIo;
246 } ExitInstrInfo;
247 /** Whether the VM-entry failed or not. */
248 bool fVMEntryFailed;
249 /** Alignment. */
250 uint8_t abAlignment1[3];
251
252 /** The VM-entry interruption-information field. */
253 uint32_t uEntryIntInfo;
254 /** The VM-entry exception error code field. */
255 uint32_t uEntryXcptErrorCode;
256 /** The VM-entry instruction length field. */
257 uint32_t cbEntryInstr;
258
259 /** IDT-vectoring information field. */
260 uint32_t uIdtVectoringInfo;
261 /** IDT-vectoring error code. */
262 uint32_t uIdtVectoringErrorCode;
263
264 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
265 uint32_t fVmcsFieldsRead;
266
267 /** Whether the guest FPU was active at the time of VM-exit. */
268 bool fWasGuestFPUStateActive;
269 /** Whether the guest debug state was active at the time of VM-exit. */
270 bool fWasGuestDebugStateActive;
271 /** Whether the hyper debug state was active at the time of VM-exit. */
272 bool fWasHyperDebugStateActive;
273 /** Whether TSC-offsetting should be setup before VM-entry. */
274 bool fUpdateTscOffsettingAndPreemptTimer;
275 /** Whether the VM-exit was caused by a page-fault during delivery of a
276 * contributory exception or a page-fault. */
277 bool fVectoringPF;
278} VMXTRANSIENT;
279AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
280AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
281AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
282AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
283AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
284/** Pointer to VMX transient state. */
285typedef VMXTRANSIENT *PVMXTRANSIENT;
286
287
288/**
289 * MSR-bitmap read permissions.
290 */
291typedef enum VMXMSREXITREAD
292{
293 /** Reading this MSR causes a VM-exit. */
294 VMXMSREXIT_INTERCEPT_READ = 0xb,
295 /** Reading this MSR does not cause a VM-exit. */
296 VMXMSREXIT_PASSTHRU_READ
297} VMXMSREXITREAD;
298/** Pointer to MSR-bitmap read permissions. */
299typedef VMXMSREXITREAD* PVMXMSREXITREAD;
300
301/**
302 * MSR-bitmap write permissions.
303 */
304typedef enum VMXMSREXITWRITE
305{
306 /** Writing to this MSR causes a VM-exit. */
307 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
308 /** Writing to this MSR does not cause a VM-exit. */
309 VMXMSREXIT_PASSTHRU_WRITE
310} VMXMSREXITWRITE;
311/** Pointer to MSR-bitmap write permissions. */
312typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
313
314
315/**
316 * VMX VM-exit handler.
317 *
318 * @returns VBox status code.
319 * @param pVCpu Pointer to the VMCPU.
320 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
321 * out-of-sync. Make sure to update the required
322 * fields before using them.
323 * @param pVmxTransient Pointer to the VMX-transient structure.
324 */
325#ifndef HMVMX_USE_FUNCTION_TABLE
326typedef int FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
327#else
328typedef DECLCALLBACK(int) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
329/** Pointer to VM-exit handler. */
330typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
331#endif
332
333
334/*******************************************************************************
335* Internal Functions *
336*******************************************************************************/
337static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush);
338static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr);
339static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
340 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntState);
341#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
342static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
343#endif
344#ifndef HMVMX_USE_FUNCTION_TABLE
345DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
346# define HMVMX_EXIT_DECL static int
347#else
348# define HMVMX_EXIT_DECL static DECLCALLBACK(int)
349#endif
350
351/** @name VM-exit handlers.
352 * @{
353 */
354static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
355static FNVMXEXITHANDLER hmR0VmxExitExtInt;
356static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
357static FNVMXEXITHANDLER hmR0VmxExitInitSignal;
358static FNVMXEXITHANDLER hmR0VmxExitSipi;
359static FNVMXEXITHANDLER hmR0VmxExitIoSmi;
360static FNVMXEXITHANDLER hmR0VmxExitSmi;
361static FNVMXEXITHANDLER hmR0VmxExitIntWindow;
362static FNVMXEXITHANDLER hmR0VmxExitNmiWindow;
363static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
364static FNVMXEXITHANDLER hmR0VmxExitCpuid;
365static FNVMXEXITHANDLER hmR0VmxExitGetsec;
366static FNVMXEXITHANDLER hmR0VmxExitHlt;
367static FNVMXEXITHANDLER hmR0VmxExitInvd;
368static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
369static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
370static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
371static FNVMXEXITHANDLER hmR0VmxExitRsm;
372static FNVMXEXITHANDLER hmR0VmxExitSetPendingXcptUD;
373static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
374static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
375static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
376static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
377static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
378static FNVMXEXITHANDLER hmR0VmxExitErrInvalidGuestState;
379static FNVMXEXITHANDLER hmR0VmxExitErrMsrLoad;
380static FNVMXEXITHANDLER hmR0VmxExitErrUndefined;
381static FNVMXEXITHANDLER hmR0VmxExitMwait;
382static FNVMXEXITHANDLER hmR0VmxExitMtf;
383static FNVMXEXITHANDLER hmR0VmxExitMonitor;
384static FNVMXEXITHANDLER hmR0VmxExitPause;
385static FNVMXEXITHANDLER hmR0VmxExitErrMachineCheck;
386static FNVMXEXITHANDLER hmR0VmxExitTprBelowThreshold;
387static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
388static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
389static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
390static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
391static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
392static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
393static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
394static FNVMXEXITHANDLER hmR0VmxExitWbinvd;
395static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
396static FNVMXEXITHANDLER hmR0VmxExitRdrand;
397static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
398/** @} */
399
400static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
401static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
402static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
403static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
404static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
405static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
406#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
407static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
408#endif
409static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
410
411/*******************************************************************************
412* Global Variables *
413*******************************************************************************/
414#ifdef HMVMX_USE_FUNCTION_TABLE
415
416/**
417 * VMX_EXIT dispatch table.
418 */
419static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
420{
421 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
422 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
423 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
424 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
425 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
426 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
427 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
428 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
429 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
430 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
431 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
432 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
433 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
434 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
435 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
436 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
437 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
438 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
439 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitSetPendingXcptUD,
440 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
441 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
442 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
443 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
444 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
445 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
446 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
447 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
448 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
449 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
450 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
451 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
452 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
453 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
454 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
455 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
456 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
457 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
458 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
459 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
460 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
461 /* 40 UNDEFINED */ hmR0VmxExitPause,
462 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
463 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
464 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
465 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
466 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
467 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
468 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
469 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
470 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
471 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
472 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
473 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
474 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
475 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
476 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
477 /* 56 UNDEFINED */ hmR0VmxExitErrUndefined,
478 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
479 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
480 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD
481};
482#endif /* HMVMX_USE_FUNCTION_TABLE */
483
484#ifdef VBOX_STRICT
485static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
486{
487 /* 0 */ "(Not Used)",
488 /* 1 */ "VMCALL executed in VMX root operation.",
489 /* 2 */ "VMCLEAR with invalid physical address.",
490 /* 3 */ "VMCLEAR with VMXON pointer.",
491 /* 4 */ "VMLAUNCH with non-clear VMCS.",
492 /* 5 */ "VMRESUME with non-launched VMCS.",
493 /* 6 */ "VMRESUME after VMXOFF",
494 /* 7 */ "VM entry with invalid control fields.",
495 /* 8 */ "VM entry with invalid host state fields.",
496 /* 9 */ "VMPTRLD with invalid physical address.",
497 /* 10 */ "VMPTRLD with VMXON pointer.",
498 /* 11 */ "VMPTRLD with incorrect revision identifier.",
499 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
500 /* 13 */ "VMWRITE to read-only VMCS component.",
501 /* 14 */ "(Not Used)",
502 /* 15 */ "VMXON executed in VMX root operation.",
503 /* 16 */ "VM entry with invalid executive-VMCS pointer.",
504 /* 17 */ "VM entry with non-launched executing VMCS.",
505 /* 18 */ "VM entry with executive-VMCS pointer not VMXON pointer.",
506 /* 19 */ "VMCALL with non-clear VMCS.",
507 /* 20 */ "VMCALL with invalid VM-exit control fields.",
508 /* 21 */ "(Not Used)",
509 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
510 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
511 /* 24 */ "VMCALL with invalid SMM-monitor features.",
512 /* 25 */ "VM entry with invalid VM-execution control fields in executive VMCS.",
513 /* 26 */ "VM entry with events blocked by MOV SS.",
514 /* 27 */ "(Not Used)",
515 /* 28 */ "Invalid operand to INVEPT/INVVPID."
516};
517#endif /* VBOX_STRICT */
518
519
520
521/**
522 * Updates the VM's last error record. If there was a VMX instruction error,
523 * reads the error data from the VMCS and updates VCPU's last error record as
524 * well.
525 *
526 * @param pVM Pointer to the VM.
527 * @param pVCpu Pointer to the VMCPU (can be NULL if @a rc is not
528 * VERR_VMX_UNABLE_TO_START_VM or
529 * VERR_VMX_INVALID_VMCS_FIELD).
530 * @param rc The error code.
531 */
532static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
533{
534 AssertPtr(pVM);
535 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
536 || rc == VERR_VMX_UNABLE_TO_START_VM)
537 {
538 AssertPtrReturnVoid(pVCpu);
539 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
540 }
541 pVM->hm.s.lLastError = rc;
542}
543
544
545/**
546 * Reads the VM-entry interruption-information field from the VMCS into the VMX
547 * transient structure.
548 *
549 * @returns VBox status code.
550 * @param pVmxTransient Pointer to the VMX transient structure.
551 *
552 * @remarks No-long-jump zone!!!
553 */
554DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
555{
556 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
557 AssertRCReturn(rc, rc);
558 return VINF_SUCCESS;
559}
560
561
562/**
563 * Reads the VM-entry exception error code field from the VMCS into
564 * the VMX transient structure.
565 *
566 * @returns VBox status code.
567 * @param pVmxTransient Pointer to the VMX transient structure.
568 *
569 * @remarks No-long-jump zone!!!
570 */
571DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
572{
573 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
574 AssertRCReturn(rc, rc);
575 return VINF_SUCCESS;
576}
577
578
579/**
580 * Reads the VM-entry exception error code field from the VMCS into
581 * the VMX transient structure.
582 *
583 * @returns VBox status code.
584 * @param pVmxTransient Pointer to the VMX transient structure.
585 *
586 * @remarks No-long-jump zone!!!
587 */
588DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
589{
590 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
591 AssertRCReturn(rc, rc);
592 return VINF_SUCCESS;
593}
594
595
596/**
597 * Reads the VM-exit interruption-information field from the VMCS into the VMX
598 * transient structure.
599 *
600 * @returns VBox status code.
601 * @param pVmxTransient Pointer to the VMX transient structure.
602 */
603DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
604{
605 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
606 {
607 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
608 AssertRCReturn(rc, rc);
609 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
610 }
611 return VINF_SUCCESS;
612}
613
614
615/**
616 * Reads the VM-exit interruption error code from the VMCS into the VMX
617 * transient structure.
618 *
619 * @returns VBox status code.
620 * @param pVmxTransient Pointer to the VMX transient structure.
621 */
622DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
623{
624 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
625 {
626 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
627 AssertRCReturn(rc, rc);
628 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
629 }
630 return VINF_SUCCESS;
631}
632
633
634/**
635 * Reads the VM-exit instruction length field from the VMCS into the VMX
636 * transient structure.
637 *
638 * @returns VBox status code.
639 * @param pVCpu Pointer to the VMCPU.
640 * @param pVmxTransient Pointer to the VMX transient structure.
641 */
642DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
643{
644 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
645 {
646 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
647 AssertRCReturn(rc, rc);
648 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
649 }
650 return VINF_SUCCESS;
651}
652
653
654/**
655 * Reads the VM-exit instruction-information field from the VMCS into
656 * the VMX transient structure.
657 *
658 * @returns VBox status code.
659 * @param pVmxTransient Pointer to the VMX transient structure.
660 */
661DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
662{
663 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
664 {
665 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
666 AssertRCReturn(rc, rc);
667 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
668 }
669 return VINF_SUCCESS;
670}
671
672
673/**
674 * Reads the exit qualification from the VMCS into the VMX transient structure.
675 *
676 * @returns VBox status code.
677 * @param pVCpu Pointer to the VMCPU (required for the VMCS cache
678 * case).
679 * @param pVmxTransient Pointer to the VMX transient structure.
680 */
681DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
682{
683 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
684 {
685 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
686 AssertRCReturn(rc, rc);
687 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
688 }
689 return VINF_SUCCESS;
690}
691
692
693/**
694 * Reads the IDT-vectoring information field from the VMCS into the VMX
695 * transient structure.
696 *
697 * @returns VBox status code.
698 * @param pVmxTransient Pointer to the VMX transient structure.
699 *
700 * @remarks No-long-jump zone!!!
701 */
702DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
703{
704 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
705 {
706 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
707 AssertRCReturn(rc, rc);
708 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
709 }
710 return VINF_SUCCESS;
711}
712
713
714/**
715 * Reads the IDT-vectoring error code from the VMCS into the VMX
716 * transient structure.
717 *
718 * @returns VBox status code.
719 * @param pVmxTransient Pointer to the VMX transient structure.
720 */
721DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
722{
723 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
724 {
725 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
726 AssertRCReturn(rc, rc);
727 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
728 }
729 return VINF_SUCCESS;
730}
731
732
733/**
734 * Enters VMX root mode operation on the current CPU.
735 *
736 * @returns VBox status code.
737 * @param pVM Pointer to the VM (optional, can be NULL, after
738 * a resume).
739 * @param HCPhysCpuPage Physical address of the VMXON region.
740 * @param pvCpuPage Pointer to the VMXON region.
741 */
742static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
743{
744 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
745 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
746 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
747
748 if (pVM)
749 {
750 /* Write the VMCS revision dword to the VMXON region. */
751 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
752 }
753
754 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
755 RTCCUINTREG uEflags = ASMIntDisableFlags();
756
757 /* Enable the VMX bit in CR4 if necessary. */
758 RTCCUINTREG uCr4 = ASMGetCR4();
759 if (!(uCr4 & X86_CR4_VMXE))
760 ASMSetCR4(uCr4 | X86_CR4_VMXE);
761
762 /* Enter VMX root mode. */
763 int rc = VMXEnable(HCPhysCpuPage);
764 if (RT_FAILURE(rc))
765 ASMSetCR4(uCr4);
766
767 /* Restore interrupts. */
768 ASMSetFlags(uEflags);
769 return rc;
770}
771
772
773/**
774 * Exits VMX root mode operation on the current CPU.
775 *
776 * @returns VBox status code.
777 */
778static int hmR0VmxLeaveRootMode(void)
779{
780 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
781
782 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
783 RTCCUINTREG uEflags = ASMIntDisableFlags();
784
785 /* If we're for some reason not in VMX root mode, then don't leave it. */
786 RTCCUINTREG uHostCR4 = ASMGetCR4();
787
788 int rc;
789 if (uHostCR4 & X86_CR4_VMXE)
790 {
791 /* Exit VMX root mode and clear the VMX bit in CR4. */
792 VMXDisable();
793 ASMSetCR4(uHostCR4 & ~X86_CR4_VMXE);
794 rc = VINF_SUCCESS;
795 }
796 else
797 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
798
799 /* Restore interrupts. */
800 ASMSetFlags(uEflags);
801 return rc;
802}
803
804
805/**
806 * Allocates and maps one physically contiguous page. The allocated page is
807 * zero'd out. (Used by various VT-x structures).
808 *
809 * @returns IPRT status code.
810 * @param pMemObj Pointer to the ring-0 memory object.
811 * @param ppVirt Where to store the virtual address of the
812 * allocation.
813 * @param pPhys Where to store the physical address of the
814 * allocation.
815 */
816DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
817{
818 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
819 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
820 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
821
822 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
823 if (RT_FAILURE(rc))
824 return rc;
825 *ppVirt = RTR0MemObjAddress(*pMemObj);
826 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
827 ASMMemZero32(*ppVirt, PAGE_SIZE);
828 return VINF_SUCCESS;
829}
830
831
832/**
833 * Frees and unmaps an allocated physical page.
834 *
835 * @param pMemObj Pointer to the ring-0 memory object.
836 * @param ppVirt Where to re-initialize the virtual address of
837 * allocation as 0.
838 * @param pHCPhys Where to re-initialize the physical address of the
839 * allocation as 0.
840 */
841DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
842{
843 AssertPtr(pMemObj);
844 AssertPtr(ppVirt);
845 AssertPtr(pHCPhys);
846 if (*pMemObj != NIL_RTR0MEMOBJ)
847 {
848 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
849 AssertRC(rc);
850 *pMemObj = NIL_RTR0MEMOBJ;
851 *ppVirt = 0;
852 *pHCPhys = 0;
853 }
854}
855
856
857/**
858 * Worker function to free VT-x related structures.
859 *
860 * @returns IPRT status code.
861 * @param pVM Pointer to the VM.
862 */
863static void hmR0VmxStructsFree(PVM pVM)
864{
865 for (VMCPUID i = 0; i < pVM->cCpus; i++)
866 {
867 PVMCPU pVCpu = &pVM->aCpus[i];
868 AssertPtr(pVCpu);
869
870 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
871 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
872
873 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
874 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
875
876 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
877 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
878 }
879
880 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
881#ifdef VBOX_WITH_CRASHDUMP_MAGIC
882 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
883#endif
884}
885
886
887/**
888 * Worker function to allocate VT-x related VM structures.
889 *
890 * @returns IPRT status code.
891 * @param pVM Pointer to the VM.
892 */
893static int hmR0VmxStructsAlloc(PVM pVM)
894{
895 /*
896 * Initialize members up-front so we can cleanup properly on allocation failure.
897 */
898#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
899 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
900 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
901 pVM->hm.s.vmx.HCPhys##a_Name = 0;
902
903#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
904 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
905 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
906 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
907
908#ifdef VBOX_WITH_CRASHDUMP_MAGIC
909 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
910#endif
911 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
912
913 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
914 for (VMCPUID i = 0; i < pVM->cCpus; i++)
915 {
916 PVMCPU pVCpu = &pVM->aCpus[i];
917 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
918 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
919 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
920 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
921 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
922 }
923#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
924#undef VMXLOCAL_INIT_VM_MEMOBJ
925
926 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
927 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
928 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
929 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
930
931 /*
932 * Allocate all the VT-x structures.
933 */
934 int rc = VINF_SUCCESS;
935#ifdef VBOX_WITH_CRASHDUMP_MAGIC
936 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
937 if (RT_FAILURE(rc))
938 goto cleanup;
939 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
940 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
941#endif
942
943 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
944 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
945 {
946 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
947 &pVM->hm.s.vmx.HCPhysApicAccess);
948 if (RT_FAILURE(rc))
949 goto cleanup;
950 }
951
952 /*
953 * Initialize per-VCPU VT-x structures.
954 */
955 for (VMCPUID i = 0; i < pVM->cCpus; i++)
956 {
957 PVMCPU pVCpu = &pVM->aCpus[i];
958 AssertPtr(pVCpu);
959
960 /* Allocate the VM control structure (VMCS). */
961 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
962 if (RT_FAILURE(rc))
963 goto cleanup;
964
965 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
966 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
967 {
968 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
969 &pVCpu->hm.s.vmx.HCPhysVirtApic);
970 if (RT_FAILURE(rc))
971 goto cleanup;
972 }
973
974 /* Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for transparent accesses of specific MSRs. */
975 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
976 {
977 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
978 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
979 if (RT_FAILURE(rc))
980 goto cleanup;
981 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
982 }
983
984 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
985 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
986 if (RT_FAILURE(rc))
987 goto cleanup;
988
989 /* Allocate the VM-exit MSR-load page for the host MSRs. */
990 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993 }
994
995 return VINF_SUCCESS;
996
997cleanup:
998 hmR0VmxStructsFree(pVM);
999 return rc;
1000}
1001
1002
1003/**
1004 * Does global VT-x initialization (called during module initialization).
1005 *
1006 * @returns VBox status code.
1007 */
1008VMMR0DECL(int) VMXR0GlobalInit(void)
1009{
1010#ifdef HMVMX_USE_FUNCTION_TABLE
1011 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1012# ifdef VBOX_STRICT
1013 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1014 Assert(g_apfnVMExitHandlers[i]);
1015# endif
1016#endif
1017 return VINF_SUCCESS;
1018}
1019
1020
1021/**
1022 * Does global VT-x termination (called during module termination).
1023 */
1024VMMR0DECL(void) VMXR0GlobalTerm()
1025{
1026 /* Nothing to do currently. */
1027}
1028
1029
1030/**
1031 * Sets up and activates VT-x on the current CPU.
1032 *
1033 * @returns VBox status code.
1034 * @param pCpu Pointer to the global CPU info struct.
1035 * @param pVM Pointer to the VM (can be NULL after a host resume
1036 * operation).
1037 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1038 * fEnabledByHost is true).
1039 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1040 * @a fEnabledByHost is true).
1041 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1042 * enable VT-x on the host.
1043 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1044 */
1045VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1046 void *pvMsrs)
1047{
1048 AssertReturn(pCpu, VERR_INVALID_PARAMETER);
1049 AssertReturn(pvMsrs, VERR_INVALID_PARAMETER);
1050 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1051
1052 /* Enable VT-x if it's not already enabled by the host. */
1053 if (!fEnabledByHost)
1054 {
1055 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1056 if (RT_FAILURE(rc))
1057 return rc;
1058 }
1059
1060 /*
1061 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1062 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1063 */
1064 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1065 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1066 {
1067 hmR0VmxFlushEpt(NULL /* pVCpu */, VMX_FLUSH_EPT_ALL_CONTEXTS);
1068 pCpu->fFlushAsidBeforeUse = false;
1069 }
1070 else
1071 pCpu->fFlushAsidBeforeUse = true;
1072
1073 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1074 ++pCpu->cTlbFlushes;
1075
1076 return VINF_SUCCESS;
1077}
1078
1079
1080/**
1081 * Deactivates VT-x on the current CPU.
1082 *
1083 * @returns VBox status code.
1084 * @param pCpu Pointer to the global CPU info struct.
1085 * @param pvCpuPage Pointer to the VMXON region.
1086 * @param HCPhysCpuPage Physical address of the VMXON region.
1087 *
1088 * @remarks This function should never be called when SUPR0EnableVTx() or
1089 * similar was used to enable VT-x on the host.
1090 */
1091VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1092{
1093 NOREF(pCpu);
1094 NOREF(pvCpuPage);
1095 NOREF(HCPhysCpuPage);
1096
1097 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1098 return hmR0VmxLeaveRootMode();
1099}
1100
1101
1102/**
1103 * Sets the permission bits for the specified MSR in the MSR bitmap.
1104 *
1105 * @param pVCpu Pointer to the VMCPU.
1106 * @param uMSR The MSR value.
1107 * @param enmRead Whether reading this MSR causes a VM-exit.
1108 * @param enmWrite Whether writing this MSR causes a VM-exit.
1109 */
1110static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1111{
1112 int32_t iBit;
1113 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1114
1115 /*
1116 * Layout:
1117 * 0x000 - 0x3ff - Low MSR read bits
1118 * 0x400 - 0x7ff - High MSR read bits
1119 * 0x800 - 0xbff - Low MSR write bits
1120 * 0xc00 - 0xfff - High MSR write bits
1121 */
1122 if (uMsr <= 0x00001FFF)
1123 iBit = uMsr;
1124 else if ( uMsr >= 0xC0000000
1125 && uMsr <= 0xC0001FFF)
1126 {
1127 iBit = (uMsr - 0xC0000000);
1128 pbMsrBitmap += 0x400;
1129 }
1130 else
1131 {
1132 AssertMsgFailed(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1133 return;
1134 }
1135
1136 Assert(iBit <= 0x1fff);
1137 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1138 ASMBitSet(pbMsrBitmap, iBit);
1139 else
1140 ASMBitClear(pbMsrBitmap, iBit);
1141
1142 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1143 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1144 else
1145 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1146}
1147
1148
1149#ifdef VBOX_STRICT
1150/**
1151 * Gets the permission bits for the specified MSR in the MSR bitmap.
1152 *
1153 * @returns VBox status code.
1154 * @retval VINF_SUCCESS if the specified MSR is found.
1155 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1156 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1157 *
1158 * @param pVCpu Pointer to the VMCPU.
1159 * @param uMsr The MSR.
1160 * @param penmRead Where to store the read permissions.
1161 * @param penmWrite Where to store the write permissions.
1162 */
1163static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1164{
1165 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1166 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1167 int32_t iBit;
1168 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1169
1170 /* See hmR0VmxSetMsrPermission() for the layout. */
1171 if (uMsr <= 0x00001FFF)
1172 iBit = uMsr;
1173 else if ( uMsr >= 0xC0000000
1174 && uMsr <= 0xC0001FFF)
1175 {
1176 iBit = (uMsr - 0xC0000000);
1177 pbMsrBitmap += 0x400;
1178 }
1179 else
1180 {
1181 AssertMsgFailed(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1182 return VERR_NOT_SUPPORTED;
1183 }
1184
1185 Assert(iBit <= 0x1fff);
1186 if (ASMBitTest(pbMsrBitmap, iBit))
1187 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1188 else
1189 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1190
1191 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1192 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1193 else
1194 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1195 return VINF_SUCCESS;
1196}
1197#endif /* VBOX_STRICT */
1198
1199
1200/**
1201 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1202 * area.
1203 *
1204 * @returns VBox status code.
1205 * @param pVCpu Pointer to the VMCPU.
1206 * @param cMsrs The number of MSRs.
1207 */
1208DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1209{
1210 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1211 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1212 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1213 {
1214 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1215 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1216 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1217 }
1218
1219 /* Update number of guest MSRs to load/store across the world-switch. */
1220 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1221 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRCReturn(rc, rc);
1222
1223 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1224 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1225
1226 /* Update the VCPU's copy of the MSR count. */
1227 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1228
1229 return VINF_SUCCESS;
1230}
1231
1232
1233/**
1234 * Adds a new (or updates the value of an existing) guest/host MSR
1235 * pair to be swapped during the world-switch as part of the
1236 * auto-load/store MSR area in the VMCS.
1237 *
1238 * @returns VBox status code.
1239 * @param pVCpu Pointer to the VMCPU.
1240 * @param uMsr The MSR.
1241 * @param uGuestMsr Value of the guest MSR.
1242 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1243 * necessary.
1244 */
1245static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr)
1246{
1247 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1248 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1249 uint32_t i;
1250 for (i = 0; i < cMsrs; i++)
1251 {
1252 if (pGuestMsr->u32Msr == uMsr)
1253 break;
1254 pGuestMsr++;
1255 }
1256
1257 bool fAdded = false;
1258 if (i == cMsrs)
1259 {
1260 ++cMsrs;
1261 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1262 AssertRCReturn(rc, rc);
1263
1264 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1265 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1266 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1267
1268 fAdded = true;
1269 }
1270
1271 /* Update the MSR values in the auto-load/store MSR area. */
1272 pGuestMsr->u32Msr = uMsr;
1273 pGuestMsr->u64Value = uGuestMsrValue;
1274
1275 /* Create/update the MSR slot in the host MSR area. */
1276 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1277 pHostMsr += i;
1278 pHostMsr->u32Msr = uMsr;
1279
1280 /*
1281 * Update the host MSR only when requested by the caller AND when we're
1282 * adding it to the auto-load/store area. Otherwise, it would have been
1283 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1284 */
1285 if ( fAdded
1286 && fUpdateHostMsr)
1287 {
1288 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1289 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1290 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1291 }
1292
1293 return VINF_SUCCESS;
1294}
1295
1296
1297/**
1298 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1299 * auto-load/store MSR area in the VMCS.
1300 *
1301 * Does not fail if the MSR in @a uMsr is not found in the auto-load/store MSR
1302 * area.
1303 *
1304 * @returns VBox status code.
1305 * @param pVCpu Pointer to the VMCPU.
1306 * @param uMsr The MSR.
1307 */
1308static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1309{
1310 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1311 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1312 for (uint32_t i = 0; i < cMsrs; i++)
1313 {
1314 /* Find the MSR. */
1315 if (pGuestMsr->u32Msr == uMsr)
1316 {
1317 /* If it's the last MSR, simply reduce the count. */
1318 if (i == cMsrs - 1)
1319 {
1320 --cMsrs;
1321 break;
1322 }
1323
1324 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1325 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1326 pLastGuestMsr += cMsrs;
1327 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1328 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1329
1330 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1331 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1332 pLastHostMsr += cMsrs;
1333 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1334 pHostMsr->u64Value = pLastHostMsr->u64Value;
1335 --cMsrs;
1336 break;
1337 }
1338 pGuestMsr++;
1339 }
1340
1341 /* Update the VMCS if the count changed (meaning the MSR was found). */
1342 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1343 {
1344 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1345 AssertRCReturn(rc, rc);
1346
1347 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1348 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1349 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1350 }
1351
1352 return VINF_SUCCESS;
1353}
1354
1355
1356/**
1357 * Checks if the specified guest MSR is part of the auto-load/store area in
1358 * the VMCS.
1359 *
1360 * @returns true if found, false otherwise.
1361 * @param pVCpu Pointer to the VMCPU.
1362 * @param uMsr The MSR to find.
1363 */
1364static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1365{
1366 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1367 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1368
1369 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1370 {
1371 if (pGuestMsr->u32Msr == uMsr)
1372 return true;
1373 }
1374 return false;
1375}
1376
1377
1378/**
1379 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1380 *
1381 * @param pVCpu Pointer to the VMCPU.
1382 *
1383 * @remarks No-long-jump zone!!!
1384 */
1385static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1386{
1387 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1388 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1389 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1390 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1391
1392 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1393 {
1394 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1395 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1396 }
1397
1398 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1399}
1400
1401
1402#if HC_ARCH_BITS == 64
1403/**
1404 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1405 * perform lazy restoration of the host MSRs while leaving VT-x.
1406 *
1407 * @param pVCpu Pointer to the VMCPU.
1408 *
1409 * @remarks No-long-jump zone!!!
1410 */
1411static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1412{
1413 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1414
1415 /*
1416 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1417 */
1418 if (!(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST))
1419 {
1420 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1421 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1422 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1423 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1424 pVCpu->hm.s.vmx.fRestoreHostMsrs |= VMX_RESTORE_HOST_MSR_SAVED_HOST;
1425 }
1426}
1427
1428
1429/**
1430 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1431 * lazily while leaving VT-x.
1432 *
1433 * @returns true if it does, false otherwise.
1434 * @param pVCpu Pointer to the VMCPU.
1435 * @param uMsr The MSR to check.
1436 */
1437static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1438{
1439 NOREF(pVCpu);
1440 switch (uMsr)
1441 {
1442 case MSR_K8_LSTAR:
1443 case MSR_K6_STAR:
1444 case MSR_K8_SF_MASK:
1445 case MSR_K8_KERNEL_GS_BASE:
1446 return true;
1447 }
1448 return false;
1449}
1450
1451
1452/**
1453 * Saves a set of guests MSRs back into the guest-CPU context.
1454 *
1455 * @param pVCpu Pointer to the VMCPU.
1456 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1457 * out-of-sync. Make sure to update the required fields
1458 * before using them.
1459 *
1460 * @remarks No-long-jump zone!!!
1461 */
1462static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1463{
1464 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1465 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1466
1467 if (pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST)
1468 {
1469 Assert(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_SAVED_HOST);
1470 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1471 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1472 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1473 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1474 }
1475}
1476
1477
1478/**
1479 * Loads a set of guests MSRs to allow read/passthru to the guest.
1480 *
1481 * The name of this function is slightly confusing. This function does NOT
1482 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1483 * common prefix for functions dealing with "lazy restoration" of the shared
1484 * MSRs.
1485 *
1486 * @param pVCpu Pointer to the VMCPU.
1487 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1488 * out-of-sync. Make sure to update the required fields
1489 * before using them.
1490 *
1491 * @remarks No-long-jump zone!!!
1492 */
1493static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1494{
1495 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1496 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1497
1498 Assert(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_SAVED_HOST);
1499 if (!(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST))
1500 {
1501#define VMXLOCAL_LAZY_LOAD_GUEST_MSR(uMsr, a_GuestMsr, a_HostMsr) \
1502 do { \
1503 if (pMixedCtx->msr##a_GuestMsr != pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr) \
1504 ASMWrMsr(uMsr, pMixedCtx->msr##a_GuestMsr); \
1505 else \
1506 Assert(ASMRdMsr(uMsr) == pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr); \
1507 } while (0)
1508
1509 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_LSTAR, LSTAR, LStar);
1510 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K6_STAR, STAR, Star);
1511 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_SF_MASK, SFMASK, SFMask);
1512 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_KERNEL_GS_BASE, KERNELGSBASE, KernelGSBase);
1513#undef VMXLOCAL_LAZY_LOAD_GUEST_MSR
1514 }
1515 else
1516 {
1517 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1518 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1519 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1520 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1521 }
1522 pVCpu->hm.s.vmx.fRestoreHostMsrs |= VMX_RESTORE_HOST_MSR_LOADED_GUEST;
1523}
1524
1525
1526/**
1527 * Performs lazy restoration of the set of host MSRs if they were previously
1528 * loaded with guest MSR values.
1529 *
1530 * @param pVCpu Pointer to the VMCPU.
1531 *
1532 * @remarks No-long-jump zone!!!
1533 * @remarks The guest MSRs should have been saved back into the guest-CPU
1534 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1535 */
1536static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1537{
1538 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1539 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1540
1541 if (pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_LOADED_GUEST)
1542 {
1543 Assert(pVCpu->hm.s.vmx.fRestoreHostMsrs & VMX_RESTORE_HOST_MSR_SAVED_HOST);
1544 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1545 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1546 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1547 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1548 }
1549 pVCpu->hm.s.vmx.fRestoreHostMsrs &= ~(VMX_RESTORE_HOST_MSR_LOADED_GUEST | VMX_RESTORE_HOST_MSR_SAVED_HOST);
1550}
1551#endif /* HC_ARCH_BITS == 64 */
1552
1553
1554#ifdef VBOX_STRICT
1555/**
1556 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1557 * VMCS are correct.
1558 *
1559 * @param pVCpu Pointer to the VMCPU.
1560 */
1561static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1562{
1563 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1564
1565 /* Verify MSR counts in the VMCS are what we think it should be. */
1566 uint32_t cMsrs;
1567 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1568 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1569
1570 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1571 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1572
1573 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1574 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1575
1576 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1577 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1578 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1579 {
1580 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1581 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32\n", pHostMsr->u32Msr,
1582 pGuestMsr->u32Msr));
1583
1584 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1585 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64\n", pHostMsr->u32Msr,
1586 pHostMsr->u64Value, u64Msr));
1587
1588 /* Verify that the permissions are as expected in the MSR bitmap. */
1589 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1590 {
1591 VMXMSREXITREAD enmRead;
1592 VMXMSREXITWRITE enmWrite;
1593 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1594 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1595 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 No passthru read permission!\n",
1596 pGuestMsr->u32Msr));
1597 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 No passthru write permission!\n",
1598 pGuestMsr->u32Msr));
1599 }
1600 }
1601}
1602# endif /* VBOX_STRICT */
1603
1604
1605/**
1606 * Flushes the TLB using EPT.
1607 *
1608 * @returns VBox status code.
1609 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1610 * enmFlush).
1611 * @param enmFlush Type of flush.
1612 *
1613 * @remarks Caller is responsible for making sure this function is called only
1614 * when NestedPaging is supported and providing @a enmFlush that is
1615 * supported by the CPU.
1616 * @remarks Can be called with interrupts disabled.
1617 */
1618static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush)
1619{
1620 uint64_t au64Descriptor[2];
1621 if (enmFlush == VMX_FLUSH_EPT_ALL_CONTEXTS)
1622 au64Descriptor[0] = 0;
1623 else
1624 {
1625 Assert(pVCpu);
1626 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1627 }
1628 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1629
1630 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1631 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1632 rc));
1633 if ( RT_SUCCESS(rc)
1634 && pVCpu)
1635 {
1636 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1637 }
1638}
1639
1640
1641/**
1642 * Flushes the TLB using VPID.
1643 *
1644 * @returns VBox status code.
1645 * @param pVM Pointer to the VM.
1646 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1647 * enmFlush).
1648 * @param enmFlush Type of flush.
1649 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1650 * on @a enmFlush).
1651 *
1652 * @remarks Can be called with interrupts disabled.
1653 */
1654static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr)
1655{
1656 NOREF(pVM);
1657 AssertPtr(pVM);
1658 Assert(pVM->hm.s.vmx.fVpid);
1659
1660 uint64_t au64Descriptor[2];
1661 if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS)
1662 {
1663 au64Descriptor[0] = 0;
1664 au64Descriptor[1] = 0;
1665 }
1666 else
1667 {
1668 AssertPtr(pVCpu);
1669 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1670 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1671 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1672 au64Descriptor[1] = GCPtr;
1673 }
1674
1675 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1676 AssertMsg(rc == VINF_SUCCESS,
1677 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1678 if ( RT_SUCCESS(rc)
1679 && pVCpu)
1680 {
1681 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1682 }
1683}
1684
1685
1686/**
1687 * Invalidates a guest page by guest virtual address. Only relevant for
1688 * EPT/VPID, otherwise there is nothing really to invalidate.
1689 *
1690 * @returns VBox status code.
1691 * @param pVM Pointer to the VM.
1692 * @param pVCpu Pointer to the VMCPU.
1693 * @param GCVirt Guest virtual address of the page to invalidate.
1694 */
1695VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1696{
1697 AssertPtr(pVM);
1698 AssertPtr(pVCpu);
1699 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1700
1701 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1702 if (!fFlushPending)
1703 {
1704 /*
1705 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1706 * See @bugref{6043} and @bugref{6177}.
1707 *
1708 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1709 * function maybe called in a loop with individual addresses.
1710 */
1711 if (pVM->hm.s.vmx.fVpid)
1712 {
1713 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1714 {
1715 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt);
1716 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1717 }
1718 else
1719 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1720 }
1721 else if (pVM->hm.s.fNestedPaging)
1722 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1723 }
1724
1725 return VINF_SUCCESS;
1726}
1727
1728
1729/**
1730 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1731 * otherwise there is nothing really to invalidate.
1732 *
1733 * @returns VBox status code.
1734 * @param pVM Pointer to the VM.
1735 * @param pVCpu Pointer to the VMCPU.
1736 * @param GCPhys Guest physical address of the page to invalidate.
1737 */
1738VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1739{
1740 NOREF(pVM); NOREF(GCPhys);
1741 LogFlowFunc(("%RGp\n", GCPhys));
1742
1743 /*
1744 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1745 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1746 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1747 */
1748 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1749 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1750 return VINF_SUCCESS;
1751}
1752
1753
1754/**
1755 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1756 * case where neither EPT nor VPID is supported by the CPU.
1757 *
1758 * @param pVM Pointer to the VM.
1759 * @param pVCpu Pointer to the VMCPU.
1760 * @param pCpu Pointer to the global HM struct.
1761 *
1762 * @remarks Called with interrupts disabled.
1763 */
1764static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1765{
1766 AssertPtr(pVCpu);
1767 AssertPtr(pCpu);
1768 NOREF(pVM);
1769
1770 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1771
1772 /** @todo TLB shootdown is currently not used. See hmQueueInvlPage(). */
1773#if 0
1774 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1775 pVCpu->hm.s.TlbShootdown.cPages = 0;
1776#endif
1777
1778 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1779 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1780 pVCpu->hm.s.fForceTLBFlush = false;
1781 return;
1782}
1783
1784
1785/**
1786 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1787 *
1788 * @param pVM Pointer to the VM.
1789 * @param pVCpu Pointer to the VMCPU.
1790 * @param pCpu Pointer to the global HM CPU struct.
1791 * @remarks All references to "ASID" in this function pertains to "VPID" in
1792 * Intel's nomenclature. The reason is, to avoid confusion in compare
1793 * statements since the host-CPU copies are named "ASID".
1794 *
1795 * @remarks Called with interrupts disabled.
1796 */
1797static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1798{
1799#ifdef VBOX_WITH_STATISTICS
1800 bool fTlbFlushed = false;
1801# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1802# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1803 if (!fTlbFlushed) \
1804 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1805 } while (0)
1806#else
1807# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1808# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1809#endif
1810
1811 AssertPtr(pVM);
1812 AssertPtr(pCpu);
1813 AssertPtr(pVCpu);
1814 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1815 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1816 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1817
1818
1819 /*
1820 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1821 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1822 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1823 */
1824 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1825 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1826 {
1827 ++pCpu->uCurrentAsid;
1828 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1829 {
1830 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1831 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1832 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1833 }
1834
1835 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1836 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1837 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1838
1839 /*
1840 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1841 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1842 */
1843 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1844 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1845 HMVMX_SET_TAGGED_TLB_FLUSHED();
1846 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
1847 }
1848
1849 /* Check for explicit TLB shootdowns. */
1850 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1851 {
1852 /*
1853 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
1854 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
1855 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
1856 * but not guest-physical mappings.
1857 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
1858 */
1859 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1860 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1861 HMVMX_SET_TAGGED_TLB_FLUSHED();
1862 }
1863
1864 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
1865 * where it is commented out. Support individual entry flushing
1866 * someday. */
1867#if 0
1868 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1869 {
1870 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1871
1872 /*
1873 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
1874 * as supported by the CPU.
1875 */
1876 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1877 {
1878 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1879 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1880 }
1881 else
1882 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1883
1884 HMVMX_SET_TAGGED_TLB_FLUSHED();
1885 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1886 pVCpu->hm.s.TlbShootdown.cPages = 0;
1887 }
1888#endif
1889
1890 pVCpu->hm.s.fForceTLBFlush = false;
1891
1892 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1893
1894 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1895 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1896 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1897 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1898 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1899 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
1900 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1901 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1902
1903 /* Update VMCS with the VPID. */
1904 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
1905 AssertRC(rc);
1906
1907#undef HMVMX_SET_TAGGED_TLB_FLUSHED
1908}
1909
1910
1911/**
1912 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
1913 *
1914 * @returns VBox status code.
1915 * @param pVM Pointer to the VM.
1916 * @param pVCpu Pointer to the VMCPU.
1917 * @param pCpu Pointer to the global HM CPU struct.
1918 *
1919 * @remarks Called with interrupts disabled.
1920 */
1921static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1922{
1923 AssertPtr(pVM);
1924 AssertPtr(pVCpu);
1925 AssertPtr(pCpu);
1926 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
1927 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
1928
1929 /*
1930 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1931 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
1932 */
1933 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1934 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1935 {
1936 pVCpu->hm.s.fForceTLBFlush = true;
1937 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1938 }
1939
1940 /* Check for explicit TLB shootdown flushes. */
1941 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1942 {
1943 pVCpu->hm.s.fForceTLBFlush = true;
1944 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1945 }
1946
1947 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1948 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1949
1950 if (pVCpu->hm.s.fForceTLBFlush)
1951 {
1952 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1953 pVCpu->hm.s.fForceTLBFlush = false;
1954 }
1955 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
1956 * where it is commented out. Support individual entry flushing
1957 * someday. */
1958#if 0
1959 else
1960 {
1961 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1962 {
1963 /* We cannot flush individual entries without VPID support. Flush using EPT. */
1964 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1965 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1966 }
1967 else
1968 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1969
1970 pVCpu->hm.s.TlbShootdown.cPages = 0;
1971 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1972 }
1973#endif
1974}
1975
1976
1977/**
1978 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
1979 *
1980 * @returns VBox status code.
1981 * @param pVM Pointer to the VM.
1982 * @param pVCpu Pointer to the VMCPU.
1983 * @param pCpu Pointer to the global HM CPU struct.
1984 *
1985 * @remarks Called with interrupts disabled.
1986 */
1987static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1988{
1989 AssertPtr(pVM);
1990 AssertPtr(pVCpu);
1991 AssertPtr(pCpu);
1992 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
1993 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
1994
1995 /*
1996 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1997 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1998 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1999 */
2000 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2001 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2002 {
2003 pVCpu->hm.s.fForceTLBFlush = true;
2004 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2005 }
2006
2007 /* Check for explicit TLB shootdown flushes. */
2008 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2009 {
2010 /*
2011 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2012 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2013 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2014 */
2015 pVCpu->hm.s.fForceTLBFlush = true;
2016 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2017 }
2018
2019 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2020 if (pVCpu->hm.s.fForceTLBFlush)
2021 {
2022 ++pCpu->uCurrentAsid;
2023 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2024 {
2025 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2026 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2027 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2028 }
2029
2030 pVCpu->hm.s.fForceTLBFlush = false;
2031 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2032 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2033 if (pCpu->fFlushAsidBeforeUse)
2034 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2035 }
2036 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
2037 * where it is commented out. Support individual entry flushing
2038 * someday. */
2039#if 0
2040 else
2041 {
2042 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
2043 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
2044 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
2045 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
2046
2047 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2048 {
2049 /* Flush individual guest entries using VPID or as little as possible with EPT as supported by the CPU. */
2050 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2051 {
2052 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
2053 hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
2054 }
2055 else
2056 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2057
2058 pVCpu->hm.s.TlbShootdown.cPages = 0;
2059 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2060 }
2061 else
2062 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2063 }
2064#endif
2065
2066 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2067 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2068 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2069 ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
2070 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2071 ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2072
2073 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2074 AssertRC(rc);
2075}
2076
2077
2078/**
2079 * Flushes the guest TLB entry based on CPU capabilities.
2080 *
2081 * @param pVCpu Pointer to the VMCPU.
2082 * @param pCpu Pointer to the global HM CPU struct.
2083 */
2084DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2085{
2086#ifdef HMVMX_ALWAYS_FLUSH_TLB
2087 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2088#endif
2089 PVM pVM = pVCpu->CTX_SUFF(pVM);
2090 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2091 {
2092 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2093 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2094 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2095 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2096 default:
2097 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2098 break;
2099 }
2100
2101 /* VMCPU_FF_TLB_SHOOTDOWN is unused. */
2102 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN));
2103
2104 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer pending. It can be set by other EMTs. */
2105}
2106
2107
2108/**
2109 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2110 * TLB entries from the host TLB before VM-entry.
2111 *
2112 * @returns VBox status code.
2113 * @param pVM Pointer to the VM.
2114 */
2115static int hmR0VmxSetupTaggedTlb(PVM pVM)
2116{
2117 /*
2118 * Determine optimal flush type for Nested Paging.
2119 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2120 * guest execution (see hmR3InitFinalizeR0()).
2121 */
2122 if (pVM->hm.s.fNestedPaging)
2123 {
2124 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2125 {
2126 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2127 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT;
2128 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2129 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS;
2130 else
2131 {
2132 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2133 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
2134 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2135 }
2136
2137 /* Make sure the write-back cacheable memory type for EPT is supported. */
2138 if (!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB))
2139 {
2140 LogRel(("hmR0VmxSetupTaggedTlb: Unsupported EPTP memory type %#x.\n", pVM->hm.s.vmx.Msrs.u64EptVpidCaps));
2141 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
2142 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2143 }
2144 }
2145 else
2146 {
2147 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2148 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
2149 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2150 }
2151 }
2152
2153 /*
2154 * Determine optimal flush type for VPID.
2155 */
2156 if (pVM->hm.s.vmx.fVpid)
2157 {
2158 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2159 {
2160 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2161 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT;
2162 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2163 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS;
2164 else
2165 {
2166 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2167 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2168 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2169 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2170 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2171 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
2172 pVM->hm.s.vmx.fVpid = false;
2173 }
2174 }
2175 else
2176 {
2177 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2178 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2179 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
2180 pVM->hm.s.vmx.fVpid = false;
2181 }
2182 }
2183
2184 /*
2185 * Setup the handler for flushing tagged-TLBs.
2186 */
2187 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2188 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2189 else if (pVM->hm.s.fNestedPaging)
2190 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2191 else if (pVM->hm.s.vmx.fVpid)
2192 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2193 else
2194 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2195 return VINF_SUCCESS;
2196}
2197
2198
2199/**
2200 * Sets up pin-based VM-execution controls in the VMCS.
2201 *
2202 * @returns VBox status code.
2203 * @param pVM Pointer to the VM.
2204 * @param pVCpu Pointer to the VMCPU.
2205 */
2206static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2207{
2208 AssertPtr(pVM);
2209 AssertPtr(pVCpu);
2210
2211 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2212 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2213
2214 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts causes a VM-exits. */
2215 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts causes a VM-exit. */
2216 Assert(!(val & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI));
2217
2218 /* Enable the VMX preemption timer. */
2219 if (pVM->hm.s.vmx.fUsePreemptTimer)
2220 {
2221 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2222 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2223 }
2224
2225 if ((val & zap) != val)
2226 {
2227 LogRel(("hmR0VmxSetupPinCtls: invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2228 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2229 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2230 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2231 }
2232
2233 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2234 AssertRCReturn(rc, rc);
2235
2236 /* Update VCPU with the currently set pin-based VM-execution controls. */
2237 pVCpu->hm.s.vmx.u32PinCtls = val;
2238 return rc;
2239}
2240
2241
2242/**
2243 * Sets up processor-based VM-execution controls in the VMCS.
2244 *
2245 * @returns VBox status code.
2246 * @param pVM Pointer to the VM.
2247 * @param pVMCPU Pointer to the VMCPU.
2248 */
2249static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2250{
2251 AssertPtr(pVM);
2252 AssertPtr(pVCpu);
2253
2254 int rc = VERR_INTERNAL_ERROR_5;
2255 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2256 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2257
2258 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2259 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2260 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2261 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2262 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2263 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2264 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2265
2266 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2267 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2268 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2269 {
2270 LogRel(("hmR0VmxSetupProcCtls: unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2271 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2272 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2273 }
2274
2275 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2276 if (!pVM->hm.s.fNestedPaging)
2277 {
2278 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2279 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2280 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2281 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2282 }
2283
2284 /* Use TPR shadowing if supported by the CPU. */
2285 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2286 {
2287 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2288 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2289 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2290 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2291 AssertRCReturn(rc, rc);
2292
2293 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2294 /* CR8 writes causes a VM-exit based on TPR threshold. */
2295 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2296 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2297 }
2298 else
2299 {
2300 /*
2301 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2302 * Set this control only for 64-bit guests.
2303 */
2304 if (pVM->hm.s.fAllow64BitGuests)
2305 {
2306 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads causes a VM-exit. */
2307 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes causes a VM-exit. */
2308 }
2309 }
2310
2311 /* Use MSR-bitmaps if supported by the CPU. */
2312 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2313 {
2314 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2315
2316 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2317 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2318 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2319 AssertRCReturn(rc, rc);
2320
2321 /*
2322 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2323 * automatically as dedicated fields in the VMCS.
2324 */
2325 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2326 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2327 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2328 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2329 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2330
2331#if HC_ARCH_BITS == 64
2332 /*
2333 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2334 */
2335 if (pVM->hm.s.fAllow64BitGuests)
2336 {
2337 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2338 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2339 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2340 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2341 }
2342#endif
2343 }
2344
2345 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2346 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2347 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2348
2349 if ((val & zap) != val)
2350 {
2351 LogRel(("hmR0VmxSetupProcCtls: invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2352 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2353 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2354 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2355 }
2356
2357 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2358 AssertRCReturn(rc, rc);
2359
2360 /* Update VCPU with the currently set processor-based VM-execution controls. */
2361 pVCpu->hm.s.vmx.u32ProcCtls = val;
2362
2363 /*
2364 * Secondary processor-based VM-execution controls.
2365 */
2366 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2367 {
2368 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2369 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2370
2371 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2372 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2373
2374 if (pVM->hm.s.fNestedPaging)
2375 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2376 else
2377 {
2378 /*
2379 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2380 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2381 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2382 */
2383 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2384 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2385 }
2386
2387 if (pVM->hm.s.vmx.fVpid)
2388 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2389
2390 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2391 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2392
2393 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2394 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2395 * done dynamically. */
2396 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2397 {
2398 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2399 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2400 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2401 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2402 AssertRCReturn(rc, rc);
2403 }
2404
2405 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2406 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2407
2408 if ((val & zap) != val)
2409 {
2410 LogRel(("hmR0VmxSetupProcCtls: invalid secondary processor-based VM-execution controls combo! "
2411 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2412 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2413 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2414 }
2415
2416 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2417 AssertRCReturn(rc, rc);
2418
2419 /* Update VCPU with the currently set secondary processor-based VM-execution controls. */
2420 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2421 }
2422 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2423 {
2424 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2425 "available\n"));
2426 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2427 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2428 }
2429
2430 return VINF_SUCCESS;
2431}
2432
2433
2434/**
2435 * Sets up miscellaneous (everything other than Pin & Processor-based
2436 * VM-execution) control fields in the VMCS.
2437 *
2438 * @returns VBox status code.
2439 * @param pVM Pointer to the VM.
2440 * @param pVCpu Pointer to the VMCPU.
2441 */
2442static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2443{
2444 NOREF(pVM);
2445 AssertPtr(pVM);
2446 AssertPtr(pVCpu);
2447
2448 int rc = VERR_GENERAL_FAILURE;
2449
2450 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2451#if 0
2452 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2453 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0); AssertRCReturn(rc, rc);
2454 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0); AssertRCReturn(rc, rc);
2455
2456 /*
2457 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2458 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2459 * We thus use the exception bitmap to control it rather than use both.
2460 */
2461 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0); AssertRCReturn(rc, rc);
2462 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRCReturn(rc, rc);
2463
2464 /** @todo Explore possibility of using IO-bitmaps. */
2465 /* All IO & IOIO instructions cause VM-exits. */
2466 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0); AssertRCReturn(rc, rc);
2467 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0); AssertRCReturn(rc, rc);
2468
2469 /* Initialize the MSR-bitmap area. */
2470 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2471 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0); AssertRCReturn(rc, rc);
2472 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2473#endif
2474
2475 /* Setup MSR auto-load/store area. */
2476 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2477 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2478 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2479 AssertRCReturn(rc, rc);
2480 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2481 AssertRCReturn(rc, rc);
2482
2483 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2484 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2485 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2486 AssertRCReturn(rc, rc);
2487
2488 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2489 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2490 AssertRCReturn(rc, rc);
2491
2492 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2493#if 0
2494 /* Setup debug controls */
2495 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2496 AssertRCReturn(rc, rc);
2497 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2498 AssertRCReturn(rc, rc);
2499#endif
2500
2501 return rc;
2502}
2503
2504
2505/**
2506 * Sets up the initial exception bitmap in the VMCS based on static conditions
2507 * (i.e. conditions that cannot ever change after starting the VM).
2508 *
2509 * @returns VBox status code.
2510 * @param pVM Pointer to the VM.
2511 * @param pVCpu Pointer to the VMCPU.
2512 */
2513static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2514{
2515 AssertPtr(pVM);
2516 AssertPtr(pVCpu);
2517
2518 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2519
2520 uint32_t u32XcptBitmap = 0;
2521
2522 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2523 if (!pVM->hm.s.fNestedPaging)
2524 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2525
2526 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2527 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2528 AssertRCReturn(rc, rc);
2529 return rc;
2530}
2531
2532
2533/**
2534 * Sets up the initial guest-state mask. The guest-state mask is consulted
2535 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2536 * for the nested virtualization case (as it would cause a VM-exit).
2537 *
2538 * @param pVCpu Pointer to the VMCPU.
2539 */
2540static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2541{
2542 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2543 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2544 return VINF_SUCCESS;
2545}
2546
2547
2548/**
2549 * Does per-VM VT-x initialization.
2550 *
2551 * @returns VBox status code.
2552 * @param pVM Pointer to the VM.
2553 */
2554VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2555{
2556 LogFlowFunc(("pVM=%p\n", pVM));
2557
2558 int rc = hmR0VmxStructsAlloc(pVM);
2559 if (RT_FAILURE(rc))
2560 {
2561 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2562 return rc;
2563 }
2564
2565 return VINF_SUCCESS;
2566}
2567
2568
2569/**
2570 * Does per-VM VT-x termination.
2571 *
2572 * @returns VBox status code.
2573 * @param pVM Pointer to the VM.
2574 */
2575VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2576{
2577 LogFlowFunc(("pVM=%p\n", pVM));
2578
2579#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2580 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2581 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2582#endif
2583 hmR0VmxStructsFree(pVM);
2584 return VINF_SUCCESS;
2585}
2586
2587
2588/**
2589 * Sets up the VM for execution under VT-x.
2590 * This function is only called once per-VM during initialization.
2591 *
2592 * @returns VBox status code.
2593 * @param pVM Pointer to the VM.
2594 */
2595VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2596{
2597 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2598 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2599
2600 LogFlowFunc(("pVM=%p\n", pVM));
2601
2602 /*
2603 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2604 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0().
2605 */
2606 /* -XXX- change hmR3InitFinalizeR0Intel() to fail if pRealModeTSS alloc fails. */
2607 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2608 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2609 || !pVM->hm.s.vmx.pRealModeTSS))
2610 {
2611 LogRel(("VMXR0SetupVM: invalid real-on-v86 state.\n"));
2612 return VERR_INTERNAL_ERROR;
2613 }
2614
2615#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2616 /*
2617 * This is for the darwin 32-bit/PAE kernels trying to execute 64-bit guests. We don't bother with
2618 * the 32<->64 switcher in this case. This is a rare, legacy use-case with barely any test coverage.
2619 */
2620 if ( pVM->hm.s.fAllow64BitGuests
2621 && !HMVMX_IS_64BIT_HOST_MODE())
2622 {
2623 LogRel(("VMXR0SetupVM: Unsupported guest and host paging mode combination.\n"));
2624 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
2625 }
2626#endif
2627
2628 /* Initialize these always, see hmR3InitFinalizeR0().*/
2629 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE;
2630 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE;
2631
2632 /* Setup the tagged-TLB flush handlers. */
2633 int rc = hmR0VmxSetupTaggedTlb(pVM);
2634 if (RT_FAILURE(rc))
2635 {
2636 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2637 return rc;
2638 }
2639
2640 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2641 {
2642 PVMCPU pVCpu = &pVM->aCpus[i];
2643 AssertPtr(pVCpu);
2644 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2645
2646 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2647 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2648
2649 /* Set revision dword at the beginning of the VMCS structure. */
2650 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2651
2652 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2653 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2654 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2655 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2656
2657 /* Load this VMCS as the current VMCS. */
2658 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2659 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2660 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2661
2662 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2663 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2664 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2665
2666 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2667 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2668 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2669
2670 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2671 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2672 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2673
2674 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2675 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2676 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2677
2678 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2679 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2680 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2681
2682#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2683 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2684 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2685 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2686#endif
2687
2688 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2689 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2690 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2691 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2692
2693 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2694
2695 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2696 }
2697
2698 return VINF_SUCCESS;
2699}
2700
2701
2702/**
2703 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2704 * the VMCS.
2705 *
2706 * @returns VBox status code.
2707 * @param pVM Pointer to the VM.
2708 * @param pVCpu Pointer to the VMCPU.
2709 */
2710DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2711{
2712 NOREF(pVM); NOREF(pVCpu);
2713
2714 RTCCUINTREG uReg = ASMGetCR0();
2715 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2716 AssertRCReturn(rc, rc);
2717
2718#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2719 /* For the darwin 32-bit hybrid kernel, we need the 64-bit CR3 as it uses 64-bit paging. */
2720 if (HMVMX_IS_64BIT_HOST_MODE())
2721 {
2722 uint64_t uRegCR3 = HMR0Get64bitCR3();
2723 rc = VMXWriteVmcs64(VMX_VMCS_HOST_CR3, uRegCR3);
2724 }
2725 else
2726#endif
2727 {
2728 uReg = ASMGetCR3();
2729 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2730 }
2731 AssertRCReturn(rc, rc);
2732
2733 uReg = ASMGetCR4();
2734 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2735 AssertRCReturn(rc, rc);
2736 return rc;
2737}
2738
2739
2740#if HC_ARCH_BITS == 64
2741/**
2742 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2743 * requirements. See hmR0VmxSaveHostSegmentRegs().
2744 */
2745# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2746 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2747 { \
2748 bool fValidSelector = true; \
2749 if ((selValue) & X86_SEL_LDT) \
2750 { \
2751 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2752 fValidSelector = RT_BOOL(uAttr != ~0U && (uAttr & X86_DESC_P)); \
2753 } \
2754 if (fValidSelector) \
2755 { \
2756 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2757 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2758 } \
2759 (selValue) = 0; \
2760 }
2761#endif
2762
2763
2764/**
2765 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2766 * the host-state area in the VMCS.
2767 *
2768 * @returns VBox status code.
2769 * @param pVM Pointer to the VM.
2770 * @param pVCpu Pointer to the VMCPU.
2771 */
2772DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2773{
2774 NOREF(pVM);
2775 int rc = VERR_INTERNAL_ERROR_5;
2776
2777 /*
2778 * Host DS, ES, FS and GS segment registers.
2779 */
2780#if HC_ARCH_BITS == 64
2781 RTSEL uSelDS = ASMGetDS();
2782 RTSEL uSelES = ASMGetES();
2783 RTSEL uSelFS = ASMGetFS();
2784 RTSEL uSelGS = ASMGetGS();
2785#else
2786 RTSEL uSelDS = 0;
2787 RTSEL uSelES = 0;
2788 RTSEL uSelFS = 0;
2789 RTSEL uSelGS = 0;
2790#endif
2791
2792 /* Recalculate which host-state bits need to be manually restored. */
2793 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2794
2795 /*
2796 * Host CS and SS segment registers.
2797 */
2798#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2799 RTSEL uSelCS;
2800 RTSEL uSelSS;
2801 if (HMVMX_IS_64BIT_HOST_MODE())
2802 {
2803 uSelCS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
2804 uSelSS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
2805 }
2806 else
2807 {
2808 /* Seems darwin uses the LDT (TI flag is set) in the CS & SS selectors which VT-x doesn't like. */
2809 uSelCS = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
2810 uSelSS = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
2811 }
2812#else
2813 RTSEL uSelCS = ASMGetCS();
2814 RTSEL uSelSS = ASMGetSS();
2815#endif
2816
2817 /*
2818 * Host TR segment register.
2819 */
2820 RTSEL uSelTR = ASMGetTR();
2821
2822#if HC_ARCH_BITS == 64
2823 /*
2824 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2825 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2826 */
2827 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2828 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2829 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2830 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2831# undef VMXLOCAL_ADJUST_HOST_SEG
2832#endif
2833
2834 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2835 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2836 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2837 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2838 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2839 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2840 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2841 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2842 Assert(uSelCS);
2843 Assert(uSelTR);
2844
2845 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2846#if 0
2847 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2848 Assert(uSelSS != 0);
2849#endif
2850
2851 /* Write these host selector fields into the host-state area in the VMCS. */
2852 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_CS, uSelCS); AssertRCReturn(rc, rc);
2853 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_SS, uSelSS); AssertRCReturn(rc, rc);
2854#if HC_ARCH_BITS == 64
2855 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_DS, uSelDS); AssertRCReturn(rc, rc);
2856 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_ES, uSelES); AssertRCReturn(rc, rc);
2857 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_FS, uSelFS); AssertRCReturn(rc, rc);
2858 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_GS, uSelGS); AssertRCReturn(rc, rc);
2859#endif
2860 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_TR, uSelTR); AssertRCReturn(rc, rc);
2861
2862 /*
2863 * Host GDTR and IDTR.
2864 */
2865 RTGDTR Gdtr;
2866 RT_ZERO(Gdtr);
2867#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2868 if (HMVMX_IS_64BIT_HOST_MODE())
2869 {
2870 X86XDTR64 Gdtr64;
2871 X86XDTR64 Idtr64;
2872 HMR0Get64bitGdtrAndIdtr(&Gdtr64, &Idtr64);
2873 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, Gdtr64.uAddr); AssertRCReturn(rc, rc);
2874 rc = VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, Idtr64.uAddr); AssertRCReturn(rc, rc);
2875
2876 Gdtr.cbGdt = Gdtr64.cb;
2877 Gdtr.pGdt = (uintptr_t)Gdtr64.uAddr;
2878 }
2879 else
2880#endif
2881 {
2882 RTIDTR Idtr;
2883 ASMGetGDTR(&Gdtr);
2884 ASMGetIDTR(&Idtr);
2885 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRCReturn(rc, rc);
2886 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRCReturn(rc, rc);
2887
2888#if HC_ARCH_BITS == 64
2889 /*
2890 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
2891 * maximum limit (0xffff) on every VM-exit.
2892 */
2893 if (Gdtr.cbGdt != 0xffff)
2894 {
2895 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2896 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
2897 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
2898 }
2899
2900 /*
2901 * IDT limit is practically 0xfff. Therefore if the host has the limit as 0xfff, VT-x bloating the limit to 0xffff
2902 * is not a problem as it's not possible to get at them anyway. See Intel spec. 6.14.1 "64-Bit Mode IDT" and
2903 * Intel spec. 6.2 "Exception and Interrupt Vectors".
2904 */
2905 if (Idtr.cbIdt < 0x0fff)
2906 {
2907 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
2908 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
2909 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
2910 }
2911#endif
2912 }
2913
2914 /*
2915 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
2916 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
2917 */
2918 if ((uSelTR & X86_SEL_MASK) > Gdtr.cbGdt)
2919 {
2920 AssertMsgFailed(("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt));
2921 return VERR_VMX_INVALID_HOST_STATE;
2922 }
2923
2924 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
2925#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2926 if (HMVMX_IS_64BIT_HOST_MODE())
2927 {
2928 /* We need the 64-bit TR base for hybrid darwin. */
2929 uint64_t u64TRBase = X86DESC64_BASE((PX86DESC64)pDesc);
2930 rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, u64TRBase);
2931 }
2932 else
2933#endif
2934 {
2935 uintptr_t uTRBase;
2936#if HC_ARCH_BITS == 64
2937 uTRBase = X86DESC64_BASE(pDesc);
2938
2939 /*
2940 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
2941 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
2942 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
2943 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
2944 *
2945 * [1] See Intel spec. 3.5 "System Descriptor Types".
2946 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
2947 */
2948 Assert(pDesc->System.u4Type == 11);
2949 if ( pDesc->System.u16LimitLow != 0x67
2950 || pDesc->System.u4LimitHigh)
2951 {
2952 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
2953 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
2954
2955 /* Store the GDTR here as we need it while restoring TR. */
2956 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
2957 }
2958#else
2959 uTRBase = X86DESC_BASE(pDesc);
2960#endif
2961 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
2962 }
2963 AssertRCReturn(rc, rc);
2964
2965 /*
2966 * Host FS base and GS base.
2967 */
2968#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2969 if (HMVMX_IS_64BIT_HOST_MODE())
2970 {
2971 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
2972 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
2973 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRCReturn(rc, rc);
2974 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRCReturn(rc, rc);
2975
2976# if HC_ARCH_BITS == 64
2977 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
2978 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
2979 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
2980 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
2981 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
2982# endif
2983 }
2984#endif
2985 return rc;
2986}
2987
2988
2989/**
2990 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
2991 * host-state area of the VMCS. Theses MSRs will be automatically restored on
2992 * the host after every successful VM-exit.
2993 *
2994 * @returns VBox status code.
2995 * @param pVM Pointer to the VM.
2996 * @param pVCpu Pointer to the VMCPU.
2997 *
2998 * @remarks No-long-jump zone!!!
2999 */
3000DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3001{
3002 NOREF(pVM);
3003
3004 AssertPtr(pVCpu);
3005 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3006
3007 int rc = VINF_SUCCESS;
3008#if HC_ARCH_BITS == 64
3009 if (pVM->hm.s.fAllow64BitGuests)
3010 hmR0VmxLazySaveHostMsrs(pVCpu);
3011#endif
3012
3013 if (pVCpu->hm.s.vmx.cMsrs > 0)
3014 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
3015
3016 /*
3017 * Host Sysenter MSRs.
3018 */
3019 rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3020 AssertRCReturn(rc, rc);
3021#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3022 if (HMVMX_IS_64BIT_HOST_MODE())
3023 {
3024 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3025 AssertRCReturn(rc, rc);
3026 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3027 }
3028 else
3029 {
3030 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3031 AssertRCReturn(rc, rc);
3032 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3033 }
3034#elif HC_ARCH_BITS == 32
3035 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3036 AssertRCReturn(rc, rc);
3037 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3038#else
3039 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3040 AssertRCReturn(rc, rc);
3041 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3042#endif
3043 AssertRCReturn(rc, rc);
3044
3045 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT, IA32_EFER, also see
3046 * hmR0VmxSetupExitCtls() !! */
3047 return rc;
3048}
3049
3050
3051/**
3052 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3053 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3054 * controls".
3055 *
3056 * @returns VBox status code.
3057 * @param pVCpu Pointer to the VMCPU.
3058 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3059 * out-of-sync. Make sure to update the required fields
3060 * before using them.
3061 *
3062 * @remarks No-long-jump zone!!!
3063 */
3064DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3065{
3066 int rc = VINF_SUCCESS;
3067 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3068 {
3069 PVM pVM = pVCpu->CTX_SUFF(pVM);
3070 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3071 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3072
3073 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3074 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3075
3076 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3077 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3078 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3079 else
3080 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3081
3082 /*
3083 * The following should -not- be set (since we're not in SMM mode):
3084 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3085 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3086 */
3087
3088 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3089 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR,
3090 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR */
3091
3092 if ((val & zap) != val)
3093 {
3094 LogRel(("hmR0VmxLoadGuestEntryCtls: invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3095 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3096 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3097 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3098 }
3099
3100 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3101 AssertRCReturn(rc, rc);
3102
3103 /* Update VCPU with the currently set VM-exit controls. */
3104 pVCpu->hm.s.vmx.u32EntryCtls = val;
3105 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3106 }
3107 return rc;
3108}
3109
3110
3111/**
3112 * Sets up the VM-exit controls in the VMCS.
3113 *
3114 * @returns VBox status code.
3115 * @param pVM Pointer to the VM.
3116 * @param pVCpu Pointer to the VMCPU.
3117 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3118 * out-of-sync. Make sure to update the required fields
3119 * before using them.
3120 *
3121 * @remarks requires EFER.
3122 */
3123DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3124{
3125 NOREF(pMixedCtx);
3126
3127 int rc = VINF_SUCCESS;
3128 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3129 {
3130 PVM pVM = pVCpu->CTX_SUFF(pVM);
3131 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3132 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3133
3134 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3135 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3136
3137 /*
3138 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3139 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3140 */
3141#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3142 if (HMVMX_IS_64BIT_HOST_MODE())
3143 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3144 else
3145 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3146#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3147 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3148 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE; /* The switcher goes to long mode. */
3149 else
3150 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3151#endif
3152
3153 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3154 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3155
3156 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3157 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3158 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR,
3159 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR,
3160 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR. */
3161
3162 if (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER)
3163 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3164
3165 if ((val & zap) != val)
3166 {
3167 LogRel(("hmR0VmxSetupProcCtls: invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3168 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3169 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3170 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3171 }
3172
3173 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3174 AssertRCReturn(rc, rc);
3175
3176 /* Update VCPU with the currently set VM-exit controls. */
3177 pVCpu->hm.s.vmx.u32ExitCtls = val;
3178 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3179 }
3180 return rc;
3181}
3182
3183
3184/**
3185 * Loads the guest APIC and related state.
3186 *
3187 * @returns VBox status code.
3188 * @param pVM Pointer to the VM.
3189 * @param pVCpu Pointer to the VMCPU.
3190 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3191 * out-of-sync. Make sure to update the required fields
3192 * before using them.
3193 */
3194DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3195{
3196 NOREF(pMixedCtx);
3197
3198 int rc = VINF_SUCCESS;
3199 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3200 {
3201 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
3202 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3203 {
3204 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3205
3206 bool fPendingIntr = false;
3207 uint8_t u8Tpr = 0;
3208 uint8_t u8PendingIntr = 0;
3209 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3210 AssertRCReturn(rc, rc);
3211
3212 /*
3213 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
3214 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
3215 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
3216 * the interrupt when we VM-exit for other reasons.
3217 */
3218 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
3219 uint32_t u32TprThreshold = 0;
3220 if (fPendingIntr)
3221 {
3222 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3223 const uint8_t u8PendingPriority = (u8PendingIntr >> 4) & 0xf;
3224 const uint8_t u8TprPriority = (u8Tpr >> 4) & 0xf;
3225 if (u8PendingPriority <= u8TprPriority)
3226 u32TprThreshold = u8PendingPriority;
3227 else
3228 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
3229 }
3230 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3231
3232 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3233 AssertRCReturn(rc, rc);
3234 }
3235
3236 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3237 }
3238 return rc;
3239}
3240
3241
3242/**
3243 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3244 *
3245 * @returns Guest's interruptibility-state.
3246 * @param pVCpu Pointer to the VMCPU.
3247 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3248 * out-of-sync. Make sure to update the required fields
3249 * before using them.
3250 *
3251 * @remarks No-long-jump zone!!!
3252 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3253 */
3254DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3255{
3256 /*
3257 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
3258 * inhibit interrupts or clear any existing interrupt-inhibition.
3259 */
3260 uint32_t uIntrState = 0;
3261 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3262 {
3263 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3264 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3265 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3266 if (pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
3267 {
3268 /*
3269 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3270 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3271 */
3272 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3273 }
3274 else if (pMixedCtx->eflags.Bits.u1IF)
3275 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3276 else
3277 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3278 }
3279 return uIntrState;
3280}
3281
3282
3283/**
3284 * Loads the guest's interruptibility-state into the guest-state area in the
3285 * VMCS.
3286 *
3287 * @returns VBox status code.
3288 * @param pVCpu Pointer to the VMCPU.
3289 * @param uIntrState The interruptibility-state to set.
3290 */
3291static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3292{
3293 NOREF(pVCpu);
3294 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3295 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3296 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3297 AssertRCReturn(rc, rc);
3298 return rc;
3299}
3300
3301
3302/**
3303 * Loads the guest's RIP into the guest-state area in the VMCS.
3304 *
3305 * @returns VBox status code.
3306 * @param pVCpu Pointer to the VMCPU.
3307 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3308 * out-of-sync. Make sure to update the required fields
3309 * before using them.
3310 *
3311 * @remarks No-long-jump zone!!!
3312 */
3313static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3314{
3315 int rc = VINF_SUCCESS;
3316 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3317 {
3318 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3319 AssertRCReturn(rc, rc);
3320
3321 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3322 Log4(("Load: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pMixedCtx->rip, HMCPU_CF_VALUE(pVCpu)));
3323 }
3324 return rc;
3325}
3326
3327
3328/**
3329 * Loads the guest's RSP into the guest-state area in the VMCS.
3330 *
3331 * @returns VBox status code.
3332 * @param pVCpu Pointer to the VMCPU.
3333 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3334 * out-of-sync. Make sure to update the required fields
3335 * before using them.
3336 *
3337 * @remarks No-long-jump zone!!!
3338 */
3339static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3340{
3341 int rc = VINF_SUCCESS;
3342 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3343 {
3344 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3345 AssertRCReturn(rc, rc);
3346
3347 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3348 Log4(("Load: VMX_VMCS_GUEST_RSP=%#RX64\n", pMixedCtx->rsp));
3349 }
3350 return rc;
3351}
3352
3353
3354/**
3355 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3356 *
3357 * @returns VBox status code.
3358 * @param pVCpu Pointer to the VMCPU.
3359 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3360 * out-of-sync. Make sure to update the required fields
3361 * before using them.
3362 *
3363 * @remarks No-long-jump zone!!!
3364 */
3365static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3366{
3367 int rc = VINF_SUCCESS;
3368 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3369 {
3370 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3371 Let us assert it as such and use 32-bit VMWRITE. */
3372 Assert(!(pMixedCtx->rflags.u64 >> 32));
3373 X86EFLAGS Eflags = pMixedCtx->eflags;
3374 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3375 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3376
3377 /*
3378 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3379 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3380 */
3381 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3382 {
3383 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3384 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3385 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3386 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3387 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3388 }
3389
3390 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3391 AssertRCReturn(rc, rc);
3392
3393 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3394 Log4(("Load: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", Eflags.u32));
3395 }
3396 return rc;
3397}
3398
3399
3400/**
3401 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3402 *
3403 * @returns VBox status code.
3404 * @param pVCpu Pointer to the VMCPU.
3405 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3406 * out-of-sync. Make sure to update the required fields
3407 * before using them.
3408 *
3409 * @remarks No-long-jump zone!!!
3410 */
3411DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3412{
3413 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3414 AssertRCReturn(rc, rc);
3415 rc = hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3416 AssertRCReturn(rc, rc);
3417 rc = hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3418 AssertRCReturn(rc, rc);
3419 return rc;
3420}
3421
3422
3423/**
3424 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3425 * CR0 is partially shared with the host and we have to consider the FPU bits.
3426 *
3427 * @returns VBox status code.
3428 * @param pVM Pointer to the VM.
3429 * @param pVCpu Pointer to the VMCPU.
3430 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3431 * out-of-sync. Make sure to update the required fields
3432 * before using them.
3433 *
3434 * @remarks No-long-jump zone!!!
3435 */
3436static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3437{
3438 /*
3439 * Guest CR0.
3440 * Guest FPU.
3441 */
3442 int rc = VINF_SUCCESS;
3443 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3444 {
3445 Assert(!(pMixedCtx->cr0 >> 32));
3446 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3447 PVM pVM = pVCpu->CTX_SUFF(pVM);
3448
3449 /* The guest's view (read access) of its CR0 is unblemished. */
3450 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3451 AssertRCReturn(rc, rc);
3452 Log4(("Load: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", u32GuestCR0));
3453
3454 /* Setup VT-x's view of the guest CR0. */
3455 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3456 if (pVM->hm.s.fNestedPaging)
3457 {
3458 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3459 {
3460 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3461 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3462 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3463 }
3464 else
3465 {
3466 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3467 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3468 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3469 }
3470
3471 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3472 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3473 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3474
3475 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3476 AssertRCReturn(rc, rc);
3477 }
3478 else
3479 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3480
3481 /*
3482 * Guest FPU bits.
3483 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3484 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3485 */
3486 u32GuestCR0 |= X86_CR0_NE;
3487 bool fInterceptNM = false;
3488 if (CPUMIsGuestFPUStateActive(pVCpu))
3489 {
3490 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3491 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3492 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3493 }
3494 else
3495 {
3496 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3497 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3498 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3499 }
3500
3501 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3502 bool fInterceptMF = false;
3503 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3504 fInterceptMF = true;
3505
3506 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3507 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3508 {
3509 Assert(PDMVmmDevHeapIsEnabled(pVM));
3510 Assert(pVM->hm.s.vmx.pRealModeTSS);
3511 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3512 fInterceptNM = true;
3513 fInterceptMF = true;
3514 }
3515 else
3516 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3517
3518 if (fInterceptNM)
3519 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3520 else
3521 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3522
3523 if (fInterceptMF)
3524 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3525 else
3526 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3527
3528 /* Additional intercepts for debugging, define these yourself explicitly. */
3529#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3530 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3531 | RT_BIT(X86_XCPT_BP)
3532 | RT_BIT(X86_XCPT_DB)
3533 | RT_BIT(X86_XCPT_DE)
3534 | RT_BIT(X86_XCPT_NM)
3535 | RT_BIT(X86_XCPT_UD)
3536 | RT_BIT(X86_XCPT_NP)
3537 | RT_BIT(X86_XCPT_SS)
3538 | RT_BIT(X86_XCPT_GP)
3539 | RT_BIT(X86_XCPT_PF)
3540 | RT_BIT(X86_XCPT_MF)
3541 ;
3542#elif defined(HMVMX_ALWAYS_TRAP_PF)
3543 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3544#endif
3545
3546 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3547
3548 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3549 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3550 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3551 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3552 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3553 else
3554 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3555
3556 u32GuestCR0 |= uSetCR0;
3557 u32GuestCR0 &= uZapCR0;
3558 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3559
3560 /* Write VT-x's view of the guest CR0 into the VMCS and update the exception bitmap. */
3561 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3562 AssertRCReturn(rc, rc);
3563 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3564 AssertRCReturn(rc, rc);
3565 Log4(("Load: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", u32GuestCR0, uSetCR0, uZapCR0));
3566
3567 /*
3568 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3569 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3570 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3571 */
3572 uint32_t u32CR0Mask = 0;
3573 u32CR0Mask = X86_CR0_PE
3574 | X86_CR0_NE
3575 | X86_CR0_WP
3576 | X86_CR0_PG
3577 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3578 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3579 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3580
3581 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3582 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3583 * and @bugref{6944}. */
3584#if 0
3585 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3586 u32CR0Mask &= ~X86_CR0_PE;
3587#endif
3588 if (pVM->hm.s.fNestedPaging)
3589 u32CR0Mask &= ~X86_CR0_WP;
3590
3591 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3592 if (fInterceptNM)
3593 {
3594 u32CR0Mask |= X86_CR0_TS
3595 | X86_CR0_MP;
3596 }
3597
3598 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3599 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3600 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3601 AssertRCReturn(rc, rc);
3602 Log4(("Load: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", u32CR0Mask));
3603
3604 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3605 }
3606 return rc;
3607}
3608
3609
3610/**
3611 * Loads the guest control registers (CR3, CR4) into the guest-state area
3612 * in the VMCS.
3613 *
3614 * @returns VBox status code.
3615 * @param pVM Pointer to the VM.
3616 * @param pVCpu Pointer to the VMCPU.
3617 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3618 * out-of-sync. Make sure to update the required fields
3619 * before using them.
3620 *
3621 * @remarks No-long-jump zone!!!
3622 */
3623static int hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3624{
3625 int rc = VINF_SUCCESS;
3626 PVM pVM = pVCpu->CTX_SUFF(pVM);
3627
3628 /*
3629 * Guest CR2.
3630 * It's always loaded in the assembler code. Nothing to do here.
3631 */
3632
3633 /*
3634 * Guest CR3.
3635 */
3636 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3637 {
3638 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3639 if (pVM->hm.s.fNestedPaging)
3640 {
3641 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3642
3643 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3644 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3645 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3646 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3647
3648 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3649 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3650 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3651
3652 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3653 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3654 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x3f) == 0, /* Bits 6:11 MBZ. */
3655 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3656
3657 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3658 AssertRCReturn(rc, rc);
3659 Log4(("Load: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3660
3661 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3662 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3663 {
3664 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3665 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3666 {
3667 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]); AssertRCReturn(rc, rc);
3668 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
3669 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
3670 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
3671 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
3672 }
3673
3674 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3675 have Unrestricted Execution to handle the guest when it's not using paging. */
3676 GCPhysGuestCR3 = pMixedCtx->cr3;
3677 }
3678 else
3679 {
3680 /*
3681 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3682 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3683 * EPT takes care of translating it to host-physical addresses.
3684 */
3685 RTGCPHYS GCPhys;
3686 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3687 Assert(PDMVmmDevHeapIsEnabled(pVM));
3688
3689 /* We obtain it here every time as the guest could have relocated this PCI region. */
3690 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3691 AssertRCReturn(rc, rc);
3692
3693 GCPhysGuestCR3 = GCPhys;
3694 }
3695
3696 Log4(("Load: VMX_VMCS_GUEST_CR3=%#RGv (GstN)\n", GCPhysGuestCR3));
3697 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3698 }
3699 else
3700 {
3701 /* Non-nested paging case, just use the hypervisor's CR3. */
3702 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3703
3704 Log4(("Load: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", HCPhysGuestCR3));
3705 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3706 }
3707 AssertRCReturn(rc, rc);
3708
3709 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
3710 }
3711
3712 /*
3713 * Guest CR4.
3714 */
3715 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
3716 {
3717 Assert(!(pMixedCtx->cr4 >> 32));
3718 uint32_t u32GuestCR4 = pMixedCtx->cr4;
3719
3720 /* The guest's view of its CR4 is unblemished. */
3721 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
3722 AssertRCReturn(rc, rc);
3723 Log4(("Load: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", u32GuestCR4));
3724
3725 /* Setup VT-x's view of the guest CR4. */
3726 /*
3727 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
3728 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3729 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3730 */
3731 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3732 {
3733 Assert(pVM->hm.s.vmx.pRealModeTSS);
3734 Assert(PDMVmmDevHeapIsEnabled(pVM));
3735 u32GuestCR4 &= ~X86_CR4_VME;
3736 }
3737
3738 if (pVM->hm.s.fNestedPaging)
3739 {
3740 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
3741 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3742 {
3743 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3744 u32GuestCR4 |= X86_CR4_PSE;
3745 /* Our identity mapping is a 32-bit page directory. */
3746 u32GuestCR4 &= ~X86_CR4_PAE;
3747 }
3748 /* else use guest CR4.*/
3749 }
3750 else
3751 {
3752 /*
3753 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3754 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3755 */
3756 switch (pVCpu->hm.s.enmShadowMode)
3757 {
3758 case PGMMODE_REAL: /* Real-mode. */
3759 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3760 case PGMMODE_32_BIT: /* 32-bit paging. */
3761 {
3762 u32GuestCR4 &= ~X86_CR4_PAE;
3763 break;
3764 }
3765
3766 case PGMMODE_PAE: /* PAE paging. */
3767 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3768 {
3769 u32GuestCR4 |= X86_CR4_PAE;
3770 break;
3771 }
3772
3773 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3774 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3775#ifdef VBOX_ENABLE_64_BITS_GUESTS
3776 break;
3777#endif
3778 default:
3779 AssertFailed();
3780 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3781 }
3782 }
3783
3784 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3785 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3786 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3787 u32GuestCR4 |= uSetCR4;
3788 u32GuestCR4 &= uZapCR4;
3789
3790 /* Write VT-x's view of the guest CR4 into the VMCS. */
3791 Log4(("Load: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", u32GuestCR4, uSetCR4, uZapCR4));
3792 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
3793 AssertRCReturn(rc, rc);
3794
3795 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
3796 uint32_t u32CR4Mask = 0;
3797 u32CR4Mask = X86_CR4_VME
3798 | X86_CR4_PAE
3799 | X86_CR4_PGE
3800 | X86_CR4_PSE
3801 | X86_CR4_VMXE;
3802 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
3803 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
3804 AssertRCReturn(rc, rc);
3805
3806 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
3807 }
3808 return rc;
3809}
3810
3811
3812/**
3813 * Loads the guest debug registers into the guest-state area in the VMCS.
3814 * This also sets up whether #DB and MOV DRx accesses cause VM-exits.
3815 *
3816 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
3817 *
3818 * @returns VBox status code.
3819 * @param pVCpu Pointer to the VMCPU.
3820 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3821 * out-of-sync. Make sure to update the required fields
3822 * before using them.
3823 *
3824 * @remarks No-long-jump zone!!!
3825 */
3826static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3827{
3828 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
3829 return VINF_SUCCESS;
3830
3831#ifdef VBOX_STRICT
3832 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
3833 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
3834 {
3835 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
3836 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
3837 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
3838 }
3839#endif
3840
3841 int rc;
3842 PVM pVM = pVCpu->CTX_SUFF(pVM);
3843 bool fInterceptDB = false;
3844 bool fInterceptMovDRx = false;
3845 if ( pVCpu->hm.s.fSingleInstruction
3846 || DBGFIsStepping(pVCpu))
3847 {
3848 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
3849 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
3850 {
3851 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
3852 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3853 AssertRCReturn(rc, rc);
3854 Assert(fInterceptDB == false);
3855 }
3856 else
3857 {
3858 pMixedCtx->eflags.u32 |= X86_EFL_TF;
3859 pVCpu->hm.s.fClearTrapFlag = true;
3860 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3861 fInterceptDB = true;
3862 }
3863 }
3864
3865 if ( fInterceptDB
3866 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
3867 {
3868 /*
3869 * Use the combined guest and host DRx values found in the hypervisor
3870 * register set because the debugger has breakpoints active or someone
3871 * is single stepping on the host side without a monitor trap flag.
3872 *
3873 * Note! DBGF expects a clean DR6 state before executing guest code.
3874 */
3875#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3876 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
3877 && !CPUMIsHyperDebugStateActivePending(pVCpu))
3878 {
3879 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
3880 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
3881 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
3882 }
3883 else
3884#endif
3885 if (!CPUMIsHyperDebugStateActive(pVCpu))
3886 {
3887 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
3888 Assert(CPUMIsHyperDebugStateActive(pVCpu));
3889 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
3890 }
3891
3892 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
3893 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
3894 AssertRCReturn(rc, rc);
3895
3896 pVCpu->hm.s.fUsingHyperDR7 = true;
3897 fInterceptDB = true;
3898 fInterceptMovDRx = true;
3899 }
3900 else
3901 {
3902 /*
3903 * If the guest has enabled debug registers, we need to load them prior to
3904 * executing guest code so they'll trigger at the right time.
3905 */
3906 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
3907 {
3908#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3909 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
3910 && !CPUMIsGuestDebugStateActivePending(pVCpu))
3911 {
3912 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
3913 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
3914 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
3915 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
3916 }
3917 else
3918#endif
3919 if (!CPUMIsGuestDebugStateActive(pVCpu))
3920 {
3921 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
3922 Assert(CPUMIsGuestDebugStateActive(pVCpu));
3923 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
3924 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
3925 }
3926 Assert(!fInterceptDB);
3927 Assert(!fInterceptMovDRx);
3928 }
3929 /*
3930 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
3931 * must intercept #DB in order to maintain a correct DR6 guest value.
3932 */
3933#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3934 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
3935 && !CPUMIsGuestDebugStateActive(pVCpu))
3936#else
3937 else if (!CPUMIsGuestDebugStateActive(pVCpu))
3938#endif
3939 {
3940 fInterceptMovDRx = true;
3941 fInterceptDB = true;
3942 }
3943
3944 /* Update guest DR7. */
3945 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
3946 AssertRCReturn(rc, rc);
3947
3948 pVCpu->hm.s.fUsingHyperDR7 = false;
3949 }
3950
3951 /*
3952 * Update the exception bitmap regarding intercepting #DB generated by the guest.
3953 */
3954 if (fInterceptDB)
3955 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_DB);
3956 else if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3957 {
3958#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3959 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
3960#endif
3961 }
3962 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3963 AssertRCReturn(rc, rc);
3964
3965 /*
3966 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
3967 */
3968 if (fInterceptMovDRx)
3969 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
3970 else
3971 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
3972 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3973 AssertRCReturn(rc, rc);
3974
3975 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
3976 return VINF_SUCCESS;
3977}
3978
3979
3980#ifdef VBOX_STRICT
3981/**
3982 * Strict function to validate segment registers.
3983 *
3984 * @remarks ASSUMES CR0 is up to date.
3985 */
3986static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3987{
3988 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
3989 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
3990 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
3991 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3992 && ( !CPUMIsGuestInRealModeEx(pCtx)
3993 && !CPUMIsGuestInV86ModeEx(pCtx)))
3994 {
3995 /* Protected mode checks */
3996 /* CS */
3997 Assert(pCtx->cs.Attr.n.u1Present);
3998 Assert(!(pCtx->cs.Attr.u & 0xf00));
3999 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4000 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4001 || !(pCtx->cs.Attr.n.u1Granularity));
4002 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4003 || (pCtx->cs.Attr.n.u1Granularity));
4004 /* CS cannot be loaded with NULL in protected mode. */
4005 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS?!? */
4006 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4007 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4008 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4009 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4010 else
4011 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4012 /* SS */
4013 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4014 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4015 if ( !(pCtx->cr0 & X86_CR0_PE)
4016 || pCtx->cs.Attr.n.u4Type == 3)
4017 {
4018 Assert(!pCtx->ss.Attr.n.u2Dpl);
4019 }
4020 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4021 {
4022 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4023 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4024 Assert(pCtx->ss.Attr.n.u1Present);
4025 Assert(!(pCtx->ss.Attr.u & 0xf00));
4026 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4027 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4028 || !(pCtx->ss.Attr.n.u1Granularity));
4029 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4030 || (pCtx->ss.Attr.n.u1Granularity));
4031 }
4032 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4033 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4034 {
4035 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4036 Assert(pCtx->ds.Attr.n.u1Present);
4037 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4038 Assert(!(pCtx->ds.Attr.u & 0xf00));
4039 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4040 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4041 || !(pCtx->ds.Attr.n.u1Granularity));
4042 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4043 || (pCtx->ds.Attr.n.u1Granularity));
4044 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4045 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4046 }
4047 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4048 {
4049 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4050 Assert(pCtx->es.Attr.n.u1Present);
4051 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4052 Assert(!(pCtx->es.Attr.u & 0xf00));
4053 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4054 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4055 || !(pCtx->es.Attr.n.u1Granularity));
4056 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4057 || (pCtx->es.Attr.n.u1Granularity));
4058 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4059 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4060 }
4061 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4062 {
4063 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4064 Assert(pCtx->fs.Attr.n.u1Present);
4065 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4066 Assert(!(pCtx->fs.Attr.u & 0xf00));
4067 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4068 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4069 || !(pCtx->fs.Attr.n.u1Granularity));
4070 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4071 || (pCtx->fs.Attr.n.u1Granularity));
4072 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4073 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4074 }
4075 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4076 {
4077 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4078 Assert(pCtx->gs.Attr.n.u1Present);
4079 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4080 Assert(!(pCtx->gs.Attr.u & 0xf00));
4081 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4082 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4083 || !(pCtx->gs.Attr.n.u1Granularity));
4084 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4085 || (pCtx->gs.Attr.n.u1Granularity));
4086 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4087 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4088 }
4089 /* 64-bit capable CPUs. */
4090# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4091 if (HMVMX_IS_64BIT_HOST_MODE())
4092 {
4093 Assert(!(pCtx->cs.u64Base >> 32));
4094 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4095 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4096 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4097 }
4098# endif
4099 }
4100 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4101 || ( CPUMIsGuestInRealModeEx(pCtx)
4102 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4103 {
4104 /* Real and v86 mode checks. */
4105 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4106 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4107 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4108 {
4109 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4110 }
4111 else
4112 {
4113 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4114 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4115 }
4116
4117 /* CS */
4118 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4119 Assert(pCtx->cs.u32Limit == 0xffff);
4120 Assert(u32CSAttr == 0xf3);
4121 /* SS */
4122 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4123 Assert(pCtx->ss.u32Limit == 0xffff);
4124 Assert(u32SSAttr == 0xf3);
4125 /* DS */
4126 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4127 Assert(pCtx->ds.u32Limit == 0xffff);
4128 Assert(u32DSAttr == 0xf3);
4129 /* ES */
4130 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4131 Assert(pCtx->es.u32Limit == 0xffff);
4132 Assert(u32ESAttr == 0xf3);
4133 /* FS */
4134 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4135 Assert(pCtx->fs.u32Limit == 0xffff);
4136 Assert(u32FSAttr == 0xf3);
4137 /* GS */
4138 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4139 Assert(pCtx->gs.u32Limit == 0xffff);
4140 Assert(u32GSAttr == 0xf3);
4141 /* 64-bit capable CPUs. */
4142# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4143 if (HMVMX_IS_64BIT_HOST_MODE())
4144 {
4145 Assert(!(pCtx->cs.u64Base >> 32));
4146 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4147 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4148 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4149 }
4150# endif
4151 }
4152}
4153#endif /* VBOX_STRICT */
4154
4155
4156/**
4157 * Writes a guest segment register into the guest-state area in the VMCS.
4158 *
4159 * @returns VBox status code.
4160 * @param pVCpu Pointer to the VMCPU.
4161 * @param idxSel Index of the selector in the VMCS.
4162 * @param idxLimit Index of the segment limit in the VMCS.
4163 * @param idxBase Index of the segment base in the VMCS.
4164 * @param idxAccess Index of the access rights of the segment in the VMCS.
4165 * @param pSelReg Pointer to the segment selector.
4166 *
4167 * @remarks No-long-jump zone!!!
4168 */
4169static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4170 uint32_t idxAccess, PCPUMSELREG pSelReg)
4171{
4172 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4173 AssertRCReturn(rc, rc);
4174 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4175 AssertRCReturn(rc, rc);
4176 rc = VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4177 AssertRCReturn(rc, rc);
4178
4179 uint32_t u32Access = pSelReg->Attr.u;
4180 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4181 {
4182 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4183 u32Access = 0xf3;
4184 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4185 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4186 }
4187 else
4188 {
4189 /*
4190 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4191 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4192 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4193 * loaded in protected-mode have their attribute as 0.
4194 */
4195 if (!u32Access)
4196 u32Access = X86DESCATTR_UNUSABLE;
4197 }
4198
4199 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4200 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4201 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4202
4203 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4204 AssertRCReturn(rc, rc);
4205 return rc;
4206}
4207
4208
4209/**
4210 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4211 * into the guest-state area in the VMCS.
4212 *
4213 * @returns VBox status code.
4214 * @param pVM Pointer to the VM.
4215 * @param pVCPU Pointer to the VMCPU.
4216 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4217 * out-of-sync. Make sure to update the required fields
4218 * before using them.
4219 *
4220 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4221 * @remarks No-long-jump zone!!!
4222 */
4223static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4224{
4225 int rc = VERR_INTERNAL_ERROR_5;
4226 PVM pVM = pVCpu->CTX_SUFF(pVM);
4227
4228 /*
4229 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4230 */
4231 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4232 {
4233 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4234 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4235 {
4236 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4237 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4238 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4239 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4240 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4241 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4242 }
4243
4244#ifdef VBOX_WITH_REM
4245 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4246 {
4247 Assert(pVM->hm.s.vmx.pRealModeTSS);
4248 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4249 if ( pVCpu->hm.s.vmx.fWasInRealMode
4250 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4251 {
4252 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4253 in real-mode (e.g. OpenBSD 4.0) */
4254 REMFlushTBs(pVM);
4255 Log4(("Load: Switch to protected mode detected!\n"));
4256 pVCpu->hm.s.vmx.fWasInRealMode = false;
4257 }
4258 }
4259#endif
4260 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_CS, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4261 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4262 AssertRCReturn(rc, rc);
4263 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_SS, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4264 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4265 AssertRCReturn(rc, rc);
4266 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_DS, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4267 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4268 AssertRCReturn(rc, rc);
4269 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_ES, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4270 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4271 AssertRCReturn(rc, rc);
4272 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_FS, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4273 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4274 AssertRCReturn(rc, rc);
4275 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_GS, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4276 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4277 AssertRCReturn(rc, rc);
4278
4279#ifdef VBOX_STRICT
4280 /* Validate. */
4281 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4282#endif
4283
4284 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4285 Log4(("Load: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pMixedCtx->cs.Sel, pMixedCtx->cs.u64Base,
4286 pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4287 }
4288
4289 /*
4290 * Guest TR.
4291 */
4292 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4293 {
4294 /*
4295 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4296 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4297 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4298 */
4299 uint16_t u16Sel = 0;
4300 uint32_t u32Limit = 0;
4301 uint64_t u64Base = 0;
4302 uint32_t u32AccessRights = 0;
4303
4304 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4305 {
4306 u16Sel = pMixedCtx->tr.Sel;
4307 u32Limit = pMixedCtx->tr.u32Limit;
4308 u64Base = pMixedCtx->tr.u64Base;
4309 u32AccessRights = pMixedCtx->tr.Attr.u;
4310 }
4311 else
4312 {
4313 Assert(pVM->hm.s.vmx.pRealModeTSS);
4314 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4315
4316 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4317 RTGCPHYS GCPhys;
4318 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4319 AssertRCReturn(rc, rc);
4320
4321 X86DESCATTR DescAttr;
4322 DescAttr.u = 0;
4323 DescAttr.n.u1Present = 1;
4324 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4325
4326 u16Sel = 0;
4327 u32Limit = HM_VTX_TSS_SIZE;
4328 u64Base = GCPhys; /* in real-mode phys = virt. */
4329 u32AccessRights = DescAttr.u;
4330 }
4331
4332 /* Validate. */
4333 Assert(!(u16Sel & RT_BIT(2)));
4334 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4335 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4336 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4337 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4338 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4339 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4340 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4341 Assert( (u32Limit & 0xfff) == 0xfff
4342 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4343 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4344 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4345
4346 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_TR, u16Sel); AssertRCReturn(rc, rc);
4347 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRCReturn(rc, rc);
4348 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRCReturn(rc, rc);
4349 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRCReturn(rc, rc);
4350
4351 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4352 Log4(("Load: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", u64Base));
4353 }
4354
4355 /*
4356 * Guest GDTR.
4357 */
4358 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4359 {
4360 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt); AssertRCReturn(rc, rc);
4361 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt); AssertRCReturn(rc, rc);
4362
4363 /* Validate. */
4364 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4365
4366 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4367 Log4(("Load: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pMixedCtx->gdtr.pGdt));
4368 }
4369
4370 /*
4371 * Guest LDTR.
4372 */
4373 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4374 {
4375 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4376 uint32_t u32Access = 0;
4377 if (!pMixedCtx->ldtr.Attr.u)
4378 u32Access = X86DESCATTR_UNUSABLE;
4379 else
4380 u32Access = pMixedCtx->ldtr.Attr.u;
4381
4382 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_LDTR, pMixedCtx->ldtr.Sel); AssertRCReturn(rc, rc);
4383 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit); AssertRCReturn(rc, rc);
4384 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base); AssertRCReturn(rc, rc);
4385 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRCReturn(rc, rc);
4386
4387 /* Validate. */
4388 if (!(u32Access & X86DESCATTR_UNUSABLE))
4389 {
4390 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4391 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4392 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4393 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4394 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4395 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4396 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4397 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4398 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4399 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4400 }
4401
4402 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4403 Log4(("Load: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pMixedCtx->ldtr.u64Base));
4404 }
4405
4406 /*
4407 * Guest IDTR.
4408 */
4409 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4410 {
4411 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt); AssertRCReturn(rc, rc);
4412 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt); AssertRCReturn(rc, rc);
4413
4414 /* Validate. */
4415 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4416
4417 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4418 Log4(("Load: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pMixedCtx->idtr.pIdt));
4419 }
4420
4421 return VINF_SUCCESS;
4422}
4423
4424
4425/**
4426 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4427 * areas. These MSRs will automatically be loaded to the host CPU on every
4428 * successful VM entry and stored from the host CPU on every successful VM-exit.
4429 *
4430 * This also creates/updates MSR slots for the host MSRs. The actual host
4431 * MSR values are -not- updated here for performance reasons. See
4432 * hmR0VmxSaveHostMsrs().
4433 *
4434 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4435 *
4436 * @returns VBox status code.
4437 * @param pVCpu Pointer to the VMCPU.
4438 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4439 * out-of-sync. Make sure to update the required fields
4440 * before using them.
4441 *
4442 * @remarks No-long-jump zone!!!
4443 */
4444static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4445{
4446 AssertPtr(pVCpu);
4447 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4448
4449 /*
4450 * MSRs that we use the auto-load/store MSR area in the VMCS.
4451 */
4452 PVM pVM = pVCpu->CTX_SUFF(pVM);
4453 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4454 {
4455#if HC_ARCH_BITS == 32 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4456 if (pVM->hm.s.fAllow64BitGuests)
4457 {
4458 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false /* fUpdateHostMsr */);
4459 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false /* fUpdateHostMsr */);
4460 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false /* fUpdateHostMsr */);
4461 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false /* fUpdateHostMsr */);
4462# ifdef DEBUG
4463 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4464 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4465 Log4(("Load: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4466# endif
4467 }
4468#endif
4469 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4470 }
4471
4472 /*
4473 * Guest Sysenter MSRs.
4474 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4475 * VM-exits on WRMSRs for these MSRs.
4476 */
4477 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4478 {
4479 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4480 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4481 }
4482
4483 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4484 {
4485 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4486 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4487 }
4488
4489 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4490 {
4491 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4492 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4493 }
4494
4495 return VINF_SUCCESS;
4496}
4497
4498
4499/**
4500 * Loads the guest activity state into the guest-state area in the VMCS.
4501 *
4502 * @returns VBox status code.
4503 * @param pVCpu Pointer to the VMCPU.
4504 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4505 * out-of-sync. Make sure to update the required fields
4506 * before using them.
4507 *
4508 * @remarks No-long-jump zone!!!
4509 */
4510static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pCtx)
4511{
4512 NOREF(pCtx);
4513 /** @todo See if we can make use of other states, e.g.
4514 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4515 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4516 {
4517 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4518 AssertRCReturn(rc, rc);
4519
4520 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4521 }
4522 return VINF_SUCCESS;
4523}
4524
4525
4526/**
4527 * Sets up the appropriate function to run guest code.
4528 *
4529 * @returns VBox status code.
4530 * @param pVCpu Pointer to the VMCPU.
4531 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4532 * out-of-sync. Make sure to update the required fields
4533 * before using them.
4534 *
4535 * @remarks No-long-jump zone!!!
4536 */
4537static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4538{
4539 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4540 {
4541#ifndef VBOX_ENABLE_64_BITS_GUESTS
4542 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4543#endif
4544 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4545#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4546 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4547 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4548 {
4549 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4550 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_EXIT_CTLS | HM_CHANGED_VMX_ENTRY_CTLS);
4551 }
4552#else
4553 /* 64-bit host or hybrid host. */
4554 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4555#endif
4556 }
4557 else
4558 {
4559 /* Guest is not in long mode, use the 32-bit handler. */
4560#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4561 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4562 {
4563 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4564 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_EXIT_CTLS | HM_CHANGED_VMX_ENTRY_CTLS);
4565 }
4566#else
4567 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4568#endif
4569 }
4570 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4571 return VINF_SUCCESS;
4572}
4573
4574
4575/**
4576 * Wrapper for running the guest code in VT-x.
4577 *
4578 * @returns VBox strict status code.
4579 * @param pVM Pointer to the VM.
4580 * @param pVCpu Pointer to the VMCPU.
4581 * @param pCtx Pointer to the guest-CPU context.
4582 *
4583 * @remarks No-long-jump zone!!!
4584 */
4585DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4586{
4587 /*
4588 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4589 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4590 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4591 */
4592 const bool fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4593 /** @todo Add stats for resume vs launch. */
4594#ifdef VBOX_WITH_KERNEL_USING_XMM
4595 return HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4596#else
4597 return pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4598#endif
4599}
4600
4601
4602/**
4603 * Reports world-switch error and dumps some useful debug info.
4604 *
4605 * @param pVM Pointer to the VM.
4606 * @param pVCpu Pointer to the VMCPU.
4607 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4608 * @param pCtx Pointer to the guest-CPU context.
4609 * @param pVmxTransient Pointer to the VMX transient structure (only
4610 * exitReason updated).
4611 */
4612static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
4613{
4614 Assert(pVM);
4615 Assert(pVCpu);
4616 Assert(pCtx);
4617 Assert(pVmxTransient);
4618 HMVMX_ASSERT_PREEMPT_SAFE();
4619
4620 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
4621 switch (rcVMRun)
4622 {
4623 case VERR_VMX_INVALID_VMXON_PTR:
4624 AssertFailed();
4625 break;
4626 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4627 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4628 {
4629 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4630 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4631 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
4632 AssertRC(rc);
4633
4634 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4635 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4636 Cannot do it here as we may have been long preempted. */
4637
4638#ifdef VBOX_STRICT
4639 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4640 pVmxTransient->uExitReason));
4641 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
4642 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4643 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
4644 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
4645 else
4646 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
4647 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
4648 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
4649
4650 /* VMX control bits. */
4651 uint32_t u32Val;
4652 uint64_t u64Val;
4653 HMVMXHCUINTREG uHCReg;
4654 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
4655 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
4656 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
4657 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
4658 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
4659 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
4660 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
4661 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
4662 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
4663 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
4664 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
4665 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
4666 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
4667 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
4668 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
4669 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
4670 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
4671 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
4672 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
4673 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
4674 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
4675 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
4676 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4677 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
4678 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4679 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
4680 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
4681 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
4682 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
4683 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
4684 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
4685 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
4686 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
4687 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
4688 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
4689 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
4690 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
4691 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
4692 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
4693 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
4694 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
4695 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
4696
4697 /* Guest bits. */
4698 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
4699 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
4700 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
4701 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
4702 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
4703 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
4704 rc = VMXReadVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, &u32Val); AssertRC(rc);
4705 Log4(("VMX_VMCS16_GUEST_FIELD_VPID %u\n", u32Val));
4706
4707 /* Host bits. */
4708 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
4709 Log4(("Host CR0 %#RHr\n", uHCReg));
4710 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
4711 Log4(("Host CR3 %#RHr\n", uHCReg));
4712 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
4713 Log4(("Host CR4 %#RHr\n", uHCReg));
4714
4715 RTGDTR HostGdtr;
4716 PCX86DESCHC pDesc;
4717 ASMGetGDTR(&HostGdtr);
4718 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_CS, &u32Val); AssertRC(rc);
4719 Log4(("Host CS %#08x\n", u32Val));
4720 if (u32Val < HostGdtr.cbGdt)
4721 {
4722 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4723 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
4724 }
4725
4726 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_DS, &u32Val); AssertRC(rc);
4727 Log4(("Host DS %#08x\n", u32Val));
4728 if (u32Val < HostGdtr.cbGdt)
4729 {
4730 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4731 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
4732 }
4733
4734 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_ES, &u32Val); AssertRC(rc);
4735 Log4(("Host ES %#08x\n", u32Val));
4736 if (u32Val < HostGdtr.cbGdt)
4737 {
4738 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4739 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
4740 }
4741
4742 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_FS, &u32Val); AssertRC(rc);
4743 Log4(("Host FS %#08x\n", u32Val));
4744 if (u32Val < HostGdtr.cbGdt)
4745 {
4746 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4747 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
4748 }
4749
4750 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_GS, &u32Val); AssertRC(rc);
4751 Log4(("Host GS %#08x\n", u32Val));
4752 if (u32Val < HostGdtr.cbGdt)
4753 {
4754 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4755 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
4756 }
4757
4758 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_SS, &u32Val); AssertRC(rc);
4759 Log4(("Host SS %#08x\n", u32Val));
4760 if (u32Val < HostGdtr.cbGdt)
4761 {
4762 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4763 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
4764 }
4765
4766 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_TR, &u32Val); AssertRC(rc);
4767 Log4(("Host TR %#08x\n", u32Val));
4768 if (u32Val < HostGdtr.cbGdt)
4769 {
4770 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
4771 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
4772 }
4773
4774 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
4775 Log4(("Host TR Base %#RHv\n", uHCReg));
4776 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
4777 Log4(("Host GDTR Base %#RHv\n", uHCReg));
4778 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
4779 Log4(("Host IDTR Base %#RHv\n", uHCReg));
4780 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
4781 Log4(("Host SYSENTER CS %#08x\n", u32Val));
4782 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
4783 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
4784 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
4785 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
4786 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
4787 Log4(("Host RSP %#RHv\n", uHCReg));
4788 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
4789 Log4(("Host RIP %#RHv\n", uHCReg));
4790# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4791 if (HMVMX_IS_64BIT_HOST_MODE())
4792 {
4793 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
4794 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
4795 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
4796 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
4797 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
4798 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
4799 }
4800# endif
4801#endif /* VBOX_STRICT */
4802 break;
4803 }
4804
4805 default:
4806 /* Impossible */
4807 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
4808 break;
4809 }
4810 NOREF(pVM); NOREF(pCtx);
4811}
4812
4813
4814#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4815#ifndef VMX_USE_CACHED_VMCS_ACCESSES
4816# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
4817#endif
4818#ifdef VBOX_STRICT
4819static bool hmR0VmxIsValidWriteField(uint32_t idxField)
4820{
4821 switch (idxField)
4822 {
4823 case VMX_VMCS_GUEST_RIP:
4824 case VMX_VMCS_GUEST_RSP:
4825 case VMX_VMCS_GUEST_SYSENTER_EIP:
4826 case VMX_VMCS_GUEST_SYSENTER_ESP:
4827 case VMX_VMCS_GUEST_GDTR_BASE:
4828 case VMX_VMCS_GUEST_IDTR_BASE:
4829 case VMX_VMCS_GUEST_CS_BASE:
4830 case VMX_VMCS_GUEST_DS_BASE:
4831 case VMX_VMCS_GUEST_ES_BASE:
4832 case VMX_VMCS_GUEST_FS_BASE:
4833 case VMX_VMCS_GUEST_GS_BASE:
4834 case VMX_VMCS_GUEST_SS_BASE:
4835 case VMX_VMCS_GUEST_LDTR_BASE:
4836 case VMX_VMCS_GUEST_TR_BASE:
4837 case VMX_VMCS_GUEST_CR3:
4838 return true;
4839 }
4840 return false;
4841}
4842
4843static bool hmR0VmxIsValidReadField(uint32_t idxField)
4844{
4845 switch (idxField)
4846 {
4847 /* Read-only fields. */
4848 case VMX_VMCS_RO_EXIT_QUALIFICATION:
4849 return true;
4850 }
4851 /* Remaining readable fields should also be writable. */
4852 return hmR0VmxIsValidWriteField(idxField);
4853}
4854#endif /* VBOX_STRICT */
4855
4856
4857/**
4858 * Executes the specified handler in 64-bit mode.
4859 *
4860 * @returns VBox status code.
4861 * @param pVM Pointer to the VM.
4862 * @param pVCpu Pointer to the VMCPU.
4863 * @param pCtx Pointer to the guest CPU context.
4864 * @param enmOp The operation to perform.
4865 * @param cbParam Number of parameters.
4866 * @param paParam Array of 32-bit parameters.
4867 */
4868VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
4869 uint32_t *paParam)
4870{
4871 int rc, rc2;
4872 PHMGLOBALCPUINFO pCpu;
4873 RTHCPHYS HCPhysCpuPage;
4874 RTCCUINTREG uOldEflags;
4875
4876 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
4877 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
4878 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
4879 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
4880
4881#ifdef VBOX_STRICT
4882 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
4883 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
4884
4885 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
4886 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
4887#endif
4888
4889 /* Disable interrupts. */
4890 uOldEflags = ASMIntDisableFlags();
4891
4892#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
4893 RTCPUID idHostCpu = RTMpCpuId();
4894 CPUMR0SetLApic(pVCpu, idHostCpu);
4895#endif
4896
4897 pCpu = HMR0GetCurrentCpu();
4898 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4899
4900 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
4901 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
4902
4903 /* Leave VMX Root Mode. */
4904 VMXDisable();
4905
4906 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4907
4908 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
4909 CPUMSetHyperEIP(pVCpu, enmOp);
4910 for (int i = (int)cbParam - 1; i >= 0; i--)
4911 CPUMPushHyper(pVCpu, paParam[i]);
4912
4913 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
4914
4915 /* Call the switcher. */
4916 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
4917 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
4918
4919 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
4920 /* Make sure the VMX instructions don't cause #UD faults. */
4921 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
4922
4923 /* Re-enter VMX Root Mode */
4924 rc2 = VMXEnable(HCPhysCpuPage);
4925 if (RT_FAILURE(rc2))
4926 {
4927 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
4928 ASMSetFlags(uOldEflags);
4929 return rc2;
4930 }
4931
4932 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
4933 AssertRC(rc2);
4934 Assert(!(ASMGetFlags() & X86_EFL_IF));
4935 ASMSetFlags(uOldEflags);
4936 return rc;
4937}
4938
4939
4940/**
4941 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
4942 * supporting 64-bit guests.
4943 *
4944 * @returns VBox status code.
4945 * @param fResume Whether to VMLAUNCH or VMRESUME.
4946 * @param pCtx Pointer to the guest-CPU context.
4947 * @param pCache Pointer to the VMCS cache.
4948 * @param pVM Pointer to the VM.
4949 * @param pVCpu Pointer to the VMCPU.
4950 */
4951DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
4952{
4953 uint32_t aParam[6];
4954 PHMGLOBALCPUINFO pCpu = NULL;
4955 RTHCPHYS HCPhysCpuPage = 0;
4956 int rc = VERR_INTERNAL_ERROR_5;
4957
4958 pCpu = HMR0GetCurrentCpu();
4959 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
4960
4961#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4962 pCache->uPos = 1;
4963 pCache->interPD = PGMGetInterPaeCR3(pVM);
4964 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
4965#endif
4966
4967#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
4968 pCache->TestIn.HCPhysCpuPage = 0;
4969 pCache->TestIn.HCPhysVmcs = 0;
4970 pCache->TestIn.pCache = 0;
4971 pCache->TestOut.HCPhysVmcs = 0;
4972 pCache->TestOut.pCache = 0;
4973 pCache->TestOut.pCtx = 0;
4974 pCache->TestOut.eflags = 0;
4975#endif
4976
4977 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
4978 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
4979 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
4980 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
4981 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
4982 aParam[5] = 0;
4983
4984#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4985 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
4986 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
4987#endif
4988 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, 6, &aParam[0]);
4989
4990#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4991 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
4992 Assert(pCtx->dr[4] == 10);
4993 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
4994#endif
4995
4996#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
4997 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
4998 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
4999 pVCpu->hm.s.vmx.HCPhysVmcs));
5000 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5001 pCache->TestOut.HCPhysVmcs));
5002 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5003 pCache->TestOut.pCache));
5004 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5005 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5006 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5007 pCache->TestOut.pCtx));
5008 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5009#endif
5010 return rc;
5011}
5012
5013
5014/**
5015 * Initialize the VMCS-Read cache. The VMCS cache is used for 32-bit hosts
5016 * running 64-bit guests (except 32-bit Darwin which runs with 64-bit paging in
5017 * 32-bit mode) for 64-bit fields that cannot be accessed in 32-bit mode. Some
5018 * 64-bit fields -can- be accessed (those that have a 32-bit FULL & HIGH part).
5019 *
5020 * @returns VBox status code.
5021 * @param pVM Pointer to the VM.
5022 * @param pVCpu Pointer to the VMCPU.
5023 */
5024static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5025{
5026#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5027{ \
5028 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5029 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5030 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5031 ++cReadFields; \
5032}
5033
5034 AssertPtr(pVM);
5035 AssertPtr(pVCpu);
5036 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5037 uint32_t cReadFields = 0;
5038
5039 /*
5040 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5041 * and serve to indicate exceptions to the rules.
5042 */
5043
5044 /* Guest-natural selector base fields. */
5045#if 0
5046 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5047 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5048 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5049#endif
5050 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5051 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5052 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5053 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5054 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5055 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5056 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5057 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5058 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5059 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5060 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5061 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5062#if 0
5063 /* Unused natural width guest-state fields. */
5064 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5065 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5066#endif
5067 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5068 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5069
5070 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5071#if 0
5072 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5073 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5074 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5075 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5076 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5077 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5078 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5079 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5080 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5081#endif
5082
5083 /* Natural width guest-state fields. */
5084 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5085#if 0
5086 /* Currently unused field. */
5087 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5088#endif
5089
5090 if (pVM->hm.s.fNestedPaging)
5091 {
5092 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5093 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5094 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5095 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5096 }
5097 else
5098 {
5099 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5100 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5101 }
5102
5103#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5104 return VINF_SUCCESS;
5105}
5106
5107
5108/**
5109 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5110 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5111 * darwin, running 64-bit guests).
5112 *
5113 * @returns VBox status code.
5114 * @param pVCpu Pointer to the VMCPU.
5115 * @param idxField The VMCS field encoding.
5116 * @param u64Val 16, 32 or 64-bit value.
5117 */
5118VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5119{
5120 int rc;
5121 switch (idxField)
5122 {
5123 /*
5124 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5125 */
5126 /* 64-bit Control fields. */
5127 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5128 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5129 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5130 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5131 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5132 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5133 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5134 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5135 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5136 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5137 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5138 case VMX_VMCS64_CTRL_EPTP_FULL:
5139 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5140 /* 64-bit Guest-state fields. */
5141 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5142 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5143 case VMX_VMCS64_GUEST_PAT_FULL:
5144 case VMX_VMCS64_GUEST_EFER_FULL:
5145 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5146 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5147 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5148 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5149 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5150 /* 64-bit Host-state fields. */
5151 case VMX_VMCS64_HOST_FIELD_PAT_FULL:
5152 case VMX_VMCS64_HOST_FIELD_EFER_FULL:
5153 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5154 {
5155 rc = VMXWriteVmcs32(idxField, u64Val);
5156 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5157 break;
5158 }
5159
5160 /*
5161 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5162 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5163 */
5164 /* Natural-width Guest-state fields. */
5165 case VMX_VMCS_GUEST_CR3:
5166 case VMX_VMCS_GUEST_ES_BASE:
5167 case VMX_VMCS_GUEST_CS_BASE:
5168 case VMX_VMCS_GUEST_SS_BASE:
5169 case VMX_VMCS_GUEST_DS_BASE:
5170 case VMX_VMCS_GUEST_FS_BASE:
5171 case VMX_VMCS_GUEST_GS_BASE:
5172 case VMX_VMCS_GUEST_LDTR_BASE:
5173 case VMX_VMCS_GUEST_TR_BASE:
5174 case VMX_VMCS_GUEST_GDTR_BASE:
5175 case VMX_VMCS_GUEST_IDTR_BASE:
5176 case VMX_VMCS_GUEST_RSP:
5177 case VMX_VMCS_GUEST_RIP:
5178 case VMX_VMCS_GUEST_SYSENTER_ESP:
5179 case VMX_VMCS_GUEST_SYSENTER_EIP:
5180 {
5181 if (!(u64Val >> 32))
5182 {
5183 /* If this field is 64-bit, VT-x will zero out the top bits. */
5184 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5185 }
5186 else
5187 {
5188 /* Assert that only the 32->64 switcher case should ever come here. */
5189 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5190 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5191 }
5192 break;
5193 }
5194
5195 default:
5196 {
5197 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5198 rc = VERR_INVALID_PARAMETER;
5199 break;
5200 }
5201 }
5202 AssertRCReturn(rc, rc);
5203 return rc;
5204}
5205
5206
5207/**
5208 * Queue up a VMWRITE by using the VMCS write cache. This is only used on 32-bit
5209 * hosts (except darwin) for 64-bit guests.
5210 *
5211 * @param pVCpu Pointer to the VMCPU.
5212 * @param idxField The VMCS field encoding.
5213 * @param u64Val 16, 32 or 64-bit value.
5214 */
5215VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5216{
5217 AssertPtr(pVCpu);
5218 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5219
5220 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5221 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5222
5223 /* Make sure there are no duplicates. */
5224 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5225 {
5226 if (pCache->Write.aField[i] == idxField)
5227 {
5228 pCache->Write.aFieldVal[i] = u64Val;
5229 return VINF_SUCCESS;
5230 }
5231 }
5232
5233 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5234 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5235 pCache->Write.cValidEntries++;
5236 return VINF_SUCCESS;
5237}
5238
5239/* Enable later when the assembly code uses these as callbacks. */
5240#if 0
5241/*
5242 * Loads the VMCS write-cache into the CPU (by executing VMWRITEs).
5243 *
5244 * @param pVCpu Pointer to the VMCPU.
5245 * @param pCache Pointer to the VMCS cache.
5246 *
5247 * @remarks No-long-jump zone!!!
5248 */
5249VMMR0DECL(void) VMXWriteCachedVmcsLoad(PVMCPU pVCpu, PVMCSCACHE pCache)
5250{
5251 AssertPtr(pCache);
5252 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5253 {
5254 int rc = VMXWriteVmcs64(pCache->Write.aField[i], pCache->Write.aFieldVal[i]);
5255 AssertRC(rc);
5256 }
5257 pCache->Write.cValidEntries = 0;
5258}
5259
5260
5261/**
5262 * Stores the VMCS read-cache from the CPU (by executing VMREADs).
5263 *
5264 * @param pVCpu Pointer to the VMCPU.
5265 * @param pCache Pointer to the VMCS cache.
5266 *
5267 * @remarks No-long-jump zone!!!
5268 */
5269VMMR0DECL(void) VMXReadCachedVmcsStore(PVMCPU pVCpu, PVMCSCACHE pCache)
5270{
5271 AssertPtr(pCache);
5272 for (uint32_t i = 0; i < pCache->Read.cValidEntries; i++)
5273 {
5274 int rc = VMXReadVmcs64(pCache->Read.aField[i], &pCache->Read.aFieldVal[i]);
5275 AssertRC(rc);
5276 }
5277}
5278#endif
5279#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
5280
5281
5282/**
5283 * Sets up the usage of TSC-offsetting and updates the VMCS. If offsetting is
5284 * not possible, cause VM-exits on RDTSC(P)s. Also sets up the VMX preemption
5285 * timer.
5286 *
5287 * @returns VBox status code.
5288 * @param pVCpu Pointer to the VMCPU.
5289 *
5290 * @remarks No-long-jump zone!!!
5291 */
5292static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5293{
5294 int rc = VERR_INTERNAL_ERROR_5;
5295 bool fOffsettedTsc = false;
5296 PVM pVM = pVCpu->CTX_SUFF(pVM);
5297 if (pVM->hm.s.vmx.fUsePreemptTimer)
5298 {
5299 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset);
5300
5301 /* Make sure the returned values have sane upper and lower boundaries. */
5302 uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage);
5303 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5304 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5305 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5306
5307 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5308 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5309 }
5310 else
5311 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset);
5312
5313 if (fOffsettedTsc)
5314 {
5315 uint64_t u64CurTSC = ASMReadTSC();
5316 if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
5317 {
5318 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5319 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5320
5321 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5322 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5323 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5324 }
5325 else
5326 {
5327 /* VM-exit on RDTSC(P) as we would otherwise pass decreasing TSC values to the guest. */
5328 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5329 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5330 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
5331 }
5332 }
5333 else
5334 {
5335 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5336 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5337 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5338 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5339 }
5340}
5341
5342
5343/**
5344 * Determines if an exception is a contributory exception. Contributory
5345 * exceptions are ones which can cause double-faults. Page-fault is
5346 * intentionally not included here as it's a conditional contributory exception.
5347 *
5348 * @returns true if the exception is contributory, false otherwise.
5349 * @param uVector The exception vector.
5350 */
5351DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5352{
5353 switch (uVector)
5354 {
5355 case X86_XCPT_GP:
5356 case X86_XCPT_SS:
5357 case X86_XCPT_NP:
5358 case X86_XCPT_TS:
5359 case X86_XCPT_DE:
5360 return true;
5361 default:
5362 break;
5363 }
5364 return false;
5365}
5366
5367
5368/**
5369 * Sets an event as a pending event to be injected into the guest.
5370 *
5371 * @param pVCpu Pointer to the VMCPU.
5372 * @param u32IntInfo The VM-entry interruption-information field.
5373 * @param cbInstr The VM-entry instruction length in bytes (for software
5374 * interrupts, exceptions and privileged software
5375 * exceptions).
5376 * @param u32ErrCode The VM-entry exception error code.
5377 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5378 * page-fault.
5379 *
5380 * @remarks Statistics counter assumes this is a guest event being injected or
5381 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5382 * always incremented.
5383 */
5384DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5385 RTGCUINTPTR GCPtrFaultAddress)
5386{
5387 Assert(!pVCpu->hm.s.Event.fPending);
5388 pVCpu->hm.s.Event.fPending = true;
5389 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5390 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5391 pVCpu->hm.s.Event.cbInstr = cbInstr;
5392 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5393
5394 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5395}
5396
5397
5398/**
5399 * Sets a double-fault (#DF) exception as pending-for-injection into the VM.
5400 *
5401 * @param pVCpu Pointer to the VMCPU.
5402 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5403 * out-of-sync. Make sure to update the required fields
5404 * before using them.
5405 */
5406DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5407{
5408 NOREF(pMixedCtx);
5409 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5410 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5411 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5412 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5413}
5414
5415
5416/**
5417 * Handle a condition that occurred while delivering an event through the guest
5418 * IDT.
5419 *
5420 * @returns VBox status code (informational error codes included).
5421 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5422 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
5423 * continue execution of the guest which will delivery the #DF.
5424 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5425 *
5426 * @param pVCpu Pointer to the VMCPU.
5427 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5428 * out-of-sync. Make sure to update the required fields
5429 * before using them.
5430 * @param pVmxTransient Pointer to the VMX transient structure.
5431 *
5432 * @remarks No-long-jump zone!!!
5433 */
5434static int hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5435{
5436 int rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
5437 AssertRCReturn(rc, rc);
5438 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5439 {
5440 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
5441 AssertRCReturn(rc, rc);
5442
5443 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5444 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5445 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5446
5447 typedef enum
5448 {
5449 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5450 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5451 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5452 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5453 } VMXREFLECTXCPT;
5454
5455 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5456 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5457 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5458 {
5459 if (uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5460 {
5461 enmReflect = VMXREFLECTXCPT_XCPT;
5462#ifdef VBOX_STRICT
5463 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5464 && uExitVector == X86_XCPT_PF)
5465 {
5466 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5467 }
5468#endif
5469 if ( uExitVector == X86_XCPT_PF
5470 && uIdtVector == X86_XCPT_PF)
5471 {
5472 pVmxTransient->fVectoringPF = true;
5473 Log4(("IDT: vcpu[%RU32] Vectoring #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5474 }
5475 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5476 && hmR0VmxIsContributoryXcpt(uExitVector)
5477 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5478 || uIdtVector == X86_XCPT_PF))
5479 {
5480 enmReflect = VMXREFLECTXCPT_DF;
5481 }
5482 else if (uIdtVector == X86_XCPT_DF)
5483 enmReflect = VMXREFLECTXCPT_TF;
5484 }
5485 else if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5486 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5487 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5488 {
5489 /*
5490 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and privileged software exception
5491 * (whatever they are) as they reoccur when restarting the instruction.
5492 */
5493 enmReflect = VMXREFLECTXCPT_XCPT;
5494 }
5495 }
5496 else
5497 {
5498 /*
5499 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5500 * interruption-information will not be valid and we end up here. In such cases, it is sufficient to reflect the
5501 * original exception to the guest after handling the VM-exit.
5502 */
5503 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5504 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5505 || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5506 {
5507 enmReflect = VMXREFLECTXCPT_XCPT;
5508 }
5509 }
5510
5511 switch (enmReflect)
5512 {
5513 case VMXREFLECTXCPT_XCPT:
5514 {
5515 Assert( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5516 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5517 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5518
5519 uint32_t u32ErrCode = 0;
5520 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5521 {
5522 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5523 AssertRCReturn(rc, rc);
5524 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5525 }
5526
5527 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5528 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5529 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5530 rc = VINF_SUCCESS;
5531 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5532 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5533
5534 break;
5535 }
5536
5537 case VMXREFLECTXCPT_DF:
5538 {
5539 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5540 rc = VINF_HM_DOUBLE_FAULT;
5541 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5542 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5543
5544 break;
5545 }
5546
5547 case VMXREFLECTXCPT_TF:
5548 {
5549 rc = VINF_EM_RESET;
5550 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5551 uExitVector));
5552 break;
5553 }
5554
5555 default:
5556 Assert(rc == VINF_SUCCESS);
5557 break;
5558 }
5559 }
5560 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
5561 return rc;
5562}
5563
5564
5565/**
5566 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
5567 *
5568 * @returns VBox status code.
5569 * @param pVCpu Pointer to the VMCPU.
5570 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5571 * out-of-sync. Make sure to update the required fields
5572 * before using them.
5573 *
5574 * @remarks No-long-jump zone!!!
5575 */
5576static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5577{
5578 NOREF(pMixedCtx);
5579
5580 /* Since this can be called from our preemption hook it's safer to make the guest-CR0 update non-preemptible. */
5581 VMMRZCallRing3Disable(pVCpu);
5582 HM_DISABLE_PREEMPT_IF_NEEDED();
5583
5584 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
5585 {
5586 uint32_t uVal = 0;
5587 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
5588 AssertRCReturn(rc, rc);
5589
5590 uint32_t uShadow = 0;
5591 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
5592 AssertRCReturn(rc, rc);
5593
5594 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
5595 CPUMSetGuestCR0(pVCpu, uVal);
5596 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
5597 }
5598
5599 HM_RESTORE_PREEMPT_IF_NEEDED();
5600 VMMRZCallRing3Enable(pVCpu);
5601
5602 return VINF_SUCCESS;
5603}
5604
5605
5606/**
5607 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
5608 *
5609 * @returns VBox status code.
5610 * @param pVCpu Pointer to the VMCPU.
5611 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5612 * out-of-sync. Make sure to update the required fields
5613 * before using them.
5614 *
5615 * @remarks No-long-jump zone!!!
5616 */
5617static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5618{
5619 NOREF(pMixedCtx);
5620
5621 int rc = VINF_SUCCESS;
5622 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
5623 {
5624 uint32_t uVal = 0;
5625 uint32_t uShadow = 0;
5626 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
5627 AssertRCReturn(rc, rc);
5628 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
5629 AssertRCReturn(rc, rc);
5630
5631 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
5632 CPUMSetGuestCR4(pVCpu, uVal);
5633 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
5634 }
5635 return rc;
5636}
5637
5638
5639/**
5640 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
5641 *
5642 * @returns VBox status code.
5643 * @param pVCpu Pointer to the VMCPU.
5644 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5645 * out-of-sync. Make sure to update the required fields
5646 * before using them.
5647 *
5648 * @remarks No-long-jump zone!!!
5649 */
5650static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5651{
5652 int rc = VINF_SUCCESS;
5653 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
5654 {
5655 uint64_t u64Val = 0;
5656 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
5657 AssertRCReturn(rc, rc);
5658
5659 pMixedCtx->rip = u64Val;
5660 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
5661 }
5662 return rc;
5663}
5664
5665
5666/**
5667 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
5668 *
5669 * @returns VBox status code.
5670 * @param pVCpu Pointer to the VMCPU.
5671 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5672 * out-of-sync. Make sure to update the required fields
5673 * before using them.
5674 *
5675 * @remarks No-long-jump zone!!!
5676 */
5677static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5678{
5679 int rc = VINF_SUCCESS;
5680 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
5681 {
5682 uint64_t u64Val = 0;
5683 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
5684 AssertRCReturn(rc, rc);
5685
5686 pMixedCtx->rsp = u64Val;
5687 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
5688 }
5689 return rc;
5690}
5691
5692
5693/**
5694 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
5695 *
5696 * @returns VBox status code.
5697 * @param pVCpu Pointer to the VMCPU.
5698 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5699 * out-of-sync. Make sure to update the required fields
5700 * before using them.
5701 *
5702 * @remarks No-long-jump zone!!!
5703 */
5704static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5705{
5706 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
5707 {
5708 uint32_t uVal = 0;
5709 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
5710 AssertRCReturn(rc, rc);
5711
5712 pMixedCtx->eflags.u32 = uVal;
5713 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
5714 {
5715 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5716 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
5717
5718 pMixedCtx->eflags.Bits.u1VM = 0;
5719 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
5720 }
5721
5722 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
5723 }
5724 return VINF_SUCCESS;
5725}
5726
5727
5728/**
5729 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
5730 * guest-CPU context.
5731 */
5732DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5733{
5734 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
5735 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
5736 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
5737 return rc;
5738}
5739
5740
5741/**
5742 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
5743 * from the guest-state area in the VMCS.
5744 *
5745 * @param pVCpu Pointer to the VMCPU.
5746 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5747 * out-of-sync. Make sure to update the required fields
5748 * before using them.
5749 *
5750 * @remarks No-long-jump zone!!!
5751 */
5752static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5753{
5754 uint32_t uIntrState = 0;
5755 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
5756 AssertRC(rc);
5757
5758 if (!uIntrState)
5759 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5760 else
5761 {
5762 Assert( uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
5763 || uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
5764 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
5765 AssertRC(rc);
5766 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
5767 AssertRC(rc);
5768
5769 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
5770 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
5771 }
5772}
5773
5774
5775/**
5776 * Saves the guest's activity state.
5777 *
5778 * @returns VBox status code.
5779 * @param pVCpu Pointer to the VMCPU.
5780 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5781 * out-of-sync. Make sure to update the required fields
5782 * before using them.
5783 *
5784 * @remarks No-long-jump zone!!!
5785 */
5786static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5787{
5788 NOREF(pMixedCtx);
5789 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
5790 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
5791 return VINF_SUCCESS;
5792}
5793
5794
5795/**
5796 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
5797 * the current VMCS into the guest-CPU context.
5798 *
5799 * @returns VBox status code.
5800 * @param pVCpu Pointer to the VMCPU.
5801 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5802 * out-of-sync. Make sure to update the required fields
5803 * before using them.
5804 *
5805 * @remarks No-long-jump zone!!!
5806 */
5807static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5808{
5809 int rc = VINF_SUCCESS;
5810 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
5811 {
5812 uint32_t u32Val = 0;
5813 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
5814 pMixedCtx->SysEnter.cs = u32Val;
5815 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
5816 }
5817
5818 uint64_t u64Val = 0;
5819 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
5820 {
5821 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
5822 pMixedCtx->SysEnter.eip = u64Val;
5823 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
5824 }
5825 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
5826 {
5827 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
5828 pMixedCtx->SysEnter.esp = u64Val;
5829 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
5830 }
5831 return rc;
5832}
5833
5834
5835/**
5836 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
5837 * the CPU back into the guest-CPU context.
5838 *
5839 * @returns VBox status code.
5840 * @param pVCpu Pointer to the VMCPU.
5841 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5842 * out-of-sync. Make sure to update the required fields
5843 * before using them.
5844 *
5845 * @remarks No-long-jump zone!!!
5846 */
5847static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5848{
5849#if HC_ARCH_BITS == 64
5850 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
5851 {
5852 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
5853 VMMRZCallRing3Disable(pVCpu);
5854 HM_DISABLE_PREEMPT_IF_NEEDED();
5855
5856 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
5857 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
5858 {
5859 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
5860 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
5861 }
5862
5863 HM_RESTORE_PREEMPT_IF_NEEDED();
5864 VMMRZCallRing3Enable(pVCpu);
5865 }
5866 else
5867 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
5868#else
5869 NOREF(pMixedCtx);
5870 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
5871#endif
5872
5873 return VINF_SUCCESS;
5874}
5875
5876
5877/**
5878 * Saves the auto load/store'd guest MSRs from the current VMCS into
5879 * the guest-CPU context.
5880 *
5881 * @returns VBox status code.
5882 * @param pVCpu Pointer to the VMCPU.
5883 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5884 * out-of-sync. Make sure to update the required fields
5885 * before using them.
5886 *
5887 * @remarks No-long-jump zone!!!
5888 */
5889static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5890{
5891 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
5892 return VINF_SUCCESS;
5893
5894 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
5895 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
5896 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
5897 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
5898 {
5899 switch (pMsr->u32Msr)
5900 {
5901 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
5902 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
5903 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
5904 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
5905 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
5906 default:
5907 {
5908 AssertFailed();
5909 return VERR_HM_UNEXPECTED_LD_ST_MSR;
5910 }
5911 }
5912 }
5913
5914 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
5915 return VINF_SUCCESS;
5916}
5917
5918
5919/**
5920 * Saves the guest control registers from the current VMCS into the guest-CPU
5921 * context.
5922 *
5923 * @returns VBox status code.
5924 * @param pVCpu Pointer to the VMCPU.
5925 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5926 * out-of-sync. Make sure to update the required fields
5927 * before using them.
5928 *
5929 * @remarks No-long-jump zone!!!
5930 */
5931static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5932{
5933 /* Guest CR0. Guest FPU. */
5934 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
5935 AssertRCReturn(rc, rc);
5936
5937 /* Guest CR4. */
5938 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
5939 AssertRCReturn(rc, rc);
5940
5941 /* Guest CR2 - updated always during the world-switch or in #PF. */
5942 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
5943 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
5944 {
5945 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
5946 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
5947
5948 PVM pVM = pVCpu->CTX_SUFF(pVM);
5949 if ( pVM->hm.s.vmx.fUnrestrictedGuest
5950 || ( pVM->hm.s.fNestedPaging
5951 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
5952 {
5953 uint64_t u64Val = 0;
5954 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
5955 if (pMixedCtx->cr3 != u64Val)
5956 {
5957 CPUMSetGuestCR3(pVCpu, u64Val);
5958 if (VMMRZCallRing3IsEnabled(pVCpu))
5959 {
5960 PGMUpdateCR3(pVCpu, u64Val);
5961 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
5962 }
5963 else
5964 {
5965 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
5966 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
5967 }
5968 }
5969
5970 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
5971 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
5972 {
5973 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
5974 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
5975 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
5976 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
5977
5978 if (VMMRZCallRing3IsEnabled(pVCpu))
5979 {
5980 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5981 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
5982 }
5983 else
5984 {
5985 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
5986 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
5987 }
5988 }
5989 }
5990
5991 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
5992 }
5993
5994 /*
5995 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
5996 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
5997 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
5998 *
5999 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6000 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6001 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6002 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6003 *
6004 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6005 */
6006 if (VMMRZCallRing3IsEnabled(pVCpu))
6007 {
6008 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6009 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6010
6011 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6012 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6013
6014 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6015 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6016 }
6017
6018 return rc;
6019}
6020
6021
6022/**
6023 * Reads a guest segment register from the current VMCS into the guest-CPU
6024 * context.
6025 *
6026 * @returns VBox status code.
6027 * @param pVCpu Pointer to the VMCPU.
6028 * @param idxSel Index of the selector in the VMCS.
6029 * @param idxLimit Index of the segment limit in the VMCS.
6030 * @param idxBase Index of the segment base in the VMCS.
6031 * @param idxAccess Index of the access rights of the segment in the VMCS.
6032 * @param pSelReg Pointer to the segment selector.
6033 *
6034 * @remarks No-long-jump zone!!!
6035 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6036 * macro as that takes care of whether to read from the VMCS cache or
6037 * not.
6038 */
6039DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6040 PCPUMSELREG pSelReg)
6041{
6042 NOREF(pVCpu);
6043
6044 uint32_t u32Val = 0;
6045 int rc = VMXReadVmcs32(idxSel, &u32Val);
6046 AssertRCReturn(rc, rc);
6047 pSelReg->Sel = (uint16_t)u32Val;
6048 pSelReg->ValidSel = (uint16_t)u32Val;
6049 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6050
6051 rc = VMXReadVmcs32(idxLimit, &u32Val);
6052 AssertRCReturn(rc, rc);
6053 pSelReg->u32Limit = u32Val;
6054
6055 uint64_t u64Val = 0;
6056 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6057 AssertRCReturn(rc, rc);
6058 pSelReg->u64Base = u64Val;
6059
6060 rc = VMXReadVmcs32(idxAccess, &u32Val);
6061 AssertRCReturn(rc, rc);
6062 pSelReg->Attr.u = u32Val;
6063
6064 /*
6065 * If VT-x marks the segment as unusable, most other bits remain undefined:
6066 * - For CS the L, D and G bits have meaning.
6067 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6068 * - For the remaining data segments no bits are defined.
6069 *
6070 * The present bit and the unusable bit has been observed to be set at the
6071 * same time (the selector was supposed to invalid as we started executing
6072 * a V8086 interrupt in ring-0).
6073 *
6074 * What should be important for the rest of the VBox code, is that the P bit is
6075 * cleared. Some of the other VBox code recognizes the unusable bit, but
6076 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6077 * safe side here, we'll strip off P and other bits we don't care about. If
6078 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6079 *
6080 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6081 */
6082 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6083 {
6084 Assert(idxSel != VMX_VMCS16_GUEST_FIELD_TR); /* TR is the only selector that can never be unusable. */
6085
6086 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6087 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6088 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6089
6090 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6091#ifdef DEBUG_bird
6092 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6093 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6094 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6095#endif
6096 }
6097 return VINF_SUCCESS;
6098}
6099
6100
6101#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6102# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6103 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6104 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6105#else
6106# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6107 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6108 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6109#endif
6110
6111
6112/**
6113 * Saves the guest segment registers from the current VMCS into the guest-CPU
6114 * context.
6115 *
6116 * @returns VBox status code.
6117 * @param pVCpu Pointer to the VMCPU.
6118 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6119 * out-of-sync. Make sure to update the required fields
6120 * before using them.
6121 *
6122 * @remarks No-long-jump zone!!!
6123 */
6124static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6125{
6126 /* Guest segment registers. */
6127 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6128 {
6129 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); AssertRCReturn(rc, rc);
6130 rc = VMXLOCAL_READ_SEG(CS, cs); AssertRCReturn(rc, rc);
6131 rc = VMXLOCAL_READ_SEG(SS, ss); AssertRCReturn(rc, rc);
6132 rc = VMXLOCAL_READ_SEG(DS, ds); AssertRCReturn(rc, rc);
6133 rc = VMXLOCAL_READ_SEG(ES, es); AssertRCReturn(rc, rc);
6134 rc = VMXLOCAL_READ_SEG(FS, fs); AssertRCReturn(rc, rc);
6135 rc = VMXLOCAL_READ_SEG(GS, gs); AssertRCReturn(rc, rc);
6136
6137 /* Restore segment attributes for real-on-v86 mode hack. */
6138 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6139 {
6140 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6141 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6142 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6143 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6144 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6145 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6146 }
6147 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6148 }
6149
6150 return VINF_SUCCESS;
6151}
6152
6153
6154/**
6155 * Saves the guest descriptor table registers and task register from the current
6156 * VMCS into the guest-CPU context.
6157 *
6158 * @returns VBox status code.
6159 * @param pVCpu Pointer to the VMCPU.
6160 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6161 * out-of-sync. Make sure to update the required fields
6162 * before using them.
6163 *
6164 * @remarks No-long-jump zone!!!
6165 */
6166static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6167{
6168 int rc = VINF_SUCCESS;
6169
6170 /* Guest LDTR. */
6171 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6172 {
6173 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6174 AssertRCReturn(rc, rc);
6175 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6176 }
6177
6178 /* Guest GDTR. */
6179 uint64_t u64Val = 0;
6180 uint32_t u32Val = 0;
6181 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6182 {
6183 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6184 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6185 pMixedCtx->gdtr.pGdt = u64Val;
6186 pMixedCtx->gdtr.cbGdt = u32Val;
6187 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6188 }
6189
6190 /* Guest IDTR. */
6191 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6192 {
6193 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6194 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6195 pMixedCtx->idtr.pIdt = u64Val;
6196 pMixedCtx->idtr.cbIdt = u32Val;
6197 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6198 }
6199
6200 /* Guest TR. */
6201 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6202 {
6203 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6204 AssertRCReturn(rc, rc);
6205
6206 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6207 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6208 {
6209 rc = VMXLOCAL_READ_SEG(TR, tr);
6210 AssertRCReturn(rc, rc);
6211 }
6212 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6213 }
6214 return rc;
6215}
6216
6217#undef VMXLOCAL_READ_SEG
6218
6219
6220/**
6221 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6222 * context.
6223 *
6224 * @returns VBox status code.
6225 * @param pVCpu Pointer to the VMCPU.
6226 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6227 * out-of-sync. Make sure to update the required fields
6228 * before using them.
6229 *
6230 * @remarks No-long-jump zone!!!
6231 */
6232static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6233{
6234 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG))
6235 {
6236 if (!pVCpu->hm.s.fUsingHyperDR7)
6237 {
6238 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6239 uint32_t u32Val;
6240 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6241 pMixedCtx->dr[7] = u32Val;
6242 }
6243
6244 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG);
6245 }
6246 return VINF_SUCCESS;
6247}
6248
6249
6250/**
6251 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6252 *
6253 * @returns VBox status code.
6254 * @param pVCpu Pointer to the VMCPU.
6255 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6256 * out-of-sync. Make sure to update the required fields
6257 * before using them.
6258 *
6259 * @remarks No-long-jump zone!!!
6260 */
6261static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6262{
6263 NOREF(pMixedCtx);
6264
6265 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6266 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6267 return VINF_SUCCESS;
6268}
6269
6270
6271/**
6272 * Saves the entire guest state from the currently active VMCS into the
6273 * guest-CPU context. This essentially VMREADs all guest-data.
6274 *
6275 * @returns VBox status code.
6276 * @param pVCpu Pointer to the VMCPU.
6277 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6278 * out-of-sync. Make sure to update the required fields
6279 * before using them.
6280 */
6281static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6282{
6283 Assert(pVCpu);
6284 Assert(pMixedCtx);
6285
6286 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6287 return VINF_SUCCESS;
6288
6289 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6290 again on the ring-3 callback path, there is no real need to. */
6291 if (VMMRZCallRing3IsEnabled(pVCpu))
6292 VMMR0LogFlushDisable(pVCpu);
6293 else
6294 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6295 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6296
6297 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6298 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6299
6300 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6301 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6302
6303 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6304 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6305
6306 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6307 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6308
6309 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6310 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6311
6312 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6313 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6314
6315 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6316 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6317
6318 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6319 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6320
6321 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6322 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6323
6324 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6325 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6326
6327 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6328 ("Missed guest state bits while saving state; residue %RX32\n", HMVMXCPU_GST_VALUE(pVCpu)));
6329
6330 if (VMMRZCallRing3IsEnabled(pVCpu))
6331 VMMR0LogFlushEnable(pVCpu);
6332
6333 return rc;
6334}
6335
6336
6337/**
6338 * Check per-VM and per-VCPU force flag actions that require us to go back to
6339 * ring-3 for one reason or another.
6340 *
6341 * @returns VBox status code (information status code included).
6342 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6343 * ring-3.
6344 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6345 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6346 * interrupts)
6347 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6348 * all EMTs to be in ring-3.
6349 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6350 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6351 * to the EM loop.
6352 *
6353 * @param pVM Pointer to the VM.
6354 * @param pVCpu Pointer to the VMCPU.
6355 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6356 * out-of-sync. Make sure to update the required fields
6357 * before using them.
6358 */
6359static int hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6360{
6361 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6362
6363 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
6364 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
6365 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
6366 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6367 {
6368 /* We need the control registers now, make sure the guest-CPU context is updated. */
6369 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6370 AssertRCReturn(rc3, rc3);
6371
6372 /* Pending HM CR3 sync. */
6373 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6374 {
6375 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6376 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6377 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6378 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6379 }
6380
6381 /* Pending HM PAE PDPEs. */
6382 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6383 {
6384 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6385 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6386 }
6387
6388 /* Pending PGM C3 sync. */
6389 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6390 {
6391 int rc2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6392 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6393 if (rc2 != VINF_SUCCESS)
6394 {
6395 AssertRC(rc2);
6396 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", rc2));
6397 return rc2;
6398 }
6399 }
6400
6401 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6402 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6403 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6404 {
6405 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6406 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6407 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6408 return rc2;
6409 }
6410
6411 /* Pending VM request packets, such as hardware interrupts. */
6412 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6413 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6414 {
6415 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6416 return VINF_EM_PENDING_REQUEST;
6417 }
6418
6419 /* Pending PGM pool flushes. */
6420 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6421 {
6422 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6423 return VINF_PGM_POOL_FLUSH_PENDING;
6424 }
6425
6426 /* Pending DMA requests. */
6427 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6428 {
6429 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6430 return VINF_EM_RAW_TO_R3;
6431 }
6432 }
6433
6434 return VINF_SUCCESS;
6435}
6436
6437
6438/**
6439 * Converts any TRPM trap into a pending HM event. This is typically used when
6440 * entering from ring-3 (not longjmp returns).
6441 *
6442 * @param pVCpu Pointer to the VMCPU.
6443 */
6444static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6445{
6446 Assert(TRPMHasTrap(pVCpu));
6447 Assert(!pVCpu->hm.s.Event.fPending);
6448
6449 uint8_t uVector;
6450 TRPMEVENT enmTrpmEvent;
6451 RTGCUINT uErrCode;
6452 RTGCUINTPTR GCPtrFaultAddress;
6453 uint8_t cbInstr;
6454
6455 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6456 AssertRC(rc);
6457
6458 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6459 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
6460 if (enmTrpmEvent == TRPM_TRAP)
6461 {
6462 switch (uVector)
6463 {
6464 case X86_XCPT_BP:
6465 case X86_XCPT_OF:
6466 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6467 break;
6468
6469 case X86_XCPT_PF:
6470 case X86_XCPT_DF:
6471 case X86_XCPT_TS:
6472 case X86_XCPT_NP:
6473 case X86_XCPT_SS:
6474 case X86_XCPT_GP:
6475 case X86_XCPT_AC:
6476 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6477 /* no break! */
6478 default:
6479 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6480 break;
6481 }
6482 }
6483 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
6484 {
6485 if (uVector == X86_XCPT_NMI)
6486 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6487 else
6488 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6489 }
6490 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
6491 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6492 else
6493 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
6494
6495 rc = TRPMResetTrap(pVCpu);
6496 AssertRC(rc);
6497 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
6498 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
6499
6500 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
6501 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
6502}
6503
6504
6505/**
6506 * Converts any pending HM event into a TRPM trap. Typically used when leaving
6507 * VT-x to execute any instruction.
6508 *
6509 * @param pvCpu Pointer to the VMCPU.
6510 */
6511static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
6512{
6513 Assert(pVCpu->hm.s.Event.fPending);
6514
6515 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
6516 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
6517 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
6518 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
6519
6520 /* If a trap was already pending, we did something wrong! */
6521 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
6522
6523 TRPMEVENT enmTrapType;
6524 switch (uVectorType)
6525 {
6526 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6527 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6528 enmTrapType = TRPM_HARDWARE_INT;
6529 break;
6530
6531 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6532 enmTrapType = TRPM_SOFTWARE_INT;
6533 break;
6534
6535 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6536 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
6537 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6538 enmTrapType = TRPM_TRAP;
6539 break;
6540
6541 default:
6542 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
6543 enmTrapType = TRPM_32BIT_HACK;
6544 break;
6545 }
6546
6547 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
6548
6549 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
6550 AssertRC(rc);
6551
6552 if (fErrorCodeValid)
6553 TRPMSetErrorCode(pVCpu, uErrorCode);
6554
6555 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6556 && uVector == X86_XCPT_PF)
6557 {
6558 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
6559 }
6560 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6561 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6562 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6563 {
6564 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6565 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
6566 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
6567 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
6568 }
6569 pVCpu->hm.s.Event.fPending = false;
6570}
6571
6572
6573/**
6574 * Does the necessary state syncing before returning to ring-3 for any reason
6575 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
6576 *
6577 * @returns VBox status code.
6578 * @param pVM Pointer to the VM.
6579 * @param pVCpu Pointer to the VMCPU.
6580 * @param pMixedCtx Pointer to the guest-CPU context. The data may
6581 * be out-of-sync. Make sure to update the required
6582 * fields before using them.
6583 * @param fSaveGuestState Whether to save the guest state or not.
6584 *
6585 * @remarks No-long-jmp zone!!!
6586 */
6587static int hmR0VmxLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
6588{
6589 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6590 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6591
6592 RTCPUID idCpu = RTMpCpuId();
6593 Log4Func(("HostCpuId=%u\n", idCpu));
6594
6595 /*
6596 * !!! IMPORTANT !!!
6597 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
6598 */
6599
6600 /* Save the guest state if necessary. */
6601 if ( fSaveGuestState
6602 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
6603 {
6604 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6605 AssertRCReturn(rc, rc);
6606 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
6607 }
6608
6609 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
6610 if (CPUMIsGuestFPUStateActive(pVCpu))
6611 {
6612 /* We shouldn't reload CR0 without saving it first. */
6613 if (!fSaveGuestState)
6614 {
6615 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6616 AssertRCReturn(rc, rc);
6617 }
6618 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
6619 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
6620 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
6621 }
6622
6623 /* Restore host debug registers if necessary and resync on next R0 reentry. */
6624#ifdef VBOX_STRICT
6625 if (CPUMIsHyperDebugStateActive(pVCpu))
6626 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
6627#endif
6628 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
6629 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
6630 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
6631 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
6632
6633#if HC_ARCH_BITS == 64
6634 /* Restore host-state bits that VT-x only restores partially. */
6635 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
6636 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
6637 {
6638 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
6639 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
6640 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
6641 }
6642#endif
6643
6644#if HC_ARCH_BITS == 64
6645 /* Restore the host MSRs as we're leaving VT-x context. */
6646 if ( pVM->hm.s.fAllow64BitGuests
6647 && pVCpu->hm.s.vmx.fRestoreHostMsrs)
6648 {
6649 /* We shouldn't reload the guest MSRs without saving it first. */
6650 if (!fSaveGuestState)
6651 {
6652 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6653 AssertRCReturn(rc, rc);
6654 }
6655 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
6656 hmR0VmxLazyRestoreHostMsrs(pVCpu);
6657 Assert(!pVCpu->hm.s.vmx.fRestoreHostMsrs);
6658 }
6659#endif
6660
6661 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
6662 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
6663 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
6664 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
6665 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
6666 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
6667 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
6668 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
6669
6670 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
6671
6672 /** @todo This partially defeats the purpose of having preemption hooks.
6673 * The problem is, deregistering the hooks should be moved to a place that
6674 * lasts until the EMT is about to be destroyed not everytime while leaving HM
6675 * context.
6676 */
6677 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
6678 {
6679 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
6680 AssertRCReturn(rc, rc);
6681
6682 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
6683 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
6684 }
6685 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
6686 NOREF(idCpu);
6687
6688 return VINF_SUCCESS;
6689}
6690
6691
6692/**
6693 * Leaves the VT-x session.
6694 *
6695 * @returns VBox status code.
6696 * @param pVM Pointer to the VM.
6697 * @param pVCpu Pointer to the VMCPU.
6698 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6699 * out-of-sync. Make sure to update the required fields
6700 * before using them.
6701 *
6702 * @remarks No-long-jmp zone!!!
6703 */
6704DECLINLINE(int) hmR0VmxLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6705{
6706 HM_DISABLE_PREEMPT_IF_NEEDED();
6707 HMVMX_ASSERT_CPU_SAFE();
6708 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6709 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6710
6711 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
6712 and done this from the VMXR0ThreadCtxCallback(). */
6713 if (!pVCpu->hm.s.fLeaveDone)
6714 {
6715 int rc2 = hmR0VmxLeave(pVM, pVCpu, pMixedCtx, true /* fSaveGuestState */);
6716 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT_IF_NEEDED(), rc2);
6717 pVCpu->hm.s.fLeaveDone = true;
6718 }
6719
6720 /*
6721 * !!! IMPORTANT !!!
6722 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
6723 */
6724
6725 /* Deregister hook now that we've left HM context before re-enabling preemption. */
6726 /** @todo This is bad. Deregistering here means we need to VMCLEAR always
6727 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
6728 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
6729 VMMR0ThreadCtxHooksDeregister(pVCpu);
6730
6731 /* Leave HM context. This takes care of local init (term). */
6732 int rc = HMR0LeaveCpu(pVCpu);
6733
6734 HM_RESTORE_PREEMPT_IF_NEEDED();
6735
6736 return rc;
6737}
6738
6739
6740/**
6741 * Does the necessary state syncing before doing a longjmp to ring-3.
6742 *
6743 * @returns VBox status code.
6744 * @param pVM Pointer to the VM.
6745 * @param pVCpu Pointer to the VMCPU.
6746 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6747 * out-of-sync. Make sure to update the required fields
6748 * before using them.
6749 *
6750 * @remarks No-long-jmp zone!!!
6751 */
6752DECLINLINE(int) hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6753{
6754 return hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
6755}
6756
6757
6758/**
6759 * Take necessary actions before going back to ring-3.
6760 *
6761 * An action requires us to go back to ring-3. This function does the necessary
6762 * steps before we can safely return to ring-3. This is not the same as longjmps
6763 * to ring-3, this is voluntary and prepares the guest so it may continue
6764 * executing outside HM (recompiler/IEM).
6765 *
6766 * @returns VBox status code.
6767 * @param pVM Pointer to the VM.
6768 * @param pVCpu Pointer to the VMCPU.
6769 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6770 * out-of-sync. Make sure to update the required fields
6771 * before using them.
6772 * @param rcExit The reason for exiting to ring-3. Can be
6773 * VINF_VMM_UNKNOWN_RING3_CALL.
6774 */
6775static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
6776{
6777 Assert(pVM);
6778 Assert(pVCpu);
6779 Assert(pMixedCtx);
6780 HMVMX_ASSERT_PREEMPT_SAFE();
6781
6782 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
6783 {
6784 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
6785 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
6786 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6787 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
6788 }
6789
6790 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
6791 VMMRZCallRing3Disable(pVCpu);
6792 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, rcExit));
6793
6794 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
6795 if (pVCpu->hm.s.Event.fPending)
6796 {
6797 hmR0VmxPendingEventToTrpmTrap(pVCpu);
6798 Assert(!pVCpu->hm.s.Event.fPending);
6799 }
6800
6801 /* Save guest state and restore host state bits. */
6802 int rc = hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
6803 AssertRCReturn(rc, rc);
6804 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
6805
6806 /* Sync recompiler state. */
6807 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
6808 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
6809 | CPUM_CHANGED_LDTR
6810 | CPUM_CHANGED_GDTR
6811 | CPUM_CHANGED_IDTR
6812 | CPUM_CHANGED_TR
6813 | CPUM_CHANGED_HIDDEN_SEL_REGS);
6814 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6815 if ( pVM->hm.s.fNestedPaging
6816 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
6817 {
6818 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
6819 }
6820
6821 Assert(!pVCpu->hm.s.fClearTrapFlag);
6822
6823 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
6824 if (rcExit != VINF_EM_RAW_INTERRUPT)
6825 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6826
6827 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
6828
6829 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
6830 VMMRZCallRing3RemoveNotification(pVCpu);
6831 VMMRZCallRing3Enable(pVCpu);
6832
6833 return rc;
6834}
6835
6836
6837/**
6838 * VMMRZCallRing3() callback wrapper which saves the guest state before we
6839 * longjump to ring-3 and possibly get preempted.
6840 *
6841 * @returns VBox status code.
6842 * @param pVCpu Pointer to the VMCPU.
6843 * @param enmOperation The operation causing the ring-3 longjump.
6844 * @param pvUser Opaque pointer to the guest-CPU context. The data
6845 * may be out-of-sync. Make sure to update the required
6846 * fields before using them.
6847 */
6848DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
6849{
6850 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
6851 {
6852 /*
6853 * !!! IMPORTANT !!!
6854 * If you modify code here, make sure to check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs
6855 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
6856 */
6857 VMMRZCallRing3RemoveNotification(pVCpu);
6858 VMMRZCallRing3Disable(pVCpu);
6859 HM_DISABLE_PREEMPT_IF_NEEDED();
6860
6861 PVM pVM = pVCpu->CTX_SUFF(pVM);
6862 if (CPUMIsGuestFPUStateActive(pVCpu))
6863 CPUMR0SaveGuestFPU(pVM, pVCpu, (PCPUMCTX)pvUser);
6864
6865 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
6866
6867#if HC_ARCH_BITS == 64
6868 /* Restore host-state bits that VT-x only restores partially. */
6869 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
6870 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
6871 {
6872 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
6873 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
6874 }
6875 /* Restore the host MSRs as we're leaving VT-x context. */
6876 if ( pVM->hm.s.fAllow64BitGuests
6877 && pVCpu->hm.s.vmx.fRestoreHostMsrs)
6878 {
6879 hmR0VmxLazyRestoreHostMsrs(pVCpu);
6880 }
6881#endif
6882 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
6883 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
6884 {
6885 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
6886 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
6887 }
6888
6889 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
6890 VMMR0ThreadCtxHooksDeregister(pVCpu);
6891
6892 HMR0LeaveCpu(pVCpu);
6893 HM_RESTORE_PREEMPT_IF_NEEDED();
6894 return VINF_SUCCESS;
6895 }
6896
6897 Assert(pVCpu);
6898 Assert(pvUser);
6899 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6900 HMVMX_ASSERT_PREEMPT_SAFE();
6901
6902 VMMRZCallRing3Disable(pVCpu);
6903 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6904
6905 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32\n enmOperation=%d", pVCpu, pVCpu->idCpu,
6906 enmOperation));
6907
6908 int rc = hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
6909 AssertRCReturn(rc, rc);
6910
6911 VMMRZCallRing3Enable(pVCpu);
6912 return VINF_SUCCESS;
6913}
6914
6915
6916/**
6917 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
6918 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
6919 *
6920 * @param pVCpu Pointer to the VMCPU.
6921 */
6922DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
6923{
6924 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
6925 {
6926 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
6927 {
6928 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
6929 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
6930 AssertRC(rc);
6931 }
6932 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
6933}
6934
6935
6936/**
6937 * Evaluates the event to be delivered to the guest and sets it as the pending
6938 * event.
6939 *
6940 * @param pVCpu Pointer to the VMCPU.
6941 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6942 * out-of-sync. Make sure to update the required fields
6943 * before using them.
6944 */
6945static void hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6946{
6947 Assert(!pVCpu->hm.s.Event.fPending);
6948
6949 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
6950 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
6951 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
6952 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
6953
6954 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
6955 Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
6956 && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
6957 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
6958 Assert(!TRPMHasTrap(pVCpu));
6959
6960 /** @todo SMI. SMIs take priority over NMIs. */
6961 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
6962 {
6963 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
6964 if ( !fBlockMovSS
6965 && !fBlockSti)
6966 {
6967 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
6968 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
6969 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
6970 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6971
6972 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddres */);
6973 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
6974 }
6975 else
6976 hmR0VmxSetIntWindowExitVmcs(pVCpu);
6977 }
6978 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
6979 && !pVCpu->hm.s.fSingleInstruction)
6980 {
6981 /*
6982 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
6983 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt which is why it is
6984 * evaluated here and not set as pending, solely based on the force-flags.
6985 */
6986 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6987 AssertRC(rc);
6988 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
6989 if ( !fBlockInt
6990 && !fBlockSti
6991 && !fBlockMovSS)
6992 {
6993 uint8_t u8Interrupt;
6994 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
6995 if (RT_SUCCESS(rc))
6996 {
6997 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
6998 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
6999 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7000
7001 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7002 }
7003 else
7004 {
7005 /** @todo Does this actually happen? If not turn it into an assertion. */
7006 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
7007 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7008 }
7009 }
7010 else
7011 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7012 }
7013}
7014
7015
7016/**
7017 * Injects any pending events into the guest if the guest is in a state to
7018 * receive them.
7019 *
7020 * @returns VBox status code (informational status codes included).
7021 * @param pVCpu Pointer to the VMCPU.
7022 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7023 * out-of-sync. Make sure to update the required fields
7024 * before using them.
7025 */
7026static int hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7027{
7028 HMVMX_ASSERT_PREEMPT_SAFE();
7029 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7030
7031 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7032 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7033 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7034 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7035
7036 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7037 Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
7038 && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
7039 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7040 Assert(!TRPMHasTrap(pVCpu));
7041
7042 int rc = VINF_SUCCESS;
7043 if (pVCpu->hm.s.Event.fPending)
7044 {
7045#if defined(VBOX_STRICT) || defined(VBOX_WITH_STATISTICS)
7046 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7047 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7048 {
7049 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7050 AssertRCReturn(rc, rc);
7051 const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7052 Assert(!fBlockInt);
7053 Assert(!fBlockSti);
7054 Assert(!fBlockMovSS);
7055 }
7056 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7057 {
7058 Assert(!fBlockSti);
7059 Assert(!fBlockMovSS);
7060 }
7061#endif
7062 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo));
7063 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7064 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, &uIntrState);
7065 AssertRCReturn(rc, rc);
7066
7067 /* Update the interruptibility-state as it could have been changed by
7068 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7069 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7070 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7071
7072#ifdef VBOX_WITH_STATISTICS
7073 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7074 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7075 else
7076 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7077#endif
7078 }
7079
7080 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7081 if ( fBlockSti
7082 || fBlockMovSS)
7083 {
7084 if ( !pVCpu->hm.s.fSingleInstruction
7085 && !DBGFIsStepping(pVCpu))
7086 {
7087 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7088 AssertRCReturn(rc2, rc2);
7089 if (pMixedCtx->eflags.Bits.u1TF) /* We don't have any IA32_DEBUGCTL MSR for guests. Treat as all bits 0. */
7090 {
7091 /*
7092 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7093 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7094 * See Intel spec. 27.3.4 "Saving Non-Register State".
7095 */
7096 rc2 = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7097 AssertRCReturn(rc2, rc2);
7098 }
7099 }
7100 else if (pMixedCtx->eflags.Bits.u1TF)
7101 {
7102 /*
7103 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7104 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7105 */
7106 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7107 uIntrState = 0;
7108 }
7109 }
7110
7111 /*
7112 * There's no need to clear the VM entry-interruption information field here if we're not injecting anything.
7113 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7114 */
7115 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7116 AssertRC(rc2);
7117
7118 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
7119 NOREF(fBlockMovSS); NOREF(fBlockSti);
7120 return rc;
7121}
7122
7123
7124/**
7125 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
7126 *
7127 * @param pVCpu Pointer to the VMCPU.
7128 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7129 * out-of-sync. Make sure to update the required fields
7130 * before using them.
7131 */
7132DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7133{
7134 NOREF(pMixedCtx);
7135 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7136 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7137}
7138
7139
7140/**
7141 * Injects a double-fault (#DF) exception into the VM.
7142 *
7143 * @returns VBox status code (informational status code included).
7144 * @param pVCpu Pointer to the VMCPU.
7145 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7146 * out-of-sync. Make sure to update the required fields
7147 * before using them.
7148 */
7149DECLINLINE(int) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t *puIntrState)
7150{
7151 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7152 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7153 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7154 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7155 puIntrState);
7156}
7157
7158
7159/**
7160 * Sets a debug (#DB) exception as pending-for-injection into the VM.
7161 *
7162 * @param pVCpu Pointer to the VMCPU.
7163 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7164 * out-of-sync. Make sure to update the required fields
7165 * before using them.
7166 */
7167DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7168{
7169 NOREF(pMixedCtx);
7170 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7171 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7172 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7173}
7174
7175
7176/**
7177 * Sets an overflow (#OF) exception as pending-for-injection into the VM.
7178 *
7179 * @param pVCpu Pointer to the VMCPU.
7180 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7181 * out-of-sync. Make sure to update the required fields
7182 * before using them.
7183 * @param cbInstr The value of RIP that is to be pushed on the guest
7184 * stack.
7185 */
7186DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7187{
7188 NOREF(pMixedCtx);
7189 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7190 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7191 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7192}
7193
7194
7195/**
7196 * Injects a general-protection (#GP) fault into the VM.
7197 *
7198 * @returns VBox status code (informational status code included).
7199 * @param pVCpu Pointer to the VMCPU.
7200 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7201 * out-of-sync. Make sure to update the required fields
7202 * before using them.
7203 * @param u32ErrorCode The error code associated with the #GP.
7204 */
7205DECLINLINE(int) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7206 uint32_t *puIntrState)
7207{
7208 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7209 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7210 if (fErrorCodeValid)
7211 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7212 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7213 puIntrState);
7214}
7215
7216
7217/**
7218 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7219 *
7220 * @param pVCpu Pointer to the VMCPU.
7221 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7222 * out-of-sync. Make sure to update the required fields
7223 * before using them.
7224 * @param uVector The software interrupt vector number.
7225 * @param cbInstr The value of RIP that is to be pushed on the guest
7226 * stack.
7227 */
7228DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7229{
7230 NOREF(pMixedCtx);
7231 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7232 if ( uVector == X86_XCPT_BP
7233 || uVector == X86_XCPT_OF)
7234 {
7235 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7236 }
7237 else
7238 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7239 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7240}
7241
7242
7243/**
7244 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7245 * stack.
7246 *
7247 * @returns VBox status code (information status code included).
7248 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7249 * @param pVM Pointer to the VM.
7250 * @param pMixedCtx Pointer to the guest-CPU context.
7251 * @param uValue The value to push to the guest stack.
7252 */
7253DECLINLINE(int) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7254{
7255 /*
7256 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7257 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7258 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7259 */
7260 if (pMixedCtx->sp == 1)
7261 return VINF_EM_RESET;
7262 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7263 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7264 AssertRCReturn(rc, rc);
7265 return rc;
7266}
7267
7268
7269/**
7270 * Injects an event into the guest upon VM-entry by updating the relevant fields
7271 * in the VM-entry area in the VMCS.
7272 *
7273 * @returns VBox status code (informational error codes included).
7274 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7275 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7276 *
7277 * @param pVCpu Pointer to the VMCPU.
7278 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7279 * be out-of-sync. Make sure to update the required
7280 * fields before using them.
7281 * @param u64IntInfo The VM-entry interruption-information field.
7282 * @param cbInstr The VM-entry instruction length in bytes (for
7283 * software interrupts, exceptions and privileged
7284 * software exceptions).
7285 * @param u32ErrCode The VM-entry exception error code.
7286 * @param GCPtrFaultAddress The page-fault address for #PF exceptions.
7287 * @param puIntrState Pointer to the current guest interruptibility-state.
7288 * This interruptibility-state will be updated if
7289 * necessary. This cannot not be NULL.
7290 *
7291 * @remarks Requires CR0!
7292 * @remarks No-long-jump zone!!!
7293 */
7294static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7295 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState)
7296{
7297 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7298 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
7299 Assert(puIntrState);
7300 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7301
7302 const uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
7303 const uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
7304
7305#ifdef VBOX_STRICT
7306 /* Validate the error-code-valid bit for hardware exceptions. */
7307 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
7308 {
7309 switch (uVector)
7310 {
7311 case X86_XCPT_PF:
7312 case X86_XCPT_DF:
7313 case X86_XCPT_TS:
7314 case X86_XCPT_NP:
7315 case X86_XCPT_SS:
7316 case X86_XCPT_GP:
7317 case X86_XCPT_AC:
7318 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
7319 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7320 /* fallthru */
7321 default:
7322 break;
7323 }
7324 }
7325#endif
7326
7327 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7328 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7329 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
7330
7331 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7332
7333 /* We require CR0 to check if the guest is in real-mode. */
7334 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7335 AssertRCReturn(rc, rc);
7336
7337 /*
7338 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
7339 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
7340 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
7341 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7342 */
7343 if (CPUMIsGuestInRealModeEx(pMixedCtx))
7344 {
7345 PVM pVM = pVCpu->CTX_SUFF(pVM);
7346 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
7347 {
7348 Assert(PDMVmmDevHeapIsEnabled(pVM));
7349 Assert(pVM->hm.s.vmx.pRealModeTSS);
7350
7351 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
7352 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7353 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
7354 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
7355 AssertRCReturn(rc, rc);
7356 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
7357
7358 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7359 const size_t cbIdtEntry = sizeof(X86IDTR16);
7360 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
7361 {
7362 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7363 if (uVector == X86_XCPT_DF)
7364 return VINF_EM_RESET;
7365 else if (uVector == X86_XCPT_GP)
7366 {
7367 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7368 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, puIntrState);
7369 }
7370
7371 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
7372 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
7373 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */, puIntrState);
7374 }
7375
7376 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7377 uint16_t uGuestIp = pMixedCtx->ip;
7378 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
7379 {
7380 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7381 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7382 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
7383 }
7384 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
7385 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
7386
7387 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7388 X86IDTR16 IdtEntry;
7389 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
7390 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7391 AssertRCReturn(rc, rc);
7392
7393 /* Construct the stack frame for the interrupt/exception handler. */
7394 rc = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
7395 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
7396 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
7397 AssertRCReturn(rc, rc);
7398
7399 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7400 if (rc == VINF_SUCCESS)
7401 {
7402 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7403 pMixedCtx->rip = IdtEntry.offSel;
7404 pMixedCtx->cs.Sel = IdtEntry.uSel;
7405 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7406 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
7407 && uVector == X86_XCPT_PF)
7408 {
7409 pMixedCtx->cr2 = GCPtrFaultAddress;
7410 }
7411
7412 /* If any other guest-state bits are changed here, make sure to update
7413 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7414 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
7415 | HM_CHANGED_GUEST_RIP
7416 | HM_CHANGED_GUEST_RFLAGS
7417 | HM_CHANGED_GUEST_RSP);
7418
7419 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7420 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
7421 {
7422 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7423 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
7424 Log4(("Clearing inhibition due to STI.\n"));
7425 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
7426 }
7427 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x instrlen=%#x\n", u32IntInfo, u32ErrCode, cbInstr));
7428
7429 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7430 it, if we are returning to ring-3 before executing guest code. */
7431 pVCpu->hm.s.Event.fPending = false;
7432 }
7433 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
7434 return rc;
7435 }
7436 else
7437 {
7438 /*
7439 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
7440 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7441 */
7442 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7443 }
7444 }
7445
7446 /* Validate. */
7447 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7448 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK(u32IntInfo)); /* Bit 12 MBZ. */
7449 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
7450
7451 /* Inject. */
7452 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7453 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
7454 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7455 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7456
7457 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
7458 && uVector == X86_XCPT_PF)
7459 {
7460 pMixedCtx->cr2 = GCPtrFaultAddress;
7461 }
7462
7463 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
7464 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
7465
7466 AssertRCReturn(rc, rc);
7467 return rc;
7468}
7469
7470
7471/**
7472 * Clears the interrupt-window exiting control in the VMCS and if necessary
7473 * clears the current event in the VMCS as well.
7474 *
7475 * @returns VBox status code.
7476 * @param pVCpu Pointer to the VMCPU.
7477 *
7478 * @remarks Use this function only to clear events that have not yet been
7479 * delivered to the guest but are injected in the VMCS!
7480 * @remarks No-long-jump zone!!!
7481 */
7482static void hmR0VmxClearEventVmcs(PVMCPU pVCpu)
7483{
7484 int rc;
7485 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
7486
7487 /* Clear interrupt-window exiting control. */
7488 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
7489 {
7490 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7491 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7492 AssertRC(rc);
7493 }
7494
7495 if (!pVCpu->hm.s.Event.fPending)
7496 return;
7497
7498#ifdef VBOX_STRICT
7499 uint32_t u32EntryInfo;
7500 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
7501 AssertRC(rc);
7502 Assert(VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo));
7503#endif
7504
7505 /* Clear the entry-interruption field (including the valid bit). */
7506 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7507 AssertRC(rc);
7508
7509 /* Clear the pending debug exception field. */
7510 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
7511 AssertRC(rc);
7512}
7513
7514
7515/**
7516 * Enters the VT-x session.
7517 *
7518 * @returns VBox status code.
7519 * @param pVM Pointer to the VM.
7520 * @param pVCpu Pointer to the VMCPU.
7521 * @param pCpu Pointer to the CPU info struct.
7522 */
7523VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
7524{
7525 AssertPtr(pVM);
7526 AssertPtr(pVCpu);
7527 Assert(pVM->hm.s.vmx.fSupported);
7528 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7529 NOREF(pCpu); NOREF(pVM);
7530
7531 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7532 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
7533
7534#ifdef VBOX_STRICT
7535 /* Make sure we're in VMX root mode. */
7536 RTCCUINTREG u32HostCR4 = ASMGetCR4();
7537 if (!(u32HostCR4 & X86_CR4_VMXE))
7538 {
7539 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
7540 return VERR_VMX_X86_CR4_VMXE_CLEARED;
7541 }
7542#endif
7543
7544 /*
7545 * Load the VCPU's VMCS as the current (and active) one.
7546 */
7547 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
7548 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7549 if (RT_FAILURE(rc))
7550 return rc;
7551
7552 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
7553 pVCpu->hm.s.fLeaveDone = false;
7554 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
7555
7556 return VINF_SUCCESS;
7557}
7558
7559
7560/**
7561 * The thread-context callback (only on platforms which support it).
7562 *
7563 * @param enmEvent The thread-context event.
7564 * @param pVCpu Pointer to the VMCPU.
7565 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
7566 * @thread EMT(pVCpu)
7567 */
7568VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
7569{
7570 NOREF(fGlobalInit);
7571
7572 switch (enmEvent)
7573 {
7574 case RTTHREADCTXEVENT_PREEMPTING:
7575 {
7576 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7577 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
7578 VMCPU_ASSERT_EMT(pVCpu);
7579
7580 PVM pVM = pVCpu->CTX_SUFF(pVM);
7581 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
7582
7583 /* No longjmps (logger flushes, locks) in this fragile context. */
7584 VMMRZCallRing3Disable(pVCpu);
7585 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
7586
7587 /*
7588 * Restore host-state (FPU, debug etc.)
7589 */
7590 if (!pVCpu->hm.s.fLeaveDone)
7591 {
7592 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
7593 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
7594 hmR0VmxLeave(pVM, pVCpu, pMixedCtx, false /* fSaveGuestState */);
7595 pVCpu->hm.s.fLeaveDone = true;
7596 }
7597
7598 /* Leave HM context, takes care of local init (term). */
7599 int rc = HMR0LeaveCpu(pVCpu);
7600 AssertRC(rc); NOREF(rc);
7601
7602 /* Restore longjmp state. */
7603 VMMRZCallRing3Enable(pVCpu);
7604 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptPreempting);
7605 break;
7606 }
7607
7608 case RTTHREADCTXEVENT_RESUMED:
7609 {
7610 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7611 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
7612 VMCPU_ASSERT_EMT(pVCpu);
7613
7614 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
7615 VMMRZCallRing3Disable(pVCpu);
7616 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
7617
7618 /* Initialize the bare minimum state required for HM. This takes care of
7619 initializing VT-x if necessary (onlined CPUs, local init etc.) */
7620 int rc = HMR0EnterCpu(pVCpu);
7621 AssertRC(rc);
7622 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
7623
7624 /* Load the active VMCS as the current one. */
7625 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
7626 {
7627 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7628 AssertRC(rc); NOREF(rc);
7629 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
7630 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
7631 }
7632 pVCpu->hm.s.fLeaveDone = false;
7633
7634 /* Restore longjmp state. */
7635 VMMRZCallRing3Enable(pVCpu);
7636 break;
7637 }
7638
7639 default:
7640 break;
7641 }
7642}
7643
7644
7645/**
7646 * Saves the host state in the VMCS host-state.
7647 * Sets up the VM-exit MSR-load area.
7648 *
7649 * The CPU state will be loaded from these fields on every successful VM-exit.
7650 *
7651 * @returns VBox status code.
7652 * @param pVM Pointer to the VM.
7653 * @param pVCpu Pointer to the VMCPU.
7654 *
7655 * @remarks No-long-jump zone!!!
7656 */
7657static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
7658{
7659 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7660
7661 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
7662 return VINF_SUCCESS;
7663
7664 int rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
7665 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7666
7667 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
7668 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7669
7670 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
7671 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7672
7673 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
7674 return rc;
7675}
7676
7677
7678/**
7679 * Saves the host state in the VMCS host-state.
7680 *
7681 * @returns VBox status code.
7682 * @param pVM Pointer to the VM.
7683 * @param pVCpu Pointer to the VMCPU.
7684 *
7685 * @remarks No-long-jump zone!!!
7686 */
7687VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
7688{
7689 AssertPtr(pVM);
7690 AssertPtr(pVCpu);
7691
7692 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7693
7694 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
7695 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
7696 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7697 return hmR0VmxSaveHostState(pVM, pVCpu);
7698}
7699
7700
7701/**
7702 * Loads the guest state into the VMCS guest-state area. The CPU state will be
7703 * loaded from these fields on every successful VM-entry.
7704 *
7705 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas.
7706 * Sets up the VM-entry controls.
7707 * Sets up the appropriate VMX non-root function to execute guest code based on
7708 * the guest CPU mode.
7709 *
7710 * @returns VBox status code.
7711 * @param pVM Pointer to the VM.
7712 * @param pVCpu Pointer to the VMCPU.
7713 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7714 * out-of-sync. Make sure to update the required fields
7715 * before using them.
7716 *
7717 * @remarks No-long-jump zone!!!
7718 */
7719static int hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7720{
7721 AssertPtr(pVM);
7722 AssertPtr(pVCpu);
7723 AssertPtr(pMixedCtx);
7724 HMVMX_ASSERT_PREEMPT_SAFE();
7725
7726#ifdef LOG_ENABLED
7727 /** @todo r=ramshankar: I'm not able to use VMMRZCallRing3Disable() here,
7728 * probably not initialized yet? Anyway this will do for now.
7729 *
7730 * Update: Should be possible once VMXR0LoadGuestState() is removed as an
7731 * interface and disable ring-3 calls when thread-context hooks are not
7732 * available. */
7733 bool fCallerDisabledLogFlush = VMMR0IsLogFlushDisabled(pVCpu);
7734 VMMR0LogFlushDisable(pVCpu);
7735#endif
7736
7737 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
7738
7739 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
7740
7741 /* Determine real-on-v86 mode. */
7742 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
7743 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
7744 && CPUMIsGuestInRealModeEx(pMixedCtx))
7745 {
7746 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
7747 }
7748
7749 /*
7750 * Load the guest-state into the VMCS.
7751 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
7752 * Ideally, assert that the cross-dependent bits are up to date at the point of using it.
7753 */
7754 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
7755 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7756
7757 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
7758 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
7759 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7760
7761 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
7762 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
7763 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7764
7765 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
7766 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7767
7768 rc = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
7769 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestCR3AndCR4: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7770
7771 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
7772 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
7773 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7774
7775 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
7776 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadSharedMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7777
7778 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
7779 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7780
7781 /*
7782 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
7783 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
7784 */
7785 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
7786 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
7787
7788 /* Clear any unused and reserved bits. */
7789 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
7790
7791#ifdef LOG_ENABLED
7792 /* Only reenable log-flushing if the caller has it enabled. */
7793 if (!fCallerDisabledLogFlush)
7794 VMMR0LogFlushEnable(pVCpu);
7795#endif
7796
7797 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
7798 return rc;
7799}
7800
7801
7802/**
7803 * Loads the state shared between the host and guest into the VMCS.
7804 *
7805 * @param pVM Pointer to the VM.
7806 * @param pVCpu Pointer to the VMCPU.
7807 * @param pCtx Pointer to the guest-CPU context.
7808 *
7809 * @remarks No-long-jump zone!!!
7810 */
7811static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
7812{
7813 NOREF(pVM);
7814
7815 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7816 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7817
7818 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
7819 {
7820 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
7821 AssertRC(rc);
7822 }
7823
7824 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
7825 {
7826 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
7827 AssertRC(rc);
7828
7829 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
7830 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
7831 {
7832 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
7833 AssertRC(rc);
7834 }
7835 }
7836
7837 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
7838 {
7839#if HC_ARCH_BITS == 64
7840 if (pVM->hm.s.fAllow64BitGuests)
7841 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
7842#endif
7843 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
7844 }
7845
7846 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
7847 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
7848}
7849
7850
7851/**
7852 * Worker for loading the guest-state bits in the inner VT-x execution loop.
7853 *
7854 * @param pVM Pointer to the VM.
7855 * @param pVCpu Pointer to the VMCPU.
7856 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7857 * out-of-sync. Make sure to update the required fields
7858 * before using them.
7859 */
7860DECLINLINE(void) hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7861{
7862 HMVMX_ASSERT_PREEMPT_SAFE();
7863
7864 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
7865#ifdef HMVMX_SYNC_FULL_GUEST_STATE
7866 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7867#endif
7868
7869 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
7870 {
7871 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
7872 AssertRC(rc);
7873 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
7874 }
7875 else if (HMCPU_CF_VALUE(pVCpu))
7876 {
7877 int rc = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
7878 AssertRC(rc);
7879 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
7880 }
7881
7882 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
7883 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
7884 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
7885 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
7886
7887#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
7888 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
7889 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
7890 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
7891#endif
7892}
7893
7894
7895/**
7896 * Does the preparations before executing guest code in VT-x.
7897 *
7898 * This may cause longjmps to ring-3 and may even result in rescheduling to the
7899 * recompiler. We must be cautious what we do here regarding committing
7900 * guest-state information into the VMCS assuming we assuredly execute the
7901 * guest in VT-x mode. If we fall back to the recompiler after updating the VMCS
7902 * and clearing the common-state (TRPM/forceflags), we must undo those changes
7903 * so that the recompiler can (and should) use them when it resumes guest
7904 * execution. Otherwise such operations must be done when we can no longer
7905 * exit to ring-3.
7906 *
7907 * @returns Strict VBox status code.
7908 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
7909 * have been disabled.
7910 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
7911 * double-fault into the guest.
7912 * @retval VINF_* scheduling changes, we have to go back to ring-3.
7913 *
7914 * @param pVM Pointer to the VM.
7915 * @param pVCpu Pointer to the VMCPU.
7916 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7917 * out-of-sync. Make sure to update the required fields
7918 * before using them.
7919 * @param pVmxTransient Pointer to the VMX transient structure.
7920 */
7921static int hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
7922{
7923 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7924
7925#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
7926 PGMRZDynMapFlushAutoSet(pVCpu);
7927#endif
7928
7929 /* Check force flag actions that might require us to go back to ring-3. */
7930 int rc = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx);
7931 if (rc != VINF_SUCCESS)
7932 return rc;
7933
7934#ifndef IEM_VERIFICATION_MODE_FULL
7935 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
7936 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
7937 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
7938 {
7939 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
7940 RTGCPHYS GCPhysApicBase;
7941 GCPhysApicBase = pMixedCtx->msrApicBase;
7942 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7943
7944 /* Unalias any existing mapping. */
7945 rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
7946 AssertRCReturn(rc, rc);
7947
7948 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
7949 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGv\n", GCPhysApicBase));
7950 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
7951 AssertRCReturn(rc, rc);
7952
7953 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
7954 }
7955#endif /* !IEM_VERIFICATION_MODE_FULL */
7956
7957 /* Load the guest state bits, we can handle longjmps/getting preempted here. */
7958 hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
7959
7960 /*
7961 * Evaluate events as pending-for-injection into the guest. Toggling of force-flags here is safe as long as
7962 * we update TRPM on premature exits to ring-3 before executing guest code. We must NOT restore the force-flags.
7963 */
7964 if (TRPMHasTrap(pVCpu))
7965 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
7966 else if (!pVCpu->hm.s.Event.fPending)
7967 hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
7968
7969 /*
7970 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
7971 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
7972 */
7973 rc = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx);
7974 if (RT_UNLIKELY(rc != VINF_SUCCESS))
7975 {
7976 Assert(rc == VINF_EM_RESET);
7977 return rc;
7978 }
7979
7980 /*
7981 * No longjmps to ring-3 from this point on!!!
7982 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
7983 * This also disables flushing of the R0-logger instance (if any).
7984 */
7985 VMMRZCallRing3Disable(pVCpu);
7986
7987 /*
7988 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
7989 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
7990 *
7991 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
7992 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
7993 *
7994 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
7995 * executing guest code.
7996 */
7997 pVmxTransient->uEflags = ASMIntDisableFlags();
7998 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
7999 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8000 {
8001 hmR0VmxClearEventVmcs(pVCpu);
8002 ASMSetFlags(pVmxTransient->uEflags);
8003 VMMRZCallRing3Enable(pVCpu);
8004 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8005 return VINF_EM_RAW_TO_R3;
8006 }
8007 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
8008 {
8009 hmR0VmxClearEventVmcs(pVCpu);
8010 ASMSetFlags(pVmxTransient->uEflags);
8011 VMMRZCallRing3Enable(pVCpu);
8012 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8013 return VINF_EM_RAW_INTERRUPT;
8014 }
8015
8016 /* We've injected any pending events. This is really the point of no return (to ring-3). */
8017 pVCpu->hm.s.Event.fPending = false;
8018
8019 return VINF_SUCCESS;
8020}
8021
8022
8023/**
8024 * Prepares to run guest code in VT-x and we've committed to doing so. This
8025 * means there is no backing out to ring-3 or anywhere else at this
8026 * point.
8027 *
8028 * @param pVM Pointer to the VM.
8029 * @param pVCpu Pointer to the VMCPU.
8030 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8031 * out-of-sync. Make sure to update the required fields
8032 * before using them.
8033 * @param pVmxTransient Pointer to the VMX transient structure.
8034 *
8035 * @remarks Called with preemption disabled.
8036 * @remarks No-long-jump zone!!!
8037 */
8038static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8039{
8040 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8041 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8042 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8043
8044 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8045 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
8046
8047 /*
8048 * If we are injecting events to a real-on-v86 mode guest, we may have to update
8049 * RIP and some other registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8050 * Reload only the necessary state, the assertion will catch if other parts of the code
8051 * change.
8052 */
8053 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
8054 {
8055 hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8056 hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8057 }
8058
8059#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8060 if (!CPUMIsGuestFPUStateActive(pVCpu))
8061 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8062 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8063#endif
8064
8065 if ( pVCpu->hm.s.fUseGuestFpu
8066 && !CPUMIsGuestFPUStateActive(pVCpu))
8067 {
8068 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8069 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8070 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8071 }
8072
8073 /*
8074 * The host MSR values the very first time around won't be updated, so we need to
8075 * fill those values in. Subsequently, it's updated as part of the host state.
8076 */
8077 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8078 && pVCpu->hm.s.vmx.cMsrs > 0)
8079 {
8080 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8081 }
8082
8083 /*
8084 * Load the host state bits as we may've been preempted (only happens when
8085 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8086 */
8087 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8088 {
8089 /* This ASSUMES that pfnStartVM has been set up already. */
8090 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8091 AssertRC(rc);
8092 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptSaveHostState);
8093 }
8094 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8095
8096 /*
8097 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8098 */
8099 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8100 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8101 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8102
8103 /* Store status of the shared guest-host state at the time of VM-entry. */
8104#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8105 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8106 {
8107 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8108 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8109 }
8110 else
8111#endif
8112 {
8113 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8114 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8115 }
8116 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8117
8118 /*
8119 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8120 */
8121 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8122 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
8123
8124 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
8125 RTCPUID idCurrentCpu = pCpu->idCpu;
8126 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8127 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8128 {
8129 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8130 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8131 }
8132
8133 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
8134 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8135 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8136 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8137
8138 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8139
8140 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8141 to start executing. */
8142
8143 /*
8144 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8145 */
8146 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8147 {
8148 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8149 {
8150 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8151 AssertRC(rc2);
8152 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8153 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */);
8154 }
8155 else
8156 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8157 }
8158#ifdef VBOX_STRICT
8159 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8160#endif
8161}
8162
8163
8164/**
8165 * Performs some essential restoration of state after running guest code in
8166 * VT-x.
8167 *
8168 * @param pVM Pointer to the VM.
8169 * @param pVCpu Pointer to the VMCPU.
8170 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8171 * out-of-sync. Make sure to update the required fields
8172 * before using them.
8173 * @param pVmxTransient Pointer to the VMX transient structure.
8174 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8175 *
8176 * @remarks Called with interrupts disabled, and returns with interrups enabled!
8177 *
8178 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8179 * unconditionally when it is safe to do so.
8180 */
8181static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8182{
8183 NOREF(pVM);
8184
8185 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8186
8187 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
8188 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
8189 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8190 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8191 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8192
8193 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8194 {
8195 /** @todo Find a way to fix hardcoding a guestimate. */
8196 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC()
8197 + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
8198 }
8199
8200 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8201 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8202 Assert(!(ASMGetFlags() & X86_EFL_IF));
8203 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8204
8205#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8206 if (CPUMIsGuestFPUStateActive(pVCpu))
8207 {
8208 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8209 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
8210 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8211 }
8212#endif
8213
8214 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8215 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8216 ASMSetFlags(pVmxTransient->uEflags); /* Enable interrupts. */
8217 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8218
8219 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8220 uint32_t uExitReason;
8221 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8222 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8223 AssertRC(rc);
8224 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8225 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8226
8227 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
8228 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
8229 {
8230 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
8231 pVmxTransient->fVMEntryFailed));
8232 return;
8233 }
8234
8235 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
8236 {
8237 /* Update the guest interruptibility-state from the VMCS. */
8238 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
8239#if defined(HMVMX_SYNC_FULL_GUEST_STATE) || defined(HMVMX_SAVE_FULL_GUEST_STATE)
8240 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8241 AssertRC(rc);
8242#endif
8243 /*
8244 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
8245 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
8246 * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
8247 * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
8248 */
8249 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8250 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
8251 {
8252 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
8253 AssertRC(rc);
8254 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
8255 }
8256 }
8257}
8258
8259
8260
8261/**
8262 * Runs the guest code using VT-x the normal way.
8263 *
8264 * @returns VBox status code.
8265 * @param pVM Pointer to the VM.
8266 * @param pVCpu Pointer to the VMCPU.
8267 * @param pCtx Pointer to the guest-CPU context.
8268 *
8269 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8270 */
8271static int hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8272{
8273 VMXTRANSIENT VmxTransient;
8274 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8275 int rc = VERR_INTERNAL_ERROR_5;
8276 uint32_t cLoops = 0;
8277
8278 for (;; cLoops++)
8279 {
8280 Assert(!HMR0SuspendPending());
8281 HMVMX_ASSERT_CPU_SAFE();
8282
8283 /* Preparatory work for running guest code, this may force us to return
8284 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8285 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8286 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
8287 if (rc != VINF_SUCCESS)
8288 break;
8289
8290 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
8291 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
8292 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
8293
8294 /* Restore any residual host-state and save any bits shared between host
8295 and guest into the guest-CPU state. Re-enables interrupts! */
8296 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
8297
8298 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8299 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8300 {
8301 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
8302 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
8303 return rc;
8304 }
8305
8306 /* Handle the VM-exit. */
8307 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8308 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8309 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8310 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
8311 HMVMX_START_EXIT_DISPATCH_PROF();
8312#ifdef HMVMX_USE_FUNCTION_TABLE
8313 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
8314#else
8315 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
8316#endif
8317 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
8318 if (rc != VINF_SUCCESS)
8319 break;
8320 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
8321 {
8322 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
8323 rc = VINF_EM_RAW_INTERRUPT;
8324 break;
8325 }
8326 }
8327
8328 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8329 return rc;
8330}
8331
8332
8333/**
8334 * Single steps guest code using VT-x.
8335 *
8336 * @returns VBox status code.
8337 * @param pVM Pointer to the VM.
8338 * @param pVCpu Pointer to the VMCPU.
8339 * @param pCtx Pointer to the guest-CPU context.
8340 *
8341 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
8342 */
8343static int hmR0VmxRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8344{
8345 VMXTRANSIENT VmxTransient;
8346 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8347 int rc = VERR_INTERNAL_ERROR_5;
8348 uint32_t cLoops = 0;
8349 uint16_t uCsStart = pCtx->cs.Sel;
8350 uint64_t uRipStart = pCtx->rip;
8351
8352 for (;; cLoops++)
8353 {
8354 Assert(!HMR0SuspendPending());
8355 HMVMX_ASSERT_CPU_SAFE();
8356
8357 /* Preparatory work for running guest code, this may force us to return
8358 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8359 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8360 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
8361 if (rc != VINF_SUCCESS)
8362 break;
8363
8364 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
8365 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
8366 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
8367
8368 /* Restore any residual host-state and save any bits shared between host
8369 and guest into the guest-CPU state. Re-enables interrupts! */
8370 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
8371
8372 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8373 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8374 {
8375 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
8376 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
8377 return rc;
8378 }
8379
8380 /* Handle the VM-exit. */
8381 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8382 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8383 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8384 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
8385 HMVMX_START_EXIT_DISPATCH_PROF();
8386#ifdef HMVMX_USE_FUNCTION_TABLE
8387 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
8388#else
8389 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
8390#endif
8391 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
8392 if (rc != VINF_SUCCESS)
8393 break;
8394 else if (cLoops > pVM->hm.s.cMaxResumeLoops)
8395 {
8396 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
8397 rc = VINF_EM_RAW_INTERRUPT;
8398 break;
8399 }
8400
8401 /*
8402 * Did the RIP change, if so, consider it a single step.
8403 * Otherwise, make sure one of the TFs gets set.
8404 */
8405 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
8406 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
8407 AssertRCReturn(rc2, rc2);
8408 if ( pCtx->rip != uRipStart
8409 || pCtx->cs.Sel != uCsStart)
8410 {
8411 rc = VINF_EM_DBG_STEPPED;
8412 break;
8413 }
8414 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
8415 }
8416
8417 /*
8418 * Clear the X86_EFL_TF if necessary.
8419 */
8420 if (pVCpu->hm.s.fClearTrapFlag)
8421 {
8422 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
8423 AssertRCReturn(rc2, rc2);
8424 pVCpu->hm.s.fClearTrapFlag = false;
8425 pCtx->eflags.Bits.u1TF = 0;
8426 }
8427 /** @todo there seems to be issues with the resume flag when the monitor trap
8428 * flag is pending without being used. Seen early in bios init when
8429 * accessing APIC page in prot mode. */
8430
8431 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8432 return rc;
8433}
8434
8435
8436/**
8437 * Runs the guest code using VT-x.
8438 *
8439 * @returns VBox status code.
8440 * @param pVM Pointer to the VM.
8441 * @param pVCpu Pointer to the VMCPU.
8442 * @param pCtx Pointer to the guest-CPU context.
8443 */
8444VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8445{
8446 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8447 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
8448 HMVMX_ASSERT_PREEMPT_SAFE();
8449
8450 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
8451
8452 int rc;
8453 if (!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu))
8454 rc = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
8455 else
8456 rc = hmR0VmxRunGuestCodeStep(pVM, pVCpu, pCtx);
8457
8458 if (rc == VERR_EM_INTERPRETER)
8459 rc = VINF_EM_RAW_EMULATE_INSTR;
8460 else if (rc == VINF_EM_RESET)
8461 rc = VINF_EM_TRIPLE_FAULT;
8462
8463 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rc);
8464 if (RT_FAILURE(rc2))
8465 {
8466 pVCpu->hm.s.u32HMError = rc;
8467 rc = rc2;
8468 }
8469 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
8470 return rc;
8471}
8472
8473
8474#ifndef HMVMX_USE_FUNCTION_TABLE
8475DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
8476{
8477#ifdef DEBUG_ramshankar
8478# define SVVMCS() do { int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); } while (0)
8479# define LDVMCS() do { HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); } while (0)
8480#endif
8481 int rc;
8482 switch (rcReason)
8483 {
8484 case VMX_EXIT_EPT_MISCONFIG: /* SVVMCS(); */ rc = hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8485 case VMX_EXIT_EPT_VIOLATION: /* SVVMCS(); */ rc = hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8486 case VMX_EXIT_IO_INSTR: /* SVVMCS(); */ rc = hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8487 case VMX_EXIT_CPUID: /* SVVMCS(); */ rc = hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8488 case VMX_EXIT_RDTSC: /* SVVMCS(); */ rc = hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8489 case VMX_EXIT_RDTSCP: /* SVVMCS(); */ rc = hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8490 case VMX_EXIT_APIC_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8491 case VMX_EXIT_XCPT_OR_NMI: /* SVVMCS(); */ rc = hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8492 case VMX_EXIT_MOV_CRX: /* SVVMCS(); */ rc = hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8493 case VMX_EXIT_EXT_INT: /* SVVMCS(); */ rc = hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8494 case VMX_EXIT_INT_WINDOW: /* SVVMCS(); */ rc = hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8495 case VMX_EXIT_MWAIT: /* SVVMCS(); */ rc = hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8496 case VMX_EXIT_MONITOR: /* SVVMCS(); */ rc = hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8497 case VMX_EXIT_TASK_SWITCH: /* SVVMCS(); */ rc = hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8498 case VMX_EXIT_PREEMPT_TIMER: /* SVVMCS(); */ rc = hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8499 case VMX_EXIT_RDMSR: /* SVVMCS(); */ rc = hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8500 case VMX_EXIT_WRMSR: /* SVVMCS(); */ rc = hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8501 case VMX_EXIT_MOV_DRX: /* SVVMCS(); */ rc = hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8502 case VMX_EXIT_TPR_BELOW_THRESHOLD: /* SVVMCS(); */ rc = hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8503 case VMX_EXIT_HLT: /* SVVMCS(); */ rc = hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8504 case VMX_EXIT_INVD: /* SVVMCS(); */ rc = hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8505 case VMX_EXIT_INVLPG: /* SVVMCS(); */ rc = hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8506 case VMX_EXIT_RSM: /* SVVMCS(); */ rc = hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8507 case VMX_EXIT_MTF: /* SVVMCS(); */ rc = hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8508 case VMX_EXIT_PAUSE: /* SVVMCS(); */ rc = hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8509 case VMX_EXIT_XDTR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8510 case VMX_EXIT_TR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8511 case VMX_EXIT_WBINVD: /* SVVMCS(); */ rc = hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8512 case VMX_EXIT_XSETBV: /* SVVMCS(); */ rc = hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8513 case VMX_EXIT_RDRAND: /* SVVMCS(); */ rc = hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8514 case VMX_EXIT_INVPCID: /* SVVMCS(); */ rc = hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8515 case VMX_EXIT_GETSEC: /* SVVMCS(); */ rc = hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8516 case VMX_EXIT_RDPMC: /* SVVMCS(); */ rc = hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
8517
8518 case VMX_EXIT_TRIPLE_FAULT: rc = hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient); break;
8519 case VMX_EXIT_NMI_WINDOW: rc = hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient); break;
8520 case VMX_EXIT_INIT_SIGNAL: rc = hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient); break;
8521 case VMX_EXIT_SIPI: rc = hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient); break;
8522 case VMX_EXIT_IO_SMI: rc = hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient); break;
8523 case VMX_EXIT_SMI: rc = hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient); break;
8524 case VMX_EXIT_ERR_MSR_LOAD: rc = hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient); break;
8525 case VMX_EXIT_ERR_INVALID_GUEST_STATE: rc = hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient); break;
8526 case VMX_EXIT_ERR_MACHINE_CHECK: rc = hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient); break;
8527
8528 case VMX_EXIT_VMCALL:
8529 case VMX_EXIT_VMCLEAR:
8530 case VMX_EXIT_VMLAUNCH:
8531 case VMX_EXIT_VMPTRLD:
8532 case VMX_EXIT_VMPTRST:
8533 case VMX_EXIT_VMREAD:
8534 case VMX_EXIT_VMRESUME:
8535 case VMX_EXIT_VMWRITE:
8536 case VMX_EXIT_VMXOFF:
8537 case VMX_EXIT_VMXON:
8538 case VMX_EXIT_INVEPT:
8539 case VMX_EXIT_INVVPID:
8540 case VMX_EXIT_VMFUNC:
8541 rc = hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
8542 break;
8543 default:
8544 rc = hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
8545 break;
8546 }
8547 return rc;
8548}
8549#endif
8550
8551#ifdef DEBUG
8552/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
8553# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
8554 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
8555
8556# define HMVMX_ASSERT_PREEMPT_CPUID() \
8557 do \
8558 { \
8559 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
8560 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
8561 } while (0)
8562
8563# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
8564 do { \
8565 AssertPtr(pVCpu); \
8566 AssertPtr(pMixedCtx); \
8567 AssertPtr(pVmxTransient); \
8568 Assert(pVmxTransient->fVMEntryFailed == false); \
8569 Assert(ASMIntAreEnabled()); \
8570 HMVMX_ASSERT_PREEMPT_SAFE(); \
8571 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
8572 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
8573 HMVMX_ASSERT_PREEMPT_SAFE(); \
8574 if (VMMR0IsLogFlushDisabled(pVCpu)) \
8575 HMVMX_ASSERT_PREEMPT_CPUID(); \
8576 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
8577 } while (0)
8578
8579# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
8580 do { \
8581 Log4Func(("\n")); \
8582 } while (0)
8583#else /* Release builds */
8584# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
8585 do { \
8586 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
8587 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
8588 } while (0)
8589# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
8590#endif
8591
8592
8593/**
8594 * Advances the guest RIP after reading it from the VMCS.
8595 *
8596 * @returns VBox status code.
8597 * @param pVCpu Pointer to the VMCPU.
8598 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8599 * out-of-sync. Make sure to update the required fields
8600 * before using them.
8601 * @param pVmxTransient Pointer to the VMX transient structure.
8602 *
8603 * @remarks No-long-jump zone!!!
8604 */
8605DECLINLINE(int) hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8606{
8607 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
8608 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
8609 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8610 AssertRCReturn(rc, rc);
8611
8612 pMixedCtx->rip += pVmxTransient->cbInstr;
8613 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
8614
8615 /*
8616 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
8617 * pending debug exception field as it takes care of priority of events.
8618 *
8619 * See Intel spec. 32.2.1 "Debug Exceptions".
8620 */
8621 if (pMixedCtx->eflags.Bits.u1TF)
8622 {
8623 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
8624 AssertRCReturn(rc, rc);
8625 }
8626
8627 return rc;
8628}
8629
8630
8631/**
8632 * Tries to determine what part of the guest-state VT-x has deemed as invalid
8633 * and update error record fields accordingly.
8634 *
8635 * @return VMX_IGS_* return codes.
8636 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
8637 * wrong with the guest state.
8638 *
8639 * @param pVM Pointer to the VM.
8640 * @param pVCpu Pointer to the VMCPU.
8641 * @param pCtx Pointer to the guest-CPU state.
8642 */
8643static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8644{
8645#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
8646#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
8647 uError = (err); \
8648 break; \
8649 } else do { } while (0)
8650
8651 int rc;
8652 uint32_t uError = VMX_IGS_ERROR;
8653 uint32_t u32Val;
8654 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
8655
8656 do
8657 {
8658 /*
8659 * CR0.
8660 */
8661 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
8662 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
8663 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
8664 See Intel spec. 26.3.1 "Checks on guest Guest Control Registers, Debug Registers and MSRs." */
8665 if (fUnrestrictedGuest)
8666 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
8667
8668 uint32_t u32GuestCR0;
8669 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
8670 AssertRCBreak(rc);
8671 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
8672 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
8673 if ( !fUnrestrictedGuest
8674 && (u32GuestCR0 & X86_CR0_PG)
8675 && !(u32GuestCR0 & X86_CR0_PE))
8676 {
8677 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
8678 }
8679
8680 /*
8681 * CR4.
8682 */
8683 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
8684 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
8685
8686 uint32_t u32GuestCR4;
8687 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
8688 AssertRCBreak(rc);
8689 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
8690 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
8691
8692 /*
8693 * IA32_DEBUGCTL MSR.
8694 */
8695 uint64_t u64Val;
8696 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
8697 AssertRCBreak(rc);
8698 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
8699 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
8700 {
8701 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
8702 }
8703 uint64_t u64DebugCtlMsr = u64Val;
8704
8705#ifdef VBOX_STRICT
8706 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
8707 AssertRCBreak(rc);
8708 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
8709#endif
8710 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
8711
8712 /*
8713 * RIP and RFLAGS.
8714 */
8715 uint32_t u32Eflags;
8716#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8717 if (HMVMX_IS_64BIT_HOST_MODE())
8718 {
8719 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
8720 AssertRCBreak(rc);
8721 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
8722 if ( !fLongModeGuest
8723 || !pCtx->cs.Attr.n.u1Long)
8724 {
8725 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
8726 }
8727 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
8728 * must be identical if the "IA32e mode guest" VM-entry control is 1
8729 * and CS.L is 1. No check applies if the CPU supports 64
8730 * linear-address bits. */
8731
8732 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
8733 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
8734 AssertRCBreak(rc);
8735 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
8736 VMX_IGS_RFLAGS_RESERVED);
8737 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
8738 u32Eflags = u64Val;
8739 }
8740 else
8741#endif
8742 {
8743 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
8744 AssertRCBreak(rc);
8745 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
8746 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
8747 }
8748
8749 if ( fLongModeGuest
8750 || ( fUnrestrictedGuest
8751 && !(u32GuestCR0 & X86_CR0_PE)))
8752 {
8753 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
8754 }
8755
8756 uint32_t u32EntryInfo;
8757 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
8758 AssertRCBreak(rc);
8759 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
8760 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
8761 {
8762 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
8763 }
8764
8765 /*
8766 * 64-bit checks.
8767 */
8768#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8769 if (HMVMX_IS_64BIT_HOST_MODE())
8770 {
8771 if ( fLongModeGuest
8772 && !fUnrestrictedGuest)
8773 {
8774 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
8775 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
8776 }
8777
8778 if ( !fLongModeGuest
8779 && (u32GuestCR4 & X86_CR4_PCIDE))
8780 {
8781 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
8782 }
8783
8784 /** @todo CR3 field must be such that bits 63:52 and bits in the range
8785 * 51:32 beyond the processor's physical-address width are 0. */
8786
8787 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
8788 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
8789 {
8790 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
8791 }
8792
8793 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
8794 AssertRCBreak(rc);
8795 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
8796
8797 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
8798 AssertRCBreak(rc);
8799 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
8800 }
8801#endif
8802
8803 /*
8804 * PERF_GLOBAL MSR.
8805 */
8806 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
8807 {
8808 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
8809 AssertRCBreak(rc);
8810 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
8811 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
8812 }
8813
8814 /*
8815 * PAT MSR.
8816 */
8817 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
8818 {
8819 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
8820 AssertRCBreak(rc);
8821 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
8822 for (unsigned i = 0; i < 8; i++)
8823 {
8824 uint8_t u8Val = (u64Val & 0x7);
8825 if ( u8Val != 0 /* UC */
8826 || u8Val != 1 /* WC */
8827 || u8Val != 4 /* WT */
8828 || u8Val != 5 /* WP */
8829 || u8Val != 6 /* WB */
8830 || u8Val != 7 /* UC- */)
8831 {
8832 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
8833 }
8834 u64Val >>= 3;
8835 }
8836 }
8837
8838 /*
8839 * EFER MSR.
8840 */
8841 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
8842 {
8843 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
8844 AssertRCBreak(rc);
8845 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
8846 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
8847 HMVMX_CHECK_BREAK((u64Val & MSR_K6_EFER_LMA) == (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
8848 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
8849 HMVMX_CHECK_BREAK( fUnrestrictedGuest
8850 || (u64Val & MSR_K6_EFER_LMA) == (u32GuestCR0 & X86_CR0_PG), VMX_IGS_EFER_LMA_PG_MISMATCH);
8851 }
8852
8853 /*
8854 * Segment registers.
8855 */
8856 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
8857 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
8858 if (!(u32Eflags & X86_EFL_VM))
8859 {
8860 /* CS */
8861 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
8862 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
8863 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
8864 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
8865 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
8866 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
8867 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
8868 /* CS cannot be loaded with NULL in protected mode. */
8869 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
8870 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
8871 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
8872 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
8873 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
8874 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
8875 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
8876 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
8877 else
8878 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
8879
8880 /* SS */
8881 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8882 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
8883 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
8884 if ( !(pCtx->cr0 & X86_CR0_PE)
8885 || pCtx->cs.Attr.n.u4Type == 3)
8886 {
8887 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
8888 }
8889 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
8890 {
8891 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
8892 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
8893 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
8894 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
8895 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
8896 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
8897 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
8898 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
8899 }
8900
8901 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
8902 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
8903 {
8904 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
8905 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
8906 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8907 || pCtx->ds.Attr.n.u4Type > 11
8908 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
8909 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
8910 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
8911 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
8912 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
8913 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
8914 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
8915 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8916 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
8917 }
8918 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
8919 {
8920 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
8921 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
8922 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8923 || pCtx->es.Attr.n.u4Type > 11
8924 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
8925 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
8926 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
8927 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
8928 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
8929 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
8930 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
8931 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8932 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
8933 }
8934 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
8935 {
8936 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
8937 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
8938 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8939 || pCtx->fs.Attr.n.u4Type > 11
8940 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
8941 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
8942 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
8943 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
8944 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
8945 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
8946 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
8947 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8948 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
8949 }
8950 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
8951 {
8952 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
8953 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
8954 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
8955 || pCtx->gs.Attr.n.u4Type > 11
8956 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
8957 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
8958 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
8959 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
8960 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
8961 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
8962 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
8963 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
8964 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
8965 }
8966 /* 64-bit capable CPUs. */
8967#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8968 if (HMVMX_IS_64BIT_HOST_MODE())
8969 {
8970 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
8971 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
8972 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
8973 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
8974 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
8975 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
8976 VMX_IGS_LONGMODE_SS_BASE_INVALID);
8977 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
8978 VMX_IGS_LONGMODE_DS_BASE_INVALID);
8979 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
8980 VMX_IGS_LONGMODE_ES_BASE_INVALID);
8981 }
8982#endif
8983 }
8984 else
8985 {
8986 /* V86 mode checks. */
8987 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
8988 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
8989 {
8990 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
8991 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
8992 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
8993 }
8994 else
8995 {
8996 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
8997 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
8998 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
8999 }
9000
9001 /* CS */
9002 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9003 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9004 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9005 /* SS */
9006 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9007 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9008 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9009 /* DS */
9010 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9011 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9012 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9013 /* ES */
9014 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9015 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9016 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9017 /* FS */
9018 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9019 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9020 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9021 /* GS */
9022 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9023 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9024 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9025 /* 64-bit capable CPUs. */
9026#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9027 if (HMVMX_IS_64BIT_HOST_MODE())
9028 {
9029 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9030 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9031 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9032 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9033 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9034 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
9035 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9036 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
9037 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9038 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
9039 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9040 }
9041#endif
9042 }
9043
9044 /*
9045 * TR.
9046 */
9047 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9048 /* 64-bit capable CPUs. */
9049#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9050 if (HMVMX_IS_64BIT_HOST_MODE())
9051 {
9052 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9053 }
9054#endif
9055 if (fLongModeGuest)
9056 {
9057 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9058 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9059 }
9060 else
9061 {
9062 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9063 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9064 VMX_IGS_TR_ATTR_TYPE_INVALID);
9065 }
9066 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9067 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9068 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9069 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9070 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9071 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9072 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9073 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9074
9075 /*
9076 * GDTR and IDTR.
9077 */
9078#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9079 if (HMVMX_IS_64BIT_HOST_MODE())
9080 {
9081 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9082 AssertRCBreak(rc);
9083 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9084
9085 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9086 AssertRCBreak(rc);
9087 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9088 }
9089#endif
9090
9091 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9092 AssertRCBreak(rc);
9093 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9094
9095 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9096 AssertRCBreak(rc);
9097 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9098
9099 /*
9100 * Guest Non-Register State.
9101 */
9102 /* Activity State. */
9103 uint32_t u32ActivityState;
9104 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9105 AssertRCBreak(rc);
9106 HMVMX_CHECK_BREAK( !u32ActivityState
9107 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
9108 VMX_IGS_ACTIVITY_STATE_INVALID);
9109 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9110 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9111 uint32_t u32IntrState;
9112 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
9113 AssertRCBreak(rc);
9114 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
9115 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9116 {
9117 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9118 }
9119
9120 /** @todo Activity state and injecting interrupts. Left as a todo since we
9121 * currently don't use activity states but ACTIVE. */
9122
9123 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9124 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9125
9126 /* Guest interruptibility-state. */
9127 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9128 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9129 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
9130 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9131 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9132 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9133 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9134 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9135 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9136 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
9137 {
9138 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
9139 {
9140 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9141 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9142 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9143 }
9144 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9145 {
9146 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9147 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9148 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9149 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9150 }
9151 }
9152 /** @todo Assumes the processor is not in SMM. */
9153 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9154 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9155 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9156 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9157 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9158 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
9159 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
9160 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9161 {
9162 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
9163 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9164 }
9165
9166 /* Pending debug exceptions. */
9167 if (HMVMX_IS_64BIT_HOST_MODE())
9168 {
9169 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
9170 AssertRCBreak(rc);
9171 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9172 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9173 u32Val = u64Val; /* For pending debug exceptions checks below. */
9174 }
9175 else
9176 {
9177 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
9178 AssertRCBreak(rc);
9179 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9180 HMVMX_CHECK_BREAK(!(u64Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9181 }
9182
9183 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9184 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
9185 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9186 {
9187 if ( (u32Eflags & X86_EFL_TF)
9188 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9189 {
9190 /* Bit 14 is PendingDebug.BS. */
9191 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9192 }
9193 if ( !(u32Eflags & X86_EFL_TF)
9194 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9195 {
9196 /* Bit 14 is PendingDebug.BS. */
9197 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9198 }
9199 }
9200
9201 /* VMCS link pointer. */
9202 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
9203 AssertRCBreak(rc);
9204 if (u64Val != UINT64_C(0xffffffffffffffff))
9205 {
9206 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
9207 /** @todo Bits beyond the processor's physical-address width MBZ. */
9208 /** @todo 32-bit located in memory referenced by value of this field (as a
9209 * physical address) must contain the processor's VMCS revision ID. */
9210 /** @todo SMM checks. */
9211 }
9212
9213 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
9214 * not using Nested Paging? */
9215 if ( pVM->hm.s.fNestedPaging
9216 && !fLongModeGuest
9217 && CPUMIsGuestInPAEModeEx(pCtx))
9218 {
9219 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
9220 AssertRCBreak(rc);
9221 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9222
9223 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
9224 AssertRCBreak(rc);
9225 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9226
9227 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
9228 AssertRCBreak(rc);
9229 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9230
9231 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
9232 AssertRCBreak(rc);
9233 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9234 }
9235
9236 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
9237 if (uError == VMX_IGS_ERROR)
9238 uError = VMX_IGS_REASON_NOT_FOUND;
9239 } while (0);
9240
9241 pVCpu->hm.s.u32HMError = uError;
9242 return uError;
9243
9244#undef HMVMX_ERROR_BREAK
9245#undef HMVMX_CHECK_BREAK
9246}
9247
9248/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
9249/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
9250/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
9251
9252/** @name VM-exit handlers.
9253 * @{
9254 */
9255
9256/**
9257 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
9258 */
9259HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9260{
9261 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9262 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
9263 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
9264 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
9265 return VINF_SUCCESS;
9266 return VINF_EM_RAW_INTERRUPT;
9267}
9268
9269
9270/**
9271 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
9272 */
9273HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9274{
9275 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9276 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
9277
9278 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9279 AssertRCReturn(rc, rc);
9280
9281 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9282 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
9283 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
9284 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
9285
9286 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9287 {
9288 /*
9289 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
9290 * anything we inject is not going to cause a VM-exit directly for the event being injected.
9291 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
9292 *
9293 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
9294 */
9295 VMXDispatchHostNmi();
9296 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
9297 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9298 return VINF_SUCCESS;
9299 }
9300
9301 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
9302 rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
9303 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
9304 {
9305 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9306 return VINF_SUCCESS;
9307 }
9308 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
9309 {
9310 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9311 return rc;
9312 }
9313
9314 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
9315 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
9316 switch (uIntType)
9317 {
9318 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
9319 Assert(uVector == X86_XCPT_DB);
9320 /* no break */
9321 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
9322 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
9323 /* no break */
9324 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9325 {
9326 switch (uVector)
9327 {
9328 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
9329 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
9330 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
9331 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
9332 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
9333 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
9334#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
9335 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
9336 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9337 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
9338 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9339 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
9340 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9341 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
9342 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9343 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
9344 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9345#endif
9346 default:
9347 {
9348 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9349 AssertRCReturn(rc, rc);
9350
9351 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
9352 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
9353 {
9354 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
9355 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
9356 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
9357
9358 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
9359 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9360 AssertRCReturn(rc, rc);
9361 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
9362 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
9363 0 /* GCPtrFaultAddress */);
9364 AssertRCReturn(rc, rc);
9365 }
9366 else
9367 {
9368 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
9369 pVCpu->hm.s.u32HMError = uVector;
9370 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
9371 }
9372 break;
9373 }
9374 }
9375 break;
9376 }
9377
9378 default:
9379 {
9380 pVCpu->hm.s.u32HMError = uExitIntInfo;
9381 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
9382 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
9383 break;
9384 }
9385 }
9386 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9387 return rc;
9388}
9389
9390
9391/**
9392 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
9393 */
9394HMVMX_EXIT_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9395{
9396 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9397
9398 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
9399 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
9400 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
9401 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9402 AssertRCReturn(rc, rc);
9403
9404 /* Deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and resume guest execution. */
9405 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
9406 return VINF_SUCCESS;
9407}
9408
9409
9410/**
9411 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
9412 */
9413HMVMX_EXIT_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9414{
9415 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9416 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
9417 HMVMX_RETURN_UNEXPECTED_EXIT();
9418}
9419
9420
9421/**
9422 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
9423 */
9424HMVMX_EXIT_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9425{
9426 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9427 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
9428 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9429}
9430
9431
9432/**
9433 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
9434 */
9435HMVMX_EXIT_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9436{
9437 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9438 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
9439 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9440}
9441
9442
9443/**
9444 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
9445 */
9446HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9447{
9448 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9449 PVM pVM = pVCpu->CTX_SUFF(pVM);
9450 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9451 if (RT_LIKELY(rc == VINF_SUCCESS))
9452 {
9453 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9454 Assert(pVmxTransient->cbInstr == 2);
9455 }
9456 else
9457 {
9458 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
9459 rc = VERR_EM_INTERPRETER;
9460 }
9461 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
9462 return rc;
9463}
9464
9465
9466/**
9467 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
9468 */
9469HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9470{
9471 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9472 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
9473 AssertRCReturn(rc, rc);
9474
9475 if (pMixedCtx->cr4 & X86_CR4_SMXE)
9476 return VINF_EM_RAW_EMULATE_INSTR;
9477
9478 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
9479 HMVMX_RETURN_UNEXPECTED_EXIT();
9480}
9481
9482
9483/**
9484 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
9485 */
9486HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9487{
9488 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9489 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
9490 AssertRCReturn(rc, rc);
9491
9492 PVM pVM = pVCpu->CTX_SUFF(pVM);
9493 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9494 if (RT_LIKELY(rc == VINF_SUCCESS))
9495 {
9496 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9497 Assert(pVmxTransient->cbInstr == 2);
9498 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
9499 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
9500 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9501 }
9502 else
9503 {
9504 AssertMsgFailed(("hmR0VmxExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
9505 rc = VERR_EM_INTERPRETER;
9506 }
9507 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
9508 return rc;
9509}
9510
9511
9512/**
9513 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
9514 */
9515HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9516{
9517 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9518 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
9519 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
9520 AssertRCReturn(rc, rc);
9521
9522 PVM pVM = pVCpu->CTX_SUFF(pVM);
9523 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
9524 if (RT_LIKELY(rc == VINF_SUCCESS))
9525 {
9526 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9527 Assert(pVmxTransient->cbInstr == 3);
9528 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
9529 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
9530 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9531 }
9532 else
9533 {
9534 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
9535 rc = VERR_EM_INTERPRETER;
9536 }
9537 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
9538 return rc;
9539}
9540
9541
9542/**
9543 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
9544 */
9545HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9546{
9547 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9548 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
9549 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); /** @todo review if CR0 is really required by EM. */
9550 AssertRCReturn(rc, rc);
9551
9552 PVM pVM = pVCpu->CTX_SUFF(pVM);
9553 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9554 if (RT_LIKELY(rc == VINF_SUCCESS))
9555 {
9556 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9557 Assert(pVmxTransient->cbInstr == 2);
9558 }
9559 else
9560 {
9561 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
9562 rc = VERR_EM_INTERPRETER;
9563 }
9564 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
9565 return rc;
9566}
9567
9568
9569/**
9570 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
9571 */
9572HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9573{
9574 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9575 PVM pVM = pVCpu->CTX_SUFF(pVM);
9576 Assert(!pVM->hm.s.fNestedPaging);
9577
9578 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9579 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
9580 AssertRCReturn(rc, rc);
9581
9582 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
9583 rc = VBOXSTRICTRC_VAL(rc2);
9584 if (RT_LIKELY(rc == VINF_SUCCESS))
9585 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9586 else
9587 {
9588 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
9589 pVmxTransient->uExitQualification, rc));
9590 }
9591 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
9592 return rc;
9593}
9594
9595
9596/**
9597 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
9598 */
9599HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9600{
9601 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9602 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9603 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9604 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9605 AssertRCReturn(rc, rc);
9606
9607 PVM pVM = pVCpu->CTX_SUFF(pVM);
9608 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9609 if (RT_LIKELY(rc == VINF_SUCCESS))
9610 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9611 else
9612 {
9613 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
9614 rc = VERR_EM_INTERPRETER;
9615 }
9616 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
9617 return rc;
9618}
9619
9620
9621/**
9622 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
9623 */
9624HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9625{
9626 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9627 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9628 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9629 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9630 AssertRCReturn(rc, rc);
9631
9632 PVM pVM = pVCpu->CTX_SUFF(pVM);
9633 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9634 rc = VBOXSTRICTRC_VAL(rc2);
9635 if (RT_LIKELY( rc == VINF_SUCCESS
9636 || rc == VINF_EM_HALT))
9637 {
9638 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9639 AssertRCReturn(rc3, rc3);
9640
9641 if ( rc == VINF_EM_HALT
9642 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
9643 {
9644 rc = VINF_SUCCESS;
9645 }
9646 }
9647 else
9648 {
9649 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
9650 rc = VERR_EM_INTERPRETER;
9651 }
9652 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
9653 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
9654 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
9655 return rc;
9656}
9657
9658
9659/**
9660 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
9661 */
9662HMVMX_EXIT_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9663{
9664 /*
9665 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
9666 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
9667 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
9668 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
9669 */
9670 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9671 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9672 HMVMX_RETURN_UNEXPECTED_EXIT();
9673}
9674
9675
9676/**
9677 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
9678 */
9679HMVMX_EXIT_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9680{
9681 /*
9682 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
9683 * root operation. Only an STM (SMM transfer monitor) would get this exit when we (the executive monitor) execute a VMCALL
9684 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
9685 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
9686 */
9687 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9688 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9689 HMVMX_RETURN_UNEXPECTED_EXIT();
9690}
9691
9692
9693/**
9694 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
9695 */
9696HMVMX_EXIT_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9697{
9698 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
9699 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9700 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9701 HMVMX_RETURN_UNEXPECTED_EXIT();
9702}
9703
9704
9705/**
9706 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
9707 */
9708HMVMX_EXIT_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9709{
9710 /*
9711 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
9712 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
9713 * See Intel spec. 25.3 "Other Causes of VM-exits".
9714 */
9715 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9716 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9717 HMVMX_RETURN_UNEXPECTED_EXIT();
9718}
9719
9720
9721/**
9722 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
9723 * VM-exit.
9724 */
9725HMVMX_EXIT_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9726{
9727 /*
9728 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
9729 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
9730 *
9731 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
9732 * See Intel spec. "23.8 Restrictions on VMX operation".
9733 */
9734 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9735 return VINF_SUCCESS;
9736}
9737
9738
9739/**
9740 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
9741 * VM-exit.
9742 */
9743HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9744{
9745 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9746 return VINF_EM_RESET;
9747}
9748
9749
9750/**
9751 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
9752 */
9753HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9754{
9755 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9756 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
9757 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9758 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9759 AssertRCReturn(rc, rc);
9760
9761 pMixedCtx->rip++;
9762 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
9763 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
9764 rc = VINF_SUCCESS;
9765 else
9766 rc = VINF_EM_HALT;
9767
9768 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
9769 return rc;
9770}
9771
9772
9773/**
9774 * VM-exit handler for instructions that result in a #UD exception delivered to
9775 * the guest.
9776 */
9777HMVMX_EXIT_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9778{
9779 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9780 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
9781 return VINF_SUCCESS;
9782}
9783
9784
9785/**
9786 * VM-exit handler for expiry of the VMX preemption timer.
9787 */
9788HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9789{
9790 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9791
9792 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
9793 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9794
9795 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
9796 PVM pVM = pVCpu->CTX_SUFF(pVM);
9797 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
9798 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
9799 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
9800}
9801
9802
9803/**
9804 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
9805 */
9806HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9807{
9808 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9809
9810 /* We expose XSETBV to the guest, fallback to the recompiler for emulation. */
9811 /** @todo check if XSETBV is supported by the recompiler. */
9812 return VERR_EM_INTERPRETER;
9813}
9814
9815
9816/**
9817 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
9818 */
9819HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9820{
9821 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9822
9823 /* The guest should not invalidate the host CPU's TLBs, fallback to recompiler. */
9824 /** @todo implement EMInterpretInvpcid() */
9825 return VERR_EM_INTERPRETER;
9826}
9827
9828
9829/**
9830 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
9831 * Error VM-exit.
9832 */
9833HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9834{
9835 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9836 AssertRCReturn(rc, rc);
9837
9838 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
9839 NOREF(uInvalidReason);
9840
9841#ifdef VBOX_STRICT
9842 uint32_t uIntrState;
9843 HMVMXHCUINTREG uHCReg;
9844 uint64_t u64Val;
9845 uint32_t u32Val;
9846
9847 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
9848 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
9849 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
9850 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
9851 AssertRCReturn(rc, rc);
9852
9853 Log4(("uInvalidReason %u\n", uInvalidReason));
9854 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
9855 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
9856 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
9857 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
9858
9859 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
9860 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
9861 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
9862 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
9863 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
9864 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
9865 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
9866 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
9867 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
9868 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
9869 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
9870 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
9871#else
9872 NOREF(pVmxTransient);
9873#endif
9874
9875 HMDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
9876 return VERR_VMX_INVALID_GUEST_STATE;
9877}
9878
9879
9880/**
9881 * VM-exit handler for VM-entry failure due to an MSR-load
9882 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
9883 */
9884HMVMX_EXIT_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9885{
9886 NOREF(pVmxTransient);
9887 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
9888 HMVMX_RETURN_UNEXPECTED_EXIT();
9889}
9890
9891
9892/**
9893 * VM-exit handler for VM-entry failure due to a machine-check event
9894 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
9895 */
9896HMVMX_EXIT_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9897{
9898 NOREF(pVmxTransient);
9899 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
9900 HMVMX_RETURN_UNEXPECTED_EXIT();
9901}
9902
9903
9904/**
9905 * VM-exit handler for all undefined reasons. Should never ever happen.. in
9906 * theory.
9907 */
9908HMVMX_EXIT_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9909{
9910 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
9911 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
9912 return VERR_VMX_UNDEFINED_EXIT_CODE;
9913}
9914
9915
9916/**
9917 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
9918 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
9919 * Conditional VM-exit.
9920 */
9921HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9922{
9923 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9924
9925 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
9926 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
9927 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
9928 return VERR_EM_INTERPRETER;
9929 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9930 HMVMX_RETURN_UNEXPECTED_EXIT();
9931}
9932
9933
9934/**
9935 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
9936 */
9937HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9938{
9939 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9940
9941 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
9942 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
9943 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
9944 return VERR_EM_INTERPRETER;
9945 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
9946 HMVMX_RETURN_UNEXPECTED_EXIT();
9947}
9948
9949
9950/**
9951 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
9952 */
9953HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9954{
9955 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9956
9957 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
9958 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9959 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9960 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9961 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
9962 {
9963 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
9964 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
9965 }
9966 AssertRCReturn(rc, rc);
9967 Log4(("CS:RIP=%04x:%#RX64 ECX=%X\n", pMixedCtx->cs.Sel, pMixedCtx->rip, pMixedCtx->ecx));
9968
9969#ifdef VBOX_STRICT
9970 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
9971 {
9972 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
9973 {
9974 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
9975 HMVMX_RETURN_UNEXPECTED_EXIT();
9976 }
9977# if HC_ARCH_BITS == 64
9978 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests
9979 && hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
9980 {
9981 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
9982 HMVMX_RETURN_UNEXPECTED_EXIT();
9983 }
9984# endif
9985 }
9986#endif
9987
9988 PVM pVM = pVCpu->CTX_SUFF(pVM);
9989 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
9990 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
9991 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
9992 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
9993
9994 if (RT_LIKELY(rc == VINF_SUCCESS))
9995 {
9996 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
9997 Assert(pVmxTransient->cbInstr == 2);
9998 }
9999 return rc;
10000}
10001
10002
10003/**
10004 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
10005 */
10006HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10007{
10008 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10009 PVM pVM = pVCpu->CTX_SUFF(pVM);
10010 int rc = VINF_SUCCESS;
10011
10012 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
10013 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10014 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10015 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10016 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10017 {
10018 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
10019 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
10020 }
10021 AssertRCReturn(rc, rc);
10022 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
10023
10024 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10025 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
10026 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
10027
10028 if (RT_LIKELY(rc == VINF_SUCCESS))
10029 {
10030 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10031
10032 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
10033 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
10034 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
10035 {
10036 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
10037 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
10038 EMInterpretWrmsr() changes it. */
10039 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10040 }
10041 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
10042 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10043
10044 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
10045 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10046 {
10047 switch (pMixedCtx->ecx)
10048 {
10049 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
10050 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
10051 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
10052 case MSR_K8_FS_BASE: /* no break */
10053 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
10054 default:
10055 {
10056 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10057 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
10058#if HC_ARCH_BITS == 64
10059 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10060 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
10061#endif
10062 break;
10063 }
10064 }
10065 }
10066#ifdef VBOX_STRICT
10067 else
10068 {
10069 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
10070 switch (pMixedCtx->ecx)
10071 {
10072 case MSR_IA32_SYSENTER_CS:
10073 case MSR_IA32_SYSENTER_EIP:
10074 case MSR_IA32_SYSENTER_ESP:
10075 case MSR_K8_FS_BASE:
10076 case MSR_K8_GS_BASE:
10077 {
10078 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
10079 HMVMX_RETURN_UNEXPECTED_EXIT();
10080 }
10081
10082 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
10083 default:
10084 {
10085 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10086 {
10087 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
10088 pMixedCtx->ecx));
10089 HMVMX_RETURN_UNEXPECTED_EXIT();
10090 }
10091
10092#if HC_ARCH_BITS == 64
10093 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10094 {
10095 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
10096 HMVMX_RETURN_UNEXPECTED_EXIT();
10097 }
10098#endif
10099 break;
10100 }
10101 }
10102 }
10103#endif /* VBOX_STRICT */
10104 }
10105 return rc;
10106}
10107
10108
10109/**
10110 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
10111 */
10112HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10113{
10114 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10115
10116 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT. */
10117 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
10118 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT)
10119 return VERR_EM_INTERPRETER;
10120 AssertMsgFailed(("Unexpected PAUSE exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10121 HMVMX_RETURN_UNEXPECTED_EXIT();
10122}
10123
10124
10125/**
10126 * VM-exit handler for when the TPR value is lowered below the specified
10127 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
10128 */
10129HMVMX_EXIT_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10130{
10131 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10132 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
10133
10134 /*
10135 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
10136 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectPendingEvent() and
10137 * resume guest execution.
10138 */
10139 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10140 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
10141 return VINF_SUCCESS;
10142}
10143
10144
10145/**
10146 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
10147 * VM-exit.
10148 *
10149 * @retval VINF_SUCCESS when guest execution can continue.
10150 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
10151 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
10152 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
10153 * recompiler.
10154 */
10155HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10156{
10157 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10158 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
10159 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10160 AssertRCReturn(rc, rc);
10161
10162 const RTGCUINTPTR uExitQualification = pVmxTransient->uExitQualification;
10163 const uint32_t uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
10164 PVM pVM = pVCpu->CTX_SUFF(pVM);
10165 switch (uAccessType)
10166 {
10167 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
10168 {
10169#if 0
10170 /* EMInterpretCRxWrite() references a lot of guest state (EFER, RFLAGS, Segment Registers, etc.) Sync entire state */
10171 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10172#else
10173 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10174 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10175 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10176#endif
10177 AssertRCReturn(rc, rc);
10178
10179 rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10180 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
10181 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
10182 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
10183
10184 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
10185 {
10186 case 0: /* CR0 */
10187 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10188 Log4(("CRX CR0 write rc=%d CR0=%#RX64\n", rc, pMixedCtx->cr0));
10189 break;
10190 case 2: /* CR2 */
10191 /* Nothing to do here, CR2 it's not part of the VMCS. */
10192 break;
10193 case 3: /* CR3 */
10194 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx));
10195 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
10196 Log4(("CRX CR3 write rc=%d CR3=%#RX64\n", rc, pMixedCtx->cr3));
10197 break;
10198 case 4: /* CR4 */
10199 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
10200 Log4(("CRX CR4 write rc=%d CR4=%#RX64\n", rc, pMixedCtx->cr4));
10201 break;
10202 case 8: /* CR8 */
10203 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
10204 /* CR8 contains the APIC TPR. Was updated by EMInterpretCRxWrite(). */
10205 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10206 break;
10207 default:
10208 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
10209 break;
10210 }
10211
10212 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
10213 break;
10214 }
10215
10216 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
10217 {
10218 /* EMInterpretCRxRead() requires EFER MSR, CS. */
10219 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10220 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10221 AssertRCReturn(rc, rc);
10222 Assert( !pVM->hm.s.fNestedPaging
10223 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
10224 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
10225
10226 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
10227 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
10228 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
10229
10230 rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10231 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
10232 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
10233 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
10234 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
10235 Log4(("CRX CR%d Read access rc=%d\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification), rc));
10236 break;
10237 }
10238
10239 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
10240 {
10241 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10242 AssertRCReturn(rc, rc);
10243 rc = EMInterpretCLTS(pVM, pVCpu);
10244 AssertRCReturn(rc, rc);
10245 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10246 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
10247 Log4(("CRX CLTS write rc=%d\n", rc));
10248 break;
10249 }
10250
10251 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
10252 {
10253 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10254 AssertRCReturn(rc, rc);
10255 rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
10256 if (RT_LIKELY(rc == VINF_SUCCESS))
10257 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10258 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
10259 Log4(("CRX LMSW write rc=%d\n", rc));
10260 break;
10261 }
10262
10263 default:
10264 {
10265 AssertMsgFailed(("Invalid access-type in Mov CRx exit qualification %#x\n", uAccessType));
10266 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
10267 }
10268 }
10269
10270 /* Validate possible error codes. */
10271 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_CHANGE_MODE || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_SYNC_CR3
10272 || rc == VERR_VMX_UNEXPECTED_EXCEPTION);
10273 if (RT_SUCCESS(rc))
10274 {
10275 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10276 AssertRCReturn(rc2, rc2);
10277 }
10278
10279 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
10280 return rc;
10281}
10282
10283
10284/**
10285 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
10286 * VM-exit.
10287 */
10288HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10289{
10290 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10291 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
10292
10293 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10294 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10295 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10296 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
10297 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
10298 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
10299 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
10300 AssertRCReturn(rc2, rc2);
10301
10302 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
10303 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
10304 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
10305 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
10306 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
10307 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
10308 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_HMVMX_IPE_1);
10309
10310 /* I/O operation lookup arrays. */
10311 static const uint32_t s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
10312 static const uint32_t s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
10313
10314 VBOXSTRICTRC rcStrict;
10315 const uint32_t cbValue = s_aIOSizes[uIOWidth];
10316 const uint32_t cbInstr = pVmxTransient->cbInstr;
10317 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
10318 PVM pVM = pVCpu->CTX_SUFF(pVM);
10319 if (fIOString)
10320 {
10321#if 0 /* Not yet ready. IEM gurus with debian 32-bit guest without NP (on ATA reads). See @bugref{5752#c158} */
10322 /*
10323 * INS/OUTS - I/O String instruction.
10324 *
10325 * Use instruction-information if available, otherwise fall back on
10326 * interpreting the instruction.
10327 */
10328 Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
10329 AssertReturn(pMixedCtx->dx == uIOPort, VERR_HMVMX_IPE_2);
10330 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
10331 {
10332 rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10333 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
10334 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10335 AssertRCReturn(rc2, rc2);
10336 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_HMVMX_IPE_3);
10337 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
10338 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
10339 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
10340 if (fIOWrite)
10341 {
10342 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
10343 pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
10344 }
10345 else
10346 {
10347 /*
10348 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
10349 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
10350 * See Intel Instruction spec. for "INS".
10351 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
10352 */
10353 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr);
10354 }
10355 }
10356 else
10357 {
10358 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
10359 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10360 AssertRCReturn(rc2, rc2);
10361 rcStrict = IEMExecOne(pVCpu);
10362 }
10363 /** @todo IEM needs to be setting these flags somehow. */
10364 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10365 fUpdateRipAlready = true;
10366#else
10367 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
10368 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
10369 if (RT_SUCCESS(rcStrict))
10370 {
10371 if (fIOWrite)
10372 {
10373 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
10374 (DISCPUMODE)pDis->uAddrMode, cbValue);
10375 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
10376 }
10377 else
10378 {
10379 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
10380 (DISCPUMODE)pDis->uAddrMode, cbValue);
10381 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
10382 }
10383 }
10384 else
10385 {
10386 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP %#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->rip));
10387 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10388 }
10389#endif
10390 }
10391 else
10392 {
10393 /*
10394 * IN/OUT - I/O instruction.
10395 */
10396 Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
10397 const uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
10398 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
10399 if (fIOWrite)
10400 {
10401 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
10402 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
10403 HMR0SavePendingIOPortWrite(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
10404 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
10405 }
10406 else
10407 {
10408 uint32_t u32Result = 0;
10409 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
10410 if (IOM_SUCCESS(rcStrict))
10411 {
10412 /* Save result of I/O IN instr. in AL/AX/EAX. */
10413 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
10414 }
10415 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
10416 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
10417 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
10418 }
10419 }
10420
10421 if (IOM_SUCCESS(rcStrict))
10422 {
10423 if (!fUpdateRipAlready)
10424 {
10425 pMixedCtx->rip += cbInstr;
10426 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10427 }
10428
10429 /*
10430 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
10431 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
10432 */
10433 if (fIOString)
10434 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
10435
10436 /*
10437 * If any I/O breakpoints are armed, we need to check if one triggered
10438 * and take appropriate action.
10439 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
10440 */
10441 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
10442 AssertRCReturn(rc2, rc2);
10443
10444 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
10445 * execution engines about whether hyper BPs and such are pending. */
10446 uint32_t const uDr7 = pMixedCtx->dr[7];
10447 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
10448 && X86_DR7_ANY_RW_IO(uDr7)
10449 && (pMixedCtx->cr4 & X86_CR4_DE))
10450 || DBGFBpIsHwIoArmed(pVM)))
10451 {
10452 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
10453
10454 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
10455 VMMRZCallRing3Disable(pVCpu);
10456 HM_DISABLE_PREEMPT_IF_NEEDED();
10457
10458 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /*fDr6*/);
10459
10460 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
10461 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
10462 {
10463 /* Raise #DB. */
10464 if (fIsGuestDbgActive)
10465 ASMSetDR6(pMixedCtx->dr[6]);
10466 if (pMixedCtx->dr[7] != uDr7)
10467 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10468
10469 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
10470 }
10471 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
10472 else if ( rcStrict2 != VINF_SUCCESS
10473 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
10474 rcStrict = rcStrict2;
10475
10476 HM_RESTORE_PREEMPT_IF_NEEDED();
10477 VMMRZCallRing3Enable(pVCpu);
10478 }
10479 }
10480
10481#ifdef DEBUG
10482 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
10483 Assert(!fIOWrite);
10484 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
10485 Assert(fIOWrite);
10486 else
10487 {
10488 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
10489 * statuses, that the VMM device and some others may return. See
10490 * IOM_SUCCESS() for guidance. */
10491 AssertMsg( RT_FAILURE(rcStrict)
10492 || rcStrict == VINF_SUCCESS
10493 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
10494 || rcStrict == VINF_EM_DBG_BREAKPOINT
10495 || rcStrict == VINF_EM_RAW_GUEST_TRAP
10496 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10497 }
10498#endif
10499
10500 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
10501 return VBOXSTRICTRC_TODO(rcStrict);
10502}
10503
10504
10505/**
10506 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
10507 * VM-exit.
10508 */
10509HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10510{
10511 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10512
10513 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
10514 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10515 AssertRCReturn(rc, rc);
10516 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
10517 {
10518 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
10519 AssertRCReturn(rc, rc);
10520 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
10521 {
10522 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
10523
10524 /* Software interrupts and exceptions will be regenerated when the recompiler restarts the instruction. */
10525 if ( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
10526 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
10527 && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
10528 {
10529 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
10530 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
10531
10532 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
10533 Assert(!pVCpu->hm.s.Event.fPending);
10534 pVCpu->hm.s.Event.fPending = true;
10535 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
10536 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
10537 AssertRCReturn(rc, rc);
10538 if (fErrorCodeValid)
10539 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
10540 else
10541 pVCpu->hm.s.Event.u32ErrCode = 0;
10542 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
10543 && uVector == X86_XCPT_PF)
10544 {
10545 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
10546 }
10547
10548 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
10549 }
10550 }
10551 }
10552
10553 /** @todo Emulate task switch someday, currently just going back to ring-3 for
10554 * emulation. */
10555 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
10556 return VERR_EM_INTERPRETER;
10557}
10558
10559
10560/**
10561 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
10562 */
10563HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10564{
10565 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10566 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
10567 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
10568 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
10569 AssertRCReturn(rc, rc);
10570 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
10571 return VINF_EM_DBG_STEPPED;
10572}
10573
10574
10575/**
10576 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
10577 */
10578HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10579{
10580 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10581
10582 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10583 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10584 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10585 return VINF_SUCCESS;
10586 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10587 return rc;
10588
10589#if 0
10590 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
10591 * just sync the whole thing. */
10592 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10593#else
10594 /* Aggressive state sync. for now. */
10595 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10596 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10597 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10598#endif
10599 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10600 AssertRCReturn(rc, rc);
10601
10602 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
10603 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
10604 switch (uAccessType)
10605 {
10606 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
10607 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
10608 {
10609 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
10610 && VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) == 0x80)
10611 {
10612 AssertMsgFailed(("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
10613 }
10614
10615 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
10616 GCPhys &= PAGE_BASE_GC_MASK;
10617 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
10618 PVM pVM = pVCpu->CTX_SUFF(pVM);
10619 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGv Off=%#x\n", uAccessType, GCPhys,
10620 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
10621
10622 VBOXSTRICTRC rc2 = IOMMMIOPhysHandler(pVM, pVCpu,
10623 (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW,
10624 CPUMCTX2CORE(pMixedCtx), GCPhys);
10625 rc = VBOXSTRICTRC_VAL(rc2);
10626 Log4(("ApicAccess rc=%d\n", rc));
10627 if ( rc == VINF_SUCCESS
10628 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10629 || rc == VERR_PAGE_NOT_PRESENT)
10630 {
10631 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
10632 | HM_CHANGED_GUEST_RSP
10633 | HM_CHANGED_GUEST_RFLAGS
10634 | HM_CHANGED_VMX_GUEST_APIC_STATE);
10635 rc = VINF_SUCCESS;
10636 }
10637 break;
10638 }
10639
10640 default:
10641 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
10642 rc = VINF_EM_RAW_EMULATE_INSTR;
10643 break;
10644 }
10645
10646 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
10647 return rc;
10648}
10649
10650
10651/**
10652 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
10653 * VM-exit.
10654 */
10655HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10656{
10657 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10658
10659 /* We should -not- get this VM-exit if the guest's debug registers were active. */
10660 if (pVmxTransient->fWasGuestDebugStateActive)
10661 {
10662 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10663 HMVMX_RETURN_UNEXPECTED_EXIT();
10664 }
10665
10666 int rc = VERR_INTERNAL_ERROR_5;
10667 if ( !DBGFIsStepping(pVCpu)
10668 && !pVCpu->hm.s.fSingleInstruction
10669 && !pVmxTransient->fWasHyperDebugStateActive)
10670 {
10671 /* Don't intercept MOV DRx and #DB any more. */
10672 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
10673 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
10674 AssertRCReturn(rc, rc);
10675
10676 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10677 {
10678#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
10679 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
10680 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
10681 AssertRCReturn(rc, rc);
10682#endif
10683 }
10684
10685 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
10686 VMMRZCallRing3Disable(pVCpu);
10687 HM_DISABLE_PREEMPT_IF_NEEDED();
10688
10689 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
10690 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
10691 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
10692
10693 HM_RESTORE_PREEMPT_IF_NEEDED();
10694 VMMRZCallRing3Enable(pVCpu);
10695
10696#ifdef VBOX_WITH_STATISTICS
10697 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10698 AssertRCReturn(rc, rc);
10699 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
10700 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
10701 else
10702 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
10703#endif
10704 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
10705 return VINF_SUCCESS;
10706 }
10707
10708 /*
10709 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
10710 * Update the segment registers and DR7 from the CPU.
10711 */
10712 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10713 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10714 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
10715 AssertRCReturn(rc, rc);
10716 Log4(("CS:RIP=%04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
10717
10718 PVM pVM = pVCpu->CTX_SUFF(pVM);
10719 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
10720 {
10721 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10722 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
10723 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
10724 if (RT_SUCCESS(rc))
10725 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10726 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
10727 }
10728 else
10729 {
10730 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10731 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
10732 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
10733 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
10734 }
10735
10736 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
10737 if (RT_SUCCESS(rc))
10738 {
10739 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10740 AssertRCReturn(rc2, rc2);
10741 }
10742 return rc;
10743}
10744
10745
10746/**
10747 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
10748 * Conditional VM-exit.
10749 */
10750HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10751{
10752 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10753 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
10754
10755 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10756 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10757 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10758 return VINF_SUCCESS;
10759 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10760 return rc;
10761
10762 RTGCPHYS GCPhys = 0;
10763 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
10764
10765#if 0
10766 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
10767#else
10768 /* Aggressive state sync. for now. */
10769 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10770 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10771 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10772#endif
10773 AssertRCReturn(rc, rc);
10774
10775 /*
10776 * If we succeed, resume guest execution.
10777 * If we fail in interpreting the instruction because we couldn't get the guest physical address
10778 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
10779 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
10780 * weird case. See @bugref{6043}.
10781 */
10782 PVM pVM = pVCpu->CTX_SUFF(pVM);
10783 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
10784 rc = VBOXSTRICTRC_VAL(rc2);
10785 Log4(("EPT misconfig at %#RGv RIP=%#RX64 rc=%d\n", GCPhys, pMixedCtx->rip, rc));
10786 if ( rc == VINF_SUCCESS
10787 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10788 || rc == VERR_PAGE_NOT_PRESENT)
10789 {
10790 /* Successfully handled MMIO operation. */
10791 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
10792 | HM_CHANGED_GUEST_RSP
10793 | HM_CHANGED_GUEST_RFLAGS
10794 | HM_CHANGED_VMX_GUEST_APIC_STATE);
10795 rc = VINF_SUCCESS;
10796 }
10797 return rc;
10798}
10799
10800
10801/**
10802 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
10803 * VM-exit.
10804 */
10805HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10806{
10807 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10808 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
10809
10810 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10811 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10812 if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
10813 return VINF_SUCCESS;
10814 else if (RT_UNLIKELY(rc == VINF_EM_RESET))
10815 return rc;
10816
10817 RTGCPHYS GCPhys = 0;
10818 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
10819 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10820#if 0
10821 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
10822#else
10823 /* Aggressive state sync. for now. */
10824 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10825 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10826 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10827#endif
10828 AssertRCReturn(rc, rc);
10829
10830 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
10831 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
10832
10833 RTGCUINT uErrorCode = 0;
10834 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
10835 uErrorCode |= X86_TRAP_PF_ID;
10836 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
10837 uErrorCode |= X86_TRAP_PF_RW;
10838 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
10839 uErrorCode |= X86_TRAP_PF_P;
10840
10841 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
10842
10843 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:EIP=%04x:%#RX64\n", pVmxTransient->uExitQualification, GCPhys,
10844 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
10845
10846 /* Handle the pagefault trap for the nested shadow table. */
10847 PVM pVM = pVCpu->CTX_SUFF(pVM);
10848 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
10849 TRPMResetTrap(pVCpu);
10850
10851 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
10852 if ( rc == VINF_SUCCESS
10853 || rc == VERR_PAGE_TABLE_NOT_PRESENT
10854 || rc == VERR_PAGE_NOT_PRESENT)
10855 {
10856 /* Successfully synced our nested page tables. */
10857 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
10858 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
10859 | HM_CHANGED_GUEST_RSP
10860 | HM_CHANGED_GUEST_RFLAGS);
10861 return VINF_SUCCESS;
10862 }
10863
10864 Log4(("EPT return to ring-3 rc=%Rrc\n", rc));
10865 return rc;
10866}
10867
10868/** @} */
10869
10870/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10871/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
10872/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10873
10874/** @name VM-exit exception handlers.
10875 * @{
10876 */
10877
10878/**
10879 * VM-exit exception handler for #MF (Math Fault: floating point exception).
10880 */
10881static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10882{
10883 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10884 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
10885
10886 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10887 AssertRCReturn(rc, rc);
10888
10889 if (!(pMixedCtx->cr0 & X86_CR0_NE))
10890 {
10891 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
10892 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
10893
10894 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
10895 * provides VM-exit instruction length. If this causes problem later,
10896 * disassemble the instruction like it's done on AMD-V. */
10897 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10898 AssertRCReturn(rc2, rc2);
10899 return rc;
10900 }
10901
10902 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
10903 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
10904 return rc;
10905}
10906
10907
10908/**
10909 * VM-exit exception handler for #BP (Breakpoint exception).
10910 */
10911static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10912{
10913 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10914 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
10915
10916 /** @todo Try optimize this by not saving the entire guest state unless
10917 * really needed. */
10918 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10919 AssertRCReturn(rc, rc);
10920
10921 PVM pVM = pVCpu->CTX_SUFF(pVM);
10922 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10923 if (rc == VINF_EM_RAW_GUEST_TRAP)
10924 {
10925 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10926 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10927 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
10928 AssertRCReturn(rc, rc);
10929
10930 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
10931 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
10932 }
10933
10934 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
10935 return rc;
10936}
10937
10938
10939/**
10940 * VM-exit exception handler for #DB (Debug exception).
10941 */
10942static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10943{
10944 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
10945 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
10946 Log6(("XcptDB\n"));
10947
10948 /*
10949 * Get the DR6-like values from the exit qualification and pass it to DBGF
10950 * for processing.
10951 */
10952 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10953 AssertRCReturn(rc, rc);
10954
10955 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
10956 uint64_t uDR6 = X86_DR6_INIT_VAL;
10957 uDR6 |= ( pVmxTransient->uExitQualification
10958 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
10959
10960 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
10961 if (rc == VINF_EM_RAW_GUEST_TRAP)
10962 {
10963 /*
10964 * The exception was for the guest. Update DR6, DR7.GD and
10965 * IA32_DEBUGCTL.LBR before forwarding it.
10966 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
10967 */
10968 VMMRZCallRing3Disable(pVCpu);
10969 HM_DISABLE_PREEMPT_IF_NEEDED();
10970
10971 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
10972 pMixedCtx->dr[6] |= uDR6;
10973 if (CPUMIsGuestDebugStateActive(pVCpu))
10974 ASMSetDR6(pMixedCtx->dr[6]);
10975
10976 HM_RESTORE_PREEMPT_IF_NEEDED();
10977 VMMRZCallRing3Enable(pVCpu);
10978
10979 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
10980 AssertRCReturn(rc, rc);
10981
10982 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
10983 pMixedCtx->dr[7] &= ~X86_DR7_GD;
10984
10985 /* Paranoia. */
10986 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
10987 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
10988
10989 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
10990 AssertRCReturn(rc, rc);
10991
10992 /*
10993 * Raise #DB in the guest.
10994 *
10995 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
10996 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
10997 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
10998 *
10999 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
11000 */
11001 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11002 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11003 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11004 AssertRCReturn(rc, rc);
11005 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11006 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11007 return VINF_SUCCESS;
11008 }
11009
11010 /*
11011 * Not a guest trap, must be a hypervisor related debug event then.
11012 * Update DR6 in case someone is interested in it.
11013 */
11014 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
11015 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
11016 CPUMSetHyperDR6(pVCpu, uDR6);
11017
11018 return rc;
11019}
11020
11021
11022/**
11023 * VM-exit exception handler for #NM (Device-not-available exception: floating
11024 * point exception).
11025 */
11026static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11027{
11028 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11029
11030 /* We require CR0 and EFER. EFER is always up-to-date. */
11031 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11032 AssertRCReturn(rc, rc);
11033
11034 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
11035 VMMRZCallRing3Disable(pVCpu);
11036 HM_DISABLE_PREEMPT_IF_NEEDED();
11037
11038 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
11039 if (pVmxTransient->fWasGuestFPUStateActive)
11040 {
11041 rc = VINF_EM_RAW_GUEST_TRAP;
11042 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
11043 }
11044 else
11045 {
11046#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11047 Assert(!pVmxTransient->fWasGuestFPUStateActive);
11048#endif
11049 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11050 Assert(rc == VINF_EM_RAW_GUEST_TRAP || (rc == VINF_SUCCESS && CPUMIsGuestFPUStateActive(pVCpu)));
11051 }
11052
11053 HM_RESTORE_PREEMPT_IF_NEEDED();
11054 VMMRZCallRing3Enable(pVCpu);
11055
11056 if (rc == VINF_SUCCESS)
11057 {
11058 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
11059 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
11060 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
11061 pVCpu->hm.s.fUseGuestFpu = true;
11062 }
11063 else
11064 {
11065 /* Forward #NM to the guest. */
11066 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
11067 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11068 AssertRCReturn(rc, rc);
11069 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11070 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
11071 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11072 }
11073
11074 return VINF_SUCCESS;
11075}
11076
11077
11078/**
11079 * VM-exit exception handler for #GP (General-protection exception).
11080 *
11081 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
11082 */
11083static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11084{
11085 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11086 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
11087
11088 int rc = VERR_INTERNAL_ERROR_5;
11089 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11090 {
11091#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11092 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
11093 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11094 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11095 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11096 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11097 AssertRCReturn(rc, rc);
11098 Log4(("#GP Gst: RIP %#RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u\n", pMixedCtx->rip, pVmxTransient->uExitIntErrorCode,
11099 pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu)));
11100 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11101 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11102 return rc;
11103#else
11104 /* We don't intercept #GP. */
11105 AssertMsgFailed(("Unexpected VM-exit caused by #GP exception\n"));
11106 NOREF(pVmxTransient);
11107 return VERR_VMX_UNEXPECTED_EXCEPTION;
11108#endif
11109 }
11110
11111 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11112 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
11113
11114 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
11115 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11116 AssertRCReturn(rc, rc);
11117
11118 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
11119 uint32_t cbOp = 0;
11120 PVM pVM = pVCpu->CTX_SUFF(pVM);
11121 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
11122 if (RT_SUCCESS(rc))
11123 {
11124 rc = VINF_SUCCESS;
11125 Assert(cbOp == pDis->cbInstr);
11126 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%#RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
11127 switch (pDis->pCurInstr->uOpcode)
11128 {
11129 case OP_CLI:
11130 {
11131 pMixedCtx->eflags.Bits.u1IF = 0;
11132 pMixedCtx->rip += pDis->cbInstr;
11133 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11134 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
11135 break;
11136 }
11137
11138 case OP_STI:
11139 {
11140 pMixedCtx->eflags.Bits.u1IF = 1;
11141 pMixedCtx->rip += pDis->cbInstr;
11142 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
11143 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
11144 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11145 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
11146 break;
11147 }
11148
11149 case OP_HLT:
11150 {
11151 rc = VINF_EM_HALT;
11152 pMixedCtx->rip += pDis->cbInstr;
11153 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
11154 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11155 break;
11156 }
11157
11158 case OP_POPF:
11159 {
11160 Log4(("POPF CS:RIP %04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
11161 uint32_t cbParm = 0;
11162 uint32_t uMask = 0;
11163 if (pDis->fPrefix & DISPREFIX_OPSIZE)
11164 {
11165 cbParm = 4;
11166 uMask = 0xffffffff;
11167 }
11168 else
11169 {
11170 cbParm = 2;
11171 uMask = 0xffff;
11172 }
11173
11174 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
11175 RTGCPTR GCPtrStack = 0;
11176 X86EFLAGS Eflags;
11177 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
11178 &GCPtrStack);
11179 if (RT_SUCCESS(rc))
11180 {
11181 Assert(sizeof(Eflags.u32) >= cbParm);
11182 Eflags.u32 = 0;
11183 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm);
11184 }
11185 if (RT_FAILURE(rc))
11186 {
11187 rc = VERR_EM_INTERPRETER;
11188 break;
11189 }
11190 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
11191 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
11192 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
11193 pMixedCtx->eflags.Bits.u1RF = 0; /* The RF bit is always cleared by POPF; see Intel Instruction reference. */
11194 pMixedCtx->esp += cbParm;
11195 pMixedCtx->esp &= uMask;
11196 pMixedCtx->rip += pDis->cbInstr;
11197
11198 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11199 | HM_CHANGED_GUEST_RSP
11200 | HM_CHANGED_GUEST_RFLAGS);
11201 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
11202 break;
11203 }
11204
11205 case OP_PUSHF:
11206 {
11207 uint32_t cbParm = 0;
11208 uint32_t uMask = 0;
11209 if (pDis->fPrefix & DISPREFIX_OPSIZE)
11210 {
11211 cbParm = 4;
11212 uMask = 0xffffffff;
11213 }
11214 else
11215 {
11216 cbParm = 2;
11217 uMask = 0xffff;
11218 }
11219
11220 /* Get the stack pointer & push the contents of eflags onto the stack. */
11221 RTGCPTR GCPtrStack = 0;
11222 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
11223 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
11224 if (RT_FAILURE(rc))
11225 {
11226 rc = VERR_EM_INTERPRETER;
11227 break;
11228 }
11229 X86EFLAGS Eflags = pMixedCtx->eflags;
11230 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
11231 Eflags.Bits.u1RF = 0;
11232 Eflags.Bits.u1VM = 0;
11233
11234 rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm);
11235 if (RT_FAILURE(rc))
11236 {
11237 rc = VERR_EM_INTERPRETER;
11238 break;
11239 }
11240 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
11241 pMixedCtx->esp -= cbParm;
11242 pMixedCtx->esp &= uMask;
11243 pMixedCtx->rip += pDis->cbInstr;
11244 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP);
11245 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
11246 break;
11247 }
11248
11249 case OP_IRET:
11250 {
11251 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
11252 * instruction reference. */
11253 RTGCPTR GCPtrStack = 0;
11254 uint32_t uMask = 0xffff;
11255 uint16_t aIretFrame[3];
11256 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
11257 {
11258 rc = VERR_EM_INTERPRETER;
11259 break;
11260 }
11261 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
11262 &GCPtrStack);
11263 if (RT_SUCCESS(rc))
11264 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
11265 if (RT_FAILURE(rc))
11266 {
11267 rc = VERR_EM_INTERPRETER;
11268 break;
11269 }
11270 pMixedCtx->eip = 0;
11271 pMixedCtx->ip = aIretFrame[0];
11272 pMixedCtx->cs.Sel = aIretFrame[1];
11273 pMixedCtx->cs.ValidSel = aIretFrame[1];
11274 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
11275 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
11276 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
11277 pMixedCtx->sp += sizeof(aIretFrame);
11278 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11279 | HM_CHANGED_GUEST_SEGMENT_REGS
11280 | HM_CHANGED_GUEST_RSP
11281 | HM_CHANGED_GUEST_RFLAGS);
11282 Log4(("IRET %#RX32 to %04x:%x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
11283 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
11284 break;
11285 }
11286
11287 case OP_INT:
11288 {
11289 uint16_t uVector = pDis->Param1.uValue & 0xff;
11290 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
11291 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
11292 break;
11293 }
11294
11295 case OP_INTO:
11296 {
11297 if (pMixedCtx->eflags.Bits.u1OF)
11298 {
11299 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
11300 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
11301 }
11302 break;
11303 }
11304
11305 default:
11306 {
11307 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
11308 EMCODETYPE_SUPERVISOR);
11309 rc = VBOXSTRICTRC_VAL(rc2);
11310 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
11311 Log4(("#GP rc=%Rrc\n", rc));
11312 break;
11313 }
11314 }
11315 }
11316 else
11317 rc = VERR_EM_INTERPRETER;
11318
11319 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
11320 ("#GP Unexpected rc=%Rrc\n", rc));
11321 return rc;
11322}
11323
11324
11325#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11326/**
11327 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
11328 * the exception reported in the VMX transient structure back into the VM.
11329 *
11330 * @remarks Requires uExitIntInfo in the VMX transient structure to be
11331 * up-to-date.
11332 */
11333static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11334{
11335 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11336
11337 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
11338 hmR0VmxCheckExitDueToEventDelivery(). */
11339 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11340 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11341 AssertRCReturn(rc, rc);
11342 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
11343
11344 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11345 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11346 return VINF_SUCCESS;
11347}
11348#endif
11349
11350
11351/**
11352 * VM-exit exception handler for #PF (Page-fault exception).
11353 */
11354static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11355{
11356 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11357 PVM pVM = pVCpu->CTX_SUFF(pVM);
11358 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11359 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11360 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11361 AssertRCReturn(rc, rc);
11362
11363#if defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) || defined(HMVMX_ALWAYS_TRAP_PF)
11364 if (pVM->hm.s.fNestedPaging)
11365 {
11366 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
11367 if (RT_LIKELY(!pVmxTransient->fVectoringPF))
11368 {
11369 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
11370 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11371 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
11372 }
11373 else
11374 {
11375 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
11376 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
11377 Log4(("Pending #DF due to vectoring #PF. NP\n"));
11378 }
11379 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
11380 return rc;
11381 }
11382#else
11383 Assert(!pVM->hm.s.fNestedPaging);
11384 NOREF(pVM);
11385#endif
11386
11387 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11388 AssertRCReturn(rc, rc);
11389
11390 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
11391 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
11392
11393 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
11394 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
11395 (RTGCPTR)pVmxTransient->uExitQualification);
11396
11397 Log4(("#PF: rc=%Rrc\n", rc));
11398 if (rc == VINF_SUCCESS)
11399 {
11400 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
11401 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
11402 * memory? We don't update the whole state here... */
11403 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11404 | HM_CHANGED_GUEST_RSP
11405 | HM_CHANGED_GUEST_RFLAGS
11406 | HM_CHANGED_VMX_GUEST_APIC_STATE);
11407 TRPMResetTrap(pVCpu);
11408 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
11409 return rc;
11410 }
11411 else if (rc == VINF_EM_RAW_GUEST_TRAP)
11412 {
11413 if (!pVmxTransient->fVectoringPF)
11414 {
11415 /* It's a guest page fault and needs to be reflected to the guest. */
11416 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
11417 TRPMResetTrap(pVCpu);
11418 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
11419 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
11420 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11421 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
11422 }
11423 else
11424 {
11425 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
11426 TRPMResetTrap(pVCpu);
11427 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
11428 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
11429 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
11430 }
11431
11432 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
11433 return VINF_SUCCESS;
11434 }
11435
11436 TRPMResetTrap(pVCpu);
11437 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
11438 return rc;
11439}
11440
11441/** @} */
11442
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette